

Towards a Lightweight Mobile Cloud

Dissertation Submitted in Part Fulfilment of the Requirements for the

degree of Master in Computer Science

University of Dublin

Trinity College

2011

Paul Woods

Dissertation Supervisor: Dr. Siobhán Clarke

 2

Declaration

I declare that the work described in this dissertation is, except where otherwise stated, entirely

my own work and has not been submitted as an exercise for a degree at this or any other

university.

I also agree that the Library of the University of Dublin, Trinity College may lend or copy this

dissertation upon request.

Signature:

Paul Woods

Date: 29th August 2011

 3

Acknowledgements

I would like to thank my supervisor, Dr. Siobhán Clarke, for her guidance and support

throughout this dissertation. This support extended to weekly meetings in support of the

exploratory analysis, design, implementation and evaluation.

In addition I’d like to acknowledge all of the lecturers I studied under for the M.Sc. in

Networks & Distributed Systems and the six other students from the class. I am also grateful

to several of the PhD students who took the time to discuss areas of interest. In this regard I

especially thank Brendan Cody Kenny and Michael Clear.

Lastly I’d like to pay tribute to all of the great computer scientists, both past and present who

inspired my participation on the program and who have contributed more than I could ever

aspire to. I believe, and hope, that computer science, coupled with the harnessing of other

disciplines, will provide a platform for modeling, managing and resolving many of the key

problems we face in a structured and efficient manner.

 4

Dissertation abstract:

Towards a lightweight mobile cloud

Author: Paul Woods

ID No. 10263756 1 RS

Submitted in part satisfaction of the
Masters Degree in Computer Science
Trinity College Dublin
August 2011

Abstract

A typical cloud-computing environment is characterised by the networking of tens of
thousands of servers. Once deployed, such datacenters experience a relatively stable hardware
and networking environment. Smartphones offer considerable processing, memory, storage
and sensing resources, and are handheld, pocket-sized devices that users generally carry with
them at all times. The vision for cloud computing could foster more flexible models, whereby
general users, including mobile ones, could participate in the cloud as both providers and
consumers of resources. If the cloud is to computing what the Internet is for data, the
opportunity for mobile computers to participate in service provision should be investigated.

The motivation for this dissertation is threefold. First, it explores the forces that resulted in the
emergence of cloud computing. Second, the implications of mobile server nodes within a
cloud environment are considered. Finally, the dissertation focuses on implementing a mobile
storage cloud. Such a system could support applications including disseminating critical
information in a disaster zone, mobile distributed social networking, and sensor applications
such as collecting data on traffic movements.

The background analysis indicates several developments that fostered the emergence of cloud
computing. During the 1960s virtualisation was developed for allocating mainframe
resources, but later waned due to the commoditisation of hardware, only to re-emerge for
allocating computing resources within datacenters. Improvements throughout the 1980s and
1990s reduced commodity hardware and networking costs, stimulating migration to
horizontally scalable datacenters. Finally, automating resource provisioning via online portals
enabled the flexibility and efficiency of federated computing to become widely accessible.

Evaluating the implications of mobile server nodes highlights numerous constraints for
implementing a mobile cloud. Most importantly it becomes evident that the traditional cloud
architecture will not suffice. A smartphone will not currently support a hypervisor or multiple
virtual machines. Mobile devices are not designed to act as always-on servers, as they are
battery powered, with limited computing resources, and experience low and intermittent
network bandwidth. A mobile cloud will therefore only support applications that are designed
for such an operating environment. Service availability takes on a different meaning within a
mobile cloud as nodes regularly arrive and churn off the network.

 5

The implementation involved designing and testing a mobile storage cloud, named Icarus.
Each participating node incorporates client, directory and storage functionality. Using smart
directory logic to dynamically replicate both content and directory metadata, depending on
content importance, allows for the efficient utilisation of resources within the network. This
ensures content survives node failure or node departure. Once a file is located it can be
retrieved on a peer-to-peer basis.

The evaluation was based on simulating networks of varying size, and demonstrated that the
proposed Icarus architecture survives node churn, while providing reasonable availability and
high performance. Dynamically replicating and distributing files and related URL metadata
separately across the network improved availability by minimising the probability that all
replicas are unavailable or that requested content cannot be located. Multi-hop replication of
directory metadata reduced the storage and transmission overhead, relative to replicating
content, providing a sizeable improvement in network performance. An Icarus network can be
tuned to provide deterministic availability and performance.

Dissertation supervisor: Dr. Siobhan Clarke
 Trinity College Dublin

 6

CONTENTS

1.	
 INTRODUCTION ..8	

1.1.	
 Context ... 8	

1.2.	
 Motivation .. 9	

1.3.	
 Structure of dissertation ... 10	

2.	
 BACKGROUND ..12	

2.1: Evolution of cloud computing .. 12	

2.1.1.	
 Cloud technical stack..21	

2.1.2.	
 Frameworks for cloud participation ...24	

2.2.	
 Summary .. 26	

3.	
 THE IMPLICATION OF MOBILE NODES..27	

3.1.	
 Stability of operating environment... 27	

3.1.1.	
 Processor, operating system and power issues ...32	

3.1.2.	
 Mobile virtual machines ...34	

3.2.	
 Mobile phones and the cloud ... 36	

3.3.	
 Summary .. 41	

4.	
 OPTIONS FOR IMPLEMENTING A MOBILE CLOUD ..43	

4.1.	
 Option 1: Distributed processing ... 43	

4.2.	
 Option 2: Distributed mobile storage system... 47	

4.2.1.	
 Replication..48	

4.3.	
 Option 3: Peer-to-peer architecture .. 50	

4.3.1.	
 Unstructured P2P networks ..50	

4.3.2.	
 Structured P2P networks ..52	

4.4.	
 Option 4: Mobile Web Services ... 60	

4.5.	
 Summary .. 64	

5.	
 IMPLEMENTATION & EVALUATION..68	

5.1.	
 Requirements specification .. 69	

5.2.	
 Client design... 71	

5.3.	
 Directory design ... 72	

5.3.1.	
 Peer neighbourhood..72	

5.3.1.	
 Content and metadata replication ...73	

5.3.2.	
 Search and content retrieval ...79	

5.4.	
 Storage design .. 80	

5.5.	
 Database schema .. 81	

5.6.	
 Summary architecture .. 83	

5.7.	
 Evaluation .. 85	

6.	
 CONCLUSIONS ..91	

6.1.	
 Future work .. 95	

7.	
 BIBLIOGRAPHY & APPENDIX...96	

7.1.	
 Bibliography... 96	

7.2.	
 Appendix 1: Future extensions to Icarus.. 100	

7.3.	
 Appendix 2: UML diagrams of Icarus ... 103	

 7

7.4.	
 Appendix 2: Icarus simulation – sample log output... 106	

Index of tables, graphs, diagrams and pictures

Table 1:	
 Technical specifications of iPhone 4 versus HTC Desire .. 36	

Table 2:	
 Taxonomy of applications and associated computing requirements .. 40	

Table 3:	
 Comparison of traditional versus mobile cloud.. 42	

Table 4:	
 The impact of replication on availability.. 48	

Table 5:	
 Traditional cloud architecture versus P2P .. 59	

Table 6:	
 Taxonomy of P2P network architectures.. 59	

Table 7:	
 Traditional versus mobile cloud service models .. 67	

Table 8:	
 Combinations of nodes churning.. 78	

Diagram 1:	
 Cloud Computing Models.. 18	

Diagram 2:	
 Cloud characteristics, service and deployment models ... 19	

Diagram 3:	
 Cloud service models... 21	

Diagram 4:	
 Cloud technical stack... 22	

Diagram 5:	
 CloneCloud .. 38	

Diagram 6:	
 MapReduce .. 45	

Diagram 7:	
 Unstructured P2P architectures.. 51	

Diagram 8:	
 P2P with distributed directory ... 52	

Diagram 9:	
 DHT based network... 53	

Diagram 10:	
 Structured P2P architectures.. 54	

Diagram 11:	
 Structured P2P architectures.. 62	

Diagram 12:	
 Icarus – user interface.. 71	

Diagram 13:	
 Icarus – components .. 73	

Diagram 14:	
 Dynamic replication... 75	

Diagram 15:	
 Replication illustrated.. 76	

Diagram 16:	
 Directory replication request ... 76	

Diagram 17:	
 Search and content retrieval... 80	

Diagram 18:	
 Icarus - architecture ... 83	

Diagram 19:	
 UML diagram of simulation package .. 103	

Diagram 20:	
 UML class diagram - client package ... 103	

Diagram 21:	
 UML class diagram - directory package.. 104	

Diagram 22:	
 UML class diagram - storage package... 105	

Diagram 23:	
 UML class diagram - messaging package ... 105	

Graph 1: Economics of cloud computing ... 16	

Graph 2: Availability – search bounded to 10 node hops... 87	

Graph 3: Availability – unbounded .. 87	

Graph 4: Availability levels at varying replication... 89	

Graph 5: Network search – hop count to locate content... 89	

1. INTRODUCTION

1.1. Context

Much of the literature relating to mobile cloud computing involves mobile devices acting as

thin clients and leveraging datacenters for back-end computation. In practice mobile cloud

based applications entail the static partitioning of applications where the mobile device is

responsible for executing customer-facing tasks such as the user interface while the datacenter

hosts the server, middleware and database capabilities. Smartphones and tablet computers

come with onboard processing, memory and solid-state storage resources equivalent to

reasonable specification laptops of just a few years ago. Such improvements in mobile

computing are set to continue, witnessed by the recent announcement by Qualcomm, to offer

a 1.5 GHz dual core processor1 for mobile devices and Apple’s shift to using multicore

processors in the iPhone. In contrast to traditional computing, this new breed of computer is

encapsulated in a handheld, pocket sized device that users carry with them everywhere, and

all of the time.

Typical cloud computing environments involve the deployment of large-scale server

infrastructure in a manner proprietary to service providers such as Google, IBM, Amazon,

Apple and Facebook. These service providers manage a global network of datacenters, with

each networked to combine the computing power of tens of thousands of commodity servers.

Impressive as these warehouse scale facilities are, such cloud computing platforms are at an

early stage of development as datacenters are largely isolated computing platforms used for

the provision of specific applications, platforms or bare infrastructure resources.

1 See http://www.qualcomm.com/videos/snapdragon-dual-core-explained for an explanation of the new duel-core mobile

processor.

 9

The vision for cloud computing should be more flexible than these models, whereby general

users, including mobile ones, can participate in the cloud as both consumers and providers of

resources. If the cloud is to computing what the Internet is for data, the opportunity for mobile

computers to participate in service provision should be investigated. Though the potential for

a mobile cloud has not gone unnoticed, with organisations such as NASA exhibiting interest

(Warner and Karman 2010), there has been limited in-depth exploration of the opportunities

and challenges that arise.

There is an increasingly blurred definition of a mobile device given the proliferation of

smartphones, Internet accessible tablet computers, electronic book readers and other such

devices. A potentially significant opportunity exists to harness the power of these devices

whether for concurrent processing, federated storage or for the provision of personalised

mobile web applications hosted directly on the smartphone2. The move from smartphones

simply leveraging applications as a thin client, to hosting services directly, could lead to a

wide variety of new and innovative systems architectures and applications. Such designs

could have implications for how information is collected and analysed on a daily basis in the

world around us and provide alternative solutions to existing applications, in order to reduce

privacy and security threats.

1.2. Motivation

The motivation for this dissertation is threefold. First, it explores the forces that resulted in the

emergence of cloud computing. Second, the implications of mobile server nodes within a

2 ComScore data showed that US smartphone penetration increased by 60% in the three months ending December 2010 (absolute

number was 63.2 million smartphones) versus the same period for 2009. In Q4 2010, 100.9 million smartphones shipped

worldwide versus 92.1 million PCs.

 10

cloud environment are considered. Finally, the dissertation focuses on implementing a mobile

storage cloud. Such a system could support applications including disseminating critical

information in a disaster zone, mobile distributed social networking, and sensor applications

such as collecting data on traffic movements. The system, named Icarus, is novel to the extent

that mobile nodes serve as contributors to the cloud rather than merely acting as thin clients to

leverage traditional cloud resources. The focus of Icarus is to provide distributed storage

utilising mobile nodes, in a manner that fosters file availability irrespective of node churn

within a wireless network. In a disaster zone, Icarus could be used for the dissemination and

collaboration on critical information or to provide real-time information on potential obstacles

to emergency routes. All of these applications are possible given the proliferation of sensors

such as GPS, thermometer and accelerometer available on most smartphones today.

This research is important given the improvements in smartphone technologies coupled with

the advancements in wireless networking that has resulted in a changing landscape whereby

personal mobile computing resources could be federated to provide a distributed mobile cloud

computing facility. The federation of 5,000 modern smartphones, each with 64Gb of storage

and 1Ghz processor could provide 320 Terabytes of storage and 5 Terahertz processing

capacity. Furthermore these computational resources are set to improve considerably.

1.3. Structure of dissertation

The next section of the dissertation analyses the background and implications of cloud

computing. An analysis of options for enabling mobile nodes to participate in a cloud

computing environment are then explored with reference to the literature. It becomes apparent

that a variety of options exist for implementing a mobile cloud. A design is then outlined for

Icarus and the implementation of this design clearly documented. An evaluation of Icarus,

 11

using extensive network simulations is then completed. The dissertation concludes with the

key lessons from the analysis and implementation.

2. BACKGROUND

2.1: Evolution of cloud computing

The term ‘cloud computing’ has been enshrouded in much marketing hype. The CEO of

Oracle, Larry Ellison famously lashed out at cloud computing in September 2008 noting:

"The interesting thing about cloud computing is that we've redefined cloud computing to

include everything that we already do. I can't think of anything that isn't cloud computing

with all of these announcements. The computer industry is the only industry that is more

fashion-driven than women's fashion. Maybe I'm an idiot, but I have no idea what anyone is

talking about. What is it? It's complete gibberish. It's insane. When is this idiocy going to

stop?”

If the CEO of Oracle couldn’t clearly decipher whether cloud computing is a new paradigm of

computing then its clear that the term needs to be demystified. This section will seek to

provide clarity by providing a clear definition and overview of what cloud computing is and

how it came about. This will necessitate a brief history of its evolution and a discussion of the

service delivery models that will be important in considering how mobile devices could

participate within a cloud-computing environment.

A key benefit of cloud computing is the ability to seamlessly access remote and distributed

applications in a transparent manner. An important goal of any distributed system is the

ability to present itself as a single computer system when in use, a requirement referred to as

transparency (Tanenbaum and Van Steen 2006). Cloud computing was originally

conceptualised in the 1960s when John McCarthy noted, “computation may someday be

organized as a public utility.” Many of the modern characteristics of cloud computing such as

elastic provisioning and public, private and community forms were also explored in Douglas

 13

Parkhill’s book (Parkhill 1966) on utility computing. During the 1980s (Hagman 1986) and

90s (Clark 1992), research focused on the opportunities to leverage idle workstation

resources. There was a realization that servers were commonly being operated at around one

tenth of operational efficiency as core applications were being run on a dedicated server, often

with redundancy provided via another dedicated server. Research started to suggest that

supercomputing capabilities could be delivered through the use of parallel architectures

(Kung, et al. 1991). Other researchers noted that a typical workstation was much less

expensive than the compute node of most massively parallel supercomputers of the time (Li,

et al. 1993).

In parallel research was progressing on how to improve the networking of workstations such

that they would have high bandwidth and low-latency interconnects. This would ultimately

help to close the speed gap that existed between supercomputer interconnects and

interconnecting a network of workstations. Researchers on the NOW project (Network of

Workstations) in Berkeley (Anderson, et al. 1992), noted that high speed networks were

becoming faster than disks and that parallel programs could use more processors. They

specifically noted that the existing high-end computing architecture at the time had no “near

commodity” component and that the cost of deploying infrastructure was prohibitive. As a

result researchers felt that a network of commodity workstations was worthy of study as a

way of performing large-scale computation at lower cost. At the time though, there were few

applications that could leverage parallel processing. The NOW project research concluded

that the computing food chain beyond 2004 would consist largely of networks of commodity

computers. Research into the use of hypervisor software to provide virtual machines added

further credence to cloud computing by providing an efficient mechanism for allocating

virtual machine resources to end users (P. Barham, K. Dragovic, et al. 2003). A hypervisor

presents a virtual operating platform allowing multiple guest operating systems to share the

same server hardware.

Throughout this period research was also ongoing into grid computing. While in some

respects similar to cloud computing, a grid differs in a number of fundamental ways. With

 14

grid computation, an individual user seeks to consume a large amount of federated

computational resources (Berman, Fox and Hey 2003). A processing task is then allocated to

a network of remote computers and processing is completed either in the background or

during otherwise idle time with inputs and outputs transmitted across a broadband connection.

A virtual machine is the basic computational building block provided via cloud computing.

Virtualization allows for server resources to be split and allocated into multiple logical

servers. In essence virtualization abstracts the services running on a cloud from the underlying

physical hardware. IBM developed technologies on virtualization in the 1960s and 1970s to

allow multiple users share resources on a single machine (at the time for mainframe

computers). Somewhat ironically, the progression towards affordable commodity computing

resulted in a waning requirement for virtualization in the 1980s and 1990s as the requirement

to share hardware decreased. More recently this has lead to the re-emergence of virtualisation

in support of cloud computing as computing resources are amalgamated using warehouses of

networked commodity servers. One of the beautiful benefits of virtualization is that when

several virtual machines need to perform routine commands, they can be performed on the

bare metal server rather than multiple times in the virtual machines, which would result in too

high an overhead, adversely impacting performance. Prior to virtualization storage area

networks (SANs) provided equivalent abstraction of storage by allowing the storage to be

centralised for a large number of servers.

An issue that arises naturally from virtualization though is “virtual machine sprawl” (Sarathy,

Purnednu and Miffilineni 2010). It is relatively simple to count the number of physical servers

an organisation has, but more difficult to manage the total number of virtual machines used.

Due to the widespread introduction of virtualization, there has been a significant increase in

the demand for hardware and software support to optimise virtualisation. This has led to the

introduction of logical routing across networks of virtual machines and a subsequent

requirement for logical load balancers. As a result network traffic now needs to be managed

and routed intra-server as well as inter-server. A consequence of this is that the cabling

 15

previously required to interconnect servers has reduced given that multiple virtual machines

are homed onto one physical server that uses a virtual internal network and that shares one

physical Ethernet cable to connect to the broader rack of physical servers. Organisations

outsourcing to cloud service providers may not therefore need to have the same networking

expertise in-house. Server racks now come pre-cabled and on wheels, allowing them to be

positioned and connected via the top-of-rack-switch to their respective datacenter cluster. This

architecture results in the ability to build a highly stable physical hardware environment

housing hundreds of thousands of servers that are interconnected via high-speed networking.

A key operational metric within a cloud environment is the ability to efficiently run hardware

across its asset life, which is usually three to four years. In this stable physical environment,

only the virtualized instances change dynamically over time. The physical hardware and

networking remains largely stable.

A key benefit of cloud computing is that the cost of running ten servers for one thousand

hours can be the same as running one thousand servers for ten hours. This is a flexibility that

had previously been unavailable to organizations. The motivation for the growth in cloud

computing thus becomes clear given both the flexibility and operational efficiency that can be

achieved relative to all organizations building their own separate IT infrastructure. In the

diagram below the benefits accruing from cloud computing are illustrated. Traditionally

organizational IT investment would have been characterized as lumpy given significant

blocks of capacity are deployed to allow for headroom on future growth of the organisation,

as illustrated in the left hand diagram. With cloud computing, given that very large scale

networks of datacenters are deployed by third party organisations, an enterprise can now lease

the computational capacity needed such that this capacity almost exactly fits the actual

computational demands of the organisation.

 16

Graph 1: Economics of cloud computing

Cloud computing enables organisations to utilize computational resources more efficiently

and benefit from the greater economies of scale derived by allowing third party specialists to

build cloud infrastructure that pools the computational requirements of many organizations.

Thus infrastructure can be deployed at massive scale and separated from application

development or deployment and leased on a variable pricing basis to produce economic

efficiencies in the computational world somewhat analogous to what the industrial revolution

brought to manufacturing. This can be witnessed with the move to very high scale datacenters

and the rationalisation of sub-scale facilities3. Microsoft’s datacenter in Ireland is 550,000

square foot. Meanwhile Google is estimated to be using 900,000 servers worldwide4. Adam

Smith, the famous economist and pioneer of the division of labour would be pleased.

The history of cloud computing provides context for the modern definitions of cloud

computing and service delivery models have largely been driven by the economics just

discussed. A definition of cloud computing is provided by the U.S. National Institute of

Standards and Technology (NIST 2011).

3 The White House has recently announced a plan to shut down 373 datacenters by the end of 2012 with a longer term plan to

close 800 by 2015. http://www.whitehouse.gov/the-press-office/2011/07/20/white-house-announces-plans-shut-down-hundreds-

duplicative-data-centers-
4 http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/

 17

“Cloud computing is a model for enabling convenient, on-demand network access to a shared

pool of configurable computing resources (e.g. networks, servers, storage, applications, and

services) that can be rapidly provisioned and released with minimal management effort or

service provider interaction.”

The NIST specification also outlines that cloud computing is characterised by the following:

1. On-demand self-service. A user can sign up and consume services without long

delays.

2. Broad network access. Ability to access the service via standard platforms (these

could include desktop, laptop and mobile.).

3. Resources are pooled across multiple customers.

4. Rapid elasticity. Computational resources can be scaled in real-time to cope with

demand peaks.

5. Consumption of services are measured. Billing is metered and delivered as a utility

service.

The literature also suggests seven characteristics that make a large datacenter a cloud

(Bernstein, et al. 2009). These are:

1. A pool of computing resources and services are employed that are shared amongst

customers.

2. Services are charged for on an “as used” metered or capacity based pricing model.

3. Resources are distributed geographically but in a manner transparent to the customer

(unless they request visibility).

4. Provisioning, configuration and deconfiguration are automated with no human

assistance.

5. Resources are delivered virtually.

6. Physical infrastructure rarely changes. It is the virtually delivered resources that

change constantly.

7. Resources can be of a physical or an abstract metaphor nature (such as message queue

functions etc).

 18

Both definitions of cloud computing share a number of similarities. Both Amazon Web

Services (Amazon Web Services n.d.) and Google AppEngine (Google App Engine 2011)

exhibit all five of the NIST and all seven of the Bernstein et al. characteristics. Reverting to

Larry Ellison’s quote, it is clear that an understanding of the difference between a datacenter

and what is deemed to be cloud computing is required. The definitions indicate that a cloud

could incorporate one or many datacenters that may be dispersed geographically to create a

computing environment as represented by model 1 in the diagram below. In each case the

cloud specific element represents the hypervisor software, suite of product offerings and self

service front-end provided to the customers of the cloud provider.

Diagram 1: Cloud Computing Models

The terms ‘public cloud’ and ‘private cloud’ have also emerged where a ‘private cloud’ refers

to datacenter infrastructure that is privately used by an enterprise. Indeed such an enterprise

may have dedicated datacenters (a private cloud) for its own internal operations and dedicated

datacenters that are shared with other customers (a public cloud) as in the case of model 2.

Amazon for example, required large scale datacenters initially to support its own online retail

operations and later decided to leverage the infrastructure they had built by offering

computing resources to other organizations. A provider of cloud computing resources with

one or many datacenters might also partition some of the resources in its datacenter/s for other

customers as in the case of model 3. The difference between a private and public datacenter at

 19

the hardware level will largely be negligible. In certain instances though some physical

changes could be made to tune the infrastructure either for the application being hosted or

given the utilisation of the network. For example an application like MapReduce, used by

Google, will utilise significant intradatacenter networking. In general however, the difference

between a private and public cloud will relate to the scale of the infrastructure and the

requirement to provide front-end tools and APIs to allow users to self-service the resources

they lease from a public cloud, allowing for the efficient administration of virtual

infrastructure. Thus far we have discussed public, private and hybrid clouds. Community

clouds may also exist where entities with private computational resources such as universities

can decide to federate resources into a computational cloud which can be used by all parties

as needed. There are different models of service that can be provided from a user’s

perspective. The diagram below provides an overview of the deployment models, services

models and the associated characteristics of cloud-computing.

Diagram 2: Cloud characteristics, service and deployment models

Software as a service (SaaS) is offered via cloud computing infrastructure were customers

utilise applications hosted on the cloud. Typical examples of such applications include

 20

Salesforce.com, Apple’s iCloud and Google docs. SaaS applications are designed to support

end-users, who access and consume the service over the Internet.

Platform as a service (PaaS) is a set of supporting tools and services designed to support

programmers in the development and deployment of applications hosted on a cloud.

Examples include Google’s App Engine. Infrastructure as a service (IaaS) refers to the the

provision of bare virtual machines or the underlying server hardware, along with the required

operating system and associated networking infrastructure. With Amazon Web Services for

example, a customer can request a machine instance, of a particular specification, and with

their operating system of choice. It will take on average less than a minute for the virtual

machine to be deployed. A customer can then lease static IP addresses, which can be mapped

to their virtual machines to provide an openly addressable computer system. Another popular

model is data as a service (DaaS) which includes cloud storage offerings such as Amazon’s

S3 and DropBox which both allow access to cloud storage via both PC and mobile. However

DaaS could be considered a sub type of IaaS.

Of the three above, PaaS and IaaS are directly relevant to organizations seeking to outsource

their platform or infrastructure. One concern raised by choosing PaaS relates to lock-in as

developers usually have to develop their application for a particular platform. To date there

has been limited interoperability between the cloud computing infrastructure of different

service providers. For SaaS this isn’t a significant concern given users are generally

consumers of the service rather than deployers. However for PaaS it can result in signifcant

barriers for a development team to port an application from one particular platform to another

as often PaaS requires the use of particular languages and the deployer is abstracted from

considerable detail regarding the implementation of scalability and fault tolerance.

With IaaS developers have almost full control over the virtual machines used, their

geographic location, the operating system and the middleware and persistence offered. While

IaaS provides more control it also requires the specialist development skills to provision,

 21

dimension and configure the underlying components of the infrastructure. With PaaS most of

this complexity is abstracted away from the end-user opening up opportunities for those with

more limited technical capabilities. The diagram below illustrates the relative positioning of

each of these service models. A SaaS offering could be provided through the use of PaaS or a

company could develop its own PaaS and host it on third party infrastructure leased as a

service.

Diagram 3: Cloud service models

2.1.1. Cloud technical stack

Having defined cloud computing and considered the different service models that can apply

it’s worthwhile to evaluate the technical stack that is required to implement a cloud

computing platform. This will help provide further insight into the potentially fundamental

differences between a traditional cloud and a mobile cloud later in the analysis. The diagram

below has been developed with reference to a technical discussion in the literature

(Sempolinski and Thain 2010).

 22

Diagram 4: Cloud technical stack

At the lowest layer resides the hardware and operating systems of the underlying physical

servers used (often commodity hardware). These commodity servers need to have hardware

extensions to support pure virtualization. Without these extensions only paravirtualization can

be implemented. With pure virtualization, a guest operating system runs unmodified by a

hypervisor. While a cloud computing platform can be implemented using paravirtualization, it

can limit the flexibility in the software components that could be deployed and the speed of

the virtual machines.

The second layer relates to the networking of the servers including the DNS, DHCP and the

subnet organization of the physical machines. This includes the networking that is required to

support the virtual machines having a unique MAC and IP address. In a virtualized

environment the number of IP addresses used grows exponentially. A datacenter with 100,000

physical servers, each with 16 cores, could host 3.2 million virtual machines. But IPv4

addresses are limited in total to 232 or just over 4 billion address spaces. Operators of cloud

computing infrastructure are therefore likely to be amongst the first to switch to IPv6, which

offers an address space in the trillions (IETF n.d.).

 23

The next component is the virtual machine disk image repository. It would be impractical to

complete a full install of an operating system each time a virtual machine is instantiated.

Therefore template disk images with a particular OS configuration and often with other

software preconfigured (a LAMP configuration for example) are stored to allow for the

expedious deployment of virtual machines. The virtual machine hypervisor provides a

framework that allow virtual machines to run. Examples of hypervisors include VMware, Xen

and KVM. Both Xen and KVM are open source hypervisors. The cloud framework itself

(such as open source platforms Eucalyptus, Nimbus and OpenNebula) manages requests from

the user interface (usually web based), retrieves the requested virtual machine disk images

and signals to the hypervisor to set up a virtual machine based on this specification image.

The hypervisor is the virtual machine manager (often referred to as a VMM) and allows

multiple operating systems to be run concurrently on one physical server. The term hypervisor

was coined by IBM in 1965, referring to software that accompanied the IBM RPQ for the

360/65 and which allowed the model to share its memory and act both as an IBM 360 and an

emulated IBM 7080 (Hendricks and Hartmann 1979). A hypervisor is installed on the server

hardware and interfaces between the hardware and the guest operating systems. With

paravirtualization, the hypervisor can be less complex, as certain tasks can be relocated to the

host server rather than being executed in virtual machines running within the host. Xen (P.

Barham, K. F. Dragovic, et al. 2003), Vmware and KVM are popular hypervisors.

The cloud framework resides in the next layer of the technical stack. The framework used will

depend on whether the cloud is private, public or community based. Several open source

cloud frameworks are now also available. These are briefly discussed in the next section.

The last layer is the user interface. Given that cloud resources should be capable of being

managed on a self-service basis it is critical to provide a provisioning portal that allows the

user to configure the cloud resources they are seeking to consume with ease. Amazon provide

 24

an online portal where users can log-in and launch and manage virtual machines. A separate

set of APIs is also provided to allow for resources to be managed programmatically.

2.1.2. Frameworks for cloud participation

Given the ultimate objective of the dissertation is to explore how mobile nodes can participate

in the cloud it is worth briefly considering how participants other than the large datacenter

operators can participate in contributing to traditional cloud computing resources. This section

will briefly review open source cloud computing frameworks that exist.

Eucalyptus is a cloud computing platform, designed to provide an open-sourced equivalent to

Amazon’s EC2 cloud and developed at Berkeley (Nurmi, et al. 2008). Eucalyptus implements

a hypervisor agnostic operating system design. It has a modular design, with each module

represented by well defined APIs, to allow researchers to use modules with other cloud

computing solutions. The system allows users to start, access and terminate their virtual

machines using an emulation of Amazon’s EC2 SOAP interface. The framework supports

virtual machines managed by the XEN hypervisor but plans to incorporate support for other

hypervisors such as VMware. Each high level system component is made available as a

standalone Web service. This ensures that APIs are well defined in the form of a WSDL

document (Web Services Description Language). There are four high level components that

comprise a Eucalyptus installation. These include:

1. Node controller: The node controller manages the execution and termination of

virtual machines on the physical servers on which it runs.

2. Cluster controller: Gathers information to schedule virtual machine execution on

individual node controllers. The cluster controller also manages the virtual instance

networking.

 25

3. Storage controller (Walrus): Offers a put / get API similar to Amazon’s S3 storage

interface. This provides a mechanism for storing and accessing data and provides the

capability to have a virtual machine disk image repository.

4. Cloud controller: Provides the interface for end users and administrators. It provides

the logic to query the other controllers for information relating to the available and

consumed resources. It also makes high level scheduling decisions which are

implemented via requests to the cluster controllers.

The developers of Eucalytus note that one of the most interesting challenges encountered in

designing a cloud computing platform is the networking of the virtual machines. The

networking on virtual instances must address connectivity, isolation and performance. As

users are granted super user access to their virtual machines, they also have super user access

to the underlying network interfaces. As a result it is important to be able to isolate a users

virtual machines from the virtual machines of others. Eucalyptus works best when each

cluster is placed on its own subnet, with its own reserved address range. The framework was

designed with a focus on providing a private cloud computing framework for corporate

enterprises. There is a strong separation between user-space and administrator-space.

OpenNebula is also focused on providing a framework for a purely private cloud that could be

utilized by enterprises (Open Nebula Home Page n.d.). In order to launch a virtual machine, a

user must provide a configuration file with a set of parameters that are provided to the

hypervisor command line. While more tedious, this allows significant flexibility in defining

the processor, memory, disk space and networking resources for the virtual machines.

OpenNebula is geared towards those with a keen interest in cloud computing who want to

experiment and is ideal for use with a small number of virtual machines.

 26

Nimbus is a cloud framework geared toward the scientific community that may be less

interested in the technical internals of the cloud computing system but have greater

requirements for a customized cloud (Nimbus Home Page n.d.).

2.2. Summary

While cloud computing has recently witnessed popularity and exponential growth, the

underlying drivers behind its emergence have been gathering pace since the late 1960s. These

include the development of virtualisation technologies to share mainframe resources, rapid

commoditisation of server hardware driven by Moore’s law and significant increases in

network speeds driven by improvements in the field of photonics. Throughout the 1980s and

1990s significant inefficiencies existed with server hardware being inefficiently utilised as

organisations invested in large blocks of computational capacity with physical demarcation of

critical applications. Cloud computing resolves many of the inefficiencies by providing

flexibility and rapid elasticity for organisations and allowing for specialist providers to focus

on the provision of highly efficient utility-scale infrastructure. The early successes of the

cloud paradigm have led to a virtuous cycle of providers constructing ever-larger datacenters

to optimise economies of scale, minimising overheads such as power and personnel and

rationalising older generation facilities.

This section provided a clear overview of cloud service models. The typical technical stack

for the cloud was then considered, followed by a high level overview of progress towards

open source frameworks for allowing wider participation in the traditional cloud. It highlights

that once a datacenter has been designed and deployed, the associated servers and networking

are utilised across the lifetime of the assets, providing a fairly stable operating environment.

The next section will consider how a cloud incorporating mobile nodes might differ.

 27

3. THE IMPLICATION OF MOBILE NODES

This section of the dissertation will explore in detail the implications of mobile server nodes

participating in a cloud computing environment. Thus far this dissertation has investigated the

origins of cloud-computing, the service models, the technical stack and some of the available

cloud frameworks. Is a mobile cloud different? It is important to note that the literature

appears to misuse the term “mobile cloud”. It usually refers to mobile phones acting as

clients to leverage cloud resources (Klein, et al. 2010), (Simoens, et al. 2011), (Liang, et al.

2011). In contrast, this dissertation focuses on the options to allow mobile phones to

contribute as serving nodes within a cloud infrastructure. After all if mobile devices are

simply accessing traditional cloud resources, then the cloud is not mobile, but rather mobile

clients are accessing a traditional cloud. To consider how mobile devices might participate, it

is important to understand how mobile devices that support computation and their associated

networking differ from a typical datacenter architecture. These differences can be compared

across a range of dimensions including stability of operating environment, processing, power

and mobility.

3.1. Stability of operating environment

The current topology of datacenters is based largely on around 40 servers mounted in a rack

that are interconnected to a cluster of racks via a top-of-rack switch. These racks use 10Gb

Ethernet networks with high-speed routers connecting a cluster that often contain around 45

racks. While the commodity servers within these datacenters are highly distributed, they do

share some centralised resources. If, for example, a power distribution unit fails it could

disable 500 to 1,000 commodity servers for several hours. More recently, clusters are often

 28

enclosed in lorry-style self-contained units with independent fire suppression. These

containers can each house approximately 2,000 servers. This topology provides significant

logistical advantages for setting up a new datacenter or adding capacity to an existing one as

much of the networking is preconfigured such that only the container cluster needs to be

connected to the wider datacenter network. Modern datacenters are composed of a high

volume of commodity servers, with a standard hardware specification, using the same

operating systems and stable high-speed networking.

Fixed network infrastructure uses physical links to support consistent network bandwidth. In

contrast, wireless networking is characterised by variable transmission speeds and intermittent

connectivity. Mobile broadband networks have higher network latency than fixed broadband.

Mobile networking has only recently evolved from being voice centric to supporting

reasonable data speeds. Data rates have increased from 9.6 kilobits per second (kbps) for the

Global System for Mobile Communications (GSM) standard to over 200 kbps for the General

Packet Radio Service (GPRS) standard to several megabits per second with the Universal

Mobile Telecommunications System (UMTS) standard using High-Speed Downlink Packet

Access (HSDPA). The faster the speed of a data network, the easier it is to offload data or

consume data and resources from other nodes that are interconnected. Bandwidth on mobile

networks is more erratic as data transmitted is conveyed across wireless cells incorporating

numerous masts and microwave backhaul links, each of which may be experiencing different

levels of network load.

Above the physical network layer, fixed and wireless networks both use reliable Internet

transport protocols including the Transport Control Protocol (TCP) or the unreliable, albeit

faster, User Datagram Protocols (UDP). TCP was developed in an era when data

communication was predominantly across fixed-line networks. Over the last decade there has

been an exponential increase in the use of wireless networks for Internet access, a trend set to

continue with the emergence of powerful smart mobile phones and the deployment of next

 29

generation mobile techologies such as WiMax and LTE (McQueen 2009). Due to the network

topology, wireless networks are characterised by a higher bit error rate (BER) than fixed

networks. A wireless network, for example, could have a HSDPA cell deployment allowing

for a maximum uncontended bandwidth of 7.2 Mbps, backhauled using one 2Mbps leased

line or a microwave link to an aggregation point where several such cells contend for

backhaul capacity into the core network. In the mobile access network, the propagation of the

wireless broadband signal also decreases the farther the user is from the wireless mast. The

architecture of a fixed network in contrast allows for data traffic to be offloaded to high

bandwidth links close to the customer, mainly at a local exchange and increasingly at the local

cabinet. An ADSL2+ DSLAM with 768 ports will usually have a 1 Gbps backhaul to the core

IP network. The bandwidth throughput in fixed line networks is therefore much greater and

less erratic than for wireless networks and contention rates are lower. Future fourth generation

mobile networks that are pure IP-based such as LTE (Long Term Evolution), should increase

mobile broadband speeds considerably. However, mobile networks wil always be constrained

by the limitations arising from the scarce radio spectrum upon which they rely (Kennington,

Olinick and Rajan 2011).

Given that TCP’s original design was optimized for fixed-line networks, some deficiencies

arise in wireless networks including:

- TCP assumes that packet loss is due to network congestion as against corrupted bits.

- Some underlying stability in the round trip times (RTT) for receiving acknowledgement

packets are assumed as acknowledgement clocking relies on relative stability between the

RTT intervals.

- TCP uses a minimum of 20 bytes of IP header and 20 bytes of TCP header per TCP packet.

For low bandwidth wireless networks this is a high overhead to bear.

 30

As wireless networks can be characterised by short-lived congestion, TCP will overreact to

temporal congestion. This can result in adverse oscillations in transmission speeds and in

transmission inefficiency (Tian, Xu and Ansari 2005). TCP uses a slow start algorithm to

ramp up transmission rates, and significant delays in data transfer can arise if this slow start

algorithm is re-initialized repeatedly due to intermittent bandwidth on a wireless network. In

addition, for networks that exhibit latency the RTT can result in the algorithm being very slow

in reaching its maximum transmission rates. In such situations the cost of reliability can be

high, as the minimum time for a TCP transaction will always be two RTTs due to the

requirement for both the sending process and the receiving process to be satisfied that

acknowledgements have been received.

Given the reliability of fixed networks and the lower bit error rate (BER) relative to wireless,

the design of TCP assumed that any packet loss was the result of network congestion rather

than corrupted bits. There are two main issues, therefore, that arise with data transmission

using TCP in mobile networks. Any packet loss gets interpreted as network congestion and

the slow start algorithm therefore kicks in. Short intermittency of connections on mobile

networks can result in longer TCP disconnections because of the TCP back-off mechanism.

A final distinction between fixed and mobile networks is the addressability of nodes. It is

relatively easy to configure a hardware server or even a virtual machine within a typical cloud

with static IP addresses. These addresses are key to enable applications to communicate with

other servers. Such addressing typically requires a unique IP address and port number. The

current addressing is largely based on the IPv4 standard (RFC 791 1981), which uses 32-bit

addressing. This results in the address space being limited to 232 addresses or just over 4

billion. This has resulted in a scarcity of IP addresses for all devices that need them. As a

result most mobile networks and many Internet Service Providers use the Dynamic Host

Configuration Protocol (DHCP), which allows numerous users to share a pool of IP

 31

addresses. The impact of this is that most mobile devices do not have static IP addresses,

which could be a severe limitation when seeking to use mobile devices as server nodes. This

does not cause any issue where mobile devices are acting as clients of cloud services, as the

cloud servers they are connected to will have static IP addresses. This address limitation will

be overcome with the introduction of IPv6, as the address space of 128-bits provides 2128 or

approximately 340 undecillion addresses5. Cloud computing providers are likely to be some to

the first to migrate to IPv6 as the proliferation of virtual machines all require their own IP

address. Over time a complete move to IPv6 would allow each mobile device to have its own

static IP address. In the short term, the addressability constraint associated with the use of

dynamic IP addresses on mobile devices raises problems for developing a mobile cloud.

A key consideration in designing and implementing a mobile cloud is therefore the higher

likelihood of network intermittency and bit error rates. There are several practical

implications for the design of a mobile cloud:

1. Mobile serving nodes are not suited to transferring large files given the higher

probability of a network failure during transmission.

2. Implementing fault tolerance will require a greater number of mobile nodes than is

likely to be required in a more stable fixed network. An efficient replication

mechanism will be important.

3. The design of mobile cloud middleware should use UDP where possible to avoid the

three-way handshake overhead associated with TCP or, where message reliability is

critical, aggregate messages to the extent possible such that several messages can be

transmitted simultaneously across one TCP connection.

5 An undecillion is 1036.

 32

3.1.1. Processor, operating system and power issues

Many mobile phones use different operating systems. The three most common operating

systems in use today are Apple’s iOS, Google’s Android and Symbian, used by Nokia, Sony,

Lenovo and other device manufacturers. The Android OS is based on the Linux kernal and

uses core java libraries with a Dalvik virtual machine. A subsequent benefit is that Android

applications are mainly developed using standard Java. But it is important to consider that a

mobile cloud, unlike a traditional datacenter is likely to consist of mobile devices with both

heterogeneous operating systems and varying versions of the operating system.

Mobile devices use a different processing chip architecture than desktop, laptop or server

hardware do. This processor architecture, referred to as RISC (Reduced Instruction Set

Computing), is based on the concept that simplified instructions will provide higher

performance if the simplification fosters higher speed execution of each instruction (Patterson

and Ditzel 1980). Given that considerable time is spent in executing simple tasks to solve

larger problems, the RISC architecture focus on executing these simple instructions as fast as

possible. Following the design of processors using the RISC architecture, the standard

architecture used in most computers became known as CISC (Complex Instruction Set

Computing). The CISC architecture is also commonly referred to as x86 as most applications

at the time were written for the large installed base of computers using the x86 architecture.

As a result of Intel’s massive investment in x86 development, the RISC architecture never

enjoyed scale in the personal computing market. As chip fabrication techniques improved

exponentially in line with Moore’s law, and architectural improvements in design allowed for

smaller chips the highest performing CPUs using both the RISC and CISC architecture had

converged by 2000 (Carter 2002). The benefits of the simplified instruction set however

remained significant for mobile devices. While the hardware translation overhead from x86

instructions into RISC operations was of limited concern for larger mains powered devices

 33

such as servers, it is considered a significant overhead for mobile and embedded devices.

CISC is unsuitable for mobile and embedded devices as the power consumption and heat

dissipation is too high. As a result the RISC architecture is predominant in smart mobile

phones, tablet computers and some netbooks. This difference between the processor

architectures affects the interoperability of instruction processing. Often only the lowest layer

of the operating system kernel needs to be changed if the kernel has been designed in a

manner that presents a well-defined abstraction from the underlying architecture. So it should

be possible to abstract middleware or end user applications from the underlying chip

architecture. This would be important to ensure mobile nodes such as laptops and

smartphones could participate in a mobile cloud irrespective of significant hardware

differences. In many cases RISC processors will not support virtualization, limiting the ability

to deploy virtual machines on mobile devices.

Operators of datacenter infrastructure seek to deploy infrastructure in a manner that will

minimise the power overhead associated with operating servers, often focusing on a key

energy performance metric, known as power usage effectiveness (PUE). A value of 2.0 would

indicate that for every kw/h of electricity consumed by the servers, an additional kw/h is

required for cooling and operating other related supporting infrastructure. The PUE is often

optimised using technologies such as air economisation, which uses the external air

temperature to cool servers. Some datacenter deployments have achieved highly efficient

PUE ratings of 1.15 to 1.25. The implications are that the move towards consolidated

warehouse-scale datacenters has resulted in significant operational efficiencies in operating

computational infrastructure. A mobile cloud will not compete directly against the energy

efficiency of a traditional datacenter. Due to their limited size and power consumption, smart

phone design presents many engineering challenges. The phone display and wireless

connectivity are the two largest consumers of energy on a smart phone (Carroll and Heiser

2010). The development of faster processors with a greater number of cores will require novel

engineering solutions to minimise heat dissipation. The wireless networking technologies

 34

including 3G / WiFi / Bluetooth and NFC, all consume varying levels of battery power. The

power issue has serious implications for the ability of mobile devices to contribute as server

nodes within a cloud computing environment. Historically these devices have not been

designed to support always-on use as server nodes. In such a mode the battery of most smart

phones will drain rapidly. Prior studies have already evaluated power consumption on mobile

phones in a variety of use cases using a multimeter connected to the devices battery (Riva and

Kangasharju 2008). The actual power consumption depends on the specific mobile device but

Wi-Fi connected at full signal draws an average power consumption of 1,190 mW. The GSM

radio consumes power in peaks of 450-480 mW and UMTS causes 1-W peaks of

consumption for several seconds. Interestingly the same study shows that wireless

communication is much more expensive than computation on mobile devices. Thus from an

energy efficiency perspective it may not always be the case that offloading computation from

a mobile device to a traditional cloud is optimal. This power constraint coupled with the

processor and memory limitations currently rules out the potential of hosting several virtual

machines on a single smart phone unless these are lightweight VMs used to support local

applications that are not running concurrently. However, these constraints do not prevent a

mobile device becoming a server in a personal access network, involving the aggregation and

analysis of data locally. A mobile device could collect health data from an individual on an

ongoing basis and upload key metrics to a centralized cloud server for storage and long-term

trend analysis. A mobile device could also act as a file sharing node in a distributed network

where files are infrequently accessed, or it could act as a server node to convey data collected

periodically from local on-board sensors.

3.1.2. Mobile virtual machines

One of the key challenges highlighted from the background analysis on open source

frameworks for cloud computing was that of virtual machine networking. This raises the

 35

question as to whether it would be possible or practical to execute multiple virtual machines

on a smartphone. There would be two requirements to support mobile virtual machines:

1. Hardware support, including a processor that supports virtualization.

2. Network support.

There is no doubt that smartphones will evolve to support virtualization at a hardware level.

While operating systems such as Android spawn a new virtual machine sandbox for running

applications (the Dalvik virtual machine), this is really just a thin software interpreter

equivalent to the java virtual machine. The technical specification of most smart phones

(processor, RAM, power) would make it difficult to practically run isolated virtual machines

and an associated hypervisor. This is likely to change over the long term as the specifications

improve and dedicated thin and highly efficient operating systems are developed to run VMs

on mobile devices. While they currently have multiple network interfaces (GSM, wifi and

bluetooth), it would be impractical to share these interfaces between multiple VMs. This

could potentially change with the higher wireless bandwidths that become available with the

widespread deployment of LTE. But this would also require allocating several static IP

addresses to one smartphone, which the move to IPv6 would support. The table below

provides the technical specification of current generation smartphones. A step change increase

in memory and processor speed would be required to provide adequate performance to

support multiple virtual machines on a smartphone, even if higher speed wireless networking

technologies were available.

 36

Table 1: Technical specifications of iPhone 4 versus HTC Desire

Although it may therefore be theoretically possible to develop a thin hypervisor operating

system that resides above the hardware layer of a smartphone, it would be of limited practical

benefit for the foreseeable future. Such a virtual machine would run too slowly locally on the

mobile device. However, it would be myopic to rule this option out in the future given

potential advancements in the processing, storage, networking and powering of mobile

devices.

3.2. Mobile phones and the cloud

The constrained processing, power and networking capabilities of current mobile devices, as

discussed above, have become a driver for mobile devices leveraging the power of traditional

datacenter infrastructure. Many of today’s mobile applications are structured such that they

are statically partitioned between the mobile device and datacenter. This results in a clear

demarcation between the tasks executed on the mobile phone and those executed remotely,

such as via a server hosted in a datacenter. An example of such a partition is where the mobile

device runs an advanced user interface that interacts with the backend application resources in

the cloud, such as Facebook’s mobile application. Another example with an even lighter front

end component is Google’s search engine. In deciding how an application should be

partitioned, the following should be considered:

 37

1. How long it will take to process a task in a datacenter relative to on a mobile device.

2. Whether the device requires access to file resources provided elsewhere. It may be the

case that the speed to which resources can be accessed across a network, rather than

the processing power is the core constraint. A commodity server within a datacenter

is likely to be able to retrieve data much more quickly due to its higher speed

networking.

3. The latency of fixed or wireless networks. This helps to highlight the tradeoff

between transmitting data for analysis and consuming processed results across a

network versus local computation.

4. The manner in which the serving infrastructure is powered and the extent to which the

services utilised might deplete a power source. As discussed earlier the exact tradeoff

is not clear given that transmission of data might incur more energy consumption than

local computation.

As most applications are statically partitioned, the demarcation between local and cloud based

computation may not be optimised for the actual local resources available given the

heterogeneity of technical specifications for smartphones. Some smartphones now have

multicore processors, significant memory and storage and incorporate relational databases.

From a network perspective, some wireless networks will have significantly greater

bandwidth throughput than others, thereby decreasing the messaging and latency overhead

cost associated with transmitting data to a remote server. This suggests that there may be a

future opportunity to dynamically partition mobile applications between mobile computation

and the datacenter computation based on the actual capabilities of the mobile devices. This

notion of dyanamic partitioning has been investigated (Chun, Byung-Gon; Maniatis, Petros

2009) with researchers concluding that dynamic partitioning will become an important part of

future mobile cloud computing. The same researchers have developed the concept of a

supercharged virtualized clone of a smartphone that resides within a traditional datacenter

(Chun, Byung-Gon; Maniatis, Petro 2010). This clone performs all of the computational

 38

heavy lifting and transmits its results to the smartphone, thereby increasing the processing

capabilities and potentially reducing the power consumption on the mobile device (depending

on whether the level of processing incurs more energy than the transmission of the associated

data and retrieval of results). The architecture proposed involves partially offloading

execution to a clone of the smartphone hosted within a datacenter. Such an augmented

execution could help superpower smartphones beyond current mobile device hardware

limitations. Although the idea of offloading computation from constrained mobile devices to

datacenters has been considered before, the CloneCloud approach differs in that it uses single

or multiple virtualised replicas of the smartphone that reside in the cloud. The physical

smartphone itself is therefore relegated to a thin client. To demonstrate the concept the

researchers developed an application to scan the file system used on an Android phone. The

process took 3,953 seconds on a HTC G1 phone but just 336 second on a virtualized clone

residing on a Dell desktop used for testing purposes. The author has developed a high level

diagram below to illustrate the architecture of CloneCloud.

Diagram 5: CloneCloud

Another benefit of cloning a smartphone is that a clone could be used to provide redundancy

of the phone’s data. If a smartphone were lost or stolen, a new hardware device could be

synchronized with the replicas stored at the datacenter. A novel aspect of CloneCloud is that

 39

the researchers inflate the capabilities of the virtualised smart phone such that the CPU clock

rates are well in excess of the actual physical mobile device. This helps ensure that the

processing can be completed quickly on data offloaded to the clone. In other similar research

NTT have proposed virtual smartphones over IP, where a smartphone farm hosted in a

datacenter would have a collection of virtual smartphone images, each dedicated to a

particular user (Chen and Itoh 2011). Users can control their virtualized smartphone via a

dedicated client installed locally on their physical smartphone. This client application receives

the screen output across the network from its virtualized smartphone server instance. In this

case, the Android operating system was used in conjunction with the Android-86 project

(Android x86 Project 2010), allowing the Android operating system (designed for ARM

processors based on the RISC processor architecture) to run on standard x86 hardware. The

researchers found that it took the physical Android phone 14 seconds to open a 10Mb file, but

it took just 1 second to open the same file using the virtualized smartphone in the datacenter.

The virtual smartphone was also found to be 14 times faster at rendering lines and 60 times

faster when drawing strings than the physical smartphone. Further analysis was completed to

compare the battery consumption of local computation to that of transmitting and receiving

the data to be processed to the datacenter. They found that with the same battery power an

operation (in this instance resizing a jpeg image) could be performed 600 times locally or

13,800 times remotely. Such research highlights the benefits of smartphones leveraging

cloud-computing infrastructure. Other research has suggested a requirement for ‘Cloudlets’ in

which miniature cloud infrastructure is moved closer to the end user in order to reduce the

round trip time (RTT) associated with interactions and therefore improve the user’s

experience (Satyanarayanan, et al. 2009). The researchers highlight that even with

improvements in networking technologies, the delay associated with a mobile user interacting

with other nodes becomes problematic if the latency is in excess of 150 milliseconds. They

suggest that the ideal solution is to ensure that any cloud resources consumed should be as

few network hops from the end user as possible, thus requiring the deployment of cloudlets.

 40

The CloneCloud, virtual smartphone and cloudlet research, coupled with the current industry

focus on mobile cloud computing, illustrates that the main focus has been on how to use cloud

computing technology to provide more advanced processing capabilities on smartphones

where the smartphone acts as a thin client and leverages the power of traditional datacenters.

The table below provides a summary of the type of applications and their respective

computational requirements with regard to processing power, network bandwidth and

network latency thus highlighting the type of applications where a mobile might utilize

traditional cloud infrastructure to enhance execution. The table suggests that applications such

as Internet search, high-end gaming, video streaming and augmented reality would benefit

from the computational support that can be provided by completing a significant proportion of

the processing in a traditional datacenter.

Table 2: Taxonomy of applications and associated computing requirements

This raises the question as to the practical benefits of having the processing or storage pushed

to the edge of the network as a mobile cloud would do. The table above suggests the use cases

are different and that applications requiring the dissemination and collaboration on files of a

reasonable size would fall under a mobile cloud umbrella. Mobile nodes may have particular

advantages in allowing their owners to maintain physical control over the hosting of their

services or in allowing collection and collation of data across large geographies.

 41

3.3. Summary

This section compared a traditional cloud arhitecture to one incorporating mobile server

nodes. It highlighted that traditional datacenters enjoy a relatively stable operating

environment compared to that of a mobile cloud. From a hardware perspective, mobile nodes

have less processing power than commodity servers and are highly energy constrained due to

being battery powered. Smartphones were never designed to be used as always-on serving

infrastructure. The heterogeneity of mobile hardware and operating systems is also a concern.

Given these differences, a mobile cloud will exhibit different failure semantics than a

traditional cloud, especially with regard to availability and performance.

From a networking perspective wireless networks suffer from lower bandwidth and greater

intermittency resulting in a degradation of the performance of transmission protocols. TCP

overreacts to temporal congestion, and its large packet headings are a high overhead when

transmitting maintenance messages within a mobile cloud. The use of UDP for certain

message types (such as mobile nodes transmitting check-in messages) could partly alleviate

these shortcomings in a wireless environment, such as the requirement for TCP’s three-way

handshake. Another alternative is to aggregate and transmit messages simultaneously to allow

for a more efficient use of a TCP connection. This may not always be possible and would

require efficient scheduling of such messages. Though wireless network speeds will improve

with the deployment of technologies such as WiMax and LTE, the associated speeds will not

parallel fixed networks due to the topology of the networks and the scarce radio spectrum

upon which wireless networks rely.

As a consequence of the network and power issues that arise with mobile nodes, the ability to

effectively federate such mobile resources will require an architecture that solves the unique

availability challenge. This could be accomplished through the replication of state or content

 42

across a number of nodes. A tradeoff is required to balance the higher overhead associated

with such replication with the availability and performance of the network. It will therefore

be important to develop an efficient replication mechanism in order to limit this overhead,

which can also be tuned to support various applications that could reside on a mobile cloud.

The CloneCloud and NTT research reinforced the widely held perception that the future will

focus on smartphones leveraging traditional cloud resources for heavyweight computation.

The taxonomy of applications also demonstrated that certain types of low latency and high

computation applications, such as high-end gaming are unlikely to suit a distributed mobile

cloud in the medium term. However a mobile cloud could be effective in the aggregation and

dissemination of information and in providing a means whereby owners could maintain

physical control over the services they host. The table summarises the analysis into a

comparison of the traditional and the potential mobile cloud.

Table 3: Comparison of traditional versus mobile cloud

 43

4. OPTIONS FOR IMPLEMENTING A MOBILE CLOUD

This section considers the options that exist for implementing a mobile cloud and the

challenges that arise with each. The objective is to determine an option suitable for

implementation.

4.1. Option 1: Distributed processing

The background analysis on cloud computing uncovered a trend starting in the late 1960s with

the implementation of virtualization to allocate resources on high power mainframes to the

development of warehouse scale facilities housing highly networked servers in modern

datacenters today. This move to highly distributed computing has been supported by the

provision of software abstractions that make it easier for developers to write code that can run

on a network of commodity servers. A mobile cloud could be used for distributed processing

whereby all of the participating nodes process discrete tasks that contribute towards solving a

larger problem. It is therefore worthwhile to consider the option of a distributed mobile

processing cloud.

In the past tuple spaces have been proposed for distributed processing. In mathematics and

computer science, a tuple is an ordered list of elements. A tuple space provides a repository of

tuples that can be accessed concurrently and allow for the shared processing of data. Tuple

spaces were the theoretical underpinning of a language called Linda, composed of workers

and a shared tuple space memory. Linda was an invention of the Yale Linda Group led by

David Gelernter. Workers can exchange information and synchronize within the tuple space.

JavaSpaces provides a Java implementation of Linda that was incorporated in the Jini project.

A distributed implementation of Linda (Xu and Liskov 1989) was developed, allowing

heterogeneous uniprocessor computers to run large processing jobs in parallel instead of

 44

requiring multi-processor machines. Fault tolerance can be added by replicating tuple spaces

across several nodes (Kambhatla and Walpole 1990). Each worker interacts with a tuple space

using three types of operations: out, in and read. Out(x) adds the tuple x to the tuple space. In

and read are used to extract information from a matching tuple in a tuple space. Operations on

a replicated tuple space are implemented as follows for an operation x.

1. The out(x) operation will write to all replicas. The request to execute this operation is

broadcast to all replicas and the worker waits for an acknowledgement from the

replicas.

2. At each replica, x is stored in the local tuple space, and an acknowledgement is sent

to the worker.

3. The in operation removes the same tuple from each replica. First it acquires the lock

and reads from the replica (referred to as the In1 phase). If the tuple is locked by

another worker, this request is refused. In the in2 phase the tuple is removed from the

tuble space.

Linda has been further extended with Lime, Linda in a Mobile Environment (Murphy, Picco

and Roman 2001). The characteristics of Linda were seen to resonate in a mobile environment

as the use of distributed tuple spaces allows communication to be decoupled in time and

space. Lime provides a middleware abstraction for the development of applications exhibiting

physical or logical mobility of hosts. With Lime the tuple space is broken into many smaller

tuple spaces and each is then associated with a mobile node. The tuple space on each mobile

node can only access the global tuple space via an interface tuple space (ITS). The ITS

contain tuples that the mobile node will make available to other mobile nodes. The access to

the ITS takes place using the primitives set out with Linda. The resources available therefore

change dynamically as tasks are processed on co-located mobile nodes. When a new mobile

node arrives, tuples in the ITS of the new mobile node are merged with those shared from the

 45

other mobile nodes. Similarly when a mobile node leaves, the corresponding data is no longer

visible to remaining mobile nodes through their ITSs.

MapReduce provides another distributed processing framework. Google patented MapReduce

in 2004 as a system and method for efficient large-scale data processing. MapReduce

libraries have been written in C++, Java, Python, Perl, Ruby and Erlang. The Map and Reduce

functions were derived from functional language primitives. The process consists of two

steps:

1. Map: A master node partitions the input into smaller problems and distributes these to

worker nodes. A worker node can decide to further partition the problem and allocate

it to nodes under its control. The worker processes the problem, and transmits the

answer back to its master node. The map function is therefore applied and produces

intermediary key / value pairs.

2. Reduce: The key / value pairs within a partition are passed into a reducer function.

The master node then combines the answers from all worker nodes to complete the

overall analysis.

The diagram below illustrates how MapReduce works.

Diagram 6: MapReduce

If one mapper or reducer fails, the work can be rescheduled so long as the input data is still

available. In theory, therefore, the framework supports an environment with high levels of

 46

node churn, as would be the case with mobile nodes using wireless networks. The Map and

Reduce functions are both defined in a data structure of key / value pairs. Every node in the

network must report back periodically to either confirm that work has been completed or to

provide a status update. If a node fails to report, it is presumed to have failed and the work is

assigned to other nodes. Google utilise MapReduce for web-link graph reversal and web

access log statistics. However, it has also been used for grid computing on desktops and in

mobile systems.

Hadoop provides an open source MapReduce framework built using java. Hadoop is targeted

at a datacenter environment with long running applications and extensively uses XML, which

incurs a high overhead to parse. Hadoop is also usually deployed on commodity servers

interconnected at a minimum of 1 Gbit/s. This is required as Hadoop is designed to support

batch processing using 64 MB blocks. MapReduce or Hadoop would therefore need to be

tailored to support the much lower block sizes and limited network connectivity required for

mobile nodes (Marinelli 2009). MapReduce has been deployed to a mobile testbed (Dou, et

al. 2010). The authors proposed Misco, a MapReduce framework for mobile devices and

personal computers. The testbed was implemented using Nokia N95 smartpones. Misco

comprised a master server and a number of worker nodes. The Misco server maintains the

input, intermediary and result data associated with the applications and keeps track of worker

progress. The workers were designed to use a polling approach such that the worker polls the

server each time it becomes available. The researchers noted that if the polling frequency is

too short, battery power is wasted whereas if the polling rate is too long it is difficult to align

the task arrival rate with working nodes efficiently. Misco is implemented using Python,

allowing the worker code to be implemented on many different mobile platforms. Misco

could be extended to allow for the worker nodes to collect data and implement a MapReduce

function on this data rather than only process data provided by the master server. This could

be of use for processing data collected via sensors onboard a smartphone prior to transmission

in a distributed mobile processing cloud.

 47

The research investigating the use of tuple spaces and MapReduce for mobile environments

used mobile devices dedicated to the experiments. Most smartphone operating systems are not

designed to support significant levels of multithreading. For interpreted languages such as

Java, which can be used in developing applications for the Android operating system, the

virtual machine will add another layer of abstraction that further impedes performance.

Android for example, limits the heap size of each application to 16 MB. Java manages I/O in

a uniform manner whether communication is local or across a network. However, in a

wireless network there will be significant differences between local I/O and I/O across the

network, leading to a greater overhead in managing fault tolerance for distributed mobile

processing. The latency in a wireless network could result in a requirement to re-route

requests even though a node is actually available. The fact that mobile devices are generally

battery constrained and are not designed for long-lasting computation or extensive

multithreading suggests that a distributed mobile processing cloud would be of limited benefit

and only suitable for certain applications. Such applications could include a disaster scenario

where traditional processing infrastructure is unavailable or sensor applications whereby it is

more efficient for the mobile node to perform initial processing of data rather than

transmitting raw data that could consume excessive battery power.

4.2. Option 2: Distributed mobile storage system

The concept for a distributed mobile storage system was published around 2002 (Sobti, et al.

2002). Such a system would have to address a number of challenges, including the ability to

search and retrieve a file and how to ensure consistency across multiple mobile devices given

different versions of files. The authors approached the first problem using a location and

topology-sensitive multicasting solution. To resolve the consistency problem they used lazy

 48

peer-to-peer propagation of invalidation information. At the time the authors proposed a

device, referred to as a Skunk, consisting of a processor, a storage element, an ad hoc network

connectivity interface and a WAN connectivity interface. Today smartphones and mobile

broadband ensure no separate devices are required. Availability in the presence of node

failure is a key challenge to be addressed. An effective replication policy is important.

4.2.1. Replication

Ensuring the availability of data in the presence of node failure is generally achieved by

means of replication. This is illustrated in the table below when three replicas are placed on

servers, each with 99% availability. The probability of one node failing is 1/100. But with the

addition of two replicas the probability becomes 1-(1/100 x 1/100 x 1/100) = 1/10,000.

Table 4: The impact of replication on availability

But replication introduces tradeoffs between availability and service consistency (Hennessey

1999). Service consistency guarantees that concurrent updates will not conflict but will limit

system availability as the consistency protocols usually require synchronous access to at least

a subset of all replicas, in order to ensure a uniform view of write ordering. If any of the

replicas in the required subset cannot be reached, the entire service will be unavailable. There

has been extensive research into how to optimise the balance between availability and service

consistency (K. Peterson, M. Spreitzer, et al. 1997). The Coda file system (Kistler and

Satyanarayanan 1992) uses optimistic replication where replicas are allowed to diverge for a

period of time. Here replicas will converge only when the system has been quiesced,

 49

generally requiring flushing of any outstanding write operations. Levels of replica divergence

need to bounded or the system can be left in a “delusional” state (Gray, et al. 1996).

It is worth exploring how replication might apply with mobile nodes. With the Bayou system

(K. Peterson, M. Spreitzer, et al. 1997) each device has a local replica of the database. There

are two states of operation: disconnected and merging. When merging all new updates to

other available databases are added to the local replica. This model is often used but is

entirely inappropriate for a mobile cloud as it is unlikely that a mobile node will have the

capacity to hold all of the required data in its database due to resource constraints. The

original Coda system (Kistler and Satyanarayanan 1992) shared Bayou’s model of

disconnection but was extended to support weak network connectivity as would be required

for a mobile cloud (Mummert, Ebling and Satyanarayanan 1995). However Coda clearly

distinguished between clients and servers and was not architected to allow peer-to-peer

functionality. So while it was extended to support weak network connectivity it is not

naturally suited towards a mobile cloud where each mobile node may have a client and a

server collocated. Other research (Li, Reed agus Lippman 2008), analyses the design tradeoffs

of a collaborative mobile storage system when a peer node tries to access a given item, and

the corresponding upload and retrieval delay for a stored data object of different sizes under a

variety of circumstances. A common challenge that arises in the literature relates to providing

enough redundancy for the stored data objects while minimising the overall storage overhead.

The most common practice for providing redundancy is by either replication or erasure code.

In a typical erasure code scheme, an original data object of size S bytes is split into n data

fragments and a certain mathematical transform maps n data fragments into n+m total

fragments such that any n encoded fragments out of the n+m total fragments can recover the

original data object. In the analysis the authors assume that the total number of mobile devices

in the given P2P collaborative storage system is N. They also assume that a data object is

divided into n fragments of equal sizes, which are then encoded into n+m total fragments

using Reed-Solomon code.

 50

Collaborative storage systems using mobile devices face special challenges compared with

Internet-based systems. Wireless link speed is typically much lower that that of a wired

counterpart. Similarly channel conditions can be erratic over time and may not hold to allow

the consistent transfer of large blocks of storage. The delay to upload an object to peer nodes

or to retrieve an object from peer nodes has to be reasonably small, especially for wireless

networks.

4.3. Option 3: Peer-to-peer architecture

This section will investigate the potential to use a peer-to-peer (P2P) architecture in part or

whole for the development of a mobile cloud. With P2P networks, participating nodes

contribute a portion of their resources to the network. These participating nodes are both

consumers and suppliers of the overall network resources, which may include distributed

processing and storage. In P2P networks resources are located at nodes on the edge of a

network. Each peer node shares autonomy and has similar rights. The provision of a P2P

network utilising mobile nodes could provide an option for a mobile cloud but would require

the incorporation of significant fault tolerance. P2P networks currently generate about two

thirds of all traffic on Internet backbones and can be characterised as unstructured or

structured networks.

4.3.1. Unstructured P2P networks

With an unstructured P2P network, no specific network planning is used to determine how

resources will be either distributed or retrieved within the network. A key benefit of an

unstructured P2P network is that no network planning is required. Gnutella is an example of

 51

such a P2P network and uses message flooding to locate files by searching every node

participating in the network. The Gnutella architecture could be utilised with a small number

of powerful nodes. It would not scale to a large volume of nodes due to the message flooding

mechanism and is not therefore a suitable architecture for supporting a mobile cloud. Gnutella

does seek to improve transmission efficiency through using UDP queries for message

flooding and TCP for the file transfer. Napster, the popular music-sharing network, was also

an example of an unstructured P2P network, but it utilised a centralised server directory to

coordinate file lookups. The Napster architecture significantly reduces the volume of

messages required. A client node simply queries a directory, located at a centralised server, to

determine the location of the required resources. The directory responds with the locations

and address details for nodes where the required content can be found. A client can then

initialise a direct peer connection to the serving node using the address information provided

by the directory. The diagram below illustrates the difference between the Gnutella and

Napster architecture.

Diagram 7: Unstructured P2P architectures

The directory server in the Napster architecture is a single point of failure. This can be

alleviated through the use of distributed directory servers where the directory is replicated

 52

across redundant servers. This is illustrated in the diagram below and would require that the

data residing on the servers participating within the group be synchronised periodically. This

architecture would not be feasible in a mobile cloud unless a decision is made to locate the

directory server and databases on traditional cloud infrastructure.

Diagram 8: P2P with distributed directory

The success of Gnutella and Napster led to increased interest in P2P architectures and how to

organise a network of P2P nodes that allows for node arrival and failure, load balancing and

efficient routing between nodes. This led to the development of structured P2P networks.

4.3.2. Structured P2P networks

In a structured P2P network the resources are associated with particular nodes usually through

a distributed hash table (DHT) that utilises consistent hashing of a given address space. A

DHT can store resources at locations throughout the network and will allow for rapid file

location and retrieval based on the use of exact key / value pairs. These key / value pairs

 53

allow each participant node to search for a file or resource associated with a particular key.

This architecture is illustrated in the diagram below.

Diagram 9: DHT based network

A structured P2P network is efficient for load balancing resources across a distributed

network. A benefit of consistent hashing is that the removal or addition of a network node

will only change the key / values owned by the adjacent nodes in the network rather than the

nodes across the entire network. The node with the numerically closest node ID maintains the

object. Consistent hashing supports a limited movement of objects stored within the DHT,

thereby minimizing the reorganization of content required to support node churn. This

characteristic of a structured P2P architecture could be useful in a mobile cloud environment.

Structured P2P topologies share common properties. For a key K, a node either has a node ID

that owns K or has a link to a node where the ID is close to K in the keyspace defined. This is

illustrated in the diagram below where the circle represents the keyspace of the network and

each node routes a request to the nearest node in its routing table to the end destination.

 54

Diagram 10: Structured P2P architectures

There is however a trade off between minimizing the number of hops in any route (route

length) to complete requests quickly and keeping the maximum number of adjacent

neighbours of a node low, referred to as maximum node degree. The node degree impacts the

extent of the maintenance overhead associated with nodes churning in the network. The fewer

the number of neighbours the less the network needs to re-calibrate after nodes churning.

However shorter hop counts across the network requires a higher maximum node degree. A

balance must be made around latency of requests versus the ability of the network to be able

to easily administer node churn. From an implementation perspective the most notable

differences between DHTs are:

1. keyspace: Some utilise a 128 bit or 160 bit keyspace. SHA1 is often used and the key

K can be a hash of the files content rather than its name so that the file can still be

located if it is renamed in the network.

2. Redundancy: Needs to be added to improve reliability. For a mobile cloud the value

of the key / value pair would need to be stored in multiple mobile nodes.

 55

Pastry (Rouston and Druschel 2001) provides P2P middleware utilising a DHT overlay

network. Pastry performs application level routing and object location in a potentially large

overlay network of nodes connected via the Internet. It can be used to support a variety of

peer-to-peer applications, including global data storage, data sharing, and group

communication and naming. When presented with a message and a key, a Pastry node

efficiently routes the message to the node with a node id that is numerically closest to the key,

among all live Pastry nodes. Pastry takes into account network locality; seeking to minimize

the distance messages travel, according to a scalar proximity metric like the number of IP

routing hops. The node id is used to indicate a node’s position in the logical circular node id

space, which ranges from 0 to 2128-1. Each node in the Pastry peer-to-peer overlay network is

assigned a 128-bit node identifier (GUID). The node id is assigned randomly when a node

joins the system. Consistent hashing results in node ids being generated such that the resulting

set of node ids are uniformly distributed in the 128-bit node id space. As a result of this

random assignment of node ids, nodes with adjacent node ids are diverse in geography,

ownership, jurisdiction and network attachment. The nodes within close proximity in terms of

the GUIDs may be geographically dispersed (the keyspace ring is logical not physical). Each

node has a routing table that contains log2
b N rows and each of the entries contains both the

GUID and IP address for each node. The routing within the network is based on the GUID

overlay rather than the IP address. A routing table for node A consists of entries where a node

shares the same first n digits as node A but where the n+1 digit in the GUID differs. In

practice an effort is made to ensure that the node addresses placed in the routing table are

those closest to node A. It is expect that 0(log N) routing steps will be required to locate

content in the network and that a routing table size of 0(log N) is also required at each node.

One of the main benefits of this approach is that a Pastry node does not need to be aware of

all other nodes within the network. This attribute is key in a mobile cloud, given it’s a

dynamic environment where nodes churn and it would be impractical to facilitate the

extensive messaging required to allow each node be completely aware of the global state of

the network at any given time.

 56

Pastry nodes keep track of their immediate neighbours in the GUID space, and can notify an

application of new nodes joining the network or nodes failing. A Pastry network seeks to

minimize the distance each message travels by using metrics such as the route length (hops) a

message traverses. The researchers emulated a network of up to 100,000 nodes to illustrate

that Pastry is decentralized, scalable and self-organizing. Pastry also utilises a leaf set where

each node maintains IP addresses of the node number with the L/2 numerically smallest and

largest nodeIDs respectively. This allows for routing efficiency. The Pastry API is relatively

simple with the following commands:

route(M, K) – route message M to ode with nodeID numerically closest to K.

deliver(M) – deliver message M to application.

Forwarding(M, K) – message M is forwarded towards Key K.

newLeaf(L) – report a change in the leaf set L to the application.

The pastry routing procedure is as follows:

if(destination is within range of leaf set)

forward to numerically closest member

else

 let l = length of shared prefix

let d = value of l-th digit in D’s address

if(R1
d exists) forward to R1

d (move further up the number hierarchy)

else

forward to known node sharing as long a prefix but numerically closer than current

node.

Despite concurrent failures eventual delivery is guaranteed unless |L|/2 nodes with adjacent

node ids fail simultaneously where |L| is a configuration parameter usually set at 16 or 32.

 57

In each routing step, a node normally forwards the message to the node whose node id shares

with the key a prefix that is at least one digit longer than the prefix that the key shares with

the present node’s id. If no such node is known, the message is forwarded to a node whose

node id shares a prefix with the key as long as the current node, but where the node id is

numerically closer. To support this routing, each node must maintain some routing state. Each

Pastry node maintains a routing table, a neighbourhood set and a leaf set. A nodes’ routing

table R is organized into rows with 2b -1 entries in each. Each entry in the routing table

contains the IP address of one of potentially many nodes whose nodeID have the appropriate

prefix. The uniform distribution of node ids ensures an even population of the node id space;

thus on average only [log 2b N] rows are populated in the routing table.

Another P2P middleware solution is Chord (Stoica, et al. 2001). It is similar to Pastry but

without the overlay routing network. A Chord network is also organised in a logical ring with

peers assigned a key through the use of a hash function. Self-Chord (Forestiero, et al. 2010)

advances Chord to be self-organizing based on the biological inspiration of ant behaviour.

Self-chord decouples the naming of resources and peers, resulting in two sets of keys / indices

that can have different cardinalities. Unlike Chord, Self-Chord doesn’t assign keys to specific

nodes in the network. Rather it focuses on the ability to re-order the keys as necessary across

a network of nodes to ensure a fair distribution as the network changes. With Pastry or Chord,

certain operations are required when nodes join a network or when new resources need to be

published to the network. Resources are assigned to the network nodes whose indexes match

the resource keys. This isn’t necessary with Self-Chord because it will allow for the

continuous re-ordering of keys in order to foster network scalability.

Kademlia (Maymounkov and Mazieres 2002), another P2P middleware option, specifies the

structure of the network and exchange of information through node lookups. The nodes

communicate using UDP. Kademlia uses SHA1 hashing with each participating node having

 58

a node ID within a larger 160 bit key space. Like Pastry, a node ID routing algorithm allows

for the efficient location of values for any given key. When searching for some value, the

algorithm needs to know the associated key and explores the network in several steps. Each

step will find nodes that are closer to the key until the contacted node returns the value or no

closer nodes are found. Like many DHT based networks, Kademlia contacts only 0(logN)

nodes during a search. A basic Kademlia network with 2n nodes will only take n steps (in the

worst case) to find that node. Kademlia has four message types including PING (to verify a

node is alive), STORE (store key, value), FIND_NODE and FIND_VALUE.

A node that wishes to join a structured P2P network must first go through a bootstrap process.

In this phase, the node needs to know the IP address and port of another node (obtained from

the user, or from a stored list) that is already participating in the network. If the bootstrapping

node has not yet participated in the network, it computes a random ID number that has not

already been assigned to any other node. It uses this ID until leaving the network. The joining

node inserts the bootstrap node into one of its k-buckets.

A P2P architecture provides a potential architecture for a highly distributed mobile cloud and

a structured option could help avoid any requirement for centralised resources. While the

current generation P2P systems can be considered an advanced distributed file system, they

generally only allow for simple and exact searches to be performed using key / value pairs.

One potential disadvantage of a fully distributed lookup is that each hop in a wireless network

could require a message to traverse across a full mobile network when 3G / UMTS or LTE is

used. Where several hops are required this could add significant message latency to any

application.

 59

The table below compares traditional cloud architecture with a distributed P2P architecture.

Table 5: Traditional cloud architecture versus P2P

The table below provides a summary of centralised and P2P network types.

Table 6: Taxonomy of P2P network architectures

 60

4.4. Option 4: Mobile Web Services

Service-oriented architecture (SOA) provides another option for implementing a mobile cloud

in whole or part. Web services are based on the use of open Internet standards like WSDL,

XML, REST and SOAP (Kreger 2001). These standards can be used to enable loosely

coupled interoperability between applications. SOA allows developers to encapsulate

application methods as services that a client can then access without any knowledge, or

control over, their internal workings (Foster 2005).

The Web Services Description Language (WSDL) defines the methods and bindings,

providing an API, similar to an Interface Definition Language (IDL), which allows the user to

understand how to utilize the web Service. In order to invoke the underlying methods exposed

as a web service, requests and responses can be sent either using REST or the Simple Object

Access Protocol (SOAP). HTTP is used for the transport protocol. As Web services are based

on accepted standards, solutions are language neutral. A benefit of a Web services

architecture for a mobile cloud is that the system could incorporate smartphones or other

mobile devices irrespective of the operating systems used, with nodes communicating across

standard HTTP. However a web server of some kind is a technical prerequisite for the

provision of mobile Web services. This could be achieved by installing a cut down version of

Apache, the open source web server (Apache Open Source Web Server n.d.). Alternatively a

simple lightweight web server could be developed given that a distributed mobile cloud

would not require each node to support high-load HTTP requests. One advantage of this

approach is that a mobile web service could be used to offer services that simply could not be

easily replicated by traditional cloud computing infrastructure. Users could offer a set of

 61

personal Web services that could be invoked by others remotely to provide useful

information.

There has been limited research into the practical implementation issues and potential of

hosting Web services on mobile devices. Research from Nokia (Wikman and Dosa 2006)

developed the S60 mobile web server, which was effectively a cut down version of Apache.

However as of January 2010, Nokia discontinued this web server. There are reasons that may

explain why this initiative was unsuccessful. The IP addresses allocated to mobile phones are

usually dynamically allocated. One of the reasons for this is that mobile phones are not

designed to host servers for services. In a client role, the mobile device doesn’t require a static

IP address. To date therefore, mobile devices are not generally allocated static IP addresses,

hence it could be difficult to initiate a connection to such a device as it would not be

publically addressable. In addition the firewalls of mobile operators are often configured to

prevent traffic initiated outside the wireless network. As a result HTTP or socket requests

initiated from outside the network may not reach devices within the network even if they had

a static IP address. The use of IPv6 to facilitate static IP addresses to all Internet connected

devices coupled with increased demand for direct device addressability will alleviate the

addressability issue in the coming years opening up the potential for mobile Web services.

 IBM was the first to consider the hosting of Web services on mobile devices, through the

development of a shopping kiosk application (Berger, et al. 2003). In this study issues such as

service discovery, device disambiguation, software footprint and security were considered.

Researchers at Macquerie University also proposed a framework for hosting Web services on

mobile devices (Hassan, Zhao and Yang 2010). This research highlighted that the provision of

web services from a mobile phone could be of great use in emergency or disaster situations,

where skilled personnel such as doctors could be located by invoking a web service hosted via

their mobile phone that returns their location using GPS. Their framework proposes that the

Web service interfaces are left on the mobile devices, but heavy-duty computing tasks are

 62

delegated to remote servers hosted in a normal datacenter. This is achieved through the

mobile device acting as the integration point with the support of backend servers and remote

Web services as depicted by B in the diagram below. It would also be technically feasible to

reverse this, so that the Web services are accessed via a traditional SaaS user interface from a

cloud, but where the actual methods invoked reside locally on a user’s smartphone as depicted

in C below. This could allow for mobile nodes to opt in and out of a directory of Web services

that is centralised and abstract any requirement for the requesting client to have knowledge of

the terminating IP addresses of the mobile devices providing the actual end service.

Diagram 11: Structured P2P architectures

The use of REST Web Services to allow mobile devices to host short-lived services has been

considered (Fahad, et al. 2009). They found that the demands on a wireless network are

significantly reduced with REST when compared to SOAP and that the use of REST could

have positive effects in reducing the processing latencies when using a mobile server. SOAP

 63

messages are particularly verbose resulting in a large transmission overhead and subsequently

a processing overhead to parse message content. Clearly developing a system based on REST

would impose a requirement on using HTTP and URLs. Due to this dependency, RESTful

web Services are tightly coupled to HTTP methods. GET, PUT, POST and DELETE are the

most commonly used methods. The authors highlight that the use of REST could create some

subtleties in situations where a service offers several resources of one kind resulting in it

becoming difficult to map methods to URLs in a manner that is reasonably self-explanatory.

Despite the fact that Web services standards exist, the end users of mobile devices are not

likely to be able to personally code and configure the actual mobile Web services they wish to

offer. It would be more realistic to develop software that abstracts users from the code

altogether, thereby alleviating the burden of publishing mobile Web services. The analysis

suggests that mobile Web services could be successfully exploited either in the provision of

personalised services that are published by individuals and can be invoked by others or to

provide a loosely coupled communications mechanism for sharing information in a federated

mobile cloud.

 64

4.5. Summary

The preceding three sections provided an in-depth background analysis into the emergence of

cloud computing, explored the potential implications of having mobile nodes participating in

the provision of services within a cloud environment and then considered some of the options

that may exist for implementing a mobile cloud.

The background analysis clearly indicates that cloud computing is set to enjoy considerable

further growth due to both the economic efficiencies that arise and the flexibility provided for

software deployment. A review of the literature clearly suggests that the term “mobile cloud”

is largely misrepresented, referring to smartphones leveraging the cloud as a thin client, rather

than participating in the provision of cloud services. This is not surprising as in practice most

mobile applications are statically partitioned to utilise the power of traditional cloud

computing for back-end support. With the technical capabilities of smartphones increasing

rapidly, the opportunity for mobile devices to play a role as service nodes at the edge of the

Internet should be investigated. In certain circumstances, distributed computation by mobile

devices at the edge may be more efficient given the literature highlights that significant

energy is consumed in transmitting data when offloading computation.

While a mobile cloud could be used to emulate services that have previously been centralised,

it is probable that a mobile cloud would play a different role and suit applications specifically

designed to work with intermittent wireless networking and a highly distributed network of

less powerful, battery constrained computing nodes. This raises the question as to whether

existing architectures can be ported to mobile or whether an architecture designed from the

ground up to accommodate mobile nodes would be superior.

 65

Given the architecture of current datacenters, the unit cost of computation has decreased to

the extent that a mobile cloud is unlikely to compete on grounds of pure processing

efficiency, especially given the additional overhead of re-allocating processing tasks where

mobile nodes have failed or left the network. However mobile nodes could analyse data

collected from onboard sensors and reduce such data to an intermediary summary set for

onward transmission.

An ideal implementation of a mobile cloud would accommodate heterogeneous smartphones

in terms of both the hardware and operating systems (and versions of operating system).

Middleware to support a mobile cloud would need to abstract users from this heterogeneity

and provide a mechanism for managing a finely grained network of nodes that will experience

node churn of a magnitude significantly higher than churn in a typical datacenter

environment. It will not be possible in the medium term to run several virtual machine

instances on a smartphone or to share one mobile broadband connection in a manner that

would support several applications requiring always-on connectivity.

Peer-to-peer networking was analysed and provides a useful potential architecture for

supporting a mobile cloud, given that nodes will naturally be at the edge of the network.

Unstructured P2P networks, such as the Gnutella implementation, would incur too high of a

message overhead in locating resources within a large mobile cloud. While the use of an

unstructured P2P network coupled with a directory for locating resources is a viable option, it

would require a well engineered distributed directory in order to be sufficiently fault tolerant.

Structured P2P frameworks such as Pastry and Chord provide a robust manner in which to

achieve a completely decentralised P2P network that can efficiently manage node churn and

load balancing. However such networks, based on the use of distributed hash tables, require

exact keyword searches and the 0(logN) hops required for file location may be better suited to

fixed or ad-hoc wireless networks than to smartphones which will predominantly use 3G /

UMTS and LTE. It would be inefficient from an energy perspective to require smartphones to

 66

utilise wifi connectivity at all times. A key benefit though of structured P2P networks using

DHTs such as Pastry is the fact that each node only needs to retain a subset of routing

information rather than be aware of all nodes within the network.

The use of mobile Web services was considered. A mobile cloud built in part upon the use of

Web services could allow a loosely coupled participation of heterogeneous mobile devices

providing services. Given the nature of a lightweight web server this architecture would suit

services that are accessed infrequently on mobile devices. But this option could support a

personalized mobile cloud where anyone could participate in the mobile cloud and each

participant would have complete control over access to and availability of their Web services.

This suggests that mobile devices could be utilized to provide a personalised mobile cloud. In

this scenario mobile nodes can be either federated to provide large computational resources,

or rather utilized for the services each provides as a standalone mobile server. A key

consideration for such architecture is the requirement for clear addressability and a supporting

directory services such that personal Web services can be discovered. One benefit of mobile

web services is that the device owner would be in complete control of the services offered and

could simply turn on or off their personalized web services as they deemed fit.

In summary a mobile cloud raises some unique design challenges that requires an architecture

tailored for a dynamic operating environment. A mobile cloud would lend itself to certain

types of application such as disaster relief, decentralised social networks, proximity-based

networks, smartphone sensor networks or general multimedia file sharing. In all cases the

applications would need to be designed to operate within a mobile environment.

 67

Having completed the evaluation of potential architecture that could be used, in part of whole,

for the development of a mobile cloud, it is now important to choose a viable option for

implementation. In almost all cases, with the exception of sensing applications, it is possible

to construct a mobile cloud service model equivalent to those of a traditional cloud. With

SaaS, PaaS, DaaS and IaaS the main drawback is that a mobile cloud would support only

certain types of applications, in particular those that do not require heavy weight server nodes

and stable or high-speed networking. The table below summarises the service models

practically supported by a mobile cloud.

Table 7: Traditional versus mobile cloud service models

While it is possible to develop a mobile processing cloud, this option is ruled out given it is

not as practical as other potential applications. Given the benefits associated with a mobile

storage cloud the next chapter of this dissertation will focus on implementing such a system.

 68

5. IMPLEMENTATION & EVALUATION

The literature analysis pertaining to cloud computing, and particularly how mobile nodes

might participate, highlighted that there are a variety of options for implementing a mobile

cloud. These options include a mobile processing cloud, provision of personalised Web

services or a mobile storage cloud. The optimal option depends on the deliverables of the

system and the architecture is therefore dependent on the requirements specification of any

system. Given the medium term energy constraints, the limited processor capabilities and the

messaging overhead that arises, the option of a mobile processing cloud has been ruled out.

While the provision of personalised Web services on mobile devices appears to have

significant potential, this option was also ruled out in favour of implementing a mobile

storage cloud. Such a system could support a wide variety of applications including the

dissemination of critical information in a disaster zone, a mobile distributed social network, or

the sharing of sensor data over a large geographic area. The system, hereon referred to as

Icarus, is designed to be fault tolerant against mobile nodes churning in a network.

The implementation assumes that all mobile nodes can be directly addressed. This is a

minimum requirement to implement any of the options considered. This is not currently the

case, as highlighted earlier, but the transition from IPv4 to IPv6, will resolve addressability in

the medium term and is currently underway. The assumption that mobile nodes are

addressable is therefore reasonable in the context of this study.

 69

5.1. Requirements specification

This section will provide an outline of the requirements specification for Icarus, which will be

used to guide design decisions. Given the opportunities that exist to enhance and extend the

system it has been critical from the outset to clearly highlight the deliverables that are inside

of scope and those that provide opportunity for future extension. The following is a list of the

requirements included in the prototype.

1. P2P file retrieval. Once an Icarus node locates the required information and responds

to a remote request, it will return sufficient information to allow the requesting Icarus

node to directly contact the node hosting the required content. This will facilitate

direct P2P content retrieval.

2. Join / Leave: The system should be able to tolerate Icarus nodes joining and leaving

the network. For the prototype the ability to join will be semi-automated, in that a

joining node will be required to know the IP address of at least one other Icarus node.

3. Fault tolerance: Any participating mobile node may experience hardware failure,

intermittent network connectivity or a loss of battery power. A network of Icarus

nodes is expected to be able to outlive a reasonable level of node departure or failure.

4. Search: Unlike DHT based P2P systems, Icarus should allow for inexact searches.

The system should ensure that the number of messages hops required to locate

content can be minimised in order to alleviate potential message failure due to

network congestion or intermittent availability.

5. Practicality: The system is designed to support distributed storage for the sharing of

information that can be transmitted across a wireless network efficiently. Icarus is not

designed for the transmission of large files such as video. The system could be

augmented in the future to allow for file fragmentation across multiple nodes.

 70

6. Energy efficiency: As smartphones are battery operated and wireless transmission

consumes significant energy, an Icarus network should support fair load balancing

across nodes. This should be achieved by randomly choosing an IP address from the

pool of available mobile nodes to service requests.

7. Scalability: The network should be able to scale. An Icarus node should not need to

be aware of all other nodes within the network.

8. Replication: The objective is not to ensure the availability of each file stored on an

Icarus node, but rather to ensure the availability of at least one copy of the file in the

system irrespective of reasonable levels of node churn or network failure.

9. Language: The prototype will be implemented in Java.

A prototype Icarus node has been developed in Java. Each node has a client, directory and

storage node component. The directory component has the capability to accept inbound

queries and to transmit requests from, and to, the directories of other Icarus nodes. The

diagram below illustrates this network topology. Once a client submits a request to put a file

into, or retrieve a file from the network, it communicates to its local directory. There are five

steps required in adding content to an Icarus network:

1. The user accesses the Icarus client.

2. Local Icarus node checks to ensure the file exists (functionality in local directory).

3. Local Icarus node randomly chooses a neighbour peer node from its routing table and

requests that it replicates the content.

4. The neighbour node chosen requests the file from the Icarus node, using a unique

URL for that content.

 71

5. The local directory in parallel replicates the metadata associated with that content and

transmits it to the random directory chosen. A copy of metadata will exist for each

replica, as each will have a unique URL. Metadata can be propagated to other

directories to increase the speed at which any replica can be located within the

network.

5.2. Client design

Limited focus has been placed on the client interface design for the prototype. It is designed

merely to allow for the running of simulations to evaluate the performance of Icarus. It is

envisaged that the user interface could be developed to allow Icarus to be deployed as an

Android application using MySQL lite. The diagram below provides an illustration of the

current menu screens. Within the main menu, option 5 provides access to the simulation

submenu.

Diagram 12: Icarus – user interface

 72

5.3. Directory design

The design of the Icarus directory is a fundamental component of the system. Each Icarus

network consists of one overall directory, with this directory being distributed and replicated

across all of the participating nodes within the network. Each node is therefore responsible for

maintaining a portion of the overall directory.

5.3.1. Peer neighbourhood

It is an objective of the design to ensure that each Icarus node does not need to be aware of all

other nodes participating within the network. Rather any node must only maintain a limited

routing table incorporating a small subset of peers, referred to as neighbour peers. These

neighbour peers do not need to be within close physical proximity to the node. The number of

neighbour peers listed within the routing table is a parameter that can be tuned within the

network. The evaluation is based on this parameter being set at 10. Upon a request, if an

Icarus node needs to contact another node to pass on a request, it chooses one of these nodes

at random from its routing table. The node contacted from the neighbour list may in turn route

the message to one of its own neighbours, also chosen at random. The key decision criteria in

setting the neighbourhood parameter is to ensure that at least one of the neighbour peers will

be available at any time to service a remote request. A neighbourhood set of 10 nodes would

ensure availability of the network so long as all 10 nodes are not unavailable simultaneously.

A real life deployment of the network should ensure the random nodes chosen for the

neighbourhood set reside across different wireless networks when possible. This will further

improve the fault tolerance of the network, limiting the potential for multiple nodes to be

adversely impacted by a core network failure. A while loop is used to randomly choose a

node from the neighbourhood set in order to query a remote directory for a file. If the node

chosen is unavailable, the requesting node will choose another random neighbour peer.

 73

The diagram below illustrates the network topology for Icarus.

Diagram 13: Icarus – components

An Icarus node can also reside on a traditional datacenter server, thereby allowing for super

nodes that could incorporate complete copies of the entire network directory data or larger

partitions of this data relative to the participating mobile nodes. Such an implementation

requires that the address of such super nodes be given priority within the peer neighbour

routing table. Even in the event that a super node failed, such failure is tolerated and requests

will default to the remaining distributed nodes and be distributed on a random basis. Such a

deployment also ensures that at least one of the directory peers used is on a separate physical

network thereby improving fault tolerance. The benefit of such an implementation is that the

node hops required to locate content could be reduced to as little as 1.

5.3.1. Content and metadata replication

The replication of content and directory data is imperative to ensuring availability and

performance within an Icarus network. For each replica of content, the metadata including a

 74

URL pointer to the content is also replicated separately to the directory partitions of other

random Icarus nodes. This ensures that the overall directory is robust and the failure of one or

more Icarus nodes should not result in an inability to locate content in the storage network.

There are a number of options available with regard to the replication of the content itself. A

key design choice is whether the replication decisions are made by the user of the system or

by the Icarus nodes’ local directory, in which case the replication policy is transparent to the

user. Two options for the replication of content and metadata were considered:

1. Directory logic decides on how to replicate the file. This could be based on the file

type and a timestamp. The use of a timestamp indicating when content was added to

the network could allow for an automated purging of replicas after a period of time to

optimise storage resources across the Icarus nodes.

2. User decides on how to replicate the file. The client could provide an option allowing

for a user to choose a replication policy based on a range of predefined options. For

example, the client could ask the user to weight the importance of the file availability

on a scale of 1 to 5, where 1 reflects a very important file such as medical data and 5

represents a file of lesser importance.

Two further options arose with respect to replicating metadata within the distributed

directory.

1. Replicate directory partitions across nodes such that the partition of a directory hosted

on a node is exactly mirrored on at least one other node within a network.

2. Replicate content metadata on a file-by-file basis and propagate this to the directory

data of multiple Icarus nodes chosen randomly.

The latter option was chosen as it supports the prioritisation of different content. With this

method the metadata for content can be replicated dynamically based on its importance. The

metadata for high priority content is propagated to the directory partitions of a greater number

of Icarus nodes, thereby requiring fewer node hops in order for a search request to locate the

 75

content. This concept of dynamic replication is illustrated in the diagram below. In this

instance the directory data and URL pointing to a file on Icarus node 1 (N1) has been

replicated twice. In the case of Icarus node 3 (N3), the metadata has been replicated eight

times. In this case the metadata will therefore reside within the directories of eight separate

Icarus nodes.

Diagram 14: Dynamic replication

The benefit of this architecture is that content of high importance can be more quickly located

within the network, given that more Icarus nodes are aware of its existence and location. The

diagram below provides a clear illustration of the combined implications of replicating

content and metadata separately. In this case file A represents a high priority file, whose

metadata is propagated to three directories, with file replicas of the content itself hosted in the

storage component of separate Icarus nodes.

 76

Diagram 15: Replication illustrated

The actual operation of adding a file to the network is provided in more granular format

below. Here Icarus node 1 is adding a file to the network. This results in a replication request

being submitted to nodes 2 and 3. Both of these nodes then execute the getFile method in

order to retrieve a copy of the file from node 1. The metadata and URL for the file are

replicated to nodes 3 and 4. While these nodes do not contain a physical copy of the file itself,

they can advise any other nodes within the Icarus network of the location of the file.

Diagram 16: Directory replication request

 77

This concept of dynamic replication ensures that valuable storage resources and network

messages are not utilised inefficiently by treating all content as equal. As a result the

resources available across an Icarus network are utilised more efficiently. The availability of

priority content, even assuming significant node churn, can be tuned both to maximise fault

tolerance and to ensure the content can be located quickly in the network. This mechanism

allows for content categories, that could range from 1 to 5 to be implemented whereby the

category becomes a field value in the metadata associated with a file, highlighting the

replication policy that should apply. The replication algorithms do not take account of the size

of the Icarus network given that each node is not actually aware of how large the network it is

participating within is. To incorporate this functionality would result in a significant

messaging overhead across the network and this overhead is not considered a required pre-

requisite to deploying a reliable mobile storage cloud.

The architecture results in the number of replicas within an Icarus network being inversely

related to the number of node hops required to locate content within the overall Icarus

directory. By further replicating only the metadata across nodes, the performance and

availability of the network can be further optimised as content can be more quickly located

across fewer node hops. The availability within an Icarus network is calculated as 1 – P(all

replicas failing) where the probability of all replicas failing is determined by a

hypergeometric distribution. The possible combinations (Combin) of nodes failing within an

Icarus network can be denoted as:

(Combin) = N!/c!(n-c)! where:

N = total nodes in the network.

c = total nodes churning.

To determine the probability of whether some or all of the file replicas required are amongst

the nodes that fail the following formula is used. This is denoted as:

 78

P(replicas failing) = (Combin(r, f) x Combin(N-r, c-f)) / Combin(N, c) where:

r = number of file replicas

f = number of replicas failing

Therefore a simple Icarus network with 20 nodes and 10% node churn, would have the

following number of potential combinations of nodes churning:

= 20!/2!(20-2)!

= 2,432,902,008,176,640,000 / 2 / 6,402,373,705,728,000

= 190 combinations.

The table below extends the above analysis to highlight the combinations of nodes that could

churn in a network of 50, 75 and 100 nodes.

Table 8: Combinations of nodes churning

 79

In a network with 100 Icarus nodes and 10% churn, it would be possible to have 17.31 billion

combinations of the 10 nodes that churn in the network calculated as100!/10!(100-10)! The

probability of 5 nodes hosting replicas of content failing within a network of 100, where 10

nodes fail overall should be 0.0003347%. Availability should therefore be 1-0.0003347% or

99.9997%. The above analysis is based on the probability of a node failing not being directly

correlated to any other node failing. This may not always be the case given a physical failure

within the core of a wireless network could result in multiple mobile devices failing. As a

result the random nodes chosen for the neighbour peer routing table and for hosting replicas

and metadata should be as diverse as possible and span multiple physical networks if

available.

5.3.2. Search and content retrieval

In order to search Icarus a client submits a search string. This search string is translated into a

query to the node’s local directory. This checks for a full or partial match in its database and

responds if a match is made. If a match is not made, then the local directory submits the

original string query to another random directory on an Icarus node in its neighbourhood

routing table. Once the file is located by one of the directory partitions, the URL for that file

is returned to the originating node requesting the file. This URL consists of the IP address of

the node, the port to request the file on, a hash of the file and the filename. The client is

provided with the results from a search query with the associated URLs of any files found.

The client can then submit a URL (in the form http:\\134:226:34:10000/hash_file/filename to

directly retrieve the file from the node that it resides on. The diagram below illustrates this

search management logic.

 80

While the input of content to Icarus or a search query for content may involve multiple hops

in the Icarus network, the content retrieval is based on a direct P2P connection. This is

illustrated in the diagram below and ensures efficient content retrieval.

Diagram 17: Search and content retrieval

5.4. Storage design

The storage component of Icarus is relatively simple. It is responsible for receiving inbound

requests for content and either servicing that request or indicating that the content is not

available. Two options existed:

1. Use Java sockets to receive content requests and respond with the requested content.

2. Use RESTful Web services in order to engineer a more loosely coupled system. This

option would be of benefit given it would more easily support the participation of

heterogeneous mobile nodes.

 81

The use of Web services requires that a cut down version of the Apache web server or

equivalent be deployed on each Icarus node. Each file within an Icarus network would then

have its own unique URL that could be accessed on any storage node. For the prototype Java

sockets were used for the transmission of the file but unique URLs are also used to locate

Icarus node where the content resides and the file path for the file on the node.

5.5. Database schema

Data is persisted on each Icarus node using a database. For the prototype network, each node

had MySQL installed. The system will however support SQLite (installed by default on all

Android based handsets) or a text based SQL flat file database such as TextDB. The database

consists of 5 tables including: files, meta, replicaURL, searchrequests and searchresults. The

layout of each of these tables is provided below.

 82

 83

5.6. Summary architecture

A high level overview of the Icarus architecture is illustrated below. The diagram highlights

the client, directory and storage functionality that will be incorporated into each Icarus node.

The main method resides within the directory server class and also instantiates simple client

access from where a user can navigate the system.

Diagram 18: Icarus - architecture

 84

The directory is multithreaded and spawns a thread to manage each request to a node’s

directory. This allows for the concurrent management of requests. The Directory Core is a

shared directory object that manages the addition of local files to Icarus, adding a remote file

as local (upon receipt) and querying the storage node with the hash of a file. The Directory

Core also manages setting up the peer neighbour routing table.

In summary each Icarus node consists of a client, directory and storage component. The

directory component incorporates the intelligence to internetwork remote directories, handle

file and metadata replication and manage search requests. The storage component receives

content requests and responds with that content.

 85

5.7. Evaluation

The evaluation consisted of deploying an Icarus network across several mobile devices and

datacenter virtual machines, followed by the development of a simulation package to allow

extensive testing of larger networks. The evaluation focused on the following key objectives:

1. Testing network availability in the presence of progressively worsening levels of

node churn.

2. Logging and evaluating the number of node hops required to locate content for a

search request. This entailed adding counter functionality that is incremented each

time a message is transmitted across nodes.

3. Trial experiments to put content into the network, replicate the content and metadata

separately across nodes and subsequently search and retrieve the content.

4. Stepwise iteration of the experiments to determine the ability to tune the network for

availability and performance by varying the number of file and metadata replicas.

A number of simulation options were considered to evaluate an Icarus network. These

included JiST / SWANS, TOSSIM and NS2. JiST / SWANS refers to Java in Simulation

Time / Scalable Wireless Ad Hoc Network Simulator, a high performance network simulator

that runs on a standard Java virtual machine. JiST simulations are written in Java. SWANS

provides a scalable wireless network simulator built on top of the JiST platform. It leverages

JiST to run standard Java network applications over simulated networks. TOSSIM and NS2

provide scalable simulators for simulating wireless sensor networks (WSN). Of the three

simulators JiST / SWANs provided the closest match to the requirements to test an Icarus

network, given it allowed for Java sockets to be translated into emulated network sockets.

These simulators provided some advanced capabilities, such as the ability to simulate radio

 86

interference within a wireless network. However, the simulators focused on ad hoc

networking rather than simulating performance across a wide area 3G or LTE wireless

network. While an Icarus network could be deployed across multiple WiFi networks, it should

be evaluated based on the levels of node churn that may be expected in a standard wireless

network. As none of the simulators provided the ability to test Icarus comprehensively across

the four evaluation criteria, a separate simulation package was developed.

The simulation package allows for key parameters to be flexed including the following:

1. Number of neighbour peers. The default setting was 10.

2. How many Icarus nodes are in the simulated network.

3. The volume of iterations to complete for each experiment.

4. Churn rate applying to any simulation.

For all experiments, a minimum of 100 iterations is completed in order to ensure data that is

representative. The simulator spawns a thread for each Icarus node within the network. It

creates the underlying directory database tables required for each node and empties the data

upon completion of an experiment.

The graph below illustrates the outcome of a simulation using 100 Icarus nodes with 3 copies

of a file randomly stored within the network. For each simulation 100 iterations of storing a

file and subsequently searching for and retrieving the file are completed. The simulations are

repeated successively increasing the churn in increments of 5%. The total number of

experiment iterations completed is therefore 500 (100 x 0% / 5% / 10% / 15% / 20% churn).

The number of hops that a search query can traverse is limited to 10. This results in a

network availability that ranges from 34% to 43% depending on the churn rate. The poor

availability is caused by the search constraint of 10 node hops. The 3 replicas of the content

are often not located within the network using 10 random search hops.

 87

Graph 2: Availability – search bounded to 10 node hops

If this search hop constraint is removed, the ability to locate the content shows a clear

improvement. However this improvement in availability incurs the overhead of the additional

node hops as illustrated below.

Graph 3: Availability – unbounded

 88

The increased node hops adversely impacts the latency associated with responding to a

request for content within the network. It also increases the probability that a request will fail.

The following four scenarios were then simulated. In each case, 100 iterations of the

experiment to put content into an Icarus network and subsequently search and retrieve the

content was completed.

Scenario 1. Network with 100 nodes, 3 file replicas (FR), metadata replicated to 0 nodes.

Scenario 2. Network with 100 nodes, 3 file replicas (FR), metadata replicated to 10 nodes.

Scenario 3. Network with 100 nodes, 5 file replicas (FR), metadata replicated to 0 nodes.

Scenario 4. Network with 100 nodes, 5 file replicas (FR), metadata replicated to 10 nodes.

These experiments involved running the simulations for several days. For each scenario the

churn was varied from 0% to 20% in 5% increments. For each scenario 500 experiment

iterations was completed (100 iterations x 0% / 5% / 10% / 15% / 20% levels of churn),

resulting in a total of 2,000 experiment iterations. Each of these iterations involved randomly

replicating the content and metadata placed in the network across nodes. The graph below

illustrates the availability of Icarus networks. It becomes clear that separately replicating the

location metadata across Icarus directories increases the availability within an Icarus network.

This is because there are no more directory nodes that are aware of the location of at least one

of the file replicas. The improved availability resulting from the replication of location

metadata is greater at higher levels of node churn. The availability of a network with 3

replicas of content and with the location metadata replicated to 10 directory partitions

approaches that of a network with 5 replicas of the content and no metadata replication. This

finding is useful given that the cost of replicating metadata will be significantly lower in

storage terms than for replicating actual content.

 89

Graph 4: Availability levels at varying replication

The graph also demonstrated the ability to tune availability within the network to in excess of

95%, despite a significant number of nodes churning off the network simultaneously. The

graph below illustrates that the replication of metadata across Icarus nodes considerably

impacts the number of node hops required to locate content within the network.

Graph 5: Network search – hop count to locate content

 90

On average content is located using half as many node hops, vastly improving the latency in

responding to a client request and reducing the potential for request failure due to message

loss. While Icarus was not designed to compete directly against distributed hash table based

networks, it can be tuned to outperform a Pastry network on search by increasing the metadata

replication such that the number of hops required to locate content is less than Pastry’s 0(log

N). As outlined previously, the number of node hops can also be reduced to one through the

use of super nodes hosting an entire directory.

 91

6. CONCLUSIONS

The literature misuses the term “mobile cloud” by referring predominantly to mobile devices

that access and leverage a traditional cloud as a thin client. Given the exponential growth in

the use of smartphones globally and the increasingly rich computation resources they offer, it

is worth investigating the ability to federate such devices into a mobile cloud. Afterall,

Metcalfe’s law suggests that the value of any network increases by the square of the number

of nodes.

The background analysis indicates several developments that fostered the emergence of cloud

computing. During the 1960s virtualisation was developed for allocating mainframe

resources, but later waned due to the commoditisation of hardware, only to re-emerge for

allocating computing resources within datacenters. Improvements throughout the 1980s and

1990s reduced commodity hardware and networking costs, stimulating migration to

horizontally scalable datacenters. Finally, automating resource provisioning via online portals

enabled the flexibility and efficiency of federated computing to become widely accessible.

Evaluating the implications of mobile server nodes highlights numerous constraints for

implementing a mobile cloud. From a hardware perspective mobile nodes have less

processing power than commodity servers and are battery constrained. Smartphones were

never designed to be used as always-on serving infrastructure. The heterogeneity of mobile

hardware and operating systems is also a concern. Given these differences, a mobile cloud

will exhibit different failure semantics than a traditional cloud, especially with regard to

availability and performance. Wireless networks suffer from lower bandwidth and greater

intermittency, resulting in a degradation of the performance of transmission protocols. TCP

 92

overreacts to temporal congestion, and its large packet headers and three-way handshake

would be a high overhead when transmitting maintenance messages within a mobile cloud.

The analysis explored the potential implementation options for a mobile cloud. Given the

warehouse-scale architecture of current datacenters, the unit cost of computation has

decreased to the extent that a mobile cloud is unlikely to compete on the grounds of pure

processing efficiency. This is due in part to the additional overhead of re-allocating

processing tasks where mobile nodes have failed or departed the network and to the greater

messaging overhead in wireless networks. While prior research has been completed on mobile

distributed processing, this option was ruled out due to the constraints outlined above.

However, in certain circumstances, distributed computation by mobile devices at the edge of a

network may be efficient, as significant energy is consumed in transmitting data when

offloading computation. Mobile nodes could, for example, analyse data collected from

onboard sensors, analyse the data, and transmit summary data to super nodes.

The potential of peer-to-peer networking was considered and provided a useful architecture

for supporting a mobile cloud. While structured P2P networks such as Pastry and Chord are

well engineered and use consistent hashing to provide a defined address space, they require

exact keyword searches for file retrieval. Though the ability to locate data within a P2P

network based on 0(logN) hops may be considered efficient in a fixed network, it may not be

optimal in a wireless network characterised by low and erratic bandwidth, as the probability

of message failure increases with each additional node hop.

The use of mobile Web services was explored, which would allow for a loosely coupled cloud

design whereby heterogeneous mobile nodes could participate in providing services. Given

the general constraints that arise with mobile nodes, a lightweight web server is required that

could host services that are accessed infrequently on mobile nodes. This option could support

a personalised mobile cloud where anyone could participate and with each participant having

 93

complete control over access to, and availability of their Web services. In this scenario mobile

nodes could be either federated to provide large computational resources, or rather utilised for

the services each provides on a standalone basis. Such architecture would require clear

addressability and a supporting directory enabling personal Web services to be discovered.

The ability for a provider of mobile Web services to have physical control of the services

hosted may be attractive for privacy reasons, as personal data in an application like mobile

social networking would not have to reside on remote servers.

Distributed file systems are not currently optimised for a mobile environment. Rather, they

are designed for an environment where nodes and network connectivity are reasonably stable.

The topology is usually based on centralised servers with fault tolerance provided by

redundant hardware and the static replication of data. A mobile storage cloud will require a

different architecture from a traditional cloud, given the participation of mobile server nodes

raises unique problems that would not arise in a traditional cloud. A network of mobile nodes

will dynamically change in real-time as nodes constantly join and leave the network. These

differences result in a requirement to define failure semantics for a mobile storage cloud that

are different from a traditional cloud, where each commodity server may have an annualised

availability rate of 99% or higher. The users of a mobile storage cloud need to be abstracted

from the instability of a network in which the underlying service nodes are dynamically

changing. This requires a solution to two unique problems posed by a mobile storage cloud.

First, the availability of the network needs to be architected from the ground up to ensure a

reasonable level of service can be provided irrespective of a proportion of the network nodes

changing at any given time. Second, given that a mobile storage cloud is highly distributed,

the ability to search nodes and to locate and retrieve content needs to be optimised in order to

reduce the messaging within the network and minimise the associated latency in responding

to search requests.

 94

Icarus incorporates many of the lessons from the analysis. Its peer neighbourhood design

ensures that nodes need only be aware of a small subset of nodes within an overall network.

This parameter can be flexed when deploying a specific network environment to guarantee a

high probability that at least one peer node will be available upon request. The neighbourhood

design helps ensure that the network maintenance messages transmitted are minimised, with

no requirement to flood an entire Icarus network to determine the global state at any given

time. To overcome the availability challenge, content is replicated to a group of mobile nodes.

This provides an innovative architecture where Icarus’ fault tolerance is based on the

conditional probability that all of the mobile nodes containing the requested content are

unavailable or fail simultaneously. Such a conditional probability is analogous to drawing all

of the numbers within a lottery draw. Dispersing the content replicas across Icarus nodes on

multiple physical networks when possible removes the potential for a single point of failure to

trigger a cataclysmic failure.

The separate replication of metadata and URL significantly decreases the messaging cost and

latency in locating data. Given TCP’s poor performance in wireless networks, the reduced

message hops has a large impact in ensuring requests don’t fail during transmission, as fewer

peer connections are required. The Icarus architecture allows for super nodes to be

implemented as preferred peer neighbours that could host an entire directory. This would

reduce the directory hop count to one with the ability to default to the Icarus directory

partitions on each smartphone if a super node fails. The replication of content and metadata

can be applied dynamically, depending on content importance, allowing for the efficient

allocation of storage and directory resources within the network.

A mobile storage cloud could support a suite of next generation applications including

disseminating information in a disaster zone where traditional resources are unavailable,

providing mobile distributed social networking, collating data from distributed mobile sensor

applications or simply sharing multimedia content.

 95

6.1. Future work

The analysis also highlighted several areas for future research. These include:

1. Enhancing and extending Icarus. Appendix 1 outlines areas for improving Icarus.

2. Dynamically partitioning mobile applications between local mobile on-device

computation and datacenter computation to optimise the use of available resources.

3. Research into developing a thin hypervisor for mobile devices that could support the

efficient operation of isolated mobile virtual machines.

4. Mobile grid. Further research is warranted on the potential to develop a distributed

mobile processing grid. Such a grid could be used for a variety of novel applications

including image analysis.

5. Delay tolerant network. Given the poor performance of TCP in wireless networks it

may be worth researching the potential to use delay tolerant networking.

Asynchronous notifications and transmissions could help alleviate issues that arise

with TCP.

 96

7. BIBLIOGRAPHY & APPENDIX

7.1. Bibliography

[1] Amazon Web Services. http://aws.amazon.com/ (accessed 2011 йил 17-April).

[2] Anderson, Tom, et al. “A Case for Networks of Workstations.” University of California, Berkeley, 1992.

[3] Android x86 Project. 2010. http://www.android_x86.org.

[4] Apache Open Source Web Server. http://www.apache.org (accessed 2011 йил 2-August).

[5] Barham, P., et al. “Xen and the art of Virtualization.” Nineteenth ACM symposium on Operating systems

principles (ACM), 2003.

[6] Barham, P., et al. “Xen and the Art of Virtualization. .” Nineteenth ACM Symposium on Operating Systems

Principles, 2003.

[7] Berger, Stefan, Scott McFaddin, Chandra Narayanaswami, and Mandayam Raghumath. “Web Services on

Mobile Devices.” Fifth IEEE Workshop on Mobile Computing Systems & Applications (IBM T.J. Watson

Research Center), 2003.

[8] Berman, F., G. Fox, and T. Hey. “Grid Computing: Making the Global Infrastructure a Reality. .” (Wiley &

Sons) 2003.

[9] Bernstein, David, Erik Ludvigson, Krishna Sankar, Steve Diamond, and Monique Morrow. “Blueprint for the

Intercloud: Protocols and Formats for Cloud Computing Interoperaibility.” Fourth International Conference

on Internet and Web Applications and Services, 2009.

[10] Carroll, A., and G Heiser. “An Analysis of Power Consumption in a Smartphone.” USENIX Annual Technical

Conference, 2010.

[11] Carter, Nicholas P. Schaum's Outline of Computer Architecture. 2002.

[12] Chen, Eric Y., and Mistukaka Itoh. “Virtual Smartphones over IP.” NTT Information Sharing Platform

Laboratories (NTT Corporation), 2011.

[13] Chun, Byung-Gon, and Petros Maniatis. Augmented Smartphone Applications Through Clone Cloud

Execution, 2009.

[14] Chun, Byung-Gon; Maniatis, Petro. “Dynamically Partitioning Applications between Weak Devices and

Clouds.” MCS, June 2010.

[15] Chun, Byung-Gon; Maniatis, Petros. “Augmented Smartphone Applications Through Clone Cloud

Execution.” HotOS, 2009.

 97

[16] Clark, Henry. “DAWGS: A Distributed Compute Server Utilizing Idle Workstations.” Journal of Parallel and

Distributed Computing, 1992.

[17] Dou, Adam, Dimitrios Gunopulos, Vana Kalogeraki, Taneli Mielikainen, and Ville Tuulos. “Misco: A

MapReduce Framework for Mobile Systems.” 3rd International Conference on Pervasive Technologies. New

York: ACM, 2010.

[18] Erdil, D.C., M. J Lewis, and N. Abu-Ghazaleh. “Adaptive Approach to Information Dissemination in Self-

Organizing Grids.” Proceedings of ICAS, 2005.

[19] Fahad, Aijaz, Syed Zahid Ali, Mazzamil Aziz Chaudhary, and Bernhad Walke. “Enabling Resource-Oriented

Mobile Web Server for Short-Lived Services.” 9th International Conference on Communications, December

2009.

[20] Forestiero, Agostino, Carlo Mastroianni, Emilio Leonardi, and Michela Meo. “Self-Chord: A Bio-Inspired

P2P Framework for Self-Organizing Distributed Systems.” Transactions on Networking (ACM), October

2010.

[21] Foster, Ian. “Service Oriented Science.” (Math & Computer Science Division, University of Chicago) May

2005.

[22] Google App Engine. 2011. http://code.google.com/appengine/ (accessed 2011 йил 19-April).

[23] Gray, J., P. Helland, P. E. O'Neill, and D. Shasha. “The stages of replication and a solution.” SIGMOD

International conference on Management of Data. ACM, 1996.

[24] Hadoop website. http://hadoop.apache.org/core/ (accessed 2011 йил 1-August).

[25] Hagman, Robert. “Process Server: Sharing Processing Power in a Workstation Environment.” Conference on

Distributed Computing Systems, 1986.

[26] Hassan, Mahbub, Weiliang Zhao, and Jian Yang. “Provisioning Web Services From Resource Constrained

Mobile Devices.” 3rd International Conference on Cloud Computing (Department of Computing, Macquerie

University), 2010.

[27] Hendricks, E. C., and T. C. Hartmann. “Evolution of a virtual machine subsystem.” IBM Systems Journal 18,

no. 1 (1979).

[28] Hennessey, John. “The Future of Systems Research.” (IEEE) August 1999.

[29] IETF. RFC for Unique Local IPv6 Unicast Addresses. http://tools.ietf.org/html/rfc4193.

[30] Kambhatla, Srikanth, and Jonathan Walpole. “Recovery with limited replay: Fault tolerant processes in

Linda.” (IEEE) 1990.

[31] Kennington, Jeff, Eli Olinick, and Dinesh Rajan. Wireless Network Design: Optimization Models & Solution

Procedures. California: Springer, 2011.

[32] Kistler, J. J., and M. Satyanarayanan. “Disconnected operation in the Coda file system.” Transactions on

Computer Systems. 1992.

 98

[33] Kistler, J., and M. Satyanarayanan. “Disconnected Operation in the Coda File System.” Transactions on

Computer Systems (ACM), 1992.

[34] Klein, Andreas, Christian Mannweiler, Joerg Schneider, and Hans Schotten. “Access Schemes for Mobile

Cloud Computing.” 11th International Conference on Mobile Data Management. IEEE, 2010.

[35] Kreger, H. Web Services Conceptual Architecture. 2001 йил May.

http://www.ibm.com/software/solutions/webservices/pdf/WSCA.pdf (accessed 2011 йил 11-March).

[36] Kung, H. T., et al. “Network-based Mutlicomputers: An Emerging Parallel Architecture.” Supercomputing,

1991.

[37] Li, Fulu, David P. Reed, and Andrew Lippman. “Collaborative Storage with Mobile Devices in Wireless

Networks for P2P Media Sharing.” (MIT) 2008.

[38] Li, Kai, Richard Lipton, Richard DeWitt, and Jeffrey Naughton. “SHRIMP: Scalable High Performance

Really Inexpensive Multicomputer Project.” ARPA High Performance Computer Software, September 1993.

[39] Liang, Hongbin, Dijiang Huang, Lin Cai, Xuemin Shen, and Daiyuan Peng. “Resource Allocation for Security

Services in Mobile Cloud Computing.” Workshop on M2MCN. IEEE, 2011.

[40] Marinelli, Eugene E. “Hyrax: Cloud Computing on Mobile Devices using MapReduce.” Carnegie Mellon

University, September 2009.

[41] Maymounkov, Petar, and David Mazieres. “Kademlia: A Peer-to-Peer Information System Based on the XOR

Metric.” New York University, 2002.

[42] McQueen, Darren. “The Momentum Behind LTE Adoption.” IEEE Communications Magazine (IEEE),

February 2009.

[43] Mummert, L.B., M.R. Ebling, and M. Satyanarayanan. “Exploiting Weak Connectivity for Mobile File

Access.” 15th Symposium on Operating Systems Principles, 1995.

[44] Murphy, Amy L., Gian Pietro Picco, and Gruia Catalin Roman. “Lime: A Middleware for Physical and

Logical Mobility.” (IEEE) 2001.

[45] Nimbus Home Page. http://www.nimbusproject.org (accessed 2011 йил 22-April).

[46] NIST. 2011. http://csrc.nist.gov/groups/sns/cloud-computing (accessed 2011 йил 17-April).

[47] Nurmi, Daniel, et al. “The Eucalyptus Open-Source Cloud-computing System.” Proceedings of Cloud

Computing and Its Applications, October 2008.

[48] Open Nebula Home Page. http://www.opennebula.org (accessed 2011 йил 24-April).

[49] Parkhill, Douglas. The Challenge of the Computer Utility. Addison-Wesley, 1966.

[50] Patterson, David A., and David R. Ditzel. “The Case for Reduced Instruction Set Computing.” Computer

Architecture News (ACM) 8, no. 6 (October 1980).

[51] Peterson, K., M. Spreitzer, D. Terry, M. Theimer, and A. Demers. “Flexible update propagation for weakly

consistent replication.” Symposium on Operating System Principles. ACM, 1997.

 99

[52] Peterson, K., M.J. Spreitzer, M. M. Theimer, and A. J. Demers. “Flexible Update Propagation for Weekly

Consistent Replication.” 16th Symposium on Operating Systems Principles (ACM), 1997.

[53] RFC 791. 1981. www.ietf.org.

[54] Riva, Oriana, and Kanga Kangasharju. “Challenges and Lessons in Developing Middleware on Smart

Phones.” Computing Practices (IEEE), October 2008.

[55] Rouston, Anthony, and Peter Druschel. “Pastry: Scalable, decentralized object location and routing for large

scale peer-to-peer systems.” 18th Conference on Distributed Systems Platforms, 2001.

[56] Sarathy, Vijay, Narayan Purnednu, and Rao Miffilineni. “Next Generation Cloud Computing Architectures.”

Workshops on Enabling Technologies, Infrastructure for Collaborative Enterprises, 2010.

[57] Satyanarayanan, Mahedev, Paramir Bahl, Ramon Caceres, and Nigel Davies. “The Case for VM Based

Cloudlets in Mobile Computing.” Pervasive Computing (IEEE), December 2009.

[58] Sempolinski, Peter, and Douglas Thain. “A Comparison and Critique of Eucalyptus, OpenNebula and

Nimbus.” 2nd IEEE International Conference on Cloud Computing Technology and Science, 2010.

[59] Simoens, Pieter, Filip De Turck, Bart Dhoedt, and Demeester Piet. “Remote Display Solutions for Mobile

Cloud Computing.” IEEE, 2011.

[60] Sobti, Sumeet, et al. “A Peer-to-Peer Mobile Storage System.” Data Management & Storage Technology,

2002.

[61] Stoica, I., R. Morris, D. Karger, M. F. Kaashock, and H. Balakrishnan. “Chord: A Scalable Peer-to-Peer

Looking Service for Internet Applications.” SIGCOMM (ACM), 2001.

[62] Tanenbaum, Andrew S., and Martin Van Steen. Distributed Systems, Second Edition. (Prentice Hall), 2006.

[63] Tian, Ye, Kai Xu, and Nirwan Ansari. “TCP in Wireless Environments. Problems and Solutions.” Letters,

volume 9, no. 1, 2005.

[64] Warner, Steven A., and Alexander F. Karman. “Defining the Mobile Cloud.” 2010 йил 16-August.

www.nasa.gov/ppt/482352main_2010_Monday_1_Warner.Steven_r5.ppt (accessed 2011 йил 12-July).

[65] Wikman, Johan, and Forenc Dosa. “Providing HTTP Access to Web Servers Running on Mobile Phones.”

Nokia Research Centre, May 2006.

[66] Xu, Andrew, and Barbara Liskov. “A Design for a Fault Tolerant, Distributed Implementation of Linda.”

(IEEE) 1989.

 100

7.2. Appendix 1: Future extensions to Icarus

The design of Icarus raises many challenges and also affords many opportunities to extend

and enhance the system. To promote the ability to design a core prototype of Icarus within a

short period of time it has not been possible to incorporate some of these enchancements. As a

result the following list presents opportunities for extending Icarus in the future.

1. Node deployment: There are three main components to Icarus; client, directory and

storage node functionality. For deployment Icarus would be designed such that each

node is generic and any combination of the above functionality can be activated or

switched off. The key deliverable of this design choice is that nodes can reside on a

mobile phone or on a commodity server. A node hosted on a commodity server may

only provide directory functionality for example.

2. Operating system heterogeneity. Given the heterogeneity of mobile operating

systems, significant time will not be spent on deploying the design to different

platforms. The use of Web services at the storage nodes would however provide

greater interoperability. Web services have not been used for the prototype as it made

system evaluation more complex.

3. Latency: The distributed mobile storage needs to be location transparent and location

independent. However ideally it would minimize the latency associated with file

retrieval. Two options are envisaged:

a. The directory decides which copy of a file to recommend to the client based

on the estimated latency in transmitting the file.

b. The client is provided with a list of nodes that have a copy of the file and the

associated round trip time of the nodes relative to a parent directory. A user

of the system can then choose which copy to retrieve and has subsequent

options should a node fail during transmission.

 101

4. System state health checks: Ideally the system would utilize an efficient manner for

directory nodes to determine the availability of storage nodes prior to advising a

client of the location of nodes with the requested files. This could be implemented

using UDP “check-in” packets. Two options exist:

a. UDP packets could be sent periodically from the storage node to the directory

node to acknowledge that the node is available.

b. The directory node could send a UDP packet to the storage node at the time a

client requests access to a file. This would reduce the volume of messages

overall so that messages are sent only to nodes that may be currently

required. This option would require these specific storage nodes to respond to

acknowledge availability. A lack of response would indicate that the node

was offline.

5. Proximity: Ability to use UDP check-in packets or GPS coordinates to determine

latency in communicating with specific nodes. For example with GPS coordinates

you could ensure that files are replicated across different geographic locations to

reduce the probability of failure due to a significant telecommunications fault such as

a fiber cable cut impacting a region of wireless base stations.

6. Self-healing: A process to ensure that if only one copy of a file exists given node

churn, that the Icarus directory would seek to make further replicates of the file on

other nodes. This requires a dynamic replication algorithm that will sense the state of

the network and reconfigure the location of replicate files accordingly. In the event of

partial network failure, directory nodes should identify files that require protection

and re-replicate as necessary to surviving nodes. In essence the network should seek

to ensure its files survive.

7. Replication optimization. A suitable algorithm that optimizes the number of replicate

files that exist based on the size of the network.

8. Consistency: Icarus could be extended to allow for read and write access to

information in the future. This would require appropriate locking of the files to ensure

serialized access for consistency. A replication management system similar to Gossip

could be potentially used to add such functionality. This would go beyond an

 102

extension of Icarus as a mobile distributed storage system to a mobile distributed file

system. Nonetheless it would require significant work in optimizing the locking and

synchronization in order to manage consistency.

9. Access control: Implement the ability for mobile participants to require access control

at Icarus node or content level. In both cases the requesting client may have to

authenticate and provide a password to access the node or specific content on a node.

10. Anonymity: The contextual file name could be decoupled from the actual file. This

would allow for files to be stored on nodes with a greater degree of anonymity. The

directory nodes would be responsible for mapping the actual file names requested to a

hash of the file value. This enhancement if implemented securely could provide a

secure and highly distributed mobile infrastructure to support file distribution such as

Wikileaks.

11. File management: Improvements to allow for full read / write access and

collaboration using Icarus and to incorporate quora based voting to allow for an

accurate response where some replicas are inconsistent.

12. Network load efficiency: Develop system so that it can identify when multiple users

upload the same file, through the use of the file content hash and optimise the volume

of replicas rather than allow users to flood the network with various copies of the

same file. This could be particularly important for sharing popular file information.

 103

7.3. Appendix 2: UML diagrams of Icarus

Diagram 19: UML diagram of simulation package

Diagram 20: UML class diagram - client package

 104

Diagram 21: UML class diagram - directory package

 105

Diagram 22: UML class diagram - storage package

Diagram 23: UML class diagram - messaging package

 106

7.4. Appendix 2: Icarus simulation – sample log output

2011/08/24 17:55:18 Icarus: New Simulation started ----------------- simstart
2011/08/24 17:55:18 Network nodes: 10
2011/08/24 17:55:18 Iterations attempted: 10
2011/08/24 17:55:18 Nodes churning: 0
2011/08/24 17:55:18 Peers each node is aware of: 10
2011/08/24 17:55:18 Peer distribution: 1 (0 = ring, 1 = random)
2011/08/24 17:55:18 Search message hop count: 50
2011/08/24 17:55:18 Replication hop count: 3
2011/08/24 17:55:18 Meta replication count: 10
2011/08/24 17:55:18 Replication request hop count: 10
2011/08/24 17:55:18 Creating threads.
2011/08/24 17:55:19 Adding 10 random peer nodes for Icarus node 8081.
2011/08/24 17:55:19 Adding 10 random peer nodes for Icarus node 8082.
2011/08/24 17:55:19 Adding 10 random peer nodes for Icarus node 8083.
2011/08/24 17:55:19 Adding 10 random peer nodes for Icarus node 8084.
2011/08/24 17:55:19 Adding 10 random peer nodes for Icarus node 8085.
2011/08/24 17:55:19 Adding 10 random peer nodes for Icarus node 8086.
2011/08/24 17:55:19 Adding 10 random peer nodes for Icarus node 8087.
2011/08/24 17:55:19 Adding 10 random peer nodes for Icarus node 8088.
2011/08/24 17:55:19 Adding 10 random peer nodes for Icarus node 8089.
2011/08/24 17:55:19 Adding 10 random peer nodes for Icarus node 8090.
2011/08/24 17:55:19 Iteration count 0
2011/08/24 17:55:19 Sending file from 8085
2011/08/24 17:55:20 Trying to send message to 172.16.168.1:8086
2011/08/24 17:55:20 After message sent
2011/08/24 17:55:20 File replication to 8086
2011/08/24 17:55:20 Decrementing replication request, Passing on ReplicationRequest (count
10)
2011/08/24 17:55:20 Msg Router Passing on replication request
2011/08/24 17:55:20 Trying to send message to 172.16.168.1:8088
2011/08/24 17:55:20 After message sent
2011/08/24 17:55:20 Decrementing replication request, Passing on ReplicationRequest (count
9)
2011/08/24 17:55:20 Msg Router Passing on replication request
2011/08/24 17:55:20 Decrementing meta replication hopcount, Passing on MetaReplication
(count 10)
2011/08/24 17:55:20 Msg Router Passing on meta replication message
2011/08/24 17:55:20 Trying to send message to 172.16.168.1:8088
2011/08/24 17:55:20 After message sent
2011/08/24 17:55:20 Trying to send message to 172.16.168.1:8087

…..

2011/08/24 17:56:14 File retrieval succeeded
2011/08/24 17:56:14 Success/Fail 10/0
2011/08/24 17:56:14 Nodes Iter Churn NodeAware NADist SearchHopcount Repcount
Success Fail MetaReplications RepReqHops MetaReplicationHops SearchHopsTillResultAvg
SearchHopsTillResultAvgStd
2011/08/24 17:56:14 10 10 0 10 1 50 3 10 0 10 10 10 2.1 1.0440306508910595

 107

2011/08/24 17:56:14 Icarus: Simulation ended.

