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Abstract 

A typical cloud-computing environment is characterised by the networking of tens of 
thousands of servers. Once deployed, such datacenters experience a relatively stable hardware 
and networking environment. Smartphones offer considerable processing, memory, storage 
and sensing resources, and are handheld, pocket-sized devices that users generally carry with 
them at all times. The vision for cloud computing could foster more flexible models, whereby 
general users, including mobile ones, could participate in the cloud as both providers and 
consumers of resources. If the cloud is to computing what the Internet is for data, the 
opportunity for mobile computers to participate in service provision should be investigated. 
 
The motivation for this dissertation is threefold. First, it explores the forces that resulted in the 
emergence of cloud computing. Second, the implications of mobile server nodes within a 
cloud environment are considered. Finally, the dissertation focuses on implementing a mobile 
storage cloud.  Such a system could support applications including disseminating critical 
information in a disaster zone, mobile distributed social networking, and sensor applications 
such as collecting data on traffic movements.  
 
The background analysis indicates several developments that fostered the emergence of cloud 
computing. During the 1960s virtualisation was developed for allocating mainframe 
resources, but later waned due to the commoditisation of hardware, only to re-emerge for 
allocating computing resources within datacenters. Improvements throughout the 1980s and 
1990s reduced commodity hardware and networking costs, stimulating migration to 
horizontally scalable datacenters. Finally, automating resource provisioning via online portals 
enabled the flexibility and efficiency of federated computing to become widely accessible.  
 
Evaluating the implications of mobile server nodes highlights numerous constraints for 
implementing a mobile cloud. Most importantly it becomes evident that the traditional cloud 
architecture will not suffice. A smartphone will not currently support a hypervisor or multiple 
virtual machines. Mobile devices are not designed to act as always-on servers, as they are 
battery powered, with limited computing resources, and experience low and intermittent 
network bandwidth. A mobile cloud will therefore only support applications that are designed 
for such an operating environment. Service availability takes on a different meaning within a 
mobile cloud as nodes regularly arrive and churn off the network.  
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The implementation involved designing and testing a mobile storage cloud, named Icarus.  
Each participating node incorporates client, directory and storage functionality. Using smart 
directory logic to dynamically replicate both content and directory metadata, depending on 
content importance, allows for the efficient utilisation of resources within the network. This 
ensures content survives node failure or node departure. Once a file is located it can be 
retrieved on a peer-to-peer basis.  
 
The evaluation was based on simulating networks of varying size, and demonstrated that the 
proposed Icarus architecture survives node churn, while providing reasonable availability and 
high performance. Dynamically replicating and distributing files and related URL metadata 
separately across the network improved availability by minimising the probability that all 
replicas are unavailable or that requested content cannot be located. Multi-hop replication of 
directory metadata reduced the storage and transmission overhead, relative to replicating 
content, providing a sizeable improvement in network performance. An Icarus network can be 
tuned to provide deterministic availability and performance.  
 
 
Dissertation supervisor:  Dr. Siobhan Clarke 
    Trinity College Dublin 
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1.  INTRODUCTION 

 

1.1. Context 

 

Much of the literature relating to mobile cloud computing involves mobile devices acting as 

thin clients and leveraging datacenters for back-end computation. In practice mobile cloud 

based applications entail the static partitioning of applications where the mobile device is 

responsible for executing customer-facing tasks such as the user interface while the datacenter 

hosts the server, middleware and database capabilities. Smartphones and tablet computers 

come with onboard processing, memory and solid-state storage resources equivalent to 

reasonable specification laptops of just a few years ago. Such improvements in mobile 

computing are set to continue, witnessed by the recent announcement by Qualcomm, to offer 

a 1.5 GHz dual core processor1 for mobile devices and Apple’s shift to using multicore 

processors in the iPhone. In contrast to traditional computing, this new breed of computer is 

encapsulated in a handheld, pocket sized device that users carry with them everywhere, and 

all of the time.  

 

Typical cloud computing environments involve the deployment of large-scale server 

infrastructure in a manner proprietary to service providers such as Google, IBM, Amazon, 

Apple and Facebook. These service providers manage a global network of datacenters, with 

each networked to combine the computing power of tens of thousands of commodity servers. 

Impressive as these warehouse scale facilities are, such cloud computing platforms are at an 

early stage of development as datacenters are largely isolated computing platforms used for 

the provision of specific applications, platforms or bare infrastructure resources.  

                                                        

1 See http://www.qualcomm.com/videos/snapdragon-dual-core-explained for an explanation of the new duel-core mobile 

processor.  
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The vision for cloud computing should be more flexible than these models, whereby general 

users, including mobile ones, can participate in the cloud as both consumers and providers of 

resources. If the cloud is to computing what the Internet is for data, the opportunity for mobile 

computers to participate in service provision should be investigated. Though the potential for 

a mobile cloud has not gone unnoticed, with organisations such as NASA exhibiting interest 

(Warner and Karman 2010), there has been limited in-depth exploration of the opportunities 

and challenges that arise.  

 

There is an increasingly blurred definition of a mobile device given the proliferation of 

smartphones, Internet accessible tablet computers, electronic book readers and other such 

devices. A potentially significant opportunity exists to harness the power of these devices 

whether for concurrent processing, federated storage or for the provision of personalised 

mobile web applications hosted directly on the smartphone2. The move from smartphones 

simply leveraging applications as a thin client, to hosting services directly, could lead to a 

wide variety of new and innovative systems architectures and applications. Such designs 

could have implications for how information is collected and analysed on a daily basis in the 

world around us and provide alternative solutions to existing applications, in order to reduce 

privacy and security threats.   

 

1.2. Motivation 

 

The motivation for this dissertation is threefold. First, it explores the forces that resulted in the 

emergence of cloud computing. Second, the implications of mobile server nodes within a 

                                                        

2 ComScore data showed that US smartphone penetration increased by 60% in the three months ending December 2010 (absolute 

number was 63.2 million smartphones) versus the same period for 2009. In Q4 2010, 100.9 million smartphones shipped 

worldwide versus 92.1 million PCs.  
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cloud environment are considered. Finally, the dissertation focuses on implementing a mobile 

storage cloud. Such a system could support applications including disseminating critical 

information in a disaster zone, mobile distributed social networking, and sensor applications 

such as collecting data on traffic movements. The system, named Icarus, is novel to the extent 

that mobile nodes serve as contributors to the cloud rather than merely acting as thin clients to 

leverage traditional cloud resources. The focus of Icarus is to provide distributed storage 

utilising mobile nodes, in a manner that fosters file availability irrespective of node churn 

within a wireless network. In a disaster zone, Icarus could be used for the dissemination and 

collaboration on critical information or to provide real-time information on potential obstacles 

to emergency routes. All of these applications are possible given the proliferation of sensors 

such as GPS, thermometer and accelerometer available on most smartphones today. 

 

This research is important given the improvements in smartphone technologies coupled with 

the advancements in wireless networking that has resulted in a changing landscape whereby 

personal mobile computing resources could be federated to provide a distributed mobile cloud 

computing facility. The federation of 5,000 modern smartphones, each with 64Gb of storage 

and 1Ghz processor could provide 320 Terabytes of storage and 5 Terahertz processing 

capacity. Furthermore these computational resources are set to improve considerably.   

 

1.3. Structure of dissertation 

 

The next section of the dissertation analyses the background and implications of cloud 

computing. An analysis of options for enabling mobile nodes to participate in a cloud 

computing environment are then explored with reference to the literature. It becomes apparent 

that a variety of options exist for implementing a mobile cloud. A design is then outlined for 

Icarus and the implementation of this design clearly documented. An evaluation of Icarus, 
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using extensive network simulations is then completed. The dissertation concludes with the 

key lessons from the analysis and implementation. 



2.  BACKGROUND 

2.1: Evolution of cloud computing 

 

The term ‘cloud computing’ has been enshrouded in much marketing hype. The CEO of 

Oracle, Larry Ellison famously lashed out at cloud computing in September 2008 noting: 

 

"The interesting thing about cloud computing is that we've redefined cloud computing to 

include everything that we already do. I can't think of anything that isn't cloud computing 

with all of these announcements. The computer industry is the only industry that is more 

fashion-driven than women's fashion. Maybe I'm an idiot, but I have no idea what anyone is 

talking about. What is it? It's complete gibberish. It's insane. When is this idiocy going to 

stop?” 

 

If the CEO of Oracle couldn’t clearly decipher whether cloud computing is a new paradigm of 

computing then its clear that the term needs to be demystified. This section will seek to 

provide clarity by providing a clear definition and overview of what cloud computing is and 

how it came about. This will necessitate a brief history of its evolution and a discussion of the 

service delivery models that will be important in considering how mobile devices could 

participate within a cloud-computing environment.  

 

A key benefit of cloud computing is the ability to seamlessly access remote and distributed 

applications in a transparent manner. An important goal of any distributed system is the 

ability to present itself as a single computer system when in use, a requirement referred to as 

transparency (Tanenbaum and Van Steen 2006). Cloud computing was originally 

conceptualised in the 1960s when John McCarthy noted, “computation may someday be 

organized as a public utility.” Many of the modern characteristics of cloud computing such as 

elastic provisioning and public, private and community forms were also explored in Douglas 
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Parkhill’s book (Parkhill 1966) on utility computing. During the 1980s (Hagman 1986) and 

90s (Clark 1992), research focused on the opportunities to leverage idle workstation 

resources. There was a realization that servers were commonly being operated at around one 

tenth of operational efficiency as core applications were being run on a dedicated server, often 

with redundancy provided via another dedicated server. Research started to suggest that 

supercomputing capabilities could be delivered through the use of parallel architectures 

(Kung, et al. 1991). Other researchers noted that a typical workstation was much less 

expensive than the compute node of most massively parallel supercomputers of the time (Li, 

et al. 1993).  

In parallel research was progressing on how to improve the networking of workstations such 

that they would have high bandwidth and low-latency interconnects. This would ultimately 

help to close the speed gap that existed between supercomputer interconnects and 

interconnecting a network of workstations. Researchers on the NOW project (Network of 

Workstations) in Berkeley (Anderson, et al. 1992), noted that high speed networks were 

becoming faster than disks and that parallel programs could use more processors. They 

specifically noted that the existing high-end computing architecture at the time had no “near 

commodity” component and that the cost of deploying infrastructure was prohibitive. As a 

result researchers felt that a network of commodity workstations was worthy of study as a 

way of performing large-scale computation at lower cost. At the time though, there were few 

applications that could leverage parallel processing. The NOW project research concluded 

that the computing food chain beyond 2004 would consist largely of networks of commodity 

computers. Research into the use of hypervisor software to provide virtual machines added 

further credence to cloud computing by providing an efficient mechanism for allocating 

virtual machine resources to end users (P. Barham, K. Dragovic, et al. 2003). A hypervisor 

presents a virtual operating platform allowing multiple guest operating systems to share the 

same server hardware.  

Throughout this period research was also ongoing into grid computing. While in some 

respects similar to cloud computing, a grid differs in a number of fundamental ways. With 
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grid computation, an individual user seeks to consume a large amount of federated 

computational resources (Berman, Fox and Hey 2003). A processing task is then allocated to 

a network of remote computers and processing is completed either in the background or 

during otherwise idle time with inputs and outputs transmitted across a broadband connection.  

 

A virtual machine is the basic computational building block provided via cloud computing. 

Virtualization allows for server resources to be split and allocated into multiple logical 

servers. In essence virtualization abstracts the services running on a cloud from the underlying 

physical hardware. IBM developed technologies on virtualization in the 1960s and 1970s to 

allow multiple users share resources on a single machine (at the time for mainframe 

computers). Somewhat ironically, the progression towards affordable commodity computing 

resulted in a waning requirement for virtualization in the 1980s and 1990s as the requirement 

to share hardware decreased.  More recently this has lead to the re-emergence of virtualisation 

in support of cloud computing as computing resources are amalgamated using warehouses of 

networked commodity servers. One of the beautiful benefits of virtualization is that when 

several virtual machines need to perform routine commands, they can be performed on the 

bare metal server rather than multiple times in the virtual machines, which would result in too 

high an overhead, adversely impacting performance. Prior to virtualization storage area 

networks (SANs) provided equivalent abstraction of storage by allowing the storage to be 

centralised for a large number of servers.  

An issue that arises naturally from virtualization though is “virtual machine sprawl” (Sarathy, 

Purnednu and Miffilineni 2010). It is relatively simple to count the number of physical servers 

an organisation has, but more difficult to manage the total number of virtual machines used. 

Due to the widespread introduction of virtualization, there has been a significant increase in 

the demand for hardware and software support to optimise virtualisation. This has led to the 

introduction of logical routing across networks of virtual machines and a subsequent 

requirement for logical load balancers. As a result network traffic now needs to be managed 

and routed intra-server as well as inter-server. A consequence of this is that the cabling 
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previously required to interconnect servers has reduced given that multiple virtual machines 

are homed onto one physical server that uses a virtual internal network and that shares one 

physical Ethernet cable to connect to the broader rack of physical servers. Organisations 

outsourcing to cloud service providers may not therefore need to have the same networking 

expertise in-house. Server racks now come pre-cabled and on wheels, allowing them to be 

positioned and connected via the top-of-rack-switch to their respective datacenter cluster. This 

architecture results in the ability to build a highly stable physical hardware environment 

housing hundreds of thousands of servers that are interconnected via high-speed networking. 

A key operational metric within a cloud environment is the ability to efficiently run hardware 

across its asset life, which is usually three to four years. In this stable physical environment, 

only the virtualized instances change dynamically over time. The physical hardware and 

networking remains largely stable.  

A key benefit of cloud computing is that the cost of running ten servers for one thousand 

hours can be the same as running one thousand servers for ten hours. This is a flexibility that 

had previously been unavailable to organizations. The motivation for the growth in cloud 

computing thus becomes clear given both the flexibility and operational efficiency that can be 

achieved relative to all organizations building their own separate IT infrastructure. In the 

diagram below the benefits accruing from cloud computing are illustrated. Traditionally 

organizational IT investment would have been characterized as lumpy given significant 

blocks of capacity are deployed to allow for headroom on future growth of the organisation, 

as illustrated in the left hand diagram. With cloud computing, given that very large scale 

networks of datacenters are deployed by third party organisations, an enterprise can now lease 

the computational capacity needed such that this capacity almost exactly fits the actual 

computational demands of the organisation.  
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Graph 1: Economics of cloud computing 

 

 

Cloud computing enables organisations to utilize computational resources more efficiently 

and benefit from the greater economies of scale derived by allowing third party specialists to 

build cloud infrastructure that pools the computational requirements of many organizations. 

Thus infrastructure can be deployed at massive scale and separated from application 

development or deployment and leased on a variable pricing basis to produce economic 

efficiencies in the computational world somewhat analogous to what the industrial revolution 

brought to manufacturing. This can be witnessed with the move to very high scale datacenters 

and the rationalisation of sub-scale facilities3. Microsoft’s datacenter in Ireland is 550,000 

square foot. Meanwhile Google is estimated to be using 900,000 servers worldwide4. Adam 

Smith, the famous economist and pioneer of the division of labour would be pleased.  

 

The history of cloud computing provides context for the modern definitions of cloud 

computing and service delivery models have largely been driven by the economics just 

discussed. A definition of cloud computing is provided by the U.S. National Institute of 

Standards and Technology (NIST 2011). 

                                                        

3 The White House has recently announced a plan to shut down 373 datacenters by the end of 2012 with a longer term plan to 

close 800 by 2015. http://www.whitehouse.gov/the-press-office/2011/07/20/white-house-announces-plans-shut-down-hundreds-

duplicative-data-centers- 
4 http://www.datacenterknowledge.com/archives/2011/08/01/report-google-uses-about-900000-servers/ 
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“Cloud computing is a model for enabling convenient, on-demand network access to a shared 

pool of configurable computing resources (e.g. networks, servers, storage, applications, and 

services) that can be rapidly provisioned and released with minimal management effort or 

service provider interaction.” 

 

The NIST specification also outlines that cloud computing is characterised by the following: 

1. On-demand self-service. A user can sign up and consume services without long 

delays.  

2. Broad network access. Ability to access the service via standard platforms (these 

could include desktop, laptop and mobile.).  

3. Resources are pooled across multiple customers.  

4. Rapid elasticity. Computational resources can be scaled in real-time to cope with 

demand peaks.  

5. Consumption of services are measured. Billing is metered and delivered as a utility 

service.  

 

The literature also suggests seven characteristics that make a large datacenter a cloud 

(Bernstein, et al. 2009). These are: 

 

1. A pool of computing resources and services are employed that are shared amongst 

customers.  

2. Services are charged for on an “as used” metered or capacity based pricing model.  

3. Resources are distributed geographically but in a manner transparent to the customer 

(unless they request visibility).  

4. Provisioning, configuration and deconfiguration are automated with no human 

assistance.  

5. Resources are delivered virtually. 

6. Physical infrastructure rarely changes. It is the virtually delivered resources that 

change constantly.  

7. Resources can be of a physical or an abstract metaphor nature (such as message queue 

functions etc).  
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Both definitions of cloud computing share a number of similarities. Both Amazon Web 

Services (Amazon Web Services n.d.) and Google AppEngine (Google App Engine 2011) 

exhibit all five of the NIST and all seven of the Bernstein et al. characteristics. Reverting to 

Larry Ellison’s quote, it is  clear that an understanding of the difference between a datacenter 

and what is deemed to be cloud computing is required. The definitions indicate that a cloud 

could incorporate one or many datacenters that may be dispersed geographically to create a 

computing environment as represented by model 1 in the diagram below. In each case the 

cloud specific element represents the hypervisor software, suite of product offerings and self 

service front-end provided to the customers of the cloud provider.   

 

Diagram 1:  Cloud Computing Models 

 

 

The terms ‘public cloud’ and ‘private cloud’ have also emerged where a ‘private cloud’ refers 

to datacenter infrastructure that is privately used by an enterprise. Indeed such an enterprise 

may have dedicated datacenters (a private cloud) for its own internal operations and dedicated 

datacenters that are shared with other customers (a public cloud) as in the case of model 2. 

Amazon for example, required large scale datacenters initially to support its own online retail 

operations and later decided to leverage the infrastructure they had built by offering 

computing resources to other organizations. A provider of cloud computing resources with 

one or many datacenters might also partition some of the resources in its datacenter/s for other 

customers as in the case of model 3. The difference between a private and public datacenter at 
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the hardware level will largely be negligible. In certain instances though some physical 

changes could be made to tune the infrastructure either for the application being hosted or 

given the utilisation of the network. For example an application like MapReduce, used by 

Google, will utilise significant intradatacenter networking. In general however, the difference 

between a private and public cloud will relate to the scale of the infrastructure and the 

requirement to provide front-end tools and APIs to allow users to self-service the resources 

they lease from a  public cloud, allowing for the efficient administration of virtual 

infrastructure. Thus far we have discussed public, private and hybrid clouds. Community 

clouds may also exist where entities with private computational resources such as universities 

can decide to federate resources into a computational cloud which can be used by all parties 

as needed. There are different models of service that can be provided from a user’s 

perspective. The diagram below provides an overview of the deployment models, services 

models and the associated characteristics of cloud-computing.  

  

Diagram 2:  Cloud characteristics, service and deployment models 

 

 

Software as a service (SaaS) is offered via cloud computing infrastructure were customers 

utilise applications hosted on the cloud. Typical examples of such applications include 
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Salesforce.com, Apple’s iCloud and Google docs. SaaS applications are designed to support 

end-users, who access and consume the service over the Internet.  

 

Platform as a service (PaaS) is a set of supporting tools and services designed to support 

programmers in the development and deployment of applications hosted on a cloud. 

Examples include Google’s App Engine. Infrastructure as a service (IaaS) refers to the the 

provision of bare virtual machines or the underlying server hardware, along with the required 

operating system and associated networking infrastructure. With Amazon Web Services for 

example, a customer can request a machine instance, of a particular specification, and with 

their operating system of choice. It will take on average less than a minute for the virtual 

machine to be deployed. A customer can then lease static IP addresses, which can be mapped 

to their virtual machines to provide an openly addressable computer system. Another popular 

model is data as a service (DaaS) which includes cloud storage offerings such as Amazon’s 

S3 and DropBox which both allow access to cloud storage via both PC and mobile. However 

DaaS could be considered a sub type of IaaS. 

 

Of the three above, PaaS and IaaS are directly relevant to organizations seeking to outsource 

their platform or infrastructure. One concern raised by choosing PaaS relates to lock-in as 

developers usually have to develop their application for a particular platform. To date there 

has been limited interoperability between the cloud computing infrastructure of different 

service providers. For SaaS this isn’t a significant concern given users are generally 

consumers of the service rather than deployers. However for PaaS it can result in signifcant 

barriers for a development team to port an application from one particular platform to another 

as often PaaS requires the use of particular languages and the deployer is abstracted from 

considerable detail regarding the implementation of scalability and fault tolerance.   

With IaaS developers have almost full control over the virtual machines used, their 

geographic location, the operating system and the middleware and persistence offered. While 

IaaS provides more control it also requires the specialist development skills to provision, 
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dimension and configure the underlying components of the infrastructure. With PaaS most of 

this complexity is abstracted away from the end-user opening up opportunities for those with 

more limited technical capabilities. The diagram below illustrates the relative positioning of 

each of these service models. A SaaS offering could be provided through the use of PaaS or a 

company could develop its own PaaS and host it on third party infrastructure leased as a 

service.  

 

Diagram 3:  Cloud service models 

 

 

 

2.1.1.  Cloud technical stack 

 

Having defined cloud computing and considered the different service models that can apply 

it’s worthwhile to evaluate the technical stack that is required to implement a cloud 

computing platform. This will help provide further insight into the potentially fundamental 

differences between a traditional cloud and a mobile cloud later in the analysis. The diagram 

below has been developed with reference to a technical discussion in the literature 

(Sempolinski and Thain 2010).  
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Diagram 4:  Cloud technical stack 

 

 

At the lowest layer resides the hardware and operating systems of the underlying physical 

servers used (often commodity hardware). These commodity servers need to have hardware 

extensions to support pure virtualization. Without these extensions only paravirtualization can 

be implemented. With pure virtualization, a guest operating system runs unmodified by a 

hypervisor. While a cloud computing platform can be implemented using paravirtualization, it 

can limit the flexibility in the software components that could be deployed and the speed of 

the virtual machines.  

 

The second layer relates to the networking of the servers including the DNS, DHCP and the 

subnet organization of the physical machines. This includes the networking that is required to 

support the virtual machines having a unique MAC and IP address. In a virtualized 

environment the number of IP addresses used grows exponentially. A datacenter with 100,000 

physical servers, each with 16 cores, could host 3.2 million virtual machines. But IPv4 

addresses are limited in total to 232 or just over 4 billion address spaces. Operators of cloud 

computing infrastructure are therefore likely to be amongst the first to switch to IPv6, which 

offers an address space in the trillions (IETF n.d.). 
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The next component is the virtual machine disk image repository. It would be impractical to 

complete a full install of an operating system each time a virtual machine is instantiated. 

Therefore template disk images with a particular OS configuration and often with other 

software preconfigured (a LAMP configuration for example) are stored to allow for the 

expedious deployment of virtual machines. The virtual machine hypervisor provides a 

framework that allow virtual machines to run. Examples of hypervisors include VMware, Xen 

and KVM. Both Xen and KVM are open source hypervisors. The cloud framework itself 

(such as open source platforms Eucalyptus, Nimbus and OpenNebula) manages requests from 

the user interface (usually web based), retrieves the requested virtual machine disk images 

and signals to the hypervisor to set up a virtual machine based on this specification image.  

 

The hypervisor is the virtual machine manager (often referred to as a VMM) and allows 

multiple operating systems to be run concurrently on one physical server. The term hypervisor 

was coined by IBM in 1965, referring to software that accompanied the IBM RPQ for the 

360/65 and which allowed the model to share its memory and act both as an IBM 360 and an 

emulated IBM 7080 (Hendricks and Hartmann 1979). A hypervisor is installed on the server 

hardware and interfaces between the hardware and the guest operating systems. With 

paravirtualization, the hypervisor can be less complex, as certain tasks can be relocated to the 

host server rather than being executed in virtual machines running within the host. Xen (P. 

Barham, K. F. Dragovic, et al. 2003), Vmware and KVM are popular hypervisors.  

 

The cloud framework resides in the next layer of the technical stack. The framework used will 

depend on whether the cloud is private, public or community based. Several open source 

cloud frameworks are now also available. These are briefly discussed in the next section. 

 

The last layer is the user interface. Given that cloud resources should be capable of being 

managed on a self-service basis it is critical to provide a provisioning portal that allows the 

user to configure the cloud resources they are seeking to consume with ease. Amazon provide 
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an online portal where users can log-in and launch and manage virtual machines. A separate 

set of APIs is also provided to allow for resources to be managed programmatically.  

 

2.1.2.  Frameworks for cloud participation  

 

Given the ultimate objective of the dissertation is to explore how mobile nodes can participate 

in the cloud it is worth briefly considering how participants other than the large datacenter 

operators can participate in contributing to traditional cloud computing resources. This section 

will briefly review open source cloud computing frameworks that exist.  

 

Eucalyptus is a cloud computing platform, designed to provide an open-sourced equivalent to 

Amazon’s EC2 cloud and developed at Berkeley (Nurmi, et al. 2008). Eucalyptus implements 

a hypervisor agnostic operating system design. It has a modular design, with each module 

represented by well defined APIs, to allow researchers to use modules with other cloud 

computing solutions. The system allows users to start, access and terminate their virtual 

machines using an emulation of Amazon’s EC2 SOAP interface. The framework supports 

virtual machines managed by the XEN hypervisor but plans to incorporate support for other 

hypervisors such as VMware. Each high level system component is made available as a 

standalone Web service. This ensures that APIs are well defined in the form of a WSDL 

document (Web Services Description Language). There are four high level components that 

comprise a Eucalyptus installation. These include: 

 

1. Node controller: The node controller manages the execution and termination of 

virtual machines on the physical servers on which it runs.  

 

2. Cluster controller: Gathers information to schedule virtual machine execution on 

individual node controllers. The cluster controller also manages the virtual instance 

networking.  
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3. Storage controller (Walrus): Offers a put / get API similar to Amazon’s S3 storage 

interface. This provides a mechanism for storing and accessing data and provides the 

capability to have a virtual machine disk image repository.  

 

4. Cloud controller: Provides the interface for end users and administrators. It provides 

the logic to query the other controllers for information relating to the available and 

consumed resources. It also makes high level scheduling decisions which are 

implemented via requests to the cluster controllers.  

 

The developers of Eucalytus note that one of the most interesting challenges encountered in 

designing a cloud computing platform is the networking of the virtual machines. The 

networking on virtual instances must address connectivity, isolation and performance. As 

users are granted super user access to their virtual machines, they also have super user access 

to the underlying network interfaces. As a result it is important to be able to isolate a users 

virtual machines from the virtual machines of others. Eucalyptus works best when each 

cluster is placed on its own subnet, with its own reserved address range. The framework was 

designed with a focus on providing a private cloud computing framework for corporate 

enterprises. There is a strong separation between user-space and administrator-space.  

 

OpenNebula is also focused on providing a framework for a purely private cloud that could be 

utilized by enterprises (Open Nebula Home Page n.d.). In order to launch a virtual machine, a 

user must provide a configuration file with a set of parameters that are provided to the 

hypervisor command line. While more tedious, this allows significant flexibility in defining 

the processor, memory, disk space and networking resources for the virtual machines. 

OpenNebula is geared towards those with a keen interest in cloud computing who want to 

experiment and is ideal for use with a small number of virtual machines.  
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Nimbus is a cloud framework geared toward the scientific community  that may be less 

interested in the technical internals of the cloud computing system but have greater 

requirements for a customized cloud (Nimbus Home Page n.d.).  

 

2.2. Summary  

 

While cloud computing has recently witnessed popularity and exponential growth, the 

underlying drivers behind its emergence have been gathering pace since the late 1960s. These 

include the development of virtualisation technologies to share mainframe resources, rapid 

commoditisation of server hardware driven by Moore’s law and significant increases in 

network speeds driven by improvements in the field of photonics. Throughout the 1980s and 

1990s significant inefficiencies existed with server hardware being inefficiently utilised as 

organisations invested in large blocks of computational capacity with physical demarcation of 

critical applications. Cloud computing resolves many of the inefficiencies by providing 

flexibility and rapid elasticity for organisations and allowing for specialist providers to focus 

on the provision of highly efficient utility-scale infrastructure. The early successes of the 

cloud paradigm have led to a virtuous cycle of providers constructing ever-larger datacenters 

to optimise economies of scale, minimising overheads such as power and personnel and 

rationalising older generation facilities.  

 

This section provided a clear overview of cloud service models. The typical technical stack 

for the cloud was then considered, followed by a high level overview of progress towards 

open source frameworks for allowing wider participation in the traditional cloud. It highlights 

that once a datacenter has been designed and deployed, the associated servers and networking 

are utilised across the lifetime of the assets, providing a fairly stable operating environment.  

The next section will consider how a cloud incorporating mobile nodes might differ. 
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3.  THE IMPLICATION OF MOBILE NODES 

 

This section of the dissertation will explore in detail the implications of mobile server nodes 

participating in a cloud computing environment. Thus far this dissertation has investigated the 

origins of cloud-computing, the service models, the technical stack and some of the available 

cloud frameworks. Is a mobile cloud different? It is important to note that the literature 

appears to misuse the term  “mobile cloud”. It usually refers to mobile phones acting as 

clients to leverage cloud resources (Klein, et al. 2010), (Simoens, et al. 2011), (Liang, et al. 

2011). In contrast, this dissertation focuses on the options to allow mobile phones to 

contribute as serving nodes within a cloud infrastructure. After all if mobile devices are 

simply accessing traditional cloud resources, then the cloud is not mobile, but rather mobile 

clients are accessing a traditional cloud. To consider how mobile devices might participate, it 

is important to understand how mobile devices that support computation and their associated 

networking differ from a typical datacenter architecture. These differences can be compared 

across a range of dimensions including stability of operating environment, processing, power 

and mobility.  

 

3.1. Stability of operating environment 

 

The current topology of datacenters is based largely on around 40 servers mounted in a rack 

that are interconnected to a cluster of racks via a top-of-rack switch. These racks use 10Gb 

Ethernet networks with high-speed routers connecting a cluster that often contain around 45 

racks. While the commodity servers within these datacenters are highly distributed, they do 

share some centralised resources. If, for example, a power distribution unit fails it could 

disable 500 to 1,000 commodity servers for several hours. More recently, clusters are often 



 28 

enclosed in lorry-style self-contained units with independent fire suppression. These 

containers can each house approximately 2,000 servers. This topology provides significant 

logistical advantages for setting up a new datacenter or adding capacity to an existing one as 

much of the networking is preconfigured such that only the container cluster needs to be 

connected to the wider datacenter network. Modern datacenters are composed of a high 

volume of commodity servers, with a standard hardware specification, using the same 

operating systems and stable high-speed networking.  

 

Fixed network infrastructure uses physical links to support consistent network bandwidth. In 

contrast, wireless networking is characterised by variable transmission speeds and intermittent 

connectivity. Mobile broadband networks have higher network latency than fixed broadband. 

Mobile networking has only recently evolved from being voice centric to supporting 

reasonable data speeds. Data rates have increased from 9.6 kilobits per second (kbps) for the 

Global System for Mobile Communications (GSM) standard to over 200 kbps for the General 

Packet Radio Service (GPRS) standard to several megabits per second with the Universal 

Mobile Telecommunications System (UMTS) standard using High-Speed Downlink Packet 

Access (HSDPA). The faster the speed of a data network, the easier it is to offload data or 

consume data and resources from other nodes that are interconnected. Bandwidth on mobile 

networks is more erratic as data transmitted is conveyed across wireless cells incorporating 

numerous masts and microwave backhaul links, each of which may be experiencing different 

levels of network load. 

 

Above the physical network layer, fixed and wireless networks both use reliable Internet 

transport protocols including the Transport Control Protocol (TCP) or the unreliable, albeit 

faster, User Datagram Protocols (UDP). TCP was developed in an era when data 

communication was predominantly across fixed-line networks. Over the last decade there has 

been an exponential increase in the use of wireless networks for Internet access, a trend set to 

continue with the emergence of powerful smart mobile phones and the deployment of next 
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generation mobile techologies such as WiMax and LTE (McQueen 2009). Due to the network 

topology, wireless networks are characterised by a higher bit error rate (BER) than fixed 

networks. A wireless network, for example, could have a HSDPA cell deployment allowing 

for a maximum uncontended bandwidth of 7.2 Mbps, backhauled using one 2Mbps leased 

line or a microwave link to an aggregation point where several such cells contend for 

backhaul capacity into the core network. In the mobile access network, the propagation of the 

wireless broadband signal also decreases the farther the user is from the wireless mast. The 

architecture of a fixed network in contrast allows for data traffic to be offloaded to high 

bandwidth links close to the customer, mainly at a local exchange and increasingly at the local 

cabinet. An ADSL2+ DSLAM with 768 ports will usually have a 1 Gbps backhaul to the core 

IP network. The bandwidth throughput in fixed line networks is therefore much greater and 

less erratic than for wireless networks and contention rates are lower. Future fourth generation 

mobile networks that are pure IP-based such as LTE (Long Term Evolution), should increase 

mobile broadband speeds considerably. However, mobile networks wil always be constrained 

by the limitations arising from the scarce radio spectrum upon which they rely (Kennington, 

Olinick and Rajan 2011).  

 

Given that TCP’s original design was optimized for fixed-line networks, some deficiencies 

arise in wireless networks including: 

 

- TCP assumes that packet loss is due to network congestion as against corrupted bits. 

 

- Some underlying stability in the round trip times (RTT) for receiving acknowledgement 

packets are assumed as acknowledgement clocking relies on relative stability between the 

RTT intervals.  

 

- TCP uses a minimum of 20 bytes of IP header and 20 bytes of TCP header per TCP packet. 

For low bandwidth wireless networks this is a high overhead to bear.   
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As wireless networks can be characterised by short-lived congestion, TCP will overreact to 

temporal congestion. This can result in adverse oscillations in transmission speeds and in 

transmission inefficiency (Tian, Xu and Ansari 2005). TCP uses a slow start algorithm to 

ramp up transmission rates, and significant delays in data transfer can arise if this slow start 

algorithm is re-initialized repeatedly due to intermittent bandwidth on a wireless network. In 

addition, for networks that exhibit latency the RTT can result in the algorithm being very slow 

in reaching its maximum transmission rates. In such situations the cost of reliability can be 

high, as the minimum time for a TCP transaction will always be two RTTs due to the 

requirement for both the sending process and the receiving process to be satisfied that 

acknowledgements have been received.   

 

Given the reliability of fixed networks and the lower bit error rate (BER) relative to wireless, 

the design of TCP assumed that any packet loss was the result of network congestion rather 

than corrupted bits. There are two main issues, therefore, that arise with data transmission 

using TCP in mobile networks. Any packet loss gets interpreted as network congestion and 

the slow start algorithm therefore kicks in. Short intermittency of connections on mobile 

networks can result in longer TCP disconnections because of the TCP back-off mechanism.  

 

A final distinction between fixed and mobile networks is the addressability of nodes. It is 

relatively easy to configure a hardware server or even a virtual machine within a typical cloud 

with static IP addresses. These addresses are key to enable applications to communicate with 

other servers. Such addressing typically requires a unique IP address and port number. The 

current addressing is largely based on the IPv4 standard (RFC 791 1981), which uses 32-bit 

addressing. This results in the address space being limited to 232 addresses or just over 4 

billion. This has resulted in a scarcity of IP addresses for all devices that need them. As a 

result most mobile networks and many Internet Service Providers use the Dynamic Host 

Configuration Protocol (DHCP), which allows numerous users to share a pool of IP 



 31 

addresses. The impact of this is that most mobile devices do not have static IP addresses, 

which could be a severe limitation when seeking to use mobile devices as server nodes. This 

does not cause any issue where mobile devices are acting as clients of cloud services, as the 

cloud servers they are connected to will have static IP addresses. This address limitation will 

be overcome with the introduction of IPv6, as the address space of 128-bits provides 2128 or 

approximately 340 undecillion addresses5. Cloud computing providers are likely to be some to 

the first to migrate to IPv6 as the proliferation of virtual machines all require their own IP 

address. Over time a complete move to IPv6 would allow each mobile device to have its own 

static IP address. In the short term, the addressability constraint associated with the use of 

dynamic IP addresses on mobile devices raises problems for developing a mobile cloud.  

 

A key consideration in designing and implementing a mobile cloud is therefore the higher 

likelihood of network intermittency and bit error rates. There are several practical 

implications for the design of a mobile cloud: 

 

1. Mobile serving nodes are not suited to transferring large files given the higher 

probability of a network failure during transmission.  

 

2. Implementing fault tolerance will require a greater number of mobile nodes than is 

likely to be required in a more stable fixed network. An efficient replication 

mechanism will be important.  

 

3. The design of mobile cloud middleware should use UDP where possible to avoid the 

three-way handshake overhead associated with TCP or, where message reliability is 

critical, aggregate messages to the extent possible such that several messages can be 

transmitted simultaneously across one TCP connection.  

 

                                                        

5 An undecillion is 1036. 
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3.1.1.  Processor, operating system and power issues 

 

Many mobile phones use different operating systems. The three most common operating 

systems in use today are Apple’s iOS, Google’s Android and Symbian, used by Nokia, Sony, 

Lenovo and other device manufacturers. The Android OS is based on the Linux kernal and 

uses core java libraries with a Dalvik virtual machine. A subsequent benefit is that Android 

applications are mainly developed using standard Java. But it is important to consider that a 

mobile cloud, unlike a traditional datacenter is likely to consist of mobile devices with both 

heterogeneous operating systems and varying versions of the operating system. 

 

Mobile devices use a different processing chip architecture than desktop, laptop or server 

hardware do. This processor architecture, referred to as RISC (Reduced Instruction Set 

Computing), is based on the concept that simplified instructions will provide higher 

performance if the simplification fosters higher speed execution of each instruction (Patterson 

and Ditzel 1980). Given that considerable time is spent in executing simple tasks to solve 

larger problems, the RISC architecture focus on executing these simple instructions as fast as 

possible. Following the design of processors using the RISC architecture, the standard 

architecture used in most computers became known as CISC (Complex Instruction Set 

Computing). The CISC architecture is also commonly referred to as x86 as most applications 

at the time were written for the large installed base of computers using the x86 architecture. 

As a result of Intel’s massive investment in x86 development, the RISC architecture never 

enjoyed scale in the personal computing market. As chip fabrication techniques improved 

exponentially in line with Moore’s law, and architectural improvements in design allowed for 

smaller chips the highest performing CPUs using both the RISC and CISC architecture had 

converged by 2000 (Carter 2002). The benefits of the simplified instruction set however 

remained significant for mobile devices. While the hardware translation overhead from x86 

instructions into RISC operations was of limited concern for larger mains powered devices 
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such as servers, it is considered a significant overhead for mobile and embedded devices. 

CISC is unsuitable for mobile and embedded devices as the power consumption and heat 

dissipation is too high. As a result the RISC architecture is predominant in smart mobile 

phones, tablet computers and some netbooks. This difference between the processor 

architectures affects the interoperability of instruction processing.  Often only the lowest layer 

of the operating system kernel needs to be changed if the kernel has been designed in a 

manner that presents a well-defined abstraction from the underlying architecture. So it should 

be possible to abstract middleware or end user applications from the underlying chip 

architecture. This would be important to ensure mobile nodes such as laptops and 

smartphones could participate in a mobile cloud irrespective of significant hardware 

differences. In many cases RISC processors will not support virtualization, limiting the ability 

to deploy virtual machines on mobile devices.  

 

Operators of datacenter infrastructure seek to deploy infrastructure in a manner that will 

minimise the power overhead associated with operating servers, often focusing on a key 

energy performance metric, known as power usage effectiveness (PUE). A value of 2.0 would 

indicate that for every kw/h of electricity consumed by the servers, an additional kw/h is 

required for cooling and operating other related supporting infrastructure. The PUE is often 

optimised using technologies such as air economisation, which uses the external air 

temperature to cool servers. Some datacenter deployments have achieved highly efficient 

PUE ratings of 1.15 to 1.25. The implications are that the move towards consolidated 

warehouse-scale datacenters has resulted in significant operational efficiencies in operating 

computational infrastructure. A mobile cloud will not compete directly against the energy 

efficiency of a traditional datacenter. Due to their limited size and power consumption, smart 

phone design presents many engineering challenges. The phone display and wireless 

connectivity are the two largest consumers of energy on a smart phone (Carroll and Heiser 

2010). The development of faster processors with a greater number of cores will require novel 

engineering solutions to minimise heat dissipation. The wireless networking technologies 
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including 3G / WiFi / Bluetooth and NFC, all consume varying levels of battery power. The 

power issue has serious implications for the ability of mobile devices to contribute as server 

nodes within a cloud computing environment. Historically these devices have not been 

designed to support always-on use as server nodes. In such a mode the battery of most smart 

phones will drain rapidly. Prior studies have already evaluated power consumption on mobile 

phones in a variety of use cases using a multimeter connected to the devices battery (Riva and 

Kangasharju 2008). The actual power consumption depends on the specific mobile device but 

Wi-Fi connected at full signal draws an average power consumption of 1,190 mW. The GSM 

radio consumes power in peaks of 450-480 mW and UMTS causes 1-W peaks of 

consumption for several seconds. Interestingly the same study shows that wireless 

communication is much more expensive than computation on mobile devices. Thus from an 

energy efficiency perspective it may not always be the case that offloading computation from 

a mobile device to a traditional cloud is optimal. This power constraint coupled with the 

processor and memory limitations currently rules out the potential of hosting several virtual 

machines on a single smart phone unless these are lightweight VMs used to support local 

applications that are not running concurrently. However, these constraints do not prevent a 

mobile device becoming a server in a personal access network, involving the aggregation and 

analysis of data locally. A mobile device could collect health data from an individual on an 

ongoing basis and upload key metrics to a centralized cloud server for storage and long-term 

trend analysis.  A mobile device could also act as a file sharing node in a distributed network 

where files are infrequently accessed, or it could act as a server node to convey data collected 

periodically from local on-board sensors.  

 

3.1.2.  Mobile virtual machines 

 

One of the key challenges highlighted from the background analysis on open source 

frameworks for cloud computing was that of virtual machine networking. This raises the 
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question as to whether it would be possible or practical to execute multiple virtual machines 

on a smartphone. There would be two requirements to support mobile virtual machines: 

 

1. Hardware support, including a processor that supports virtualization. 

 

2. Network support.  

 

There is no doubt that smartphones will evolve to support virtualization at a hardware level. 

While operating systems such as Android spawn a new virtual machine sandbox for running 

applications (the Dalvik virtual machine), this is really just a thin software interpreter 

equivalent to the java virtual machine. The technical specification of most smart phones 

(processor, RAM, power) would make it difficult to practically run isolated virtual machines 

and an associated hypervisor. This is likely to change over the long term as the specifications 

improve and dedicated thin and highly efficient operating systems are developed to run VMs 

on mobile devices. While they currently have multiple network interfaces (GSM, wifi and 

bluetooth), it would be impractical to share these interfaces between multiple VMs. This 

could potentially change with the higher wireless bandwidths that become available with the 

widespread deployment of LTE. But this would also require allocating several static IP 

addresses to one smartphone, which the move to IPv6 would support. The table below 

provides the technical specification of current generation smartphones. A step change increase 

in memory and processor speed would be required to provide adequate performance to 

support multiple virtual machines on a smartphone, even if higher speed wireless networking 

technologies were available. 
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Table 1:  Technical specifications of iPhone 4 versus HTC Desire 

 

 

Although it may therefore be theoretically possible to develop a thin hypervisor operating 

system that resides above the hardware layer of a smartphone, it would be of limited practical 

benefit for the foreseeable future. Such a virtual machine would run too slowly locally on the 

mobile device. However, it would be myopic to rule this option out in the future given 

potential advancements in the processing, storage, networking and powering of mobile 

devices.  

 

3.2. Mobile phones and the cloud 

 

The constrained processing, power and networking capabilities of current mobile devices, as 

discussed above, have become a driver for mobile devices leveraging the power of traditional 

datacenter infrastructure. Many of today’s mobile applications are structured such that they 

are statically partitioned between the mobile device and datacenter. This results in a clear 

demarcation between the tasks executed on the mobile phone and those executed remotely, 

such as via a server hosted in a datacenter. An example of such a partition is where the mobile 

device runs an advanced user interface that interacts with the backend application resources in 

the cloud, such as Facebook’s mobile application. Another example with an even lighter front 

end component is Google’s search engine. In deciding how an application should be 

partitioned, the following should be considered: 
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1. How long it will take to process a task in a datacenter relative to on a mobile device. 

 

2. Whether the device requires access to file resources provided elsewhere. It may be the 

case that the speed to which resources can be accessed across a network, rather than 

the processing power is the core constraint. A commodity server within a datacenter 

is likely to be able to retrieve data much more quickly due to its higher speed 

networking.  

 

3. The latency of fixed or wireless networks. This helps to highlight the tradeoff 

between transmitting data for analysis and consuming processed results across a 

network versus local computation. 

 

4. The manner in which the serving infrastructure is powered and the extent to which the 

services utilised might deplete a power source. As discussed earlier the exact tradeoff 

is not clear given that transmission of data might incur more energy consumption than 

local computation.  

 

As most applications are statically partitioned, the demarcation between local and cloud based 

computation may not be optimised for the actual local resources available given the 

heterogeneity of technical specifications for smartphones. Some smartphones now have 

multicore processors, significant memory and storage and incorporate relational databases. 

From a network perspective, some wireless networks will have significantly greater 

bandwidth throughput than others, thereby decreasing the messaging and latency overhead 

cost associated with transmitting data to a remote server. This suggests that there may be a 

future opportunity to dynamically partition mobile applications between mobile computation 

and the datacenter computation based on the actual capabilities of the mobile devices. This 

notion of dyanamic partitioning has been investigated (Chun, Byung-Gon; Maniatis, Petros 

2009) with researchers concluding that dynamic partitioning will become an important part of 

future mobile cloud computing. The same researchers have developed the concept of a 

supercharged virtualized clone of a smartphone that resides within a traditional datacenter 

(Chun, Byung-Gon; Maniatis, Petro 2010). This clone performs all of the computational 
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heavy lifting and transmits its results to the smartphone, thereby increasing the processing 

capabilities and potentially reducing the power consumption on the mobile device (depending 

on whether the level of processing incurs more energy than the transmission of the associated 

data and retrieval of results).  The architecture proposed involves partially offloading 

execution to a clone of the smartphone hosted within a datacenter. Such an augmented 

execution could help superpower smartphones beyond current mobile device hardware 

limitations. Although the idea of offloading computation from constrained mobile devices to 

datacenters has been considered before, the CloneCloud approach differs in that it uses single 

or multiple virtualised replicas of the smartphone that reside in the cloud. The physical 

smartphone itself is therefore relegated to a thin client. To demonstrate the concept the 

researchers developed an application to scan the file system used on an Android phone. The 

process took 3,953 seconds on a HTC G1 phone but just 336 second on a virtualized clone 

residing on a Dell desktop used for testing purposes. The author has developed a high level 

diagram below to illustrate the architecture of CloneCloud. 

Diagram 5:  CloneCloud 

 

Another benefit of cloning a smartphone is that a clone could be used to provide redundancy 

of the phone’s data. If a smartphone were lost or stolen, a new hardware device could be 

synchronized with the replicas stored at the datacenter. A novel aspect of CloneCloud is that 
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the researchers inflate the capabilities of the virtualised smart phone such that the CPU clock 

rates are well in excess of the actual physical mobile device. This helps ensure that the 

processing can be completed quickly on data offloaded to the clone. In other similar research 

NTT have proposed virtual smartphones over IP, where a smartphone farm hosted in a 

datacenter would have a collection of virtual smartphone images, each dedicated to a 

particular user (Chen and Itoh 2011). Users can control their virtualized smartphone via a 

dedicated client installed locally on their physical smartphone. This client application receives 

the screen output across the network from its virtualized smartphone server instance. In this 

case, the Android operating system was used in conjunction with the Android-86 project 

(Android x86 Project 2010), allowing the Android operating system (designed for ARM 

processors based on the RISC processor architecture) to run on standard x86 hardware. The 

researchers found that it took the physical Android phone 14 seconds to open a 10Mb file, but 

it took just 1 second to open the same file using the virtualized smartphone in the datacenter. 

The virtual smartphone was also found to be 14 times faster at rendering lines and 60 times 

faster when drawing strings than the physical smartphone. Further analysis was completed to 

compare the battery consumption of local computation to that of transmitting and receiving 

the data to be processed to the datacenter. They found that with the same battery power an 

operation (in this instance resizing a jpeg image) could be performed 600 times locally or 

13,800 times remotely. Such research highlights the benefits of smartphones leveraging 

cloud-computing infrastructure. Other research has suggested a requirement for ‘Cloudlets’ in 

which miniature cloud infrastructure is moved closer to the end user in order to reduce the 

round trip time (RTT) associated with interactions and therefore improve the user’s 

experience (Satyanarayanan, et al. 2009). The researchers highlight that even with 

improvements in networking technologies, the delay associated with a mobile user interacting 

with other nodes becomes problematic if the latency is in excess of 150 milliseconds. They 

suggest that the ideal solution is to ensure that any cloud resources consumed should be as 

few network hops from the end user as possible, thus requiring the deployment of cloudlets.  
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The CloneCloud, virtual smartphone and cloudlet research, coupled with the current industry 

focus on mobile cloud computing, illustrates that the main focus has been on how to use cloud 

computing technology to provide more advanced processing capabilities on smartphones 

where the smartphone acts as a thin client and leverages the power of traditional datacenters. 

The table below provides a summary of the type of applications and their respective 

computational requirements with regard to processing power, network bandwidth and 

network latency thus highlighting the type of applications where a mobile might utilize 

traditional cloud infrastructure to enhance execution. The table suggests that applications such 

as Internet search, high-end gaming, video streaming and augmented reality would benefit 

from the computational support that can be provided by completing a significant proportion of 

the processing in a traditional datacenter.  

 

Table 2:  Taxonomy of applications and associated computing requirements 

 

This raises the question as to the practical benefits of having the processing or storage pushed 

to the edge of the network as a mobile cloud would do. The table above suggests the use cases 

are different and that applications requiring the dissemination and collaboration on files of a 

reasonable size would fall under a mobile cloud umbrella. Mobile nodes may have particular 

advantages in allowing their owners to maintain physical control over the hosting of their 

services or in allowing collection and collation of data across large geographies.  
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3.3. Summary 

 

This section compared a traditional cloud arhitecture to one incorporating mobile server 

nodes. It highlighted that traditional datacenters enjoy a relatively stable operating 

environment compared to that of a mobile cloud. From a hardware perspective, mobile nodes 

have less processing power than commodity servers and are highly energy constrained due to 

being battery powered. Smartphones were never designed to be used as always-on serving 

infrastructure. The heterogeneity of mobile hardware and operating systems is also a concern. 

Given these differences, a mobile cloud will exhibit different failure semantics than a 

traditional cloud, especially with regard to availability and performance.  

 

From a networking perspective wireless networks suffer from lower bandwidth and greater 

intermittency resulting in a degradation of the performance of transmission protocols. TCP 

overreacts to temporal congestion, and its large packet headings are a high overhead when 

transmitting maintenance messages within a mobile cloud. The use of UDP for certain 

message types (such as mobile nodes transmitting check-in messages) could partly alleviate 

these shortcomings in a wireless environment, such as the requirement for TCP’s three-way 

handshake. Another alternative is to aggregate and transmit messages simultaneously to allow 

for a more efficient use of a TCP connection. This may not always be possible and would 

require efficient scheduling of such messages. Though wireless network speeds will improve 

with the deployment of technologies such as WiMax and LTE, the associated speeds will not 

parallel fixed networks due to the topology of the networks and the scarce radio spectrum 

upon which wireless networks rely.  

 

As a consequence of the network and power issues that arise with mobile nodes, the ability to 

effectively federate such mobile resources will require an architecture that solves the unique 

availability challenge. This could be accomplished through the replication of state or content 
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across a number of nodes. A tradeoff is required to balance the higher overhead associated 

with such replication with the availability and performance of the network.  It will therefore 

be important to develop an efficient replication mechanism in order to limit this overhead, 

which can also be tuned to support various applications that could reside on a mobile cloud.  

 

The CloneCloud and NTT research reinforced the widely held perception that the future will 

focus on smartphones leveraging traditional cloud resources for heavyweight computation. 

The taxonomy of applications also demonstrated that certain types of low latency and high 

computation applications, such as high-end gaming are unlikely to suit a distributed mobile 

cloud in the medium term. However a mobile cloud could be effective in the aggregation and 

dissemination of information and in providing a means whereby owners could maintain 

physical control over the services they host. The table summarises the analysis into a 

comparison of the traditional and the potential mobile cloud.  

 

Table 3:  Comparison of traditional versus mobile cloud 
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4.  OPTIONS FOR IMPLEMENTING A MOBILE CLOUD 

 
This section considers the options that exist for implementing a mobile cloud and the 

challenges that arise with each. The objective is to determine an option suitable for 

implementation.  

 

4.1. Option 1: Distributed processing 

 

The background analysis on cloud computing uncovered a trend starting in the late 1960s with 

the implementation of virtualization to allocate resources on high power mainframes to the 

development of warehouse scale facilities housing highly networked servers in modern 

datacenters today. This move to highly distributed computing has been supported by the 

provision of software abstractions that make it easier for developers to write code that can run 

on a network of commodity servers. A mobile cloud could be used for distributed processing 

whereby all of the participating nodes process discrete tasks that contribute towards solving a 

larger problem. It is therefore worthwhile to consider the option of a distributed mobile 

processing cloud. 

 

In the past tuple spaces have been proposed for distributed processing. In mathematics and 

computer science, a tuple is an ordered list of elements. A tuple space provides a repository of 

tuples that can be accessed concurrently and allow for the shared processing of data. Tuple 

spaces were the theoretical underpinning of a language called Linda, composed of workers 

and a shared tuple space memory. Linda was an invention of the Yale Linda Group led by 

David Gelernter. Workers can exchange information and synchronize within the tuple space. 

JavaSpaces provides a Java implementation of Linda that was incorporated in the Jini project. 

A distributed implementation of Linda (Xu and Liskov 1989) was developed, allowing 

heterogeneous uniprocessor computers to run large processing jobs in parallel instead of 
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requiring multi-processor machines. Fault tolerance can be added by replicating tuple spaces 

across several nodes (Kambhatla and Walpole 1990). Each worker interacts with a tuple space 

using three types of operations: out, in and read. Out(x) adds the tuple x to the tuple space. In 

and read are used to extract information from a matching tuple in a tuple space. Operations on 

a replicated tuple space are implemented as follows for an operation x.  

 

1. The out(x) operation will write to all replicas. The request to execute this operation is 

broadcast to all replicas and the worker waits for an acknowledgement from the 

replicas.  

 

2. At each replica, x is stored in the local tuple space, and an acknowledgement is sent 

to the worker. 

 

3. The in operation removes the same tuple from each replica. First it acquires the lock 

and reads from the replica (referred to as the In1 phase). If the tuple is locked by 

another worker, this request is refused. In the in2 phase the tuple is removed from the 

tuble space.  

 

Linda has been further extended with Lime, Linda in a Mobile Environment (Murphy, Picco 

and Roman 2001). The characteristics of Linda were seen to resonate in a mobile environment 

as the use of distributed tuple spaces allows communication to be decoupled in time and 

space. Lime provides a middleware abstraction for the development of applications exhibiting 

physical or logical mobility of hosts. With Lime the tuple space is broken into many smaller 

tuple spaces and each is then associated with a mobile node. The tuple space on each mobile 

node can only access the global tuple space via an interface tuple space (ITS). The ITS 

contain tuples that the mobile node will make available to other mobile nodes. The access to 

the ITS takes place using the primitives set out with Linda. The resources available therefore 

change dynamically as tasks are processed on co-located mobile nodes. When a new mobile 

node arrives, tuples in the ITS of the new mobile node are merged with those shared from the 
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other mobile nodes. Similarly when a mobile node leaves, the corresponding data is no longer 

visible to remaining mobile nodes through their ITSs.  

 

MapReduce provides another distributed processing framework. Google patented MapReduce 

in 2004 as a system and method for efficient large-scale data processing.  MapReduce 

libraries have been written in C++, Java, Python, Perl, Ruby and Erlang. The Map and Reduce 

functions were derived from functional language primitives. The process consists of two 

steps: 

 

1. Map: A master node partitions the input into smaller problems and distributes these to 

worker nodes. A worker node can decide to further partition the problem and allocate 

it to nodes under its control. The worker processes the problem, and transmits the 

answer back to its master node. The map function is therefore applied and produces 

intermediary key / value pairs.  

 

2. Reduce: The key / value pairs within a partition are passed into a reducer function. 

The master node then combines the answers from all worker nodes to complete the 

overall analysis. 

 

The diagram below illustrates how MapReduce works. 

Diagram 6:  MapReduce 

 

 

If one mapper or reducer fails, the work can be rescheduled so long as the input data is still 

available. In theory, therefore, the framework supports an environment with high levels of 
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node churn, as would be the case with mobile nodes using wireless networks. The Map and 

Reduce functions are both defined in a data structure of key / value pairs. Every node in the 

network must report back periodically to either confirm that work has been completed or to 

provide a status update. If a node fails to report, it is presumed to have failed and the work is 

assigned to other nodes. Google utilise MapReduce for web-link graph reversal and web 

access log statistics. However, it has also been used for grid computing on desktops and in 

mobile systems.  

 

Hadoop provides an open source MapReduce framework built using java. Hadoop is targeted 

at a datacenter environment with long running applications and extensively uses XML, which 

incurs a high overhead to parse. Hadoop is also usually deployed on commodity servers 

interconnected at a minimum of 1 Gbit/s. This is required as Hadoop is designed to support 

batch processing using 64 MB blocks. MapReduce or Hadoop would therefore need to be 

tailored to support the much lower block sizes and limited network connectivity required for 

mobile nodes (Marinelli 2009).  MapReduce has been deployed to a mobile testbed (Dou, et 

al. 2010). The authors proposed Misco, a MapReduce framework for mobile devices and 

personal computers. The testbed was implemented using Nokia N95 smartpones. Misco 

comprised a master server and a number of worker nodes. The Misco server maintains the 

input, intermediary and result data associated with the applications and keeps track of worker 

progress. The workers were designed to use a polling approach such that the worker polls the 

server each time it becomes available. The researchers noted that if the polling frequency is 

too short, battery power is wasted whereas if the polling rate is too long it is difficult to align 

the task arrival rate with working nodes efficiently. Misco is implemented using Python, 

allowing the worker code to be implemented on many different mobile platforms. Misco 

could be extended to allow for the worker nodes to collect data and implement a MapReduce 

function on this data rather than only process data provided by the master server.  This could 

be of use for processing data collected via sensors onboard a smartphone prior to transmission 

in a distributed mobile processing cloud.  
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The research investigating the use of tuple spaces and MapReduce for mobile environments 

used mobile devices dedicated to the experiments. Most smartphone operating systems are not 

designed to support significant levels of multithreading. For interpreted languages such as 

Java, which can be used in developing applications for the Android operating system, the 

virtual machine will add another layer of abstraction that further impedes performance. 

Android for example, limits the heap size of each application to 16 MB. Java manages I/O in 

a uniform manner whether communication is local or across a network. However, in a 

wireless network there will be significant differences between local I/O and I/O across the 

network, leading to a greater overhead in managing fault tolerance for distributed mobile 

processing. The latency in a wireless network could result in a requirement to re-route 

requests even though a node is actually available.   The fact that mobile devices are generally 

battery constrained and are not designed for long-lasting computation or extensive 

multithreading suggests that a distributed mobile processing cloud would be of limited benefit 

and only suitable for certain applications. Such applications could include a disaster scenario 

where traditional processing infrastructure is unavailable or sensor applications whereby it is 

more efficient for the mobile node to perform initial processing of data rather than 

transmitting raw data that could consume excessive battery power.  

 

 

4.2. Option 2: Distributed mobile storage system 

 

The concept for a distributed mobile storage system was published around 2002 (Sobti, et al. 

2002). Such a system would have to address a number of challenges, including the ability to 

search and retrieve a file and how to ensure consistency across multiple mobile devices given 

different versions of files. The authors approached the first problem using a location and 

topology-sensitive multicasting solution. To resolve the consistency problem they used lazy 
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peer-to-peer propagation of invalidation information. At the time the authors proposed a 

device, referred to as a Skunk, consisting of a processor, a storage element, an ad hoc network 

connectivity interface and a WAN connectivity interface. Today smartphones and mobile 

broadband ensure no separate devices are required. Availability in the presence of node 

failure is a key challenge to be addressed. An effective replication policy is important.   

 
 

4.2.1.  Replication 

 

Ensuring the availability of data in the presence of node failure is generally achieved by 

means of replication. This is illustrated in the table below when three replicas are placed on 

servers, each with 99% availability. The probability of one node failing is 1/100. But with the 

addition of two replicas the probability becomes 1-(1/100 x 1/100 x 1/100) = 1/10,000.  

Table 4:  The impact of replication on availability 

 

 

But replication introduces tradeoffs between availability and service consistency (Hennessey 

1999). Service consistency guarantees that concurrent updates will not conflict but will limit 

system availability as the consistency protocols usually require synchronous access to at least 

a subset of all replicas, in order to ensure a uniform view of write ordering. If any of the 

replicas in the required subset cannot be reached, the entire service will be unavailable. There 

has been extensive research into how to optimise the balance between availability and service 

consistency (K. Peterson, M. Spreitzer, et al. 1997). The Coda file system (Kistler and 

Satyanarayanan 1992) uses optimistic replication where replicas are allowed to diverge for a 

period of time. Here replicas will converge only when the system has been quiesced, 
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generally requiring flushing of any outstanding write operations. Levels of replica divergence 

need to bounded or the system can be left in a “delusional” state (Gray, et al. 1996).  

 

It is worth exploring how replication might apply with mobile nodes. With the Bayou system 

(K. Peterson, M. Spreitzer, et al. 1997) each device has a local replica of the database. There 

are two states of operation: disconnected and merging. When merging all new updates to 

other available databases are added to the local replica. This model is often used but is 

entirely inappropriate for a mobile cloud as it is unlikely that a mobile node will have the 

capacity to hold all of the required data in its database due to resource constraints. The 

original Coda system (Kistler and Satyanarayanan 1992) shared Bayou’s model of 

disconnection but was extended to support weak network connectivity as would be required 

for a mobile cloud (Mummert, Ebling and Satyanarayanan 1995). However Coda clearly 

distinguished between clients and servers and was not architected to allow peer-to-peer 

functionality. So while it was extended to support weak network connectivity it is not 

naturally suited towards a mobile cloud where each mobile node may have a client and a 

server collocated. Other research (Li, Reed agus Lippman 2008), analyses the design tradeoffs 

of a collaborative mobile storage system when a peer node tries to access a given item, and 

the corresponding upload and retrieval delay for a stored data object of different sizes under a 

variety of circumstances. A common challenge that arises in the literature relates to providing 

enough redundancy for the stored data objects while minimising the overall storage overhead.  

The most common practice for providing redundancy is by either replication or erasure code. 

In a typical erasure code scheme, an original data object of size S bytes is split into n data 

fragments and a certain mathematical transform maps n data fragments into n+m total 

fragments such that any n encoded fragments out of the n+m total fragments can recover the 

original data object. In the analysis the authors assume that the total number of mobile devices 

in the given P2P collaborative storage system is N. They also assume that a data object is 

divided into n fragments of equal sizes, which are then encoded into n+m total fragments 

using Reed-Solomon code.  
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Collaborative storage systems using mobile devices face special challenges compared with 

Internet-based systems. Wireless link speed is typically much lower that that of a wired 

counterpart. Similarly channel conditions can be erratic over time and may not hold to allow 

the consistent transfer of large blocks of storage. The delay to upload an object to peer nodes 

or to retrieve an object from peer nodes has to be reasonably small, especially for wireless 

networks.  

 

 

4.3. Option 3: Peer-to-peer architecture 

 

This section will investigate the potential to use a peer-to-peer (P2P) architecture in part or 

whole for the development of a mobile cloud. With P2P networks, participating nodes 

contribute a portion of their resources to the network. These participating nodes are both 

consumers and suppliers of the overall network resources, which may include distributed 

processing and storage. In P2P networks resources are located at nodes on the edge of a 

network. Each peer node shares autonomy and has similar rights. The provision of a P2P 

network utilising mobile nodes could provide an option for a mobile cloud but would require 

the incorporation of significant fault tolerance. P2P networks currently generate about two 

thirds of all traffic on Internet backbones and can be characterised as unstructured or 

structured networks.  

 

4.3.1.  Unstructured P2P networks 

 

With an unstructured P2P network, no specific network planning is used to determine how 

resources will be either distributed or retrieved within the network. A key benefit of an 

unstructured P2P network is that no network planning is required. Gnutella is an example of 
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such a P2P network and uses message flooding to locate files by searching every node 

participating in the network. The Gnutella architecture could be utilised with a small number 

of powerful nodes. It would not scale to a large volume of nodes due to the message flooding 

mechanism and is not therefore a suitable architecture for supporting a mobile cloud. Gnutella 

does seek to improve transmission efficiency through using UDP queries for message 

flooding and TCP for the file transfer. Napster, the popular music-sharing network, was also 

an example of an unstructured P2P network, but it utilised a centralised server directory to 

coordinate file lookups. The Napster architecture significantly reduces the volume of 

messages required. A client node simply queries a directory, located at a centralised server, to 

determine the location of the required resources. The directory responds with the locations 

and address details for nodes where the required content can be found. A client can then 

initialise a direct peer connection to the serving node using the address information provided 

by the directory. The diagram below illustrates the difference between the Gnutella and 

Napster architecture.  

 

Diagram 7:  Unstructured P2P architectures 

 

 

 

The directory server in the Napster architecture is a single point of failure. This can be 

alleviated through the use of distributed directory servers where the directory is replicated 
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across redundant servers. This is illustrated in the diagram below and would require that the 

data residing on the servers participating within the group be synchronised periodically. This 

architecture would not be feasible in a mobile cloud unless a decision is made to locate the 

directory server and databases on traditional cloud infrastructure.  

 

Diagram 8:  P2P with distributed directory 

 

 

 

The success of Gnutella and Napster led to increased interest in P2P architectures and how to 

organise a network of P2P nodes that allows for node arrival and failure, load balancing and 

efficient routing between nodes. This led to the development of structured P2P networks.  

 

4.3.2.  Structured P2P networks 

 

In a structured P2P network the resources are associated with particular nodes usually through 

a distributed hash table (DHT) that utilises consistent hashing of a given address space. A 

DHT can store resources at locations throughout the network and will allow for rapid file 

location and retrieval based on the use of exact key / value pairs. These key / value pairs 
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allow each participant node to search for a file or resource associated with a particular key. 

This architecture is illustrated in the diagram below.  

 

Diagram 9:  DHT based network 

 

 

A structured P2P network is efficient for load balancing resources across a distributed 

network. A benefit of consistent hashing is that the removal or addition of a network node 

will only change the key / values owned by the adjacent nodes in the network rather than the 

nodes across the entire network. The node with the numerically closest node ID maintains the 

object. Consistent hashing supports a limited movement of objects stored within the DHT, 

thereby minimizing the reorganization of content required to support node churn. This 

characteristic of a structured P2P architecture could be useful in a mobile cloud environment. 

Structured P2P topologies share common properties. For a key K, a node either has a node ID 

that owns K or has a link to a node where the ID is close to K in the keyspace defined. This is 

illustrated in the diagram below where the circle represents the keyspace of the network and 

each node routes a request to the nearest node in its routing table to the end destination.  
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Diagram 10:  Structured P2P architectures 

 

There is however a trade off between minimizing the number of hops in any route (route 

length) to complete requests quickly and keeping the maximum number of adjacent 

neighbours of a node low, referred to as maximum node degree. The node degree impacts the 

extent of the maintenance overhead associated with nodes churning in the network. The fewer 

the number of neighbours the less the network needs to re-calibrate after nodes churning. 

However shorter hop counts across the network requires a higher maximum node degree. A 

balance must be made around latency of requests versus the ability of the network to be able 

to easily administer node churn. From an implementation perspective the most notable 

differences between DHTs are: 

 

1. keyspace: Some utilise a 128 bit or 160 bit keyspace. SHA1 is often used and the key 

K can be a hash of the files content rather than its name so that the file can still be 

located if it is renamed in the network.  

 

2. Redundancy: Needs to be added to improve reliability. For a mobile cloud the value 

of the key / value pair would need to be stored in multiple mobile nodes.  
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Pastry (Rouston and Druschel 2001) provides P2P middleware utilising a DHT overlay 

network. Pastry performs application level routing and object location in a potentially large 

overlay network of nodes connected via the Internet. It can be used to support a variety of 

peer-to-peer applications, including global data storage, data sharing, and group 

communication and naming. When presented with a message and a key, a Pastry node 

efficiently routes the message to the node with a node id that is numerically closest to the key, 

among all live Pastry nodes. Pastry takes into account network locality; seeking to minimize 

the distance messages travel, according to a scalar proximity metric like the number of IP 

routing hops. The node id is used to indicate a node’s position in the logical circular node id 

space, which ranges from 0 to 2128-1. Each node in the Pastry peer-to-peer overlay network is 

assigned a 128-bit node identifier (GUID). The node id is assigned randomly when a node 

joins the system. Consistent hashing results in node ids being generated such that the resulting 

set of node ids are uniformly distributed in the 128-bit node id space. As a result of this 

random assignment of node ids, nodes with adjacent node ids are diverse in geography, 

ownership, jurisdiction and network attachment. The nodes within close proximity in terms of 

the GUIDs may be geographically dispersed (the keyspace ring is logical not physical). Each 

node has a routing table that contains log2
b N rows and each of the entries contains both the 

GUID and IP address for each node. The routing within the network is based on the GUID 

overlay rather than the IP address. A routing table for node A consists of entries where a node 

shares the same first n digits as node A but where the n+1 digit in the GUID differs. In 

practice an effort is made to ensure that the node addresses placed in the routing table are 

those closest to node A. It is expect that 0(log N) routing steps will be required to locate 

content in the network and that a routing table size of 0(log N) is also required at each node. 

One of the main benefits of this approach is that a Pastry node does not need to be aware of 

all other nodes within the network. This attribute is key in a mobile cloud, given it’s a 

dynamic environment where nodes churn and it would be impractical to facilitate the 

extensive messaging required to allow each node be completely aware of the global state of 

the network at any given time.  
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Pastry nodes keep track of their immediate neighbours in the GUID space, and can notify an 

application of new nodes joining the network or nodes failing. A Pastry network seeks to 

minimize the distance each message travels by using metrics such as the route length (hops) a 

message traverses. The researchers emulated a network of up to 100,000 nodes to illustrate 

that Pastry is decentralized, scalable and self-organizing. Pastry also utilises a leaf set where 

each node maintains IP addresses of the node number with the L/2 numerically smallest and 

largest nodeIDs respectively. This allows for routing efficiency. The Pastry API is relatively 

simple with the following commands: 

route(M, K) – route message M to ode with nodeID numerically closest to K. 

deliver(M) – deliver message M to application.  

Forwarding(M, K) – message M is forwarded towards Key K. 

newLeaf(L) – report a change in the leaf set L to the application. 

 

The pastry routing procedure is as follows: 

 

if(destination is within range of leaf set) 

forward to numerically closest member 

else 

 let l = length of shared prefix 

let d = value of l-th digit in D’s address 

if(R1
d exists) forward to R1

d (move further up the number hierarchy) 

else 

forward to known node sharing as long a prefix but numerically closer than current 

node. 

 

Despite concurrent failures eventual delivery is guaranteed unless |L|/2 nodes with adjacent 

node ids fail simultaneously where |L| is a configuration parameter usually set at 16 or 32.  
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In each routing step, a node normally forwards the message to the node whose node id shares 

with the key a prefix that is at least one digit longer than the prefix that the key shares with 

the present node’s id. If no such node is known, the message is forwarded to a node whose 

node id shares a prefix with the key as long as the current node, but where the node id is 

numerically closer. To support this routing, each node must maintain some routing state. Each 

Pastry node maintains a routing table, a neighbourhood set and a leaf set. A nodes’ routing 

table R is organized into rows with 2b -1 entries in each. Each entry in the routing table 

contains the IP address of one of potentially many nodes whose nodeID have the appropriate 

prefix. The uniform distribution of node ids ensures an even population of the node id space; 

thus on average only [log 2b N] rows are populated in the routing table.  

 

Another P2P middleware solution is Chord (Stoica, et al. 2001). It is similar to Pastry but 

without the overlay routing network. A Chord network is also organised in a logical ring with 

peers assigned a key through the use of a hash function. Self-Chord (Forestiero, et al. 2010) 

advances Chord to be self-organizing based on the biological inspiration of ant behaviour. 

Self-chord decouples the naming of resources and peers, resulting in two sets of keys / indices 

that can have different cardinalities. Unlike Chord, Self-Chord doesn’t assign keys to specific 

nodes in the network. Rather it focuses on the ability to re-order the keys as necessary across 

a network of nodes to ensure a fair distribution as the network changes. With Pastry or Chord, 

certain operations are required when nodes join a network or when new resources need to be 

published to the network. Resources are assigned to the network nodes whose indexes match 

the resource keys. This isn’t necessary with Self-Chord because it will allow for the 

continuous re-ordering of keys in order to foster network scalability.  

 

Kademlia (Maymounkov and Mazieres 2002), another P2P middleware option, specifies the 

structure of the network and exchange of information through node lookups. The nodes 

communicate using UDP. Kademlia uses SHA1 hashing with each participating node having 
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a node ID within a larger 160 bit key space. Like Pastry, a node ID routing algorithm allows 

for the efficient location of values for any given key. When searching for some value, the 

algorithm needs to know the associated key and explores the network in several steps. Each 

step will find nodes that are closer to the key until the contacted node returns the value or no 

closer nodes are found. Like many DHT based networks, Kademlia contacts only 0(logN) 

nodes during a search. A basic Kademlia network with 2n nodes will only take n steps (in the 

worst case) to find that node. Kademlia has four message types including PING (to verify a 

node is alive), STORE (store key, value), FIND_NODE and FIND_VALUE.  

 

A node that wishes to join a structured P2P network must first go through a bootstrap process. 

In this phase, the node needs to know the IP address and port of another node (obtained from 

the user, or from a stored list) that is already participating in the network. If the bootstrapping 

node has not yet participated in the network, it computes a random ID number that has not 

already been assigned to any other node. It uses this ID until leaving the network. The joining 

node inserts the bootstrap node into one of its k-buckets.  

 

A P2P architecture provides a potential architecture for a highly distributed mobile cloud and 

a structured option could help avoid any requirement for centralised resources. While the 

current generation P2P systems can be considered an advanced distributed file system, they 

generally only allow for simple and exact searches to be performed using key / value pairs. 

One potential disadvantage of a fully distributed lookup is that each hop in a wireless network 

could require a message to traverse across a full mobile network when 3G / UMTS or LTE is 

used. Where several hops are required this could add significant message latency to any 

application.  
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The table below compares traditional cloud architecture with a distributed P2P architecture.  

 

Table 5:  Traditional cloud architecture versus P2P 

 

 

The table below provides a summary of centralised and P2P network types.  

 

Table 6:  Taxonomy of P2P network architectures 
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4.4. Option 4: Mobile Web Services 

 

Service-oriented architecture (SOA) provides another option for implementing a mobile cloud 

in whole or part. Web services are based on the use of open Internet standards like WSDL, 

XML, REST and SOAP (Kreger 2001). These standards can be used to enable loosely 

coupled interoperability between applications. SOA allows developers to encapsulate 

application methods as services that a client can then access without any knowledge, or 

control over, their internal workings (Foster 2005). 

 

The Web Services Description Language (WSDL) defines the methods and bindings, 

providing an API, similar to an Interface Definition Language (IDL), which allows the user to 

understand how to utilize the web Service. In order to invoke the underlying methods exposed 

as a web service, requests and responses can be sent either using REST or the Simple Object 

Access Protocol (SOAP). HTTP is used for the transport protocol. As Web services are based 

on accepted standards, solutions are language neutral. A benefit of a Web services 

architecture for a mobile cloud is that the system could incorporate smartphones or other 

mobile devices irrespective of the operating systems used, with nodes communicating across 

standard HTTP. However a web server of some kind is a technical prerequisite for the 

provision of mobile Web services. This could be achieved by installing a cut down version of 

Apache, the open source web server (Apache Open Source Web Server n.d.). Alternatively a 

simple lightweight web server could be developed given that a distributed mobile cloud 

would not require each node to support high-load HTTP requests. One advantage of this 

approach is that a mobile web service could be used to offer services that simply could not be 

easily replicated by traditional cloud computing infrastructure. Users could offer a set of 
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personal Web services that could be invoked by others remotely to provide useful 

information.  

 

There has been limited research into the practical implementation issues and potential of 

hosting Web services on mobile devices. Research from Nokia (Wikman and Dosa 2006) 

developed the S60 mobile web server, which was effectively a cut down version of Apache. 

However as of January 2010, Nokia discontinued this web server. There are reasons that may 

explain why this initiative was unsuccessful. The IP addresses allocated to mobile phones are 

usually dynamically allocated. One of the reasons for this is that mobile phones are not 

designed to host servers for services. In a client role, the mobile device doesn’t require a static 

IP address. To date therefore, mobile devices are not generally allocated static IP addresses, 

hence it could be difficult to initiate a connection to such a device as it would not be 

publically addressable.  In addition the firewalls of mobile operators are often configured to 

prevent traffic initiated outside the wireless network. As a result HTTP or socket requests 

initiated from outside the network may not reach devices within the network even if they had 

a static IP address. The use of IPv6 to facilitate static IP addresses to all Internet connected 

devices coupled with increased demand for direct device addressability will alleviate the 

addressability issue in the coming years opening up the potential for mobile Web services.  

 

 IBM was the first to consider the hosting of Web services on mobile devices, through the 

development of a shopping kiosk application (Berger, et al. 2003). In this study issues such as 

service discovery, device disambiguation, software footprint and security were considered. 

Researchers at Macquerie University also proposed a framework for hosting Web services on 

mobile devices (Hassan, Zhao and Yang 2010). This research highlighted that the provision of 

web services from a mobile phone could be of great use in emergency or disaster situations, 

where skilled personnel such as doctors could be located by invoking a web service hosted via 

their mobile phone that returns their location using GPS. Their framework proposes that the 

Web service interfaces are left on the mobile devices, but heavy-duty computing tasks are 
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delegated to remote servers hosted in a normal datacenter. This is achieved through the 

mobile device acting as the integration point with the support of backend servers and remote 

Web services as depicted by B in the diagram below. It would also be technically feasible to 

reverse this, so that the Web services are accessed via a traditional SaaS user interface from a 

cloud, but where the actual methods invoked reside locally on a user’s smartphone as depicted 

in C below. This could allow for mobile nodes to opt in and out of a directory of Web services 

that is centralised and abstract any requirement for the requesting client to have knowledge of 

the terminating IP addresses of the mobile devices providing the actual end service.  

 

Diagram 11:  Structured P2P architectures 

 

 

The use of REST Web Services to allow mobile devices to host short-lived services has been 

considered (Fahad, et al. 2009). They found that the demands on a wireless network are 

significantly reduced with REST when compared to SOAP and that the use of REST could 

have positive effects in reducing the processing latencies when using a mobile server. SOAP 
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messages are particularly verbose resulting in a large transmission overhead and subsequently 

a processing overhead to parse message content. Clearly developing a system based on REST 

would impose a requirement on using HTTP and URLs. Due to this dependency, RESTful 

web Services are tightly coupled to HTTP methods. GET, PUT, POST and DELETE are the 

most commonly used methods. The authors highlight that the use of REST could create some 

subtleties in situations where a service offers several resources of one kind resulting in it 

becoming difficult to map methods to URLs in a manner that is reasonably self-explanatory.  

 

Despite the fact that Web services standards exist, the end users of mobile devices are not 

likely to be able to personally code and configure the actual mobile Web services they wish to 

offer. It would be more realistic to develop software that abstracts users from the code 

altogether, thereby alleviating the burden of publishing mobile Web services. The analysis 

suggests that mobile Web services could be successfully exploited either in the provision of 

personalised services that are published by individuals and can be invoked by others or to 

provide a loosely coupled communications mechanism for sharing information in a federated 

mobile cloud.  
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4.5. Summary 

 

The preceding three sections provided an in-depth background analysis into the emergence of 

cloud computing, explored the potential implications of having mobile nodes participating in 

the provision of services within a cloud environment and then considered some of the options 

that may exist for implementing a mobile cloud.  

 

The background analysis clearly indicates that cloud computing is set to enjoy considerable 

further growth due to both the economic efficiencies that arise and the flexibility provided for 

software deployment. A review of the literature clearly suggests that the term  “mobile cloud” 

is largely misrepresented, referring to smartphones leveraging the cloud as a thin client, rather 

than participating in the provision of cloud services. This is not surprising as in practice most 

mobile applications are statically partitioned to utilise the power of traditional cloud 

computing for back-end support. With the technical capabilities of smartphones increasing 

rapidly, the opportunity for mobile devices to play a role as service nodes at the edge of the 

Internet should be investigated. In certain circumstances, distributed computation by mobile 

devices at the edge may be more efficient given the literature highlights that significant 

energy is consumed in transmitting data when offloading computation.  

 

While a mobile cloud could be used to emulate services that have previously been centralised, 

it is probable that a mobile cloud would play a different role and suit applications specifically 

designed to work with intermittent wireless networking and a highly distributed network of 

less powerful, battery constrained computing nodes. This raises the question as to whether 

existing architectures can be ported to mobile or whether an architecture designed from the 

ground up to accommodate mobile nodes would be superior. 
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Given the architecture of current datacenters, the unit cost of computation has decreased to 

the extent that a mobile cloud is unlikely to compete on grounds of pure processing 

efficiency, especially given the additional overhead of re-allocating processing tasks where 

mobile nodes have failed or left the network. However mobile nodes could analyse data 

collected from onboard sensors and reduce such data to an intermediary summary set for 

onward transmission.  

 

An ideal implementation of a mobile cloud would accommodate heterogeneous smartphones 

in terms of both the hardware and operating systems (and versions of operating system). 

Middleware to support a mobile cloud would need to abstract users from this heterogeneity 

and provide a mechanism for managing a finely grained network of nodes that will experience 

node churn of a magnitude significantly higher than churn in a typical datacenter 

environment. It will not be possible in the medium term to run several virtual machine 

instances on a smartphone or to share one mobile broadband connection in a manner that 

would support several applications requiring always-on connectivity.  

 

Peer-to-peer networking was analysed and provides a useful potential architecture for 

supporting a mobile cloud, given that nodes will naturally be at the edge of the network. 

Unstructured P2P networks, such as the Gnutella implementation, would incur too high of a 

message overhead in locating resources within a large mobile cloud. While the use of an 

unstructured P2P network coupled with a directory for locating resources is a viable option, it 

would require a well engineered distributed directory in order to be sufficiently fault tolerant. 

Structured P2P frameworks such as Pastry and Chord provide a robust manner in which to 

achieve a completely decentralised P2P network that can efficiently manage node churn and 

load balancing. However such networks, based on the use of distributed hash tables, require 

exact keyword searches and the 0(logN) hops required for file location may be better suited to 

fixed or ad-hoc wireless networks than to smartphones which will predominantly use 3G / 

UMTS and LTE. It would be inefficient from an energy perspective to require smartphones to 
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utilise wifi connectivity at all times.  A key benefit though of structured P2P networks using 

DHTs such as Pastry is the fact that each node only needs to retain a subset of routing 

information rather than be aware of all nodes within the network.  

 

The use of mobile Web services was considered. A mobile cloud built in part upon the use of 

Web services could allow a loosely coupled participation of heterogeneous mobile devices 

providing services. Given the nature of a lightweight web server this architecture would suit 

services that are accessed infrequently on mobile devices. But this option could support a 

personalized mobile cloud where anyone could participate in the mobile cloud and each 

participant would have complete control over access to and availability of their Web services. 

This suggests that mobile devices could be utilized to provide a personalised mobile cloud. In 

this scenario mobile nodes can be either federated to provide large computational resources, 

or rather utilized for the services each provides as a standalone mobile server. A key 

consideration for such architecture is the requirement for clear addressability and a supporting 

directory services such that personal Web services can be discovered. One benefit of mobile 

web services is that the device owner would be in complete control of the services offered and 

could simply turn on or off their personalized web services as they deemed fit.  

 

In summary a mobile cloud raises some unique design challenges that requires an architecture 

tailored for a dynamic operating environment. A mobile cloud would lend itself to certain 

types of application such as disaster relief, decentralised social networks, proximity-based 

networks, smartphone sensor networks or general multimedia file sharing. In all cases the 

applications would need to be designed to operate within a mobile environment.  
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Having completed the evaluation of potential architecture that could be used, in part of whole, 

for the development of a mobile cloud, it is now important to choose a viable option for 

implementation. In almost all cases, with the exception of sensing applications, it is possible 

to construct a mobile cloud service model equivalent to those of a traditional cloud. With 

SaaS, PaaS, DaaS and IaaS the main drawback is that a mobile cloud would support only 

certain types of applications, in particular those that do not require heavy weight server nodes 

and stable or high-speed networking. The table below summarises the service models 

practically supported by a mobile cloud.  

 

Table 7:  Traditional versus mobile cloud service models 

 

While it is possible to develop a mobile processing cloud, this option is ruled out given it is 

not as practical as other potential applications. Given the benefits associated with a mobile 

storage cloud the next chapter of this dissertation will focus on implementing such a system.  
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5.  IMPLEMENTATION & EVALUATION 

 

The literature analysis pertaining to cloud computing, and particularly how mobile nodes 

might participate, highlighted that there are a variety of options for implementing a mobile 

cloud. These options include a mobile processing cloud, provision of personalised Web 

services or a mobile storage cloud. The optimal option depends on the deliverables of the 

system and the architecture is therefore dependent on the requirements specification of any 

system. Given the medium term energy constraints, the limited processor capabilities and the 

messaging overhead that arises, the option of a mobile processing cloud has been ruled out. 

While the provision of personalised Web services on mobile devices appears to have 

significant potential, this option was also ruled out in favour of implementing a mobile 

storage cloud. Such a system could support a wide variety of applications including the 

dissemination of critical information in a disaster zone, a mobile distributed social network, or 

the sharing of sensor data over a large geographic area. The system, hereon referred to as 

Icarus, is designed to be fault tolerant against mobile nodes churning in a network.  

 

The implementation assumes that all mobile nodes can be directly addressed. This is a 

minimum requirement to implement any of the options considered. This is not currently the 

case, as highlighted earlier, but the transition from IPv4 to IPv6, will resolve addressability in 

the medium term and is currently underway. The assumption that mobile nodes are 

addressable is therefore reasonable in the context of this study. 
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5.1. Requirements specification 

 

This section will provide an outline of the requirements specification for Icarus, which will be 

used to guide design decisions. Given the opportunities that exist to enhance and extend the 

system it has been critical from the outset to clearly highlight the deliverables that are inside 

of scope and those that provide opportunity for future extension. The following is a list of the 

requirements included in the prototype. 

 

1. P2P file retrieval. Once an Icarus node locates the required information and responds 

to a remote request, it will return sufficient information to allow the requesting Icarus 

node to directly contact the node hosting the required content. This will facilitate 

direct P2P content retrieval.   

 

2. Join / Leave: The system should be able to tolerate Icarus nodes joining and leaving 

the network. For the prototype the ability to join will be semi-automated, in that a 

joining node will be required to know the IP address of at least one other Icarus node.  

 

3. Fault tolerance: Any participating mobile node may experience hardware failure, 

intermittent network connectivity or a loss of battery power. A network of Icarus 

nodes is expected to be able to outlive a reasonable level of node departure or failure. 

 

4. Search: Unlike DHT based P2P systems, Icarus should allow for inexact searches. 

The system should ensure that the number of messages hops required to locate 

content can be minimised in order to alleviate potential message failure due to 

network congestion or intermittent availability.  

 

5. Practicality: The system is designed to support distributed storage for the sharing of 

information that can be transmitted across a wireless network efficiently. Icarus is not 

designed for the transmission of large files such as video. The system could be 

augmented in the future to allow for file fragmentation across multiple nodes.  
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6. Energy efficiency: As smartphones are battery operated and wireless transmission 

consumes significant energy, an Icarus network should support fair load balancing 

across nodes. This should be achieved by randomly choosing an IP address from the 

pool of available mobile nodes to service requests.  

 

7. Scalability: The network should be able to scale. An Icarus node should not need to 

be aware of all other nodes within the network.  

 

8. Replication: The objective is not to ensure the availability of each file stored on an 

Icarus node, but rather to ensure the availability of at least one copy of the file in the 

system irrespective of reasonable levels of node churn or network failure. 

 

9. Language: The prototype will be implemented in Java. 

 

A prototype Icarus node has been developed in Java. Each node has a client, directory and 

storage node component. The directory component has the capability to accept inbound 

queries and to transmit requests from, and to, the directories of other Icarus nodes. The 

diagram below illustrates this network topology. Once a client submits a request to put a file 

into, or retrieve a file from the network, it communicates to its local directory. There are five 

steps required in adding content to an Icarus network: 

 

1. The user accesses the Icarus client. 

 

2. Local Icarus node checks to ensure the file exists (functionality in local directory). 

 

3. Local Icarus node randomly chooses a neighbour peer node from its routing table and 

requests that it replicates the content. 

 

4. The neighbour node chosen requests the file from the Icarus node, using a unique 

URL for that content.   
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5. The local directory in parallel replicates the metadata associated with that content and 

transmits it to the random directory chosen. A copy of metadata will exist for each 

replica, as each will have a unique URL. Metadata can be propagated to other 

directories to increase the speed at which any replica can be located within the 

network.  

 

5.2. Client design 

 

Limited focus has been placed on the client interface design for the prototype. It is designed 

merely to allow for the running of simulations to evaluate the performance of Icarus. It is 

envisaged that the user interface could be developed to allow Icarus to be deployed as an 

Android application using MySQL lite. The diagram below provides an illustration of the 

current menu screens. Within the main menu, option 5 provides access to the simulation 

submenu.  

 

Diagram 12:  Icarus – user interface 
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5.3. Directory design 

 

The design of the Icarus directory is a fundamental component of the system. Each Icarus 

network consists of one overall directory, with this directory being distributed and replicated 

across all of the participating nodes within the network. Each node is therefore responsible for 

maintaining a portion of the overall directory.  

 

5.3.1.  Peer neighbourhood 

 

It is an objective of the design to ensure that each Icarus node does not need to be aware of all 

other nodes participating within the network. Rather any node must only maintain a limited 

routing table incorporating a small subset of peers, referred to as neighbour peers. These 

neighbour peers do not need to be within close physical proximity to the node. The number of 

neighbour peers listed within the routing table is a parameter that can be tuned within the 

network. The evaluation is based on this parameter being set at 10. Upon a request, if an 

Icarus node needs to contact another node to pass on a request, it chooses one of these nodes 

at random from its routing table. The node contacted from the neighbour list may in turn route 

the message to one of its own neighbours, also chosen at random. The key decision criteria in 

setting the neighbourhood parameter is to ensure that at least one of the neighbour peers will 

be available at any time to service a remote request. A neighbourhood set of 10 nodes would 

ensure availability of the network so long as all 10 nodes are not unavailable simultaneously. 

A real life deployment of the network should ensure the random nodes chosen for the 

neighbourhood set reside across different wireless networks when possible. This will further 

improve the fault tolerance of the network, limiting the potential for multiple nodes to be 

adversely impacted by a core network failure. A while loop is used to randomly choose a 

node from the neighbourhood set in order to query a remote directory for a file. If the node 

chosen is unavailable, the requesting node will choose another random neighbour peer.  
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The diagram below illustrates the network topology for Icarus.  

 

Diagram 13:  Icarus – components 

 

 

An Icarus node can also reside on a traditional datacenter server, thereby allowing for super 

nodes that could incorporate complete copies of the entire network directory data or larger 

partitions of this data relative to the participating mobile nodes. Such an implementation 

requires that the address of such super nodes be given priority within the peer neighbour 

routing table. Even in the event that a super node failed, such failure is tolerated and requests 

will default to the remaining distributed nodes and be distributed on a random basis. Such a 

deployment also ensures that at least one of the directory peers used is on a separate physical 

network thereby improving fault tolerance. The benefit of such an implementation is that the 

node hops required to locate content could be reduced to as little as 1.  

 

5.3.1.  Content and metadata replication 

The replication of content and directory data is imperative to ensuring availability and 

performance within an Icarus network. For each replica of content, the metadata including a 
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URL pointer to the content is also replicated separately to the directory partitions of other 

random Icarus nodes. This ensures that the overall directory is robust and the failure of one or 

more Icarus nodes should not result in an inability to locate content in the storage network. 

There are a number of options available with regard to the replication of the content itself. A 

key design choice is whether the replication decisions are made by the user of the system or 

by the Icarus nodes’ local directory, in which case the replication policy is transparent to the 

user. Two options for the replication of content and metadata were considered: 

 

1. Directory logic decides on how to replicate the file. This could be based on the file 

type and a timestamp. The use of a timestamp indicating when content was added to 

the network could allow for an automated purging of replicas after a period of time to 

optimise storage resources across the Icarus nodes.  

 

2. User decides on how to replicate the file. The client could provide an option allowing 

for a user to choose a replication policy based on a range of predefined options. For 

example, the client could ask the user to weight the importance of the file availability 

on a scale of 1 to 5, where 1 reflects a very important file such as medical data and 5 

represents a file of lesser importance.  

 

Two further options arose with respect to replicating metadata within the distributed 

directory. 

1. Replicate directory partitions across nodes such that the partition of a directory hosted 

on a node is exactly mirrored on at least one other node within a network.  

 

2.  Replicate content metadata on a file-by-file basis and propagate this to the directory 

data of multiple Icarus nodes chosen randomly.  

 

The latter option was chosen as it supports the prioritisation of different content. With this 

method the metadata for content can be replicated dynamically based on its importance. The 

metadata for high priority content is propagated to the directory partitions of a greater number 

of Icarus nodes, thereby requiring fewer node hops in order for a search request to locate the 
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content. This concept of dynamic replication is illustrated in the diagram below. In this 

instance the directory data and URL pointing to a file on Icarus node 1 (N1) has been 

replicated twice. In the case of Icarus node 3 (N3), the metadata has been replicated eight 

times. In this case the metadata will therefore reside within the directories of eight separate 

Icarus nodes.  

 

Diagram 14:  Dynamic replication 

 

 

The benefit of this architecture is that content of high importance can be more quickly located 

within the network, given that more Icarus nodes are aware of its existence and location. The 

diagram below provides a clear illustration of the combined implications of replicating 

content and metadata separately. In this case file A represents a high priority file, whose 

metadata is propagated to three directories, with file replicas of the content itself hosted in the 

storage component of separate Icarus nodes.  
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Diagram 15:  Replication illustrated 

 

The actual operation of adding a file to the network is provided in more granular format 

below. Here Icarus node 1 is adding a file to the network. This results in a replication request 

being submitted to nodes 2 and 3. Both of these nodes then execute the getFile method in 

order to retrieve a copy of the file from node 1. The metadata and URL for the file are 

replicated to nodes 3 and 4. While these nodes do not contain a physical copy of the file itself, 

they can advise any other nodes within the Icarus network of the location of the file.  

 

Diagram 16:  Directory replication request 
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This concept of dynamic replication ensures that valuable storage resources and network 

messages are not utilised inefficiently by treating all content as equal. As a result the 

resources available across an Icarus network are utilised more efficiently. The availability of 

priority content, even assuming significant node churn, can be tuned both to maximise fault 

tolerance and to ensure the content can be located quickly in the network. This mechanism 

allows for content categories, that could range from 1 to 5 to be implemented whereby the 

category becomes a field value in the metadata associated with a file, highlighting the 

replication policy that should apply. The replication algorithms do not take account of the size 

of the Icarus network given that each node is not actually aware of how large the network it is 

participating within is. To incorporate this functionality would result in a significant 

messaging overhead across the network and this overhead is not considered a required pre-

requisite to deploying a reliable mobile storage cloud.  

 

The architecture results in the number of replicas within an Icarus network being inversely 

related to the number of node hops required to locate content within the overall Icarus 

directory. By further replicating only the metadata across nodes, the performance and 

availability of the network can be further optimised as content can be more quickly located 

across fewer node hops. The availability within an Icarus network is calculated as 1 – P(all 

replicas failing) where the probability of all replicas failing is determined by a 

hypergeometric distribution.  The possible combinations (Combin) of nodes failing within an 

Icarus network can be denoted as: 

 

(Combin) = N!/c!(n-c)! where: 

N = total nodes in the network. 

c = total nodes churning. 

 

To determine the probability of whether some or all of the file replicas required are amongst 

the nodes that fail the following formula is used. This is denoted as: 
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P(replicas failing) = (Combin(r, f) x Combin(N-r, c-f)) / Combin(N, c) where: 

 

r = number of file replicas 

f = number of replicas failing 

 

Therefore a simple Icarus network with 20 nodes and 10% node churn, would have the 

following number of potential combinations of nodes churning: 

= 20!/2!(20-2)!  

=  2,432,902,008,176,640,000  / 2 / 6,402,373,705,728,000 

= 190 combinations.  

 

The table below extends the above analysis to highlight the combinations of nodes that could 

churn in a network of 50, 75 and 100 nodes.  

 

Table 8:  Combinations of nodes churning 
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In a network with 100 Icarus nodes and 10% churn, it would be possible to have 17.31 billion 

combinations of the 10 nodes that churn in the network calculated as100!/10!(100-10)! The 

probability of 5 nodes hosting replicas of content failing within a network of 100, where 10 

nodes fail overall should be 0.0003347%. Availability should therefore be 1-0.0003347% or 

99.9997%. The above analysis is based on the probability of a node failing not being directly 

correlated to any other node failing. This may not always be the case given a physical failure 

within the core of a wireless network could result in multiple mobile devices failing.   As a 

result the random nodes chosen for the neighbour peer routing table and for hosting replicas 

and metadata should be as diverse as possible and span multiple physical networks if 

available.  

 

5.3.2.  Search and content retrieval 

 

In order to search Icarus a client submits a search string. This search string is translated into a 

query to the node’s local directory. This checks for a full or partial match in its database and 

responds if a match is made. If a match is not made, then the local directory submits the 

original string query to another random directory on an Icarus node in its neighbourhood 

routing table. Once the file is located by one of the directory partitions, the URL for that file 

is returned to the originating node requesting the file. This URL consists of the IP address of 

the node, the port to request the file on, a hash of the file and the filename. The client is 

provided with the results from a search query with the associated URLs of any files found. 

The client can then submit a URL (in the form http:\\134:226:34:10000/hash_file/filename to 

directly retrieve the file from the node that it resides on. The diagram below illustrates this 

search management logic. 
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While the input of content to Icarus or a search query for content may involve multiple hops 

in the Icarus network, the content retrieval is based on a direct P2P connection. This is 

illustrated in the diagram below and ensures efficient content retrieval. 

 

Diagram 17:  Search and content retrieval 

 

 

 

5.4. Storage design 

 

The storage component of Icarus is relatively simple. It is responsible for receiving inbound 

requests for content and either servicing that request or indicating that the content is not 

available. Two options existed: 

 

1. Use Java sockets to receive content requests and respond with the requested content.  

 

2. Use RESTful Web services in order to engineer a more loosely coupled system. This 

option would be of benefit given it would more easily support the participation of 

heterogeneous mobile nodes.  
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The use of Web services requires that a cut down version of the Apache web server or 

equivalent be deployed on each Icarus node. Each file within an Icarus network would then 

have its own unique URL that could be accessed on any storage node. For the prototype Java 

sockets were used for the transmission of the file but unique URLs are also used to locate 

Icarus node where the content resides and the file path for the file on the node.  

 

5.5. Database schema 

 

Data is persisted on each Icarus node using a database. For the prototype network, each node 

had MySQL installed. The system will however support SQLite (installed by default on all 

Android based handsets) or a text based SQL flat file database such as TextDB. The database 

consists of 5 tables including: files, meta, replicaURL, searchrequests and searchresults. The 

layout of each of these tables is provided below. 
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5.6. Summary architecture 

A high level overview of the Icarus architecture is illustrated below. The diagram highlights 

the client, directory and storage functionality that will be incorporated into each Icarus node. 

The main method resides within the directory server class and also instantiates simple client 

access from where a user can navigate the system.  

 

Diagram 18:  Icarus - architecture 
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The directory is multithreaded and spawns a thread to manage each request to a node’s 

directory. This allows for the concurrent management of requests. The Directory Core is a 

shared directory object that manages the addition of local files to Icarus, adding a remote file 

as local (upon receipt) and querying the storage node with the hash of a file. The Directory 

Core also manages setting up the peer neighbour routing table.  

 

In summary each Icarus node consists of a client, directory and storage component. The 

directory component incorporates the intelligence to internetwork remote directories, handle 

file and metadata replication and manage search requests. The storage component receives 

content requests and responds with that content.  
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5.7. Evaluation 

 
The evaluation consisted of deploying an Icarus network across several mobile devices and 

datacenter virtual machines, followed by the development of a simulation package to allow 

extensive testing of larger networks. The evaluation focused on the following key objectives: 

 

1. Testing network availability in the presence of progressively worsening levels of 

node churn.  

 

2. Logging and evaluating the number of node hops required to locate content for a 

search request. This entailed adding counter functionality that is incremented each 

time a message is transmitted across nodes.  

 

3. Trial experiments to put content into the network, replicate the content and metadata 

separately across nodes and subsequently search and retrieve the content.  

 

4. Stepwise iteration of the experiments to determine the ability to tune the network for 

availability and performance by varying the number of file and metadata replicas. 

 

A number of simulation options were considered to evaluate an Icarus network. These 

included JiST / SWANS, TOSSIM and NS2. JiST / SWANS refers to Java in Simulation 

Time / Scalable Wireless Ad Hoc Network Simulator, a high performance network simulator 

that runs on a standard Java virtual machine. JiST simulations are written in Java. SWANS 

provides a scalable wireless network simulator built on top of the JiST platform. It leverages 

JiST to run standard Java network applications over simulated networks.  TOSSIM and NS2 

provide scalable simulators for simulating wireless sensor networks (WSN). Of the three 

simulators JiST / SWANs provided the closest match to the requirements to test an Icarus 

network, given it allowed for Java sockets to be translated into emulated network sockets. 

These simulators provided some advanced capabilities, such as the ability to simulate radio 
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interference within a wireless network. However, the simulators focused on ad hoc 

networking rather than simulating performance across a wide area 3G or LTE wireless 

network. While an Icarus network could be deployed across multiple WiFi networks, it should 

be evaluated based on the levels of node churn that may be expected in a standard wireless 

network.  As none of the simulators provided the ability to test Icarus comprehensively across 

the four evaluation criteria, a separate simulation package was developed.  

 

The simulation package allows for key parameters to be flexed including the following: 

1. Number of neighbour peers. The default setting was 10. 

2. How many Icarus nodes are in the simulated network.  

3. The volume of iterations to complete for each experiment.  

4. Churn rate applying to any simulation.  

 

For all experiments, a minimum of 100 iterations is completed in order to ensure data that is 

representative. The simulator spawns a thread for each Icarus node within the network. It 

creates the underlying directory database tables required for each node and empties the data 

upon completion of an experiment.   

 

The graph below illustrates the outcome of a simulation using 100 Icarus nodes with 3 copies 

of a file randomly stored within the network. For each simulation 100 iterations of storing a 

file and subsequently searching for and retrieving the file are completed. The simulations are 

repeated successively increasing the churn in increments of 5%. The total number of 

experiment iterations completed is therefore 500 (100 x 0% / 5% / 10% / 15% / 20% churn). 

The number of hops that a search query can traverse is limited to 10.  This results in a 

network availability that ranges from 34% to 43% depending on the churn rate. The poor 

availability is caused by the search constraint of 10 node hops. The 3 replicas of the content 

are often not located within the network using 10 random search hops.  
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Graph 2: Availability – search bounded to 10 node hops 

 

 
If this search hop constraint is removed, the ability to locate the content shows a clear 

improvement. However this improvement in availability incurs the overhead of the additional 

node hops as illustrated below. 

 

Graph 3: Availability – unbounded 
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The increased node hops adversely impacts the latency associated with responding to a 

request for content within the network. It also increases the probability that a request will fail.  

 

The following four scenarios were then simulated. In each case, 100 iterations of the 

experiment to put content into an Icarus network and subsequently search and retrieve the 

content was completed.  

Scenario 1. Network with 100 nodes, 3 file replicas (FR), metadata replicated to 0 nodes.  

Scenario 2. Network with 100 nodes, 3 file replicas (FR), metadata replicated to 10 nodes.  

Scenario 3. Network with 100 nodes, 5 file replicas (FR), metadata replicated to 0 nodes.  

Scenario 4. Network with 100 nodes, 5 file replicas (FR), metadata replicated to 10 nodes.  

 

These experiments involved running the simulations for several days. For each scenario the 

churn was varied from 0% to 20% in 5% increments. For each scenario 500 experiment 

iterations was completed (100 iterations x 0% / 5% / 10% / 15% / 20% levels of churn), 

resulting in a total of 2,000 experiment iterations. Each of these iterations involved randomly 

replicating the content and metadata placed in the network across nodes. The graph below 

illustrates the availability of Icarus networks. It becomes clear that separately replicating the 

location metadata across Icarus directories increases the availability within an Icarus network. 

This is because there are no more directory nodes that are aware of the location of at least one 

of the file replicas. The improved availability resulting from the replication of location 

metadata is greater at higher levels of node churn. The availability of a network with 3 

replicas of content and with the location metadata replicated to 10 directory partitions 

approaches that of a network with 5 replicas of the content and no metadata replication. This 

finding is useful given that the cost of replicating metadata will be significantly lower in 

storage terms than for replicating actual content.  
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Graph 4: Availability levels at varying replication  

 

 

The graph also demonstrated the ability to tune availability within the network to in excess of 

95%, despite a significant number of nodes churning off the network simultaneously. The 

graph below illustrates that the replication of metadata across Icarus nodes considerably 

impacts the number of node hops required to locate content within the network.   

 

Graph 5: Network search – hop count to locate content 
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On average content is located using half as many node hops, vastly improving the latency in 

responding to a client request and reducing the potential for request failure due to message 

loss. While Icarus was not designed to compete directly against distributed hash table based 

networks, it can be tuned to outperform a Pastry network on search by increasing the metadata 

replication such that the number of hops required to locate content is less than Pastry’s 0(log 

N). As outlined previously, the number of node hops can also be reduced to one through the 

use of super nodes hosting an entire directory.  
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6.  CONCLUSIONS 

 

The literature misuses the term “mobile cloud” by referring predominantly to mobile devices 

that access and leverage a traditional cloud as a thin client. Given the exponential growth in 

the use of smartphones globally and the increasingly rich computation resources they offer, it 

is worth investigating the ability to federate such devices into a mobile cloud. Afterall, 

Metcalfe’s law suggests that the value of any network increases by the square of the number 

of nodes.  

 

The background analysis indicates several developments that fostered the emergence of cloud 

computing. During the 1960s virtualisation was developed for allocating mainframe 

resources, but later waned due to the commoditisation of hardware, only to re-emerge for 

allocating computing resources within datacenters. Improvements throughout the 1980s and 

1990s reduced commodity hardware and networking costs, stimulating migration to 

horizontally scalable datacenters. Finally, automating resource provisioning via online portals 

enabled the flexibility and efficiency of federated computing to become widely accessible.  

 

Evaluating the implications of mobile server nodes highlights numerous constraints for 

implementing a mobile cloud. From a hardware perspective mobile nodes have less 

processing power than commodity servers and are battery constrained. Smartphones were 

never designed to be used as always-on serving infrastructure. The heterogeneity of mobile 

hardware and operating systems is also a concern. Given these differences, a mobile cloud 

will exhibit different failure semantics than a traditional cloud, especially with regard to 

availability and performance. Wireless networks suffer from lower bandwidth and greater 

intermittency, resulting in a degradation of the performance of transmission protocols. TCP 
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overreacts to temporal congestion, and its large packet headers and three-way handshake 

would be a high overhead when transmitting maintenance messages within a mobile cloud. 

 

The analysis explored the potential implementation options for a mobile cloud. Given the 

warehouse-scale architecture of current datacenters, the unit cost of computation has 

decreased to the extent that a mobile cloud is unlikely to compete on the grounds of pure 

processing efficiency. This is due in part to the additional overhead of re-allocating 

processing tasks where mobile nodes have failed or departed the network and to the greater 

messaging overhead in wireless networks. While prior research has been completed on mobile 

distributed processing, this option was ruled out due to the constraints outlined above. 

However, in certain circumstances, distributed computation by mobile devices at the edge of a 

network may be efficient, as significant energy is consumed in transmitting data when 

offloading computation. Mobile nodes could, for example, analyse data collected from 

onboard sensors, analyse the data, and transmit summary data to super nodes. 

 

The potential of peer-to-peer networking was considered and provided a useful architecture 

for supporting a mobile cloud. While structured P2P networks such as Pastry and Chord are 

well engineered and use consistent hashing to provide a defined address space, they require 

exact keyword searches for file retrieval. Though the ability to locate data within a P2P 

network based on 0(logN) hops may be considered efficient in a fixed network, it may not be 

optimal in a wireless network characterised by low and erratic bandwidth, as the probability 

of message failure increases with each additional node hop.  

 

The use of mobile Web services was explored, which would allow for a loosely coupled cloud 

design whereby heterogeneous mobile nodes could participate in providing services. Given 

the general constraints that arise with mobile nodes, a lightweight web server is required that 

could host services that are accessed infrequently on mobile nodes. This option could support 

a personalised mobile cloud where anyone could participate and with each participant having 



 93 

complete control over access to, and availability of their Web services. In this scenario mobile 

nodes could be either federated to provide large computational resources, or rather utilised for 

the services each provides on a standalone basis. Such architecture would require clear 

addressability and a supporting directory enabling personal Web services to be discovered. 

The ability for a provider of mobile Web services to have physical control of the services 

hosted may be attractive for privacy reasons, as personal data in an application like mobile 

social networking would not have to reside on remote servers.  

 

Distributed file systems are not currently optimised for a mobile environment. Rather, they 

are designed for an environment where nodes and network connectivity are reasonably stable. 

The topology is usually based on centralised servers with fault tolerance provided by 

redundant hardware and the static replication of data.  A mobile storage cloud will require a 

different architecture from a traditional cloud, given the participation of mobile server nodes 

raises unique problems that would not arise in a traditional cloud. A network of mobile nodes 

will dynamically change in real-time as nodes constantly join and leave the network. These 

differences result in a requirement to define failure semantics for a mobile storage cloud that 

are different from a traditional cloud, where each commodity server may have an annualised 

availability rate of 99% or higher. The users of a mobile storage cloud need to be abstracted 

from the instability of a network in which the underlying service nodes are dynamically 

changing. This requires a solution to two unique problems posed by a mobile storage cloud.  

First, the availability of the network needs to be architected from the ground up to ensure a 

reasonable level of service can be provided irrespective of a proportion of the network nodes 

changing at any given time. Second, given that a mobile storage cloud is highly distributed, 

the ability to search nodes and to locate and retrieve content needs to be optimised in order to 

reduce the messaging within the network and minimise the associated latency in responding 

to search requests.  
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Icarus incorporates many of the lessons from the analysis. Its peer neighbourhood design 

ensures that nodes need only be aware of a small subset of nodes within an overall network. 

This parameter can be flexed when deploying a specific network environment to guarantee a 

high probability that at least one peer node will be available upon request. The neighbourhood 

design helps ensure that the network maintenance messages transmitted are minimised, with 

no requirement to flood an entire Icarus network to determine the global state at any given 

time. To overcome the availability challenge, content is replicated to a group of mobile nodes. 

This provides an innovative architecture where Icarus’ fault tolerance is based on the 

conditional probability that all of the mobile nodes containing the requested content are 

unavailable or fail simultaneously. Such a conditional probability is analogous to drawing all 

of the numbers within a lottery draw. Dispersing the content replicas across Icarus nodes on 

multiple physical networks when possible removes the potential for a single point of failure to 

trigger a cataclysmic failure.  

 

The separate replication of metadata and URL significantly decreases the messaging cost and 

latency in locating data. Given TCP’s poor performance in wireless networks, the reduced 

message hops has a large impact in ensuring requests don’t fail during transmission, as fewer 

peer connections are required. The Icarus architecture allows for super nodes to be 

implemented as preferred peer neighbours that could host an entire directory. This would 

reduce the directory hop count to one with the ability to default to the Icarus directory 

partitions on each smartphone if a super node fails. The replication of content and metadata 

can be applied dynamically, depending on content importance, allowing for the efficient 

allocation of storage and directory resources within the network.  

 

A mobile storage cloud could support a suite of next generation applications including 

disseminating information in a disaster zone where traditional resources are unavailable, 

providing mobile distributed social networking, collating data from distributed mobile sensor 

applications or simply sharing multimedia content.  
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6.1. Future work 

 

The analysis also highlighted several areas for future research. These include: 

 

1. Enhancing and extending Icarus. Appendix 1 outlines areas for improving Icarus.  

 

2. Dynamically partitioning mobile applications between local mobile on-device 

computation and datacenter computation to optimise the use of available resources.  

 

3. Research into developing a thin hypervisor for mobile devices that could support the 

efficient operation of isolated mobile virtual machines.  

 

4. Mobile grid. Further research is warranted on the potential to develop a distributed 

mobile processing grid. Such a grid could be used for a variety of novel applications 

including image analysis.  

 

5. Delay tolerant network. Given the poor performance of TCP in wireless networks it 

may be worth researching the potential to use delay tolerant networking. 

Asynchronous notifications and transmissions could help alleviate issues that arise 

with TCP.  

 

 

 



 96 

 
 

7.  BIBLIOGRAPHY & APPENDIX 

7.1. Bibliography 

 

[1] Amazon Web Services. http://aws.amazon.com/ (accessed 2011 йил 17-April). 

[2] Anderson, Tom, et al. “A Case for Networks of Workstations.” University of California, Berkeley, 1992. 

[3] Android x86 Project. 2010. http://www.android_x86.org. 

[4] Apache Open Source Web Server. http://www.apache.org (accessed 2011 йил 2-August). 

[5] Barham, P., et al. “Xen and the art of Virtualization.” Nineteenth ACM symposium on Operating systems 

principles (ACM), 2003. 

[6] Barham, P., et al. “Xen and the Art of Virtualization. .” Nineteenth ACM Symposium on Operating Systems 

Principles, 2003. 

[7] Berger, Stefan, Scott McFaddin, Chandra Narayanaswami, and Mandayam Raghumath. “Web Services on 

Mobile Devices.” Fifth IEEE Workshop on Mobile Computing Systems & Applications (IBM T.J. Watson 

Research Center), 2003. 

[8] Berman, F., G. Fox, and T. Hey. “Grid Computing: Making the Global Infrastructure a Reality. .” (Wiley & 

Sons) 2003. 

[9] Bernstein, David, Erik Ludvigson, Krishna Sankar, Steve Diamond, and Monique Morrow. “Blueprint for the 

Intercloud: Protocols and Formats for Cloud Computing Interoperaibility.” Fourth International Conference 

on Internet and Web Applications and Services, 2009. 

[10] Carroll, A., and G Heiser. “An Analysis of Power Consumption in a Smartphone.” USENIX Annual Technical 

Conference, 2010. 

[11] Carter, Nicholas P. Schaum's Outline of Computer Architecture. 2002. 

[12] Chen, Eric Y., and Mistukaka Itoh. “Virtual Smartphones over IP.” NTT Information Sharing Platform 

Laboratories (NTT Corporation), 2011. 

[13] Chun, Byung-Gon, and Petros Maniatis. Augmented Smartphone Applications Through Clone Cloud 

Execution, 2009. 

[14] Chun, Byung-Gon; Maniatis, Petro. “Dynamically Partitioning Applications between Weak Devices and 

Clouds.” MCS, June 2010. 

[15] Chun, Byung-Gon; Maniatis, Petros. “Augmented Smartphone Applications Through Clone Cloud 

Execution.” HotOS, 2009. 



 97 

[16] Clark, Henry. “DAWGS: A Distributed Compute Server Utilizing Idle Workstations.” Journal of Parallel and 

Distributed Computing, 1992. 

[17] Dou, Adam, Dimitrios Gunopulos, Vana Kalogeraki, Taneli Mielikainen, and Ville Tuulos. “Misco: A 

MapReduce Framework for Mobile Systems.” 3rd International Conference on Pervasive Technologies. New 

York: ACM, 2010. 

[18] Erdil, D.C., M. J Lewis, and N. Abu-Ghazaleh. “Adaptive Approach to Information Dissemination in Self-

Organizing Grids.” Proceedings of ICAS, 2005. 

[19] Fahad, Aijaz, Syed Zahid Ali, Mazzamil Aziz Chaudhary, and Bernhad Walke. “Enabling Resource-Oriented 

Mobile Web Server for Short-Lived Services.” 9th International Conference on Communications, December 

2009. 

[20] Forestiero, Agostino, Carlo Mastroianni, Emilio Leonardi, and Michela Meo. “Self-Chord: A Bio-Inspired 

P2P Framework for Self-Organizing Distributed Systems.” Transactions on Networking (ACM), October 

2010. 

[21] Foster, Ian. “Service Oriented Science.” (Math & Computer Science Division, University of Chicago) May 

2005. 

[22] Google App Engine. 2011. http://code.google.com/appengine/ (accessed 2011 йил 19-April). 

[23] Gray, J., P. Helland, P. E. O'Neill, and D. Shasha. “The stages of replication and a solution.” SIGMOD 

International conference on Management of Data. ACM, 1996. 

[24] Hadoop website. http://hadoop.apache.org/core/ (accessed 2011 йил 1-August). 

[25] Hagman, Robert. “Process Server: Sharing Processing Power in a Workstation Environment.” Conference on 

Distributed Computing Systems, 1986. 

[26] Hassan, Mahbub, Weiliang Zhao, and Jian Yang. “Provisioning Web Services From Resource Constrained 

Mobile Devices.” 3rd International Conference on Cloud Computing (Department of Computing, Macquerie 

University), 2010. 

[27] Hendricks, E. C., and T. C. Hartmann. “Evolution of a virtual machine subsystem.” IBM Systems Journal 18, 

no. 1 (1979). 

[28] Hennessey, John. “The Future of Systems Research.” (IEEE) August 1999. 

[29] IETF. RFC for Unique Local IPv6 Unicast Addresses. http://tools.ietf.org/html/rfc4193. 

[30] Kambhatla, Srikanth, and Jonathan Walpole. “Recovery with limited replay: Fault tolerant processes in 

Linda.” (IEEE) 1990. 

[31] Kennington, Jeff, Eli Olinick, and Dinesh Rajan. Wireless Network Design: Optimization Models & Solution 

Procedures. California: Springer, 2011. 

[32] Kistler, J. J., and M. Satyanarayanan. “Disconnected operation in the Coda file system.” Transactions on 

Computer Systems. 1992. 



 98 

[33] Kistler, J., and M. Satyanarayanan. “Disconnected Operation in the Coda File System.” Transactions on 

Computer Systems (ACM), 1992. 

[34] Klein, Andreas, Christian Mannweiler, Joerg Schneider, and Hans Schotten. “Access Schemes for Mobile 

Cloud Computing.” 11th International Conference on Mobile Data Management. IEEE, 2010. 

[35] Kreger, H. Web Services Conceptual Architecture. 2001 йил May. 

http://www.ibm.com/software/solutions/webservices/pdf/WSCA.pdf (accessed 2011 йил 11-March). 

[36] Kung, H. T., et al. “Network-based Mutlicomputers: An Emerging Parallel Architecture.” Supercomputing, 

1991. 

[37] Li, Fulu, David P. Reed, and Andrew Lippman. “Collaborative Storage with Mobile Devices in Wireless 

Networks for P2P Media Sharing.” (MIT) 2008. 

[38] Li, Kai, Richard Lipton, Richard DeWitt, and Jeffrey Naughton. “SHRIMP: Scalable High Performance 

Really Inexpensive Multicomputer Project.” ARPA High Performance Computer Software, September 1993. 

[39] Liang, Hongbin, Dijiang Huang, Lin Cai, Xuemin Shen, and Daiyuan Peng. “Resource Allocation for Security 

Services in Mobile Cloud Computing.” Workshop on M2MCN. IEEE, 2011. 

[40] Marinelli, Eugene E. “Hyrax: Cloud Computing on Mobile Devices using MapReduce.” Carnegie Mellon 

University, September 2009. 

[41] Maymounkov, Petar, and David Mazieres. “Kademlia: A Peer-to-Peer Information System Based on the XOR 

Metric.” New York University, 2002. 

[42] McQueen, Darren. “The Momentum Behind LTE Adoption.” IEEE Communications Magazine (IEEE), 

February 2009. 

[43] Mummert, L.B., M.R. Ebling, and M. Satyanarayanan. “Exploiting Weak Connectivity for Mobile File 

Access.” 15th Symposium on Operating Systems Principles, 1995. 

[44] Murphy, Amy L., Gian Pietro Picco, and Gruia Catalin Roman. “Lime: A Middleware for Physical and 

Logical Mobility.” (IEEE) 2001. 

[45] Nimbus Home Page. http://www.nimbusproject.org (accessed 2011 йил 22-April). 

[46] NIST. 2011. http://csrc.nist.gov/groups/sns/cloud-computing (accessed 2011 йил 17-April). 

[47] Nurmi, Daniel, et al. “The Eucalyptus Open-Source Cloud-computing System.” Proceedings of Cloud 

Computing and Its Applications, October 2008. 

[48] Open Nebula Home Page. http://www.opennebula.org (accessed 2011 йил 24-April). 

[49] Parkhill, Douglas. The Challenge of the Computer Utility. Addison-Wesley, 1966. 

[50] Patterson, David A., and David R. Ditzel. “The Case for Reduced Instruction Set Computing.” Computer 

Architecture News (ACM) 8, no. 6 (October 1980). 

[51] Peterson, K., M. Spreitzer, D. Terry, M. Theimer, and A. Demers. “Flexible update propagation for weakly 

consistent replication.” Symposium on Operating System Principles. ACM, 1997. 



 99 

[52] Peterson, K., M.J. Spreitzer, M. M. Theimer, and A. J. Demers. “Flexible Update Propagation for Weekly 

Consistent Replication.” 16th Symposium on Operating Systems Principles (ACM), 1997. 

[53] RFC 791. 1981. www.ietf.org. 

[54] Riva, Oriana, and Kanga Kangasharju. “Challenges and Lessons in Developing Middleware on Smart 

Phones.” Computing Practices (IEEE), October 2008. 

[55] Rouston, Anthony, and Peter Druschel. “Pastry: Scalable, decentralized object location and routing for large 

scale peer-to-peer systems.” 18th Conference on Distributed Systems Platforms, 2001. 

[56] Sarathy, Vijay, Narayan Purnednu, and Rao Miffilineni. “Next Generation Cloud Computing Architectures.” 

Workshops on Enabling Technologies, Infrastructure for Collaborative Enterprises, 2010. 

[57] Satyanarayanan, Mahedev, Paramir Bahl, Ramon Caceres, and Nigel Davies. “The Case for VM Based 

Cloudlets in Mobile Computing.” Pervasive Computing (IEEE), December 2009. 

[58] Sempolinski, Peter, and Douglas Thain. “A Comparison and Critique of Eucalyptus, OpenNebula and 

Nimbus.” 2nd IEEE International Conference on Cloud Computing Technology and Science, 2010. 

[59] Simoens, Pieter, Filip De Turck, Bart Dhoedt, and Demeester Piet. “Remote Display Solutions for Mobile 

Cloud Computing.” IEEE, 2011. 

[60] Sobti, Sumeet, et al. “A Peer-to-Peer Mobile Storage System.” Data Management & Storage Technology, 

2002. 

[61] Stoica, I., R. Morris, D. Karger, M. F. Kaashock, and H. Balakrishnan. “Chord: A Scalable Peer-to-Peer 

Looking Service for Internet Applications.” SIGCOMM (ACM), 2001. 

[62] Tanenbaum, Andrew S., and Martin Van Steen. Distributed Systems, Second Edition. (Prentice Hall), 2006. 

[63] Tian, Ye, Kai Xu, and Nirwan Ansari. “TCP in Wireless Environments. Problems and Solutions.” Letters, 

volume 9, no. 1, 2005. 

[64] Warner, Steven A., and Alexander F. Karman. “Defining the Mobile Cloud.” 2010 йил 16-August. 

www.nasa.gov/ppt/482352main_2010_Monday_1_Warner.Steven_r5.ppt (accessed 2011 йил 12-July). 

[65] Wikman, Johan, and Forenc Dosa. “Providing HTTP Access to Web Servers Running on Mobile Phones.” 

Nokia Research Centre, May 2006. 

[66] Xu, Andrew, and Barbara Liskov. “A Design for a Fault Tolerant, Distributed Implementation of Linda.” 

(IEEE) 1989. 

 



 100 

 

7.2. Appendix 1: Future extensions to Icarus 

 

The design of Icarus raises many challenges and also affords many opportunities to extend 

and enhance the system. To promote the ability to design a core prototype of Icarus within a 

short period of time it has not been possible to incorporate some of these enchancements. As a 

result the following list presents opportunities for extending Icarus in the future.  

 

1. Node deployment: There are three main components to Icarus; client, directory and 

storage node functionality. For deployment Icarus would be designed such that each 

node is generic and any combination of the above functionality can be activated or 

switched off. The key deliverable of this design choice is that nodes can reside on a 

mobile phone or on a commodity server. A node hosted on a commodity server may 

only provide directory functionality for example.  

 

2. Operating system heterogeneity. Given the heterogeneity of mobile operating 

systems, significant time will not be spent on deploying the design to different 

platforms. The use of Web services at the storage nodes would however provide 

greater interoperability. Web services have not been used for the prototype as it made 

system evaluation more complex.   

 

3. Latency: The distributed mobile storage needs to be location transparent and location 

independent. However ideally it would minimize the latency associated with file 

retrieval. Two options are envisaged: 

 

a. The directory decides which copy of a file to recommend to the client based 

on the estimated latency in transmitting the file.  

 

b. The client is provided with a list of nodes that have a copy of the file and the 

associated round trip time of the nodes relative to a parent directory. A user 

of the system can then choose which copy to retrieve and has subsequent 

options should a node fail during transmission.  
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4. System state health checks: Ideally the system would utilize an efficient manner for 

directory nodes to determine the availability of storage nodes prior to advising a 

client of the location of nodes with the requested files. This could be implemented 

using UDP “check-in” packets. Two options exist: 

 

a. UDP packets could be sent periodically from the storage node to the directory 

node to acknowledge that the node is available. 

 

b. The directory node could send a UDP packet to the storage node at the time a 

client requests access to a file. This would reduce the volume of messages 

overall so that messages are sent only to nodes that may be currently 

required. This option would require these specific storage nodes to respond to 

acknowledge availability. A lack of response would indicate that the node 

was offline. 

 

5. Proximity: Ability to use UDP check-in packets or GPS coordinates to determine 

latency in communicating with specific nodes. For example with GPS coordinates 

you could ensure that files are replicated across different geographic locations to 

reduce the probability of failure due to a significant telecommunications fault such as 

a fiber cable cut impacting a region of wireless base stations.  

 

6. Self-healing: A process to ensure that if only one copy of a file exists given node 

churn, that the Icarus directory would seek to make further replicates of the file on 

other nodes. This requires a dynamic replication algorithm that will sense the state of 

the network and reconfigure the location of replicate files accordingly. In the event of 

partial network failure, directory nodes should identify files that require protection 

and re-replicate as necessary to surviving nodes. In essence the network should seek 

to ensure its files survive.  

 

7. Replication optimization. A suitable algorithm that optimizes the number of replicate 

files that exist based on the size of the network. 

 

8. Consistency: Icarus could be extended to allow for read and write access to 

information in the future. This would require appropriate locking of the files to ensure 

serialized access for consistency. A replication management system similar to Gossip 

could be potentially used to add such functionality.   This would go beyond an 
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extension of Icarus as a mobile distributed storage system to a mobile distributed file 

system. Nonetheless it would require significant work in optimizing the locking and 

synchronization in order to manage consistency.  

 

9. Access control: Implement the ability for mobile participants to require access control 

at Icarus node or content level. In both cases the requesting client may have to 

authenticate and provide a password to access the node or specific content on a node.  

 

10. Anonymity: The contextual file name could be decoupled from the actual file. This 

would allow for files to be stored on nodes with a greater degree of anonymity. The 

directory nodes would be responsible for mapping the actual file names requested to a 

hash of the file value. This enhancement if implemented securely could provide a 

secure and highly distributed mobile infrastructure to support file distribution such as 

Wikileaks.  

 

11. File management: Improvements to allow for full read / write access and 

collaboration using Icarus and to incorporate quora based voting to allow for an 

accurate response where some replicas are inconsistent.  

 

12. Network load efficiency: Develop system so that it can identify when multiple users 

upload the same file, through the use of the file content hash and optimise the volume 

of replicas rather than allow users to flood the network with various copies of the 

same file. This could be particularly important for sharing popular file information.  
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7.3. Appendix 2: UML diagrams of Icarus 

 

Diagram 19:  UML diagram of simulation package 

 
 

Diagram 20:  UML class diagram - client package 
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Diagram 21:  UML class diagram - directory package 

 

 

 



 105 

Diagram 22:  UML class diagram - storage package 

 

 

Diagram 23:  UML class diagram - messaging package 
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7.4. Appendix 2: Icarus simulation – sample log output 

2011/08/24 17:55:18 Icarus: New Simulation started ----------------- simstart 
2011/08/24 17:55:18 Network nodes: 10 
2011/08/24 17:55:18 Iterations attempted: 10 
2011/08/24 17:55:18 Nodes churning: 0 
2011/08/24 17:55:18 Peers each node is aware of: 10 
2011/08/24 17:55:18 Peer distribution: 1 (0 = ring, 1 = random) 
2011/08/24 17:55:18 Search message hop count: 50 
2011/08/24 17:55:18 Replication hop count: 3 
2011/08/24 17:55:18 Meta replication count: 10 
2011/08/24 17:55:18 Replication request hop count: 10 
2011/08/24 17:55:18 Creating threads. 
2011/08/24 17:55:19 Adding 10 random peer nodes for Icarus node 8081. 
2011/08/24 17:55:19 Adding 10 random peer nodes for Icarus node 8082. 
2011/08/24 17:55:19 Adding 10 random peer nodes for Icarus node 8083. 
2011/08/24 17:55:19 Adding 10 random peer nodes for Icarus node 8084. 
2011/08/24 17:55:19 Adding 10 random peer nodes for Icarus node 8085. 
2011/08/24 17:55:19 Adding 10 random peer nodes for Icarus node 8086. 
2011/08/24 17:55:19 Adding 10 random peer nodes for Icarus node 8087. 
2011/08/24 17:55:19 Adding 10 random peer nodes for Icarus node 8088. 
2011/08/24 17:55:19 Adding 10 random peer nodes for Icarus node 8089. 
2011/08/24 17:55:19 Adding 10 random peer nodes for Icarus node 8090. 
2011/08/24 17:55:19 Iteration count 0 
2011/08/24 17:55:19 Sending file from 8085 
2011/08/24 17:55:20 Trying to send message to 172.16.168.1:8086 
2011/08/24 17:55:20 After message sent 
2011/08/24 17:55:20 File replication to 8086 
2011/08/24 17:55:20 Decrementing replication request, Passing on ReplicationRequest (count 
10) 
2011/08/24 17:55:20 Msg Router Passing on replication request 
2011/08/24 17:55:20 Trying to send message to 172.16.168.1:8088 
2011/08/24 17:55:20 After message sent 
2011/08/24 17:55:20 Decrementing replication request, Passing on ReplicationRequest (count 
9) 
2011/08/24 17:55:20 Msg Router Passing on replication request 
2011/08/24 17:55:20 Decrementing meta replication hopcount, Passing on MetaReplication 
(count 10) 
2011/08/24 17:55:20 Msg Router Passing on meta replication message 
2011/08/24 17:55:20 Trying to send message to 172.16.168.1:8088 
2011/08/24 17:55:20 After message sent 
2011/08/24 17:55:20 Trying to send message to 172.16.168.1:8087 
 
….. 
 
2011/08/24 17:56:14 File retrieval succeeded 
2011/08/24 17:56:14 Success/Fail 10/0 
2011/08/24 17:56:14 Nodes Iter Churn NodeAware NADist SearchHopcount Repcount 
Success Fail MetaReplications RepReqHops MetaReplicationHops SearchHopsTillResultAvg 
SearchHopsTillResultAvgStd 
2011/08/24 17:56:14 10 10 0 10 1 50 3 10 0 10 10 10 2.1 1.0440306508910595 
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2011/08/24 17:56:14 Icarus: Simulation ended. 


