AdaptStream: Towards Achieving Fluidity in Adaptive
Stream-Based Systems

Yu Liu
Lero@TCD
School of Computer Science and Statistics
Trinity College Dublin
Dublin 2, Ireland
yuliu@cs.tcd.ie

ABSTRACT

Stream-based systems are frequently subject to changes in
their operational environments due to fluctuations in the
available computation and communication resources. Dy-
namic adaptation is a mechanism to improve the fitness of
such systems. However, adaptation can block one or more
streams thus inadvertently affecting the timeliness proper-
ties of streams. This paper describes AdaptStream, an adap-
tation framework that provides timeliness support for stream-
based adaptations. We introduce the concept of fluidity to
measure the temporal alignment of stream synchronization
during adaptation. We present a scheduling algorithm that
calculates the time-bounded schedule of adaptation actions
on multiple streams to achieve the fluidity requirement that
is traded off against available resources and the smoothness
requirement of individual streams.

Categories and Subject Descriptors

D.11 [Software/Software Engineering]: Software Archi-
tectures

General Terms
Algorithms

Keywords

Dynamic Software Adaptation, Timeliness, Inter-Stream Syn-
chronization

1. INTRODUCTION

Stream-based systems, such as vehicular multimedia con-
tent sharing, are deployed and required to function contin-
uously in dynamic environments. Dynamic adaptation at
runtime improves the fitness of a stream-based system to
the variations in its operational conditions, such as failure of
their system parts, resource fluctuation, and changing user

"(©OACM, 2011. This is the author’s version of the work. It is posted
here by permission of ACM for your personal use. Not for redis-
tribution. The definitive version was published in Proceedings of the
2011 ACM Symposium on Applied Computing, 217-223, March 2011
http://doi.acm.org/10.1145/1982185.1982235"

René Meier
Lero@TCD
School of Computer Science and Statistics
Trinity College Dublin
Dublin 2, Ireland
Rene.Meier@cs.tcd.ie

requirements. However, adaptation usually entails a period
when the quality of the data streams in a system is adversely
affected.

Dynamic adaptation can block one or more streams, thus
causing delay in the delivery of stream data and driving
streams out of synchronization with each other. There are
two major synchronization techniques [1] in stream-based
systems to maintain the quality of streams: intra-stream
synchronization maintains the temporal relationship within
a single time-dependent stream; inter-stream synchroniza-
tion maintains the temporal relationships between multiple
streams, such as lip-synchronization of audio and video [9].
The concept of fluidity proposed in this paper characterizes
the impact of dynamic adaptation on the quality of data
streams, and fluidity is a measure of the extent to which
temporal alignment of data streams is met during the adap-
tation period. To achieve fluidity, not only should the im-
pact of adaptation on intra-stream synchronization be con-
sidered, but also the impact on inter-stream synchroniza-
tion. Existing approaches to address the impact of dynamic
adaptation can be divided into two groups. The first group
[2][3][4] deals with the steady-state conditions of dynamic
adaptation, and does not explicitly address the quality of
streams. The second group focuses on the quality of intra-
stream synchronization during dynamic adaptation [5][6][7].
However, both groups of approaches fall short in address-
ing the requirement of fluidity in real-world stream-based
systems.

In this paper, we present AdaptStream, a novel adapta-
tion framework, designed to support the construction of dy-
namic adaptive stream-based applications. The framework
maintains the explicit separation between the model layer
and the component layer of an application at runtime. The
runtime model allows us to specify the high-level timing con-
straints of streams. It carries out checks for the steady-state
conditions of adaptations and supports admission control to
allocate resources to streams. The component layer consists
of running components that process live streams. Once dy-
namic adaptation has been committed in the runtime model,
a reconfiguration scheduler computes and executes a sched-
ule of the sequence of adaptation actions in the component
layer. This paper focuses on the mechanism to achieve the
fluidity of stream-based applications during adaptation.

The novel contributions of this paper are: 1) it proposes
the concept of fluidity to measure the impact of adaptation
on the quality of data streams; 2) it presents a time-bounded
scheduling algorithm to address the fluidity requirement.

The remainder of the paper is structured as follows: Section
2 introduces real-world stream-based adaptation scenarios
and discusses their fluidity requirement; Section 3 introduces
the system model of AdaptStream; Section 4 illustrates the
adaptation mechanism of AdaptStream. Our algorithm for
achieving the fluidity requirement in stream-based systems
is presented in Section 5. Section 6 evaluates our approach.
Section 7 discusses related work and Section 8 concludes this
paper and identifies future work.

2. ADAPTATION SCENARIOS

To effectively track and manage the quality of streams,
a path, which consists of a sequence of connected compo-
nents, is used as the primary application-level construct for
stream-based adaptations. Real-world stream-based appli-
cations may contain many paths, the relationships between
these paths can be complex, and adaptation usually affects
more than one path. The following scenarios illustrate the
main challenges associated with stream-based adaptations.

Temporal Constraints. Lip-synchronization [9] is the
canonical example of inter-stream synchronization. During
the play-out process, the audio stream of a speaker’s voice
and the video stream of the movement of a speaker’s lips
should match. Adaptations on both streams, such as re-
placement of encoder and decoder to improve the quality of
media content, may introduce delay to the delivery of stream
data and then drive the streams out of synchronization. To
achieve a glitch-free viewing experience, adaptations on both
paths should be appropriately scheduled to ensure that they
complete at the same time.

Resource and Temporal Constraints. In a television
studio, video streams related to a program are selectively
mixed with each other [10]. For instance, in weather fore-
casting, there are two streams: the stream showing the ge-
ographic locations annotated with weather information and
the stream showing a weather person standing in front of
a wall. It is essential to maintain the temporal alignment
of the media data in both streams during adaptation. In
line with the resource constraints of the production environ-
ment, we have to schedule the distribution of the resources
amongst the streams that are being adapted.

The smoothness condition [8] has been proposed to achieve
the glitch-free adaptation of a single stream, however, the
smoothness condition is inadequate for addressing adapta-
tions involving multiple streams. Therefore, we propose a
more comprehensive measure of adaptation in Definition 1
to consider the synchronization relations across streams.

Definition 1. Fluidity is defined as the degree of the
temporal deviation between a pair of streams introduced
by dynamic adaptation, captured as the percentage of data
units that are out of synchronization with each other. The
following function calculates the aggregated fluidity from the
pairwise deviations between streams. A; is the fluidity of the
ith pair of streams and w; is the weight associated with this
pair. The weight values are set based on the priorities of
different pairs of streams.

Sfluidity = 37 wi * Ay, where Y1 w; = 1.
3. SYSTEM MODEL

The runtime model in AdaptStream expands on the re-
configurable data flow (RDF) system model [12]. The RDF

model supports the general semantics of stream-based appli-
cations. The RDF model consists of two main entities: com-
ponents and connectors. A component is an entity that con-
sumes data from input ports, processes the data and sends
out the result to its output ports. A connector is a shared
space for the communication between two components.

Definition 2. A path in a stream-based system is defined
as a pair P = <Comps, Conns> where Comps is the set of
components {a;|0 < ¢ < n} and Conns is the set of rela-
tions between components. The following predicate holds:
Vi(i € [0,n) — Je(c € Conns A ¢ = a; X ai+1)). ao is the
source and a, the sink of the path.

Definition 3. A path-map contains a set of paths PM
= {P|isPath(P)}. The following predicate holds for PM:
Jz(x € PM NisMaster(x) AVy(y € PM A (isMaster(y) —
z =vy))). Function isPath returns true if P is a path; func-
tion isMaster returns true if P is a master path.

Definition 2 gives the formal definition of a path. A path
consists of a sequence of ports and components through
which a stream flows. Users specify the end-to-end proper-
ties, such as latency or jitter, for a path. These end-to-end
properties serve as the high-level requirements for adapta-
tion admission and scheduling. Definition 3 states that a
stream-based application is characterized by a set of related
paths where there is only one master path. The master-slave
relationship has been effectively explored by many inter-
stream synchronization techniques [13] in stream-based sys-
tems. The play-out point in the stream flowing through the
master path is taken as the reference for the temporal align-
ment of other streams.

AdaptStream supports four types of adaptation actions,
which are applied to components. These actions are the
building blocks of more complex real-world adaptation sce-
narios and are the basic units of adaptation management.
The execution of an adaptation action requires changes on
both the runtime model and the stream-processing compo-
nents.

e addComponent(comp): Creates a new component and
then schedules it for execution.

o removeComponent(comp): Removes a component.

o replaceComponent(oldComp, newComp): Replaces a com-
ponent, which might also lead to an interface change, such
as add a new port or modify the data type of a port.

e upgradeComponent(oldComp, newComp): Replaces a
component, however the interface of the component remains
unchanged.

4. ADAPTSTREAM

Adaptations of stream-based applications have unique set
of requirements, which are addressed in the AdaptStream
framework. The most important requirements relevant to
the scope of this paper are as follows:

Consistency. Adaptation should transform a system
from one consistent configuration to another. With respect
to data streams, consistency means that adaptation does not
cause any data to be mishandled, corrupted or lost.

Timeliness. Adaptation on a path does not violate the
smoothness property of a data stream, meaning that data
units arrive at a near-constant rate without noticeable jit-

ter. If multiple streams with a synchronization relationship
are involved in an adaptation, then the synchronization re-
lationship should still be maintained during adaptation.

4.1 Steady-State Conditions

An atomic step comprises a set of adaptation actions, and
either all these actions are executed to completion or none
of them are executed. Execution of an atomic step leads a
system from one steady state to another. Consider the sce-
nario where the media content is adapted from MPEG-1 to
H.263. This scenario illustrates an atomic step that consists
of two actions: 1) replace an MPEG-1 encoder component
with an H.263 encoder component; 2) replace an MPEG-1
decoder component with an H.263 decoder component.

Definition 4. An atomic step of a path P is defined
as AS C P.Comps. The following predicate holds for AS:
Vz(z € AS — Vy(depends(z,y) — y € AS)). The function
depends(z,y) returns true if component z is dependent on
component .

The concept of atomic step is built upon the dependency
relationships amongst components and it strengthens the
consistency of an application. Dependency relationships
derive from application semantics, the richer the semantic
model the more complex dependencies can be specified [14].
We assume that such information is provided by the user as
part of the adaptation requirements. The order of execution
of adaptation actions within an atomic step is from the most
upstream components to the most downstream components,
as data streams are always flowing from the source to the
sink of a path. An atomic step is considered as a whole for
resource allocation. Either the desired amount of resources
is allocated for an atomic step to execute or no resources are
allocated.

4.2 Admission Control

The purpose of admission control is to reserve resources
for the new components as well as for the execution of adap-
tation actions, and admission control should not have ob-
servable effect on the running streams. The estimation of
resource consumption is carried out using techniques pro-
posed in [15]. AdaptStream adopts the worse case estima-
tion to accommodate the peak resource demand during this
stage. For instance, to provide optimum picture quality,
each video encoder maintains a local buffer with a size com-
parable to that of the data buffer at the decoder’s end. The
worse case situation is to allocate the largest possible buffer
for the encoder to prevent overflowing. Our algorithm for
determining the worst-case resource consumption traverses
all components and sums up their worse-case resource needs.

4.3 Live Switch

A segment is defined as a sequence of components to be
adapted between two fixed boundaries. Live switch executes
after admission control and is triggered by an event indi-
cating the readiness to change a live stream. Such events
can be a user clicking a button through an interactive pro-
gram, certain points in a data stream being reached or a
control event being released by another component. Live
switch transforms the running configuration from the old
segment to the new segment. As shown in Figure 1, the
H.263 encoding segment is replaced with the MPEG-1 en-

Entry Exit

H.263
Decoder

Figure 1: Live switch from the old segment to the
new segment

coding segment. The boundaries of each segment are clearly
indicated by the rectangle covering it. The output port of
the video source is first disconnected from the input port of
the H.263 Encoder component, and then connected to the
MPEG-1 Encoder component; similarly, the input port of
video sink is switched from the H.263 Decoder component
to the MPEG-1 Decoder component.

5. ACHIEVING FLUIDITY

The adaptation solution employing intra-stream synchro-
nization only achieves the smoothness condition [6]. To
accommodate the fluidity requirements of multiple stream
adaptation, we first introduce the conditions for fluidity-
based scheduling, then we present our scheduling algorithm
and discuss its trade-offs in terms of timeliness and resource
usage. Our discussion focuses on the synchronization be-
tween one master stream and one slave stream.

5.1 Latency Guaranteed Region

There are two main challenges facing the problem of achiev-
ing fluidity for multiple streams. Firstly, the style of syn-
chronization is solution specific: techniques in multimedia
synchronization [1] use buffers to smoothen the network jit-
ter at media source, media receiver or intermediate compo-
nents. We cannot assume a particular style of inter-stream
synchronization while developing the generic scheduling al-
gorithm to counteract the side-effect of adaptation. Sec-
ondly, adaptation on each path should be associated with a
time bound so the asynchronization between data streams
can be effectively handled by our scheduling algorithm.

We propose the notion of Latency Guaranteed Region (LGR)
to cope with the above challenges. An LGR is a sequence of
components and ports between two fixed points in a path.
The latency of an LGR is guaranteed under normal opera-
tional conditions and the jitter of an LGR is the time bound
for the execution of any adaptation actions within this re-
gion. On the one hand, the boundaries of an LGR naturally
serve as the synchronization points. An LGR can represent
the entire path so that synchronization is carried out at the
source and the sink or it can represent only part of a path.
On the other hand, an LGR can guarantee the worse-case
latency and only those adaptation actions that fit in this
worse-case bound are admitted by admission control.

5.2 Parameters of Schedule

The following set of parameters are important for the cal-
culation of a schedule that achieves the temporal alignment
between a master stream and a slave stream.

s | |
L | |
A -\I ASmaothnasa :
Segment A I
= Time
Segment A”

k. &

A "

Lz

L2

Figure 2: Smoothness condition for single stream
adaptation

| |
| Ay |
ril] |
| Master Stream Adaptation |
1

Mastar fasd
A

Y

| Slave Stream Adaptation

\s Iy
T

Stave laad

Figure 3: Adaptations on two streams are synchro-
nized to achieve fluidity

e Segment Latency. L is given by the latency of a segment.
A segment has a higher latency when another segment is
running alongside it (i.e. during live switch).

e New Segment Startup. t1 is the point in time to connect
the entry of a new segment into a running configuration to
allow the upstream data to flow through.

e Old Segment Terminate. t2 is the point in time to dis-
connect the entry of an old segment from the running con-
figuration.

e Lead Time. ticqq is the elapsed time between requesting
a segment switch and its completion [6].

e Smoothness. Asmoothness represents the degradation of
quality of a stream during adaptation. It is calculated as the
interval between two streams when they are spliced together.

o Fluidity. Agfiuidity represents the degree of temporal
alignment between a master stream and a slave stream.

Figure 2 illustrates how to measure the smoothness of an
adaptation taking place on a single stream. At time ¢,
the entry of segment A is disconnected from its upstream
neighbor, while the exit of the segment remains connected
to its downstream neighbor until all data that has entered
is processed and flushed out. Time ¢;+L; signals the end of
the old stream, as segment A stops producing new data and
is therefore removed from the current configuration. Simi-
larly, the entry of segment A* is connected at time t2 and
the exit of the segment is connected at time t2+L2 when
the new stream appears. A smoothness algorithm [6] sched-
ules the execution of adaptation actions in such a way that
Agmoothness 1s minimized.

In Figure 3, the fluidity property A fiuidity expresses the
requirement for adaptation of one stream to finish at the
same time as the adaptation of the other stream. The tem-
poral alignment of two streams still holds if the delay of
either stream induced by adaptation can be compensated

by an appropriate scheduling algorithm. ¢;cqq of the mas-
ter stream may be longer or shorter than ¢;cqq of the slave
stream. The fluidity scheduling accommodates both situa-
tions by injecting trigger events of a segment switch at dif-
ferent points in time. The smoothness scheduling is nested
in the fluidity scheduling, as the former addresses the glitch-
free switch on a single stream and the latter coordinates the
temporal alignment of multiple streams.

5.3 Scheduling Algorithm

We propose a fluidity scheduling algorithm in this sec-
tion. The goal of the algorithm is to achieve a reason-
able fluidity value for the inter-stream adaptations under
different resource conditions. It is required to function un-
der both optimistic conditions and pessimistic conditions.
Optimistic scheduling caters for the average-case reserva-
tion of resources and for applications that have a moder-
ate degree of out-of-sync tolerance. Pessimistic scheduling
is suited for applications with stringent synchronization re-
quirements, and is based on worse-case reservation of re-
sources. Our scheduling algorithm consists of three phases:
1) Partition; 2) Compensation; 3) Integration.

Partition. During this phase, adaptation actions in an
atomic step are mapped onto the LGRs by means of a map-
ping function. To ensure consistency, atomic steps of a path
have to be executed sequentially rather than in an inter-
leaved fashion. The partition phase carves up an atomic step
into an ordered set of segments, and groups those segments
that fit into one LGR together. The remainder of our algo-
rithm addresses the temporal alignment of two LGRs, one is
from the master stream and another is from the slave stream:
LGRmaster = {ng| OSISD}, LGRsla’ue = {ng| OSISIH}

Compensation. To ensure that the adaptation actions
on each LGR do not drift data streams out of synchroniza-
tion with each other, the difference in their lead time has
to be compensated. Suppose the lead time of the execution
of LGRmaster is Lead,,, and the lead time of LGRgiqve is
Leads. Our strategy is to begin the integration of one LGR
with the shorter lead time L later than that of another LGR.

L = |Lead,, - Lead|

Lead;

Ll = Wi L’ where Wi = min(Lead,,Leads)

Listing 1. outlines the pseudo code of the compensation
and the integration phase. The lead time of an LGR is
calculated by adding up the average-case lead time of each
segment in the LGR. To fairly distribute the burden of tem-
poral alignment across all the segments in an LGR, each
segment sg; is associated with a compensation slot L; de-
fined above (line 3-10). The scheduling of a segment then
takes into account the compensation slot to postpone the
execution of its stream-processing components. As shown
in Figure 4, the lead time of segment sg; is expanded by L;
and the lead time of segment sg;+1 is increased by L;y1.

Integration. This phase schedules the components in a
segment to process data streams, by means of injecting the
trigger events to control the timing of their execution. It is
able to work towards the pessimistic mode where the com-
ponents begin processing data at the earliest possible time
and new data is delivered to the exit of the segment before it
replaces the old segment. It can also work towards the opti-
mistic mode where the schedule is based on the average-case
timing estimation but the risk is deadline overshoot.

S0 Sgi
— .. | [] —
e —— e —— =~
Lead: L Laadisi Lirt

Figure 4: Each segment is compensated by a desired
slot in an LGR

procedure CalculateSlots (LGR1, LGR2)
//calculate the compensation slots
LGR = min(LGR1, LGR2);

minlead = min(LGR1.lead , LGR2.lead);
maxlead = max(LGRI1.lead , LGR2.lead);

for (all sgs in the LGR) do
sg.slot = (maxlead — minlead) =
sg.lead /minlead ;

© 00O Ui W

10 end for;
11 | end procedure;

13 | procedure Integrate (sg, tr)
14 | if (Is_admitted (sg, sg.config)) then
15 for (all actors in the sg) do

16 Init actor;

17 end for;

18

19 //stepwise control of adaptation ezxecution
20 while (waitStepTrigger (tr, sg.slot)) do
21 for (all actions in tr) do

22 action.process ();

23 action .commit ();

24 end for;

25 end while;

26

27 | //switch on the new segment sg
28 if (waitSwitch(sg)) do

29 sg.switch(sg.config);
30 end if;
31 |end if;

32 |end procedure;

Listing 1: Scheduling the components to process
data streams

An admission test is conducted through Is_admitted, which
returns true if a segment has the desired timing properties
and resource usage in relation to the running configuration.
Once the admission test is passed, the components in a seg-
ment are initialized (line 15-17): a component is parameter-
ized, activated and connected to its downstream neighbor.
However, during the initialization, the components have not
yet begun to execute as a result the reserved resources are
not utilized. The step-wise control mechanism (line 20-25)
paces the progress of stream-processing: a trigger event is
received through waitStep Trigger and it contains a list of
actions to be executed in this step. Stream processing of
each component begins by the invocation of process, and
upon completion, the status is communicated back to the
step-wise controller through the invocation of commit. The
final stage of integration (line 28-30) is to connect the exit
of a segment into a running configuration to complete the
replacement.

The step-wise controller injects events at proper times to
trigger stream processing. The interval between two suc-
cessive injections should be generous enough to allow the
previous step to finish processing, however it also needs to

take into account the risk of deadline overshoot. Timing
predictive models [16][22] are used to calculate the interval
between the injections.

6. EXPERIMENTAL EVALUATION

In our experiment, the AdaptStream framework and the
stream-based applications are deployed on an embedded plat-
form Java SunSpots [21], which is a resource-constrained
environment for real-time applications written in Java. The
goal is to evaluate the effectiveness of our scheduling al-
gorithm under different operational conditions [23], and to
show the relations between fluidity and smoothness.

6.1 Experimental Setup

A lip-synchronization scenario is implemented using Adapt-
Stream. The master path carries the audio stream and the
slave path carries the video stream. In our experiment, there
are 6 components in each path and the region between the
sender and the receiver forms one LGR. Two atomic steps
are executed periodically on each path: 1) replace a pair of
media encoder and decoder; 2) replace a pair of error correc-
tion encoder and decoder. We compare the optimistic (OP)
and pessimistic (PE) scheduling against the baseline (BL)
scheduling. The baseline scheduling employs the smoothness
control [6] on every stream and does not support fluidity.

The boundary between the optimistic mode and the pes-
simistic mode can be adjusted in a continuous range. In
this experiment, we choose the pessimistic mode to be 50%
of the compensation slot, and the optimistic mode 90% of
the compensation slot. The following metrics are sampled
during the period when atomic steps are executed.

e smoothness. Sample the interval between packets at the
receiver end and calculate the percentage of deviation from
the normal interval value.

o fluidity. Sample the output packets from both the mas-
ter and the slave stream and calculate the percentage of data
packets that are out-of-sync with each other (degree of tem-
poral alignment) based on their timestamps.

6.2 Experimental Results

The first result is obtained under abundant resource (mem-
ory usage) conditions, we measure the effectiveness of three
scheduling algorithms in achieving fluidity with respect to
data transmission rate. As is shown in Figure 5, fluidity
deteriorates with the increase in the transmission rate of
data, revealing its sensitivity to the ongoing communica-
tion. When the data rate is relatively low (under 256KB/s),
the benefit of pessimistic and optimistic scheduling is only
marginal; however when the transmission rate reaches 1IMB/s,
the number of out-of-sync packets is reduced by nearly 50%
by pessimistic schedule in comparision with that achieved by
baseline. Pessimistic schedule invariably outperforms opti-
misstic schedule in each of the five tests (6.7% ~ 19.8%), as
pessimistic schedule utilizes more resources and has a lower
risk of deadline overshoot. The result shows that the higher
the transmission rate the more likely the fluidity property is
violated and our fluidity control mechanism performs well.

Then, we measure how effective each scheduling algorithm
is in achieving fluidity under varying resource conditions.
Data transmission rate is fixed at 256KB/s in this case.
Suppose M1 is the average-case estimation of required mem-
ory for executing both the master and the slave stream, M2

B PEQOF OBL

45 I

34 M

25 H

Fluidity (%)

1.5 1 m

05 4 M

G4 128 256 312 1024

Data Transmission Rate (KB/s)

Figure 5: Fluidity under different data transmission
rates

BFE OOF OBL

Fluidity{%}
(]
[)
[

0.1 03 n0a a7 nAa
Surplus Factor of Memory Allocation

Figure 6: Fluidity under different resource condi-
tions

WPE OCFP OBL

Smoothness (%)
()

B4 125 256 212 1024
Data Transmission Rate (KB/s)

Figure 7: Smoothness under different data trans-
mission rates

is the average-case estimation of the required memory for
both streams and their replacement (new segments). The
amount resource allocated (z) can be adjusted by either in-
creasing or decreasing the surplus factor 6 = % within
the range [0,1]. As is shown in Figure 6, with the increase of
the surplus factor, a better fluidity value is achieved by all
three scheduling algorithms. The experiment conducted un-
der the abundant resource condition has indicated the lower
bound of fluidity: PE 2.2%, OP 2.48% , and BL 3.25%. As
0 increases, the value of fluidity is gradually approaching
the lower bound: when 6 is 0.9, PE achieves 2.34%, OP
achieves 2.53% and BL achieves 3.42%. The most fluidity
gain is achieved when the value of 6 is 0.5 for pessimistic
scheduling (32%), and the value of 0 is 0.9 for optimistic
scheduling (40%). This is possibly due to the different time-
bound within the compensation slots we have chosen for each
scheduling algorithm.

Figure 7 shows the result of smoothness obtained (master
stream) under varying data transmission rates with three
scheduling algorithms. Abundant resources have been allo-
cated for each of the five tests. Baseline scheduling achieves
better smoothness than the other two algorithms, which is
justifiable as baseline scheduling does not deal with the flu-
idity requirement and as a result is less costly to execute.
OP consistently achieves better smoothness than PE (5.4%
~ 32%) and this is attributed to the fact that optimistic
scheduling incurs less execution overhead as it has a more
generous time-bound.

7. RELATED WORK

Our related work derives from the areas of multimedia
synchronization and dynamic software adaptation, as the
AdaptStream framework aims at addressing the fluidity re-
quirement of adaptive stream-based applications. Techniques
in multimedia synchronization rely upon application-level
protocols, such as buffering and re-transmission, to address
fluidity requirement, however those techniques do not gen-
erally involve software adaptation. On the other hand, ap-
proaches to software adaptation provide weak support for
the fluidity requirement of stream-based systems.

Multimedia Synchronization. Intra-stream and inter-
stream synchronization are the main classes of synchroniza-
tion control in multimedia systems. Intra-stream synchro-
nization maintains the continuity of media units at the out-
put of a single stream [17][18]: it is necessary to avoid buffer
underflow and buffer overflow situations at the receiver’s
end, and the play-out is expected to consume media units at
an appropriate rate. Inter-stream synchronization preserves
the temporal relationships amongst different media streams
[19][20]: some streams can be time-dependent such as video
and audio while other streams can be time-independent such
as static images and text. If the presentation of multiple
streams is conducted without inter-stream control, then jit-
ter can gradually build up across streams. Inter-stream syn-
chronization can also be classified into point, real-time con-
tinuous and adaptive synchronization [9].

Dynamic Software Adaptation.The first group of ap-
proaches focuses on the steady-state conditions of dynamic
adaptation. Oreizy [2] proposed an adaptation protocol used
during the component replacement to achieve a safe adapta-
tion process. Feiler [3] introduced the syntactic and seman-
tic consistency to strengthen the integrity of an adaptive
program. Zhang [4] presented the concept of safeness con-

ditions to ensure that adaptation leads an application from
one consistent steady-state to another. The second group of
approaches only addresses the smoothness requirement of a
single stream. Hillman [5] presented an approach to manage
and measure the cost of reconfiguration in terms of time and
disturbance, however it does not allow independent parts of
the system to be adapted simultaneously. Mitchell [6] pro-
posed an approach to schedule the updates of a single live
multimedia stream to achieve the glitch-free reconfiguration.
Zhao [7] introduced influence control of dynamic reconfigu-
ration to avoid data loss and achieve version compatibility.
However, as one of the preconditions of his algorithm syn-
chronization between flows is excluded from any configura-
tions.

8. CONCLUSIONS AND FUTURE WORK

This paper has focused on calculating the schedules for
adapting multiple streams to maintain end-to-end timing
properties within the resource constraints of the underly-
ing platform. The AdaptStream framework is designed to
accommodate the steady-state conditions and the timeli-
ness requirements of adaptive stream-based systems. Our
main contributions are the models and the scheduling al-
gorithms of the AdaptStream framework for addressing the
synchronization requirements of multiple adaptive streams.
Experiments have shown that AdaptStream can support
inter-stream synchronization under various operational con-
ditions. Future research plans investigate the scheduling
algorithms that cater for application specific requirements,
such as syntax-awareness and priority-awareness, and to ex-
tend the AdaptStream framework to support these require-
ments.

ACKNOWLEDGEMENT. This work was supported,
in part, by Science Foundation Ireland grant 03/CE2/1303_1
to Lero, the Irish Software Engineering Research Center
(www.lero.ie).

9. REFERENCES

[1] Boronat, F., Lloret, J., Garcia, M.: Multimedia group
and inter-stream synchronization techniques - a
comparative study. In: Elsevier Information Systems 34
(2009), pp. 108-131

[2] Oreizy, P., Medvidovic, N., Taylor, R.N.:
Architecture-based runtime software evolution. In:
Proceedings of the 20th international conference on
Software engineering(ICSE), p.177-186

[3] Li, J., Feiler, P.H.: Managing inconsistency in
reconfigurable systems. In: IEE Proceedings - Software
145(5): 172-179 (1998)

[4] Zhang, J., Cheng, B.H.C., Yang, Z., McKinley, P.K.:
Enabling safe dynamic component-based software
adaptation. In: Workshop on Architecting Dependable
Systems(WADS), pp 194-211 (2004)

[5] Hillman, J., Warren, I.: An Open Framework for
Dynamic Reconfiguration. In: Proceedings of the 26th
International Conference on Software
Engineering(ICSE), pp 594-603.

[6] Mitchell, S., Naguib, H., Coulouris, G., Kindberg, T.:
Dynamic Reconfiguring Multimedia Components: A
Model-based Approach. In: Proceedings of the Eighth
ACM SIGOPS European Workshop (1998)

[7] Li, W., Zhao, Z.: Influence control for dynamic
reconfiguration of data flow systems. Journal of
Software, 2007.

[8] S.R.Mitchell: Dynamic Configuration of Distributed
Multimedia Components. Ph.D. thesis, University of
London, 2000.

[9] Chen, T., Graf, H.P., Wang, K.: Lip synchronization
using speech-assisted video processing. In: Signal
Processing Letters, IEEE (1995)

[10] Bhatt, B., Birks, D., Hermreck, D.: Digital Television
Making it Work. In: IEEE Spectrum 34(10), pp 19-28,
October 1997.

[11] Blakowski, G., Steinmetz, R.: A media
synchronization survey reference model, specification
and case studies. In: IEEE J.Sel.Areas Commun. 14(1)
(1996)

[12] Zhao, Z., Li, W.: Dynamic Reconfiguration Planning
with Influence Control. In: 6th IEEE/ACIS
International Conference on Computer and Information
Science (ICIS 2007)

[13] Manvi, S.S, Venkataram, P.: An agent based
synchronization scheme for multimedia applications. In:
J.Syst.Software(JSS) 79(5) (2006) 701-713

[14] Feiler, P., Li, J.: Consistency in Dynamic
Reconfiguration. In: Proceedings of the 4th International
Conference on Configurable Distributed Systems (1998)

[15] Fritsch, S., Clarke, S.: TimeAdapt: timely execution
of dynamic software reconfigurations. In: Proceedings of
the 5th Middleware doctoral symposium (2008)

[16] Brennan, S., Cahill, V., Clarke, S.: Applying
non-constant volatility analysis methods to software
timeliness. In: Proceedings of the 21st Euromicro
Conference on Real-Time Systems (2009)

[17] Laoutaris, N., Stavrakakis, I.: Intrastream
synchronization for continuous media streams: a survey
of playout schedulers. In: IEEE Network Mag.
16(3)(2002) 30-40

[18] Ishibashi, Y., Tasaka, S.: A synchronization
mechanism for continuous media in multimedia
communications. In: Proceedings of the IEEE
INFOCOM’95 pp 1010-1019

[19] Qiao, L., Nahrstedt, K.: Lip synchronization within
an adaptive VoD. In: SPIE Multimedia Computing and
Networking (1997) pp 170 -181

[20] Bourkerche, A., Owens, H.: Media synchronization
and QoS packet scheduling algorithm for wireless
systems. In: Mobile Networks Appl.10(1-2) (2005)

[21] Java Sun SPOT Application Development using Java
ME: http://www.blueboard.com/spot/

[22] Brennan, S., Fritsch, S., Liu, Y., Sterritt, A., Fox, J.,
Linehan, E., Driver, C., Meier, R., Cahill, V., Harrison,
W., Clarke, S.: A Framework for Flexible and
Dependable Service-oriented Embedded Systems. In:
Architecting Dependable Systems VII (ADS VII), vol.
LNCS 6420: Springer-Verlag Berlin Heidelberg, 2010,
pp- 123-145, to appear

[23] Liu, Y., Meier, R.: Resource-Aware Contracts for
Addressing Feature Interaction in Dynamic Adaptive
Systems. In: Proceedings of the Fifth International
Conference on Autonomic and Autonomous Systems
(ICAS 2009), pp.346-350

