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Abstract

Mean-shift tracking is a technique for following an object of interest as it moves through a

video sequence. It is a gradient ascent approach that models the image region to be tracked

by its colour histogram. In this thesis, we apply mean shift in the domain of surveillance

in order to track people as they walk through a scene. Our objectives are to evaluate the

performance of the technique and subsequently to introduce modifications which make the

method more robust, i.e., more likely to follow a designated target through an entire video

sequence.

We first compare mean shift to a standard template matching approach. The latter is

found to be much more reliable, rarely losing track of its target, and so its performance serves

as a baseline against which to measure the effects of our subsequent modifications to the basic

mean-shift method.

In an effort to improve the reliability of mean shift, we employ an existing technique – the

use of multiple-part models – to introduce a degree of spatial structure into its histograms,

mimicking one of the strengths of template matching. We further extend the method by

exploiting background models of the scene, another widely used modification. Our innovation

of combining the two enhancements, while not enabling mean shift to reach the performance

of the template matching tracker, increases its reliability considerably.

There are several parameters associated with any tracker. In the case of using the mean-

shift technique in the surveillance domain, we seek the optimal choices for the colour space

in which it operates and the size of its model histograms, among other parameters. Once

again, the evaluations allow us to improve the performance of the method.

The greatest advantage of mean shift over other tracking techniques is arguably its com-

putational efficiency (deriving from its gradient ascent nature), even if this comes at the ex-

pense of lower robustness. However, we succeed in developing a tracker based on normalised

cross-correlation (the similarity measure at the heart of template matching) that also uses a

gradient ascent optimisation strategy. The new approach is both fast and significantly more

reliable than mean shift, calling into question the use of the latter technique.

We also define an algorithm for verifying that the output of a tracker is trustworthy.
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Unlike our previous evaluations, the track validation approach does not require the use of

ground truth data, and provides a semi-automated means of assessing the performance of

any tracking method. It also allows our new gradient-based tracker to update its model

in response to appearance changes in the target, further increasing the reliability of the

method.
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Chapter 1

Introduction

Tracking objects as they move through video sequences is one of the most basic and most

important tasks in computer vision. It serves as the foundation for numerous higher-level

applications in many domains, including surveillance, augmented reality and motion capture.

In this thesis we assess the performance of gradient-based tracking techniques, and in par-

ticular the mean-shift method. A number of experiments are performed in which people are

tracked, using mean shift, as they walk through a scene. Quantitative evaluations lead us to

introduce various modifications to mean-shift tracking.

Our objectives are to undertake a detailed investigation into the performance of mean

shift, and to determine how the method can best be applied to the tracking of pedestrians in

surveillance videos. The results of our experiments allow us to specify the optimal parameter

settings and structure for the tracker. Ultimately, we find that the technique is simply not

as capable, whether in its basic or modified form, as simpler approaches. We develop, for

example, a gradient ascent template-based tracker that is significantly more reliable than

mean shift while having similar computational efficiency. We conclude that the use in the

surveillance domain of mean-shift tracking, in its present form, must be questioned.

1.1 Motivation

Reliable tracking of objects in videos is of great use in a number of areas in computer vision. In

this section we review some of the applications that employ object tracking, and we describe

the main difficulties that are faced by any tracking technique.

1



Chapter 1. Introduction

1.1.1 Applications

Moeslund et al. [105] identify three distinct application classes for motion capture (and hence

object tracking): surveillance, control and analysis. Surveillance applications are concerned

primarily with the monitoring of people. For example, we may wish to count the number

of people in a group [129], or to study the overall flux of a crowd [3], perhaps to detect

congestion or other dangerous situations. Tracking individuals within a larger group is one

way of accomplishing such tasks. However, it may be desirable to detect the specific activities

that are occurring, perhaps in order to notify a security guard of suspicious behaviour, for

example, loitering [13]. Studying other types of human motion, such as how customers move

around shops [63], also depends on being able to track people.

Control applications relate to the interaction between humans and computers. The Eye-

Toy, which is similar to a webcam, tracks a user’s movements, allowing them to play games on

Sony’s PlayStation console.1 Controlling a computer by means of hand gestures also typically

requires the use of tracking [119]. In the field of surgery, virtual objects can be inserted into a

video stream in such a way that they appear to be a part of the scene [111]. Real-time, robust

tracking of landmarks is essential for these augmented reality systems to work convincingly.

Analysis applications, which also employ object tracking techniques, typically process

large amounts of video. For example, systems that track a person’s joints allow doctors to

diagnose problems with gait [177], while algorithms for following players can enable trainers

to find means of improving a team’s performance [6]. Other uses of tracking include video

annotation [26] and content-based video retrieval [22]. The emerging area of car control also

requires object tracking, whether for lane following [56] or for collision avoidance [4].

1.1.2 Difficulties in tracking

For a variety of reasons, tracking an object through video is a challenging task [179]. Firstly,

the imaging process itself, whereby a three-dimensional scene is depicted in two dimensions,

results in a significant loss of information: the depth of a pixel can no longer be directly

measured. The limited image resolution, the small number of bits used to represent each

pixel, noise introduced during image acquisition and artifacts caused by compression all serve

to lower the quality of the video data. The objects to be tracked also give rise to difficulties:

they can undergo complex motion, e.g., exhibiting variable velocity and acceleration, that

is not well described by a given model; in the case of people, they display non-rigid motion

and articulated motion; and they may not always contrast sharply with the background. An

object’s appearance can also change over time because of variations in scene illumination,

1Sony PlayStation website: http://uk.playstation.com/
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and its apparent size depends on how close it is to the camera. Partial or full occlusions also

prove very challenging when attempting to follow an object. Finally, it may be necessary

for the system to operate under real-time constraints, ruling out certain effective but slow

tracking techniques.

1.2 Objective

This thesis serves as an investigation into the mean-shift tracking technique. Mean shift is a

gradient-based method that uses a histogram to represent the image region that it wishes to

track. Its gradient ascent, or hill climbing, nature makes it computationally efficient, which,

along with its relatively straightforward implementation, has made it one of the most popular

tracking techniques of the last decade.

Our objective is to learn more about the performance of mean shift and to develop meth-

ods for its improvement. We wish to answer the following questions about the technique:� How does the performance of mean shift compare to other data-driven tracking ap-

proaches such as template matching? We are interested in the robustness (how often

it loses track of its target) and the accuracy (whether it is correctly positioned on the

object) of each method, so that we can put the performance of mean shift in context.� Is it possible to improve the robustness and accuracy of mean shift by imposing some

spatial structure on the tracker? Such an approach would bring the method closer in

operation to template matching, while retaining its gradient ascent nature, which allows

it to be computationally efficient.� How does the choice of various parameter settings affect the performance of the mean-

shift tracker? For example, do some colour spaces yield more robust tracking than

others? Does the type of spatial smoothing kernel used have an influence on the tracker’s

accuracy?� Instead of using only the initial target model to track an object through a video se-

quence, can we develop strategies to allow us to update the model in a reliable fashion,

so that the tracker can better cope with changes in the appearance of the object? Such

changes are most commonly caused by the variation in lighting encountered over a

scene, by the articulation of a person’s limbs and by the movement of their clothing.
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1.3 Approach

We have chosen pedestrian tracking as the application domain for the thesis. As discussed in

section 1.1.1, many areas of computer vision, including surveillance, activity recognition and

video analysis, are largely concerned with the tracking of people. We limit the scope of the

research by specifying the attributes that our dataset of video test sequences should possess.

For example, we operate on videos that are recorded by a fixed camera that is placed some

distance above the ground. The latter constraint allows us to exploit the perspective effect

in order to estimate a person’s height when given their position in the image. The videos in

the publicly available CAVIAR2 and PETS 20073 datasets meet these requirements, and so

they are used in all of our experiments. (Some example frames from the sequences are shown

in figure 1.1.) We expect our trackers to cope with targets that have low contrast with the

background and that undergo significant brightness and appearance changes. It is assumed

that the trackers have been initialised correctly by an external process. And although the

people to be tracked are never occluded, the trackers must contend with “distractors” –

objects with a similar appearance moving in the vicinity of the target.

Figure 1.1: Typical frames from the CAVIAR and PETS video sequences on which our tracking
methods will operate

1.3.1 Mean-shift assessment and other similarity measures

We begin our research into mean shift by using it to track a specified target in each of 21

CAVIAR and PETS videos that comprise our dataset. Each sequence has data associated

2The CAVIAR datasets come from the EC Funded CAVIAR project/IST 2001 37540, found at http:

//homepages.inf.ed.ac.uk/rbf/CAVIAR/
3The PETS 2007 datasets can be found at http://www.cvg.rdg.ac.uk/PETS2007/
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with it which specifies, for every frame, the location of the person to be tracked. This

ground truth data allows us to undertake a quantitative assessment of mean shift: at every

frame we compare the location of the tracker to the ground truth location of the target. The

performance of the mean-shift technique is measured in two principal ways. Firstly, we define

robustness as the number of targets in the dataset which the method is successfully able to

track without wandering away to an incorrect part of the video frame. Secondly, the accuracy

of the tracker represents the degree to which its location matches the centre of the target, as

specified by the ground truth data. (Two tracking methods may successfully follow a target,

i.e., not wander away to an incorrect location, but one may be significantly more accurate

than the other.)

Having determined the performance of the mean-shift technique on our video test set, we

next compare it to a variety of other data-driven trackers. Firstly, we evaluate a histogram-

based tracker which uses the Bhattacharyya coefficient as its similarity measure – the same

measure that is at the heart of the mean-shift method. But, unlike the gradient ascent nature

of mean shift, the Bhattacharyya tracker uses a brute-force search strategy. The comparison

between the two methods allows us to isolate the effect of gradient ascent optimisation on

mean-shift tracking. We find that it is beneficial to the technique, reducing the chances of a

“distractor” causing the method to lose track of its target. Two other brute-force trackers are

also evaluated alongside mean shift in this fashion. The first, a histogram-based tracker that

uses the earth mover’s distance [136] as its similarity measure, is found to have performance

very similar to that of the Bhattacharyya method. However, the second, a normalised cross-

correlation (NCC) template matching tracker, proves to be significantly more robust than

the other methods tested. It thus provides the baseline against which all later modifications

to mean shift are compared.

1.3.2 Multiple-part models and background exclusion

We hypothesise that the effectiveness of the NCC tracker is due, at least in part, to its

encoding of spatial structure within the image template, something which the histograms

of mean shift are lacking. This leads us to develop a mean-shift tracker that captures a

degree of the spatial arrangement of the colours that make up an object we wish to follow,

and that simultaneously exploits background models of the scene to improve the reliability

of tracking. We evaluate our combined multiple-part–background exclusion method in the

same manner as in the previous experiments. It is found that multiple-part models on their

own are detrimental to the tracker’s performance; but when used together with background

exclusion, our new mean-shift tracker is more robust than the basic version.
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1.3.3 Tracker parameters

Having achieved an improvement in the performance of mean shift, we next seek to determine

the precise effect of the many parameters associated with the method. Our objective is to find

the optimal settings for these parameters in the context of pedestrian tracking. We use our

standard evaluation framework to assess the influence on tracking robustness of the colour

space used, the size of the target and candidate histograms, the threshold on the convergence

condition and the type of spatial kernel employed by the tracker. The results confirm that

the use of multiple-part models in combination with background exclusion is the single most

effective way of improving the performance of mean shift. We should also avoid single-channel

colour spaces but make use of small histograms.

1.3.4 Beyond mean shift and verifying tracker output

Unfortunately, even with optimal settings for the parameters of the mean-shift technique,

it remains significantly less robust than the brute-force NCC tracker. Indeed, we develop a

gradient-based version of NCC that is as reliable as its brute-force counterpart and that has

computational efficiency comparable to mean shift. With the emergence of this new method,

we conclude that there is little reason to use mean shift, at least in the domain of pedestrian

tracking.

Finally, we develop an algorithm for determining if the output returned by a data-driven

tracking technique is trustworthy. Our approach – track validation – is to compare the paths

that result from tracking the target forwards in time and then backwards in time through the

video sequence. A significant difference between the two indicates that the tracker lost its

target at some point during the video. In such cases, we shorten the sequence until the paths

match, i.e., until the tracks are validated. This has the advantage of allowing us to update

the model used for tracking to a new one taken from the end of the subsequence, since we

know that the tracker followed its target correctly. The updates let the model reflect changes

in the object’s appearance, and so make the next phase of tracking more likely to succeed.

1.4 Contributions

The thesis makes a number of contributions to the field of gradient-based tracking. Firstly,

we provide a comprehensive assessment of the performance of mean-shift tracking on a large

test set of video sequences, counting the proportion of the targets that the technique is

able to follow successfully and measuring its positional accuracy during tracking. We also

compare mean shift against other histogram-based methods, and against a template matching
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approach (NCC), using the same dataset of videos. We show that NCC is significantly more

robust than mean shift, which is in turn more robust than a similar histogram-based tracker

that does not use a gradient ascent approach.

Secondly, we develop a tracker based on mean shift that unifies two existing elements –

multiple-part models and background exclusion – in order to introduce spatial structure into

the method, and we evaluate its performance. The new method is found to be more robust

than trackers that use either element in isolation. The results also reveal that multiple-

part models on their own result in a decrease in tracking performace compared to the basic

mean-shift technique.

Our third contribution is a thorough investigation of the effect of changing various pa-

rameters associated with mean shift: the colour space in which it operates, the size of its

histogram, the threshold on the convergence condition and the type of spatial kernel used by

the tracker. Our experiments confirm that the use of multiple-part models and background

exclusion is the single most effective way of improving the performance of the mean-shift

method. Further performance gains can be achieved by using two- or three-channel colour

spaces that encode luma (brightness) information, and by using small histograms.

Next, we develop a gradient-based normalised cross-correlation tracker, which has the ad-

vantage of being both computationally efficient and robust. We determine that its robustness

matches that of brute-force NCC and that its execution speed is comparable to that of mean

shift.

Our final contribution is the development of a track validation algorithm – a mechanism

for verifying that the tracker’s output is trustworthy. It also provides us with a means of

updating the model of the tracked object safely in order to accommodate appearance changes

that it may undergo. Our tests show that it is a very effective filter on a tracker’s output: it

very rarely accepts an incorrect trajectory for a target.

1.5 Outline of the thesis

In this section we provide a brief overview of the structure of the thesis. Figure 1.2 is a

schematic representation of the framework we use to evaluate and improve mean-shift track-

ing. The four primary components – tracking methods, spatial structure, tracker parameters

and track validation – are described in greater detail in the following sections and corre-

spond to the research presented in chapters 4 to 7. The evaluation methodology, discussed

in chapter 3, is the same for all of the components.
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Figure 1.2: The tracking evaluation framework, as implemented in this thesis

Chapter 2: Pedestrian tracking: a review

In chapter 2 we present a review of the state of the art in object tracking, with a particu-

lar focus on techniques and systems related to following pedestrians. The various types of

control strategies that are commonly used in tracking are described, and we discuss the dif-

ferent classes of image features that serve as inputs to the methods. Data-driven techniques,

including mean shift and its variations, are also reviewed.

Chapter 3: Overview of datasets and metrics

Chapter 3 describes in detail the datasets and metrics that are used in all of the subsequent

experiments. We give the formulas for the per-frame metrics we employ, and discuss how the

aggregate (per-sequence) measures are calculated.

Chapter 4: Target representation and optimisation strategies

If we are to evaluate the effect of changes we make to mean-shift tracking, it is first nec-

essary to know the performance of the basic technique, before any modifications have been

introduced. In chapter 4 mean shift is used to track a designated target through each of

several video sequences. Various accuracy metrics are recorded, and the number of times

that tracking is lost is also determined. We also evaluate the performance of two brute-force
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histogram-based trackers and a normalised cross-correlation tracker. The last of these ap-

proaches serves as a baseline against which all enhancements to the mean-shift technique are

compared.

Chapter 5: Tracking with multiple-part models

Chapter 5 presents a technique for unifying two elements in a single mean-shift tracker.

Multiple-part models capture a degree of the target’s spatial structure while background

exclusion limits the influence of distractors on the tracker.

Chapter 6: Effect of tracker parameters

Mean-shift tracking has many parameters, both implicit and explicit, that affect its perfor-

mance. In chapter 6 we perform a series of experiments to determine the most effective set

of parameters for general person tracking with the mean-shift technique.

Chapter 7: Gradient-based NCC and track validation

Chapter 7 presents our track validation algorithm – a means of verifying that the output of

a tracker is trustworthy. It also allows us to update the object model safely as the target

undergoes appearance changes. We derive a gradient ascent version of normalised cross-

correlation, which we use together with the algorithm. The new tracker is found to be both

robust and computationally efficient.

Chapter 8: Conclusions

In the final chapter we discuss the overall performance of mean shift, and draw several

conclusions about the method and about other data-driven tracking techniques. A number

of avenues for future research are also suggested.

1.6 Publications to date� D. Caulfield and K. Dawson-Howe. Direction of Camera Based on Shadows. In Irish

Machine Vision and Image Processing Conference, pages 216–223, 2004.� D. Caulfield and K. Dawson-Howe. Evaluation of multi-part models for mean-shift

tracking. In International Machine Vision and Image Processing Conference, pages

77–82, 2008.
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Chapter 2

Pedestrian tracking: a review

The last fifteen years have seen an explosion of interest in visual tracking. The continued

improvement in computer hardware has allowed video sequences to be processed on desktop

machines, resulting in the development of many new algorithms. In this chapter we build on

previous surveys [105, 179] and review the state of the art in pedestrian tracking, by far the

most common application of the technique in the literature. The mean-shift method – the

focus of this thesis – is placed in the context of other tracking approaches in order to describe

our subsequent research.

Visual tracking, or simply tracking, can be defined as “estimating the state sequence of

a target from an observed image sequence [...], given a description of the target in some

predefined form” [37]. It may or may not include an initialisation process, whereby an

object to be tracked is first identified using techniques such as background subtraction or

object detection. Determining the state of an object can be limited to finding its position

in the image, or, in the case of pedestrian tracking, it can extend to pose estimation, where

the objective is to recover the precise position and orientation of a person’s limbs. In this

review we are not concerned with pose estimation or other high-level video analysis such as

action recognition (i.e., interpreting the intent behind a person’s movements). Instead we

concentrate on the control strategies and low-level image features that are used in tracking

algorithms.

A variety of applications have been proposed for pedestrian tracking [105]. In the area

of surveillance, tracking is an essential element in systems that count people and monitor

crowds. It is also a prerequisite for most activity recognition techniques (e.g., detection of

loitering [13]) and for behaviour analysis (e.g., studying the movement patterns of shoppers

[63]). Tracking is used in the sports domain to follow football players around the pitch [98].

A number of challenges arise when creating systems of this type [179]. Using only a single
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camera results in a loss of three-dimensional information; we must work with a perspective

projection of the scene. Noise in the image and the limited brightness range of the sensor

lead to video sequences of less-than-ideal quality. The targets themselves (i.e., people) display

non-rigid, articulated motion with varying speeds and accelerations. People can occlude one

another, either partially or completely, and the illumination can vary over the scene and over

the course of the sequence. Robust tracking methods are therefore necessary to overcome

these difficulties.

It is possible to look at tracking from two angles: control strategies and low-level image

features. In the former view, tracking is seen as a top-down, or model-driven, process: the

state of the tracker is first evolved according to some (motion) model, before being refined by

data from the image. Alternatively, we can consider the various types of low-level features

that are used for tracking. Features extracted from the image or video would constitute

the observation model in a top-down tracker. However, they can also be used by systems

that employ no explicit state and observation models – so-called bottom-up, or data-driven,

trackers. Control strategies and feature types are orthogonal; the choice of one is largely

independent of the other. Drawing an analogy with pattern recognition, control strategies

can be viewed as classifiers, with the tracking features serving as input. In our research,

therefore, we seek more robust image features to improve the performance of tracking, but

we use the same basic classifier/algorithm (mean shift) throughout so that we can make a

fair evaluation of the effect of the new features.

The present chapter is structured as follows. Section 2.1 describes the general structure

of pedestrian tracking systems and reviews some of the more well-known approaches. In

section 2.2 we examine various tracking control strategies such as Kalman filtering and particle

filtering, and discuss the real-world constraints and initialisation techniques (background

subtraction and pedestrian detection) that are commonly used. The different classes of low-

level image features are described in section 2.3, while section 2.4 reviews data-driven tracking

in detail. As the focus of the thesis, mean shift is placed in the context of other gradient ascent

and bottom-up methods so that possible enhancements and innovations can be identified.

2.1 Visual tracking

Of the many applications of visual tracking that are found today, perhaps the biggest pro-

portion relates to the monitoring of people. The increased interest in security over the last

decade has spurred research into systems capable of tracking individuals as they move through

areas observed by video cameras. Given their prominence in the literature, we will use such

systems as the basis for our investigations into the mean-shift tracking technique.
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Figure 2.1 depicts a structure that is common to many single-camera pedestrian tracking

systems. The video stream to be processed comes either from a recorded sequence or a live

camera. The former approach, or the buffering of part of the stream, allows the system

to delay making decisions until further data has been seen, which can sometimes clarify the

nature of an event and improve the robustness of the tracking. Many systems assume that the

camera is fixed and exploit background subtraction to identify pixels belonging to foreground

objects. The various approaches to background modelling are reviewed in section 2.2.5. The

“blobs” that result from this process will not always have a one-to-one correspondence with

individuals to be tracked; a group of people walking together may appear as one blob, and,

conversely, a person may be split into multiple blobs if his or her appearance is similar to

that of the background. It is therefore necessary to employ various techniques to generate

person hypotheses from the foreground pixels. Direct detection of human-like shapes in the

image is one approach; alternatively, we can attempt to detect specific parts of the human

body, e.g., heads or feet (section 2.2.5).

Background

modelling

Background

subtraction

Person hypothesis

generation

Person tracking

Event detection/

activity recognition/

pose estimation

Video

input

Human appearance

models

Tracking

constraints

Motion

models

Figure 2.1: The high-level structure of many single-camera pedestrian tracking systems
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Once we have hypotheses of the locations of people in a given video frame, we can attempt

to track them through the sequence. Tracking and detection are complementary: a putative

human detection is used to initialise a tracker, which then attempts to verify the hypothesis by

tracking the target over time. Once initialised the tracker can continue to operate even in the

absence of further detections; it effectively “bridges the gap” between possibly intermittent

detections. The two stages, detection and tracking, operate in a continuous loop. Various

types of features are used for tracking: points, motion, contours, etc. These are reviewed in

section 2.3.

Two further sources of information can be used by the tracker. Firstly, motion models are

employed to provide predictions of the object’s next location so that the search space can be

reduced in size. Section 2.2 describes the various control strategies (Kalman filtering, particle

filtering, etc.) used by single- and multiple-target trackers. Secondly, real-world constraints

can be brought to bear on the tracking problem (section 2.2.4). These could, for example,

encode the requirement that different points on the same object should display similar motion

over time; or that tracking an object forwards in time and then backwards in time should

yield similar trajectories.

The structure shown in figure 2.1 is a very general depiction of single-camera tracking.

Most systems can be mapped onto this layout. However, not all of the components and

information sources shown will be present in a given system. Furthermore, we limit the

scope of this thesis to determining people’s trajectories, specifically using mean-shift tracking

techniques (section 2.4). We also apply certain constraints to these trajectories (section 2.2.4)

in order to validate the output of the tracker. Higher-level processing, such as event detection,

activity recognition or pose estimation, is not considered in the present work.

The following section reviews the operation of some of the most well-known single-camera

tracking systems found in the literature.

2.1.1 Pedestrian tracking systems

Over the last fifteen years many systems have been developed for tracking multiple people

through a scene. They can be assessed in terms of the difficulties they are designed to cope

with, e.g., shadows, busy scenes, inter-person occlusions, changing lighting conditions, low

object–background contrast, rain or snow, and low-resolution imagery.

The “closed-world tracking” system of Intille [69] was one of the first to follow the move-

ments of multiple people. An overhead camera records activities in the KidsRoom, tracking

children as they run. Background subtraction is used to identify moving blobs, and these

are matched over time using various features including colour, size, velocity and current and

past position. Children can enter or leave the room, but only through a single door, in order
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that the system has an accurate count of the number of people to track. The authors identify

various limitations of the system. Background subtraction does not always segment the chil-

dren correctly, and object features cannot be updated while two blobs are merged into one.

Also, since a greedy matching algorithm is used (where objects are matched one at a time,

starting with the best match score), identity switches can arise. The matching decisions at

every frame are also binding; there is no mechanism to review questionable matches using

later video data.

Many of the difficulties faced by Intille remain the same for later multiple-person tracking

systems. The data association problem – determining which objects match between frames

– becomes very difficult in busy scenes where it is not trivial to segment merged blobs into

individuals. For this reason, many earlier systems operate on footage with only a small

number of people present at any one time. More-recent approaches attempt to tackle the

challenge by combining segmentation and tracking. Below we review a representative sample

of multiple-target tracking systems, ordered approximately chronologically.� W4 : The W 4 system of Haritaoglu et al. [64] seeks to answer questions about people’s

activities, including “what they are doing, and where and when they act”, as well as

determining who is who after an occlusion has occurred. A background model is gen-

erated by median filtering the the video sequence over time. Morphological operations

are used to clean up the foreground blobs. Tracking of isolated people is achieved by

looking for overlapping bounding boxes in successive frames. More precise estimation

of a person’s motion is accomplished by brute-force correlation of silhouettes between

the current and previous frames. The system detects possible human head locations

by looking for peaks in the vertical histograms of foreground blobs, which is useful for

estimating the number of people in a group. However, it relies on the camera having a

very oblique view of the scene, in contrast to the KidsRoom system. Temporal texture

templates, which encode the average intensity of a person template over time, are used

to re-identify the different people after occlusion. A coarse segmentation of groups into

individuals is performed with the aid of the head detector. By using a cardboard model

of people, their heads, torsos, feet, legs and hands can be located. Analysing the rela-

tive positions of the body parts allows various postures to be identified, while a lack of

symmetry in the silhouette over time can indicate that the person is carrying an object.� Reading People Tracker: Siebel and Maybank’s system [148] combines Active Shape

Models from the earlier Leeds People Tracker [7] with a region tracker. Temporal me-

dian filtering is again used to generate the background model. Various heuristics are

employed to track blobs over time, even when two nearby blobs merge into a single
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one, or when low contrast with the background causes a person to be split into multi-

ple blobs. People that become stationary are temporarily included in the background

model to aid motion detection. An approach similar to W4 is used to detect head can-

didates, which are used along with the region tracker to initialise Active Shape Models

(ASMs). The shape of each model is refined by searching for edges close to the initial

spline. Kalman filtering with second-order motion models is used to track the ASMs.

Significant occlusion causes difficulties in the initialisation and updating of the person

contours.� MCMC-based tracking: The systems described above have all treated occlusions

as exceptional events, after which “normal” tracking of an isolated individual can re-

sume. In contrast, Zhao and Nevatia [185] regard occlusions as a common event to

be dealt with on an ongoing basis. Again they use background subtraction and ex-

ploit the ground plane assumption to determine the apparent size of objects in the

image. A three-ellipsoid model is used to capture the approximate shape of people,

while a histogram summarises their appearance. Markov Chain Monte Carlo (MCMC)

methods are used to update the parameters of the various person hypotheses; the up-

dates explicitly account for inter-object occlusions. A temporal prior rewards trajectory

smoothness and connectivity, and a constant-velocity motion model is employed. Mean-

shift tracking is also used to generate short trajectories. New person hypotheses are

generated from head candidates, using both the approach of W4 and edge analysis to

look for the the characteristic Ω shape of heads and shoulders. The extensive use of

prior knowledge (about the scene and the general appearance of people) yields robust

tracking even when occlusions are common.� Tracking with crowd segmentation: Rittscher et al. [132] tackle the problem of

segmenting foreground blobs made up of many people into individuals. In busy scenes

such blobs contain a high degree of ambiguity, particularly in the centre of a crowd.

Greedy approaches segment objects from the blob one at a time, starting with the

“easiest” object. However, by not considering all of the image evidence together, the

technique can make mistakes. Rittscher instead performs a global optimisation on

features extracted from the foreground blob. The overall segmentation maximises a

“merit function” and is more likely to find the correct interpretation of the image data.

The crowd analysis module is combined with existing tracking techniques [141, 184] to

follow multiple people through the scene.
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2.1.2 Top-down and bottom-up tracking

The systems described in the previous section can all be viewed in terms of the structure

of figure 2.1: person hypotheses are generated by a variety of means, and these hypotheses

are tracked over time. The systems can also be differentiated by the sophistication of their

occlusion handling strategies. Earlier approaches typically wait for the objects to separate

before resuming tracking. Recently, much research has been focused on maintaining tracking

during the occlusion. In all such systems, however, we can distinguish between the high-level

knowledge that is employed and the low-level features used as input to the algorithms.

High-level knowledge can include background models of the scene, general models of the

objects to be tracked (for example, an Active Shape Model of a human) and motion models

that encode information about an object’s dynamics. Such knowledge is often referred to

as context or top-down information, and can simplify the tracking task. In section 2.2 we

review the most popular types high-level knowledge used in pedestrian tracking, including

various background modelling techniques and object detection approaches. We also look at

the tracking control strategies employed to fuse this prior information with the incoming

image measurements.

Low-level features usually serve as the raw data to be used by the high-level control

strategies. Feature points, motion vectors and edges are examples of low-level data that can

be extracted from images and videos. Bottom-up or data-driven tracking approaches use such

features without very much high-level knowledge of the task at hand. For example, mean-shift

tracking uses histograms to follow an image region through a video sequence, but it usually

has no prior model for the object’s expected motion. Section 2.3 reviews the most common

types of image features, which can be used in either top-down or bottom-up tracking. In

section 2.4 we focus specifically on mean shift and other data-driven tracking techniques.

2.2 Tracking control strategies

Many types of high-level knowledge can be applied to people tracking. We can model the

typical walking patterns of humans, placing limits on their speed and acceleration in order to

make better predictions about their state – most commonly their position – in the next video

frame. If we have a stationary camera, we can create a background model to represent the

scene; this helps us to detecting moving objects. In the present section we review principled

approaches to state estimation, including Kalman filtering and particle filtering. We also

describe some of the real-world constraints that can be brought to bear on tracking problems,

and look at two techniques used to initialise tracking: background subtraction and direct

object detection.
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2.2.1 Kalman filtering

Perhaps the most well-known method in control theory as applied to computer vision, Kalman

Filtering [77] estimates the current state of a dynamical system given its previous state and

new observation data. In the context of visual tracking, the state to be estimated is typically

the image location of the object that we wish to follow. However, the state may also include

other attributes, such as the object’s size or its pose. Observations can be in the form of

hypothesised object detections, or they can come from lower-level feature detectors. As an

example of the former approach, if we are tracking a person we might use the outputs of the

Viola-Jones pedestrian detector [165] as our observation model. The Kalman filter assumes

that both the state transition model (often called the motion model in visual tracking) and

the observation model are linear functions of the state. The noise in both cases is modelled

by a normal distribution.

When the linearity assumptions are violated, the Kalman filter can perform poorly. The

Extended Kalman Filter (EKF) [5] allows both the motion and the observation models to be

non-linear. The functions are approximated by a Taylor series expansion around the current

estimate. However, the EKF can also perform poorly if the models are highly non-linear.

Unscented Kalman Filtering (UKF) [75] picks a set of sample points (“sigma points”) around

the mean and propagates them through the models. This allows the mean and covariance of

the state to be estimated more accurately than with the EKF.

The Kalman filter has also been modified to deal with noise that is not normally dis-

tributed. Bias-aware Kalman Filters (BAKF) [53, 41] can estimate the prediction bias pro-

vided that an unbiased subset of observations is available. The Ensemble Kalman Filter

(EnKF) [47] can be used for high-dimensional problems where direct calculation of the co-

variance matrix is not feasible. A collection of samples is processed by the system, making

the method somewhat similar to particle filtering (reviewed in the next section), but with

assumption that all distributions are normal. Gaussian Sum Filters (GSF) [54] represent the

state density as a mixture of Gaussians in order to approximate non-normal distributions.

2.2.2 Particle filtering

Kalman filtering and most of its extensions assume that the state of the system has a Gaussian

distribution. Particle Filtering is a class of tracking algorithms that represent the state

density by a set of samples, each with an associated weight that defines its importance. This

allows non-Gaussian distributions to be accurately modelled, provided that we use sufficient

samples. Maskell and Gordon present a review of the method and its variations [96]. The

original particle filter algorithm [57] used a scheme now known as Sequential Importance
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Sampling (SIS) to update the particles according to the motion model and in response to

the observed data. The new samples are drawn from the proposal distribution. When the

transition prior, i.e., the motion model, is used for this purpose, the procedure is referred to

as bootstrapping. The CONDENSATION algorithm [70] is an application of bootstrapping

to the tracking of contours through a video sequence.

As with Kalman filters, a number of extensions to the basic algorithm have been pro-

posed. Sampling Importance Resampling (SIR) [43] implements the SIS algorithm, but adds

a resampling step that eliminates samples having low weights. This procedure reduces the

problem of “sample impoverishment”, in which many of the samples contribute no useful

information to the estimation of the system state. A further weakness of particle filters is

seen with higher-dimensional state spaces, which will be very sparsely populated with sam-

ples, potentially resulting in poor state estimation. The Auxiliary Particle Filter [125] draws

samples that are more likely to be close to the true state, provided that the process noise is

small.

2.2.3 Multiple-target tracking

The state estimation methods of the previous sections are applicable to the tracking of single

targets through a sequence. However, when there are multiple targets in the scene, and we

wish to track one or more of them, we must consider the problem of data association: deter-

mining which object measurement corresponds to each of the predicted states [5]. Difficulties

can arise because of false detections, missed detections and objects being in close proximity

to one another.

Deterministic correspondence methods typically define a cost for each potential pre-

diction–measurement assignment, with the goal being to find a set of assignments that min-

imises this cost. Various real-world constraints can be encoded in the costs; for example,

an object should not change its position significantly between one frame and the next, and

its velocity should be reasonably stable [69]. The Hungarian Method [80] finds the optimal

solution in polynomial time. Rittscher et al. [132] use another global optimisation method,

this time based on expectation maximisation, to segment crowds of people into individuals.

“Greedy” algorithms, on the other hand, make assignments one after another, with cheaper

assignments made before more expensive ones. The solution is not guaranteed to be optimal,

but it has been shown to work well in the multiple-person tracking systems of Wu and Nevatia

[169][170]. Correspondence matrices can also be resolved by ad hoc methods in order to deal

with objects appearing in and disappearing from the scene, and foreground blobs splitting

and merging [36, 100, 76].

Statistical correspondence methods are analogous to Kalman and particle filters, but,
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aside from tracking multiple targets, they also perform data association in a statistical frame-

work. The Joint Probabilistic Data Association Filter (JPDAF) [23] associates multiple tar-

gets in the current frame with multiple targets in the previous frame. It assumes that the

number of objects remains constant. The Multiple Hypothesis Tracker (MHT) [131] can ac-

commodate missing measurements, e.g., in the case of an occlusion, and thus overcomes this

limitation. It also uses several frames to determine the most likely tracks for a given set

of measurements. Cox and Hingorani [34] develop a more efficient version of the algorithm.

An alternative approach, the Probabilistic MHT (PHMT) [155] avoids an exhaustive search

of correspondences by assuming that the associations are statistically independent. In con-

trast to the “hypothesise-and-test” nature of MHTs, Ryoo and Aggarwal [137] present their

“observe-and-explain” technique for tracking multiple people through occlusions with greater

efficiency.

A number of methods for tracking more than one target using particle filters have been

developed; they belong to the class of “stochastic sampling” techniques. Pérez et al. [122]

construct a joint likelihood term in order to track multiple objects using a particle filter.

The Viola–Jones detector [164] is used in combination with a mixture particle filter [163] by

Okuma et al. [114] in their Boosted Particle Filter to track many ice hockey players around a

rink. Yang et al. [175] use Haar-like features and edge orientation histograms to track several

objects. However, interactions are not explicitly modelled, and so only short occlusions can

be handled. Zhao and Nevatia [185] also use Markov Chain Monte Carlo (MCMC) methods

to track multiple targets, even as they interact and undergo extended occlusion. Each point

in the state space is a particular configuration of the people. Smith et al. [149] use trans-

dimensional MCMC methods [58], which improve the efficiency of the sampling. In both of

the latter systems, the number of objects being tracked is allowed to change over time.

2.2.4 Constraints used in tracking

Various types of high-level knowledge can be brought to bear on a tracking problem. Knowing

the number of objects in the scene a priori, for example, or having their apparent size in the

image specified can greatly simplify the task. Human dynamics are constrained in a number

of ways that can be exploited by a tracking system to solve the data association problem.

Yilmaz et al. [179] list some heuristics that are most applicable when objects are represented

by a set of points. Proximity and maximum velocity require that a given point does not move

more than a certain distance between one frame and the next. The threshold is informed

by the speed of people’s movements in the scene and how much of the image they occupy

(i.e., the zoom of the camera). The smooth velocity change assumption limits the acceleration

that an object can undergo, while multiple points belonging to the same target should display
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common motion, i.e., follow similar trajectories. (In three-dimensional tracking, the stronger

rigid motion constraint may be more appropriate.) Common motion has been used to segment

crowds of people into individuals [147, 129, 18] and to track football players [98]. Since it is

not necessary for all of the points belonging to an object to be observed in a given frame, the

technique is able to cope with partial occlusions. The Particle Video approach of Sand and

Teller [138] is similar to these feature tracking methods, but it yields a denser collection of

points. Adjacent particles obey the constraint of following similar paths, provided that they

are part of the same object.

Real-world knowledge about object trajectories can also prove useful in tracking. Given

templates of an object at the start and end of its path through the scene, Sun et al. [156] are

able to determine the full, end-to-end trajectory in spite of occlusions. They extract short

track segments from the entire video sequence that may correspond to the object. These

segments are only accepted if they can be joined together in space-time to form a smooth

path. Wu et al. [171] extend the KLT tracker [145] to incorporate a new “time-reversibility

constraint”. A point is only retained if tracking it in both the forwards and backwards

directions yields a similar answer. Like the original KLT method, the new approach only

operates on pairs of frames at any one time. In contrast, the “recurrent tracking” of Pan et al.

[116] looks at the entire trajectory to determine if an object has been followed correctly. The

target is first tracked forwards in time in the normal manner. At the end of the sequence, the

model is reinitialised with the image region corresponding to the tracker’s final location, and

the object is then tracked backwards in time. In the case of accurate tracking, the forwards

and backwards trajectories will match each other. However, a lost track or inaccurate tracking

will result in the model being reinitialised with a “bad” image region, and the forwards and

backwards trajectories will be very different.

We extend this approach in chapter 7: whenever a tracking failure is detected, we shorten

the video sequence and repeat the process until the trajectories match. Our track validation

algorithm then attempts to follow the object through the remainder of the sequence using

an updated model of the target taken from the point of reinitialisation. This strategy allows

the tracker to accommodate significant changes in the object’s appearance.

2.2.5 Initialisation

Before tracking can commence properly, the target model must be initialised. If we are

concerned only with the effectiveness of the tracking technique itself, it may suffice to ini-

tialise the target by hand. However, developing an autonomous system requires that we use

automated methods. These can be divided into two main classes: background subtraction
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techniques and class-specific object detection approaches. In the following sections we review

the most influential methods in each class.

Background subtraction

Background subtraction can serve as a very useful means of locating moving objects in a

scene. However, it must contend with numerous difficulties, including changes in lighting,

camera jitter and low object–background contrast. Several reviews of popular techniques have

been conducted in the past [124, 25, 130]. We follow the structure of Moeslund [105] and

examine the techniques in terms of representation, classification, update and initialisation of

the background.� Background representation: The majority of background models treat each pixel

and its neighbours independently. The Pfinder system of Wren et al. [168] models

a pixel as having a unimodal Gaussian distribution. Each pixel in the background

model is updated by a weighted contribution from the current frame. The goal is to

allow the model to adapt to slow illumination changes in the scene. In order to cope

with pixels having a non-Gaussian distribution, Stauffer and Grimson introduced the

mixture-of-Gaussians (MoG) approach [150]. The model is intended to incorporate ef-

fects commonly found in outdoor scenes, e.g., shadows, reflectance and repetitive object

motion. Elgammal et al. [45] use kernel density estimation (KDE) to represent each

pixel by its previous N values. In performing background subtraction, they compare a

pixel to nearby pixels in the background model, and not just to its corresponding pixel.

The aim is to cope with the effects of camera jitter and swaying trees in the background.

Oliver et al. [115] apply an eigenspace decomposition to the spatio-temporal volume

of the video sequence (or at least some portion of it). The background is modelled by

the most descriptive eigenvectors extracted from the volume. By projecting the input

image onto the eigenspace, the moving objects are detected. Since the representation

captures the global changes in the sequence, the effects of illumination variation are

reduced.

In moving beyond the unimodal background model, the ability of the more advanced

techniques (MoG, KDE) to disregard uninteresting motion is arguably gained at the ex-

pense of lower sensitivity to objects that we do wish to detect. To lessen this undesirable

effect, a number of authors have developed techniques for background subtraction in

dynamic scenes. Monnet et al. [107] model pixels as auto-regressive processes in order

to predict their subsequent values. The method is effective at suppressing false-positive
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detections of motion. Zhong and Sclaroff [186] also use an auto-regressive model, but

employ a robust Kalman filter to update the current appearance of a dynamic texture,

such as a moving escalator or the surface of the sea. Foreground objects moving against

these textures can then be detected. Tian and Hampapur [158] combine temporal dif-

ferencing and optical flow to find “salient motion” – objects moving in a consistent

direction for a period of time.� Background classification: Pixels belonging to moving targets are typically iden-

tified by subtracting the current frame from the background model. However, this

foreground mask will usually contain many pixels that do not belong to moving objects

of interest. These are caused by uninteresting motion in the background, camera jitter,

lighting changes and reflections. Often there will also be “false negatives” – pixels that

ideally would be part of the foreground mask but which are too similar to the back-

ground model to be considered as such.

The most common approach to dealing wish such erroneous pixel classifications is to

postprocess the foreground mask with various filters [35, 45, 100, 184]. The opening

morphological operation can be used to remove isolated noise pixels, while closing is

often used to fill holes within objects. Median filtering with a large mask can be seen

as intermediate between the two [40] and its execution time is independent of the mask

size used [123]. Markov Random Fields have been used as an alternative to the above

techniques to enforce the constraint that adjacent pixels are likely to belong to the same

class, i.e., foreground or background [139, 142].� Background updating: Most of the methods described previously are designed to

cope only with slow changes in the appearance of the scene. However, more drastic

changes occur, for example, when the sun appears from behind a cloud, or when a light

is switched on or off in an indoor setting. The Wallflower system of Toyama et al.

[160] uses three types of information – pixel-, region- and frame-level data. The last of

these can be used to detect sudden, global changes in the scene, at which point a new

background model can be initialised or a previously-built model can be used. A similar

approach is used by Javed et al. [71]. In their codebook model, Kim et al. [79] update

all of the codewords in response to global illumination changes.

When a background modelling system is not required to operate online – i.e., to make

immediate classifications as each new frame arrives – we can use data from both the

past and the future to improve the results. The Visual Surveillance and Monitoring
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(VSAM) system of Collins et al. [27] delays decisions by one second in order to dis-

tinguish between moving foreground objects, objects that enter the scene and stop,

and slow illumination changes. Figueroa et al. [51] also use past and future values

so that they can apply their morphological levelling operation to a pixel’s brightness

history. The technique provides effective background modelling for football sequences

undergoing significant brightness changes.� Background initialisation: Early background modelling approaches required the

scene to be empty at the moment of initialisation. This constraint often proves impos-

sible to satisfy in real scenarios, leading to methods that can initialise a model from

video sequences containing moving objects. In the W4 system of Haritaoglu et al. [64],

the median of each pixel’s history during a learning phase is used as the background

model. The resulting synthetic image will be free of moving objects provided that every

pixel spends at least 50% of its time in the background state. Eng et al. use the same

approach in their drowning detection system [46].

The technique of Gutchess et al. [60] does not assume that the background is visi-

ble for more than half of the length of the training sequence. Instead, it locates short

intervals where a pixel has a stable value, and chooses the one having the lowest aver-

age motion (which is measured by optical flow). Wang and Suter [166, 167] also find

short, stable subintervals in the video sequence, but their approach is to choose the

interval having the highest ratio of data points to variance. Both of these approaches

are capable of initialising empty background models from busy scenes.

The particular method used for background modelling and updating will usually be deter-

mined by the nature of the video data to be processed. For example, in indoor scenes there is

usually no need to account for slow lighting changes, but cast shadows may be an important

issue. Similarly, sophisticated techniques for background initialisation are only required if the

scene is never observed empty of objects. In any case, background subtraction can only serve

as one part of a larger system. When multiple people are to be tracked, occlusions will lessen

the value of the approach. However, the foreground mask can still prove useful in generating

hypotheses for the locations of people in the scene. In chapter 5 we combine a background

model with a multiple-part tracker to improve the robustness of the mean-shift technique.

Detection and segmentation

In certain scenarios it is not possible to use background subtraction to initialise a tracker.

Very busy scenes and moving cameras can make the application of the method difficult, if
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not impossible. Direct, class-specific object detection can serve as an alternative initialisa-

tion mechanism in these cases. There has also been much recent interest in methods capable

of segmenting crowds of people into individuals. These techniques are usually tightly inte-

grated with multiple-object tracking. Here we review the most popular approaches to person

detection and crowd segmentation.

Papageorgiou et al. [117] presented a framework for detecting objects in static scenes.

They used wavelet basis functions as features and trained a support vector machine (SVM)

classifier to detect a particular class of object. Results for both face and pedestrian detection

are shown. Gavrila [55] detects pedestrians with a two-stage approach. First, candidate re-

gions are identified using chamfer matching on a distance-transformed edge image. Next, the

candidates are verified or rejected using a radial basis function (RBF) classifier. In contrast,

Mohan et al. [106] take a bottom-up approach and find people in images by combining indi-

vidual detectors for the head, left arm, right arm and legs. Another data-driven technique,

the cascaded classifier of Viola and Jones [164] detects faces in still images. Each stage in the

cascade uses a collection of simple Haar-like features, which can be generated very quickly.

In a later paper [165], simple motion features are extracted from successive video frames so

that the method can be used for detecting pedestrians. A class of powerful image features,

Histograms of Oriented Gradients (HOGs) are used by Dalal and Triggs [38], together with

a linear SVM, to build an effective person detector. In subsequent work [39], they combine

HOGs with histograms of optical flow features to find people in video sequences. Leibe et

al. [81] employ a hybrid top-down–bottom-up approach that uses local cues (a codebook

of learned image patches) and global cues (edge-based human shape templates) to find peo-

ple in images even when they overlap and partially occlude one another. Wu and Nevatia

also combine high-level and low-level information to locate people in images; the algorithm

fuses the responses of multiple edgelet-based body part detectors [170] into a single person

hypothesis.

As explained in section 2.1, detection and tracking can be regarded as complementary

processes that operate in a loop. Person detection serves to initialise a tracker, which proceeds

to follow its target through the sequence. Further detections may occur, but tracking can

continue even in their absence. However, the tracker is itself prone to errors, sometimes losing

its target. In such cases, the detector can be used to correct the tracking process before it

fails. Indeed, it is sometimes possible to track a person by simply detecting them in (almost)

every frame – a tracking-as-detection approach [152].

In crowded situations where occlusions are common, direct person detection may not be

possible. It is necessary instead to segment the crowd into individuals. The later tracking

systems of section 2.1.1 (those of Zhao et al. [185] and Rittscher et al. [132]) follow this

25



Chapter 2. Pedestrian tracking: a review

approach, as do other researchers. Lin et al. [87], for example, use “foot candidates” to

estimate appearance models and segmentations simultaneously using a greedy optimisation

scheme. By combining low-level edge features and higher-level cues (such as closed bound-

aries), Sharma and Davis [87] detect and segment people in static images. To find humans

in a crowd, Rodriguez and Shah [133] learn a codebook of person shapes, which are then

used to “vote” for a particular pose hypothesis. The segmentation is refined by searching for

nearby object contours. A specific head-and-shoulders detector is instead used by Tu et al.

[162] to generate person hypotheses. These are combined with motion and colour cues in an

expectation maximisation algorithm to find a consistent segmentation of the crowd.

As with background modelling, detection and segmentation approaches cannot solve the

tracking problem on their own. Occlusions in particular cause difficulty for most person

detectors. However, we can use the techniques to generate person hypotheses, which can be

verified or rejected by the subsequent tracking stage.

2.2.6 Summary of control strategies

This section has reviewed the main types of high-level information that are brought to bear

on visual tracking problems. Models of the typical dynamics of humans can be encoded in

a state-estimation framework, such as Kalman filtering or particle filtering, to predict the

next location of the person to be tracked. When multiple people are present in the scene,

methods that account for interactions and that can solve the data association problem are

required. Such approaches can be classified as deterministic (e.g., the Hungarian Method) or

statistical (e.g., the Probabilistic Multiple Hypothesis Tracker). Real-world constraints also

play a large role in object tracking. For example, if a person is represented by a number of

points, those points should display common motion as the sequence proceeds.

Initialisation of tracking also relies on high-level information. It is frequently accomplished

by means of background subtraction, but direct person detection can also be used. In either

case, hypotheses about the locations of people in the scene are generated, which the tracker

subsequently attempts to verify or reject. The two processes – tracking and hypothesis

generation – operate in a loop.

Aside from the various sources of high-level information just described, tracking requires

that the target(s) be represented by a set of features; the following section reviews various

feature types, including points, motion, edges and regions. However, there is also a class of

data-driven tracking algorithms (section 2.4) that can follow objects while making little use

of top-down information. Many of the same types of features are used by these methods.

Although such bottom-up approaches, e.g., the mean-shift technique, can be embedded in

top-down tracking systems, doing so is not essential to their operation.

26



2.3. Features used for tracking

2.3 Features used for tracking

The control strategies of the previous section are used to determine the location of the tracked

object(s), given a collection of measurements from the current frame. These measurements

are described as features, and they can be placed into different classes – points, motion-based,

contours, regions – depending on the information they attempt to encode.

Objects can be represented in a number of different ways, which usually amounts to

a scheme for grouping features. Shape-based representations can take the form of a set

of points, a geometric primitive (e.g., an ellipse or rectangle), a contour, a silhouette, an

articulated model (perhaps using cylinders in 3D, or ellipses in 2D) or an object skeleton.

Appearance-based representations capture the pixel values inside the object boundaries in

different ways: as probability density functions (using a mixture-of-Gaussians model, kernel

density estimation or histograms) or as templates. Active Appearance Models [33] capture

both shape and appearance characteristics jointly.

In the following sections we review the different types of features used in tracking. The

most well-known examples in each class are described.

2.3.1 Points

Feature point, or interest point, detectors find parts of an image that have a distinctive

structure in their locality [179]. The term point is used somewhat loosely because such

such features can extend over a reasonably large area of the image; Cannons [19] refers to

them as discrete features. A descriptor can be associated with a detected feature point in

order to characterise the region around the point. Aside from tracking, such descriptors have

applications in stereo matching [97], object recognition [92] and image retrieval [101].

An investigation of the performance of several popular detectors and descriptors was

performed by Mikolajczyk and Schmid [102, 103]. A desirable property of a descriptor is

high repeatability (the likelihood that a point will be detected at the corresponding location

in two similar images of a scene) in spite of image rotation and changes in scale, viewpoint

and illumination.

Detectors

One of the earliest interest point detectors is that of Moravec [109]. Patches in the image

that are dissimilar to nearby regions (as measured by their sum of squared differences) are

considered to be “corners”. Instead of operating on the image directly, Harris and Stephens

[65] use image gradients. Corners are thought of as image patches with a large gradient

in every direction. The KLT tracker [145] finds points using a method very similar to the
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Harris detector and tracks them using the Lucas–Kanade optical flow method [93]. The

SUSAN corner detector [153] evaluates a function in a circular region around the point to

be tested. It measures the proportion of the circle’s area that has brightness similar to the

centre pixel. Corners are image points where the function attains a local minimum. Rosten

and Drummond’s FAST feature detector [134, 135] also tests a circular region. It looks for

contiguous pixels that are all lighter or all darker than the centre pixel, and uses a decision

tree for efficiency.

The detectors described above typically perform poorly (in terms of repeatability) when

the scale of the image changes. The Harris-Laplace detector [104] uses a scale-space approach

[88] to find the “characteristic scale” of a feature point, thus making the method scale in-

variant. Scale-space implementations typically apply Laplacian-of-Gaussian (LoG) filters of

different sizes to the original image, where each successive level in the scale space blurs the

image to a greater degree. (LoG filters are often approximated by Difference-of-Gaussian

filters [91].) Affine-invariant feature detectors can also cope with rotation and shearing, and

so can be used to accommodate (approximately) viewpoint transformations. Mikolajczyk’s

Harris-affine detector [104] starts by identifying scale-invariant Harris-Laplace features and

then iteratively adapts the shape of the point neighbourhood. Maximally Stable Extremal

Regions (MSERs) [97] are also affine-invariant. The detector finds blobs whose area changes

slowly in response to a change in the brightness threshold applied to the image.

Descriptors

The most well-known of the image descriptors is the Scale-Invariant Feature Transform

(SIFT) [92]. It uses an image pyramid to locate keypoints that are minima or maxima of their

neighbours in both scale and space. Points that have low contrast or that are poorly localised

along an edge are discarded. An orientation is assigned to each keypoint based on its local

image gradient. To generate a descriptor, 16 separate orientation histograms are calculated

in a 4 × 4 neighbourhood around each keypoint. Each histogram has 8 bins, which are all

concatenated to form a 128-element vector (the descriptor). A nearest-neighbour approach

is used for keypoint matching, and the search is made efficient using kd-trees [108]. Random

Sample Consensus (RANSAC) [52] is used together with SIFT to implement robust object

recognition. Many ideas from the descriptor, including strong brightness normalisation, are

used in Histograms of Oriented Gradients (HOGs) [38], which were first applied in the area of

pedestrian detection. Speeded Up Robust Features (SURF) [8] can be calculated more quickly

than SIFT features, and achieve a similar level of repeatability. The recent CenSurE (Center

Surround Extrema) descriptor [2] is also very efficient to calculate, and has been applied to

the task of visual odometry.
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The evaluation methodologies used in the area of feature descriptors, particularly HOGs,

influence our research into mean-shift tracking (chapters 5 and 6). We perform comprehen-

sive, quantitative assessments of the effect of different parameter settings on the performance

of the method.

2.3.2 Motion-based features

Motion can serve as a very strong cue in object detection and tracking. The simplest mo-

tion detection algorithms use image differencing, which typically identifies the boundaries of

moving objects. The Visual Surveillance and Monitoring (VSAM) system of Collins et al.

[27] uses three frames instead of two to make the calculation more robust. Such methods

do not detect motion in the interior of objects, however, and so background subtraction is

commonly employed instead (section 2.2.5). In the domain of object detection, Viola et al.

[165] use image differencing and Haar-like features to identify moving pedestrians in video

sequences. The Motion History Images (MHIs) of Bobick and Davis [15] capture the recent

history of an image region that is in motion and can be used for action recognition.

Optical flow is a widely used technique for determining image motion. Several methods

have been developed over the last thirty years. The simplest, block matching, finds the

displacement that minimises some error measure between a block in the current frame and

the corresponding block in the previous frame. Common error measures include normalised

cross-correlation, sum of absolute differences (SAD) and sum of squared differences (SSD).

The technique is computationally expensive, and so a number of gradient-based approaches

have been devised. The Lucas–Kanade method [93] estimates the temporal and spatial

image derivatives, and uses them to formulate the image constraint equation. To solve the

equation, Lucas–Kanade assumes that the flow field is locally constant, i.e., constant within

a small neighbourhood. The Horn–Schunck method [67], on the other hand, assumes that

the brightness of a point does not change significantly over time – the brightness constancy

constraint. Various other optical flow techniques have been proposed [9, 157]. Sidenbladh

[146] detects moving people by combining the method of Black and Anandan [14] with a

support vector machine.

A dense flow field will usually contain a number of incorrect vectors. For this reason,

the KLT tracker [145] only calculates flow vectors at Harris corners. Although relatively few

motion vectors are returned, they are more reliable than those from dense methods. KLT

features have been used used to identify motion in a number of applications, including crowd

counting and segmentation [18, 129].

29



Chapter 2. Pedestrian tracking: a review

2.3.3 Edges and contours

Segmentation-based and contour-based tracking methods exploit the tendency for most ob-

jects to contrast with the background. Their boundaries therefore give rise to edges in the

image, which can be used to segment the object from the scene.

Segmentation

Segmentation is normally applied to static images. The mean-shift approach [30] clusters

points in a joint colour–spatial space, resulting in a partition of the image into compact

regions of homogeneous colour. The results are sensitive to the settings used for the various

parameters. Alternative methods represent each image pixel by a node in a graph. Edges

linking adjacent pixels have associated costs which depend on their colour, brightness and

texture similarity. The graph cuts technique [172] finds the partition that minimises the

cost of cutting these edges, giving rise again to homogeneous regions. Normalised cuts [144]

attempts to reduce the problem of oversegmentation by considering the weights of all edges in

the graph, and not just those involved in the cut. Graph-based segmentation approaches have

been used in place of morphology to refine the results of background subtraction [139, 142];

the real-valued foreground mask is converted to a binary mask in which isolated noise pixels

are suppressed and holes are filled in.

Object detection is commonly performed by matching edge templates of the target class

against edge images of the current frame – a form of shape-based segmentation. Zhao and

Davis [181] apply chamfer matching to a distance-transformed edge image in order to detect

the head-and-shoulders contours of people. Leibe et al. [81] use a similar approach as the

verification step in their system for segmenting individuals in crowded scenes.

Contour tracking

In contrast to segmentation, contour-based tracking methods operate over a sequence of

frames, attempting to identify the object boundary at each time step. The CONDENSATION

algorithm [70] fits a pre-defined spline to edges extracted from the image. A particle filter

is used to update the state variables. Chen et al. [24] use an ellipse as the contour to

track a person’s head. Edge intensity and colour are used as measurements. The contour

state is estimated by a Hidden Markov Model, whose transition probabilities are themselves

estimated by a Joint Probabilistic Data Association Filter (JPDAF).

Explicit contour representations, such as the splines and ellipses of the above approaches,

cannot handle splits and merges of objects. Techniques that attempt to minimise some

measure of contour energy are often used to overcome this difficulty. The contour energy is
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specified as the sum of regularisation constraints (the contour must be continuous and its

curvature must fall within certain bounds) and appearance-based constraints (the contour

should favour strong image edges or texture and colour transitions). The Active Shape Model

[7, 148] uses this approach to track people walking through a scene.

It is common for control points to be used to provide an explicit representation of the

contour. Alternatively, the object shape can be defined implicitly by means of level sets

(similar to a distance transform applied to the contour). Bertalmı́o et al. [10] use optical

flow at the object boundary to evolve the level set. Yilmaz et al. [180] do not use temporal

information, but instead gather image statistics from around the object’s boundary, which

is initially marked by hand. Other contour-tracking methods use background subtraction to

perform the initialisation step.

2.3.4 Regions

Whereas contour-based approaches are concerned with the boundaries of an object, region-

based tracking techniques represent the appearance of the target within the boundary. Tem-

plate matching is one of the most common methods in this category. Lewis [84] presents a

number of optimisations that can be applied when calculating the normalised cross-correlation

(NCC) of a template and an image. To further lower the computational cost, Schweitzer et

al. [140] develop a method that uses the “integral images” of Viola and Jones [164] to find a

fast approximation to NCC. However, basic template matching of this kind can only accom-

modate translational image motion. In contrast, the approach of Hager and Belhumeur [61]

extends the Lucas–Kanade optical flow method to account for scaling and rotation. It also

incorporates “basis images” into the formulation to cope with changes in the scene illumina-

tion.

In the area of human–computer interaction, the tracking of people’s heads is a popular

application of region-based techniques. Birchfield [11] combines two scores – a gradient

measure for the head boundary and a colour measure for the hair and skin – to follow a

person’s head on screen. The combined similarity measure is evaluated in a brute-force

fashion in a neighbourhood around the previous head location. Fieguth and Terzopoulos [50]

instead approximate the head by five rectangular regions. A similarity score (based on the

mean colours of these regions) is evaluated at only eight neighbouring image positions, with

the tracker moving to the location with the highest score. Partial occlusion is handled by

selectively dropping some of the rectangles from the comparison. Jepson et al. [72] treat a

region to be tracked as a combination of stable, quickly changing and outlier pixels. Using

the example of a person’s face, the pixels around the nose area will change relatively slowly,
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while the eyes and mouth can transform their appearance quickly; outliers are the result of

occlusions. Identification of the stable pixels allows a dynamic object to be tracked over time.

Bradski’s CAMSHIFT system [17] was one of the first to use the mean-shift technique

[29] for tracking. It uses a single-channel (hue) histogram to represent the face region, since

human skin pixels are tightly clustered in hue space. After the new face location has been

found, image moments are used to update the size and the orientation of the region. The

version of mean-shift tracking used in this system is not the same as that developed later by

Comaniciu et al. [31, 32]. Specifically, Bradski does not use spatial kernels in his approach.

We will discuss the standard mean-shift technique and its enhancements in section 2.4.1.

2.3.5 Summary of tracking features

In contrast to the top-down information exploited by many tracking systems, features serve as

the image measurements used by algorithms that estimate an object’s location in the current

frame. It is convenient to group features into different classes depending on the image and

video information they encode. Point-based methods attempt to find distinct, small regions

of an image. Ideally, these points will be detected again in subsequent frames, and so tracking

becomes a problem of “joining the dots” – associating the correct points with one another

over the course of the video sequence. It is also useful to characterise the appearance of the

image patch around a given point. Such descriptors provide more information for a point

matching algorithm to exploit.

Image motion is another strong cue that is often used in tracking. Optical-flow-based

methods typically operate on a pair of images at a time, attempting to determine the flow

vectors for every image pixel. Alternatively, point- and motion-based features can be com-

bined, so that a motion vector is only returned for an image location that is distinct in

appearance (a feature point). The resulting motion field is sparser but less noisy than stan-

dard optical flow. It is also possible to summarise the movement in an image region over

longer periods of time by using Motion History Images (MHIs), feature tracking or the Par-

ticle Video approach [138].

By segmenting each video frame into its constituent objects, we can follow a designated

target over time. Image edges form the basis of most such methods; they can arise from

transitions in colour, brightness or texture. Graph-based algorithms use edges to define the

cost of a given segmentation. The more homogeneous the regions in a partitioned image

are, the lower the cost will be. It is also possible to specify a particular shape of contour

in advance and track it through the sequence. The contour has a greater affinity for strong

image edges, and its shape is allowed to evolve, within limits, over time. Active Appearance

Models and the CONDENSATION algorithm are two popular techniques in this class.
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The internal appearance of an image region is another useful feature for tracking. De-

scriptions of the image patch range from the detailed (e.g., a template) to the summary (e.g.,

a histogram). They can characterise various low-level image attributes including colour,

intensity, texture or image gradients. Tracking entails finding the region in the local neigh-

bourhood that best matches the model. Template-based representations typically require a

brute-force search strategy, whereas histograms allow the use of gradient ascent methods such

as mean shift. However, in chapter 7 we develop a template-based tracker that uses gradient

ascent optimisation. It is both robust and computationally efficient.

2.4 Data-driven tracking

As explained in section 2.2.6, there is a class of tracking algorithms that make little use of high-

level, contextual information. Such data-driven methods use the image features on their own

to determine the next location of the tracker. We look first at the mean-shift technique and

enhancements that have been made to it in order to accommodate transformations besides

simple translation. Next we review approaches that incorporate spatial structure within

the mean-shift histogram and that exploit background models of the scene to improve the

tracker’s robustness. Variations on mean-shift and data-driven trackers that do not represent

image regions using histograms are also discussed.

2.4.1 Mean-shift tracking

Mean-shift tracking [31, 32] tries to find the area of a video frame that is locally most similar to

a previously initialised model. The image region to be tracked is represented by a histogram.

A gradient ascent procedure is used to move the tracker to the location that maximises a

similarity score between the model and the current image region. (A detailed mathematical

description of the method is given in chapter 4.) The technique is computationally very

efficient, and usually converges in three or four iterations. The original version was designed

to recover the translation and scaling that an object had undergone. However, Collins [28]

observed that the approach for determining scale changes in an object is sometimes unreliable.

He proposed an explicit scale-space approach for tracking objects whose size varies over

time. Further extending the flexibility of gradient ascent tracking, Zivkovic and Kröse’s

method [187], based on expectation maximisation, is capable of following regions undergoing

translation, rotation and changes in scale and aspect ratio. The algorithm of Nguyen et

al. [113] can also recover the scale of the object by treating the pixel coordinates of the

target as latent variables to be estimated, again by an expectation maximisation algorithm.
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Regions undergoing affine transformation are handled by Guskov’s tracker [59], which can

also accommodate illumination changes.

One limitation of the previous methods is that the inter-frame displacement of the object

must be small; otherwise, the tracker will lose its target. Initialising multiple trackers around

the expected location of the object can overcome the difficulty, and is the approach taken

by Porikli and Tuzel [127]. Adam et al. [1] observe that the integral histogram [126] allows

comparisons of histograms to be made at every location in a large subimage at modest

computational cost. While not a gradient ascent approach, their FragTrack technique yields

similar results to mean-shift tracking, with the advantage that fast and partially occluded

objects can be followed. In a similar vein of maintaining multiple hypotheses, Shen et al.

[143] seek to avoid local maximums of the histogram similarity surface, finding instead the

global maximum. They begin with an oversmoothed version of the surface and find its mode.

By reducing the bandwidth of the tracker, other modes appear, but the tracker continues to

converge towards the highest one. The approach is termed annealed mean shift, by analogy

with other annealing methods. It limits the influence of distractors – objects with a similar

appearance to the target – on the tracker.

2.4.2 Multiple-part models and background exclusion

Histograms, which are used by mean-shift tracking as the target and candidate models, suffer

from a lack of spatial structure, making them less discriminative than other object represen-

tations. Various authors have formulated mean-shift approaches with multiple-part models,

where the region to be tracked is divided into a number of subregions. The goal is to encode

a degree of spatial structure in the model while retaining the computational efficiency deliv-

ered by the gradient ascent nature of mean shift. Dong et al. [173] partition the region to be

tracked into concentric circles and derive a mean-shift optimisation formula for the multiple-

part model. In contrast, Maggio and Cavallaro [94] first divide the ellipse into quadrants and

then into rings. Their approach allows the subregions to overlap. Parameswaran et al. [118]

use four vertically stacked rectangles to form the image region to be tracked. Each rectangle

has its own spatial kernel at the centre. All three methods demonstrate an improvement in

tracking accuracy over the basic approach.

When a background model of the scene is available, mean-shift tracking can benefit from

its use. Zhao and Nevatia [185] incorporate a “background exclusion” term into the technique.

Their mean-shift tracker favours image regions that are similar to the object model (as before),

but that are also dissimilar to the corresponding region in the background model. The

approach is analogous to background subtraction, but it does not require a separate image

differencing step.
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An ellipse is a poor approximation of the shape of a person to be tracked, and consequently

the model will contain data from pixels that belong to the background. Yilmaz [178] addresses

this problem by using an asymmetric kernel, defined by level sets, that matches the shape

of the object. It is initialised by hand in the first frame, and is more suited to rigid objects.

Jeyakar et al. [73] also reduce the influence of background pixels on the mean-shift calcula-

tion. However, their approach requires that the target be seen in isolation, surrounded by

background pixels, with no other objects nearby. The method of Leichter et al. [82] assumes

that objects have distinct boundaries. Three kernels – one each for the object, boundary and

background – are used to limit the influence of non-object pixels. (The boundary kernel uses

strong image gradients as its cue.) The approach allows for safer updating of the model as

the video progresses.

In chapter 5 we develop a method to combine multiple-part models with the background

exclusion constraint in a single mean-shift tracker. And in chapter 6 we study the effect of

using different kernel types on tracking performance.

2.4.3 Variations on mean shift

The standard mean-shift tracker uses the Bhattacharyya coefficient to compare the model and

target histograms. A number of methods have been proposed that use alternative similarity

measures, model representations and optimisation techniques for tracking. Elgammal et

al. [44] develop a joint feature–spatial distribution to encode both the structure and the

appearance of the target. Setting the bandwidth parameter to zero causes the method to

reduce to sum-of-squared-differences tracking (i.e., template matching). At the other extreme,

as the bandwidth tends towards infinity, the approach is equivalent to a histogram-based

tracker. The Kullback–Leibler distance is used to compare the model and target distributions.

In later research, Yang et al. [174] create a new similarity measure based on this joint feature–

spatial representation. It is shown to be more discriminative in higher dimensions than the

Bhattacharyya coefficient. They also develop a mean-shift procedure that can operate with

the measure. Real-time tracking is achieved by employing the improved fast Gauss transform

(IFGT) [176]. However, Leung and Gong [83] observe that only a small number of pixels

from the model and target are necessary for robust tracking using the new measure. Their

“random sampling” approach makes it unnecessary to apply the IFGT. Another similarity

score, the earth mover’s distance, is used by Zhao et al. [182] for person tracking. The

model and target distributions are summarised by signatures in order to allow an efficient,

differential method to be used for optimisation.

Zhao’s work is just one example where gradient ascent techniques besides mean shift have

been used for tracking. Hager et al. [62] recast the histogram-based tracking equations in
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matrix form and derive a Newton-style optimisation procedure. It converges more quickly

than the traditional mean-shift approach. The use of matrices also allows for an analysis

of the situations that give rise to tracking difficulties. For example, empty histogram bins

in the models can lead to instability in gradient ascent methods. Furthermore, the choice

of spatial kernel determines which kinds of image motion the tracker can detect. Fan et al.

[48] use this notion of “kernel observability” to improve the method’s robustness. Multiple

kernels are combined in a single tracker to increase the chances that at least one of them can

correctly recover the object’s motion. In later work [49] the same authors develop a technique

to quantify how reliably a given image region can be tracked. It is shown that, ideally, the

centres of mass of the various colours that make up the region should be evenly distributed

around its centre. They also derive a gradient ascent approach for moving a tracker from

a “bad” to a “good” location before initialisation. Exploring other optimisation techniques,

Liu and Chen [90] compare the trust-region method to mean shift. They find that the former

typically converges to a better local maximum of the similarity surface, making the tracker

less susceptible to distractors.

2.4.4 Alternatives to histograms

Not all data-driven trackers use histograms or distributions to represent the target. It is com-

mon to use the image patch directly, or a transformed version of it (e.g., wavelet coefficients),

as the model to be tracked. Template matching with a brute-force neighbourhood search

(section 2.3.4) can then be employed to find the object in the next frame. (In chapter 7

we show that gradient ascent optimisation can be used instead.) Looking at other target

representations, the spatiograms of Birchfield and Rangarajan [12] encode a degree of spatial

structure of the object. Aside from the count of pixels having a particular colour (as in a stan-

dard histogram), the spatiogram also records the mean and covariance of the co-ordinates of

the those pixels. A mean-shift approach is used to track image regions. Huang’s correlogram

[68] also stores information about the spatial distribution of pixels: for a pair of colours u

and v, it records how likely it is that pixels of those two colours are found at a given distance

from one another in an image region. Zhao and Tao [183] use a cut-down version of the

correlogram to recover both the position and the orientation of an object using an extension

to the mean-shift algorithm.

2.4.5 Summary of data-driven tracking

The present section has reviewed various data-driven tracking techniques. These algorithms

use only a limited amount of high-level information, and instead employ the image features
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directly to follow their target. Arguably the most popular method in this class, mean-shift

tracking is a gradient ascent approach that iteratively moves to the most similar region

in the local neighbourhood. In its basic form, mean shift is only effective at determining

translational motion in a video sequence; extensions are required to allow it to accommo-

date changes in scale, image rotation and affine transformations. By running several nearby

trackers simultaneously, the algorithm can also cope with fast object motion.

Mean shift represents the image region to be tracked by a histogram, which discards all

spatial structure from the object, reducing its discriminative power. Multiple-part models

can be used instead, which allow the tracker to retain some of the region’s spatial information

while still operating as a gradient ascent approach. In addition, it is possible to incorporate

background models of the scene, when available, into mean shift in order to make it more

robust to distractors.

We have also reviewed gradient ascent tracking methods that use alternative similarity

measures and region representations to those used by the mean-shift technique (i.e., the

Bhattacharyya coefficient and histograms, respectively). Joint feature–spatial spaces are

better able to encode the spatial structure of a region than a histogram, and fast gradient

ascent tracking techniques exist for this representation. Mean-shift optimisation itself can be

replaced by Newton-style methods, which generally converge more quickly. Such approaches

also lend themselves more easily to theoretical analysis, allowing us to determine whether

the results returned by a tracker are likely to be trustworthy. Correlograms provide a further

alternative to histograms; they are useful for determining the rotation that an object has

undergone.

In the following chapters we evaluate the effect of modifying various elements of mean-

shift tracking. We use the techniques discussed in the present section to incorporate spatial

structure into the method (chapter 5), and we assess the performance of mean shift as we

vary several of its parameter settings (chapter 6).

2.5 Summary

This chapter has reviewed the state of the art in pedestrian tracking. We present a schematic

structure that is applicable to most single-camera tracking systems: person hypotheses are

generated by a variety of means, and these image regions are tracked through the sequence.

The results of the tracking stage feed back to the hypothesis generation, and so the two

processes operate in a loop. We describe a number of systems, of increasing sophistication,

that operate in this manner to track people through a scene.

Sources of information used in a tracking system can be classified as high-level (context,
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top-down) or low-level (bottom-up). In the former category we find models of typical human

motion; state estimation methods such as Kalman filtering and particle filtering commonly

use such models to make predictions about a person’s position in the next frame of the

sequence. Real-world constraints also provide high-level information for tracking. If an

object is represented by a collection of points, for example, we would expect that the points

should all display similar motion as the video proceeds. Different methods of initialising

trackers are also discussed, among them background subtraction and direct person detection.

They provide human hypotheses to be verified or rejected by the subsequent tracking stage.

Image features serve as the measurements for the higher-level state estimation processes.

We review the various types commonly employed in tracking. Point-based features are as-

sociated with distinctive, compact locations in an image. Ideally, the same locations will be

detected in successive frames, which reduces the tracking problem to matching the correct

points to one another over time. By calculating a descriptor for the area around a given

point, the matching algorithm has more information available on which to base its decisions.

Motion-based features often use pairs of frames to associate optical flow vectors with every

image pixel. Alternatively, we can calculate vectors only for distinctive image locations (fea-

ture points) to improve the reliability of the results. It is also possible to estimate motion

for longer sections of the video sequence; the recent Particle Video approach is intermediate

between long-range feature tracking and optical flow, for example. Strong edges in an image

are another class of features that can be exploited for tracking. They can either be used as

the basis of a single-frame segmentation algorithm, or they help a contour tracking method

to “lock on” to its designated target. Image regions can be represented in numerous ways,

ranging from a detailed template to a succinct summary such as a histogram. Furthermore,

a variety of low-level image attributes can be encoded in the representation, including colour,

intensity and image gradients. Tracking a region involves finding the nearby location in the

image that best matches the model according to some similarity measure. Histogram-based

models are amenable to gradient ascent searches, but, to date, image templates have typi-

cally employed a brute-force strategy. (However, in chapter 7 we develop a gradient-based

template tracker, which is robust and computationally efficient.)

We have also reviewed a selection of data-driven tracking methods, which make little use

of high-level information, instead relying on the image features directly to follow their target.

As the focus of this thesis, mean-shift tracking and its various extensions are described.

Techniques for incorporating spatial structure into the method have been proposed, as have

ways of exploiting background models of the scene. We have also looked at alternative

similarity measures and optimisation methods that can be used in gradient ascent tracking,

along with replacements for the standard histogram-based representation of the image region.
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Our research builds on the feature types and data-driven tracking methods described in

this chapter. Section 1.5 presented our framework for evaluating and improving the perfor-

mance of mean-shift tracking, describing the research that we undertake in the remainder

of the thesis. We begin by comparing mean shift to other data-driven techniques in order

to obtain a baseline measure of its performance (chapter 4). In chapter 5 we develop a

method for unifying two constraints – multiple-part models and background exclusion – in a

single tracker. Chapter 6 is concerned with the effect of various parameters on mean shift,

including the type of spatial kernel and the feature space used. We improve the performance

of the method by determining its optimal parameter settings via a series of experiments.

However, in chapter 7, we develop a gradient-based template tracker that is both computa-

tionally efficient and more reliable than mean shift, leading us to question the use of the latter

technique. We use the new tracker together with our track validation algorithm in order to

update the object model safely to accommodate changes in the target’s appearance. The

approach, although not based directly on mean shift, yields robust gradient-based tracking

in the surveillance domain.
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Chapter 3

Overview of datasets and metrics

This chapter presents an overview of the video datasets which we will use for our experiments

throughout the thesis. We limit the scope of our investigation to the tracking of pedestrians

viewed by a single camera. We make use of two publicly available datasets, CAVIAR and

PETS. From these we have extracted a number of tracking “scenarios” – short sequences

showing a person walking unoccluded through the scene. (We have investigated the use of

other publicly available datasets such as ETISEO1 [112], but we found it unsuitable for our

purposes, due to the placement of the cameras.)

Our objective in the thesis is to attempt to track the person in each video sequence using

different versions of mean shift (and other tracking techniques), and to assess the performance

of the trackers. We use the results of each experiment to make modifications to the mean-

shift method with the aim of improving its reliability. The metrics used for performance

evaluation are described in section 3.3; they provide the basis for a quantitative assessment

of the trackers, both in terms of robustness (not losing track of their target) and accuracy

(maintaining the correct position with respect to the target). In order to compute these

metrics it is necessary to establish ground truth data for each scenario – the result we would

expect to obtain if the trackers were performing ideally. We describe the generation of this

data and how we extract it for use in our experiments.

3.1 Datasets

In each of the subsequent chapters we will conduct a series of experiments with the aim of

assessing, and ultimately improving, the performance of the mean-shift tracking technique.

We have selected two different datasets of video sequences in an effort to ensure that we can

1The ETISEO datasets can be found at http://www-sop.inria.fr/orion/ETISEO/
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Figure 3.1: Sample frames from the CAVIAR and PETS datasets

legitimately draw general conclusions about tracker performance, and not merely conclusions

that relate to one particular scene.

Sample frames from the CAVIAR and PETS sequences are shown in figure 3.1. The two

datasets have certain important aspects in common: in both cases the camera is positioned

at a height that is some way above the heads of the pedestrians; the camera also has zero

“roll” – the horizon of the scene appears horizontal in the image. However, the downward tilt

of the camera varies between the datasets. The common attributes are highlighted because

they will allow us to determine the apparent size of an object from its position in the image:

objects closer to the bottom of the image will always appear larger, and their size can be

estimated according to a formula (see section 4.2).

3.1.1 CAVIAR

The CAVIAR dataset2 includes, among other clips, a collection of video sequences of people

walking along a corridor in a shopping centre. The twenty-six sequences vary in length from

12 to 150 seconds, and also exhibit significant variation in how many people are visible in the

scene at any one time.

The videos represent a challenging tracking task for a number of reasons. Firstly, although

we are only considering scenarios that do not feature occlusion, people walk in close proximity

to each other, presenting many opportunities for the tracker to be “distracted” by alternative,

incorrect targets. Secondly, the lighting varies considerably over the area of the scene. A

2The datasets come from the EC Funded CAVIAR project/IST 2001 37540, found at http://homepages.
inf.ed.ac.uk/rbf/CAVIAR/
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Figure 3.2: A frame from a CAVIAR sequence with the ground truth data overlaid

person’s appearance can thus alter dramatically as they enter shadow, or as the colour of the

light falling on them changes.

Aside from the reasons given above, the CAVIAR dataset is appealing because it provides

full ground truth data for the sequences. This data is stored in XML format, using CVML –

the Computer Vision Markup Language [89]. The XML files contain the bounding boxes for

each person in every frame, along with a unique label. (Other data, such as that describing

each person’s role and context can be ignored for our purposes.) The bounding boxes will

allow us to calculate a number of metrics to assess tracker performance (section 3.3). An

example is shown in figure 3.2, where the ground truth data for four people is overlaid on the

corresponding video frame.

3.1.2 PETS

The second set of sequences we use for our experiments are those from the PETS 2007

dataset.3 The videos are of the inside of an airport terminal, with many people queueing or

walking through the scene. Occlusions of people (by fixed objects in the scene or by other

people) are very common. As with the CAVIAR videos, there are significant lighting changes,

both spatially and temporally, in the videos.

The PETS 2007 datasets do not provide any ground truth data for the positions of the

people walking through the scene. It was therefore necessary for us to generate ground truth

for those people we wished to track. For this purpose we used the software provided by

the Video Performance Evaluation Resource (ViPER) project4 [42, 95]. ViPER allows the

3The PETS 2007 datasets can be found at http://www.cvg.rdg.ac.uk/PETS2007/
4ViPER can be found at http://viper-toolkit.sourceforge.net/
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Figure 3.3: A frame from a PETS 2007 sequence with our approximate ground truth data overlaid

user to specify the position of a bounding box for an object in every frame of a video. We

have generated approximate ground truth for some of the people in the PETS sequences: by

dragging the rectangle to follow the object as the video is playing, we can obtain acceptable

ground truth data very quickly. (An example is shown in figure 3.3. We are exploiting the

“propagate” feature of the ViPER Ground Truth Authoring Tool to accomplish this.)

It may seem that we have introduced unnecessary inaccuracy into our methodology by

not specifying the bounding boxes with high precision. However, we believe that this is not

a concern, for two reasons. Firstly, even after laying down very strict guidelines for how

a bounding box should be placed with respect to an object, a great deal of arbitrariness

remains. For example, the bounding boxes of CAVIAR (see figure 3.2) are placed such that

every pixel belonging to a person is within the rectangle. As a consequence, a large number

of background pixels also fall within the region, and the width of the rectangle can change

rapidly from frame to frame due to the articulation of the person’s limbs. Secondly, we do

not expect the precision of the bounding boxes to have a systematic effect on the results of

our experiments. Kasturi [78] suggests that “high levels of consistency [of annotation] are not

necessary for differentiating performance of immature technologies”. Such consistency only

becomes important when an algorithm approaches the performance of a human undertaking

the same task. It will be readily seen, in subsequent chapters, that the various trackers have

high failure rates, and can be considered “immature” for assessment purposes.
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3.2 Tracking scenarios

In all of the experiments in the subsequent chapters, we attempt to track people (who do not

undergo occlusion) through each of several video clips. We have isolated 14 such sequences

from the CAVIAR dataset and a further 7 clips from the PETS videos. All of the sequences

(which we refer to as “scenarios”) are between 4 and 21 seconds long. Details can be found

in table 3.1, while example frames from each scenario are shown in table 3.2.

Ideally, a broader set of tracking scenarios would be used in the evaluation of mean shift.

In particular, we could consider videos exhibiting a greater variability of lighting or lower

contrast between the objects and the background, or containing a time-varying background.

Likewise, attempting to track an object as it undergoes a partial occlusion, or as it passes

close to another object of similar appearance (a “distractor”), would give greater weight to

the results of the evaluation. However, the scenarios shown here, while narrow in their scope,

can be used to learn much about the performance of mean shift and other tracking techniques.

Table 3.2: Representative frames from each of the 21 tracking scenarios in our dataset. The numbers
on the left will be used to refer to the scenarios throughout the thesis.

1

2

3

4
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Table 3.2: Representative frames from each of the 21 tracking scenarios in our dataset (continued)

5

6

7

8

9

10

11
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Table 3.2: Representative frames from each of the 21 tracking scenarios in our dataset (continued)

12

13

14

15

16

17
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Table 3.2: Representative frames from each of the 21 tracking scenarios in our dataset (continued)

18

19

20

21

3.3 Metrics

In this section we describe the metrics that we will use for a quantitative assessment of the

various trackers. These metrics are generally calculated on a frame-by-frame basis, but we can

also calculate statistics from the metrics over an entire sequence that summarise a tracker’s

performance more succinctly. The measures that we employ – centroid distance, overlap, dice

coefficient and lost track – are commonly used in the literature for assessing the performance

of tracking techniques [42, 94, 110]. By choosing popular metrics, it is easier to compare the

results of our evaluations to those of others. The metrics are also easy to calculate when

ground truth data of the type described in section 3.1 is available – no further parameters are

required. Of the four measures described below, only lost track is binary; it simply indicates

whether or not the tracker was successful in following its target for the entire duration of the

video sequence. The other three are real-valued functions of their inputs.
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Dataset Scenario Video
Start
frame

End
frame

Num.
frames

Description

CAVIAR 1 WalkByShop1cor 1563 2082 520 Man in grey coat
2 WalkByShop1cor 1675 2089 415 Woman in brown coat
3 WalkByShop1cor 618 975 358 Woman in white jumper
4 WalkByShop1cor 1405 1559 155 Man in white jumper
5 ShopAssistant1cor 127 259 133 Woman carrying bags
6 ShopAssistant1cor 400 554 155 Woman in black coat
7 ShopAssistant2cor 230 606 377 Man in black suit
8 ShopAssistant2cor 164 603 440 Man in black jacket
9 ShopAssistant2cor 2800 3328 529 Woman in grey jacket
10 ShopAssistant2cor 468 792 325 Woman in denim jacket
11 ThreePastShop2cor 212 552 341 Girl in red jumper
12 ThreePastShop2cor 157 432 276 Man in dark clothes
13 ThreePastShop2cor 398 834 437 Man in red jacket

14 ThreePastShop2cor 1166 1520 355
Woman in white top
and black trousers

PETS 2007 15 S03-COUPLE SWAP BAG 1\2 2303 2559 257
Man in black jacket
and blue jeans

16 S03-COUPLE SWAP BAG 1\2 916 1013 98 Girl with a backpack
17 S03-COUPLE SWAP BAG 1\2 0 248 249 Man in grey top
18 S03-COUPLE SWAP BAG 1\2 0 234 235 Woman in red top
19 S03-COUPLE SWAP BAG 1\2 756 905 150 Man in white shirt

20 S03-COUPLE SWAP BAG 1\2 2581 2730 150
Man in yellow hi-viz vest
and black trousers

21 S03-COUPLE SWAP BAG 1\2 2706 2892 187 Woman in white jacket

Table 3.1: Details of each of the 21 tracking scenarios in our dataset
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Figure 3.4: A person, their associated bounding box (blue) and the position of a tracker (red ellipse).
The centroid distance is represented by the green line.

3.3.1 Centroid distance

For a tracker centred at (xt, yt) and a ground truth bounding box with centre (xb, yb) we

define the centroid distance (depicted in figure 3.4) as

distcentroid ,

√

(xt − xb)
2 + (yt − yb)

2

In order to have a distance measure between the tracker and the ground truth that is

comparable across objects of different sizes, we define the normalised centroid distance in

terms of the width wb and the height hb of the bounding box:

normalised distcentroid ,

√

(

xt − xb
wb

)2

+

(

yt − yb
hb

)2

3.3.2 Overlap

The proportion of the ground truth bounding box that is occupied by the tracker in a given

frame is another useful measure of the tracker’s accuracy [42]. This metric is referred to as

the overlap:

overlap ,
areacommon

areabounding box

(3.1)

Note that we treat the tracker as rectangular (as opposed to elliptical) for the purposes of

the calculation (see the dashed red rectangle in figure 3.4).

50



3.3. Metrics

3.3.3 Dice coefficient

A final metric that is often used to assess the frame-by-frame accuracy of a tracker is the dice

coefficient [42]. For two rectangles it is defined as twice their shared area divided by the sum

of their areas:

dice ,
2× areacommon

areatracker box + areabounding box

The measure is symmetric with respect to the bounding box and the tracker, and it is less

prone to being skewed in cases where one of the rectangles is much larger than the other.

3.3.4 Lost tracks

Aside from measuring the accuracy of a given tracker on every frame, we also wish to know

how it performs overall, i.e., over the course of an entire tracking scenario. Most importantly,

we must determine when we have lost track of an object. The prevalence of such failure cases

is a measure of the lack of robustness of a tracker.

We define a tracker to be lost as soon as its overlap with the bounding box (equation 3.1)

falls below a threshold. Nascimento [110] chooses a value of 10%, while Kasturi [78] sets the

threshold at 20%. Clearly, there is no consensus on the “correct” value, and we set it at 10%

in our experiments. Although very “forgiving” of large tracking inaccuracies, it is constant

for every tracker we use, and thus still allows fair comparisons to be made.

We also disregard any notions of a tracker “recovering” its target by chance: if the overlap

falls below the threshold at any point during the tracker’s run, it is considered lost. If the

tracker should happen to follow the target again at a later stage in the run, the status of

“lost track” is not overturned.

3.3.5 Aggregate metrics

The metrics described above (excluding “lost track”) are all calculated on a frame-by-frame

basis. However, it is often useful to summarise the accuracy of a tracker over an entire

sequence by a handful of statistics. To capture the tracker’s “average” performance we

calculate the medians of all of the dice coefficient, overlap and normalised centroid distance

values returned for a sequence. We choose the median for this purpose because its value is

not strongly influenced by occasional outliers in the data. Similarly, we use the interquartile

range (IQR) as a robust measure of the data’s dispersion, in place of the classical standard

deviation. Note that in calculating these statistics, we only use the frames in the sequence

from before any loss of track that may occur.
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We can further summarise a tracker’s performance across all tracking scenarios by calcu-

lating the median of medians, and the median of IQRs, for each of the averages listed above.

It allows us to compare the accuracy of two trackers at a glance.

3.4 Summary

The present chapter has described the video datasets that we will use for all of the experiments

in the remainder of the thesis. It has also introduced the type of ground truth data that we

will employ, and the metrics for assessing each tracker’s performance. We are now in a

position to compare the basic mean-shift method to other data-driven tracking techniques.

In the next chapter, we attempt to track the designated targets through the 21 sequences in

our dataset, using the ground truth data and the metrics to measure each tracker’s robustness

and accuracy.
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Chapter 4

Target representation and

optimisation strategies

In this chapter we assess the mean-shift tracking technique, both in terms of how it performs

on several different video sequences and how its performance compares to that of other

common data-driven tracking techniques. Two main aspects of the trackers are investigated.

Firstly, we try different optimisation strategies – gradient ascent and brute-force – to find the

best match between the target region and the various candidate regions. Secondly, we vary

the representation used for the target and candidate regions – using both template-based and

histogram-based approaches.

In the following sections we describe in detail each of the trackers used in the experiments,

and derive a formula that allows us to vary each tracker’s size to match that of the target

object in the image. Next, we discuss the experimental setup, and present the results of the

experiments. An analysis of the results concludes the chapter.

4.1 Trackers

This section describes the four trackers that are used in the present chapter. We start with the

technique that is the focus of the thesis, namely, mean shift. Next, we describe a tracker that

uses the same method as mean shift for comparing target and candidate region histograms

– the Bhattacharyya coefficient – but that replaces the gradient ascent optimisation strategy

with a brute-force search of the nearby image regions. The third tracker uses a different

measure, the earth mover’s distance, to make comparisons between targets and candidates.

The second class of trackers represents the region to be tracked by its image template,

and not by a histogram summarising that region, as the previous methods do. For our fourth
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tracker, we use the well-known normalised cross-correlation technique, which is commonly

employed in template matching.

4.1.1 Mean-shift tracking

Mean-shift tracking tries to find the area of a video frame that is both (a) most similar to a

previously initialised model and (b) close to the tracker’s location in the previous frame. By

applying the technique to each video frame in sequence a region can be tracked over time. The

method was first presented by Comaniciu in 2000 [31, 32]. The tracking begins with an object

model being created from the region in the first frame. The probability density function (pdf)

of the region to be tracked (the target) is represented by a histogram q̂ = {q̂u}u=1...m where,

for each bin u and pixel i,

q̂u , C

n
∑

i=1

k

(

∥

∥

∥

∥

xi

hq

∥

∥

∥

∥

2
)

δ [b (xi)− u] (4.1)

In this equation k is a kernel profile that gives more weight to pixels whose locations xi

are closer to the centre of the target. The bandwidth hq sets the size of the target region,

which contains n pixels.1 The Epanechnikov kernel profile is the most commonly used in the

mean-shift tracker2:

k (x) =







l (1− x) if x ≤ 1

0 otherwise

It is shown, along with its spatial structure, in figure 4.1. (We will explore the effect of using

other kernels in chapter 6.)

Returning to equation 4.1, C is a normalising constant that ensures that
∑m

u=1 q̂u = 1.

The binning function b maps the pixel at location xi to its corresponding histogram bin.

Similarly, the pdf of the candidate region p̂(y) = {p̂u(y)}u=1...m at location y is given by

p̂u(y) , Ch

nh
∑

i=1

k

(

∥

∥

∥

∥

y − xi

hp

∥

∥

∥

∥

2
)

δ [b (xi)− u] (4.2)

where hp is the kernel bandwidth, which determines the size of the candidate region. It is

useful to think of u as a colour, but the histograms could actually represent any feature space,

1Elliptical image regions must first be mapped onto circles before equation 4.1 can be used.
2As with mean-shift segmentation [30], we set the value of the normalising constant to l = 15/(8π) ≈

0.59683
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Figure 4.1: Profile of the Epanechnikov kernel (left) and its corresponding two-dimensional spatial
structure for a circular image region (right). A kernel K is related to its profile k by the formula

K (x) = k
(

‖x‖2
)

e.g., edge magnitudes or oriented gradients. Again, the index i ranges over each of the nh

pixels in the candidate region.

Central to the operation of mean shift is the weighting wi for each pixel:

wi =
m
∑

u=1

√

q̂u
p̂u(y0)

δ [b (xi)− u] (4.3)

which is derived from the Bhattacharyya similarity measure. (y0 is the location of the

candidate region in the previous frame.) Assuming Epanechnikov kernels, the new location

y1 for the candidate region is found simply as

y1 =

∑nh

i=1 xiwi
∑nh

i=1 wi

(4.4)

Mean shift is an iterative procedure, and so the above formula must be applied until con-

vergence. The tracker is considered to have converged if the (x, y) locations returned by two

successive iterations are separated by less than a particular threshold, ε.

4.1.2 Brute-force Bhattacharyya coefficient

The mean-shift tracker uses, at its heart, a similarity measure for comparing the target

histogram q̂ and the candidate histogram p̂(y) (equations 4.1 and 4.2). This measure is the
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Bhattacharyya coefficient ρ:

ρ̂ (y) , ρ [p̂(y), q̂] =

m
∑

u=1

√

p̂u (y) q̂u (4.5)

In order to eliminate the effect of the gradient ascent optimisation strategy of mean-shift,

we implement a second tracker that uses the Bhattacharyya coefficient directly. It evaluates

the similarity measure at a number of image locations and chooses the location that yields

the largest value – a brute-force search strategy. Our aim is to study the target representation

used in mean-shift (a histogram) separately from its optimisation strategy (gradient ascent).

We will then be able to see if mean shift is prone to becoming “stuck” on local maxima

(incorrect image locations) when there may be a global maximum nearby (the correct image

location).

4.1.3 Earth mover’s distance

Once we remove the gradient ascent aspect from the mean-shift tracker, we are free to use

any similarity measure to compare the target and candidate image regions, and not just those

measures that, like Bhattacharyya, have derivatives that can be determined analytically.

In our third tracker, we wish to see if another measure for comparing two histograms can

perform better than that used by mean shift. The earth mover’s distance (EMD) [136] has

been described as “the minimal cost that must be paid to transform one histogram into the

other” [121]. Since it is a “cross-bin” metric, we might expect it to have greater discriminative

power than the Bhattacharyya coefficient.

Our EMD-based tracker also uses a brute-force search strategy to find the optimal image

location in each frame. It differs from the previous tracker only in the similarity measure it

employs. We have used the Fast EMD software3 from Pele [120, 121] in order to implement

our approach.

4.1.4 Normalised cross-correlation

The previous three trackers all use histograms to represent the target and candidate image

regions. In contrast to this, normalised cross-correlation (NCC) operates more directly on

the image patches. Looking first at regular cross-correlation, we see that its value ϕ (u, v) at

image location (u, v) is given by

3The software can be found at http://www.cs.huji.ac.il/~ofirpele/FastEMD/code/
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ϕ (u, v) =
∑

x,y

f (x, y) t (x− u, y − v)

where t is the image region of the model and f is the candidate image region. (Each pixel

in the target is simply multiplied by the corresponding pixel in the candidate and all the

products are summed.) Unlike the kernel-weighted histograms of the previous trackers, cross-

correlation is highly dependent on the spatial structure of the image.

Normalised cross-correlation [84] attempts to account for differences in the brightness

distributions of the target and candidate regions. It assumes that the distributions are ap-

proximately normal, and so it subtracts their means before the multiplications and afterwards

divides by their standard deviations. The NCC γ (u, v) at image location (u, v) is given by

γ (u, v) =

∑

x,y

[

f (x, y)− f̄u,v
]

[t (x− u, y − v)− t̄]
{

∑

x,y

[

f (x, y)− f̄u,v
]2∑

x,y [t (x− u, y − v)− t̄]2
}0.5

where t̄ is the mean of the target and f̄u,v is the mean of the candidate image region. The

above definition of NCC can only be applied to greyscale images.

As with the previous trackers, we use a brute-force search strategy with NCC to find the

best-matching image location at each frame.

4.2 Target scale

In section 3.1 we described the video datasets that will be used in our experiments. It was

noted that all of the video sequences are recorded by a camera placed at a height that is

some distance above the heads of the pedestrians. This was a deliberate choice; it allows us

to estimate the height of a person in the image given the image row corresponding to the top

of the person’s head. (Collins [28] notes the inability of the basic mean-shift tracker to adapt

to changes in the size of the target.) A schematic depiction of the camera arrangement is

shown in figure 4.2.

The idea of exploiting the effect of perspective to determine an object’s image height

is not new. Lin [86] uses a support vector machine to detect the heads of people in an

image, and uses their varying image size to locate the vanishing point of the scene. The

final goal is to estimate the number of people in the image. Stauffer [151] shows that many

attributes of objects, e.g., their radius, velocity, width and height, have an approximately

linear relationship with the image row, and that the attributes tend towards a value of zero

at the horizon. He provides an automated method for determining the horizon line from

a video sequence. Bose [16] demonstrates that, by observing objects moving with constant

57



Chapter 4. Target representation and optimisation strategies

Figure 4.2: For our raised camera arrangement, there is a simple relationship between an object’s
location in the image and its apparent height

velocity, it is possible to perform a metric rectification of the scene, and thus make an object

appear to have a constant size regardless of its position in the image. Finally, Hoiem [66]

shows the importance of accounting for perspective to many image understanding problems,

particularly object detection.

The approaches listed above all ultimately rely on finding the horizon line of the scene in

order to reduce the problems of an object changing its apparent size. In our previous work, we

exploited the (outdoor) shadows cast on the ground by people walking through the scene to

determine the location of the horizon.4 In the present case, we derive a formula for the image

height of a person in any frame of the video given only their image height at the beginning of

the sequence and the location of the horizon line. No other parameters are required. We begin

by plotting the apparent heights of different people against the image rows corresponding to

the tops of their heads (figure 4.3). This plot uses the ground truth data from the CAVIAR

dataset (section 3.1.1); an example of the bounding boxes can be seen in figure 3.2. It is clear

that the various people have different real-world heights (indicated in the plot by different

colours); however, their image heights all tend towards zero at a certain image row – the

horizon line. By asserting that the camera has zero roll, we can say that the horizon will

appear as a horizontal line in the image. Although the plot depicts the relationship between

the image row and the object height as linear, this is only an approximation, albeit one that

holds very well for many camera arrangements.

Returning to figure 4.3, we wish to find an expression for hcurr, the height of the object

in the current frame, given:

4The approach has been published as “Direction of Camera Based on Shadows” by D. Caulfield and K.
Dawson-Howe in Machine Vision and Image Processing Conference, September 2004 [20].
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Figure 4.3: Plots of object heights against image row. Different colours are used to represent different
people. The green lines emanate from the horizon row. The collection of points in a vertical line at
the right-hand side of the plot is due to certain bounding boxes being “clipped” by the bottom border
of the image. Likewise, the outlier points are caused by partial occlusions.� its image row in the current frame, rcurr� its image row and height in a previous frame, (r1, h1), and� the image row of the horizon, rhor (where an object’s height would be 0)

We begin by observing that the three points, (rhor, 0), (r1, h1) and (rcurr, hcurr), are collinear,

and thus the slopes of the line segments between any two pairs of the points are equal:

hcurr − h1
rcurr − r1

=
h1 − 0

r1 − rhor

It is then simply a matter of making hcurr the subject of the above formula:

hcurr =
h1 (rcurr − r1)

r1 − rhor
+ h1

=
h1rcurr − h1r1 + h1r1 − h1rhor

r1 − rhor

=
h1 (rcurr − rhor)

r1 − rhor
(4.6)

Equation 4.6 gives us a way of calculating how an object’s size will change over the course

of a video sequence. It requires the determination of the image row of the horizon line. In

the present work we specify this parameter manually for each dataset by inspecting plots like

those of figure 4.3. A complete tracking system could instead use the techniques of Stauffer

[151] to find the position of the horizon line automatically, but it would require the ability

to detect the objects in the scene, perhaps using background subtraction.
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It is noteworthy that the above equation is not limited to estimating the full (head-to-

foot) image height of people in the image. It is equally applicable to the task of determining

the change in apparent size of any section of an object that moves along the ground. For

example, if we wish to track only the torso of a person, or their head and shoulders, we can

use equation 4.6 in the same manner as before.

4.3 Experiments

We now discuss the experimental setup for the various trackers described in section 4.1.

We assessed the robustness and accuracy of each of the trackers by having them follow the

designated target in each of the 21 scenarios (section 3.2) in our test set. The image patch

inside the ground truth bounding box in the first frame of each sequence was used to initialise

a model for each tracker. The trackers then attempted to follow the object over the course

of the video sequence. Metrics representing the accuracy of the trackers (section 3.3) were

calculated at each frame, and aggregate metrics, e.g., the median of the dice coefficient, were

generated at the end of each clip.

4.3.1 Brute-force search

All of the trackers (except for mean shift) can be regarded as operating in a brute-force

manner, i.e., we evaluate the similarity of the target and candidate regions (according to

some function) at a large number of image locations, and choose the location with the highest

similarity score. This approach is in contrast to mean-shift tracking, which is a gradient

ascent (sometimes called hill climbing) technique that typically requires only a few iterations

to converge to a local maximum of the similarity surface. For each of the other trackers,

we evaluate its similarity function on a grid of 11 × 11 image locations, giving a total of

121 evaluations. However, the image locations are not adjacent to one another – they are

separated from each other by 3 pixels in the horizontal and 9 pixels in the vertical direction.

This sparse grid allows us to cover a large part of the image (90 rows and 30 columns) when

searching for the best-matching candidate region in each frame without the computations

becoming prohibitive. Examples of the surface plots can be seen in figure 4.9 at the end of

the chapter.

Each of the 121 candidate image regions will have a different width and height, depending

on its position in the image. Those nearer the top of the video frame will be shorter and

narrower than those nearer the bottom. We use equation 4.6 to determine the height of a

patch; its width is calculated such that it has the same aspect ratio as the target region.

60



4.4. Results

Having established the dimensions of a candidate rectangle, we extract it from the image.

It is then resized so that its width and height match those of the target region. We have used

bilinear resizing for this purpose, as it affords a reasonable compromise between preserving

image quality and maintaining computational efficiency.

4.3.2 Tracker parameters

The basic mean-shift tracker (section 4.1.1) operates in the RGB colour space with a his-

togram size of 4 × 4 × 4 bins. We set the value of ε, the convergence condition, to 1 pixel,

and the maximum number of iterations allowed to 20. Comaniciu includes a procedure in the

original mean-shift tracking algorithm [32] that attempts to ensure that the similarity score

always increases between successive iterations. If a decrease is seen, the tracker is instead

moved one half of the distance suggested by the algorithm. If the score has still not increased,

it moves one quarter of the distance, and so on until an increase is seen. In our experiments,

we limit these attempts at halving the distance (“half-steps”) to a maximum of five.

The brute-force Bhattacharyya tracker (section 4.1.2) uses the same parameters as the

mean-shift version – the gradient ascent aspect of the latter has simply been replaced by a

brute-force optimisation strategy.

Brute-force search is again employed by the earth mover’s distance tracker (section 4.1.3).

As in the case of the previous two trackers, it operates in RGB with a 4×4×4-bin histogram.

Finally, the normalised cross-correlation tracker (section 4.1.4) operates in greyscale, and

does not make use of any colour information.

4.4 Results

In this section we present the results obtained from running each of the four trackers on the

21 scenarios in our test set. We look first at the robustness of the trackers, i.e., whether they

successfully track their target for the entire duration of a video sequence. We then study the

accuracy of the different techniques – how close they remain to the centre of the object being

tracked over time.

4.4.1 Robustness

Table 4.1 shows the tracking success/failure status of each of the techniques described in this

chapter when run on our 21 tracking scenarios. It is immediately clear that the normalised

cross-correlation tracker (NCC) significantly outperforms all of the other techniques on these

sequences, losing track in only five out of the 21 cases. An example of NCC maintaining track
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Figure 4.4: Mean shift losing its target (top), while normalised cross-correlation successfully tracks
the person (bottom), in scenario 3

when mean shift fails to do so is shown in figure 4.4, which provides a visual summary of the

performance of these trackers on scenario 3. Plots of the overlap metric for the two trackers

as they operate on this sequence are shown in figure 4.5. Mean shift displays a sudden drop

in the metric over the course of only a few frames near the end of the sequence, signalling

the technique’s loss of track. It is also seen that NCC has a consistently higher overlap score

throughout the clip, indicating the greater accuracy of that tracker (which will be discussed

further in the next section).

It is somewhat surprising to note (from table 4.1) that the regular (gradient ascent) mean-

shift tracker appears to be more robust than the brute-force Bhattacharyya approach, with

only nine lost tracks to the latter’s twelve. We might have expected that the ability of the

brute-force tracker to “see” the entire neighbourhood of the similarity surface would give it a

better chance of following a dynamic target, especially when the tracker wanders away from

the object centre temporarily. However, it seems that, counter-intuitively, the broader view

of the terrain presents the tracker with more opportunities for being distracted by candidate

image regions that do not correspond to the target but nonetheless have a similar histogram.

The earth mover’s distance tracker (EMD), another brute-force approach, also performs

worse than mean shift in terms of robustness. It appears that the EMD metric possesses

even less discriminative power when comparing histograms than the Bhattacharyya metric,

at least for our purposes. The similarity surfaces produced by the two measures are visually
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1 x x

2 x x

3 x x x

4 x x x

5

6

7

8

9 x x x

10 x

11 x

12

13 x x

14 x x

15 x x x

16 x x x

17 x x x

18 x x x x

19 x x

20 x x x

21 x x x

Num. trackers lost 9 12 14 5

Table 4.1: The success/failure of the various trackers operating on each scenario. (Failures are
indicated by an ‘x’.)
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Figure 4.5: Plots of the overlap metric for scenario 3 for the mean-shift tracker (left) and for
normalised cross-correlation (right)

very similar, and lack the sharp peak that is characteristic of NCC (see figure 4.9 later in

this chapter).

Table 4.1 also reveals that the performance of the histogram-based trackers depends

strongly on which of the two datasets is considered. The mean-shift and brute-force Bhat-

tacharyya trackers display similar robustness to NCC on sequences 1 to 14 (the CAVIAR

dataset). However, tracking failure is almost universal on the PETS sequences (numbers 15

to 21) for the three histogram-based approaches.

It appears that the latter sequences are inherently more challenging than those from

CAVIAR. Referring to table 3.2, we can see that the PETS targets undergo more-significant

appearance changes than their CAVIAR counterparts, mostly on account of the variations

in lighting over the scene: transition from shade into bright daylight is common to most of

the PETS sequences. The designated individuals in the PETS videos also spend a greater

amount of time in close proximity to “distractors” – other people whose similar appearance

may draw the tracker away from the correct target.

The disparity in results from one dataset to another emphasises the need to use test

sequences that are sufficiently challenging; otherwise, differences in capability between com-

peting tracking techniques will not be apparent. In subsequent chapters, we will again see

that only by including the PETS videos can we demonstrate the improved robustness of our

modified trackers.
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4.4.2 Accuracy

While robustness must be the primary criterion for assessing a tracker’s performance, it is

important and instructive to measure also the accuracy of the technique. When we speak

of accuracy, we are referring specifically to the distance between the centre of a tracker and

the centre of the target object that it is supposed to follow. We use the metrics described

in section 3.3 – dice coefficient, overlap and normalised centroid distance – to make these

assessments.

In the previous section, we presented plots of the overlap metric for two trackers operating

on a single video sequence (figure 4.5). We can convey the same information more succinctly,

however, by using a box-and-whisker plot. Also known simply as a box plot, it summarises an

entire data distribution with a number of visual elements. Firstly, there is the box, whose

vertical extent represents the interquartile range of the data (with the median also marked by

a line near the centre of the box). Next are the whiskers – lines extending out from the box,

which depict a certain multiple of the interquartile range (1.5 times, in our case). Finally,

crosses denote any data points outside of this range.

The notch in the centre of the box plot depicts the variability in the median of the data

amongst different samplings. If the notches of two box plots that are beside one another do

not overlap, we can say that there is a statistically significant difference between the medians

of the two distributions. In this way, the box plot can serve as a visual hypothesis test – it

is analogous to a t-test, but it is not as statistically rigorous.

Figures 4.6 to 4.8 show, for every tracker, box plots of the various accuracy metrics

computed for scenarios 6 and 16. The results for scenario 6 are representative of the CAVIAR

dataset as a whole: normalised cross-correlation is somewhat more accurate than the other

trackers, as judged by the variability of the medians, regardless of the metric used. The trend

is consistent across the other CAVIAR sequences. In contrast, scenario 16 is indicative of

the trackers’ performance on the PETS videos. (Only those frames from before the point at

which a tracking failure occurred were used to calculate the metrics.) While the accuracy

of NCC is unaffected, the other methods perform much more poorly than on the CAVIAR

sequences. Similar results are recorded for the remainder of the PETS clips. Again, we see

that the choice of dataset has a large bearing on how readily weaker tracking techniques are

distinguished from more capable approaches.

Table 4.2 summarises the performance of each of the trackers over the 21 scenarios in

our test set. For a given tracker we take its median overlap metric for each sequence, and

then we calculate the median of these values. We perform a similar calculation for the dice

coefficient and the normalised centroid distance. It will be seen that NCC records better

scores than the other trackers for each of these aggregate metrics. It is not clear, however, if
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Figure 4.6: Box-and-whisker plot of each tracker’s dice coefficient for scenario 6 (left) and scenario 16
(right)
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Figure 4.7: Box-and-whisker plot of each tracker’s overlap metric for scenario 6 (left) and scenario 16
(right)
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Figure 4.8: Box-and-whisker plot of each tracker’s normalised centroid distance for scenario 6 (left)
and scenario 16 (right)

we can assert that any one of the remaining trackers – mean shift, brute-force Bhattacharyya

or brute-force EMD – is better than the others in terms of accuracy.

The median-of-interquartile ranges for each of the trackers is similarly recorded in ta-

ble 4.3. It shows the NCC tracker has, on average, a tighter interquartile range than the

other methods. The raw metrics recorded by this tracker have a lower dispersion (tighter

distribution), therefore, than those of the other techniques.

With regard to the metrics themselves, figures 4.6 to 4.8 and tables 4.2 and 4.3 suggest

that the trackers will be ranked similarly in terms of performance regardless of which accuracy

measure we use. The NCC tracker is seen to be the most accurate, while the other three

approaches all exhibit similar, lower performance, whether we use the dice coefficient, overlap

or normalised centroid distance metric. In order to simplify the presentation of results in

subsequent chapters, therefore, we will only use the dice coefficient to assess the accuracy of

a given method; lost track will continue to be used to measure robustness.

4.5 Discussion

The results of the experiments indicate that NCC has at its heart much more discriminative

power than either the brute-force Bhattacharyya tracker (and, by implication, mean shift)

or the EMD tracker. The similarity surfaces shown in figure 4.9 support this contention.5

5A similarity surface is a three-dimensional plot showing, at each grid location, the value of the tracker’s
similarity measure – Bhattacharyya distance, earth mover’s distance or normalised cross-correlation – for the
target model and the candidate model at that image location.
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Overlap 0.77 0.74 0.77 0.94

Normalised centroid distance 0.23 0.17 0.15 0.05

Table 4.2: Median-of-medians for the dice coefficient, overlap and normalised centroid distance for
the various trackers across all of the scenarios
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Dice coefficient 0.17 0.16 0.12 0.06

Overlap 0.18 0.15 0.15 0.08

Normalised centroid distance 0.16 0.13 0.11 0.05

Table 4.3: Median-of-interquartile ranges for the dice coefficient, overlap and normalised centroid
distance for the various trackers across all of the scenarios. Lower numbers are better in every case.
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Figure 4.9: Plots of the similarity surfaces produced by the Bhattacharyya, EMD (top) and NCC
trackers (bottom) for scenario 3. The plots contain 11×11 datapoints and span 90 rows × 30 columns
of the image.

Only the surface for NCC displays a distinctive peak – those of the other approaches have

an extended plateau near their centres, making the tracker less likely to stay at the correct

location. It must also be borne in mind that NCC operates in greyscale, while the other

trackers make use of colour information, making NCC’s performance more remarkable.

We caution that the results presented in this chapter relate only to the relatively narrow

dataset that we used for our experiments. The trends seen here, and in subsequent chapters,

may not be observed with other collections of video sequences.

Tracking failures in mean shift are synonymous with a “false” local maximum developing

in the similarity surface near to the correct location. The tracker will move to this location,

and if the peak persists for a sufficient length of time, mean shift will wander away from its

target completely and a lost track will result. Such false peaks usually arise when the target

and candidate image regions have become excessively different in appearance. For example,
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if the person to be tracked was initially in shade but is now walking through an area of bright

sunshine, the similarity score between the two image patches will be low. A higher score may

in fact be achieved by comparing the target region to a dark section of the background. If

the person happens to walk past such a place in the scene, mean shift may be “distracted”

by the background and lose track of its target.

Two aspects of normalised cross-correlation seem to be important to that method’s ro-

bustness. Firstly, unlike the histogram-based trackers, it encodes spatial structure within its

model; this appears to be responsible for the peaked nature of its similarity surface. In the

next chapter we introduce similar structure into the mean-shift tracker, and its surface also

develops a stronger peak as a result (see figure 5.9). Secondly, the normalisation element of

NCC seems to allow it to cope with brightness changes that occur in the target being tracked.

In chapter 7 we develop an alternative method for accommodating appearance changes: the

object model is updated periodically when we are confident that the tracker is still correctly

positioned on its target.

The performance of normalised cross-correlation, as determined in the present chapter,

will serve as a baseline for our further experiments. Our goal is to enhance mean-shift tracking

to the point where in can compete with, and even surpass, the robustness and accuracy of

NCC.
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Chapter 5

Tracking with multiple-part models

The previous chapter demonstrated the lack of robustness exhibited by the basic mean-shift

tracker; it regularly loses track of the target it is following. We hypothesise that at least

some of this poor performance can be attributed to the absence of spatial structure encoded

within the histograms employed by mean shift. To incorporate such structure, we divide

the target to be tracked into several regions and apply mean shift to this new multiple-part

model. We also develop a method for combining such trackers with a constraint known as

background exclusion1. A number of tracking experiments are performed, and they show

that the combination of the two techniques – multiple-part models and background exclusion

– improves both the robustness and the accuracy of tracking when compared to the basic

mean-shift approach.

5.1 Background

The mean-shift tracking technique was described in section 4.1.1. As a bottom-up, or data-

driven, technique, it permits regions of an image to be tracked over time without the need to

specify complex motion or appearance models. A simple colour histogram is used to encode

the appearance of the object to be tracked, while a gradient ascent optimisation scheme

moves the tracker to the best location in the next frame of the video sequence.

Although mean-shift tracking is popular due to its relative simplicity and computational

efficiency, it suffers from a number of weaknesses: it is prone to distraction by other ob-

jects that are similar to the one being tracked, and it lacks a mechanism for encoding the

spatial layout of the colours the object. A typical mean-shift similarity surface was shown

1An earlier version of the work in this chapter has been published as “Evaluation of multi-part models
for mean-shift tracking” by D. Caulfield and K. Dawson-Howe in International Machine Vision and Image

Processing Conference, September 2008 [21].
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in figure 4.9. Owing to the lack of spatial structure encoded in the target and candidate

histograms, the surface does not have a sharp peak, displaying instead a smooth plateau. It

is therefore difficult for the tracker to position itself accurately on its target; a slight change

in the image data is all that is required for the tracker to favour an incorrect location. In

some cases, the inaccuracy can persist for several frames, causing mean shift to be drawn

away from the correct target and ultimately resulting in a lost track.

To date, various researchers have attempted to address these problems. In order to enforce

a particular spatial structure on the object various multiple-part models have been proposed

[94, 118, 173]. Yang et al. [44, 174] show that data-driven tracking can be considered as

a spectrum. At one end is mean shift, which imposes no spatial structure on the target,

while at the other extreme we find sum-of-squared-differences (SSD) tracking and normalised

cross-correlation (section 4.1.4), which are forms of rigid template matching. In this frame-

work, mean shift with multiple-part models can be regarded as intermediate between the two

endpoints: certain structure exists in the model, but it does not amount to complete rigidity.

The similarity surfaces of such trackers are more peaked than those of basic mean shift, which

accounts for their improved accuracy (compare figures 5.8 and 5.9 at the end of this chapter).

Zhao et al. [185] and Porikli et al. [127] have used the background exclusion constraint

to make the tracker favour regions that are dissimilar to the background. This technique

is applicable when we have a model of the empty scene available, perhaps generated by an

automatic method [27, 35, 160]. It is analogous to background subtraction, but it is integrated

directly into the tracker, and so issues such as thresholding do not arise.

5.2 Innovation

We have developed a mean-shift-based approach that unifies both the background exclusion

constraint and multiple-part appearance models in a single tracker (section 5.5). We have

also undertaken an extensive evaluation of the new tracker on several video sequences. It is

compared to mean-shift trackers that use only background exclusion or multiple-part models

(but not a combination of the two). The new tracker outperforms each of the existing

techniques, both in terms of robustness and of accuracy (section 5.7).

The following section presents a careful derivation of the multiple-part tracker. The

details of background exclusion are then provided, so that we can fully describe our approach

to combining the two components in a single tracker.
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5.3 Multiple-part models

The derivation of the formula for the standard mean-shift tracker starts with the Bhat-

tacharyya coefficient ρ, a measure for comparing the target histogram q̂ and the candidate

histogram p̂(y):

ρ̂ (y) , ρ [p̂(y), q̂] =
m
∑

u=1

√

p̂u (y) q̂u (5.1)

where u = 1...m indexes over the bins in each. In order to use multiple-part models, we divide

the region to be tracked into N subregions, where each subregion P has its own histograms

q̂P (for the target) and p̂P (y) (for the candidate), P = 1...N . We can use any spatial

partitioning of the region; some examples are shown in figure 5.3. Maggio [94] defines a

measure φ for comparing two multiple-part models:

φ̂ (y) , φ [p̂(y), q̂] =

N
∑

P=1

ρ
[

p̂P (y), q̂P
]

(5.2)

It is simply the summation of the individual Bhattacharyya coefficients for each of the subre-

gions. In order to account for the possibility of these regions having different sizes, we modify

equation 5.2:

φ̂′ (y) , φ′ [p̂(y), q̂] =
N
∑

P=1

SP ρ
[

p̂P (y), q̂P
]

(5.3)

The quantity SP represents the size of subregion P in pixels, thereby giving more weight to

larger regions.

We now show how to obtain a mean-shift formula for multiple-part models. As in basic

mean-shift tracking, each subregion P in the target is represented by a histogram q̂P with m

bins:

q̂P = {q̂Pu }u=1...m

We introduce an indicator function IR, where

IR (xi, P ) =







1 if the pixel at location xi belongs to region P

0 otherwise
(5.4)

The value in each histogram bin q̂Pu is given by
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q̂Pu = CP

n
∑

i=1

k

(

∥

∥

∥

∥

xi

hq

∥

∥

∥

∥

2
)

δ [b (xi)− u] IR (xi, P ) (5.5)

Unlike Dong [173], where a single normalisation factor is used, we employ a different factor

CP for each subregion. The remaining quantities in equation 5.5 are the same as those of

equation 4.1. The candidate histogram p̂P (y) = {p̂Pu (y)}u=1...m is defined similarly:

p̂Pu (y) = CP
h

nh
∑

i=1

k

(

∥

∥

∥

∥

y− xi

hp

∥

∥

∥

∥

2
)

δ [b (xi)− u] IR (xi, P )

We wish to optimise equation 5.3 with respect to the tracker’s position y. As in Comani-

ciu’s original tracker [32], we apply a Taylor series expansion to ρ
[

p̂P (y), q̂P
]

, which means

we must optimise

N
∑

P=1

SP

[

κP1 +
CP
h

2

nh
∑

i=1

wP
i k

(

∥

∥

∥

∥

y − xi

hp

∥

∥

∥

∥

2
)]

, (5.6)

where the weights wP
i are given by

wP
i =

m
∑

u=1

√

√

√

√

q̂Pu

p̂Pu (y0)
δ [b (xi)− u] IR (xi, P )

(y0 is the location of the candidate region in the previous frame.) Hence, after dropping the

constants from expression 5.6, we must optimise

N
∑

P=1

[

SPCP
h

nh
∑

i=1

wP
i k

(

∥

∥

∥

∥

y − xi

hp

∥

∥

∥

∥

2
)]

=

nh
∑

i=1

[(

N
∑

P=1

SPCP
h wP

i

)

k

(

∥

∥

∥

∥

y − xi

hp

∥

∥

∥

∥

2
)]

=

nh
∑

i=1

[

w′

ik

(

∥

∥

∥

∥

y − xi

hp

∥

∥

∥

∥

2
)]

This expression has the same form as that used in the basic mean-shift tracker, with the

weights w′

i given by

w′

i =

N
∑

P=1

m
∑

u=1

SPCP
h

√

√

√

√

q̂Pu

p̂Pu (y0)
δ [b (xi)− u] IR (xi, P )
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To find the new location y1 for the tracker, we use the standard mean-shift formula:

y1 =

∑nh

i=1 xiw
′

i
∑nh

i=1 w
′

i

(5.7)

Equation 5.7 is applicable as long as k is the Epanechnikov kernel.

We have now derived a procedure for mean-shift tracking with multiple-part models. It

is similar to the approach taken by Maggio [94], but the equations are given explicitly. We

note that our definition of the indicator function IR (equation 5.4) allows a pixel to belong

to different subregions simultaneously. Therefore, we can create trackers whose subregions

overlap, which permits us to be more specific about the type of spatial structure we wish to

capture in the model. Finally, we treat subregions of different sizes explicitly, in contrast to

both Dong [173] and Maggio. This ensures that larger subregions will have a greater influence

on the tracker than smaller ones.

5.4 Background exclusion

Various authors have attempted to exploit background models of the scene to improve the

performance of mean-shift tracking. Zhao et al. [185] and Porikli et al. [127] have both

modified the Bhattacharyya coefficient ρ (equation 5.1) to take account of the appearance of

the background:

L̂ (y) , λfρ [p̂(y), q̂]− λbρ
[

p̂(y), d̂(y)
]

(5.8)

In the definition given above, q̂ and p̂(y) are the target and candidate histograms (as be-

fore), and d̂(y) = {d̂u(y)}u=1...m is the colour histogram of the corresponding region in the

background model.

The first term represents “object attraction” and the second represents “background ex-

clusion”. It enforces the constraint that a pixel in the candidate image region should be

similar to the corresponding pixel in the object model, but dissimilar to the correspond-

ing pixel in the background model (see figure 5.1). Background exclusion is analogous to

background subtraction, but it is integrated directly into the tracker. The factors λf and λb

determine the relative influence given to the foreground and background models, respectively

(and they sum to 1).

The changes introduced in equation 5.8 lead to a new definition of the weights wi used in

the mean-shift procedure:

wi = λfw
f
i − λbw

b
i (5.9)
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Figure 5.1: A candidate region (left) should be similar in appearance to the object model, but
dissimilar to the corresponding region in the background model (right)

The foreground weight wf
i is calculated as in equation 4.3, but the background weight wb

i

takes on a more complex form [185]:

wb
i =

m
∑

u=1

(

√

d̂u(y0)

p̂u(y0)
δ [bf (xi)− u] +

√

p̂u(y0)

d̂u(y0)
δ [bb (xi)− u]

)

There are now separate binning functions bf and bb for the foreground and background images.

We must modify the mean-shift formula, as shown by Collins [28], so that it can accommodate

negative weights:

y1 = y0 +

∑nh

i=1 (xi − y0)wi
∑nh

i=1 |wi|
(5.10)

In the case of the CAVIAR dataset (section 3.1.1) it was trivial to obtain a background

model: the video sequences contain numerous frames showing an empty scene. However, for

the PETS sequences (section 3.1.2) it was necessary to generate a background model from

the videos themselves. We took the median brightness (over time) of each (x, y) pixel as the

value to be used in the background model. Although the resultant image contained many

imperfections, the scene it showed was sufficiently empty to allow it to be used with the

background exclusion tracker (see figure 5.2).
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Figure 5.2: Background scenes used for the CAVIAR (left) and PETS (right) sequences

5.5 Combining background exclusion and multiple-part mod-

els

We propose an enhancement of the basic mean-shift tracker that is analogous to the work of

Pérez et al. in the area of particle filters [122]. The goal is to create a mean-shift tracker

with both of the following properties:� a multiple-part appearance model: the model to be tracked should be represented by a

number of histograms, so that some element of the spatial distribution of the object’s

colour is retained� background exclusion: the candidate image region should look similar to the model but

different to the corresponding region in the empty background scene

We achieve the above aims by combining the background exclusion tracker of Zhao [185] with

the multiple-part models of Maggio [94] and Dong [173].

In Pérez’s work the likelihood of a candidate region p̂(y) at location y given the target q̂

is found using the expression

exp−λD2[q̂, p̂(y)] (5.11)

The Bhattacharyya distance D and the Bhattacharyya coefficient ρ (equation 5.1) are related

by the identity

D2[q̂, p̂(y)] = 1− ρ[q̂, p̂(y)]
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For a multiple-part model with N subregions, expression 5.11 becomes

exp−λ
N
∑

P=1

D2[q̂P , p̂P (y)]

and when a background model d̂(y) is available Pérez uses

exp−λ
(

D2[q̂, p̂(y)]−D2[d̂(y), p̂(y)]
)

(5.12)

Expression 5.12 has a very similar form to equation 5.8, used by Zhao et al. to exploit

“background exclusion” in mean-shift tracking (section 5.4). We modify Zhao’s formula to

allow the target, candidate and background models to have N subregions:

L̂′(y) , λf

N
∑

P=1

ρ
[

q̂P , p̂P (y)
]

− λb

N
∑

P=1

ρ
[

d̂P (y), p̂P (y)
]

(5.13)

The weight wi corresponding to the above definition is still given by equation 5.9:

wi = λfw
f
i − λbw

b
i (5.14)

However, the foreground weight wf
i is now calculated over N subregions, since it is associated

with a multiple-part model (section 5.3):

wf
i =

N
∑

P=1

m
∑

u=1

SPCP
h

√

√

√

√

q̂Pu

p̂Pu (y0)
δ [b (xi)− u] IR (xi, P )

Similarly, the new expression for the background weight wb
i is given by

wb
i =

N
∑

P=1

m
∑

u=1

SPCP
h IR (xi, P )

(

√

d̂u(y0)

p̂u(y0)
δ [bf (xi)− u] +

√

p̂u(y0)

d̂u(y0)
δ [bb (xi)− u]

)

The above expressions for wf
i and wb

i allow us to implement a mean-shift-based tracker

that incorporates both the background exclusion constraint and multiple-part models. Again,

we use equation 5.10 to move the tracker to its new location in the current frame.
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5.6 Experiments

We conducted a number of experiments to assess the performance of trackers that utilise both

multiple-part models and the background exclusion constraint. As in the previous chapter, we

are concerned with the robustness of each tracker (whether it successfully follows its target),

and also with its accuracy (how close it stays to the centre of the object). We attempt to track

the designated target through each of the 21 scenarios in our dataset (section 3.2). Various

accuracy metrics – dice coefficient, overlap and normalised centroid distance (section 3.3) – are

recorded at each frame, and aggregate statistics derived from these measures are calculated

at the end of each video sequence.

5.6.1 Tracker structure and parameters

Our derivation of mean-shift tracking with multiple-part models (section 5.3) allows us to cre-

ate trackers having arbitrary spatial structure. We have implemented eight versions (depicted

in figure 5.3), among which are a single-region tracker, one with four equal-sized quadrants

and one with a 5×5 grid of cells. The single-region tracker is identical to the basic mean-shift

method.

Each of the eight trackers – one basic and seven multiple-part – can either be run as they

are or they can employ our innovation of incorporating background exclusion (section 5.5).

In doing so, we double the number of trackers to be tested in the experiments.

We have retained the same tracker parameters as were used in the previous chapter: the

trackers all operate in the RGB colour space, the histogram size is 4×4×4 bins, the threshold

on the convergence condition (ε) is set to 1 pixel, and a maximum of 20 iterations and 5 “half-

steps” (see section 4.3.2) are permitted. The weights λf and λb, which determine the relative

influence of the foreground and background models in those trackers that use background

exclusion, are both set to 0.5.

5.7 Results

We now present the results of our experiments, looking first at the robustness of each tracker

across all of the video sequences. An assessment of the accuracy of the different approaches

is then provided.

5.7.1 Robustness

Table 5.1 summarises the performance of various trackers in attempting to follow their desig-

nated target in each of the 21 scenarios in our test set. In the top row we see the performance
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a b c d

e f g h

Figure 5.3: Spatial division of the various trackers: (a) basic mean-shift (b) left-and-right (c) top-
and-bottom (d) ellipses (e) quadrants (f) 9-cell (g) 16-cell (h) 25-cell

of the basic mean-shift and the seven multiple-part trackers that do not make use of the back-

ground exclusion constraint. The number of lost tracks ranges from 9 for basic mean-shift to

16 for the 25-cell tracker.

The bottom row of the table gives the lost-track count when the background exclusion

constraint is incorporated. Across the first five trackers the performance changes very little,

although they are perhaps slightly more robust than their non-background exclusion equiv-

alents. However, the final three background exclusion trackers (those with the 9-, 16- and

25-cell structures) demonstrate a significant improvement over their foreground-only coun-

terparts. The number of lost tracks has fallen from 10 to 3 in the case of the 9- and 16-cell

models, and from 16 to 5 for the 25-cell tracker.

A breakdown of the occurrence of lost tracks by video sequence is shown in tables 5.2

and 5.3, for trackers omitting and including the background exclusion constraint, respectively.

As in the previous chapter, we see that the tracking failures are concentrated in the PETS

dataset (scenarios 15 to 21), since its videos are more challenging than those of CAVIAR.

Naturally, the disparity in performance between the two datasets will be more pronounced

for techniques with a higher number of lost tracks.

The results presented in table 5.1 clearly show that the combination of multiple-part

models and background exclusion can yield a mean-shift tracker that is much more robust
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Without background excl. 9 10 9 13 10 10 10 16

With background excl. 9 9 8 9 9 3 3 5

Table 5.1: Number of lost tracks across 21 scenarios for each tracker, with and without background
exclusion

than either method in isolation. However, we note that not all multiple-part structures are

equally effective in achieving this goal. It appears that the performance increases as more

subregions are added to the model, but only up to a point. As we increase the region count

further (beyond 16 cells in our experiments), the robustness of the tracker is reduced. It is

therefore important to investigate different model structures in order to derive the greatest

benefit from the technique.

Figure 5.4 shows example images of the foreground and background weights used by the

combined mean-shift method. By using both the object attraction and background exclusion

terms in a tracker, we can more easily follow the target through the scene.

Figure 5.4: Targets followed by the 16-cell background exclusion tracker and their corresponding
foreground, background and combined weight images. Left: scenario 5; right: scenario 18.
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1 x x x x x x x

2 x x x

3 x x x x x x x x

4 x x

5 x

6

7

8

9 x x x x x x x x

10 x

11 x x

12

13 x x

14 x x x

15 x x x x x x x x

16 x x x x x x x x

17 x x x x x x x x

18 x x x x x x x x

19 x x x

20 x x x x x x x

21 x x x x x x x x

Num. trackers lost 9 10 9 13 10 10 10 16

Table 5.2: The success/failure of the various non-background exclusion trackers operating on each
scenario. (Failures are indicated by an ‘x’.)
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4 x x x

5

6

7

8

9
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11 x x x

12

13 x

14

15 x x x x x x x x

16 x x x x x x x

17 x x x x x

18 x x x x x

19 x x x

20 x x x x x

21 x x x x x x x x

Num. trackers lost 9 9 8 9 9 3 3 5

Table 5.3: The success/failure of the various background exclusion trackers operating on each sce-
nario. (Failures are indicated by an ‘x’.)
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5.7.2 Accuracy: successful tracking

In the results that follow we use the dice coefficient (section 3.3.3) as the principal metric

for assessing the accuracy of the various trackers. Here, we compare the performance of the

trackers on videos where the target was successfully followed through the entire sequence.

In the next section, we review the relative accuracy of the different trackers on the whole

dataset, regardless of the number of lost tracks associated with each method.
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Figure 5.5: Box plots of the dice coefficient of the various trackers operating on scenarios 6, 7, 8
and 12. The pairs of blue boxes – separated by dotted lines – show the performance without (left) and
with (right) background exclusion.

Figure 5.5 displays box plots of the dice coefficient for four separate tracking scenarios.

(Tables 5.2 and 5.3 show that all of the trackers successfully followed their targets in these

particular sequences – 6, 7, 8 and 12 – making them suitable for use in studying accuracy

independently of robustness.) The boxes in the plots have been grouped into eight pairs, one

for each multiple-part mean-shift variant, with each pair showing the performance of, firstly,
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a tracker that does not employ the background exclusion constraint and, secondly, the same

tracker utilising the constraint.

Looking across the four scenarios, it is clear that, in general, the use of background

exclusion improves the accuracy of tracking. (A similar trend is also seen in the remainder of

the sequences.) The improvement is more pronounced in trackers that have fewer subregions

in their multiple-part models. Some of the results shown in figure 5.5, e.g., scenarios 6, 7

and 12, also suggest that multiple-part trackers may be more accurate than the basic mean-

shift method (when background exclusion is not used), especially as the number of subregions

increases. In scenario 8, however, the basic technique has accuracy comparable to that of

all the other (non-background exclusion) trackers, and so it is not conclusive that such a

difference in performance exists between the mean-shift variants. We also note that combined

multiple-part–background exclusion trackers do not appear to be any more accurate than the

single-region background exclusion method: similar accuracy will be attained for any tracker

incorporating the background constraint, regardless of how many subregions are in the model.

We cannot assert definitively, therefore, that multiple-part models improve the accuracy of

mean shift, at least for video sequences where tracking is ultimately successful.

5.7.3 Accuracy: entire dataset

The results of the previous section relate only to scenarios where all of the mean-shift variants

followed their targets for the full length of the sequence. Figure 5.6 shows however that the

same trends are seen even when lost tracks occur, albeit with lower average accuracy; these

scenarios come from the PETS dataset. Next, we consider the entire collection of 21 videos.

Table 5.4 records the median value, over all of the sequences, of the median dice coefficient for

each tracker and for each video. As stated in section 3.3.5, only the frames from before the

occurrence of a tracking failure contribute to the calculation of these aggregate metrics; we

are attempting to assess a tracker’s accuracy regardless of the ultimate outcome on a given

sequence.

Looking at table 5.4, we see very different accuracy trends emerge compared to the results

of the previous section. Firstly, trackers that incorporate the background exclusion constraint

are more accurate than their non-background exclusion counterparts. The accuracy scores

are relatively consistent for all of the background exclusion trackers, but they vary greatly

for the versions of mean shift that do not exploit the constraint. For both classes of tracker

(those with and without background exclusion), the use of multiple-part models improves

upon the accuracy of the basic, single-region approach.

By considering the entire video dataset, we see that both background exclusion and

multiple-part models, on their own, improve the accuracy of mean-shift tracking. When the
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Figure 5.6: Box plots of the dice coefficient of the various trackers operating on scenarios 16 and 17.

two elements are combined, a further increase in accuracy is achieved. It is surprising that

these trends only become apparent when we assess the performance of mean shift on all of

the video sequences, whether or not tracking was ultimately successful. It is likely that low

accuracy precedes many tracking failures; in such situations the tracker may be “struggling”

to follow its target correctly for some time, being positioned some distance from the centre

of the object. Eventually, mean shift drifts away from the object completely and a lost track

is recorded, along with a low accuracy score.
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Without background excl. 0.72 0.80 0.76 0.75 0.86 0.87 0.86 0.81

With background excl. 0.87 0.90 0.90 0.88 0.91 0.89 0.89 0.89

Table 5.4: Median-of-medians of the dice coefficient across 21 scenarios for each tracker, with and
without background exclusion
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5.8 Discussion

In this chapter we have taken two existing enhancements to mean-shift tracking – multiple-

part models and background exclusion – and combined them in a single tracker. We assessed

the performance of each technique by attempting to track objects through a number of video

sequences. Neither multiple-part models nor background exclusion, on their own, provided

any definitive benefit to the robustness of tracking, although each of them did improve the

accuracy of mean shift. However, the combination of the two techniques, together with the

appropriate spatial structure for the object model, yielded a tracker that is significantly more

robust than any of the others.

The reasons for the combined tracker’s improved performance are not immediately ob-

vious. However, by looking at plots of the similarity surfaces in the neighbourhood of the

basic and multiple-part trackers, we discover the relative influences of the object attraction

and background exclusion terms (equation 5.13) on the robustness of each method. We have

used two variants of mean shift that employ the background exclusion constraint to track the

target in scenario 7 (figure 5.7). For the single-region tracker (figure 5.8), only the similarity

surface associated with the background exclusion term is noticeably peaked; the tracker’s lack

of discriminative power is seen in the plateau of its object attraction surface. In contrast,

the 16-cell tracker (figure 5.9) displays similarity surfaces which are both peaked, especially

in the case of the object attraction term. It is therefore less likely that a tracker combining

multiple-part models and the background exclusion constraint will drift away from the loca-

tion of the target, whereas a tracker using only one or other of these elements may be drawn

towards an incorrect position in the image.

Figure 5.7: Person to be tracked in scenario 7

Figures 5.8 and 5.9 also raise the possibility of using different parameter settings for the

two components of the combined mean-shift method – object attraction and background
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X

Y

X

Y

Figure 5.8: Similarity surfaces for the single-region background exclusion tracker operating on sce-
nario 7: object attraction component (left) and background exclusion component (right)

X

Y

X

Y

Figure 5.9: Similarity surfaces for the combined 16-cell tracker operating on scenario 7: object
attraction component (left) and background exclusion component (right)

exclusion. For example, we could employ a 16-cell tracker for the object attraction element,

while background exclusion could be achieved with the single-region version of mean shift.

Likewise, the values for λf and λb in equation 5.14, which determine the relative influence

given to the foreground and background models, could be adjusted to favour one component

of the tracker over the other. However, it is difficult to know in advance the ideal choices

for the above parameters that will yield the best tracking result for a given video sequence.

Further experiments would be required to determine values that work well in most cases.

Alternatively, by sampling the similarity surfaces very sparsely during tracking, we could

quickly assess their “peakedness”, and adjust the settings whenever a surface appears to

contain a plateau, and hence an indication that tracking is becoming difficult.
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The multiple-part models that we have used (figure 5.3) have very generic structures:

they do not correspond well with the limb articulations of people being tracked, for example.

Parameswaran [118] developed a multiple-part mean-shift tracker that attempts to account

for the typical shape and movements of pedestrians. The subregion corresponding to the

lower legs – the bottom quarter of the tracker – is given less weight than the others because

its appearance varies the most over time. A further possibility is to use a cardboard model

[64] of the person being tracked, where the locations of their head, limbs, hands and feet

are recorded explicitly. One subregion of the mean-shift tracker could be used to follow each

such body part. However, the approach would need to allow for one limb being occluded by

another.

Finally, we note that our combined multiple-part–background exclusion tracker can be

used only when a background model of the scene is available. This makes it less flexible than

normalised cross-correlation, which does not require any such model but which still displays

impressive robustness and accuracy. In the next chapter we will investigate the effect of

various parameters on the behaviour of mean shift. Our goal is to increase its performance,

even in the absence of a background model, so that we can have a fast gradient ascent method

that competes on robustness with normalised cross-correlation.
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Effect of tracker parameters

The previous chapter demonstrated the possibility of improving the performance of mean-

shift tracking by incorporating spatial structure in the target and candidate histograms, and

by exploiting background models of the scene. We now investigate whether the robustness

and accuracy can be further improved by adjusting the various parameters associated with

the technique. The colour space in which the tracker operates is first considered. Next we

look at the effect of the number of histogram bins, and the size of the bounds, ε, that is used

to decide when mean shift has converged to a local maximum. Finally, the type of spatial

kernel employed to construct the target and candidate models is varied in order to study the

influence it has on tracking.

6.1 Colour space

There are few comprehensive studies of the effect of the colour space on the performance

of mean-shift tracking. Maggio et al. [94] evaluate eight different colour spaces on a test

set containing nine video sequences. They conclude that RGB outperforms all of the other

spaces tested: it was the only one that allowed all nine targets to be tracked successfully, and

it also recorded the best average accuracy score.

Aside from Maggio’s work, the colour space for most research into mean-shift tracking

is chosen somewhat arbitrarily. In this section, we assess the performance of mean shift in

several different spaces as it attempts to track the targets in each of the 21 video sequences

in our test set. The aim is to determine whether certain colour spaces are particularly

suited to mean-shift tracking, and, conversely, whether others should be avoided due to poor

performance. We evaluate not only the basic mean-shift tracker but also the multiple-part

trackers (both with and without background exclusion) developed in the previous chapter.
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P
P
P
P

P
P
P
P
P
P
P
P
P
PP

Num.
channels

Base colour
space

RGB YUV HSV
Normalised

rgb

3 RGB YUV HSV

2 RG, RB, GB YU, YV, UV HV, HS, SV rg, rb, gb

1 R, G, B Y H, S

Table 6.1: Colour spaces used in the experiments in this section

A version of normalised cross-correlation, adapted to work with multiple-channel images, is

also tested to provide a baseline against which mean shift can be compared.

6.1.1 Experiments

Table 6.1 shows the colour spaces used in our experiments. They are all derived from one of

four “base” colour spaces: RGB, YUV, HSV or normalised rgb. We create variants of these

by removing either one or two of the colour channels. Consequently, all of the colour spaces

that we consider are either one-, two- or three-dimensional. (Note that we have not generated

all possible single-channel spaces for our experiments: U and V are not used, for example.)

Normalised rgb, from which the popular rg-chromaticity space [154] is obtained, attempts

to eliminate the effect of brightness from the RGB colour space. The data for the three

channels – r, g and b – is calculated according to the following formulas:

r =
R

R+G+B
; g =

G

R+G+B
; b =

B

R+G+B

For all of the mean-shift-based trackers used in this experiment, ε (the convergence con-

dition) was set to 1.0, the histograms contained 16 bins per colour channel, and the Epanech-

nikov kernel was employed. We have run four mean-shift trackers that do not include the

background exclusion constraint: the basic (single-part) method, and the 4-quadrant, 9-cell

and 16-cell multiple-part trackers (section 5.3). A further four trackers – having the same

multiple-part arrangements – that do exploit background exclusion (section 5.4) are also

tested. Using a large selection of trackers makes it easier to discover trends that may be

present in the data.

As in chapter 4, we use an alternative method as a baseline against which to compare the

performance of mean shift. Previously, normalised cross-correlation (NCC, section 4.1.4) was

employed for this purpose. However, we must modify the technique to accommodate two-

and three-channel image data. Whereas the standard NCC γ (u, v) of an image patch f and

a template t at location (u, v) is given by:
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γ (u, v) =

∑

x,y

[

f (x, y)− f̄u,v
]

[t (x− u, y − v)− t̄]
{

∑

x,y

[

f (x, y)− f̄u,v
]2∑

x,y [t (x− u, y − v)− t̄]2
}0.5

,

the new measure is found according to:

η (u, v) =
1

n

∑

c

∑

x,y

[

f (x, y, c)− f̄u,v,c
]

[t (x− u, y − v, c) − t̄c] ,

where c is the colour channel to be processed and n is the number of pixels in the image

patch. It is the akin to the summation of the normalised cross-correlations of the individual

channels, although the division by the standard deviation has been omitted. (We found that

this step had little effect on performance, and so we removed it for efficiency reasons.)

Other approaches to multiple-channel NCC can also be developed. For example, we could

treat each pixel as a (one-, two- or three-dimensional) vector and replace the multiplication

in the above formula by the dot product. Alternatively, we could apply principal components

analysis [74] to the image data before using the formula. In both cases, we would be taking

better advantage of information that is correlated across the colour channels.

As before, a brute-force search strategy is used with the correlation-based tracker.

6.1.2 Results

We have tested each of the 21 colour spaces shown in table 6.1 by recording the number of

lost tracks that occurred when using the various trackers on our dataset of 21 CAVIAR and

PETS video sequences (section 3.1). As before, we regard this as a measure of the trackers’

robustness. We have also used the dice coefficient (section 3.3.3) as the basis for assessing

the accuracy of the trackers across the colour spaces: the median dice coefficient for a single

video sequence and colour space is calculated, and the mean of this value across all sequences

(MMDC) serves as our summary statistic. In order to present the results in an accessible

form, we include only certain trackers and colour spaces in the barcharts of figure 6.1. The

results for a single- and a multiple-part mean-shift tracker (with 16 cells) – both with and

without background exclusion – are shown, along with those for the modified cross-correlation

technique. We have selected the best-performing colour space from each of five categories

(explained below) for inclusion in the barcharts. Detailed results for all of the trackers and

colour spaces can be found in appendix A, tables A.1 and A.2.

Looking at the counts of lost tracks in the first diagram of figure 6.1, it is apparent that

none of the selected colour spaces greatly outperforms all of the others across the various

tracker types. Instead, we seek trends in the data from which we attempt to extract more
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Figure 6.1: Number of lost tracks (top) and mean of the median dice coefficient (bottom) on 21 video
sequences for various colour spaces and trackers
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general principles concerning the use of colour spaces. For example, the results show that,

for most of the spaces, single-part mean-shift trackers do not become more robust (having

fewer lost tracks) if we incorporate the background exclusion constraint. However, back-

ground exclusion does improve the accuracy (increases the MMDC) of single-part trackers.

In contrast, for multiple-part methods both the robustness and accuracy are improved by the

use of background exclusion.

Comparing single- and multiple-part trackers, we see that the latter are somewhat more

accurate, regardless of whether background exclusion is employed or not. However, this gain

in accuracy does not always translate into improved robustness: both background exclusion

and multiple-part models are needed for an improvement in the lost-track count to be seen.

Indeed, the 16-cell tracker performs very badly without the background exclusion constraint.

This finding is consistent with the results of the previous chapter, and here we see that it

holds across the various colour spaces.

We have placed each of the 21 colour spaces tested into one of five categories, based

on the number of channels in the space and its performance when used with the modified

cross-correlation tracker. (The groupings are clearly seen in the first column of table A.1,

appendix A.) The colour space judged the best-performing in each category – across all

trackers – was used as the representative for that category; these are the spaces for which

results are displayed in figure 6.1.

It is interesting to note that the first group of two-channel colour spaces in table A.1 –

SV, HV, RG, RB, GB, YV and YU – all encode image brightness, in the sense that at least

some of the luma information (the Y in YUV) is retained. In contrast, virtually all of the

brightness information has been removed from the remaining two-channel colour spaces: HS,

UV, rg, rb and gb – only chrominance data is present. A similar distinction can be drawn

for single-channel spaces. There is a marked difference in performance, as measured by the

lost-track count of the modified cross-correlation tracker, depending on which of these colour

space groups we use. On the basis of this observation, we suggest that it is important to

incorporate brightness information, in some form, into correlation-based tracking. Indeed,

the data also indicates that multiple-part mean-shift trackers should either use such colour

spaces or exploit the background exclusion constraint. It is noteworthy that most image and

video encoding schemes (e.g., JPEG and MPEG) store colour information at a much-reduced

resolution, whereas the brightness data is stored at full resolution.

Returning to the results shown in figure 6.1, we can see that the multiple-part mean-shift

tracker without background exclusion performs poorly in all colour spaces. The weakness is

particularly pronounced in the HS, Y and H spaces, where the lost-track count is significantly

higher than for any other mean-shift tracker. Of the five colour spaces shown, the single-
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channel hue space (H) causes the greatest difficulty for mean shift; only the multiple-part

tracker with background exclusion performs well in this situation.1 If we disregard the results

associated with the hue space, however, there is no obvious systematic variation in the results

across the different colour spaces, either in terms of robustness or accuracy. Mean-shift

trackers using RGB or RG seem to operate the most consistently, regardless of the use of

multiple-part models or background exclusion. We can also see that trackers which combine

these two elements – multiple-part models and background exclusion – perform well in all of

the colour spaces tested.

As discussed previously, the performance of our modified cross-correlation tracker depends

strongly on whether or not the colour space used encodes brightness information. In figure 6.1

we can see that the tracker performs very poorly in the HS and H spaces. (Table A.1 reveals

similar poor performance whenever brightness data is not available.) However, aside from

these colour spaces the correlation-based tracker is far more robust than any of the mean-shift

methods, in agreement with the results of normalised cross-correlation in chapter 4.

6.2 Histogram size

The second mean-shift parameter that we consider in our experiments is the number of bins to

be used in the construction of the target and candidate histograms. Fewer bins will reduce the

computation needed to perform tracking, but it will make the target model less discriminative.

Conversely, a larger number of bins will result, on average, in fewer data points falling in a

given bin’s range, and will make calculations using such data more susceptible to noise. In

addition, a greater number of bins will be empty; the mean-shift procedure requires that

the results of calculations involving empty candidate bins be discarded (to avoid division by

zero). We study the effect of the number of bins on tracking performance to determine which

of these considerations is the most important.

In our experiments, we have again used the Epanechnikov kernel and set ε to 1.0. Three

of the colour spaces from the previous experiment were used for the tests: RGB, RG and

HSV. The number of bins per dimension was initially set to 2, and was successively doubled

until it reached 32.

The histogram bins in our experiments are all of uniform width: each one spans the same

number of greylevels/colour levels for a given histogram size. Further experiments could be

performed in which each bin’s size is different, having been determined by certain criteria.

For example, we might wish to ensure that approximately equal numbers of pixels fall into

1The circular nature of the hue space does not affect mean shift since it never uses data from different
histogram bins in its calculations. Circular colour spaces may reduce the performance of correlation-based
tracking, however.
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each of the bins. Other approaches to adaptive histograms have been pursued by Town [159]

and Li [85].

The single- and multiple-part (16-cell) trackers – both with and without background

exclusion – were used for the experiments. We employed the same metrics as before – the

count of lost tracks and the mean of the median dice coefficient (MMDC).

6.2.1 Results

The results of the experiment on the histogram size for the RGB colour space are presented

in figure 6.2. (Further results for the RG and HSV colour spaces can be found in appendix A,

figures A.1 and A.2.) It is apparent that the number of lost tracks does not display any

systematic trend as the number of histogram bins is increased, regardless of the type of

tracker or colour space used. Nevertheless, certain parameter settings are associated with

lost-track counts that are either significantly higher or significantly lower than what is typical

for the given tracker. For instance, the first diagram of figure 6.2 reveals that the single- and

multiple-part trackers that do not incorporate background exclusion perform very badly when

we use only two bins per dimension. (The same result holds for the RG and HSV spaces;

see figures A.1 and A.2). Conversely, a low bin count – two or four bins per dimension – is

associated with very robust tracking (few lost tracks) when we use the tracker that combines

background exclusion and multiple-part models.

As with the results of section 6.1.2, we can see that the type of tracker has a significant

influence of the counts of lost tracks. In all of the colour spaces tested, the multiple-part

tracker that does not exploit the background exclusion constraint is generally the worst-

performing – a result that also held in the previous experiment on colour spaces. The poor

performance exists regardless of the number of histogram bins used. In contrast, the tracker

combining background exclusion and multiple-part models does as well as, or better than, all

of the others, depending on the colour space in which it operates.

Aside from robustness (the count of lost tracks), we also assessed the effect of the number

of histogram bins on the accuracy of mean shift (the mean of its median dice coefficient over

several sequences). The results for the RGB colour space are shown in the second diagram

of figure 6.2. We can firstly see that trackers which incorporate the background exclusion

constraint are significantly more accurate than those that do not, whether single- or multiple-

part. Furthermore, higher accuracy is attained by using multiple-part trackers, regardless of

the presence or absence of background exclusion. These results hold for each of the colour

spaces tested (see figures A.1 and A.2 for RG and HSV), and for almost every choice of

histogram size. In the case of the RGB tests (figure 6.2), increasing the number of bins

97



Chapter 6. Effect of tracker parameters

MS single−part (no BG excl.)
MS 16−cell (no BG excl.)

MS single−part (BG excl.)
MS 16−cell (BG excl.) 2

4

8

16

32

0

5

10

15

20

Number of histogram bins
per dimension

Trackers

MS single−part (no BG excl.)
MS 16−cell (no BG excl.)

MS single−part (BG excl.)
MS 16−cell (BG excl.)

2
4

8
16

32
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of histogram bins
per dimensionTrackers

Figure 6.2: Number of lost tracks (top) and mean of the median dice coefficient (bottom) on 21 video
sequences for various histogram sizes and trackers operating in RGB
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generally leads to an increase in accuracy for all of the trackers. However, this trend is not

seen in the other colour spaces tested.

Taken together, the results of this section further support the claim that trackers which

combine the background exclusion constraint and multiple-part models are the most robust

and accurate of all of the mean-shift methods tested. In addition, provided we use one of

the colour spaces tested, a small histogram (having, e.g., two or four bins per dimension) is

likely to yield performance that is close to the best attainable for this type of tracker.

6.3 Convergence condition

We now investigate the effect on tracking of changing the size of the parameter associated with

the convergence condition of mean shift. The mean-shift algorithm is an iterative procedure;

it terminates when the distance between the image locations returned by successive iterations

is less than a specified threshold. It is this threshold, ε, whose size we will vary in the present

experiment.

In mean-shift tracking it is common to set ε to a value of 1 pixel. However, using such

a large threshold might result in the mean-shift iterations terminating (converging) before

the tracker has reached a location that is sufficiently close to the local maximum of the

Bhattacharyya surface. It is conceivable that the tracker would always tend to “lag” be-

hind the correct location at convergence, reducing its accuracy. In the worst case, if such

inaccuracy were compounded over several frames, mean shift might lose track of its target

completely. The present experiment seeks to determine the extent to which such problems

occur in practice.

Once again, we used the Epanechnikov kernel, and tested three of the colour spaces from

section 6.1: RGB, RG and HSV. The number of bins per dimension was set to 16, and the

single- and multiple-part mean-shift trackers of the previous section – both with and without

background exclusion – were tested. Performance was assessed by using the same metrics as

before – the count of lost tracks and the mean of the median dice coefficient (MMDC).

6.3.1 Results

The results of the experiment on the convergence condition for the RGB colour space are

presented in figure 6.3. (Further results for the RG and HSV spaces can be found in ap-

pendix A, figures A.3 and A.4.) For most of the trackers, and for all of the three colour

spaces tested, we find that a higher value of ε is usually associated with more robust tracking

(fewer instances of lost tracks), although the trend is not very strong. The one exception is

the multiple-part tracker without the background exclusion constraint: it does not display,
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Figure 6.3: Number of lost tracks (top) and mean of the median dice coefficient (bottom) on 21 video
sequences for various values of ε and trackers operating in RGB
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for any of the colour spaces tested, a consistent trend in the number of lost tracks as the

value of ε is increased.

Again we see that the type of mean-shift tracker used has a significant influence on the

quality of the results. The multiple-part tracker that exploits background exclusion always

performs as well as, and usually better than, any of the other mean-shift methods tested,

regardless of colour space or the value of ε. The worst-performing technique (in terms of lost

tracks) is either the multiple-part method without the background exclusion constraint or

the single-part tracker that relies on the constraint, depending on the colour space used for

the experiment (see figures A.3 and A.4 for the RG and HSV results).

As before, we have assessed the accuracy of each tracker while changing the value of ε:

the lower diagram of figure 6.3 displays the MMDC (accuracy) scores. The same trends as

for the histogram size experiment (section 6.2.1) are seen: trackers which use background

exclusion are more accurate than those that do not, whether single- or multiple-part; and

higher accuracy can be achieved by using multiple-part trackers, whether or not we also em-

ploy background exclusion. Although these trends exist across the different types of trackers

(and also across the colour spaces), the value of ε has no discernible impact on the accuracy

of an individual tracker.

The present experiment has again shown that the tracker combining background exclusion

and multiple-part models almost always outperforms all of the other mean-shift methods

tested, both in terms of robustness and of accuracy. We should choose a large value of ε to

maximise the performance of this tracker, a parameter setting which conveniently reduces

the number of iterations needed for mean shift to reach convergence.

6.4 Kernel type

The final experiment in this chapter seeks to determine the effect of the type of spatial kernel

used in mean-shift tracking. The standard version of the tracker uses the Epanechnikov kernel

(see figure 6.4) because it simplifies the mean-shift formula:

y1 =

∑nh

i=1 xiwig

(

∥

∥

∥

ŷ0−xi

h

∥

∥

∥

2
)

∑nh

i=1 wig

(

∥

∥

∥

ŷ0−xi

h

∥

∥

∥

2
) (6.1)

Since the profile of the Epanechnikov kernel has a derivative g that is constant, it disappears

from equation 6.1. However, there may be advantages to using alternative functions. Firstly,

the choice of kernel will determine the relative influence of pixels closer to the centre of

the target versus those nearer the boundary. Secondly, as explained by Hager et al. [62],
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a given kernel may be unable to detect certain types of translational or rotational motion

that an object is undergoing. This idea of “kernel observability” [48] plays a crucial role in

determining which parts of an image can be successfully tracked over time.

For the present experiment, we have used the Epanechnikov kernel and four others that

are closely related to it. All five of the kernels have profiles that are defined by the equation2:

k (x) =







l (1− xn) if x ≤ 1

0 otherwise
, n = {0.33, 0.5, 1.0, 2.0, 3.0} (6.2)

The values of n in equation 6.2 lead us to refer to the kernels as cube root (n = 0.33), square

root (n = 0.5), Epanechnikov (n = 1), quadratic (n = 2) and cubic (n = 3). The kernels

and their profiles are shown in figure 6.4. (A kernel K is related to its profile k by the

formula K (x) = k
(

‖x‖2
)

) As before, we tested the RGB, RG and HSV colour spaces, used

16 bins per colour channel and set ε to 1.0. The same trackers and metrics as in the previous

experiment were also employed.

6.4.1 Results

The results of the experiment on the kernel type for the RGB and RG colour spaces are

presented in figures 6.5 and 6.6. (Further results for the HSV space can be found in ap-

pendix A, figure A.5.) The effect of the kernel type on the robustness of tracking depends

strongly on the colour space and the particular tracker used. In the case of the RGB and

RG colour spaces, the single-part tracker without the background exclusion constraint and

the multiple-part tracker employing the constraint both perform better with kernels having

smaller values of n (equation 6.2), e.g., the cube root and square root kernels. However, for

the multiple-part tracker without background exclusion, the best performance in these colour

spaces is achieved with a cubic kernel. The remaining tracker – single-part incorporating

background exclusion – does not display a consistent trend in the number of lost tracks as

the value of n (the kernel type) is varied. (For the HSV colour space, only one tracker –

multiple-part without background exclusion – exhibits an obvious trend: in contrast to its

behaviour in the other spaces, it performs best with a cube root kernel; see figure A.5.)

As with the results of the previous experiments, we find that the tracker combining

multiple-part models and background exclusion almost always records the lowest number of

lost tracks, regardless of the colour space or the kernel type used. If we omit background

exclusion, however, we find that there are few choices of colour space and kernel type that

2As with mean-shift segmentation [30], we set the value of the normalising constant to l = 15/(8π) ≈

0.59683
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Figure 6.4: Kernel profiles (left column) and their corresponding two-dimensional spatial structure
for a circular image region (right column). Top to bottom: cube root, square root, Epanechnikov,
quadratic, cubic
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can prevent the multiple-part tracker from recording the worst robustness scores of any of

the mean-shift methods tested.

The lower diagrams of figures 6.5 and 6.6 display the MMDC (accuracy) scores of the four

mean-shift trackers as the type of kernel is varied. We see the same inter-tracker trends as

before: employing background exclusion improves accuracy, whether with single- or multiple-

part models. Likewise, multiple-part trackers are always as accurate as, and often more

accurate than, the single-part versions, regardless of the presence or absence of background

exclusion. However, the type of kernel used has no discernible systematic impact on the

accuracy scores of an individual tracker.

The experiments in this section again reveal that the tracker combining background ex-

clusion and multiple-part models is amongst the best-performing, both in terms of robustness

and of accuracy, of all of the mean-shift methods tested. By using the cube root kernel with

this tracker, we may be able to improve its robustness further, depending on the colour space

chosen.

6.5 Discussion

In this chapter we have investigated the effects of varying a number of parameters that are

associated with the mean-shift tracking technique: the colour space, the size of the target

and candidate histograms, the threshold used to decide when convergence has occurred and

the type of spatial kernel employed by the tracker. Based on our experiments, we find that

it is necessary to set the parameters very carefully in order to achieve optimal performance

with mean shift. There are some discernible trends in the trackers’ performance metrics, and

these can be used to determine parameter settings that increase the chances of successfully

tracking a target.

Looking at the results of the experiments in this chapter as a whole, it is clear that

the single biggest influence on the performance of mean-shift tracking is the type of tracker

used. The number of lost tracks decreases noticeably when we employ the background exclu-

sion constraint in combination with multiple-part models, regardless of the settings of other

parameters – reinforcing the results obtained in the previous chapter. In contrast, multiple-

part trackers without background exclusion are usually the least robust of all the mean-shift

methods and should be avoided. With regard to the accuracy of the trackers, the following

trends are apparent: multiple-part models lead to higher accuracy than single-part ones, and

trackers that incorporate background exclusion are more accurate than those that do not.

The question of which colour space the tracker should use has yielded some interesting

data. Trackers based on cross-correlation perform very poorly in colour spaces that do not
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Figure 6.5: Number of lost tracks (top) and mean of the median dice coefficient (bottom) on 21 video
sequences for various kernel types and trackers operating in RGB
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Figure 6.6: Number of lost tracks (top) and mean of the median dice coefficient (bottom) on 21 video
sequences for various kernel types and trackers operating in RG
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encode image brightness in some form. For mean-shift methods, we should also avoid spaces

that lack a brightness component. Beyond these, however, no great differences are seen with

the other colour spaces, provided we disregard the poorly performing multiple-part tracker

without background exclusion.

With regard to the size of target and candidate histograms, the results suggest that

very small numbers of bins (e.g., two per dimension) should be avoided if we do not exploit

background exclusion. However, if we make use of the background exclusion constraint, a

low bin count can actually improve the robustness of tracking. In the case of the convergence

parameter, higher values of ε are associated with greater robustness in the tracker combining

multiple-part models and the background exclusion constraint (the best-performing tracker

overall). The final experiment reveals that the effect of the type of spatial kernel used

depends largely on the tracker and the colour space tested. For example, we can enhance

the robustness of the best-performing tracker further by using the cube root kernel. We

caution that the trends found in our results may be particular to the video sequences that

we have used in our test set. However, this risk is mitigated somewhat by the large number

of sequences used, and by the fact that they come from two separate datasets.

When the robustness of a particular mean-shift tracker is insensitive to the setting of

some parameter, we can choose values that reduce the computational complexity of tracking.

The use of four bins per colour channel in the target and candidate histograms, for example,

requires less processing than the default model size of 16 × 16 × 16 bins (in the case of a

three-channel colour space). Similarly, we can set ε to a value of 1 pixel in order to reduce

the number of iterations executed by mean shift before convergence without significantly

affecting the performance of most trackers.

The experiments in this chapter suggest that the best mean-shift-based tracker combines

multiple-part models with the background exclusion constraint, uses a two- or three-channel

colour space encoding brightness information, and employs very small histograms for the

target and candidate models. Very tight bounds on the convergence condition should be

avoided, while a cube root kernel should be used with this tracker. However, even with these

optimal parameter settings, the performance of mean shift is still some way behind cross-

correlation-based tracking; the differences are even greater when the background exclusion

constraint is not employed – as would be required for a fair comparison. We must therefore

develop additional strategies to improve the robustness of object tracking in the surveillance

domain. In the next chapter, we devise techniques for determining when tracking has failed,

thereby allowing us to recover from a lost track situation and to follow the target successfully.

107





Chapter 7

Gradient-based NCC and

track validation

The experiments of the previous chapter reveal that normalised cross-correlation (NCC) is

significantly more robust than the mean-shift tracker, regardless of the parameter settings

used for the latter method. However, NCC, when used with a brute-force search strategy,

is computationally expensive. In this chapter we develop a gradient ascent version of NCC

(section 7.1); it retains the robustness of its brute-force counterpart, but it executes much

more quickly – previously the most notable advantage of mean shift. We also show that the

similarity measure at the heart of the tracker – normalised cross-correlation itself – accounts

for much of its robustness. Further experiments reveal that a popular, alternative measure

used in both template matching and optical flow – sum of squared differences (SSD) – does

not produce a robust tracker, regardless of whether a brute-force or a gradient-ascent search

is used.

The new tracker also forms the basis of our track validation algorithm (section 7.2). By

tracking a target forwards in time through the sequence, reinitialising the tracker with a

new model taken from the end of the video, and following the target backwards in time,

we can judge whether or not the tracking was successful: a large divergence between the

forwards and backwards trajectories (failed validation) indicates that the object was lost by

the tracker at some point. In such a situation the algorithm iteratively attempts to validate

shorter subsequences of the video. A successful validation allows the method to switch to a

new model of the target, which it uses in an effort to validate the object’s trajectory in the

remainder of the sequence. We apply the algorithm to all of the videos in our test set; the

results show that it enables a target to be tracked even as it undergoes severe appearance
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changes, and it also draws attention to parts of the video and objects that are proving difficult

to track.

7.1 Gradient-based normalised cross-correlation

The robustness of normalised cross-correlation (NCC) seen in previous chapters comes at the

expense of relatively high computational complexity, especially when compared to mean-shift

tracking. We therefore seek to develop a hybrid technique that combines the efficient gradi-

ent ascent search strategy of mean shift with the robustness and accuracy of NCC. In the

following section, we present the derivation of such a tracker and describe the iterative track-

ing algorithm that it employs to converge to its target in each frame of the video sequence.

Next, we show how the tracker relates to popular types of brute-force template matching,

and also to the Lucas–Kanade optical flow method. We run versions of these trackers on

our collection of video sequences, measuring their robustness and accuracy. Our method is

seen to be significantly more robust than techniques based on the sum-of-squared-differences

(SSD) similarity measure. It is also as robust as brute-force normalised cross-correlation, but

it has much greater computational efficiency.

7.1.1 Derivation

We begin our derivation by defining certain entities, following the image sequence notation

of Hager and Belhumeur [61]. Let I (x, t) be the image at time t, where x , (x, y) is a point

in the image. Let Q , I (x, 0) be the target (image template) we wish to track, and let

I , I (x+ u, t) be a candidate image region in the current frame. We can now rewrite the

modified NCC similarity measure used in the previous chapter. The similarity O (u) of a

template Q and an image patch I displaced from the template by u is:

O (u) ,
1

n

∑

x∈R

(

I − Ī
) (

Q− Q̄
)

where n is the number of pixels in the image patch and R is the set of pixel locations in the

template. The above formula applies to single-channel images; for multiple-channel data we

simply sum the contributions from the individual channels. As before, we do not divide by

the standard deviations of the template and image patches. It can be shown that either Ī or

Q̄ – the means of the image patch and the template, respectively – can be removed from the

formula without changing the result (see appendix B). We therefore adopt a simpler version

of the similarity measure:
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7.1. Gradient-based normalised cross-correlation

O (u) =
1

n

∑

x∈R

I
(

Q− Q̄
)

(7.1)

We can approximate I by the low-order terms of its Taylor series around (x, t):

I = I (x+ u, t) ≈ I (x, t) + u1Ix (x, t) + u2Iy (x, t) + (t− t)× It (x, t) (7.2)

where u , (u1, u2). The last term in the above equation contains the factor (t− t). We have

included this term, which evaluates to zero, to emphasise that the Taylor series expansion

is indeed performed around the point (x, t), even though the final approximation does not

make use of any past or future frames. The expressions

Ix (x, t) ,
∂I (x, t)

∂x
; Iy (x, t) ,

∂I (x, t)

∂y
; It (x, t) ,

∂I (x, t)

∂t

are the spatial and (unneeded) temporal image derivatives, respectively. We use image dif-

ferences to approximate the required derivatives:

Ix (x, t) , I (x, t)− I
(

(x+ 1, y) , t
)

Iy (x, t) , I (x, t)− I
(

(x, y + 1) , t
)

Simplifying equation 7.2, we obtain:

I (x+ u, t) ≈ I (x, t) + u1Ix (x, t) + u2Iy (x, t)

Our goal is to find a local maximum of the similarity measure O as we vary the displace-

ment u; therefore, we differentiate O with respect to u = (u1, u2):

∂O

∂u1
≈

1

n

∑

x∈R

Ix (x, t)
(

Q− Q̄
)

(7.3)

∂O

∂u2
≈

1

n

∑

x∈R

Iy (x, t)
(

Q− Q̄
)

(7.4)

At each iteration we move the tracker to the neighbouring (integer) pixel location “pointed

to” by the gradient ∇ (O):

∇ (O) =

(

∂O

∂u1
,
∂O

∂u2

)
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We terminate the iterations as soon as a move results in a decrease in the similarity measure.

(The last tracker move, which led to the decrease, is also reversed.)

7.1.2 Comparison with other trackers

The tracker that we derived above can be seen as a gradient-based version of brute-force tem-

plate matching; both approaches use normalised cross-correlation as the similarity measure.

An analogous pair of tracking methods based on the sum-of-squared-differences (SSD) mea-

sure also exists: the Lucas–Kanade optical flow method [93] has its brute-force counterpart

in SSD-based template matching. The relationship between the four methods is shown in

table 7.1.

P
P
P
P
P
P
P
P
P
P
P
P
P
P

Search
strategy

Similarity
measure SSD NCC

Brute-force Template matching Template matching

Gradient-based Lucas–Kanade optical flow Gradient-based NCC

Table 7.1: Classification of various trackers by similarity measure and search strategy

The derivation of Lucas–Kanade optical flow begins with the SSD similarity measure P :

P (u) =
1

n

∑

x∈R

(I −Q)2 (7.5)

≈
1

n

∑

x∈R

[I (x, t) + u1Ix (x, t) + u2Iy (x, t)−Q]2

The partial derivatives are then obtained:

∂P

∂u1
≈

2

n

∑

x∈R

(

I (x, t) + u1Ix (x, t) + u2Iy (x, t)−Q
)

Ix (x, t)

∂P

∂u2
≈

2

n

∑

x∈R

(

I (x, t) + u1Ix (x, t) + u2Iy (x, t)−Q
)

Iy (x, t)

and set to zero, so that a least-squares approach can be used to solve for u = (u1, u2), the

unknown displacement vector. (Lucas–Kanade optical flow forms the basis for many other

tracking techniques, including the KLT tracker [145] and Hager and Belhumeur’s tracking of

regions under geometry and illumination changes [61].)

Returning to equation 7.3 and 7.4, it is apparent that we were not able to take a similar
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least-squares approach in our derivation of the gradient-based NCC tracker: the partial

derivatives are constant, and not a function of u (thus ruling out optimisation techniques

such as the Newton–Raphson method [128, pp. 362–368]). It was for this reason that we

employed the strategy of moving the tracker iteratively in the direction of the gradient until

we found a local maximum.

In order to isolate the impact of a particular similarity measure on tracking performance,

we have implemented a gradient-based SSD tracker that is analogous to our NCC technique

developed in the previous section. We are therefore not testing the performance of Lucas–

Kanade optical flow directly; instead, we are focusing on the SSD similarity measure on which

it is based.

7.1.3 Results

We compare the performance of our gradient-based normalised cross-correlation technique

against three others: the brute-force NCC and SSD trackers (equations 7.1 and 7.5, respec-

tively) and the gradient-based SSD tracker of the previous section. Once again, we attempt

to track designated targets in each of the 21 CAVIAR and PETS video test sequences (sec-

tion 3.1). For each of the four techniques, operating in the RGB colour space, we record the

number of times it lost track of the object it was following (a measure of its robustness), and

the mean over all the sequences of its median dice coefficient (which reflects its accuracy).

The results of the tests are presented in tables 7.2 and 7.3.

P
P
P
P
P
P
P
P
P
P
P
P
P
P

Search
strategy

Similarity
measure SSD NCC

Brute-force 14 4

Gradient-based 13 3

Table 7.2: Count of lost tracks for each of the four trackers operating on the 21 video sequences in
the dataset

P
P
P
P
P
P
P
P
P
P
P
P
P
P

Search
strategy

Similarity
measure SSD NCC

Brute-force 0.91 0.90

Gradient-based 0.70 0.89

Table 7.3: Mean of the median dice coefficient for each of the four trackers operating on the 21 video
sequences in the dataset
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It is clear that the choice of similarity measure has a large impact on tracking performance.

Both of the normalised cross-correlation techniques are significantly more robust than the

SSD-based trackers. And although brute-force SSD is the most accurate of the trackers

(table 7.3), it is the least robust, failing to track 14 of the 21 targets. (Trucco and Verri

point out the close relationship between SSD and cross-correlation, but emphasise that the

normalised version of the latter is needed to avoid biases caused by very bright or very dark

image regions [161, p. 147].)

A breakdown of the occurrence of lost tracks by video sequence is shown in table 7.4.

In the case of the two most successful methods (the NCC-based approaches), the lost tracks

are not concentrated in the PETS sequences (scenarios 15 to 21). However, the brute-force

SSD tracker is much less successful on these videos than on the CAVIAR sequences. Once

again, we see that the PETS scenarios often present a much greater challenge to less-capable

tracking approaches.

The results of tables 7.2 and 7.3 show that our gradient-based NCC tracker is slightly

more robust than (and almost as accurate as) the brute-force version. A similar result was

observed in section 4.4.1, where the brute-force Bhattacharyya technique was found to be

less robust than its gradient-based counterpart (the mean-shift tracker). In both cases, it

seems that a local, as opposed to a global, maximum of the similarity surface is more likely

to correspond to the object’s location. Such local maxima are reached by gradient ascent

methods, whereas brute-force approaches will find global maxima, which sometimes result

from nearby “distractors” – objects having an appearance similar to the target. If a distractor

persists for several frames, it can cause a brute-force tracker to fail when a gradient-based

method would otherwise succeed.

Figure 7.1 compares the execution time of the basic mean-shift technique and the gradient-

based and brute-force normalised cross-correlation trackers on each of the 21 video sequences

in the dataset. Our gradient-based NCC tracker is, on average, 4.8 times faster than the

brute-force version, while being slightly more robust.1 (The brute-force trackers must eval-

uate the similarity measure on a grid of 11 × 11 image locations.) The speed difference is

more pronounced for the (lower-resolution) CAVIAR videos, where the gradient-based tracker

generally requires fewer iterations to reach a local maximum. It is also seen that the basic

mean-shift approach, which is much less robust than the other methods, is only 20% faster,

on average, than our technique.

1The experiments were performed in MATLAB on a computer with a 3.2GHz Pentium 4 CPU and 3GB
of RAM.
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Table 7.4: The success/failure of the various SSD- and NCC-based trackers operating on each sce-
nario. (Failures are indicated by an ‘x’.)
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Figure 7.1: Execution time of the basic mean-shift, gradient-based NCC and brute-force NCC trackers
on each of the 21 videos in the dataset

7.2 Track validation

The results of section 7.1 show that trackers based on normalised cross-correlation, whether

using a brute-force or a gradient ascent search, can track most of the targets in our dataset

of CAVIAR and PETS sequences. However, we only know that a target has been successfully

followed by comparing the locations returned by the tracker to the ground-truth data for that

target. Such data will not be available in a real-world system; while we may have certain

expectations about the likelihood of the tracker successfully following a given target (based

on how it has performed on our video test set), without a validation mechanism we cannot

automatically distinguish between tracking successes and failures. This is the motivation

behind the present section: it is apparent that tracking will sometimes fail; however, a

mechanism that can detect such failures, which we refer to as track validation, would prove

of great use. It would alert the system that the tracking of a given target did not succeed,

which would in turn permit other tracking attempts to be made. For example, the system

might use a different model of the target as the basis for further tracking, or it might alter

the parameters associated with the tracking technique.

7.2.1 Overview and related work

Our implementation of track validation is based on a simple principle: tracking an object

forwards in time through a sequence, stopping, reversing the sequence and tracking the object
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backwards in time should yield two very similar trajectories, provided the object has been

tracked correctly. However, if the two trajectories do not match very closely, it is likely that

either the forwards or the backwards tracking failed at some point (or at least became very

inaccurate). This idea forms the basis of our track validation algorithm, presented in detail

in the next section. Firstly, though, we review some related approaches.

Given the starting and ending locations (and models) for an object to be tracked, Sun

et al. [156] determine the full trajectory of the object between the two points in spite of

occlusions. They first extract short track segments that they hypothesise correspond to the

object. A segment is only accepted as being part of the final trajectory if it can be joined with

others to form a smooth path in space-time. Wu et al. [171] develop the “time-reversibility

constraint” and apply it to the KLT tracker [145]. A tracked image point is retained by the

method only if it moves in a similar direction when it is tracked forwards and backwards in

time. The constraint is only applied to pairs of frames, and not to the entire video sequence.

The approach most closely related to our work – and developed at approximately the

same time – is the “recurrent tracking” of Pan et al. [116] An object is first tracked forwards

in time through the sequence. Tracking is then reinitialised with a new model taken from

tracker’s final location, and the object is followed backwards in time through the sequence. A

significant difference between the forwards and backwards trajectories signifies that tracking

has failed at some point.

7.2.2 Algorithm

We have implemented a track validation algorithm that is also based on forwards–backwards

trajectory mismatches. However, it differs from the work of Pan et al. in the actions it takes

when a tracking failure is detected: whereas Pan’s approach is to shorten the video sequence

one frame at a time until the forwards and backwards trajectories are sufficiently similar, we

reduce the length of the sequence by half at each iteration. And in contrast to Pan, we then

attempt to track the object through the remainder of the video, using a new model taken

from the end of the validated portion. At all times our goal is to establish a trajectory for the

object through the entire sequence, not merely an acceptably long part of it. Furthermore,

we use a single type of tracker throughout the algorithm. Pan, on the other hand, switches

from simpler mean-shift methods to more powerful particle filter trackers whenever the former

have been unable to validate a sufficiently long trajectory for the target.

A pseudocode version of our approach is given in algorithm 1. The inner loop performs the

forwards–backwards validation on a section of the sequence. The outer loop attempts to find

a collection of these subsequences that, when concatenated, yield a trajectory for the object in

the entire video clip. Two thresholds are required by the algorithm: min traj length is the
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minimum number of frames which each of the subsequences must contain, and max traj diff

is the the maximum allowable average per-frame distance, in pixels, between forwards and

backwards trajectories that are to be considered as matching (and hence validated). In our

experiments we have set the thresholds to 25 frames and 5 pixels, respectively.

// We have validated tracking up to pos1 in the sequence

pos1 = start;
while pos1 6= end do

pos2 = end ; // Attempt to track up to pos2 in the sequence

repeat
track forwards from pos1 to pos2 ;
reinitialise tracker at pos2 ;
track backwards from pos2 to pos1 ;
diff = average per-frame distance

between forwards and backwards trajectories;
pos2 old = pos2 ;
pos2 = (pos1 + pos2 )/2;

until (diff > max traj diff) and (pos2 old − pos2 ≥ min traj length);

if diff > max traj diff then
print('Unable to validate any further than ' + pos1 );
break;

else
print('Validated up to ' + pos2 old);
pos1 = pos2 old;

end

end
Algorithm 1: Track validation and extension

7.2.3 Results

We have compared the effectiveness of track validation when using two different underlying

techniques: basic mean-shift tracking (chapter 4) and gradient-based normalised cross corre-

lation (section 7.1). The proportion of each of the 21 video sequences in the test set that is

successfully validated by our algorithm is shown in figure 7.2, for both of the tracker types.

It is clear from the results that gradient-based NCC significantly outperforms the mean-

shift method when used for track validation. The former technique is able to validate three-

quarters or more of the track’s length in 17 of the 21 sequences in the dataset, whereas

mean shift only reaches this level of validation on nine occasions. Indeed, with mean shift

there are a further nine videos where none of the tracker’s trajectory can be validated at

all – something which never happens with gradient-based NCC. Figures 7.3 and 7.4 show
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examples of successful and failed track validation, respectively. These images only represent

one iteration of the inner loop of algorithm 1: it is possible that, by halving the length of the

sequence, a successful validation can be achieved, at which point the algorithm will attempt

to validate the remainder of the sequence with a new model.
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Figure 7.2: Proportion of each video sequence validated by our algorithm for both mean-shift and
gradient-based NCC trackers.

We attribute the disparity in track validation performance between the two methods to

the underlying difference in their robustness and accuracy. At any given frame, the gradient-

based NCC tracker is more likely than mean shift to be positioned accurately on its target.

This is a necessary condition for track validation to occur: at the moment of reinitialisation,

the tracker’s location must correspond well to the location of its target. Otherwise, the tracker

will be reinitialised with a model that does not accurately represent the appearance of the

object it is supposed to follow – for example, the new model may show half of the person

being tracked, with the other half being occupied by the background of the scene. Table 7.5

shows, for each video sequence, the successive models used by the track validation algorithm

as it attempts to construct the longest-possible trajectory for the target. (Gradient-based

NCC was used as the tracking method.) Naturally, there are different numbers of models

shown for each sequence; this is a consequence of the varying difficulty of the videos: some

require more reinitialisations than others.
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Figure 7.3: An instance of successful track validation (using the gradient-based NCC tracker). The
forwards trajectory (red, left) and the backwards trajectory (green, right) for scenario 2 match very
closely.

Figure 7.4: An instance where tracking is not validated (using the mean-shift tracker). The forwards
trajectory (red, left) and the backwards trajectory (green, right) for scenario 5 are very different.
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Table 7.5: Various models found and used by the track validation algorithm for each of the 21
scenarios. The gradient-based NCC technique was employed to perform the tracking.
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Table 7.5: Various models found and used by the track validation algorithm for each of the 21
scenarios (continued)
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Table 7.5: Various models found and used by the track validation algorithm for each of the 21
scenarios (continued)

17

18

19

20

21

Looking at the models in table 7.5 used by the track validation algorithm, it is apparent

that some of them do not accurately represent the target: the tracker was badly placed at the

moment of reinitialisation, but the forwards and backwards trajectories matched sufficiently

well for track validation to occur. Scanario 5 demonstrates this effect, sometimes called the

“template update problem”: each successive model drifts further away from its target [99].

It can be seen that once such an inaccuracy has arisen, it is likely to remain present in the

subsequent models. In one instance (scenario 3), the inaccuracy is compounded to the point

where a portion of the track is validated using an entirely incorrect model (in this case, a

model of the background).
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It should be borne in mind that the inaccurate reinitialisations and false validations of the

kinds described above occur only rarely in our video test set. The track validation algorithm

provides significant benefits that outweigh these weaknesses. Firstly, it allows us to track

objects whose appearance changes drastically over time: table 7.5 contains many examples

of lighting changes, articulation and out-of-plane rotation, which make tracking a person

through an entire sequence using only a single model very challenging. The approach can

therefore be regarded as a form of “unsupervised model building” [99], where the model

adapts to changes in the target’s appearance without manual intervention. Secondly, even

when our algorithm is unable to track an object for the full length of a video clip, it is

providing valuable information to the higher-level processes that invoked it. Specifically, a

failure of track validation indicates that tracking has become very difficult in that particular

section of the video, and that other techniques and strategies should be considered. We

note finally that there are ways of reducing the chance of a false validation occurring. As it

stands, our algorithm only uses a certain selection of frames (shortening the sequence by half,

stopping when the subsequence contains less than 25 frames) in its attempt to find forwards

and backwards trajectories that match. A more exhaustive search through the sequence, or

a comparison of the outcomes of runs that used different values for the thresholds, has the

potential to reduce the number of false validations further.

7.3 Discussion

The present chapter has addressed two practical aspects of object tracking: execution speed

and the trustworthiness of the tracker’s output. Chapter 6 revealed that mean-shift track-

ing, although computationally inexpensive, is significantly less robust than normalised cross-

correlation (NCC), seemingly due to the lack of discriminative power inherent to image his-

tograms. We did not find any combination of mean-shift parameters that brought its per-

formance up to the level of NCC. The latter technique, however, is much slower than mean

shift. We have therefore developed a gradient-based version of NCC that is as robust as

the standard, brute-force version but requires less computation and consequently runs much

more quickly. Our experiments also show that the similarity measure at the heart of the

tracking technique – normalised cross-correlation itself – has significant advantages over the

popular sum-of-squared-differences measure, which is commonly used for template matching,

in addition to forming the basis of the Lucas–Kanade optical flow technique.

The second half of this chapter is concerned with validating the object trajectories re-

turned by a given tracking method, ensuring that they truly represent the object’s path

through the scene. We developed a technique that compares the trajectory obtained by
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tracking a target forwards in time to that obtained by reinitialising the tracker at the end of

the sequence and attempting to follow the target backwards in time through the sequence.

If the forwards and backwards trajectories are not sufficiently similar, the trajectories are

not validated; it is assumed that in such a case the tracker has failed to track the object.

Our algorithm builds on this basic principle, yielding a scheme that iteratively shortens the

sequence until track validation is achieved. This allows us to switch to a new model of the

target, which we use to attempt to track the object through the remainder of the video se-

quence. In effect, the algorithm serves as a conservative filter on the output of any tracking

method: it is not always able to determine the entire trajectory of an object moving through

the video sequence, but it almost never validates the paths returned by a tracker that has

failed to follow its target correctly. The choice of tracking method used by our algorithm has

an impact on its chances of validating an object’s trajectory. Employing our gradient-based

normalised cross-correlation tracker, owing to its better robustness and accuracy, leads to a

greater number of validated trajectories than using the mean-shift method does.

Taken together, the two contributions of this chapter – a fast and robust normalised cross-

correlation tracker and a technique for validating its output – can simplify the higher-level

processing that would be performed in a complete tracking system. The track validation

technique not only makes the output of the tracker more trustworthy, it also provides indi-

cations (whenever validation is not possible) of which objects and sections of a sequence are

especially difficult to track. The system may respond to these signals by invoking more ad-

vanced techniques, possibly at the expense of increased computation, to track the challenging

targets.
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Chapter 8

Conclusions

This chapter summarises the research presented in the thesis and highlights the contributions

that we have made in the area of gradient-based tracking. The results of our investigations

into mean shift are also discussed; we describe how best to use the technique in the surveillance

domain, with a particular focus on parameter settings. The performance of mean shift is

placed in the context of other methods – we have found that it is inherently less reliable than

older and simpler techniques, at least in the area of pedestrian tracking. We emphasise the

importance of thorough evaluations on large video test sets, and the use of both ground truth

data and automated methods; these elements allowed us to draw definitive conclusions about

the performance of mean shift. We suggest that similar approaches should be used whenever

investigations into tracking methods are being undertaken. Finally, a number of potential

avenues of research relating to data-driven tracking are outlined.

8.1 Summary

In this thesis we have focused on the mean-shift tracking technique, applying it in the domain

of surveillance. Below, we provide a summary of the research that we have conducted.

In chapter 4 we performed an assessment of the basic, unmodified mean-shift tracker.

The method was used to track designated targets through each of the 21 videos in our test

set of surveillance sequences. Since ground truth data was available specifying the location

of the person to be tracked in every frame of the sequences, we were able to undertake a

quantitative evaluation of mean shift. We recorded firstly the number of videos in which

the technique lost track of its target (its robustness), and secondly the degree to which the

position of the tracker matched that given by the ground truth data (its accuracy). For

comparison, we used the same approach to evaluate three other data-driven trackers – based
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on the Bhattacharyya coefficient, the earth mover’s distance and normalised cross-correlation

(NCC), respectively. The last of the three proved significantly more robust than any of the

others, including mean shift. Indeed, none of the modifications that we made to the mean-

shift technique in subsequent chapters were able to make its performance match that of

NCC. The inherent differences in how the two methods represent the image region to be

tracked – mean shift by a histogram, NCC by a template – appear to be responsible for the

large disparity in robustness; image templates carry more information and are simply more

discriminative than histograms.

Chapter 5 presented our derivation of a modified mean-shift-based tracker. We fused two

existing techniques from the literature – multiple-part models and background exclusion – into

a single tracker that was still based on mean shift. A thorough assessment of the new method

was undertaken, and it was found to outperform trackers that used only multiple-part models

or background exclusion in isolation. However, its robustness remained somewhat lower than

that of the NCC tracker.

A comprehensive evaluation of mean shift, both the original tracker and our modified

version, formed the basis of the research in chapter 6. We studied the effect of changing the

values of the various parameters that are associated with the method. The results demon-

strate that care must be taken in setting the parameter values, and especially in deciding the

particular multiple-part structure that the tracker should have. A choice that is not based

on extensive testing can give rise to tracking performance that is far below that which the

method is capable of achieving. (A more in-depth discussion of parameter settings can be

found in section 8.3.1 below.)

In chapter 7 we developed a gradient-based tracker that uses templates as models of

the image regions to be tracked, replacing the histograms employed by mean shift. It is

essentially a hill climbing version of the NCC template matching tracker, whose performance

has consistently beaten that of the mean-shift method. The gradient ascent nature of the new

tracker makes it significantly faster than NCC, although still somewhat slower than mean

shift. However, the robustness of the new technique compared to mean-shift tracking makes

it a superior choice in almost every respect.

Chapter 7 also presented our track validation algorithm for assessing the trustworthiness

of a given tracker’s output. We follow a target forwards in time through the video sequence,

reinitialise the tracker at the end, and run the sequence backwards while continuing to track

the target. If the paths from the forwards and backwards tracking do not match sufficiently

closely, it is likely that the tracker failed at some point. In such a case, we shorten the

sequence and repeat the process until validation is achieved, i.e., until the forwards and

backwards paths match. When part of a sequence is validated in this fashion, we use the new

128



8.2. Contributions

object model (taken from the point of reinitialisation) for further tracking. The approach

allows us to update the model in a safe manner, even as the target undergoes significant

appearance changes. The algorithm operates conservatively: although it is not always able

to validate an entire sequence, it is very rare for incorrect tracking to go undetected. In

this way, track validation serves as an effective, general-purpose filter on the output of any

tracking method.

8.2 Contributions

Below, we highlight the elements of the thesis which represent contributions to the field of

object tracking:� A comprehensive, quantitative assessment of the performance of mean shift on a large

video dataset. The technique is compared to other histogram-based trackers and to

normalised cross-correlation.� The development of a mean-shift method that unifies two elements – multiple-part

models and the background exclusion constraint – in a single tracker. The new method

is more robust than using either element on its own.� An evaluation of the effect of several parameters on mean shift. We record the perfor-

mance of the method as we vary their values and alter the multiple-part structure of

the tracker. The results of the experiments reveal the optimal parameter settings for

employing the mean-shift technique in the surveillance domain.� The creation of a gradient-based normalised cross-correlation tracker. It combines com-

putational efficiency (arguably the greatest advantage of mean shift) with the robustness

of template matching.� The development of a track validation algorithm for verifying that a tracker’s output

is trustworthy. As each portion of the video sequence is validated, we also update the

object model, which allows the tracker to accommodate large changes in the appearance

of the target.

8.3 Discussion

Our objectives in this thesis were to investigate the performance of mean-shift tracking, in

both its basic and modified forms, and to determine how best to use the method in the domain

of pedestrian tracking. Below, we discuss the specific elements and parameter settings that
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are needed to obtain optimal performance from the technique. Afterwards, we give some

perspectives on mean shift in the context of similar data-driven tracking methods, and also

on how tracking techniques in general should be assessed.

8.3.1 Improving the performance of mean-shift tracking

The evaluations performed in chapter 5, where our tracker combining multiple-part models

and background exclusion was derived, suggested that both of those elements are required to

achieve good performance with mean shift. However, it was not until chapter 6 that we were

able to establish this result with greater confidence, and to determine optimal settings for

the other parameters of the tracker. Our experiments show that a tracker which combines

multiple-part models and background exclusion will usually outperform all other mean-shift

variants, regardless of the choices we make for the colour space, the size of the histograms,

the threshold on the convergence condition or the type of spatial kernel used. With regard to

the precise multiple-part structure of the tracker, the performance seems to improve as the

number of subregions (parts) in the model is increased, but only up to a point: robustness

appears to reduce once we use 25 subregions or more. The results also strongly indicate that

we should avoid multiple-part models if we do not also make use of the background exclu-

sion constraint; such multiple-part-only trackers consistently demonstrate poor performance

across all parameter settings.

If we settle on the combined tracker (since it is generally the most robust), we can choose

values for the remaining parameters one at a time, with the objective of improving the

performance further with each choice. The first of these parameters – the colour space –

has a surprisingly small impact on mean-shift tracking in our experiments with surveillance

videos. The dimensionality of the space, i.e., the number of channels it contains, may be the

most important consideration. Of the colour spaces that we tested, those with two or three

channels generally performed similarly. Only single-channel spaces seem to reduce robustness

to any noticeable degree.

The ideal size for the target and candidate histograms strongly depends on the type of

tracker we are considering. For the combined multiple-part–background exclusion tracker, a

small number of bins – two or four per colour channel – gives the best performance. However,

for the other mean-shift variants, such a choice will reduce the tracker’s robustness. In the

absence of a universal trend in performance as the number of bins is varied, we suggest that

further experiments on the parameter’s value be undertaken in the specific domain in which

mean shift is intended to be used.

The threshold on the value of the convergence parameter, ε, should not be set to a very

low value (0.05 or 0.10) when used with the combined tracker. A value of 1.0, which was
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used in the original mean-shift paper, is associated with the highest robustness. For the final

parameter – the type of spatial kernel used by the tracker – the cube root profile (the most

“peaked” of all of the kernels tested) gives the best results.

8.3.2 Perspectives on mean shift

Our extensive evaluations of mean shift have revealed the effect of the different parameters on

its performance, and have allowed us to “tune” the method so that it becomes more robust.

It is possible, in this manner, to make the tracker significantly more reliable than it would

otherwise be if we used default settings. However, none of our suggested modifications or

parameter values have made the method as robust as standard template matching. The mean-

shift technique, as it exists today, is simply not as capable as normalised cross-correlation

for pedestrian tracking, whether we use it in its basic form or augment it with multiple-part

models and background exclusion. Indeed, for a fair comparison between mean shift and

NCC to be made, we should not use background exclusion at all. Doing so reveals the gulf

in performance between the methods. And with the development of our gradient-based NCC

tracker (chapter 7) the primary advantage of mean shift – computational efficiency – is almost

eliminated.

Mean shift should be regarded simply as an optimisation technique: it moves to the

mode of a distribution in a small number of steps. Segmentation was the first widespread

application of the technique in image processing [29]. Unfortunately, to make mean shift work

in a tracking context it was necessary to represent image regions by their histograms, and

to compare them using the Bhattacharyya coefficient. The resulting lack of discriminative

power (versus comparing image templates using normalised cross-correlation) is at the heart

of the method’s lack of robustness. The histograms and/or the Bhattacharyya coefficient

must be replaced with elements that are more discriminative if the reliability of mean-shift

tracking is to be improved significantly.

8.3.3 Performance assessment and validation of results

We have been able to draw these stark conclusions about the different varieties of mean shift

and NCC only by undertaking extensive, systematic and quantitative evaluations. Assess-

ments of this kind for tracking methods require certain elements: a dataset of video sequences

on which all of the techniques can reasonably be expected to operate; a collection of ground

truth data; and the definition of metrics at the frame, sequence and dataset level. Together,

these components allow the evaluations to be performed in an automated and repeatable fash-

ion. While recognising that subjectivity can never be entirely eliminated from the process
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(e.g., in the definition of the ground truth data or in the selection of metrics), the quantitative

nature of the experiments allows to have more faith in the results that are produced.

The research into track validation in chapter 7 has shown that providing ground truth

data may not even be necessary for performing automated evaluations of tracking methods.

The algorithm allows us to detect almost all occurrences of tracking failure; only a correct

initialisation on each video sequence, possibly performed manually, is required. However

they are accomplished, comprehensive, quantitative and comparative evaluations of tracking

techniques are required if we are to accelerate progress towards more robust methods.

8.4 Future directions

It is apparent from the research in this thesis, and from the extensive literature on the subject,

that tracking is far from a solved problem. There are many situations in video sequences

that can cause a tracker to fail, whether it be the brightness and appearance changes that an

object undergoes, the presence of “distractors” that draw the tracker away to an incorrect

target, or the occurrence of partial or complete occlusions. The difficulties can be tackled

from two sides: improvements in top-down control strategies can provide greater context

to the tracker, allowing it to operate in a more sensible fashion; and the development of

bottom-up (data-driven) tracking techniques that are better able to exploit the underlying

image structure enables a greater proportion of targets to be followed. As we have focused in

this thesis on data-driven methods, we will suggest some future avenues of research in that

area.

Occlusions are a common occurrence in real-world video sequences, but few bottom-up

methods attempt to tackle them directly, preferring to leave the task to the higher-level

control strategies of the tracking system. However, our track validation algorithm presents

an opportunity to overcome partial occlusions without relying on external context. The

algorithm is conventionally used to verify the longest-possible portion of the object’s path

through the sequence. It will likely only be able to validate the trajectory up to the point

where the target is obscured, but it is useful to know simply that an occlusion has occurred,

even if we are unable to continue with the tracking. In certain circumstances, however, it

may be possible to extend the trajectory through the obscuration. For example, we could

hypothesise that the object is only partially occluded, and so use a corresponding partial

model to track the portion of the target that remains visible. Track validation could be

applied to the occlusion event in the same way as it is used in the case of normal tracking,

i.e., to verify that the trajectory returned from around the time of the occlusion is trustworthy.

In section 8.3.2 we suggested that data-driven trackers built on histograms alone would
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struggle to operate robustly. However, template-based trackers have their own weaknesses:

they can fail when the shape of the target changes (as is caused by the articulation of a

person’s limbs), and they are overly forgiving of brightness differences between adjacent

candidate image regions (at least in the case of normalised cross-correlation). In recent

years, a class of methods has been developed that seeks to forge a link between histogram-

based and template-based models [44, 174]. And the work of Leung and Gong [83] shows

that only a handful of pixels from an image region are required for these hybrid models to

operate in a robust fashion, allowing them to be computationally efficient. We consider that

the reliability could be increased further by combining the brightness normalisation elements

of NCC with such a model in order to develop a tracker that is discriminative but not overly

sensitive to changes in the shape of the target.

Much other interesting research into data-driven tracking has been undertaken recently.

Hager et al. [62] have recast the equations that underlie mean shift in matrix form, and have

shown that histogram-based tracking can be accomplished by a Newton-style optimisation

procedure. It converges more quickly than mean shift, and it allows multiple kernels to

be employed in a single tracker [48]. We believe that there are connections between such

multiple-kernel methods and the multiple-part models that we have used with mean shift.

A quantitative evaluation of the new techniques is needed to establish their robustness, and

to determine which type of kernels are most useful in a given application domain. Some of

the most recent work in this direction has shown how to determine the difficulty of tracking

a particular image region [49]. Used together with our track validation approach, it would

further increase our ability to discard incorrect results, yielding a data-driven tracker with

very high reliability.
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Appendix A

Tracker parameters: further results

In this appendix we present supplemental results for the experiments on mean-shift param-

eters performed in chapter 6. The following tables and graphs record the results of varying

the colour space, histogram size, convergence condition and the type of spatial kernel used

with the mean-shift method.

135
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A.1 Colour spaces
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HSV 3 10 9 11 12 8 7 5 6

RGB 4 8 8 10 11 8 7 8 7

YUV 4 10 7 11 12 8 6 8 6

SV 3 10 9 11 11 10 8 8 9

HV 5 12 7 9 12 9 7 8 8

RG 4 9 7 8 11 10 7 8 7

RB 4 9 8 10 14 10 7 8 8

GB 5 11 8 10 14 9 9 9 8

YV 4 10 7 10 11 10 7 7 6

YU 5 11 10 10 14 10 9 7 7

HS 15 8 12 13 14 8 5 5 6

UV 11 11 12 16 19 8 7 8 8

rg 12 9 12 14 18 8 7 6 8

rb 13 12 14 13 17 11 10 10 9

gb 11 7 11 14 18 9 7 9 7

R 6 11 9 11 14 10 10 8 6

G 5 10 9 11 14 9 8 9 8

B 6 11 12 12 16 10 10 8 10

Y 5 10 10 11 13 9 10 8 8

H 16 13 15 16 18 11 8 10 8

S 14 14 13 16 18 11 10 10 11

Table A.1: Count of lost tracks on 21 video sequences for various colour spaces and trackers
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A.1. Colour spaces
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without BG excl.

Mean shift

with BG excl.

M
o
d
ifi
e
d

c
ro

ss
-c
o
rr
e
la
ti
o
n

S
in
g
le
-p

a
rt

M
u
lt
ip
le
-p

a
rt

(q
u
a
d
ra

n
ts
)

M
u
lt
ip
le
-p

a
rt

(9
c
e
ll
s)

M
u
lt
ip
le
-p

a
rt

(1
6
c
e
ll
s)

S
in
g
le
-p

a
rt

M
u
lt
ip
le
-p

a
rt

(q
u
a
d
ra

n
ts
)

M
u
lt
ip
le
-p

a
rt

(9
c
e
ll
s)

M
u
lt
ip
le
-p

a
rt

(1
6
c
e
ll
s)

HSV 0.89 0.71 0.80 0.79 0.76 0.85 0.88 0.88 0.88

RGB 0.90 0.70 0.80 0.82 0.80 0.85 0.88 0.89 0.88

YUV 0.90 0.71 0.79 0.81 0.76 0.79 0.84 0.84 0.84

SV 0.91 0.67 0.81 0.83 0.79 0.82 0.88 0.89 0.88

HV 0.89 0.74 0.82 0.78 0.76 0.80 0.85 0.84 0.84

RG 0.90 0.69 0.81 0.81 0.79 0.78 0.83 0.84 0.83

RB 0.90 0.72 0.80 0.81 0.76 0.82 0.88 0.88 0.88

GB 0.87 0.67 0.73 0.79 0.76 0.79 0.84 0.86 0.84

YV 0.90 0.70 0.82 0.82 0.78 0.74 0.83 0.84 0.83

YU 0.90 0.72 0.75 0.78 0.73 0.74 0.80 0.82 0.83

HS 0.83 0.71 0.77 0.80 0.74 0.85 0.88 0.88 0.88

UV 0.76 0.64 0.69 0.68 0.62 0.75 0.83 0.86 0.84

rg 0.88 0.68 0.76 0.76 0.72 0.82 0.85 0.86 0.85

rb 0.85 0.64 0.70 0.70 0.69 0.76 0.79 0.81 0.82

gb 0.88 0.68 0.75 0.75 0.72 0.80 0.84 0.87 0.85

R 0.90 0.71 0.77 0.83 0.79 0.73 0.78 0.80 0.81

G 0.89 0.66 0.74 0.80 0.78 0.72 0.80 0.82 0.82

B 0.84 0.65 0.71 0.75 0.75 0.76 0.82 0.83 0.83

Y 0.90 0.72 0.72 0.80 0.80 0.73 0.79 0.82 0.83

H 0.78 0.65 0.73 0.67 0.68 0.78 0.85 0.85 0.85

S 0.82 0.70 0.76 0.73 0.71 0.75 0.82 0.85 0.85

Table A.2: Mean of the median dice coefficient of 21 video sequences for various colour spaces and
trackers
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A.2 Histogram size
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Figure A.1: Number of lost tracks (top) and mean of the median dice coefficient (bottom) on 21
video sequences for various histogram sizes and trackers operating in RG
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Figure A.2: Number of lost tracks (top) and mean of the median dice coefficient (bottom) on 21
video sequences for various histogram sizes and trackers operating in HSV
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A.3 Convergence condition
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Figure A.3: Number of lost tracks (top) and mean of the median dice coefficient (bottom) on 21
video sequences for various values of ε and trackers operating in RG
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Figure A.4: Number of lost tracks (top) and mean of the median dice coefficient (bottom) on 21
video sequences for various values of ε and trackers operating in HSV
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A.4 Kernel type
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Figure A.5: Number of lost tracks (top) and mean of the median dice coefficient (bottom) on 21
video sequences for various kernel types and trackers operating in HSV
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Appendix B

Simplifying normalised

cross-correlation

In section 7.1.1 we used a modified version of the normalised cross-correlation (NCC) simi-

larity measure as the basis for our gradient ascent NCC tracker. The similarity O (u) of a

template Q and an image patch I displaced from the template by u is:

O (u) ,
1

n

∑

x∈R

(

I − Ī
) (

Q− Q̄
)

where n is the number of pixels in the image patch and R is the set of pixel locations in

the template. Below, we show that either Ī or Q̄ – the means of the image patch and the

template, respectively – can be removed from the formula without changing the result.
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(continued. . . )
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