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Abstract We present an encoding of the semantics of the probabilistic
guarded command language (pGCL) in the Unifying Theories of Programming
(UTP) framework. Our contribution is a UTP encoding that captures pGCL pro-
grams as predicate-transformers, on predicates over probability distributions
on before- and after-states: these predicates capture the same information as
the models traditionally used to give semantics to pGCL; in addition our formu-
lation allows us to define a generic choice construct, that covers conditional,
probabilistic and non-deterministic choice. We introduce the concept of prob-
abilistic refinement in this framework. This technical report gives a rigourous
presentation of our framework, along with a variety of proofs and examples
(including the well-known Monty Hall problem), that help to explain it.
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1 Introduction

Formal program verification allows us to prove that a program complies with its specification and
that it does not generate faulty behaviour of any kind, and in general that certain properties hold
when a given program is run.
This aim is achieved by writing a model of the program and subsequently verifying the model.

Nonetheless this provides no information regarding the probability that a property will hold: some-
times it is more useful to know what are the odds that a property holds, rather than “simply” assert
that it does not always hold.

The purpose of this work is to develop a UTP1-style framework where we can express probabilistic
programs, featuring both probabilistic choice and non-determinism: we aim at being able to do
in UTP all of the things that are feasible in pGCL2. UTP is based on (state-)predicate transformers,
whereas probabilistic models typically involve distributions over states, and so the best way to
integrate probability into the UTP framework is not obvious.

We aim at constructing a theory of probabilistic programs that is expressed using predicate-transformers3.

1.1 UTP: general principles

The Unifying Theories of Programming (UTP) research activity seeks to bring models of a wide
range of programming and specification languages under a single semantic framework in order
to be able to reason formally about their integration [HJ98; DS06; But10; Qin10]. A success in
this area has been the development of the Circus language [OCW09], which is a fusion of Z and
CSP, with a UTP semantics, providing specifications using a “state-rich” process algebra along with
a refinement calculus; recent extensions to Circus have included timed [SH03] and synchronous
[GB09] variants. Recent interest in aspects of the POSIX filestore case study in the Verification
Grand Challenge [FWB08] has led us to consider integrating probability into UTP, with a view to
eventually having a probabilistic variant of Circus .

Theories in UTP are expressed as second-order predicates 4 over a pre-defined collection of free
observation variables, referred to as the alphabet of the theory. The predicates are generally used
to describe a relation between a before-state and an after-state, the latter typically characterised
by dashed versions of the observation variables. For example, a program using two variables x and
y might be characterised by having the set {x, x′, y, y′} as an alphabet, and the meaning of the
assignment x ∶= y + 4 would be described by the predicate

x′ = y + 4 ∧ y′ = y.

In effect UTP uses predicate calculus in a disciplined way to build up a relational calculus for
reasoning about programs.
In addition to observations of the values of program variables, often we need to introduce obser-
vations of other aspects of program execution via so-called auxiliary variables. So, for example,
in order to reason about total correctness, we need to introduce boolean observations that record
the starting (ok ) and termination (ok ′) of a program, resulting in the above assignment having the
following semantics:

ok ⇒ ok ′ ∧ x′ = y + 4 ∧ y′ = y

(if started, it will terminate, and the final value of x will equal the initial value of y plus four, with
y unchanged).
A problem with allowing arbitrary predicate calculus statements to give semantics is that it is pos-
sible to write unhelpful predicates such as ¬ok⇒ ok′, which describes a “program” that must ter-
minate when not started. In order to avoid assertions that are either nonsense or infeasible, UTP

1Unifying Theories of Programming. [HJ98; Heh06]
2probabilistic Guarded Command Language. [MM04]
3So probabilistic programs are predicates too (with apologies to C.A.R. Hoare [Hoa85a]) !
4 Most definitions are in fact first-order, but we need second-order in order to handle the notion of “healthiness”, and

recursion.
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abort ≙ true failure/chaos
skip ≙ ok⇒ ok′ ∧ ν′ = ν do nothing

x ∶= e ≙ ok ∧ e is defined⇒ ok′ ∧ x′ = e ∧ ν′ = ν assignment
P1;P2 ≙ ∃okm, νm ● P1[okm, νm/ok′, ν′] ∧ P2[okm, νm/ok,ν] seq. comp.

P1◁ c▷ P2 ≙ c ∧ P1 ∨ ¬c ∧ P2 conditional
P1 ⊓ P2 ≙ P1 ∨ P2 non-det. choice
c ∗ P ≙ µX ● (P;X) ◁ c▷ skip while

Figure 1: UTP Design semantics of simplified GCL

adopts the notion of “healthiness conditions” which are monotonic idempotent predicate trans-
formers whose fixpoints characterise sensible (healthy) predicates. Collections of healthy pred-
icates typically form a sub-lattice of the original predicate lattice under the reverse implication
ordering [HJ98, Chp. 3]. Key in UTP is a general notion of program refinement as the universal
closure of reverse implication5:

S ⊑ P ≙ [P⇒ S]

Program P refines S if for all observations (free variables), S holds whenever P does. The UTP
framework also uses Galois connections to link different languages/theories with different alpha-
bets [HJ98, Chp. 4], and often these manifest themselves as further modes of refinement.

Of interest to use here is the theory of “Designs” which characterises total correctness for imperative
programs. A UTP Design semantics of a variant of Dikstra’s guarded command language (GCL,
[Dij76]) is shown in Figure 1.

We note in passing that UTP follows the key principle that “programs are predicates” [Hoa85a]
and so does not distinguish between the syntax of some language and its semantics as alphabetised
predicates.

1.2 pGCL

The approach to probabilistic systems that is presented in [MM97] and later in [MM05] (and more
extensively in the book [MM04]) is the one of using expectation transformers of pGCL to reason
about probabilistic programs: this subsection is dedicated to briefly introduce this, as pGCL is the
most important reference for our work.
In Dijkstra’s GCL the weakest precondition is a predicate wp.prog .Post that is true in those initial
states that guarantee that the postcondition Post will be reached after running prog . [Dij76]
pGCL is given a semantics that generalises this concept to what they term a weakest pre-expectation
semantics [MM97; MM04; MM05; NM10].

An expectation is a function describing how much each program state is “worth” [MM04] and
assigns a weight (a non-negative real number) to program states: it is therefore a random variable.
An expectation corresponding to a predicate can be defined as a random variable that maps a state
to 1 if it satisfies the predicate and to 0 otherwise. Arithmetic operators and relations are extended
pointwise to expectations, as is multiplication by a scalar.
If PostE is a (post-)expectation after running program prog , then wp.prog .PostE is the correspon-
dent weakest6 (pre-)expectation before the program runs: for each state it returns the minimum
expected final weight.

5Square brackets denote universal closure — [P] asserts that P is true for all values of its free variables.
6One expectation is weaker than another if for all states it returns at most the same weight — it is the ≤ relation lifted

pointwise.
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wp.abort .PostE ≙ 0

wp.skip.PostE ≙ PostE
wp.(x ∶= e).PostE ≙ PostE{e/x}

wp.(prog
1
; prog

2
).PostE ≙ wp.prog

1
.(wp.prog

2
.PostE)

wp.(prog
1
⊓ prog

2
).PostE ≙ min{wp.prog

1
.PostE ,wp.prog

2
.PostE}

wp.(prog
1 p
⊕ prog

2
).PostE ≙ p ⋅wp.prog

1
.PostE + (1 − p) ⋅wp.prog

2
.PostE

wp.(µxxx ● C).PostE is to be defined with usual concepts from the least-fixpoint theory

Figure 2: wp-semantics of pGCL, adapted from [MM04, p. 26]. The notation PostE{e/x} denotes the
expression describing PostE with all free occurrences of x replaced by e.

Here is the syntax of pGCL:
prog ∶== abort

∣ skip

∣ x ∶= e

∣ prog
1
; prog

2

∣ prog
1 p
⊕ prog

1

∣ prog
1
⊓ prog

2

∣ (µxxx ● C)

The probabilistic choice operator is the only one that is not present in Dijkstra’s original GCL: it
denotes a statement that executes prog

1
with probability p, and prog

2
with probability (1 − p).

Two models can be found in McIver and Morgan’s book [MM04]: the first one is a probabilistic
predicate-transformer model, that uses the weakest pre-expectation semantics shown in Figure 2.

From the assignment semantics, we can see that in some sense when computing the weakest pre-
expectation we are going backwards, as we are “translating” the meaning of a PostE in terms of the
states we have before it.

The key features to note in this semantics are that probabilistic choice is the obvious weighting of
its alternatives’ expectations, whereas demonic choice returns the pointwise minimum.
Non-determinism is crucial in order to define a sensible refinement relation:

spec ⊑ prog ≙ ∀PostE ●wp.spec.PostE ≤ wp.prog .PostE

A program prog refines a specification spec if the minimum expected weight for each state after prog
has run is at least as much as we would get after spec has run.
More formally, in wp-semantics:

• when we talk about expectations, we talk about elements from the expectation space7 over
the state space S:

ES ≙ (S→ R+,≥)

• the expectation transformer model for programs is:

TS ≙ (ES→ ES,⊑)

• we can think of wp as a function that transforms a program into an expectation transformer:

wp ∶ Programs → TS
7≥ is the ordering in R lifted pointwise and R+ = [0,+∞).
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So we have that:

• wp.prog ∈ TS

• PostE ∈ ES

• wp.prog .PostE ∈ ES

An alternative is the probabilistic relational model [HSM97; MM04], which sees a program as a
relation from states to up-, convex- and Cauchy-closed sets of probability distributions over the
state space. It is possible to see programs as relations from probability distributions to sets of
probability distributions via the Kleisli composition of programs[MM04, Chp. 5]: we are going to
use a similar approach to port this work to the UTP framework.

A (demonic) probabilistic program takes an initial state to a (set of) fixed final probability distri-
butions over S:

• the set of sub-distributions over S is:

S̄ ≙ {∆ ∶ S→ [0, 1] ∣ Σ∆ ≤ 1}

• the space of deterministic probabilistic programs over S is defined:

DS ≙ (S→ S̄,⊑)

• set of up-, convex- and Cauchy-closed sets of discrete distributions over the state space, i.e.
those which comply with some healthiness criteria:

CS ⊆ ℘S̄

• complete partial order of demonic probabilistic programs:

HS ≙ (S→ CS,⊑)

Summarizing in pGCL we have:

• a probabilistic predicate-transformer model, that takes a program and turns it into an ex-
pectation transformer. This can be applied to an expectation to derive the corresponding
pre-expectation:

pre-expectation

ES
expectation transformer

TS
expectation

ES

program

wp

• a probabilistic relational model, that relates a state to a up-, convex- and Cauchy-closed set of
probability sub-distributions:

state

S

program
HS

uccc set of probability sub-distributions

CS

To conclude this brief presentation of pGCL, here is a representative sample of laws about proba-
bilistic programs, that it is possible to prove in this framework:

A ⊓ B ⊑ A p⊕ B

(A ⊓ B) p⊕C = (A p⊕C) ⊓ (B p⊕C)

(A ⊓C) p⊕ (B ⊓C) ⊑ (A p⊕ B) ⊓C

(A ⊓ B);C = (A;C) ⊓ (B;C)

A;(B ⊓C) ⊑ (A;B) ⊓ (A;C)

In §3.3 we will see that we are able to state similar laws in our framework — they will have a
broader scope, as they will be covering a generic choice construct.
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1.3 Probabilistic UTP

There has already been a certain amount of work looking at encoding probability in a UTP setting.
He and Sanders have presented an approach unifying probabilistic choice with standard constructs
[HS06], and this work provides an example of how the laws of pGCL could be captured in UTP as
predicates about program equivalence and refinement. However only an axiomatic semantics was
presented, and the laws were justified via a Galois connection to an expectation-based semantic
model.

Sanders and Chen then explored an approach that decomposed demonic choice into a combination
of pure probabilistic choice and a unary operator that accounted for demonic behaviour [CS09].
There they commented on the lack of a satisfactory UTP theory, where probabilistic and demonic
choice coexist.

A probabilistic BPEL-like language has recently been described by He [He10] that gives a UTP-
style semantics for a web-based business semantics language. This language is GCL with extra
constructs to handle probabilistic choice and compensations and coordination operators, including
exception handling. The UTP model that is developed does not relate before- and after-variables
of the same type, but instead uses predicates to encode a relationship between an initial state and
a final probability distribution over states.

What is still missing is a presentation of pGCL in UTP that is defined in terms of a before/after
relation over the same observation space. We believe the ideal such presentation would use obser-
vations that corresponded to program variables and to other aspects of behaviour such as termina-
tion, in a manner analogous to our brief earlier presentation of GCL in UTP: here we present a UTP
encoding of pGCL semantics based on probability distributions over the set of possible states, re-
lating a before-distribution (δ) to an after-one (δ′), effectively making use of one observation. The
key contributions here are the fact that we provide a means by which reasoning can still be carried
out at program variable level, and we have uncovered a generic notion of choice that subsumes
probabilistic, demonic and conditional choices.

1.4 Other background material

Besides the works we have mentioned so far, which are our main reference, the foundation of this
work is also represented by all that has been done on probability and logic, in particular that part
concerning the interaction between these two topics.

There is a work dating back to 1990 by Fagin, Halpern, and Megiddo [FHM90] where the authors
present a logic to reason about probabilities (but still not to reason about formulas that can have
a value which is probabilistically true or false). This paper sets ideas that can be found in different
other papers, and among such ideas we can find the Dempster-Shafer belief theory and Bayesian net-
works, which are recurring topics in the literature of logic and probability — in particular Bayesian
networks are seen as an area with great potential for the development of probabilistic logic, at
least according to WIlliamson [WIl02].

Halpern and Pucella [HP07] have presented an axiomatization of probabilistic logic, characterizing
probabilistic and non-probabilistic expectation, and discussing about expressiveness and satisfia-
bility of such a system.

Argumentation is a technique closely related to logic, that aims at deducting facts starting from
given premises: a logic system for probabilistic argumentation, inspired by the Dempster-Shafer
belief theory can be found in [Kra+95] — a probability is assigned to each proposition and the
purpose of the argumentation system is to aggregate these probabilities.
A survey on probabilistic argumentation can be found in [Hae+01] and [Koh03]: there have been
different developments of probabilistic argumentation systems and the one presented in these
papers is based both on logic and probability theory, where probability is used to weight arguments
for and against a particular conclusion. Haenni et al. [Hae+01] state: “the strength of our method
comes certainly from this simple way of combining logic and probability theory”, and this results
in the existence of efficient computational methods.
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An application of probabilistic argumentation can be seen in [KJH08], where it is used to make
trust evaluations.

The majority of approaches to merge logic and probability try to accomplish this task either by
defining a probability function on the sentences of logic, or by incorporating probabilities in logic
itself: a common framework to link probabilistic argumentation theory and other probabilistic
logics is proposed in [Hae+08].

An interesting approach is presented in [Jøs01], which borrows ideas from the Dempster-Shafer
belief theory. It uses a belief functions to evaluate the probability of a state and makes use of sets of
substates to define elementary probabilities; it is somehow a three-value logic, as for each uncertain
predicate (opinion) there is a belief function, a disbelief function and an uncertainty function, which
sum up to 1.

Another example of a subject using probability and logic is probabilistic logic learning, that adds
also machine learning to the picture: in [DK03] the authors present a probabilistic logic, by adding
probability to first order logic through Bayesian networks. The authors mention also the possibility
of modelling relations among objects: for this purpose Bayesian networks are not enough, and log-
ical/relational Markov models have to be exploited (eventually with some extension, as proposed
by Jain, Kirchlechner, and Beetz [JKB07]).

On the side of process algebras, probabilistic CSP [Mor+96] is obtained by adding probability to
Hoare’s CSP [Hoa85b]. Probability is defined in such a way that it distributes through all operators.
A refinement operator is also defined in this same paper: we have a definition of a probabilistic
refinement calculus.
We deal with a timed specification, that has a limited validity: this is in line with real-world sys-
tems, as they cannot possibly work forever (we simply have to wait long enough for their failure
probability to raise), and for this reason we can specify a time limit for which a specification has
to be satisfied.

There is a problem regarding the compositionality of probabilistic CSP, which is not straight-
forward: Morgan [Mor04] explains this using the metaphor of the colour of a child’s eye, knowing
the colour of the parents’ — too much information has to be brought forward if we want accu-
rate information, but simply a phenotypical description is unreliable and not sufficient, as what is
enough is to know colour and whether the allele is predominant or recessive. This same kind of
information is the one that has to be sought to have an accurate probabilistic compositionality: in
fact if we observe an event, we would want to be able to identify the facts that have led to that
event.
For example if we observe a failure (i.e. a composite event) during the run of a program, we want
to track down the reasons of this failure and to identify what factors (i.e. base events) have been
responsible for the happening.

Another ingredient of probabilistic systems is the choice operator, that can be instantiated in three
different ways:

• demonic choice, that picks the “worst-case” scenario for that choice;

• angelic choice, that picks the “best-case” scenario for that choice;

• probabilistic choice, that picks one of the two options with a given probability.

Interactions among demonic, angelic and probabilistic choices may be subtle. In fact a determinis-
tic (although probabilistic) program is characterised by monotonicity, conjunctivity and disjunctiv-
ity, when introducing demonic choice we drop disjunctivity; if demonic choice and angelic choice
coexist in the same program, we lose also conjunctivity and we remain only with monotonicity.
[MM98]

Back in the early eighties Kozen [Koz81; Koz85] had proposed a model for probabilistic programs,
that featured probabilistic choice, but left out demonic choice.
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Nonetheless it is crucial to retain demonic choice, as it is the basis of refinement calculus and
abstraction of programs. [MM04]

When composing processes we must be careful about the issue of duplication, which in presence of
probabilistic and non-deterministic choice may lead to incorrect results. [Mor+95]
An example is given by the issue of the idempotency of the demonic choice operator, which de-
pends on its definition: if the demonic choice operator can distribute through probabilistic choice
operators we can have the following behaviour[Mis00]:

(A 1
2

⊕ B) ⊓ (A 1
2

⊕ B) = A 1
4

⊕ ((A ⊓ B) 1
3

⊕ B)

The reason for this is that two instances of the same program containing a demonic choice are
actually two different programs because of it, as every demonic choice is a unique element.

Another way of seeing this is that it is crucial to know when a choice is made, thus we have to be
very careful when we distribute choice operators.

We also need a probabilistic version of healthiness conditions — this is another contribution of
this same paper [Mis00]: a probabilistic semantic link between action systems (these are sets of
guarded commands, here expressed in pGCL) and CSP is provided, and this induces probabilistic
versions of the healthiness conditions.

The problem of automatically checking properties involving real numbers (such as probabilities) is
a difficult one. A simplifying approach to the problem has been by McIver and Weber [MW05] via
a generalization of Kleene algebra: a probabilistic Kleene algebra treats probability implicitly, as it
is contained in the fragment of probabilistic programs on which it operates.
The idea is to leave an underlying probabilistic level to be examined once the problem has been
simplified through higher level proofs — this takes away non-necessary probabilistic reasoning
which is computationally very expensive.
Thus the ideal approach sees a qualitative proof as a first step in the verification process, and
subsequently the quantitative model-checking technique is applied [MCM06]: this reduces the
problem of the state space explosion — which is a typical problem, especially in a larger setting,
such as the one of distributed probabilistic systems.
A model checker that has been tested for verification of probabilistic systems is PRISM [McI06]:
this paper bases its approach to the analysis of probabilistic systems using pGCL and on the for-
malism of probabilistic action systems, used to describe an example of wireless communication;
the comparison of a process with a more refined one (in terms of details added to the description)
shows that there is a consistent increase in the number of transitions and states.
Another application of a probabilistic method to a real algorithm can be found in [MV04] and is
the verification of the Miller-Rabin algorithm through pGCL and through a probabilistic extension
of Hoare logic by den Hartog (also relying on a variation of GCL, usually referred to as pH — pGCL
is easier to use, according to the authors).

The theory of probabilistic sequential programs is developed further by Ying [Yin03]: the under-
lying logic is changed, i.e. a probabilistic logic is used instead of ordinary two-valued logic. The
paper discusses a different concept of refinement, that is obviously probabilistic, and gives seman-
tics for the language used. One remark about this paper: angelic and demonic choices are taken
into account, but it does not handle probabilistic choice.

On the topic of quantum computation, which is obviously closely related to probability issues, an
ad hoc language has been proposed, namely qGCL, which is a variation of pGCL. [SZ99]
It features demonic non-determinism and probabilistic choice and has an associated refinement
calculus that enables proof of algorithm correctness by formal reasoning. The difference with
respect to pGCL is the presence of three quantum procedures, namely initialisation, evolution and
finalization.

A different approach to reasoning about distributed probabilistic systems can be found in [NS09]:
the authors use PTSC, which is a language to describe systems from a perspective that merges prob-
ability, time and shared-variable-concurrency, that features a delay operator, guarded assignments,
a probabilistic choice operator and also a probabilistic parallel composition.
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This work contributes to the theory by extending this language with constructs for interleaving and
handling of local scopes.

In recent times a paper by Jun Sun et al.[SSL10] has described a probabilistic analysis of the
likelihood of a program in a medical device satisfying a safety specification, given that random,
but hopefully unlikely events, can prevent the correct behaviour, even if the program is the best one
possible. Their probabilistic model checking directly corresponds to the probabilistic refinement
we are going to present in §4.1.

Finally it is worth mentioning also [MM02], where the authors give a probabilistic extension of the
µ-calculus, with an added probabilistic choice operator, and an interesting game interpretation of
this calculus is presented.
It is doubtless that a quantitative formal analysis offers great advantages compared to a qualitative
one: the challenge is to find a computationally feasible way of dealing with this.

2 States and distributions, informally

The purpose of this work is to develop a framework that integrates well into UTP and, at the
same time, offers an effective way to handle probabilistic choice and non-determinism together in
probabilistic programs.

More specifically the UTP approach implies that we treat program as predicates, that relate the
situation before the program is run to the situation after the program is run.

In UTP we usually talk about variables and the values they map to, so a naïve (and quite straight-
forward) generalization to handle probability would simply consist in mapping variables to pairs
containing a values and corresponding probabilities; in this case we would be handling objects
with the following shape8:

V → (W → [0..1])

Although such an easy generalization may look appealing, this yields wrong results: the reason is
that we lose the “entanglement” among the variables, and we should rather use objects with this
other shape:

(V →W ) → [0..1]

To see this let us consider an example: from an initial situation where y is initialized to 0 with
probability 1/2 and to 1 with probability 1/2, after running the simple program x ∶= y we obtain
these descriptions of the resulting situation, with obvious meaning of the notation:

x↦ (
0↦ 1/2
1↦ 1/2

) , y↦ (
0↦ 1/2
1↦ 1/2

) (first case — too naïve, indeed)

(
x↦ 0
y↦ 0

) ↦ 1/2,(
x↦ 1
y↦ 1

) ↦ 1/2 (second case — we keep the entanglement)

Now, what about the probability that x = y? Obviously this probability is 1, but clearly the first kind
of object does not provide enough information to give the appropriate answer, while the second
does — so this is the way we will be modelling things.

Let us now start with a few informal definitions for the foundational elements of this framework:
states and distributions.

A state σ is a memory mapping, that associates a vector of variables v with a corresponding vector
w , whose components are the values contained by the variables in v .

σ ≙ v ↦ w

8We underline whenever we talk about vectors or sets of vectors: A stands for a n-th dimensional vectorial space
A ×A × ⋅ ⋅ ⋅ ×A, for an appropriate n.
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The components of v , which are the variables mentioned by a state, constitute its alphabet: for the
moment we will consider only states having a fixed alphabet A — let us note the set of all such
states as SA .

Generally speaking we can define a distribution as a function χ mapping states to real numbers9,
and if we restrict ourselves to the interval [0..1] we have a probability distribution δ, which as-
sociates states with probabilities (for the moment let us consider only those distributions which
mention every possible state in the finite set SA):

δ ≙ {σ↦ p ∣ σ ∈ SA}

In a probability distribution δ the sum of the probabilities of all states (noted as ∥δ∥ ) cannot
exceed 1.

It is possible to operate on distributions by pointwise lifting in an obvious way operators such as
addition, product and multiplication by a scalar number.

An interesting case is the one when we multiply a probability distribution by what we term a
weighting distribution, which is a distribution π mapping states to real numbers in the interval
[0..1], without the constraint ∥π∥ ≤ 1. The resulting probability distribution, noted δjπo, has the
property of being pointwise smaller than δ, and will have an important role when defining choice
constructs:

δjπo ≙ {σ↦ π(σ) ⋅ δ(σ) ∣ σ ∈ dom(δ)}

Another example is when we want to select the subset of a distribution δ, which comprises only
states where a condition c (which is a boolean expression) is satisfied: for reasons that will become
clear later on, we have chosen to overload the above notation and note this as δjco.

δjco ≙ {σ↦ δ(σ) ∣ σ ∈ dom(δ) satisfies c}

As the probability of a condition c to be true on a distribution δ can be computed by adding up
the probabilities relative to all states that satisfy such a condition, we can express this probability
using the notation introduced so far as ∥δjco∥.

Modifying the probability associated with a state is not the only operation we are interested in:
there are cases when we want to replace a pair (σ↦ p) with a pair (σ′ ↦ p).
Such an operation may seem a little unusual, but it is actually what happens when something
alters a state, transforming a before-state σ into an after-state σ′: the probability of the after-state
being σ′ is the same as the before-state being σ.
Given an assignment v ∶= e, where e is a vector of expressions, if we perform this operation on
every state of a distribution δ we obtain the distribution δ{∣e/v∣}: the postfix operator {∣e/v∣} modifies
δ to reflect the modifications introduced by the assignment — the intuition behind this, roughly
speaking, is that all states σ where the expression e evaluates to the same value w = evalσ(e) are
replaced by a single state σ′ = (v ↦ w) that maps to a probability that is the sum of the probabilities
of the states it replaces.

δ{∣e/v∣} ≙ {σ′ ↦ Σδ(σ) ∣ σ ∈ dom(δ) ∧ evalσ(e) = σ′(v)}

Let us see this on the example we had before:

δ =

⎧⎪⎪
⎨
⎪⎪⎩

(
x↦ 0
y↦ 0

) ↦ 1/4,(
x↦ 0
y↦ 1

) ↦ 1/4,(
x↦ 1
y↦ 1

) ↦ 1/4,(
x↦ 1
y↦ 0

) ↦ 1/4

⎫⎪⎪
⎬
⎪⎪⎭

δ{∣y/x∣} =

⎧⎪⎪
⎨
⎪⎪⎩

(
x↦ 0
y↦ 0

) ↦ 1/2,(
x↦ 1
y↦ 1

) ↦ 1/2

⎫⎪⎪
⎬
⎪⎪⎭

This is shown in Figure 3.
9In other words, it is a real-valued random variable — pGCL expectations are therefore distributions with the additional

constraint of having only non-negative values.
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σ00

σ01

σ10

σ11

1/4

1/4

1/4

1/4

{∣x/y∣}

δ′ = δ{∣x/y∣}δ

σ00

σ01

σ10

σ11

1/2

0

0

1/2

Figure 3: The assignment in the example.

If we had had the assignment x ∶= 4 instead of x ∶= y, the result would have been:

δ{∣4/x∣} =

⎧⎪⎪
⎨
⎪⎪⎩

(
x↦ 4
y↦ 0

) ↦ 1/2,(
x↦ 4
y↦ 1

) ↦ 1/2

⎫⎪⎪
⎬
⎪⎪⎭

3 Programs

Once we have these foundational elements, we can build predicates10 that talk about probability
distributions.

before-distribution predicate

Dp

after-distribution

Dp ×Dp → {true, false}

program

Dp

d:PA program A(δ, δ′) is a particular predicate that links a before-distribution δ, that describes the
situation before running the program (in terms of the probabilities associated with the possible
before-states), to an after-distribution δ′, that describes the situation after running the program (in
terms of the probabilities associated with the possible after-states).

d:P:ImgThe program image A(δ)11 is the set of all possible after-distributions δ′ that satisfy the pro-
gram A(δ, δ′).

d:P:WtThe probability p of the condition c being satisfied by the program imageA(δ) lies in the set ∥A(δ)jco∥,
where12:

∥A(δ)jco∥ = {∥δ′jco∥ ∣ δ′ ∈ A(δ)}

We refer to this set as the weight of the program A with respect to the condition c.

3.1 Program constructs

We define the following program constructs:

d:P:Skip• skip ≙ δ′ = δ

10Ordinary logic predicates, featuring all standard logic operators and quantifiers.
11When we have that ∀δ1, δ2 ●A(δ1) = A(δ2), we may write simply A instead of A(δ).
12Note that the operators ∥_∥ and j_o have been lifted to sets of probability distributions: in both cases the result is a set,

whose elements are the results of applying the operator to each element of the set of probability distributions.
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d:P:Abrt• abort ≙ true

d:P:A• v ∶= e ≙ δ′ = δ{∣e/v∣}

d:P:A:Sng• vi ∶= e ≙ δ′ = δ{∣e/vi∣}

d:P:Seq• A;B ≙ ∃δm ●A(δ, δm) ∧ B(δm, δ
′)

d:P:Ch:Cnd• A◁ c▷ B ≙ ∃δA, δB ●A(δjco, δA) ∧ B(δj¬co, δB) ∧ δ
′ = δA + δB

d:P:Ch:Prb• A p⊕ B ≙ ∃δA, δB ●A(p ⋅ δ, δA) ∧ B((1 − p) ⋅ δ, δB) ∧ δ
′ = δA + δB

d:P:Ch:Dmn• A ⊓ B ≙ ∃π, δA, δB ●A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δ
′ = δA + δB

d:P:Loop• c ∗A ≙ µX ● (A;X) ◁ c▷ skip

The failing program abort is represented by the predicate true, which captures the fact that it is
maximally unpredictable.

Program skip makes no changes and immediately terminates. Assignment remaps the distribution
as has already been discussed in the previous §2.

Sequential composition is characterised by the existence of a “mid-point” distribution that is the
outcome of the first program, and is then fed into the second.

We characterise conditional choice by using the condition (and its negation) to filter the left- and
right-hand programs appropriately, and we simply sum the (now effectively disjoint) distributions.

Probabilistic choice simply uses the probability and its complement to scale the distributions for
merge — this definition preserves all usual properties.

Non-deterministic choice in UTP is obtained by existentially quantifying over all possible weighting
distributions, used to weight both sides13. In effect the predicate is only satisfied by any combina-
tion of left and right distributions that is pointwise larger than the minimum of both.

The definition of loop that we are proposing is somehow still incomplete, as we still have not
provided an ordering relation among programs: we will fix this in the following §4, where we
define the refinement relation between two programs — so in a loop we take the least fixpoint with
respect to the ordering introduced by refinement.

d:P:StructureWe can see that all programs that mention δ and δ′ can be written as a predicate of the following
shape14:

∃QuantOf(A) ● δ′ = BodyOf(A) ○ δ ∧ OtherCndOf(A)

where:

• BodyOf(A) is a sequence of modifications (i.e. interleaved restrictions and remapping opera-
tions) that are applied to δ in order to obtain the corresponding δ′;

• QuantOf(A) is a list of weighting distributions — all of the quantified probability distributions
can be eliminated via the one-point rule, so that δ′ can be expressed as BodyOf(A) ○ δ;

• OtherCndOf(A) is a list of any other conditions that are asserted by the program — no
program constructs features other conditions so far, but we will have an extra condition in
the generic choice operator, which we will define later on.

In the next subsection we relate pGCL expectations to this framework; thereafter we discuss some
considerations on the topic of choice constructs.

13If the weight of one side depends on π, the weight of the other side will depend on (ι − π), here and later on noted
as π̄.

14We can prove this by structural induction of the language syntax.
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3.2 Deriving pre-expectations

As an expectation is a random variable (with non-negative real values), that can be represented
by a distribution in our framework. Then if χ′ represents a post-expectation and A is a program,
we can define the corresponding pre-expectation χ by computing the expected final weight of each
state before A is run:

χ(σ) = min({∥χ′ ⋅ δ′∥ ∣ δ′ ∈ A(ησ)})

where _ ⋅ _ is the pointwise multiplication of two distribution and we have used the notation ησ to
represent the distribution null everywhere with the exception of a single state σ mapping to 1:

ησ ≙ ε † {σ↦ 1}

3.3 More on choice constructs

Choice constructs deserve a bit more attention: we are now going to discuss some of the properties
of probabilistic and non-deterministic choice; later on we will define a generic choice construct
that covers conditional, probabilistic and non-deterministic choice (and more).

On probabilistic choice

p:P:Ch:Prb:CommFirst of all it is worth noticing that, from the above definition of probabilistic choice, we have the
following equivalence:

A p⊕ B ≡ B (1−p)⊕A

p:P:Ch:Prb:Assoc
See proof B.23

Moreover we have the following property:

A p⊕ (B q⊕C) ≡ (A r⊕ B) s⊕C ∧ p = rs ∧ (1 − s) = (1 − p)(1 − q)

A few words on the probability p, that parametrises this operator: this may be a number in the
range [0, 1] in the simplest setting, but in a more general case it is one of the possible values of a
stochastic variable P that follows a probability distribution, whose probability density function fP
has the property of being compact in the range [0, 1]:

∫
+∞

−∞
fP(p)dp = ∫

1

0
fP(p)dp = 1

The distribution of this stochastic variable does not depend on the program variables, but in an
even more general case may depend on other parameters q1, q2, . . . , qn:

∫
+∞

−∞
fPQ(p,q1, q2, . . . , qn)dp = ∫

1

0
fPQ(p,q1, q2, . . . , qn)dp = fQ(q1, q2, . . . , qn)

On non-deterministic choice

Usually we talk about demonic non-determinism when we are expecting the worst-case behaviour,
to model something that behaves as bad as it can for any desired outcome.
Our definition of non-deterministic choice per se has no such behaviour, but it will show up with
the definition of refinement that we give in §4 or, more in general, whenever we explicitly choose
to focus on the worst-case scenario: for this reason we prefer to use the more refer it as to the
non-deterministic choice, rather than to the demonic choice.

The non-deterministic choice operator is idempotent according to the above definition: although
some definitions in the literature have this property, there are some other where this property does
not hold.
For example if on both sides we have the same program containing a probabilistic choice and this
choice is resolved independently on each side before the non-deterministic choice is performed,
then idempotency does not hold. Nonetheless idempotency does hold if the probabilistic choice is
triggered after the non-deterministic choice is made — this is the behaviour that we can find in our
framework.
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We can reproduce the other behaviour if we run the program twice with probabilistic choice on
local variables, and then we merge the outputs by means of a non-deterministic choice: this is
a behaviour that has nothing to do with idempotency — we keep the actions of one program
separate from the other’s, so we are actually dealing with two different programs that share the
same specification.

On a generic choice construct

d:P:ChAnother remark that is worth making, is that we can see how all choice constructs look quite
similar, or at least they follow a common pattern. The reason is that all choice constructs can be
seen as a specific instance of a generic choice construct:

choice(A,B,X ) ≙ ∃π, δA, δB ● π ∈ X ∧A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δ
′ = δA + δB

where X ⊆ Dw and Dw is the set of all weighting distributions.

In fact we have that:

p:P:Ch:Cnd:Alt• for X = {ιjco} we have conditional choice:

A◁ c▷ B = choice(A,B,{ιjco})

p:P:Ch:Prb:Alt• for X = {p ⋅ ι} we have probabilistic choice:

A p⊕ B = choice(A,B,{p ⋅ ι})

p:P:Ch:Dmn:Alt• for X = Dw we have non-deterministic choice:

A ⊓ B = choice(A,B,Dw)

p:P:Ch:Or:AltMoreover we can see the disjunction of two programs as another kind of choice, where X = {ε, ι}:

A ∨ B = choice(A,B,{ε, ι})

Finally we can also use this generic construct to create new kinds of choices, other than the more
traditional ones:

d:P:Ch:CndPrb• for X = {p ⋅ ιjco} we have the conditional probabilistic choice, which behaves like A with
probability p and like B with probability (1− p) in the case when c holds, but it behaves like B if c
does not hold:

A◁ pc▷ B = choice(A,B,{p ⋅ ιjco})

p:P:Ch:SwPrb• for X = {p ⋅ ιjco + q ⋅ ιj¬co} we have the switching probabilistic choice, which is equivalent to a
probabilistic choice with parameter p if c holds, with parameter q if c does not hold:

A p◁c▷q⊕ B = choice(A,B,{p ⋅ ιjco + q ⋅ ιj¬co})

d:P:Ch:CndDmn• for X = Dwjco we have the conditional non-deterministic choice, which behaves like A ⊓ B if c
holds, but it behaves like B if c does not hold:

Ac⊓ B = choice(A,B,Dwjco)

p:P:Ch:DmnPrb• for X = {π ∣ ∀σ●p ≤ π(σ) ≤ 1−q}, where p+q ≤ 1, we have the non-deterministic probabilistic
choice, which guarantees a probability p to behave like A and a probability q to behave like B:

Ap⊕qB = choice(A,B,{π ∣ ∀σ ● p ≤ π(σ) ≤ 1 − q})



15

p:P:Ch:FDmn• for X = {p ⋅ ι ∣ p ∈ [0..1]} we have the fair non-deterministic choice:

A
fair
⊓ B = choice(A,B,X = {p ⋅ ι ∣ p ∈ [0..1]}) = ∃p ●A p⊕ B

It is worth noticing that this kind of choice is different from non-deterministic choice (we can view
it as a less general form of it), in fact from this definition we have that:

∀ δ ● (A
fair
⊓ B)(δ) ⊂ (A ⊓ B)(δ)

These possibilities have to be explored further, as there can be many more — and potentially more
useful than these ones.

A few laws on choice operators

Here is a non-comprehensive list of interesting laws on choice operators, that hold in our frame-
work and that can also be found in pGCL:

p:P:Ch:Idem
See proof B.24

Idempotency of choice operators : ∀X ● choice(A,A,X ) ≡ A

p:P:Ch:Dscrd
See proof B.25

Discarding right-hand option : choice(A,B,{ι}) ≡ A

p:P:Ch:Dst
See proof B.26

Distributivity of choice operators :

choice(A, (choice(B,C,X2)),X1) ≡ choice((choice(A,B,X1)), (choice(A,C,X1)),X2)

p:P:Ch:Seq
See proof B.27

Sequential composition : choice(A,B,X );C ≡ choice(A;C,B;C,X )

p:P:Ch:Flip
See proof B.28

Choice flipping : ∀X ● choice(A,B,X ) ≡ choice(B,A, X̄ ) ∧ X̄ = ⋃π∈X π̄

p:P:Ch:Mntn
See proof B.29

Monotonicity of generic choice : ∀δ ● X1 ⊆ X2 ⇒ choice(A,B,X1)(δ) ⊆ choice(A,B,X2)(δ)

4 Refinement

d:P:RfnWe are going to define the refinement relation between two programs through a relation between
the corresponding program images: we say that a program A is refined by a program B when for
all conditions and (before-)distributions, the minimal probability that an (after-)distribution from
A(δ) satisfies a condition is less than that for B(δ):

A ⊑ B ≙ ∀z, δ ●min(∥A(δ)jzo∥) ≤ min(∥B(δ)jzo∥)

Informally, whatever condition z we are expecting, program B refines program A if it is at least “as
good” when it comes to the probability of satisfying it.

The use of min here matches the use in pGCL of it to define demonic choice, so we can see how
this notion of refinement creates an order relation that is exactly the one created by the refinement
relation used for pGCL. [MM04]

d:P:Rfn:AltThe whole point of defining refinement this way was to show the similarity with pGCL; moving
further and taking advantage of the structure of our framework, we can give an alternative defini-
tion:

A ⊑ B ≙ ∀δ ● B(δ) ⊆ (A(δ))
△

d:P:RfnSetwhere the refinement set (A(δ))
△

is the (up-, convex- and Cauchy-closed) set defined as:

(A(δ))
△

≙ {δ△ ∣ δ′ ≤ δ△ ≤ ι ∧ δ′ = ∑
δ′
i
∈A(δjπio)

δ′i ∧ ∑πi = ι}
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This set includes all after-distributions that are at least as great as those obtainable because of
the non-determinism in the behaviour of A: a program whose image lies in this set for all δ is a
refinement of A, and hence the term “refinement set”.

From the above definition(s) we can easily demonstrate familiar refinement relations:

A ⊓ B ⊑ A

A ⊓ B ⊑ B

A ⊓ B ⊑ A p⊕ B

A ⊓ B ⊑ A◁ c▷ B

This comes as no surprise, in fact:

A p⊕ B = ∃π, δA, δB ●A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δ
′ = δA + δB ∧ π = p ⋅ ι

A◁ c▷ B = ∃π, δA, δB ●A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δ
′ = δA + δB ∧ π = ιjco

Concerning disjunction, we have that refinement fails to distinguish it from non-deterministic
choice, as their refinement sets are the same:

A ⊓ B ⊑ A ∨ B ∧ A ∨ B ⊑ A ⊓ B

or, for short, A ⊓ B⇔ A ∨ B.

This result is due to the definition we have used for refinement, as we have used the traditional
view of non-determinism as demonic non-determinism, i.e. that returning the worst possible result
for any desired outcome: this is in line with the traditional use of disjunction as a definition for
demonic choice.
Alternative definitions of refinement may take advantage of the possibility to distinguish between
the operators ⊓ and ∨ — this is left for future work.

p:P:Rfn:Ch
See proof B.30

In general, from the definition of refinement and the monotonicity of generic choice, we can show
that:

X2 ⊆ X1 ⇒ choice(A,B,X1) ⊑ choice(A,B,X2)

p:P:Rfn:Dsj
See proof B.31

It is worth stressing that the reverse implication is false — a counterexample is given by the case
of the disjunction operator, where we have that:

p:P:Rfn:Dsj2
See proof B.32A ∨ B ⊑ A p⊕ B

A ∨ B ⊑ A◁ c▷ B

4.1 Probabilistic refinement

d:P:PRfnWe want to generalise things even further, and introduce a notion of probabilistic refinement:

A
p

⊑ B ≙ ∀z, δ ● p ⋅min(∥A(δ)jzo∥) ≤ min(∥B(δ)jzo∥)

We call this a p-accurate refinement, meaning that the refinement relation ⊑ is true in a fraction p
of the possible cases.

d:P:PRfn:AltWe can give this alternative definition as well, similarly as we did above:

A
p

⊑ B ≙ ∀δ ● B(δ) ⊆ (p ⋅A(δ))
△

where p ⋅A(δ) is the set made of all elements of A(δ) multiplied by p.

Let p∗ be the highest positive real number such that A
p∗
⊑ B: this is the accuracy with which B

refines A and is a measure of how “better” B is when compared to A in any possible case — and
of course p < 1 implies that B is not as “good” as A.
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It is immediate to see that the refinement relation we have defined before is a special case of this
more generic operator for p = 1, i.e. it is a 1-accurate refinement15:

A ⊑ B = A
1

⊑ B

This definition makes it much more meaningful to have a deterministic program on the left-hand
side of the refinement relation16: the utility of such a thing is for example that a deterministic
specification can be refined probabilistically by a (potentially) non-deterministic implementation,
and the implementation accuracy is a piece of information of great value.

This notion of refinement may seem like generalisation for its own sake, but it has useful real-world
applications — an example on medical devices can be found in [SSL10].

5 States and distributions, formally

Now that we have presented the whole idea, let us go down to the details which have been ex-
plained informally or in a less general way (when not skipped) in §2.

Examples relative to this part can be found in §A.1.

5.1 States

d:SA state σ is a total function σ ∶ V →W that maps each variable vi in the memory to a value wi.
We use S to note the state space, which is the set of all possible states.

According to this definition we have:

dom(σ) = V = {v1, v2, . . . , vn, . . .}

d:S:AlphWe refer to the domain of the state function also as the alphabet of that state:

alph(σ) ≙ dom(σ)

d:TWi is the type of the variable vi, i.e. vi ∶ Wi. We note this also as:

type(vi) ≙ Wi ⊂ W

where W is the set containing all types. For now we assume we have only booleans and integers
as types.

d:EAn expression on variables is a combination of constants and variables, combined by operators.
The set of all expressions is E .

d:E:EvAn expression e can be evaluated in a state σ by replacing each variable vi it mentions with the
value σ(vi) that is contained by that variable in that state: doing the calculations with these values
returns the evaluation of the expression e on the state σ, which is the value evalσ(e).

Here is a recursive definition, where k is a constant, F a n-ary function and xi an expression:

evalσ(k) ≙ k

evalσ(vi) ≙ σ(vi)

evalσ(F (x1, x2, . . . , xn)) ≙ F (evalσ(x1), evalσ(x2), . . . , evalσ(xn))

15Or a 100%-accurate refinement, in case we prefer expressing p as a percentage.
16It is immediate to prove that a deterministic program A can be refined only by another program B, which has to be

equivalent to A, i.e. such that A ⊑ B⇔ B ⊑ A.
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d:E:Ev:SHAs a shorthand notation for the evaluation function, we overload the function state:

σ(e) ≙ evalσ(e)

When an expression e contains only values and operators, we have that its evaluation is the same
on any state, thus when the notation is clear from the context we will simply write e instead of
evalσ(e) (or σ(e), using the shorthand notation).

p:E:Ev:VSUsing this, we can write that:

σ(e) = evalσ(e{σ(vi)/vi}) = σ(e{σ(vi)/vi}) = e{σ(vi)/vi}

d:S:SatA condition is a boolean expression: we say that a state satisfies a condition c when it evaluates to
true in that state.

d:AAn abstract state α ⊆ S is a set of states:

α ≙ {σ1, σ2, . . . , σn, . . .}

d:A:AlphThe alphabet of an abstract state is defined as the set of all the different alphabets that appear in
the abstract state:

alph(α) ≙ {A ∣ A = alph(σ) ∧ σ ∈ α}

d:A:LAAWe use SA to note the largest abstract state such that alph(α) = {A}:

SA ≙ {σ ∣ alph(σ) = A}

We write it this way as it is the largest subset of S , whose elements are all those states with
alphabet A.

d:A:SatWe say that an abstract state satisfies a condition c when all its elements do.

d:A:RstWe define the restriction of an abstract state through a condition c as a total function _j_o ∶ (℘S ×
E) → ℘S , defined as follows:

αjco ≙ {σ ∣ σ ∈ α ∧ σ(c) = true}

p:A:Rst:Alt
See proof B.1

We have that:
αjco = Sjco ∩α

p:A:Rst:TClearly if the condition is true we have:
αjtrueo = α

p:A:Rst:FAnd obviously if the condition is false we have:

αjfalseo = ∅

5.2 Distributions

d:DA distribution χ is a partial function χ ∶ S ↛ R, that maps some states to real numbers.

χ ≙ {σ1 ↦ x1, σ2 ↦ x2, . . . , σn ↦ xn, . . .}

We refer to xi as the weight of that state σi and we use D to note the set of all possible distributions.

d:D:WtThe weight of a distribution χ is the sum over its domain of all the state weights:

∥χ∥ ≙ ∑
σ∈dom(χ)

χ(σ)
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d:D:Wt:LiftThis can be lifted to a set X ⊆ D of distributions in an obvious way:

∥X ∥ ≙ {∥χ∥ ∣ χ ∈ X}

d:D:AlphThe alphabet of a distribution is defined as the set of all the different alphabets that appear in the
distribution domain:

alph(χ) ≙ alph(dom(χ))

d:D:EDA particular distribution is the empty distribution εα ∶ S ↛ R, which is a distribution such that
img(εα) = {0}, i.e. it maps each state in the abstract state α to 0:

εα ≙ {σ↦ 0 ∣ σ ∈ α}

d:D:UDAnother particular distribution is the unity distribution ια ∶ S ↛ R, which is a distribution such that
img(εα) = {1}, i.e. it maps each state in the abstract state α to 1:

ια ≙ {σ↦ 1 ∣ σ ∈ α}

d:D:E:SH / d:D:U:SHWe define the following shorcuts:

εA ≙ εSA ιA ≙ ιSA

εχ ≙ εdom(χ) ιχ ≙ ιdom(χ)

ε ≙ ∅ ι ≙ ιS

d:D:RstWe define the restriction of a distribution through a condition c as follows:

χjco ≙ {σ↦ χ(σ) ∣ σ ∈ dom(χ)jco}

p:D:Rst:CnjFrom this definition we have:

χjc1 ∧ c2o = χjc1ojc2o = χjc2ojc1o

Moreover:

p:D:Rst:EqC
See proof B.2

Restriction through equivalent condition : (c1⇔ c2) ⇒ χjc1o = χjc2o

p:D:Rst:ImC1
See proof B.3

Restriction through implied condition (I) : (c2 ⇒ c1) ⇔ χjc1ojc2o = χjc1o

p:D:Rst:ImC2
See proof B.4

Restriction through implied condition (II) : (c1 ⇒ ¬c2) ⇒ χjc1ojc2o = ε

In case we have conditions cσ and cα selecting respectively a single state σ and an abstract state
α, we simplify the notation as follows:

d:D:RstS• δjσo ≙ δjcσo

d:D:RstA• δjαo ≙ δjcαo

d:D:PntWe define the point distribution (with domain α) as the restriction of a unity distribution to a single
state:

ησ,α ≙ ιαjσo

Concerning the weights of the restricted distributions above we have that:

p:D:Rst:Wt• ∥δjco∥ = ∑σ∈dom(χ)jco δ(σ)
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p:D:RstS:Wt• ∥δjσo∥ = δ(σ)

p:D:RstA:Wt• ∥δjαo∥ = ∑σ∈α δ(σ)

p:D:Pnt:Wt• ∥ησ,α∥ = 1

d:D:RstDWe also define the restriction of a distribution through another distribution as follows:

χ1jχ2o ≙ {σ↦ χ1(σ) ⋅ χ2(σ) ∣ σ ∈ dom(χ1) ∩ dom(χ2)}

p:D:RstD:CmmFrom this definition we have:
χ1jχ2o = χ2jχ1o

p:D:Rst:Alt
See proof B.5

The reason why we call these operations in a similar way is that if we can see that the restriction of
a distribution through a condition as a generalization to distributions of the restriction of abstract
states through a condition, the restriction of a distribution through a distribution can be seen as a
further generalization:

χjco = χkιχjcop

All of this can be lifted to a set X ⊆ D of distributions in an obvious way:

d:D:Rst:Lift• X jco = {χjco ∣ χ ∈ X}

d:D:RstD:Lift• X jχo = {ξjχo ∣ ξ ∈ X}

Operations on distributions

d:D:SumThe sum of distributions is defined as:

χ1 + χ2 ≙ {σ↦ (χ1(σ) + χ2(σ))}

From this definition we have that:

p:D:Sum:Wt• ∥χ1 + χ2∥ = ∥χ1∥ + ∥χ2∥

p:D:Sum:Rst• (χ1 + χ2)jπo = χ1jπo + χ2jπo

p:D:Sum:CS
See proof B.6

Thanks to the latter property we can split a distribution into two other distributions, where all the
elements of one satisy a given condition c, while the elements of the other do not:

χ = χjco + χj¬co

d:D:MulThe multiplication by a scalar number is defined as:

n ⋅ χ ≙ {σ↦ (n ⋅ χ(σ)) }

d:D:ProdThe restriction of a distribution through another distribution may be regarded as a kind of product,
and sometimes it is easier to think of it in these terms, so we define the product of two distribution
as:

χ1 ⋅ χ2 ≙ χ1jχ2o

p:D:Prod:CmmFrom this definition we have that:
χ1 ⋅ χ2 = χ2 ⋅ χ1
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Types of distributions

d:D:WDA weighting distribution π is a distribution such that img(π) ⊆ [0..1].
We use Dw to note the subset of D of all weighting distributions.

d:D:WD:CmpGiven a weigthing distribution π, we define its complementary weighting distribution π̄ as:

π̄ ≙ ιπ − π

p:D:WD:Rst
See proof B.7

Restriction : π1jπ2o ∈ Dw

d:D:PDA probability distribution δ is a weighting distribution such that ∥δ∥ ≤ 1:

δ ≙ {σ1 ↦ p1, σ2 ↦ p2, . . . , σn ↦ pn, . . .}

We use Dp to note the subset of Dw of all probability distributions.

In this case we will refer to the weight pi as to the probability17 of the state σi; likewise we will
talk of the probability of an abstract state18, rather than of its weight.

p:D:PD:Rst
See proof B.8

Restriction : δjπo ∈ Dp

In the remainder of this document we will be talking mostly of probability distributions, so we will
usually be referring to them simply as “distributions”.
Whenever we want to use this term in the more general meaning we have used so far, we will
rather use “general distributions”.

6 Assignments

An assignment performed in a state σ is an operation vi ∶= ei, that updates the value contained in
vi with σ(ei).

In UTP we usually use a dash to mark a variable, in order to refer to the new value v ′i it contains:
the same convention is adopted here. Moreover we will use dashes in a similar way to denote
after-states (σ′) and after-distributions (δ′).

d:S:SAWe use the following notation for n simultaneous assignments of the expressions e1, e2, . . . , en to
the variables v1, v2, . . . vn ∈ V :

v ∶= e ≙ v1, v2, . . . , vn ∶= e1, e2, . . . , en

where

v =

⎛
⎜
⎜
⎜
⎝

v1
v2
⋮

vn

⎞
⎟
⎟
⎟
⎠

∈ V and e =

⎛
⎜
⎜
⎜
⎝

e1
e2
⋮
en

⎞
⎟
⎟
⎟
⎠

∈ E

d:E:Ev:VSHMoreover, we also use the following shorthand notation:

σ(v) ≙

⎛
⎜
⎜
⎜
⎝

σ(v1)
σ(v2)
⋮

σ(vn)

⎞
⎟
⎟
⎟
⎠

d:S:VMapBy using this notation we can define a vectorial extension for the map operator:

v ↦ w ≙ {vi ↦ wi ∣ 1 ≤ i ≤ n}
17δ(σ) is a function of σ and is what is usually referred to as the probability mass function: it represents the way the

probability is distributed depending on σ.
18If we see a state as an outcome, we can see an abstract state as an event (i.e. a set of outcomes).
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p:S:AltWe can use this to give a compact definition of a state:

σ = v ↦ w

where

w =

⎛
⎜
⎜
⎜
⎝

w1
w2
⋮

wn

⎞
⎟
⎟
⎟
⎠

∈ W

d:E:SubWe use the following notation for simultaneous substitutions19 {f1/g1}{f2/g2}⋯{fn/gn}:

{f/g} ≙ {f1/g1}{f2/g2}⋯{fn/gn}

where

f =

⎛
⎜
⎜
⎜
⎝

f1
f2
⋮
fn

⎞
⎟
⎟
⎟
⎠

and g =

⎛
⎜
⎜
⎜
⎝

g1
g2
⋮
gn

⎞
⎟
⎟
⎟
⎠

d:E:Sub2When the substitution {f/g} is applied to a vector of expressions e, the meaning is the following:

e{f/g} ≙

⎛
⎜
⎜
⎜
⎝

e1{f/g}
e2{f/g}

⋮
en{f/g}

⎞
⎟
⎟
⎟
⎠

d:E:CompThe composition of two expression vectors f and e is defined as a particular substitution that
involves the variable vector v:

f ○ e ≙ f{e/v} =

⎛
⎜
⎜
⎜
⎝

f1{e/v}
f2{e/v}

⋮
fn{e/v}

⎞
⎟
⎟
⎟
⎠

We can read the notation f ○ e as f after e.

p:E:Ev:CompConcerning the evaluation of this vector we have

σ(f ○ e) = σ(f{e/v}) = σ(f{σ(e)/v}) = f{σ(e)/v}

This is equivalent to evaluating f in a state ζ such that ζ(v) = σ(e).

Now it should be clear why we intentionally use a symbol like ○ and the word “after”, which both
remind of functional composition: if for every expression and variable vectors e and v we define
an associated function ev ∶ W ↛W as:

ev(w) = evalv↦w(e)

then for any state σ = v ↦ w , we have that σ(f ○ e) = fv(ev(w)):

⎧⎪⎪
⎨
⎪⎪⎩

σ(f ○ e) = fv(w∗)

w∗ = ev(w)

d:E:Comp:IterWhen composing the same expression for k ≥ 1 times, we use the following notation:

ek ≙ e ○ e ○ ⋅ ⋅ ⋅ ○ e
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k times

We define that for k = 0 this notation has the following meaning:

e0 ≙ v
19For this to make sense, it must be the case that ∀i ≠ j ● gi ≠ gj.
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6.1 The inverse-image set

d:S:InvLet us now define the inverse-image set for a generic assignment v ∶= e, after which the new mapping
of the variable vector is a state σ′:

Inv(v ∶= e,σ′) ≙ {σ ∣ σ′(v) = σ(e) ∧ σ ∈ Salph(σ′)}

d:A:InvWe can generalize this to an abstract state α′:

Inv(v ∶= e,α′) ≙ ⋃
σ′∈α′

Inv(v ∶= e,σ′)

The abstract state α is the set of all the possible states before the assignment that are compatible
with the result of the new mapping being in the abstract state α′.

p:A:Inv:DsjDue to the fact that the evaluation of an expression is an injective function we have that:

Inv(v ∶= e,σ1) ∩ Inv(v ∶= e,σ2) = ∅⇔ σ1 ≠ σ2

p:A:Inv:EqRThanks to this property, if the evaluation of an expression e is defined on all of the states belonging
to an abstract state α, we have that it is possible to partition α through e.
In fact if we have a relation Re defined as:

σ1Re σ2 ⇔ σ1(e) = σ2(e)

this is an equivalence relation among states belonging to an abstract state α, that is partitioned
into equivalence classes corresponding to inverse-image sets α′:

α = ⋃
σ′∈α′

Inv(v ∶= e,σ′)

where each class is represented by a state σ such that σ(e) = σ′(v).

p:S:Inv:Nest
See proof B.9

Nested inverse-image set : Inv(v ∶= e, Inv(v ∶= f,{σ}) ) = Inv(v ∶= f{e/v},{σ})

Examples relative to this subsection can be found in §A.1.

6.2 The remap operator

d:D:RmpThe remap operator is defined as follows:

δ{∣e/v∣} ≙ {σ′ ↦ ∥δkInv(v ∶= e,{σ′})p∥ ∣ alph(σ′) ∈ alph(δ)}

p:D:Rmp:AltWhich is:
(δ{∣e/v∣})(σ′) ≙ {∑ δ(σ) ∣ σ′ = σ † {v ↦ evalσ(e)}

p:D:Rmp:AlphFrom the definition we can see that after applying the remap operator the alphabet of the resulting
distribution is the same as the alphabet of the original distribution:

alph(δ{∣e/v∣}) = alph(δ)

d:D:Rmp:SngWe overload this notation to account for assignment to a single variable:

δ{∣ei/vi∣} ≙ δ{∣(ei)/(vi)∣}

d:D:Rmp:IterWe define a compact notation for multiple application of the same operation:

δ{∣e/v∣}k ≙ δ{∣e/v∣}{∣e/v∣} . . .{∣e/v∣}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k times
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d:D:DashA sequence of assignments causes the distribution to evolve and we want to keep track of changes.
In fact we have that after an assignment v ∶= e when the distribution is δ, we have an evolution
towards a new δ′.

We can write this as:
δ′ = δ{∣e/v∣}

Examples relative to this subsection can be found in §A.1.

Properties

p:D:Rmp:Lin
See proof B.10

From the definitions of sum and multiplication, we have that the remap operator is a linear one:

(x ⋅ δ{∣e/v∣} + y ⋅ δ{∣f/v∣}){∣g/v∣} = x ⋅ δ{∣e/v∣}{∣g/v∣} + y ⋅ δ{∣f/v∣}{∣g/v∣}

Here are some other properties:

p:D:Rmp:Comp1
See proof B.11

Composition (I) : δ{∣e/v∣}{∣f/v∣} = δ{∣f{e/v}/v∣}

p:D:Rmp:Comp2
See proof B.12

Composition (II) : δ{∣e/v∣}{∣f/v∣} = δ{∣f ○e/v∣}

p:D:Rmp:Comp3
See proof B.13

Composition (III) : δ{∣e/vi∣}{∣f/vj∣} = δ{∣(e,f{e/vi})/(vi,vj)∣}

p:D:Rmp:Comp4
See proof B.14

Composition (IV) : δ{∣e/vi∣}{∣f/vi∣} = δ{∣f{e/vi}/vi∣}

p:D:Rmp:Iter
See proof B.15

Iteration : δ{∣e/v∣}k = δ{∣e
k
/v∣}

p:D:Rmp:Cmm1
See proof B.16

Commutativity (I) : δ{∣e/vi∣}{∣f/vj∣} = δ{∣f{e/vi}/vj∣}{∣e/vi∣} iff vj ∉ fv(e)

p:D:Rmp:Cmm2
See proof B.17

Commutativity (II) : δ{∣e/vi∣}{∣f/vj∣} = δ{∣f/vj∣}{∣e/vi∣} iff vi ∉ fv(f) ∧ vj ∉ fv(e)

p:D:Rst:ES
See proof B.18

Expression substitution : δjf = go{∣e/v∣} = δjf = go{∣e{f/g}/v∣}

p:D:Rmp:Rst1
See proof B.19

Contradiction : ∀σ ∈ dom(δ) ● σ(c{e/v}) = false ∧ δ ≠ ε ⇔ δ{∣e/v∣}jco = ε

p:D:Rmp:Rst2
See proof B.20

Assertion : ∀σ ∈ dom(δ) ● σ(c{e/v}) = true ⇔ δ{∣e/v∣}jco = δ{∣e/v∣}

p:D:Rst:Rmp
See proof B.21

Remapping a condition : δ{∣e/v∣}jco = δjc{e/v}o{∣e/v∣}

p:D:Rmp:Wt
See proof B.22

Weight of a distribution after remapping : ∥δ{∣e/v∣}∥ = ∥δ∥ iff σ(e) is defined in dom(δ)

7 Conclusion and future work

We have provided an encoding of the semantics of pGCL in UTP, as a homogeneous relation on the
alphabet {δ, δ ′}, where the before and after variables are distributions over program states. The
key is that our semantics models probabilistic programs as predicate transformers, so allowing us
to claim that “probabilistic programs are predicates too”!

Such programs may feature both demonic and probabilistic choice: this is non-trivial and at the
time of this writing there is still no satisfactory UTP theory that embeds such a feature — unifying
probabilism with other programming constructs in the style of Unifying Theories of Programming
is a so-far-unachieved goal, according to the aforementioned talk by Chen and Sanders [CS09] at
FM09.
We hope that this is a step towards having a formalism that can deal with this issue properly.

We have shown that we can deal with variables by name, despite their being entangled in the
semantic domain, and that the laws of pGCL are provable from our semantics.
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In addition we have a formulated our semantics in such a way as to be able to view all choices as
instances of a generic choice construct, and even to be able to allow disjunction back in as a form
of choice. We have also shown that refinement meshes in effectively, not just with demonic choice
but in fact with all generic variants.

There are some steps forward that need to be taken. The first one is exploring the precise link-
ages between our semantic model and the two models that feature in [HSM97; MM04]. This will
also lead to a formalization of the healthiness conditions, which characterise the predicates in
our framework: we need to show that we inherit all of the healthiness conditions, modulo an
appropriate generalization, which are valid for pGCL.

The second is to explore the role of auxiliary variables such as ok and ok ′ that capture a behaviour
such as termination, and in particular whether they are necessary (non-termination leads to proba-
bility sub-distributions, similar to what happens in pGCL, so could we manage without?), and how
to introduce auxiliary variables such as wait and wait ′, to move towards the encoding of reactive
systems in this framework.

This is important, as the long term focus of this work is on a probabilistic variant of Circus , which
requires semantic models for probabilistic process algebras like pCSP [Mor+96; Den+08] or PTSC

[NS09]. These will then have to integrated with our pGCL semantics in much the same way that
the theory of Reactive Designs in UTP is the basis for the semantics of Circus -like languages.
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A Examples

A.1 Definitions

This section is meant to give some examples aimed at a better explanation of the basic definitions
given in §5 and §6.

States and distributions

• States:

σ1 = {(v1 ↦ 4)} σ2 = {(v1 ↦ 5, v2 ↦ false)} σ3 = {(v1 ↦ 6, v3 ↦ true)}
σ4 = {(v1 ↦ 5, v3 ↦ true)} σ5 = {(v1 ↦ −1, v3 ↦ true)} σ1, σ2, σ3, σ4, σ5 ∈ S
alphσ1 = {v1} alphσ1 = {v1, v2} alphσ3 = {v1, v3}
alphσ4 = {v1, v3} alphσ5 = {v1, v3}

• States satisfying a condition:

– All of these states satisfy the condition v1 > −10;

– all states with the exception of σ5 satisfy the condition v1 > 0;

– σ3, σ4, σ5 satisfy the condition v3 = true, but σ1, σ2 do not.

• Abstract states:

α1 = {σ1, σ2} α2 = {σ3, σ4, σ5} α1, α2 ∈ ℘S

alph(α1) = {{v1} , {v1, v2}} alph(α2) = {{v1, v3}}

• Abstract states satisfying a condition:
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– Both α1 and α2 satisfy the condition v1 > −10;

– α1 satisfies the condition v1 > 0, but α2 does not;

– α2 satisfies the condition v3 = true, but α1 does not.

• Largest abstract state with a fixed alphabet:

S{v1,v2,v3} = {(v1 ↦ a, v2 ↦ b, v3 ↦ c) ∣ a ∈ Z , b, c ∈ {true, false}}

• Restriction of abstract states:

α1jv1 > 0o = {(v1 ↦ 4) , (v1 ↦ 5, v2 ↦ false)} = α1
α2jv1 > 0o = {(v1 ↦ 6, v3 ↦ true) , (v1 ↦ 5, v3 ↦ true)} = α2 ∖ {(v1 ↦ −1, v3 ↦ true)}

α1jv3 = trueo = ∅

• Distributions:
χ1 = {σ1 ↦ 7 , σ2 ↦ 4 , σ3 ↦ −2 , σ4 ↦

√
2 , σ5 ↦ 7/18}

χ2 = {σ2 ↦ 1 , σ3 ↦ e
2 , σ4 ↦ 8}

alph(χ1) = {{v1} , {v1, v2} , {v1, v3}} alph(χ2) = {{v1, v2} , {v1, v3}}

• Restriction of distributions:

χ1jv3 = trueo = {σ3 ↦ −2 , σ4 ↦
√
2 , σ5 ↦ 7/18}

χ2jv3 = trueo = {σ3 ↦ e
2 , σ4 ↦ 8}

χ1jχ2o = χ2jχ1o = {σ2 ↦ 4 ⋅ 1 , σ3 ↦ −2 ⋅ e2 , σ4 ↦
√
2 ⋅ 8}

• Weight of conditions, states and abstract states:

∥χ1jv1 > 0o∥ = χ1(σ1) + χ1(σ2) + χ1(σ3) + χ1(σ4) = 9 +
√
2

∥χ1jv3 = trueo∥ = χ1(σ3) + χ1(σ4) + χ1(σ5) = −29/18 +
√
2

∥χ1jv1 > −10o∥ = χ1(σ1) + χ1(σ2) + χ1(σ3) + χ1(σ4) + χ1(σ5) = 169/18 +
√
2

= ∥χ1∥

∥χ1jσ1o∥ = χ1(σ1) = 7

∥χ1jα1o∥ = χ1(σ1) + χ1(σ2) = 7 + 4 = 11

∥χ1jα2o∥ = χ1(σ3) + χ1(σ4) + χ1(σ5) = −2 +
√
2 + 7/18 = −29/18 +

√
2

∥χ2jα1o∥ = χ2(σ2) = 1

∥χ2jα2o∥ = χ2(σ3) + χ2(σ4) = e
2 + 8

• Operations on distributions:

χ1 + χ2 = {σ1 ↦ 7 , σ2 ↦ 5 , σ3 ↦ −2 + e2 , σ4 ↦ 8 +
√
2 , σ5 ↦ 7/18}

√
7 ⋅ χ2 = {σ2 ↦

√
7 , σ3 ↦ e

2
√
7 , σ4 ↦ 8

√
7}

χ1 ⋅ χ2 = χ1jχ2o = {σ2 ↦ 4 ⋅ 1 , σ3 ↦ −2 ⋅ e2 , σ4 ↦
√
2 ⋅ 8}

The inverse-image Set

Inv(v1 ∶= (v21 ), σ1) = {(v1 ↦ 2) , (v1 ↦ −2)}

Inv(v1 ∶= 4,σ1) = {(v1 ↦ i) ∣ i ∈ Z}

Inv(v2 ∶= (v1 < 10), σ2) = ∅

Inv(v1 ∶= (2 ⋅ v1), α2) = {(v1 ↦ 2) , (v1 ↦ 2.5, v2 ↦ false)}
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The remap operator

δ1 = {σ1 ↦ 0.55, σ2 ↦ 0.45}

δ1{∣2⋅v1/v1∣} = { {(v1 ↦ 8)} ↦ 0.55,{(v1 ↦ 10, v2 ↦ false)} ↦ 0.45}

δ1{∣2/v1∣} = { {(v1 ↦ 2)} ↦ 0.55,{(v1 ↦ 2, v2 ↦ false)} ↦ 0.45}

δ1{∣¬v2/v2∣} = { {(v1 ↦ 5, v2 ↦ true)} ↦ 0.45}

δ1{∣(v1+1,true)/(v1,v2)∣} = { {(v1 ↦ 6, v2 ↦ true)} ↦ 0.45}

A.2 Interaction of probabilistic and non-deterministic choice

Let us take these two simple programs:

A ≙ x ∶= 0 ⊓ x ∶= 1 ; y ∶= 0 1
2

⊕ y ∶= 1

B ≙ x ∶= 0 1
2

⊕ x ∶= 1 ; y ∶= 0 ⊓ y ∶= 1

We evaluate what is the probability that after each program has run we have x = 1, as well as the
probability of having x = y.

We start by examining A:

x ∶= 0 ⊓ x ∶= 1 ; y ∶= 0 1
2

⊕ y ∶= 1

≡ Translation: A

∃π ● δ′ = δjπo{∣0/x∣} + δjπ̄o{∣1/x∣} ; δ′ = 1/2 ⋅ δ{∣0/y∣} + 1/2 ⋅ δ{∣1/y∣}

≡ [d:P:Seq]

∃π, δm ● δm = δjπo{∣0/x∣} + δjπ̄o{∣1/x∣} ∧ δ′ = 1/2 ⋅ δm{∣0/y∣} + 1/2 ⋅ δm{∣1/y∣}

≡ One-point rule

∃π ● δ′ = 1/2 ⋅ (δjπo{∣0/x∣} + δjπ̄o{∣1/x∣}){∣0/y∣} + 1/2 ⋅ (δjπo{∣0/x∣} + δjπo{∣1/x∣}){∣1/y∣}

≡ [p:D:Rmp:Lin]

∃π ● δ′ = 1/2 ⋅ δjπo{∣0/x∣}{∣0/y∣} + 1/2 ⋅ δjπ̄o{∣1/x∣}{∣0/y∣} + 1/2 ⋅ δjπo{∣0/x∣}{∣1/y∣} + 1/2 ⋅ δjπ̄o{∣1/x∣}{∣1/y∣}

The final distribution δ′(π) is parametric in the weighting distribution π: let us try to use this to
perform a worst-case analysis.

We can show that ∀π ● ∥δ′(π)jx = yo∥ = 1/2, which implies that We can show that ∀π ● ∥δ′(π)jx =
yo∥ = 1/2, which implies that ∀δ ●min(∥A(δ)jx = yo∥) = 1/2:

∥δ′(π)jx = yo∥ = ∥(1/2 ⋅ δjπo{∣0/x∣}{∣0/y∣} + 1/2 ⋅ δjπ̄o{∣1/x∣}{∣1/y∣})∥

= ∥(1/2 ⋅ δjπo + 1/2 ⋅ δjπ̄o)∥ = ∥1/2 ⋅ δ∥ = 1/2

But if we choose π = ιδ′ , we have δ′(ιδ′) = 1/2⋅δ{∣0/x∣}{∣0/y∣}+1/2⋅δ{∣0/x∣}{∣1/y∣} and therefore ∥δ′(ιδ′)jx =
1o∥ = 0 — so the minimum of the weight of program A is 0.

Likewise, we examine B:
x ∶= 0 1

2

⊕ x ∶= 1 ; y ∶= 0 ⊓ y ∶= 1

≡ Translation: B

δ′ = 1/2 ⋅ δ{∣0/x∣} + 1/2 ⋅ δ{∣1/x∣} ; ∃π ● δ′ = δjπo{∣0/y∣} + δjπ̄o{∣1/y∣}

≡ [d:P:Seq]

∃π, δm ● δm = 1/2 ⋅ δ{∣0/x∣} + 1/2 ⋅ δ{∣1/x∣} ∧ δ′ = δmjπo{∣0/y∣} + δmjπ̄o{∣1/y∣}

≡ One-point rule

∃π ● δ′ = (1/2 ⋅ δ{∣0/x∣} + 1/2 ⋅ δ{∣1/x∣})jπo{∣0/y∣} + (1/2 ⋅ δ{∣0/x∣} + 1/2 ⋅ δ{∣1/x∣})jπ̄o{∣1/y∣}

≡ [p:D:Rmp:Lin]

∃π ● δ′ = 1/2 ⋅ δ{∣0/x∣}jπo{∣0/y∣} + 1/2 ⋅ δ{∣1/x∣}jπo{∣0/y∣} + 1/2 ⋅ δ{∣0/x∣}jπ̄o{∣1/y∣} + 1/2 ⋅ δ{∣1/x∣}jπ̄o{∣1/y∣}
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The final distribution δ′(π) is parametric in a weighting distribution π and very similar to the
resulting distribution after A, but with one crucial difference: jπo is put after the first occurrence
of the remap operator.

We can show that ∥δ′(π)jx = 1o∥ = 1/2.

But if we choose π = ιδ′jx = 1o, we have δ′(ιδ′jx = 1o) = 1/2 ⋅ δ{∣0/x∣}{∣1/y∣} + 1/2 ⋅ δ{∣1/x∣}{∣0/y∣} and
therefore ∥δ′(ιδ′jx = 1o)jx = yo∥ = 0

We have translated the programs and worked them out to express a predicate that links before-
distributions with after-distributions: with this we can easily compute the minimum guaranteed
probability that a condition will hold after the run of the program.

This is the same result we can achieve with pGCL, but:

• the notation is more general (and not as heavy as it would be with pGCL);

• we are not forced to stick with the minimum probability (“hard-linked” in the pGCL definition
of demonic choice), but we have a a set containing the probabilities of every branch of the
execution tree;

• it is straight forward to refine the demonic choice with any other kind of choice — we simply
have to constrain the existentially quantified π.
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A.3 The Monty Hall program

In the Monty Hall game a player is challenged to guess behind which of the three doors in front of
him hides a car.

i j k

After having chosen a door among the three possible options, Monty Hall will open one of the
remaining two doors. Monty Hall knows where the car is, so he is going to open one of the other
two.
The player is given the chance to change his guess at this point.

It is known from the literature20 that the player will maximize the probability of finding the car if
now he changes the door he has chosen (the probability will be 2/3).

In fact the player can lose only if his first choice — indicated with +— was the i-th door, which
is hiding the car (and this happens with probability 1/3) so after Monty Hall has opened the k-th
door, that is one of the two hiding a goat, the switching strategy leads the player’s final choice —
indicated with +— to be the j-th door, which is hiding a goat:

i j k

+ +

Nevertheless this is a winning strategy with probability 2/3, as the chances of winning equal the
chances of choosing a door hiding a goat, when all doors are closed. In fact choosing the j-th door
forces Monty Hall to open the k-th door, and switching makes the player choose the i-th door:

i j k

+ +

A short program, which uses the program constructs defined in §3.1, to implement the game is the
following:

20Also back in 1935, it was known as Bertrand’s box paradox (1889). This problem is oftem used as an example: among
the papers cited as references, we can find it in McIver and Morgan [MM04] as well as in the more recent Chen and Sanders
[CS09].
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P ≙ setup;player;host;guess

Let us use three variables a, b and c with the following meaning:

a ≙ the position of the car

b ≙ the player’s guess

c ≙ Monty Hall’s hint

we can then define each instruction as follows:

setup ≙ a ∶= 1 ⊓ (a ∶= 2 ⊓ a ∶= 3) [1]

player ≙ b ∶= 1 1
3

⊕ (b ∶= 2 1
2

⊕ b ∶= 3) [2]

host ≙ c ∶= S(a,b) ◁ (a ≠ b) ▷ (c ∶=Hm(a) ⊓ c ∶=HM(a)) [3]

guess ≙ b ∶= S(b, c) [4]

Here is the definition of the functions mentioned in the program:

S(x,y) ≙ min({1, 2, 3} ∖ {x,y})

Hm(x) ≙ min({1, 2, 3} ∖ {x})

HM(x) ≙ max({1, 2, 3} ∖ {x})

Let v = (a,b, c) and type(a) = type(b) = type(c) = {1, 2, 3}: the state space is

S = {σ ∣ σ = v ↦ w ∧w ∈ type(a) × type(b) × type(c)}

The initial distribution is a parameter of the problem: we assume its weight is 1, but make no
further assumptions on the individual weight of each state.

Let us now go through the first instruction:

a ∶= i = δ′ = δ{∣i/a∣}

setup = ∃π1, π2 ● δ
′ = δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjι − π1 − π2o{∣3/a∣}

After the second instruction we have:

b ∶= i = δ′j = δ{∣i/b∣}

player = δ′ = 1/3 ⋅ δ{∣1/b∣} + 1/3 ⋅ δ{∣2/b∣} + 1/3 ⋅ δ{∣3/b∣}

We have an if-statement in the third instruction, so we have:

c ∶= S(a,b) = δ′ = δ{∣S(a,b)/c∣}

c ∶=Hm(a) = δ′ = δ{∣Hm(a)/c∣}

c ∶=HM(a) = δ′ = δ{∣HM(a)/c∣}

c ∶=Hm(a) ⊓ c ∶=HM(a) = ∃πH ● δ′ = δjπHo{∣Hm(a)/c∣} + δjι − πHo{∣HM(a)/c∣}

host = ∃πH ● δ′ = δja ≠ bo{∣S(a,b)/c∣}+

+ δja = bojπHo{∣Hm(a)/c∣} + δja = bojι − πHo{∣HM(a)/c∣}

Finally the fourth instruction gives

b ∶= S(b, c) = δ′ = δ{∣S(b,c)/b∣}
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Let us now compose sequentially these constructs:

setup;player;host;guess
≡ Translation: setup;player — with the position π̄12 = ι − π1 − π2

∃π1, π2 ● δ
′ = δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣} ;

; δ′ = 1/3 ⋅ δ{∣1/b∣} + 1/3 ⋅ δ{∣2/b∣} + 1/3 ⋅ δ{∣3/b∣} ;host;guess
≡ [d:P:Seq]

∃π1, π2, δm ● δm = δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣} ∧

∧ δ′ = 1/3 ⋅ δm{∣1/b∣} + 1/3 ⋅ δm{∣2/b∣} + 1/3 ⋅ δm{∣3/b∣} ;host;guess
≡ One-point rule

∃π1, π2 ● δ
′ = 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣3/b∣} ;host;guess

≡ Translation: host

∃π1, π2 ● δ
′ = 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣3/b∣} ;

; ∃πH ● δ′ = δja ≠ bo{∣S(a,b)/c∣}+

+ δja = bojπHo{∣Hm(a)/c∣} + δja = bojπ̄Ho{∣HM(a)/c∣};guess
≡ [d:P:Seq]

∃π1, π2, πH, δm ● δm = 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣3/b∣} ∧

∧ δ′ = δmja ≠ bo{∣S(a,b)/c∣}+

+ δmja = bojπHo{∣Hm(a)/c∣} + δmja = bojπ̄Ho{∣HM(a)/c∣};guess
≡ One-point rule

∃π1, π2, πH ● δ′ = (1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣3/b∣})ja ≠ bo{∣S(a,b)/c∣}+

+ (1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣3/b∣})ja = bojπHo{∣Hm(a)/c∣}+

+ (1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣3/b∣})ja = bojπ̄Ho{∣HM(a)/c∣};guess
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≡ [p:D:Rmp:Rst1] — §B.19

∃π1, π2, πH ● δ′ = (1/3 ⋅ (���
��δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} +���
��δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} +(((
(((δjπ̄12o{∣3/a∣}){∣3/b∣})ja ≠ bo{∣S(a,b)/c∣}+

+ (1/3 ⋅ (δjπ1o{∣1/a∣} +���
��δjπ2o{∣2/a∣} +((((

((δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (���
��δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} +(((

(((δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (��
���δjπ1o{∣1/a∣} +��

���δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣3/b∣})ja = bojπHo{∣Hm(a)/c∣}+

+ (1/3 ⋅ (δjπ1o{∣1/a∣} +���
��δjπ2o{∣2/a∣} +((((

((δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (���
��δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣} +(((

(((δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (��
���δjπ1o{∣1/a∣} +��

���δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣3/b∣})ja = bojπ̄Ho{∣HM(a)/c∣};guess

≡ [p:D:Rmp:Rst1] — Rewrite

∃π1, π2, πH ● δ′ = (1/3 ⋅ (δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣}){∣3/b∣})ja ≠ bo{∣S(a,b)/c∣}+

+ (1/3 ⋅ δjπ1o{∣1/a∣}{∣1/b∣} + 1/3 ⋅ δjπ2o{∣2/a∣}{∣2/b∣}+

+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣3/b∣})ja = bojπHo{∣Hm(a)/c∣}+

+ (1/3 ⋅ δjπ1o{∣1/a∣}{∣1/b∣} + 1/3 ⋅ δjπ2o{∣2/a∣}{∣2/b∣}+

+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣3/b∣})ja = bojπ̄Ho{∣HM(a)/c∣};guess

≡ Translation: guess

∃π1, π2, πH ● δ′ = (1/3 ⋅ (δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣}){∣3/b∣})ja ≠ bo{∣S(a,b)/c∣}+

+ (1/3 ⋅ δjπ1o{∣1/a∣}{∣1/b∣} + 1/3 ⋅ δjπ2o{∣2/a∣}{∣2/b∣}+

+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣3/b∣})ja = bojπHo{∣Hm(a)/c∣}+

+ (1/3 ⋅ δjπ1o{∣1/a∣}{∣1/b∣} + 1/3 ⋅ δjπ2o{∣2/a∣}{∣2/b∣}+

+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣3/b∣})ja = bojπ̄Ho{∣HM(a)/c∣} ;

; δ′ = δ{∣S(b,c)/b∣}
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≡ [d:P:Seq]

∃π1, π2, πH, δm ● δm = (1/3 ⋅ (δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣}){∣3/b∣})ja ≠ bo{∣S(a,b)/c∣}+

+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣3/b∣})ja = bojπHo{∣Hm(a)/c∣}+

+ (1/3 ⋅ δjπ1o{∣1/a∣}{∣1/b∣} + 1/3 ⋅ δjπ2o{∣2/a∣}{∣2/b∣}+

+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣3/b∣})ja = bojπ̄Ho{∣HM(a)/c∣} ∧

∧ δ′ = δm{∣S(b,c)/b∣}

≡ One-point rule

∃π1, π2, πH ● δ′ = (1/3 ⋅ (δjπ2o{∣2/a∣} + δjπ̄12o{∣3/a∣}){∣1/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ̄12o{∣3/a∣}){∣2/b∣}+

+ 1/3 ⋅ (δjπ1o{∣1/a∣} + δjπ2o{∣2/a∣}){∣3/b∣})ja ≠ bo{∣S(a,b)/c∣}{∣S(b,c)/b∣}+

+ (1/3 ⋅ δjπ1o{∣1/a∣}{∣1/b∣} + 1/3 ⋅ δjπ2o{∣2/a∣}{∣2/b∣}+

+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣3/b∣})ja = bojπHo{∣Hm(a)/c∣}{∣S(b,c)/b∣}+

+ (1/3 ⋅ δjπ1o{∣1/a∣}{∣1/b∣} + 1/3 ⋅ δjπ2o{∣2/a∣}{∣2/b∣}+

+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣3/b∣})ja = bojπ̄Ho{∣HM(a)/c∣}{∣S(b,c)/b∣}

≡ [p:D:Rmp:Lin]

∃π1, π2, πH ● δ′ = 1/3 ⋅ δjπ2o{∣2/a∣}{∣1/b∣}ja ≠ bo{∣S(a,b)/c∣}{∣S(b,c)/b∣}+

+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣1/b∣}ja ≠ bo{∣S(a,b)/c∣}{∣S(b,c)/b∣}+

+ 1/3 ⋅ δjπ1o{∣1/a∣}{∣2/b∣}ja ≠ bo{∣S(a,b)/c∣}{∣S(b,c)/b∣}+

+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣2/b∣}ja ≠ bo{∣S(a,b)/c∣}{∣S(b,c)/b∣}+

+ 1/3 ⋅ δjπ1o{∣1/a∣}{∣3/b∣}ja ≠ bo{∣S(a,b)/c∣}{∣S(b,c)/b∣}+

+ 1/3 ⋅ δjπ2o{∣2/a∣}{∣3/b∣}ja ≠ bo{∣S(a,b)/c∣}{∣S(b,c)/b∣}+

+ 1/3 ⋅ δjπ1o{∣1/a∣}{∣1/b∣}ja = bojπHo{∣Hm(a)/c∣}{∣S(b,c)/b∣}+

+ 1/3 ⋅ δjπ2o{∣2/a∣}{∣2/b∣}ja = bojπHo{∣Hm(a)/c∣}{∣S(b,c)/b∣}+

+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣3/b∣}ja = bojπHo{∣Hm(a)/c∣}{∣S(b,c)/b∣}+

+ 1/3 ⋅ δjπ1o{∣1/a∣}{∣1/b∣}ja = bojπ̄Ho{∣HM(a)/c∣}{∣S(b,c)/b∣}+

+ 1/3 ⋅ δjπ2o{∣2/a∣}{∣2/b∣}ja = bojπ̄Ho{∣HM(a)/c∣}{∣S(b,c)/b∣}+

+ 1/3 ⋅ δjπ̄12o{∣3/a∣}{∣3/b∣}ja = bojπ̄Ho{∣HM(a)/c∣}{∣S(b,c)/b∣}

Now that we that we have a statement describing the final distribution that results after the exe-
cution of the program, we can recognize two kind of terms:

• δ{∣i/a∣}{∣j/b∣}ja ≠ bo{∣S(a,b)/c∣}{∣S(b,c)/b∣}

• δ{∣i/a∣}{∣i/b∣}ja = bojπo{∣H(a)/c∣}{∣S(b,c)/b∣}

where i ≠ j.

We can see that the ones of the first kind account for cases when the player wins, while those of
the second kind account for the cases when the player loses — let us see this by working out these
terms, under the winning condition, i.e. a = b.
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For terms of the first kind we have:

δ{∣i/a∣}{∣j/b∣}ja ≠ bo{∣S(a,b)/c∣}{∣S(b,c)/b∣}ja = bo

= [p:D:Rmp:Comp1]

δ{∣i/a∣}{∣j/b∣}ja ≠ bo{∣S(a,b),S(b,c){S(a,b)/c}/c,b∣}ja = bo

= Substitution: c = S(a,b)

δ{∣i/a∣}{∣j/b∣}ja ≠ bo{∣S(a,b),S(b,S(a,b))/c,b∣}ja = bo

= [p:D:Sum:CS]

δ{∣i/a∣}{∣j/b∣}ja ≠ bojS(b,S(a,b)) = ao{∣S(a,b),S(b,S(a,b))/c,b∣}ja = bo+

+ δ{∣i/a∣}{∣j/b∣}ja ≠ bojS(b,S(a,b)) ≠ ao{∣S(a,b),S(b,S(a,b))/c,b∣}ja = bo

= [p:D:Rmp:Rst1]

δ{∣i/a∣}{∣j/b∣}ja ≠ bojS(b,S(a,b)) = ao{∣S(a,b),S(b,S(a,b))/c,b∣}ja = bo + ε

= [d:D:Sum]

δ{∣i/a∣}{∣j/b∣}ja ≠ bojS(b,S(a,b)) = ao{∣S(a,b),S(b,S(a,b))/c,b∣}ja = bo

= [p:D:Rst:Rmp]

δ{∣i/a∣}{∣j/b∣}ja ≠ bojS(b,S(a,b)) = ao{∣S(a,b),a/c,b∣}ja = bo

= [p:D:Rmp:Rst2]

δ{∣i/a∣}{∣j/b∣}ja ≠ bojS(b,S(a,b)) = ao{∣S(a,b),a/c,b∣}

= [p:D:Rst:ImC1]

δ{∣i/a∣}{∣j/b∣}ja ≠ bo{∣S(a,b),a/c,b∣}

= [p:D:Rmp:Comp1]

δ{∣i,j/a,b∣}ja ≠ bo{∣S(a,b),a/c,b∣}

= [p:D:Rmp:Rst2]

δ{∣i,j/a,b∣}{∣S(a,b),a/c,b∣}

As both remapping operations use expressions defined everywhere, thanks to [p:D:Rmp:Wt] we
have that:

∥δ{∣i,j/a,b∣}{∣S(a,b),a/c,b∣}∥ = ∥δ∥

For terms of the second kind we have:

δ{∣i/a∣}{∣i/b∣}ja = bojπo{∣H(a)/c∣}{∣S(b,c)/b∣}ja = bo

= [p:D:Rmp:Comp1]

δ{∣i/a∣}{∣i/b∣}ja = bojπo{∣H(a),S(b,c){H(a)/c}/c,b∣}ja = bo

= Substitution: c =H(a)

δ{∣i/a∣}{∣i/b∣}ja = bojπo{∣H(a),S(b,H(a))/c,b∣}ja = bo

= [p:D:Rst:ES]

δ{∣i/a∣}{∣i/b∣}ja = bojπo{∣H(a),S(a,H(a))/c,b∣}ja = bo

= [p:D:Rst:Wt]

δ{∣i/a∣}{∣i/b∣}ja = bojπo{∣H(a),S(a,H(a))/c,b∣}ja = bo

= [p:D:Rmp:Rst1]

ε

Therefore we have:

∥δ′ja = bo∥ = ∥2 ⋅ (1/3 ⋅ δjπ1o + 1/3 ⋅ δjπ2o + 1/3 ⋅ δjπ3o)∥ = 2/3 ⋅ ∥δ∥

We have assumed that the weight of the initial distribution is 1, so the weight of all winning states
is 2/3 — it is now clear why we did not need to make any other assumption, as this is all that
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matters, as all the variables undergo at least an assignment during the run of the program. 2/3 is
also the expected value for each of the initial states, so the pre-expectation assigning this weight
to every state corresponds to the post-expectation of the predicate ιja = bo.

B Proofs

B.1 Restriction of the state space αjco = Sjco ∩α p:A:Rst:Alt

αjco

= [d:A:Rst] — §5.1

{σ ∣ σ ∈ α ∧ σ(c) = true}
= [d:S] — §5.1

{σ ∣ σ ∈ S ∧ σ ∈ α ∧ σ(c) = true}
= Set theory

{σ ∣ σ ∈ S ∧ σ(c) = true} ∩ {σ ∣ σ ∈ α}

= [d:A:Rst]

Sjco ∩α
◻

B.2 Restriction through equivalent condition (c1⇔ c2) ⇒ χjc1o = χjc2o p:D:Rst:EqC

dom(χ)jc1o = dom(χ)jc2o
◻

B.3 Restriction through implied condition (I) (c2 ⇒ c1) ⇔ χjc1ojc2o = χjc1o p:D:Rst:ImC1

χjc1ojc2o

= [p:D:Rst:Cnj] — §5.2

χjc1 ∧ c2o

= [p:D:Rst:EqC] — §B.2 ∶ (c2 ⇒ c1) ∧ (c1 ∧ c2) ⇔ c1

χjc1o
◻

B.4 Restriction through implied condition (II) (c1 ⇒ ¬c2) ⇒ χjc1ojc2o = ε p:D:Rst:ImC2

χjc1ojc2o

= [p:D:Rst:Cnj] — §5.2

χjc1 ∧ c2o

= [p:D:Rst:EqC] — §B.2 ∶ (c1 ⇒ ¬c2) ∧ (c1 ∧ c2) ⇔ false
χjfalseo = ε

◻
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B.5 Restriction through a restricted unitary distribution χjco = χkιχjcop p:D:Rst:Alt

χkιχjcop

= [d:D:RstD] — §5.2

{σ↦ χ(σ) ⋅ ιχ(σ) ∣ σ ∈ dom(χ) ∩ dom(ιχjco)}

= Set theory: dom(ιχjco) = dom(χjco) ⊆ dom(χ)

{σ↦ χ(σ) ⋅ ιχ(σ) ∣ σ ∈ dom(χjco)}

= [d:D:UD] — §5.2

{σ↦ χ(σ) ∣ σ ∈ dom(χjco)}

= [d:D:Rst] — §5.2

χjco
◻

B.6 Case Split χ = χjco + χj¬co p:D:Sum:CS

χjco + χj¬co

= [d:D:Sum] — §5.2

{σ↦ (χjco(σ) + χj¬co(σ)) ∣ σ ∈ dom(χjco) ∪ dom(χj¬co)}

= Set theory

{σ↦ (χjco(σ) + 0) ∣ σ ∈ dom(χjco)} ∪ {σ↦ (0 + χj¬co(σ)) ∣ σ ∈ dom(χj¬co)}

= [d:D:Rst] — §5.2

{σ↦ χ(σ) ∣ σ ∈ dom(χjco)} ∪ {σ↦ χ(σ) ∣ σ ∈ dom(χj¬co)}

= Set theory

{σ↦ χ(σ) ∣ σ ∈ dom(χjco) ∪ dom(χj¬co)}

= Set theory

{σ↦ χ(σ) ∣ σ ∈ dom(χ)}

= [d:D] — §5.2

χ
◻

B.7 Restriction π1jπ2o ∈ Dw p:D:WD:Rst

π1jπ2o(σ) = π1(σ) ⋅ π2(σ) ≤ π1(σ)
◻

B.8 Restriction δjπo ∈ Dp p:D:PD:Rst

δjπo(σ) = δ(σ) ⋅ π(σ) ≤ δ(σ)
◻
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B.9 Nested inverse-image set Inv(v ∶= e, Inv(v ∶= f,{σ}) ) = Inv(v ∶= f{e/v},{σ}) p:S:Inv:Nest

Inv(v ∶= e, Inv(v ∶= f,{σ′}) )

= [d:S:Inv] — §6.1

Inv(v ∶= e,{σ ∣ σ′(v) = σ(f) ∧ σ ∈ Salph(σ′)})

= [d:S:Inv]

⋃
ζ′∈{σ ∣ σ′(v)=σ(f)∧σ∈Salph(σ′)}

{ζ ∣ ζ′(v) = ζ(e) ∧ ζ ∈ Salph(ζ′)}

= Property of distributed union

{ζ ∣ σ(v) = ζ(e) ∧ σ′(v) = σ(f) ∧ σ, ζ ∈ Salph(σ′)}

= [p:E:Ev:Comp] — §6

{ζ ∣ σ′(v) = ζ(f ○ e) ∧ ζ ∈ Salph(σ′)}

= [d:E:Comp] — §6

{ζ ∣ σ′(v) = ζ(f{e/v}) ∧ ζ ∈ Salph(σ′)}

= [d:S:Inv]

Inv(v ∶= f{e/v},{σ′})
◻

B.10 Linearity of the remap operator (x ⋅δ{∣e/v∣} +y ⋅δ{∣f/v∣}){∣g/v∣} = x ⋅δ{∣e/v∣}{∣g/v∣} +y ⋅δ{∣f/v∣}{∣g/v∣} p:D:Rmp:Lin

(x ⋅ δ{∣e/v∣} + y ⋅ δ{∣f/v∣}){∣g/v∣}(σ)

= [d:D:Rmp] — §6.2

∥(x ⋅ δ{∣e/v∣} + y ⋅ δ{∣f/v∣})kInv(v ∶= g,{σ})p∥

= [p:D:Sum:Wt] — §5.2

∥x ⋅ δ{∣e/v∣}kInv(v ∶= g,{σ})p + y ⋅ δ{∣f/v∣}kInv(v ∶= g,{σ})p∥

= [d:D:Rmp]

x ⋅ δ{∣e/v∣}{∣g/v∣}jσo + y ⋅ δ{∣f/v∣}{∣g/v∣}(σ)

= [d:D:Sum]

(x ⋅ δ{∣e/v∣}{∣g/v∣} + y ⋅ δ{∣f/v∣}{∣g/v∣})(σ)
◻
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B.11 Composition (I) δ{∣e/v∣}{∣f/v∣} = δ{∣f{e/v}/v∣} p:D:Rmp:Comp1

δ{∣e/v∣}{∣f/v∣}(σ)

= [d:D:Rmp] — §6.2

∥δ{∣e/v∣}kInv(v ∶= f,{σ})p∥

= [p:D:RstA:Wt] — §5.2

∑
ζ∈Inv(v ∶=f,{σ})

δ{∣e/v∣}(ζ)

= [d:D:Rmp]

∑
ζ∈Inv(v ∶=f,{σ})

∥δkInv(v ∶= e,{ζ})p∥

= [d:A:Inv] ∶ ⋃
ζ∈Inv(v ∶=f,{σ})

Inv(v ∶= e,{ζ}) = Inv(v ∶= e, Inv(v ∶= f,{σ}))

∥δkInv(v ∶= e, Inv(v ∶= f,{σ}) )p∥

= [p:S:Inv:Nest] — §B.9

∥δkInv(v ∶= f{e/v},{σ})p∥

= [d:D:Rmp]

δ{∣f{e/v}/v∣}(σ)
◻

B.12 Composition (II) δ{∣e/v∣}{∣f/v∣} = δ{∣f ○e/v∣} p:D:Rmp:Comp2

δ{∣e/v∣}{∣f/v∣}

= [p:D:Rmp:Comp1] — §B.11

δ{∣f{e/v}/v∣}

= [d:E:Comp] — §6

δ{∣f ○e/v∣}
◻

B.13 Composition (III) δ{∣e/vi∣}{∣f/vj∣} = δ{∣(e,f{e/vi})/(vi,vj)∣} p:D:Rmp:Comp3

Special case of B.11, where v = (
vi
vj
), e = (

e
vj
) and f = (

vi
f
).

◻

B.14 Composition (IV) δ{∣e/vi∣}{∣f/vi∣} = δ{∣f{e/vi}/vi∣} p:D:Rmp:Comp4

Special case of B.11, where v = (vi), e = (e) and f = (f).
◻
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B.15 Iteration δ{∣e/v∣}k = δ{∣e
k
/v∣} p:D:Rmp:Iter

By induction, the base case is trivial for k = {0, 1}.

Inductive hypothesis: δ{∣e/v∣}n = δ{∣e
n
/v∣}

δ{∣e/v∣}n+1

= [d:D:Rmp:Iter] — §6.2

δ{∣e/v∣}n{∣e/v∣}

= Inductive hypothesis

δ{∣e
n
/v∣}{∣e/v∣}

= [p:D:Rmp:Comp1] — §B.11

δ{∣e{e
n
/v}/v∣}

= [d:E:Comp] — §6

δ{∣e ○e
n
/v∣}

= [d:E:Comp:Iter] — §6

δ{∣e
n+1

/v∣}

◻

B.16 Commutativity (I) δ{∣e/vi∣}{∣f/vj∣} = δ{∣f{e/vi}/vj∣}{∣e/vi∣} iff vj ∉ fv(e) p:D:Rmp:Cmm1

δ{∣e/vi∣}{∣f/vj∣}

= [p:D:Rmp:Comp3] — §B.13

δ{∣(e,f{e/vi})/(vi,vj)∣}

= Substitution: vj ∉ fv(e) ⇒ e{x/vj} = e

δ{∣(e{f{e/vi}/vj},f{e/vi})/(vi,vj)∣}

= Substitution: x = y{x/y}

δ{∣(e{f{e/vi}/vj},vj{f{e/vi}/vj})/(vi,vj)∣}

= [p:D:Rmp:Comp3]

δ{∣f{e/vi}/vj∣}{∣e/vi∣}
◻

B.17 Commutativity (II) δ{∣e/vi∣}{∣f/vj∣} = δ{∣f/vj∣}{∣e/vi∣} iff vi ∉ fv(f) ∧ vj ∉ fv(e) p:D:Rmp:Cmm2

δ{∣e/vi∣}{∣f/vj∣}

= [p:D:Rmp:Cmm1] — §B.16

δ{∣f{e/vi}/vj∣}{∣e/vi∣}

= Substitution: vi ∉ fv(f) ⇒ f{e/vi} = f

δ{∣f/vj∣}{∣e/vi∣}
◻

B.18 Expression substitution δjf = go{∣e/v∣} = δjf = go{∣e{f/g}/v∣} p:D:Rst:ES

δjf = go{∣e{f/g}/v∣}

= [d:E:Ev] — §5.1

δjf = go{∣e/v∣}
◻
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B.19 Contradiction ∀σ ∈ dom(δ) ● σ(c{e/v}) = false ∧ δ ≠ ε ⇔ δ{∣e/v∣}jco = ε p:D:Rmp:Rst1

∀σ ∈ dom(δ) ● σ(c{e/v}) = false ∧ δ ≠ ε

≡ [d:D:Rmp] — §6.2

∀σ′ ∈ dom(δ{∣e/v∣}) ● σ′(c) = false ∧ δ ≠ ε

≡ [d:D:Rst] — §5.2

δ{∣e/v∣}jco = ε
◻

B.20 Assertion ∀σ ∈ dom(δ) ● σ(c{e/v}) = true ⇔ δ{∣e/v∣}jco = δ{∣e/v∣} p:D:Rmp:Rst2

∀σ ∈ dom(δ) ● σ(c{e/v}) = true
≡ [d:D:Rmp] — §6.2

∀σ′ ∈ dom(δ{∣e/v∣}) ● σ′(c) = true
≡ [d:D:Rst] — §5.2

δ{∣e/v∣}jco = δ{∣e/v∣}
◻

B.21 Remapping a condition δ{∣e/v∣}jco = δjc{e/v}o{∣e/v∣} p:D:Rst:Rmp

δ{∣e/v∣}jco

= [p:D:Sum:CS] — §B.6

δjc{e/v}o{∣e/v∣}jco + δj¬c{e/v}o{∣e/v∣}jco

= [p:D:Rmp:Rst1] — §B.19

δjc{e/v}o{∣e/v∣}jco + ε

= [p:D:Rmp:Rst2] — §B.20

δjc{e/v}o{∣e/v∣}

◻

B.22 Weight of a distribution after remapping ∥δ{∣e/v∣}∥ = ∥δ∥ iff σ(e) is defined in dom(δ) p:D:Rmp:Wt

∥δ{∣e/v∣}∥

= [d:D:Wt] — §5.2

∑
σ′∈domδ{∣e/v∣}

δ{∣e/v∣}(σ′)

= [d:D:Rmp] — §6.2

∑
σ′∈domδ{∣e/v∣}

∥δkInv(v ∶= e,{σ′})p∥

= [p:D:RstA:Wt] — §5.2

∑
σ′∈domδ{∣e/v∣}

( ∑
σ∈Inv(v ∶=e,{σ′})

δ(σ))

= [p:A:Inv:EqR] — §6.1 ∶ ⋃
σ′∈domδ{∣e/v∣}

Inv(v ∶= e,{σ′}) = domδ iff σ(e) is defined in dom(δ)

∑
σ∈domδ

δ(σ)

= [d:D:Wt]

∥δ∥
◻
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B.23 Pseudo-associativity of probabilistic choice

A p⊕ (B q⊕C) ≡ (A r⊕ B) s⊕C ∧ p = rs ∧ (1 − s) = (1 − p)(1 − q)

p:P:Ch:Prb:Assoc

A p⊕ (B q⊕C)

≡ [d:P:Ch:Prb] — §3.1

∃δA, δBC ●A(p ⋅ δ, δA) ∧ (B q⊕C)((1 − p) ⋅ δ, δBC) ∧ δ
′ = δA + δBC

≡ [d:P:Ch:Prb] ∧ δBC = δB + δC (One-point rule)

∃δA, δB, δC ●A(p ⋅ δ, δA) ∧ B(q(1 − p) ⋅ δ, δB) ∧C((1 − q)(1 − p) ⋅ δ, δC) ∧ δ
′ = δA + δB + δC

≡ (1 − p)(1 − q) = (1 − s) ∧ p = rs⇒ q(1 − p) = (1 − r)s

∃δA, δB, δC ●A(rs ⋅ δ, δA) ∧ B((1 − r)s ⋅ δ, δB) ∧C((1 − s) ⋅ δ, δC) ∧ δ
′ = δA + δB + δC

≡ [d:P:Ch:Prb] ∧ δAB = δA + δB (One-point rule)

∃δAB, δC ● (A r⊕ B)(s ⋅ δ, δAB) ∧C((1 − s) ⋅ δ, δC) ∧ δ
′ = δAB + δC

≡ [d:P:Ch:Prb]

(A r⊕ B) s⊕C
◻

B.24 Idempotency of choice operators ∀X ● choice(A,A,X ) ≡ A p:P:Ch:Idem

choice(A,A,X )

≡ [d:P:Ch] — §3.3

∃π, δA, δĀ ● π ∈ X ∧A(δjπo, δA) ∧A(δjπ̄o, δĀ) ∧ δ′ = δA + δĀ
≡ [d:P:Structure] — §3.1

∃π, δA, δĀ,QuantOf(A) ● π ∈ X ∧ δA = BodyOf(A) ○ δjπo ∧ δĀ = BodyOf(A) ○ δjπ̄o ∧ δ′ = δA + δĀ
≡ One-point rule

∃π,QuantOf(A) ● π ∈ X ∧ δ′ = BodyOf(A) ○ δjπo + BodyOf(A) ○ δjπ̄o

≡ [p:D:Sum:CS] — §B.6

∃π,QuantOf(A) ● π ∈ X ∧ δ′ = BodyOf(A) ○ δ

≡ [d:P] — §3

A
◻

B.25 Discarding right-hand option choice(A,B,{ι}) ≡ A p:P:Ch:Dscrd

choice(A,B,{ι})

≡ [d:P:Ch] — §3.3

∃π, δA, δB ● π ∈ {ι} ∧A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δ
′ = δA + δB

≡ One-point rule

∃δA, δB ∧A(δjιo, δA) ∧ B(δjεo, δB) ∧ δ
′ = δA + δB

≡ [d:D:Rst] — §5.2

∃δA, δB ∧A(δ, δA) ∧ B(ε, δB) ∧ δ
′ = δA + δB

≡ One-point rule

A
◻
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B.26 Distributivity of choice operators

choice(A, (choice(B,C,X2)),X1) ≡ choice((choice(A,B,X1)), (choice(A,C,X1)),X2)

p:P:Ch:Dst

choice(A, (choice(B,C,X2)),X1)

≡ [d:P:Ch] — §3.3

∃π1, δA, δBC ● πi ∈ Xi ∧A(δjπ1o, δA) ∧ (choice(B,C,X2))(δjπ̄1o, δBC) ∧ δ′ = δA + δBC
≡ [d:P:Ch] ∧ δBC = δB + δC (One-point rule)

∃π1, π2, δA, δB, δC ● πi ∈ Xi ∧A(δjπ1o, δA) ∧ B(δjπ̄1ojπ2o, δB) ∧C(δjπ̄1ojπ̄2o, δC)

∧ δ′ = δA + δB + δC

≡ [p:D:Sum:CS] — §B.6

∃π1, π2, δA, δB, δC ● πi ∈ Xi ∧A(δjπ1ojπ2o + δjπ1ojπ̄2o, δA) ∧ B(δjπ̄1ojπ2o, δB)∧

∧C(δjπ̄1ojπ̄2o, δC) ∧ δ
′ = δA + δB + δC

≡ Linearity

∃π1, π2, δA, δĀ, δB, δC ● πi ∈ Xi ∧A(δjπ1ojπ2o, δA) ∧A(δjπ1ojπ̄2o, δĀ)∧

∧ B(δjπ̄1ojπ2o, δB) ∧C(δjπ̄1ojπ̄2o, δC) ∧ δ
′ = δA + δĀ + δB + δC

≡ [d:P:Ch] ∧ δAB = δA + δB ∧ δĀC = δĀ + δC (One-point rule)

∃π2, δAB, δĀC ● π2 ∈ Xi ∧ (choice(A,B,X1))(δjπ2o, δAB) ∧ (choice(Ā,C,X1))(δjπ̄2o, δĀC)

∧ δ′ = δAB + δĀC
≡ [d:P:Ch]

choice((choice(A,B,X1)), (choice(A,C,X1)),X2)
◻

B.27 Sequential composition choice(A,B,X );C ≡ choice((A;C), (B;C),X ) p:P:Ch:Seq

choice(A,B,X );C

≡ [d:P:Seq] — §3.1

∃δm ● choice(A,B,X )(δ, δm) ∧C(δm, δ
′)

≡ [d:P:Ch] — §3.3

∃π, δA, δB, δm ● π ∈ X ∧A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δm = δA + δB ∧C(δm, δ
′)

≡ One-point rule

∃π, δA, δB ● π ∈ X ∧A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧C(δA + δB, δ
′)

≡ Linearity

∃π, δA, δB, δC, δC̄ ● π ∈ X ∧A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧C(δA, δC) ∧C(δB, δC̄) ∧ δ
′ = δC + δC̄

≡ [d:P:Seq]

∃π, δC, δC̄ ● π ∈ X ∧ (A;C)(δjπo, δC) ∧ (B;C)(δjπ̄o, δC̄) ∧ δ
′ = δC + δC̄

≡ [d:P:Ch]

choice((A;C), (B;C),X )
◻
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B.28 Choice flipping ∀X ● choice(A,B,X ) ≡ choice(B,A, X̄ ) ∧ X̄ = ⋃π∈X π̄ p:P:Ch:Flip

choice(A,B,X )

≡ [d:P:Ch] — §3.3

∃π, δA, δB ● π ∈ X ∧A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δ
′ = δA + δB

≡ X̄ = ⋃
π∈X
π̄

∃π̄, δA, δB ● π̄ ∈ X̄ ∧A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δ
′ = δA + δB

≡ [d:P:Ch]

choice(B,A, X̄ )
◻

B.29 Monotonicity of generic choice ∀δ ● X1 ⊆ X2 ⇒ choice(A,B,X1)(δ) ⊆ choice(A,B,X2)(δ) p:P:Ch:Mntn

choice(A,B,X2)(δ)

= [d:P:Ch] — §3.3

(∃π, δA, δB ● π ∈ X2 ∧A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δ
′ = δA + δB)(δ)

= Set theory ∧ X1 ⊆ X2

(∃π, δA, δB ● π ∈ X1 ∪ (X2 ∖ X1) ∧A(δjπo, δA) ∧ B(δjπ̄o, δB) ∧ δ
′ = δA + δB)(δ)

= [d:P:Ch]

choice(A,B,X1)(δ) ∪ choice(A,B,X2 ∖ X1)(δ)

◻

B.30 Refinement relation for choices involving X2 ⊆ X1 X2 ⊆ X1 ⇒ choice(A,B,X1) ⊑ choice(A,B,X2) p:P:Rfn:Ch

choice(A,B,X1) ⊑ choice(A,B,X2)

≡ [d:P:Rfn:Alt] — §4

∀δ ● choice(A,B,X2)(δ) ⊆ (choice(A,B,X1)(δ))
△

≡ [p:P:Ch:Mntn] — §B.29 ∧ ∀X ● X ⊆ (X )
△

∀δ ● true
◻

B.31 Refinement of the disjunction of two programs A ∨ B ⊑ A p⊕ B p:P:Rfn:Dsj

A ∨ B ⊑ A p⊕ B

≡ [d:P:Rfn:Alt] — §4

∀δ ● (A p⊕ B)(δ) ⊆ ((A ∨ B)(δ))
△

≡ Set theory

∀δ, δ′ ● δ′ ∈ (A p⊕ B)(δ) ∧ δ′ ∈ ((A ∨ B)(δ))
△

≡ [d:P:Ch:Prb] — §3.1

∀δ, δ′, δ′A, δ
′
B ● δ

′
A ∈ A(δ), δ′B ∈ B(δ) ∧ δ′ = (p ⋅ δ′A + (1 − p) ⋅ δ′B) ∧ δ′ ∈ ((A ∨ B)(δ))

△

≡ [d:P:RfnSet] — §4

∀δ ● true
◻
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B.32 Refinement of the disjunction of two programs A ∨ B ⊑ A◁ c▷ B p:P:Rfn:Dsj2

A ∨ B ⊑ A◁ c▷ B

≡ [d:P:Rfn:Alt] — §4

∀δ ● (A◁ c▷ B)(δ) ⊆ ((A ∨ B)(δ))
△

≡ Set theory

∀δ, δ′ ● δ′ ∈ (A◁ c▷ B)(δ) ∧ δ′ ∈ ((A ∨ B)(δ))
△

≡ [d:P:Ch:Cnd] — §3.1

∀δ, δ′, δ′A, δ
′
B ● δ

′
A ∈ A(δjco), δ′B ∈ B(δj¬co) ∧ δ′ = δ′A + δ

′
B ∧ δ′ ∈ ((A ∨ B)(δ))

△

≡ [d:P:RfnSet] — §4

∀δ ● true
◻

C Notation

C.1 Logic
¬ : logical negation

∧ : logical conjunction

∨ : logical disjunction

⇒ : implication

⇔ : double implication

true : logical true

false : logical false

C.2 Relations and functions
↦ : maps to

† : ovverride

→ : total function

↛ : partial function

R : relation

dom : domain operator

codom : codomain operator

img : image operator

C.3 Probability
p,q, r, s : probability

P,Q : stochastic variable

fP : probability density function

FP : cumulative density function
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C.4 Variables, values and expressions

∶= : assignment

v : variable

w : value

e, f, g : expression

c, d, z : boolean expression

v : vector of variables

w : vector of values

e, f, g : vector of expressions

V : set of variables

W : set of values

E : set of expressions

eval : expression evaluation operator

type : variable type operator

fv : free variable operator

bv : bound variable operator

C.5 States and distributions

σ, ζ : state

α : abstract state

S : set of all states (state space)

A : alphabet

alph : alphabet operator

χ, ξ : distribution

ε : empty distribution

ι : unitary distribution

π : weighting distribution

π̄ : complementary weighting distribution

δ : probability distribution

X ,Y : set of distributions

D : set of all distributions

Dw : set of all weighting distributions

Dp : set of all probability distributions

∥_∥ : weight

_j_o : restriction

Inv(_,_) : inverse-image set

_{∣_/_∣} : remap
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C.6 Programs
skip : skip

abort : abort

miracle : miracle

∗ : iteration

_◁ _▷ _ : conditional choice

⊔ : angelic choice

⊓ : demonic choice

p⊕, p⊕(1−p) : probabilistic choice

choice(_,_,_) : choice

⊑ : refinement

(_)
△

: refinement set
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