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An embedded device is usually, but not always, a hardware-constrained resource which

can be leveraged to provide information pertaining to the object in which the device re-

sides. By virtue of their ubiquitous nature, embedded devices are at the forefront of the

prodigious shift towards the Web of Things. This emerging paradigm aims to integrate

inanimate, everyday objects into the World Wide Web. As a result, unprecedented op-

portunities for service-oriented applications across multiple domains are possible.

However, embedded devices may be characterised by a constrained operational profile.

Or, they may be limited by the vagaries typical of mobile environments, such as inter-

mittent network availability. Notwithstanding, it is necessary that web services account

for these drawbacks. By doing so, an acceptable QoS can be maintained for the client

such that the end users experience is impeded as little as possible. At both build-time

and maintenance time, this requires the programmer to compose service code appropri-

ate to the different operational contexts of a client device. However, using conventional

techniques can introduce issues such as poor compositional flexibility, additional object

dependencies and additional code modifications. A higher level of programming abstrac-
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tion of the service composition process, with supporting functional decomposition and

composition programming environment would ameliorate these difficulties. Such facilities

would facilitate the specification and updating of the services composition without incur-

ring additional object dependencies and code modifications.

This dissertation introduces a domain-specific language, which allows a programmer to

stipulate appropriate service compositions by automatically decomposing the aggregate

service logic into executable slices. This process may occur at either build-time or

maintenance-time. A slice is defined as an executable subset of the services aggregate

logic. Slices are associated with profiles defined in an instance of the domain-specific lan-

guage, each of which defines a range of client contexts. As a result, slices can be delivered

to a service client in accordance with the clients operational context. This also ensures

that the service client receives an acceptable QoS for each service invocation. The service

composition technique, as explicated in this dissertation, yields favourable performance

metrics in terms of time taken to fulfil service invocations on the service host. Addition-

ally, evaluations of a service built using the slice-oriented programming technique show

reduced levels of complexity when compared to alternative approaches, easing service

maintainability.

vii



Contents

Acknowledgments v

Abstract vi

List of Tables xi

List of Figures xii

Chapter 1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Research aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2 State of the Art 5

2.1 Mobile computing context awareness . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Semantic service-oriented context-aware middleware . . . . . . . . . 6

2.1.2 JCAF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 VOLARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 CARISMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.5 mobiPADs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.6 MADAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

viii



2.1.7 MUSIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Program slicing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter 3 Design 18

3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Domain-specific language . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.2 Domain-specific language parser . . . . . . . . . . . . . . . . . . . . 21

3.1.3 Functional decomposition . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.4 Dependency graph generation . . . . . . . . . . . . . . . . . . . . . 22

3.1.5 Program slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Design decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Programmer use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 4 Implementation 31

4.1 Chosen technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Programming language . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.2 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.3 Domain specific language . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.4 DSL transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.5 Source code manipulation . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.6 Alternative technologies . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 DSL implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 DSL transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.1 Xpand template . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.2 XML parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5 Functional decomposition engine . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6 Member dependence graph and program slicer . . . . . . . . . . . . . . . . 45

ix



4.7 Architecture overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.8 Implementation issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 5 Evaluations 54

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1.2 Software metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Performance evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 Application QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.2 Load-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.2.3 Run time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Software metrics evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.3.1 Weighted methods per class . . . . . . . . . . . . . . . . . . . . . . 69

5.3.2 Depth of inheritance tree . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.3 Number of children . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3.4 Couplings between objects . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.5 Lack of cohesion in methods . . . . . . . . . . . . . . . . . . . . . . 75

5.3.6 Lines of code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Evaluations summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Chapter 6 Conclusions 79

6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Appendix A Abbreviations 81

Appendix B DSL Grammar 84

Bibliography 87

x



List of Tables

4.1 DSLParser API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Eclipse JDT Core Java model elements . . . . . . . . . . . . . . . . . . . . 45

5.1 QoS compositions as stipulated in DSL instance . . . . . . . . . . . . . . . 55

xi



List of Figures

2.1 Example of a program dependence graph [1] . . . . . . . . . . . . . . . . . 13

2.2 Example of a system dependence graph [1]. Control edges are shown in

bold, and arcs represent intraprocedural flow dependencies. Parameter-in,

parameter-out and call edges are represented by dashed lines . . . . . . . . 14

3.1 Proposed DSL structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 QoS-related compositions section of dsl links client profiles with underlying

service logic. Note that this diagram shows service code that has not yet

been sliced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 An example member dependence graph for a method entitled resizeImage.

The graph shows the different types of dependencies that can exist between

a method, and other class members. The members that are shaded out, are

other class members which are not dependees of the resizeImage method.

Local members are not included in the member dependence graph. . . . . . 24

3.4 UML diagram showing the introduced interface NetworkFileManager to

ensure that the ServerFileManager slices are polymorphic. . . . . . . . . . 28

3.5 Slice-oriented programmer use case . . . . . . . . . . . . . . . . . . . . . . 30

4.1 An overview of the EMF Ecore meta-model. The shaded classes represent

abstract classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Example overview of the structure of a slice-oriented DSL instance . . . . . 39

xii



4.3 Overview of the process for transforming a slice-oriented DSL instance to

XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Overview of the decomposition process . . . . . . . . . . . . . . . . . . . . 44

4.5 Example AST for decomposed class ImageManager. MethodDeclaration

ASTNodes are shown in bold text in the tree. Names of dependent fields

and methods are show in italics within the leaf nodes. . . . . . . . . . . . . 47

4.6 Class diagram for graphs module . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 Functional architecture overview . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 Overview of image service functionality before slicing . . . . . . . . . . . . 56

5.2 Overview of image service functionality after slicing . . . . . . . . . . . . . 57

5.3 Image displayed on android device for a PowerfulClient profile . . . . . . . 63

5.4 Image displayed on android device for a MediumClient profile . . . . . . . 64

5.5 Image displayed on android device for a WeakClient profile . . . . . . . . . 65

5.6 Time to load a service implementation bean in nanoseconds . . . . . . . . 66

5.7 Total time taken for a service bean to fulfill a request in milliseconds . . . 68

5.8 Average % cpu usage for servicing a request from a client characterised by

a WeakClient profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.9 Average heap size for servicing a request from a client characterised by a

WeakClient profile, in megabytes . . . . . . . . . . . . . . . . . . . . . . . 69

5.10 Weighted methods per type . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.11 Average methods per type . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.12 Average cyclomatic complexity per method . . . . . . . . . . . . . . . . . . 71

5.13 Average depth of inheritance tree . . . . . . . . . . . . . . . . . . . . . . . 72

5.14 Average number of children per type . . . . . . . . . . . . . . . . . . . . . 73

5.15 Afferent and efferent couplings . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.16 Lack of cohesion in methods . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.17 Total lines of code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xiii



5.18 Average lines of code per method . . . . . . . . . . . . . . . . . . . . . . . 77

xiv



Chapter 1

Introduction

1.1 Background

The Internet of Things (IoT) is both an exciting and incipient technological shift that is

set to change human interaction with the physical world. The IoT is a term that loosely

describes inanimate objects, comprising embedded devices, which can interconnect via

wireless networks [2]. There are several fundamental factors that can be attributed to the

advent of the IoT, which are, the use of the Internet as a communications platform, more

affordable wireless technology, and better processing power for embedded devices [3]. The

collective culmination of these factors yields greater potential for web service applications

within the realms of information, analysis, automation and control.

The Web of Things (WoT) is seen as the successor to the IoT. The primary objective of

the WoT is to integrate inanimate objects into the web as resources which can be accessed

and manipulated on demand [4]. In order to achieve this objective, there exists the need

for a platform independent architecture to facilitate inter-device communication [5]. A

service-oriented architecture (SOA) is the most auspicious framework to allow devices to

integrate into the WoT, as it provides a communications platform whereby an inanimate

object can be accessed in a platform-independent manner.
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1.2 Motivation

The platform-neutrality of SOA applications ensures that potentially disparate devices

can exchange information irrespective of their underlying hardware specifications. How-

ever, embedded devices may be characterised by a resource-constrained hardware profile.

Furthermore, environmental characteristics such as location can have an impact on op-

erational factors such as network availability. When a programmer is building an SOA

application, the service logic should be developed with these constraints in mind. In doing

so, the application can be tailored to facilitate an eclectic range of clients with different

operational profiles. In doing so, it is envisaged that a better application Quality of

Service (QoS) can be delivered to the client device.

Tailoring the application will require the programmer to build different compositions

of the underlying application logic, appropriate to the different client operational con-

texts. The use of different object-oriented creational patterns can allow the service logic

to be composed for different client profiles. However, these creational patterns are not

particularly flexible when recomposing the service logic for 2 reasons. First, additional

dependencies are unduly introduced and secondly, additional source code modifications

are required. These additional dependencies can increase the complexity of the underlying

application logic.

1.3 Research Question

The research question that this dissertation aims to answer is as follows:

Can a higher level of programming abstraction of the build-time service logic composition

process, provide greater flexibility in delivering an acceptable application QoS for the client

device, without detrimentally affecting the maintainability of the service?

2



1.4 Research aims

A programming model is proposed which allows a service programmer to specify QoS-

related compositions of a service’s logic at build-time. This is to ensure that the service

client can benefit from an acceptable application QoS at run time. However, this pro-

gramming model must be flexible enough to allow the service logic to be recomposed for

changing requirements over time. Consequently, the research aims are as follows:

� Develop a prototype programming methodology which will provide the programmer

with the necessary provisions to specify and generate QoS-related compositions of

the service logic.

� Build a real, fully-functional service using the proposed methodology.

� Build a test client application for a resource-constrained device which can invoke

the service under different simulated operational contexts.

� Evaluate the service with a focus on

– perceived application QoS from a client perspective

– overall service performance

– resulting service complexity

1.5 Outline

This dissertation is organised as follows

Chapter 2 explores a state of the art in mobile context-awareness and program slicing.

Chapter 3 delves into the design requirements for developing a prototype of the pro-

gramming model. Design decisions are also discussed in this chapter.

Chapter 4 covers the steps required to implement the requirements proposed in the de-

sign chapter.
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Chapter 5 details the methodology for evaluating the proposed programming model.

Application QoS, performance and complexity are then evaluated with regard to a service

developed using the proposed programming model.

Chapter 6 concludes this dissertation and discusses future work and improvements.
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Chapter 2

State of the Art

2.1 Mobile computing context awareness

The inception of context-aware computing in 1994 was defined as the ability of a mobile

application to be aware of its operational environment and to dynamically adapt itself

to the environment accordingly [6]. Since the genesis of context-aware computing, this

quintessential philosophy has remained fast.

In terms of mobile computing, context can be described as

� the state of the underlying hardware resources within the device

� the environment in which the device is located

� user preferences

Mundane examples of hardware resources within a device that would be of interest to

context-aware applications would be

� battery power

� cpu

� dynamic memory
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� hard disk capacity

The quintessential idea of context-aware applications is that they can adapt themselves

according to a device’s changing context, in order to maintain an acceptable QoS for the

user. Consider the case of a user who is using a mobile application which requires a

3G network connection, at a minimum, in order to download information from a service.

Hypothetically, the user enters a locality where 3G is no longer available. When such an

event arises, there may be a performance hit which impedes the end user’s experience of

the application. Such a scenario exemplifies the need for applications that can in some

way adapt themselves with regard to the vagaries of a mobile execution environment.

Context-aware middleware is a solution to this problem, and a variety of context-aware

middleware will be examined in this section.

2.1.1 Semantic service-oriented context-aware middleware

A service-oriented context-aware middleware is proposed in [7]. In this approach, contexts

are represented as Web Ontology Language (OWL) predicates, thus allowing contexts

to be semantically reasoned. The proposed architecture comprises 3 layers. The lower

layer consists of context providers. These providers allow context garnered from cross-

domain embedded devices to be abstracted for upper layers. The middle layer houses a

context interpreter which provides the abstraction for lower layer contexts. This context

interpreter is also connected to a knowledge base, which means that contexts can be added,

queried, updated or deleted on the fly. Mobile services comprise the upper layer, and they

can interpret contexts and adapt their behaviour accordingly. Also, the programmer can

define rules for the mobile services that are fired when certain contexts change at run time.

This is similar to the slice-oriented approach in that different compositions of the service

can be defined at build-time; however the compositions are static which means that there

is no run time adaptation. Additionally, the semantic-oriented middleware allows contexts

to be specified at run time, whereas the slice-oriented contexts are statically defined. In
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other words, the service must be stopped in order to update any context-related logic.

However, the semantic-oriented approach requires a gateway for the context reasoning

process, in order to relieve the embedded device of the context reasoning process. The

slice-oriented approach does not require any sort of gateway, as the context-reasoning

process is very simple and does not incur considerable overhead.

2.1.2 JCAF

The Java Context Awareness Framework (JCAF) [8] presents an extensible framework

for building context-aware applications which have an experimental scope. In a similar

manner to that of [7], the scope of JCAF is an event-based, service-oriented infrastructure.

The run time infrastructure of JCAF comprises distributed context services which are

arranged in a peer-to-peer fashion. Each of these services may interact in order to obtain

context-specific information. The context information is stored within entities that reside

within an entity container located in a context service. Context clients may subscribe

to an entity’s context via the context container, and changes to that particular entity’s

context can be propagated, as events, to all the registered listeners. Within the scope of

this dissertation, a service provider need only be aware of a client’s context at invocation

time and therefore does not need to retain any context-related state for the client.

2.1.3 VOLARE

Within a service-oriented environment, context-aware middleware may be utilised to rene-

gotiate web service QoS levels, based on a device’s context. If a suitable QoS level cannot

be renegotiated, an alternative web service binding may ensue. VOLARE [9] is a mo-

bile middleware that does just that. During the run time operation of an application,

VOLARE can infer the context of the mobile device in order to determine if it has sur-

passed or fallen below a certain threshold. Based on existing service bindings, VOLARE

can then request an adaptation of the QoS levels for these bindings. Additionally, during

7



the service discovery phase, VOLARE can intercept a service request, examine the con-

text of the device, and subsequently adapt service discovery based upon the application’s

QoS requirements. These application QoS requirements are specified using an adaptation

policy language. VOLARE’s service discovery phase introduces an intermediary depen-

dency between the client device and a QoS broker. This means that the service request

must be forwarded to a QoS broker first, which will allow the middleware to select an

appropriate web service based on its QoS requirements [10]. The slice-oriented approach

does not require a service broker because it is concerned with application QoS as opposed

to conventional web service QoS, such as reliability, scalability, capacity [11] etc.

2.1.4 CARISMA

Reflection [12] within programming languages can be described as the ability of a pro-

gram to observe and reason about its own state (introspection) as well as act upon this

information to manipulate its execution state, interpretation or meaning (intercession)

[13]. The CARISMA middleware [14] makes use of reflection for dynamic application

adaptation based on context awareness. In a similar nature to slice-oriented program-

ming, CARISMA is based on the idea that different applications require services to be

delivered in accordance with the device’s context. With CARISMA, this is achieved by

correlating a profile with each application on the client device. At run time, when an

application requests a service operation, the application’s profile is sent to the CARISMA

middleware. The middleware subsequently examines the underlying contexts that relate

to the service in that profile, and then makes an informed decision as to which policy

to apply for that service. For example, consider a service that delivers news feeds to an

application running on a client device. With CARISMA, the news feed application on the

client device will have a profile that contains an entry for the news feed service. Within

this profile, there can be 2 policies that can be applied within the middleware in order

to determine how the news feed service is delivered. When a service request is made by

8



an application on the device, the context configurations for that application are used by

the middleware to query the underlying hardware resources. The contexts are then eval-

uated against the application profile in order to determine which service policy is applied.

CARISMA exposes a meta-application programming interface (API), that ultimately al-

lows an application profile to be inspected or tailored by an end user. This means that by

virtue of reflection, the CARISMA middleware can be tailored on a per-application basis

to alter how a service is delivered. This is the same principal as the slice-oriented ap-

proach. However, the difference is that the customisation of the application is performed

server-side, at build-time.

A drawback to CARISMA is that a service may only be delivered using 1 policy at a

time, and the amalgamation of multiple policies is prohibited. Moreover, the number of

policies that can be applied to a profile is limited to a maximum of 10, as the overhead

incurred by CARISMA increases linearly based upon the number of policies in an appli-

cation profile. There is no limit to the number of profiles that can applied to a service

developed using the slice-oriented approach. Also, this dissertation does not use run time

adaptation, but rather, static compositions of the service which are defined at build-time.

Finally, there is no reflection at play in this dissertation, meaning that the typical inherent

overheads of using such a technique are absent.

2.1.5 mobiPADs

Reflection is also a key factor in the mobiPADs [15] context-aware service execution

platform, which allows mobile services to be deployed within a wireless environment.

The services are deployed as mobilets, which are chained service objects representing a

configuration, which can be updated when the device’s context changes. The fundamental

idea of a mobilet is comparable to a Java applet1, whereby processing is shared between

a client residing on the mobile device, and a server connected to the internet.

Context-awareness is achieved by an extensive event model, where event source objects

1http://java.sun.com/applets/
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allow event listeners to be registered, removed and notified, in a similar manner to that

of JCAF. Event source objects will monitor underlying context, for example bandwidth

and cpu load. When a change is detected in these contexts, the relevant event source

objects will notify registered event listeners, which will trigger application adaptation in

one of two ways. The first is a reconfiguration of the service chain by adding or removing

mobilets. The second approach, which is more granular, involves relaying the context

updates to each mobilet in the service chain, which will then allow them to readjust.

A disadvantage of sharing processing between the mobilet on the client and the mobilet

on the server, is that the client must have the mobilet code on board. This means that

if the server does not possess mobilets that are part of a service configuration, the client

must push them to the server. Thus for each change in the device’s context, there exists

the possibility of the client having to upload a mobilet to the server, which then needs

to be deployed. This means service interruption, and also introduces a tight coupling

between the configuration on the client device, and the configuration on the server.

2.1.6 MADAM

The MADAM middleware [16] uses a different approach to context-aware application

adaptation. MADAM introduces the idea of planning within context-aware middleware.

Planning describes the run time process of both selecting and evaluating different compo-

sitions (known as plans) of the application’s component framework, in order to determine

which one will yield the highest utility for the end user. The utility is a measure of the ex-

pected degree of end-user fulfillment, and is calculated using property predictor functions

for each component. This is a composite function which yields values indicating how the

application QoS will be affected by assuming a particular composition.
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2.1.7 MUSIC

The MUSIC middleware [17], which is an extension to MADAM, uses the same approach

to context-aware adaptation with the exception that interchangeable support is provided

for services as part of the planning process. This means that when there is a context

change on a device, the MUSIC middleware can incorporate remote services as part of

the updated application configuration. In light of this, the objective of MUSIC is to

facilitate support for the operational vagaries associated with remote service providers.

When a service is discovered by MUSIC, it will attempt to negotiate a reasonable service

level agreement (SLA) with the service. This SLA agreement is then stored for later use

in the planning process. Conversely, the service provider QoS can be negotiated during

the planning process, as long as the SLA with the service provider is itself dynamic.

No empirical performance metrics are published to elucidate what type of overhead is

associated with the MADAM and MUSIC component-based planning frameworks. How-

ever, it is safe to postulate that some sort of performance overhead must exist by virtue

of the different plans, including their property predictor and utility functions, that must

be evaluated during a change in operational context. The dynamic service QoS negotia-

tion capabilities of the MUSIC middleware will also add to the total cost of the overhead

associated with the planning process. The solution outlined in this dissertation will not

support dynamic negotiation, nor the advertisement of SLAs. However, it will provision

the programmer with a domain specific language (DSL), which will allow the specification

of ranges of QoS that are implicitly catered for.

2.2 Program slicing

Program slicing [18] is a term that was first coined by Mark Weiser in 1981. Weiser

proposed a technique of slicing a program, which entails decomposing a program into a

minimal independent form of the original source. This decomposed subset of the original

source code is known as a program slice. A slicing criterion represents a point of interest
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in the program such that a slice can be calculated. A criterion C in a program P can be

defined as

C =< i, V >

where i is a point in the program P, and V is a subset of variables in P. When a

program slice is calculated according to the slicing criterion C, the slice will comprise

all of the constituent parts of the program P that may affect the set of variables V.

Slicing a program according to its slicing criterion, is referred to as static program slicing.

However, dynamic program slicing [19] is a way of slicing a program according to the

parts of a program that do affect the subset variables V, for a particular criterion. It

is this decompositional nature of program slicing that resonates with the slice-oriented

methodology outlined in this dissertation.

The construction of program dependence graphs are a popular technique for calculating

a program slice. The program dependence graph [20], which was originally pitched as a

means for compiler optimisation, was also proposed as a useful technique for performing

intra-procedural program slicing. The dependence graph models statements and control

predicates as vertices, while data and control dependencies are modelled as edges, as

shown in figure 2.1.
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Figure 2.1: Example of a program dependence graph [1]

Slices are calculated by choosing a vertice and traversing the dependence graph back-

wards, which is also known as calculating vertex reachability. The system dependence

graph [1] extends the program dependence graph to facilitate inter-procedural slicing,

and has been extended to support object-oriented programs as well [21, 22, 23, 24,

25]. The difference between intraprocedural-slicing and interprocedural-slicing, is that

interprocedural-slicing allows program slices to be calculated that cross procedure bound-

aries. Figure 2.2 shows an example of a system dependence graph, which is a collection

of program dependence graphs connected by both call and parameter edges. Call edges

connect method call vertices with method entry vertices, while parameter edges represent

the data flow between method parameters and method arguments. The problem how-

ever, is that slices calculated from a system dependence graph are not executable [26].

This dissertation requires the calculation of executable slices, and as such requires a more

bespoke dependency graph.

There are many applications of program slicing such as code maintenance, parallel

computing, code comprehension and testing [27]. Another application of program slicing

is a scenario-oriented program slicing technique [28]. This approach slices programs under
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Figure 2.2: Example of a system dependence graph [1]. Control edges are shown in bold,
and arcs represent intraprocedural flow dependencies. Parameter-in, parameter-out and
call edges are represented by dashed lines
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different execution scenarios, where a scenario is represented as a UML sequence diagram.

The sequence diagrams are transposed into more abstract entities, from which slices can

be derived using the following formula

ξ =< S, T,X >

where S denotes the scope where a scenario is actually reified. T is the trace, which sym-

bolises all of the method calls and method returns that are executed in the program. The

methods included in a trace will be determined by the dependencies within the enclosing

code blocks, which contain control predicates. The corollary is that only certain methods

will need to be called, whereas other methods within the sequence will be excluded. These

excluded methods are denoted by the set X. This approach bears similarity to the slice-

oriented methodology in that code relevant to a scenario needs to be identified before

slicing occurs. With the slice-oriented methodology, a criteria represents certain client

context conditions which must be true in order for certain code to be executed. These

criteria must be identified before slicing occurs. The scenario-oriented slicing methodology

however, requires more intermediate steps before slicing can occur.

Another similar application of program slicing, which inspires this dissertation, uses

XML tags instead of UML diagrams to identify parts of a program that are associated with

a particular scenario [29]. Using this approach allows 2 types of slices to be generated.

The first type is a scenario-specific slice, which identifies source code that is unique to a

specified scenario id. The second type of slice identifies a compilable scenario-specific slice.

The authors developed a macro for the Visual Studio 2005 IDE which allows the insertion

of XML tags at different points in the source code, and the tags have different scope

depending on where they are incorporated. Instead of preceding methods with comment-

based XML tags, the slice-oriented methodology will use Java annotations. Also, for a

scenario-specific slice, the authors do not indicate exactly how externally dependent code

is determined, in order to make the scenario slice compilable; there is no mention of the

application of any sort of dependence graph. Furthermore, making code scenario-specific
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requires the inclusion of XML tags before all code that is relevant for the scenario. This

includes methods and class variables, and could result in code that is very cluttered

and difficult to comprehend. The slice-oriented approach only requires that methods be

annotated with a single annotation, containing only 1 associated element.

2.3 Summary

This chapter has conveyed the seemingly inextricable link between context-awareness and

application adaptation, in order to ensure that the end user’s experience is impeded in

as minimal-a-manner as possible. The different approaches that have been explored in

this chapter show how context-aware middleware can perform application adaptation [14],

service adaptation [7] and service binding with QoS negotiation [9, 17]. The use of re-

flection is a popular technique for the introspection of run time configurations [14, 15]

in order to adapt an application effectively. However, leveraging reflection for software

adaptation requires careful consideration. For example, the use of reflection for inter-

cepting method calls has the propensity to incur a considerable overhead [30]. Although

the VOLARE middleware intercepts service requests, it is not specified exactly how this

is done. Notwithstanding, the overhead associated with operation interception reflection

would not bode well for a resource-constrained device. The use of a QoS broker also

featured in [9], which is not an ideal solution for use in ubiquitous computing due to the

vagaries of network connectivity. The slice-oriented methodology will relieve the client

device of application adaptation; it will only require the client to garner different context

properties from its underlying operating system, which will be sent as a serialised object

to the service.

Examples of program slicing have shown that slicing is a useful technique for decom-

posing a program in accordance with abstract scenarios [28, 29]. A scenario is a rather

subjective term, which means that it can be extended to fit the slicing technique within

this dissertation. As mentioned, the slice-oriented methodology requires executable slices;
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system dependence graphs will not suffice as executable slices cannot be generated. The

result is that a more bespoke dependence graph will be required in order to generate

executable program slices.
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Chapter 3

Design

3.1 Requirements

The design of the slice-oriented programming model is discussed in this chapter, and is

closely aligned with the research aims of this dissertation. The generation of the web

service slices will comprise a 2 stage process, namely functional decomposition and pro-

gram slicing. In order to reify the slice-oriented programming model, there are 5 core

requirements to consider in the design phase. These are:

� The design of a DSL grammar

� The design of a parser for parsing a DSL instance

� The design of a functional decomposition engine in order to decompose service

functionality, according to a DSL instance

� The design of a dependence graph required for slicing

� The design of a program slicer for further decomposing source code

The implementation of these requirements will result in a synthesised programming-tool,

which will assist the programmer in generating the necessary QoS-related compositions
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at build-time, after the core service functionality has been fully implemented. These

requirements will be explored in further detail in this chapter.

3.1.1 Domain-specific language

The benefit of web services is that they are innately platform independent. This means

that applications can be represented in a uniform manner, within an environment charac-

terised by hardware heterogeneity [31]. However, it is important that the SOA application

also account for hardware heterogeneity from a QoS perspective. This means that the

application should be inherently open in so far that it can be recomposed to facilitate

clients of varying hardware heterogeneity over time [32]. By using a composition lan-

guage, the level of abstraction of the service logic composition can be raised from the

use of programming and inheritance, to the explicit composition of the service’s software

components [33].

A DSL allows this higher level of abstraction to be modeled such that at both build

and maintenance-time, it is not incumbent on the programmer to make any code modi-

fications, in order to adjust the service logic composition. Before proceeding further, it

is necessary to discern the traditional meaning of service composition with that used in

this dissertation. Within an SOA environment, service composition relates to composite

service composition, involving the interaction of a multitude of web services via a web

service orchestration language. In this dissertation, service composition relates to the

composition of an application’s constituent software components, within a stand-alone

web service’s application logic. Using a DSL to raise the level of abstraction for the

service programmer exhibits additional benefits. For example, programmer productivity

is increased by virtue of the ease of understandability of the DSL, as well as the auto-

generation of code after the DSL is transposed to a programming language [34].

The DSL required for the specification of the slice-oriented compositions will comprise 3

sections as shown in figure 3.1. The first section of the DSL will allow the programmer
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Figure 3.1: Proposed DSL structure

to define context properties. These properties will relate to the information that must be

garnered from a client device at service invocation time, in order to execute the appro-

priate service slice. After the service programmer defines the client context properties, a

class will be automatically generated that will encapsulate these properties. This class

will be serialisable, and will be sent from a service client to the service as part of the

invocation. The benefit is that this serialisable object can be advertised in the service’s

web services description language (WSDL) file. The second section of the DSL will use

these context properties to allow the programmer to semantically categorise ranges of

these context properties. These categorisations will be referred to hereafter as client pro-

files. An example of a client profile could be a WeakClient profile. This particular profile

would encompass a modest range of values for the client context properties defined in the

DSL. Listing 3.1 shows an example of how a WeakClient would be defined in the DSL.

Listing 3.1: Example definition of a “WeakClient” client profile

1 definitions {

2 WeakClient {

3 cpu < 120 , //120 Mhz

4 ram < 10 , //10 MB

5 }

6 }
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The definitions of the client profiles will be wrapped in a struct entitled definitions. The

programmer will be able to auto-generate a class that can bind, or return, an executable

slice at run time, based upon the profile of the client making a service request. This

class will be referenced hereafter as a SliceBinder. The third and final section of the DSL

allows the service programmer to define the functional decompositions, from which the

final executable slices will be generated. Figure 3.2 shows the linking of client profiles to

the underlying service logic, before slicing occurs.

Figure 3.2: QoS-related compositions section of dsl links client profiles with underlying
service logic. Note that this diagram shows service code that has not yet been sliced

3.1.2 Domain-specific language parser

After the programmer has finalised the DSL instance for the compositions that are to

be generated, the DSL instance will need to be transposed to a format that can be

understood by the functional decomposition engine. This will require accessing an in-

memory structural representation of the DSL, so that the relevant information can be

extracted. An XML format of the DSL instance would be the most judicious choice, as

an XML document is easily comprehended, extensible and platform-neutral.
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3.1.3 Functional decomposition

The functional decomposition stage will be the first of the 2 step process for generating

the final web service slices. Several prerequisites must first be addressed in order for the

development of the decomposition engine to succeed. First, the decomposition engine will

need to make copies of source code which is to be decomposed. Secondly, the decompo-

sition engine will require that the programmer place markers in the source code to flag

functionality that is QoS-centric. These markers will be used to correlate functionality

with specific client profiles, through the QoS-related compositions section of the DSL, as

shown in figure 3.2. The programmer will avail of Criteria annotations which can precede

QoS-related methods in the underlying service source code. A criteria annotation will

have 1 element, entitled profile, which serves as a handle for referencing these methods

from the DSL. Methods annotated with a criteria annotation will be known hereafter as

criteria methods.

In order to perform the actual decompositions, the decomposition engine will need

functionality to parse the service source code such that criteria methods can be removed

according to the QoS-related compositions in the DSL. Before all of this can happen

however, the composition XML file, generated by the DSL parser, will need to be read

into memory so that the decomposition engine can infer the decompositions it needs to

perform. The resulting code from this stage will then need to be sliced.

3.1.4 Dependency graph generation

A member dependence graph will need to be constructed for each method in the de-

composed source code, and collectively, these graphs will represent the class member

dependencies for each method. The rationale for this step is explicated with an example.
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Listing 3.2: Simple FileUploader class with criteria methods

1 public class FileUploader {

2 private static final int compressionLevel = 3 ;

3

4 @Criteria (profile = ”power fu l ” )

5 public boolean uploadFile (File file ) {

6 // upload the f i l e us ing w i f i connect ion . . .

7 }

8

9 @Criteria (profile = ”average ” )

10 public boolean uploadFile (File file ) {

11 File compressedFile = compressFile (file ) ;

12 // upload the f i l e us ing 3G connect ion . . .

13 }

14

15 private File compressFile (File f ) {

16 // compress the f i l e to reduce s i z e

17 // according to the ” compressionLeve l ” v a r i a b l e

18 }

19 }

Consider the FileUploader example class shown in listing 3.2, which contains 2 criteria

methods for uploading a file to a repository. Supposing the decomposition engine, as part

of the decomposition process, has to remove the uploadFile method annotated with the

average criteria. When this method is removed, the compressFile method, which was

only used by the now-deleted uploadFile method, still remains in the class. Additionally,

the compressionLevel class variable, which is only required by the compressFile method,

is still present. This situation is undesirable for several reasons

� The FileUploader class now contains redundant code which is not required by any

API related functionality

� This redundant code may present an ambiguous situation for the programmer when

attempting to comprehend the code

� The number of lines of code is unduly increased by the presence of the redundant

class members
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Figure 3.3: An example member dependence graph for a method entitled resizeImage.
The graph shows the different types of dependencies that can exist between a method,
and other class members. The members that are shaded out, are other class members
which are not dependees of the resizeImage method. Local members are not included in
the member dependence graph.

As a result, the complexity of the FileUploader class will be higher than if the compress-

File method were not present. The member dependence graph will be used to infer the

dependencies that exist between remaining class members, after a class has been decom-

posed by the decomposition engine. These dependencies will be represented by target

edges. A class member can be either a method or a non-local variable, and will be rep-

resented as a vertex within the graph. Figure 3.3 shows a sample member dependence

graph.
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3.1.5 Program slicer

The program slicer is the 2nd step, of the 2 stage process, for generating executable

slices from the web service logic. The program slicer will further decompose source code

that has been output from the decomposition engine. It will request the generation of a

member dependence graph for each method, and will then use this graph to calculate the

executable slices. Recall that vertices in the member dependence graph represent variables

and methods, and edges are indicative of dependencies between these class members. The

slicing will thus be a graph reachability problem. For example, for a given graph G, the

reachability R, of vertex j from vertex i, is defined as

R(i, j) = 1

if j can be reached from i. Otherwise

R(i, j) = 0

if j cannot be reached from i. This will allow redundant code elements to be removed

from the class and will result in the final executable slice. One crucial point here is that

only private class members are sliced out of the source code. Public members are not

sliced out, as doing so could break the class API. It is therefore assumed that the service

programmer can employ good encapsulation where necessary.

3.2 Design decisions

Each of the build-time generated slices is calculated from a class written by the program-

mer. In a way, the slices can be perceived as children of the class from which they are

derived. In reality however, slices are not subclasses of the class from which they are

calculated, as they do not extend it. Therefore, the slices cannot be used in a polymor-

phic manner without the introduction of some sort of interface. For example, consider

a class ServerFileManager that contains a sendFile method as shown in listing 3.3. An
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executable ServerFileManager slice, for file transfer using TCP/IP over a wifi connection,

is shown in listing 3.4. Similarly, an executable ServerFileManager slice for file transfer

using (UDP) over a 3G connection, is shown in listing 3.5.

Listing 3.3: An example class for transferring files to a server

1 public class ServerFileManager {

2 private Socket tcpConn ;

3 private DatagramSocket udpConn ;

4

5 @Criteria (profile = ” w i f i ” )

6 public void sendFile (File file ) {

7 tcpConn = new Socket ( . . . ) ;

8 ObjectOutputStream oos =

9 new ObjectOutputStream (tcpConn . getOutputStream ( ) ) ;

10 oos . write (file ) ;

11 }

12

13 @Criteria (profile = ”3G” )

14 public void sendFile (File file ) {

15 udpConn = new DatagramSocket ( . . . ) ;

16 byte [ ] fileBytes = getBytes (file ) ;

17 DatagramPacket packet = new DatagramPacket (fileBytes ) ;

18 udpConn . send (fileBytes ) ;

19 }

20

21 private byte [ ] getBytes (File file ) {

22 byte [ ] bytes = new byte [ ( int )file . length ( ) ] ;

23 // ge t the by t e s f o r the f i l e . . .

24 return bytes ;

25 }

26 }

Listing 3.4: ServerFileManager slice for using TCP/IP to transfer a file using wifi

1 public class ServerFileManager {

2 private Socket tcpConn ;

3
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4 public void sendFile (File file ) {

5 tcpConn = new Socket ( . . . ) ;

6 ObjectOutputStream oos =

7 new ObjectOutputStream (tcpConn . getOutputStream ( ) ) ;

8 oos . write (file ) ;

9 }

10 }

Listing 3.5: ServerFileManager slice for file transfer using UDP with a 3G connection

1 public class ServerFileManager {

2 private DatagramSocket udpConn ;

3

4 public void sendFile (File file ) {

5 udpConn = new DatagramSocket ( . . . ) ;

6 byte [ ] fileBytes = getBytes (file ) ;

7 DatagramPacket packet = new DatagramPacket (fileBytes ) ;

8 udpConn . send (fileBytes ) ;

9 }

10

11 private byte [ ] getBytes (File file ) {

12 byte [ ] bytes = new byte [ ( int )file . length ( ) ] ;

13 // ge t the by t e s f o r the f i l e . . .

14 return bytes ;

15 }

16 }

Supposing that a ServerFileManager client class wishes to invoke the sendFile method.

Imagine that this client is characterised by a 3G connection, as specified in the DSL.

In this particular case, the selected slice should be the ServerFileManager slice for 3G

clients, as shown in listing 3.5. Recall that the responsibility of selecting the correct

slice to execute for a client lies with the SliceBinder. The SliceBinder will know what

slice to select, as it contains the necessary conditional predicates as defined in the client

profile section of the DSL. However, the issue here is that the client shouldn’t care what

slice it receives from the SliceBinder. All that it should worry about is that it has a

ServerFileManager instance. In other words, the slices that are returned to clients from
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the SliceBinder should be polymorphic. In order to achieve polymorphism, it was decided

that the programmer create only 1 interface for the class representing the entry point into

the compositions generated according to the DSL. Slices that are generated from this class

will also implement this interface, which means that polymorphism is achieved. Figure 3.4

shows a UML class diagram for the ServerFileManager and SliceBinder classes, as well

as the generated slices. The SliceBinder would contain 1 or more NetworkFileManager

instances, each of which references one of the ServerFileManager slices. A client would

call the getImplementation method of the SliceBinder and pass in its operational profile in

the form of a ClientProfile instance. This class contains the context properties as defined

in the context properties section of the DSL. The SliceBinder will then return the slice

which will give the best QoS for the client.

Figure 3.4: UML diagram showing the introduced interface NetworkFileManager to ensure
that the ServerFileManager slices are polymorphic.
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Another important decision which impacts the implementation, is where to place the

generated slices. It was decided to place each generated slice into a package with a cus-

tomised qualified name. This qualified name will be the same name as the enclosing

package of the class from which the slice is calculated, except that it will also contain

the name of the client profile with which this slice is associated. For example, assume

the package name of the ServerFileManager class from listing 3.3 is server.io. The gen-

erated ServerFileManager slice for wifi clients will thus be placed into a package entitled

server.wifi.io, while the ServerFileManager slice for 3g clients will be placed into a package

with a qualified name of server.3g.io. The alternative to placing the slices into propri-

etary packages would be to rename the classes, as packages cannot contain classes with

duplicate names. Using packages is a cleaner solution, as their purpose after all is to avoid

naming conflicts.

Apart from automating the generation of the slices, it was also decided to automate

the generation of the ClientProfile and SliceBinder classes, in order to make the program-

mer more productive. The information necessary to build these classes can be extracted

from a DSL instance. Also, the decomposition and slicing processes will be coalesced

into one operation, that the programmer can execute within an integrated development

environment (IDE).

3.3 Programmer use case

Figure 3.5 shows a use case diagram providing an overview of the steps the programmer

will take to generate the executable slices, from start to finish. The first step is to

define the DSL instance. Then, the programmer can auto-generate the ClientProfile class,

containing the context properties from the DSL. Next the programmer can generate the

executable slices. Following this, the programmer will develop the entry point interface

for the slices. The final step involves the programmer auto-generating the SliceBinder

class, so that the executable slices can be returned to a caller.
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Figure 3.5: Slice-oriented programmer use case
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Chapter 4

Implementation

This chapter will explore the implementation steps necessary to develop a prototype slice-

oriented programming tool. The implementation details will be aligned with the design

requirements presented in the previous design chapter. The chapter begins by exploring

the technologies chosen for the implementation.

4.1 Chosen technologies

4.1.1 Programming language

The Java programming language was chosen as the language with which to develop the

slice-oriented tool. It was also intended to support only Java projects for the generation

of the executable slices. However, the tool could be extended to support other object-

oriented programming languages that allow code to be annotated. The tool was developed

using Java sdk version1.6.0 201. The Java sdk version 1.6.0 262 was initially used to

develop the tool, however there were issues using this version, which will be outlined later

in this chapter.

1http://www.oracle.com/technetwork/java/javase/6u20-142805.html
2http://www.oracle.com/technetwork/java/javase/6u26releasenotes-401875.html
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4.1.2 Environment

The Eclipse IDE3 was chosen as the target environment in which the slice-oriented tool

can be used, and the version used for development was Helios version 3.6.1. One of the

real benefits of Eclipse is that it is an open and extensible environment by virtue of its

plugin framework. This meant that a working prototype of the slice-oriented tool could

be delivered as an eclipse plugin. Furthermore, an added benefit of using Eclipse was

the availability of the multitude of native frameworks, which provide support for many

different design requirements.

4.1.3 Domain specific language

The Xtext plugin4 is one such native framework, which allows DSL grammars to be

defined. The end product is a parser, a metamodel and a text editor for creating DSL

instances, coalesced into a single project. Creating a DSL instance using the generated

text editor provides a standard Eclipse outline view for the DSL, a compiler for flagging

syntax errors, code completion functionality as well as a parser for interpreting the DSL

instance. For any programmer familiar with Eclipse, creating a DSL instance via the

generated text editor is both simple and intuitive.

4.1.4 DSL transformations

Xpand5 is a statically typed template language that can be used to generate code from the

Eclipse Modelling Framework (EMF) representation of a DSL. It supports the definition

of templates for any languages, and as such, will allow a DSL instance to be transposed

to an XML format. It also provides a comprehensive syntax for defining and expanding

template blocks, control flow, file generation and much more.

3http://www.eclipse.org/
4http://www.eclipse.org/Xtext/
5http://www.eclipse.org/modeling/m2t/?project=xpand
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4.1.5 Source code manipulation

Java Development Tooling6 (JDT) is a framework which provides all the necessary plu-

gins to allow a programmer to develop a Java program in Eclipse. Collectively, these

plugins make up the Eclipse Java Perspective. Included in the JDT is an infrastruc-

ture known as Core7, which comprises a set of classes that model Java programs and

resources within Eclipse. By leveraging the JDT Core API, Java programs, and their

corresponding resources, can be manipulated for specific purposes. This api, which is

contained in the org.eclipse.jdt.core package, will provide the functionality required for

building the decomposition engine. The Core API also contains functionality for rep-

resenting Java source code as an abstract syntax tree (AST), which is contained in the

org.eclipse.jdt.core.dom package. This will be used for constructing member dependence

graphs in order to perform slicing.

4.1.6 Alternative technologies

Several slicing tools were considered for the implementation of the slicer, none of which

were a suitable fit. As a result, the slicer for this dissertation was developed entirely from

scratch. Some of the slicing tools that were examined were:

� JSlice[35] is a dynamic slicing tool used for code comprehension and debugging.

This tool was of no practical use to this dissertation as the generated slices are not

executable. Also, the slicer only works on Fedora versions 3 and 4. The slice-oriented

prototype tool however, was developed on a machine running Windows 7.

� Kaveri[36] is an Eclipse plugin, which uses the Indus slicing framework8 to provide

a user interface (UI) for slicing Java programs. This seemed like a promising tool

to extend for this dissertation, however there were 2 major problems. Kaveri only

works within Eclipse version 3.1.2, and it requires Java version 1.4.2 to run. The

6http://help.eclipse.org/indigo/nav/3
7http://help.eclipse.org/indigo/topic/org.eclipse.jdt.doc.isv/guide/jdt int core.htm
8http://indus.projects.cis.ksu.edu/
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slice-oriented prototype requires Java version 1.5 at a minimum, as it relies on the

use of Java annotations.

� StaticSlicer9 is another tool used for generating static slices from a Java program.

Once again however, the generated slices are not executable.

The Soot10 framework is a tool used to optimise or transform Java bytecode. Bytecode can

be transformed into a typed 3-address representation, known as Jimple. The jimple code is

a convenient way of performing byte code analysis, as there are only 15 different statements

that need be interpreted. Also, there is an extensive api for performing different types of

analysis on jimple representations. For example, the Soot API allows call graphs to be

constructed for specific entry points in a program. In addition, data dependencies can

be analysed for each of the methods in the call graph. However, this approach did not

succeed for 2 reasons. The first reason was that the entry points needed for generating a

call graph can only be specified for a class that contains a main method. Entry points

cannot be defined for arbitrary methods in a class. Secondly, the overall quality of the

API documentation for the Soot framework is very poor, which can hamper progress

considerably. In the end, it was also decided to build the required dependence graph from

scratch, using the org.eclipse.jdt.core.dom package.

4.2 Deployment

The slice-oriented prototype was developed as an Eclipse plugin that can be installed in

any Eclipse Helios IDE. Deploying the prototype as a plugin was more beneficial as it

has greater portability and ease of use for the service programmer. The plugin includes 3

actions that the service programmer can invoke, which are:

� Generate ClientProfile, generates a serialisable class enclosing the client context

properties as defined in the DSL

9http://sourceforge.net/projects/someslice/
10http://www.sable.mcgill.ca/soot/
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� Generate slices, performs functional decomposition and slices the resulting source

code

� Generate slice binder, generates a binder for returning executable slices with regard

to the client’s operational context

Note that the Generate slices action includes both the functional decomposition and slic-

ing steps together. Each of these actions are implemented in the plugin as commands,

which are extension points defined within the plugin. A plugin extension point represents

a point to which other plugins can contribute functionality. Commands represent func-

tionality in an abstract manner, such that different implementations can be used by a

single command. There are 3 requirements for implementing a plugin command, which

are, the declaration of the command itself, a handler which defines the command’s func-

tionality, and the UI widget to which the command contributes. Declaring the command

and its menu contribution are simple tasks that can be achieved using point and click

functionality. The implementation of the command handler however, requires the decla-

ration of a class which extends the abstract class org.eclipse.ui.command.AbstractHandler.

This class contains a concrete method execute, which takes an ExecutionEvent instance

as a run time argument. The run time ExecutionEvent instance encapsulates all the nec-

essary information that the execute method needs. For example, the trigger that fired

the execute method, and the application context at that point in time. There is an Ab-

stractHandler concrete implementation for each of the 3 commands defined within the

slice-oriented tool. Each command is placed in the package explorer menu by leveraging

the org.eclipse.ui.menus extension point. This means that the programmer simply makes

a right click to view the menu with the 3 commands.
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4.3 DSL implementation

The DSL grammar for defining QoS-compositions is show in Appendix B. The grammar

syntax that Xtext employs is very similar in nature to extended backus-naur form. At the

heart of Xtext is EMF, which comprises a modelling and code generation framework. EMF

can model a DSL grammar using the XML metadata interchange (XMI) standard. EMF’s

ECore meta-model can then reify the XMI instance as a series of Java classes. Xtext relies

on the ECore meta-model to build an in-memory object graph, or AST, representing a

DSL instance. An overview of the ECore meta-model is shown in figure 4.1.

Figure 4.1: An overview of the EMF Ecore meta-model. The shaded classes represent
abstract classes.

The most relevant classes to point out from the ECore model are

� EClass, represents a class which may contain attributes

� EObject, the base class from which all EClass classes are derived

� EAttribute, represents a class attribute which consists of a name and a type
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� EDataType, used to represent classes that do not derive from the EObject base

class

� EReference, used to associate EClasses with each other

� EPackage, represents a collection of EClasses

When defining the DSL grammar, 2 types of rules can be used, namely parser rules and

terminal rules. When a DSL instance is parsed, the lexing phase will parse the text input

into a series of tokens. These tokens are distinguished according to terminal rules defined

in the DSL grammar. An example of a terminal rule from the slice-oriented DSL grammar

is shown in listing 4.1.

Listing 4.1: Example of a terminal rule that builds double primitive data types from

tokens received by the lexer

1 terminal DOUBLE :

2 INT ' . ' (INT )+

3 ;

A parser rule defines a rule whereby a parser tree can be constructed which comprises

a series of tokens. In Xtext, these rules are used to build the AST which comprises a

series of a EClasses. Listing 4.2 shows the second statement within the slice-oriented DSL

grammar. This is a declaration of an EPackage, which will encapsulate all of the EClasses

generated from the different parser rules within the DSL. It includes the name of the

EPackage, which is criteriaDsl, and a uniform resource identifier (URI) for the package.

Listing 4.2: The EPackage declaration within the slice-oriented DSL grammar

1 generate criteriaDsl ”http ://www. xtext . org / s l i c i n g / Cr i t e r i aDs l ”
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The Model parser rule, as defined in the slice-oriented DSL, is classified as the entry

rule for the DSL, as shown in listing 4.3. This rule contains a projectName attribute,

which indicates the Java project where the service functionality resides.

Listing 4.3: Example of the Model entry rule for the slice-oriented DSL grammar

1 Model :

2 ” p r o j e c t ” projectName=STRING

3 (properties+=Property )+

4 (definitions+=Definition )+

5 (criteria+=Criterion )+

6 ;

The reason for allowing the programmer to specify the project name in the DSL is because

there can be many projects in an Eclipse workspace, and the slice-oriented tool needs to

know from which project to generate the slices. The properties attribute contains a list

of Property objects, which represent the different client context properties that can be

defined by the programmer. The definitions attribute references a series of Definition

objects, each of which represents a client profile. Each client profile is characterised by

programmer-defined conditions that must evaluate to true, in order for the presence of a

particular type of client to be detected by the web service. The DSL prototype only allows

2 conditions per client profile, however this can be extended. Finally a list of Criterion

objects, which represent the QoS-related compositions, is assigned to the criteria attribute

in the Model object. The Property, Definition and Criterion parser rules are shown in

Appendix B, while figure 4.2 shows an overview of the structure of an instance of the DSL

grammar. Client context properties are defined in the properties struct, client profiles are

defined in the definitions struct, while each QoS-related composition is defined in its own

Criterion struct.

After the grammar has been defined, a series of compiler components can then be

automatically generated for the slice-oriented DSL using a standard Xtext workflow. The

components include a code formatter, an Eclipse outline view configuration, a content
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Figure 4.2: Example overview of the structure of a slice-oriented DSL instance
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assist, a new-project wizard, a model validator, as well as EMF code for the generated

models. This means, when defining a new DSL instance, the programmer gets real-time

syntax checking and code assist, as well as an outline view of the DSL instance.

4.4 DSL transformation

Now that the DSL grammar has been defined, an instance of the DSL needs to be trans-

lated into a format suitable for the decomposition engine. During the design phase, it was

decided that the decomposition engine would consume an XML format of a DSL instance,

in order to perform the decompositions on the source code. This was a 2 step process.

The first step was to define a template using Xpand, while the second step was to define

an XML parser for the decomposition engine.

4.4.1 Xpand template

The benefit of Xpand, is that it can be used in conjunction with Xtext. It acts as a

bridge by providing a level of abstraction for accessing run time objects generated from

the DSL by EMF Ecore. The development of the Xpand template was straightforward

by virtue of its intuitive syntax. XML tags are simply wrapped around the Xpand syntax

in the template, in order for the final XML format to the defined. As mentioned in the

DSL implementation section, one of the auto-generated artifacts from running the DSL

workflow is a new project wizard, which allows programmers to create instances of the

slice-oriented DSL. The DSL workflow also allows a dependency to be injected into DSL

instances created using the new project wizard. This dependency can specify the project

that contains the Xpand template necessary for translating a DSL instance into XML.

This means that the service programmer will not have to explicitly redefine the necessary

Xpand template for every slice-oriented DSL instance that is created. Figure 4.3 shows

an overview of the transformation process. After the service programmer has defined the

DSL instance, they need to run a workflow which will generate the final composition.xml
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Figure 4.3: Overview of the process for transforming a slice-oriented DSL instance to
XML
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file from the template. This workflow is intrinsic to the Xpand infrastructure.

4.4.2 XML parser

An XML parser was developed for the decomposition engine in order to parse the auto-

generated composition XML file. This parser, which is defined in the Parsing module,

was developed using the event-based Streaming API for XML (StAX)11. The meant that

the entire XML file did not need to be read into memory, which results in a much smaller

memory footprint than using a document object model (DOM) parser. The parser exposes

an API for reading the different sections of a DSL instance, and is shown in table 4.1.

A requirement for the parser is that there are classes which can be used to model the

different elements within the XML composition file. These data classes were defined in

the DSL Modelling module.

Table 4.1: DSLParser API

Method name Return Type Description
getProjectName() String Returns the project name from

the DSL
getDefinitions() List : Definition Returns the client profile defini-

tions from the DSL
getProperties() List : Property Returns the client context prop-

erties from the DSL
getCompositions() Map : String ⇒ CriterionWrapper Returns a map of the client pro-

file names mapped to their com-
positions

4.5 Functional decomposition engine

At the heart of the decomposition engine is the org.eclipse.jdt.core API. This API rep-

resents a Java Model, which allows Java resources to be accessed and manipulated as

required. There are a total of 17 different Java elements that can be represented within

11http://stax.codehaus.org/Home
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the Java model, as shown in table 4.2. A variety of these elements were used to build a

CriteriaProcessor decomposition engine whose operation is best describe by example in

figure 4.4.

The example scenario shows 2 classes written by the service programmer, namely

ImageManager and Scaler. The ImageManager class contains 2 criteria methods, which

are named sendImage. Likewise, the Scaler class also contains 2 criteria methods named

scale. The corresponding DSL instance is also shown. Within the definitions struct of

the DSL, 2 client profiles are defined, which are a powerfulClient profile and a weakClient

profile. Below the definitions section of the DSL, there are 2 criterion structs defined, one

for each client profile. At build-time when the slice-oriented tool is run, the CriteriaPro-

cessor will use the Parsing module to read the DSL into memory. After this step, every

class containing criteria methods will be loaded into memory using the JDT Core API.

Then, the CriteriaProcessor will examine each of the QoS-related compositions, which

are represented by the criterion structs in the DSL. For each class name in the criterion

struct, the CriteriaProcessor will examine the criteria methods that are to remain in the

corresponding source class. All other criteria methods for that particular method will be

removed, using the JDT Core API. For example, consider the powerfulClient criterion

struct shown in the example DSL. The CriteriaProcessor will interpret this as - “Remove

all ‘sendImage’ criteria methods from class ‘ImageManager’ except those annotated with

a ‘strong’ criteria’. Remove all ‘scale’ criteria methods from class ‘Scaler’ except those

annotated with a ‘strong’ criteria”. The exact same process applies to the weakClient

criterion in the DSL. Looking at the ImageManager class in the diagram, it is evident

which criteria methods belong to which composition, and which composition belongs to

which client profile. The green line shows the criteria methods that belong to the compo-

sition associated with a powerfulClient, while the orange line shows the criteria methods

that belong to a weakClient. After running the decompositions, the CriteriaProcessor will

then output the resulting decomposed source code. It must be noted that the number of

copies of a class involved in the decomposition process, will be equal to the number of

43



Figure 4.4: Overview of the decomposition process
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DSL-specified compositions involving that class, assuming that a composition comprises

a combination of all the disjoint criteria methods defined in that class. As the diagram

shows, there are now 2 copes of both the ImageManager and Scaler classes which are

ready for slicing.

Table 4.2: Eclipse JDT Core Java model elements

Element Description
IJavaModel Represents the root Java element, corresponding to the workspace.
IJavaProject Represents a Java project in the workspace. (Child of IJavaModel)
IPackageFragmentRoot Represents a set of package fragments as a folder, JAR or ZIP file. (Child

of IJavaProject)
IPackageFragment Represents the portion of the workspace that corresponds to an entire

package, or a portion of the package. (Child of IPackageFragmentRoot
)

ICompilationUnit Represents a Java source (.java) file. (Child of IPackageFragment )
IPackageDeclaration Represents a package declaration in a compilation unit. (Child of ICom-

pilationUnit )
IImportContainer Represents the collection of package import declarations in a compilation

unit. (Child of ICompilationUnit )
IImportDeclaration Represents a single package import declaration. (Child of IImportCon-

tainer )
IType Represents either a source type inside a compilation unit, or a binary

type inside a class file.
IField Represents a field inside a type. (Child of IType )
IMethod Represents a method or constructor inside a type. (Child of IType )
IInitializer Represents a static or instance initializer inside a type. (Child of IType

)
IClassFile Represents a compiled (binary) type. (Child of IPackageFragment )
ITypeParameter Represents a type parameter.
ILocalVariable Represents a local variable in a method or an initializer.
IAnnotation Represents a Java 5 annotation.
IAnnotatable Represents a type, a field, a method, a local variable, or a package dec-

laration that can be annotated with one or several IAnnotations.

4.6 Member dependence graph and program slicer

The member dependence graph functionality was developed entirely from scratch as slicing

the decomposed source code required a bespoke dependence graph. The eclipse.org.jdt.core.dom

proved a useful API for generating the member dependence graphs, as it allows a com-

pilation unit to be represented as an AST at the statement level. This meant that the
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dependencies for each method in the decomposed class could be determined by drilling

down to the expressions within these statements, in order to determine what methods

and fields are dependees of each expression. An expression within the Java programming

language is any construct which evaluates to a single value. The expression construct

itself can comprise method invocations, class instantiations, variable assignments and

operators. A statement expression, is an expression followed by a semi-colon. Exam-

ples of statement expressions include assignment expressions, pre or postfix increment or

decrement expressions, method invocations and class instantiations.

Within the Core DOM API, source constructs are represented as instances of type

ASTNode, and each ASTNode belongs to a unique AST instance. The ASTParser class

was used to parse the ICompilationUnits generated by the decomposition engine, into

CompilationUnit ASTNode types. Every ASTNode has an accept method for accepting

ASTVisitor instances, which can “visit” the different node types in that AST. Thus, a vis-

itor was created for visiting the methods within each of the ICompilationUnits generated

by the decomposition engine.

The AST parser can accept an ASTVisitor and invoke the visitor’s visit method for

each MethodDeclaration ASTNode within the tree. Within the visit method, the visi-

tor can then access the body of the MethodDeclaration instance and recursively iterate

through each statement, drilling down to any expressions that are indicative of a method

invocation or field access. Only method invocations involving source methods within the

same class are considered. Similarly, only field access for fields within the method’s enclos-

ing class are considered. A method or field access represents a dependency, and as such

will be modeled in the member dependence graph as a target edge. Figure 4.5 shows a

sample AST for each MethodDeclaration AST node type within the ImageManager class,

decomposed according to a weakClient composition. The diagram also shows the decom-

posed source code generated from the CriteriaProcessor module. The decomposed classes,

which are represented as ICompilationUnits, are then parsed as ASTs by the Graphs mod-

ule. An instance of class MethodVisitor, which extends class ASTVisitor, is then accepted
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Figure 4.5: Example AST for decomposed class ImageManager. MethodDeclaration
ASTNodes are shown in bold text in the tree. Names of dependent fields and meth-
ods are show in italics within the leaf nodes.
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Figure 4.6: Class diagram for graphs module

and invoked by the CompilationUnit, so that its methods can be visited. The diagram

shows an AST for methods initSize and sendImage, from the generated decomposed Im-

ageManager class for a weakClient composition, as shown previously in figure 4.4. Each

leaf node in the depicted AST shows the corresponding dependent member within the

enclosing CompilationUnit. Finally, an overview of the classes in the graphs module is

shown in figure 4.6. The MethodVisitor class contains 2 public methods within its API,

visit and getDependencies. The visit method takes an instance of class MethodDeclara-

tion, and is invoked by the CompilationUnit after it has been parsed by the AST parser.

Method getDependencies will return the member dependencies for a single method as a

Map. The map’s key is an IJavaElement representing the source method, and the value

is the set of target edges, or dependencies, for that method. The diagram also shows

some private methods within the MethodVisitor for parsing statements and expressions
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within a method’s body. These are just a small subset of the entire suite of methods for

parsing statements and expressions that were developed for the graph generator. The De-

pendenceGraphGenerator class contains a public method buildMemberDependenceGraph,

which takes ICompilationUnits generated by the decomposition engine, and builds a cor-

responding member dependence graph. This method first calls the private method parse

in order to parse an ICompilationUnit into an AST, which is represented by a Compila-

tionUnit. This method returns the dependence graph as the same map returned from the

getDependencies method, in class MethodVisitor.

The program slicer will call the buildMemberDependenceGraph method for each ICom-

pilationUnit generated by the CriteriaProcessor module. As mentioned in the design

chapter, slicing is performed as a graph reachability problem. The resulting algorithm is

thus relatively straightforward, and is outlined using pseudocode in listing 4.4.

Listing 4.4: Overview of slicing algorithm.

1 public class DecompositionSlicer extends AbstractHandler {

2 public Object execute (ExecutionEvent event ) throws ExecutionException {

3 for (ICompilationUnit unit : getDecomposedUnits ( ) ) {

4

5 // ge t member dependence graph fo r each ICompi lat ionUnit

6 Map<IMethod , Set<IJavaElement>> memberDependenceGraph =

7 MethodDependenceGraph . buildMemberDependenceGraph (unit ) ;

8 sliceCompilationUnit (unit , memberDependenceGraph ) ;

9 }

10 }

11

12 private void sliceCompilationUnit (ICompilationUnit unit ,

13 Map<IMethod , Set<IJavaElement>> dependencyGraph ) {

14

15 // Get a l l p r i v a t e methods and f i e l d s f o r the ICompi lat ionUnit

16 Set<IMethod> privateUnitMethods = getPrivateMethods (unit ) ;

17 Set<IField> privateFields = getPrivateFields (unit ) ;

18

19 // Dele te any p r i v a t e methods t ha t are not reachab l e

20 for (IMethod privateMethod : privateMethods ) {
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21 if ( ! targetMethodEdgeExists (privateMethod , dependencyGraph ) ) {

22 privateMethod . delete ( ) ;

23 dependencyGraph . delete (privateMethod ) ;

24 }

25 }

26

27 // Dele te any p r i v a t e f i e l d s t ha t are not reachab l e

28 for (IField privateField : privateFields ) {

29 if ( ! targetFieldEdgeExists (privateField , dependencyGraph ) ) {

30 privateField . delete ( ) ;

31 }

32 }

33

34 // d e l e t e any redundant imports t ha t may be a s soc i a t ed

35 // with members t ha t have been removed

36 if (codeWasSliced ) {

37 deleteRedundantImports (unit ) ;

38 }

39 }

40 }

The first step in the slicing algorithm is the examination of the Java model for the ICom-

pilationUnit, in order to return all the private methods and fields in the class. Then,

the algorithm will iterate over all the private methods for the class and will check if each

method is the destination of a target edge in the dependency graph. If it is not, then the

method will be deleted. Next, the algorithm will iterate through all the private fields in

the class. Again, each field is checked to see if it is a dependee by checking the dependency

graph for any target edges that point to this field. If the field has no dependents, then it

is deleted. The algorithm also works for transitive dependencies. Finally, any redundant

class imports that are left over after slicing are also removed.

4.7 Architecture overview

Figure 4.7 shows an overview of the functional architecture implemented for the slice-

oriented prototype tool. The architecture is broken into 3 areas. The 2 areas that coa-
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Figure 4.7: Functional architecture overview

lesce into the slice-oriented programming methodology are the Functional Decomposition

Process and the Slicing Process, and both of these processes rely on the the functionality

provided by the Eclipse JDT Core API. Since the Parsing module is responsible for pars-

ing the XML representation of the DSL instance, it will depend on the DSL Modelling

component. The Code Generation module is used for writing the source code decompo-

sitions to file, generating packages as well as any sort of source code manipulation. This

explains why it is a dependee of the CriteriaProcessor module. The CriteriaProcessor is

also dependent upon the Parsing module in order to determine the QoS-related compo-

sitions that are to be generated. Finally, the slicing functionality is modularised into the

Slicing component. It relies upon the Graphs module to generate the member dependence

graphs necessary for slicing.

4.8 Implementation issues

There were 3 main issues encountered while implementing the slice-oriented prototype

tool. The first issue was a technical issue relating to intermittent memory leaks while
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using Xtext in an Eclipse run time environment. The memory leaks usually manifested

themselves while attempting to run the Xpand template engine, after creating a DSL

instance. The exact error was a java.lang.OutOfMemoryError relating to the PermGen

area of the heap memory. This particular area of the heap is responsible for storing Class

objects that are loaded by Java’s ClassLoader, and its use yields better performance for

the Garbage Collection process. To rectify this issue, the size of the PermGen area of

memory can be increased using the JVM -XX:MaxPermSize argument. However, this did

not seem to fix the memory leak. So it was decided to downgrade the Java version from

jdk 1.6.0 26 to jdk 1.6.0 20. After doing so, the memory leaks subsided.

The second issue related to a bug in the JDT Core API. After source code has been

decomposed by the decomposition engine, the underlying import statements may need

to be updated to point to other decomposed classes. Attempting to use the Core API

to amend imports resulted in a run time exception, which was reported as a bug to the

Eclipse community. The workaround was to first delete the import and then recreate it

with the correct package name.

The final issue to contend with wasn’t a technical issue per se, but rather a functional

issue relating to the use of criteria methods within the JDT Core API. The issue is best

clarified with an example. Listing 4.5 shows a class which contains 3 criteria methods.

Imagine that a particular composition requires that the Foo class be decomposed to

remove the wifi and 3g bar methods. After the wifi bar method has first been deleted,

the Java model will believe that there are no more bar methods within the Foo class. It

correctly assumes that a class can only have 1 method with a particular signature. So,

when the CriteriaProcessor attempts to delete the 3g bar method, a run time exception

will be thrown, stating that the bar method no longer exists. The only workaround for

this issue was to reopen the corresponding ICompilationUnit each time a criteria method

is deleted. Reopening the ICompilationUnit will refresh the Java model, which means the

3g bar method can then be deleted.
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Listing 4.5: Example class showing 3 criteria methods.

1 public class Foo {

2 @Criteria (profile = ” w i f i ” )

3 public void bar ( ) {

4 // . . .

5 }

6

7 @Criteria (profile = ”3g” )

8 public void bar ( ) {

9 // . . .

10 }

11

12 @Criteria (profile = ”gprs ” )

13 public void bar ( ) {

14 // . . .

15 }

16 }
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Chapter 5

Evaluations

5.1 Methodology

In order to evaluate the slice-oriented programming model proposed in this dissertation,

a SOAP [37] service was built which contained functionality that allowed client devices to

download portable network graphics (PNG) images. A PNG image employs lossless data

compression, and as such, is suitable for scaling with no loss in quality. Furthermore, a

PNG image supports palette-based indexing for its pixel colours, which does not incur as

high a memory footprint as other image formats. Collectively, these properties provided a

good scenario for specifying different QoS-related compositions, of the image functionality,

within the SOAP service.

Based on this, a DSL instance was defined which included 3 properties representing

the client’s operational context. The 3 properties were cpu, ram and bandwidth. 3 client

profiles were then defined in the DSL covering different ranges of these context properties.

The 3 profiles were entitled, PowerfulClient, MediumClient and WeakClient. The last

section of the DSL included the QoS-related composition information for the web service

functionality, as shown in table 5.1. The 2nd row in table 5.1 shows the use of the

void keyword within the decomposition process. This row can interpreted as “all criteria

methods are to be removed from class service.img.ImageManager”.
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Client Profile Package Name Class Name Criteria Method Name Criteria Profile
PowerfulClient service.delegate ImageSIBDelegate downloadImage strong
PowerfulClient service.img ImageManager void void
MediumClient service.delegate ImageSIBDelegate downloadImage medium
MediumClient service.img ImageManager reduceColourPalate medium

scaleImage medium
WeakClient service.delegate ImageSIBDelegate downloadImage weak
WeakClient service.img ImageManager reduceColourPalate weak

scaleImage weak

Table 5.1: QoS compositions as stipulated in DSL instance

The SOAP service was constructed using JAX-WS1, which is now part of the Java 6 im-

plementation. Building a SOAP service using JAX-WS requires the definition of a service

endpoint interface (SEI), and a service implementation bean (SIB). The SEI exposes the

WSDL operations that the client device can invoke, and the SIB implements the oper-

ations defined in the SEI. A UML overview of the image functionality, before slicing, is

depicted in figure 5.1. In the UML diagram, the ImageSEI interface represents the SEI,

and the ImageSIB class represents the SIB.

The ImageSIB class delegates calls to its downloadImage method to an ImageSIB-

Delegate instance. There are criteria methods defined in classes ImageSIBDelegate and

ImageManager in order for the slices to be generated. The UML diagram also shows that

the downloadImage method, defined in the ImageSEI interface, takes a single parameter

which is a ClientProfile instance. This auto-generated class instance contains the client

context properties as defined in the DSL instance for this use case. Figure 5.2 shows a

UML overview of the image service functionality after slicing. The left side of the dia-

gram shows a nice holistic view of the generated slices, or, more formally, QoS-related

compositions. The slices comprising a WeakClient QoS composition are shown in yellow

while the slices for a MediumClient QoS composition are shown in amber. Finally, the

slices for a PowerfulClient QoS composition are shown in green. Note that the Power-

fulClient composition does not include any functionality to manipulate the PNG image

1http://jax-ws.java.net

55



Figure 5.1: Overview of image service functionality before slicing
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Figure 5.2: Overview of image service functionality after slicing
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because of the use of the void keyword for excluding all criteria methods during decom-

position. Also note that the SliceBinder contains 3 ImageSEIDelegate references, each

of which points to an ImageSIBDelegate slice implementing this interface. This acts as

the interface into the generated QoS compositions. For example, when a MediumClient

invokes the service, the service implementation bean (ImageSIB) will ask the SliceBinder

for an ImageSIBDelegate instance to execute for the MediumClient. The ImageSIB will

then call the downloadImage method on this slice, which will execute all the necessary

logic within the composition for a MediumClient.

The same service functionality was also implemented using different software creational

patterns, which were relevant for this particular scenario. The different patterns used

were:

� Abstract factory pattern

� Builder pattern

� Conventional approach

� Dependency injection pattern

The abstract factory creational pattern provides a factory interface from which dif-

ferent service beans can be created, each one representing a different composition of the

underlying service logic. Similarly, the builder pattern allows the construction of different

compositions of the service logic via an abstract class, which specifies the different steps

for building the composition. Dependency injection allows the different objects involved

in the composition of the service bean to be injected into classes at run time. This is in-

stead of a class having to explicitly instantiate the objects it depends on. Google Guice2

is a lightweight dependency framework which was used to implement dependency injec-

tion. Finally, the conventional approach to composing a service bean, did not involve

the use of a creational pattern. Instead of using inheritance or dependency injection, the

2http://code.google.com/p/google-guice/
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conventional approach simply defines methods necessary for the different client profiles.

This means that at run time, when a ClientProfile instance is received from a client de-

vice, it must be propagated throughout the code in order to invoke the correct method.

This resulted in peppering the code with conditional logic, in order to invoke the correct

method with regard to the received ClientProfile instance. A simple example is shown in

listing 5.1. In order to invoke any of the methods in the ImageManager class, the calling

class will need to conditionally evaluate the ClientProfile instance received from the client

device.

Listing 5.1: Example of source code structure for a conventional approach

1 public class ImageManager {

2 public Img scaleImageMedium ( ) {

3 // . . .

4 }

5

6 public Img scaleImageStrong ( ) {

7 // . . .

8 }

9

10 public Img scaleImageWeak ( ) {

11 // . . .

12 }

13 }

5.1.1 Performance

In order to gauge the type of service QoS that would be experienced by the end-user,

a client application was built for an Android-enabled mobile device in order to test the

image service. The application used the ksoap2 3 framework for communicating with the

image service. ksoap2 is a lightweight soap framework tailored to work on constrained

Java devices. At run time, the android application allowed different values to be entered

3http://code.google.com/p/ksoap2-android/
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for the cpu, ram and bandwidth, in order to simulate the different client profiles that were

defined in the DSL. The original PNG image used for the use case experiments had an

original file size of 220kilobytes. In terms of the image’s dimensions, it had a width of 331

pixels and a height of 235 pixels. There were a total of 3 invocations of the image service

using the android application, one for each client profile defined in the DSL. The load-time

and run time performance of the slices was also evaluated. This was done by measuring

the time taken to instantiate 1000 ImageSIB objects, and then taking the average time,

measured in nanoseconds. The run time performance is representative of the time taken

for a slice to execute, after the image service receives a client request. This was measured

by instantiating an instance of the ImageSIB class, and invoking the downloadImage 1000

times for each of the different client profiles in the DSL. The average time, measured in

milliseconds, was then recorded.

5.1.2 Software metrics

Software metrics are a series of quantitative properties that allow the overall quality of

a software program to be evaluated. These evaluations allow a programmer to identify

different areas of the program that don’t conform to good design. It’s important to iden-

tify areas of the software that are indicative of poor design, as failing to rectify these

discrepancies can result in a high degree of complexity for the software [38]. Good design

means good overall software quality. The use of software metrics can confirm the quality

of a piece of software, and can be used to estimate its overall complexity [39]. The main-

tainability of software, is inextricably linked to its underlying complexity [40] and affects

how easily a programmer can understand, adapt and extend it. Chidamber and Kemerer

proposed a suite of object-oriented software metrics [41]. These same metrics have been

validated as a useful set of quality metrics for evaluating fault-proneness within differ-

ent design phases of a software project [42]. Furthermore, the Chidamber and Kemerer

software metrics have been proven to be effective in estimating the maintenance effort
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for object-oriented software [43]. Other software metrics, such as lines of code (LOC)

[44] and Cyclomatic complexity [45] are code metrics, and as such are more suited for

post-implementation evaluations [39].

The evaluation of the slice-oriented methodology, for the aforementioned use case, will

calculate the following Chidamber and Kemerer metrics - weighted methods per class

(WMC), depth of inheritance tree (DIT), number of children (NOC), coupling between

objects (CBO) and lack of cohesion in methods (LCOM). LOC and average cyclomatic

complexity will also be evaluated. Collectively, these metrics will be used as a basis to

investigate the maintainability of the image service logic, which has been composed using

the slice-oriented technique. The evaluated metrics that are presented in this dissertation,

are derived from the final stage of the entire slice-oriented process, in other words, after

the executable slices have been generated. In addition, the metrics are calculated using

Google’s CodePro Analytix software testing framework4.

The cyclomatic complexity of a single method, is a measure of the number of distinct

paths of execution within that method [45]. It is measured by adding the one path for the

method with each of the paths created by conditional predicates, such as if and for etc.

The cyclomatic complexity of a method should ideally be less than 10. The WMC metric

for a class, is calculated as the sum of the cyclomatic complexity of each of its constituent

methods. It therefore allows the complexity of an object to be quantified. The cardinality

of class methods, as well as their corresponding complexity, allows the time and effort for

maintaining the class to be estimated. Quite simply, the DIT for a class is a measure of

the distance of a class in the hierarchy right up to the root class. In other words, the DIT

metric measures how many ancestor classes could potentially affect a particular class.

The NOC for a particular class, is a measure of the number of immediate sub-classes,

or children of that class. Quintessentially, it measures how many children of a class will

inherit properties of a parent class. CBO is a metric measuring the number of couplings

between a chosen class and additional classes in an application. Specifically, a coupling is

4http://code.google.com/javadevtools/codepro/doc/index.html
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represented by the degree to which methods of one class, use methods or instance variables

of another class. The CBO in this dissertation is evaluated by measuring the afferent and

efferent couplings for a target class. Considering a software component A, the number

of afferent couplings is a measure of the number of classes outside of A, that depend on

classes inside of A. The efferent couplings is a measure of the number of classes within

A, that depend on classes outside of A. For a particular class, LCOM is a measure for

gauging the degree of similarity of its methods. It counts the number of method pairs

whose similarity is 0. A higher LCOM indicates more disparity between the methods

in a class, and is indicative of lower class cohesion. When measuring the LCOM for a

class in this dissertation, instance variables that are not used by methods, or methods

that do not use instance variables, are not included in the LCOM calculation. LOC

measures the source lines of code in a class. Although LOC is a widely-used size metric,

its use is often criticised due to fundamental ambiguities associated with source code

[46]. For example, consider a line of source code which comprises multiple statements.

Although this single line of code does indeed constitute one physical line of code, it

contains statements of varying complexity. However, some believe the use of LOC as a

suitable metric for estimating the maintainability of a program is justified [47], whereas

others argue against it [48]. The slice-oriented programming evaluations will include the

LOC metric, as it can be used in combination with other metrics.

5.2 Performance evaluations

5.2.1 Application QoS

Figure 5.3 shows a screenshot of a PNG image delivered to the android client device,

whose context was categorised as a PowerfulClient by the image service.
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Figure 5.3: Image displayed on android device for a PowerfulClient profile

The image is in no way distorted because at build-time, according to the DSL instance,

the PNG image was not to be manipulated in a QoS-related way. The context was sim-

ulated as a device with a cpu of 1GHz, ram 512MB and a network bandwidth of 1Mbps.

The total round-trip-time (RTT) for the request was 3.636 seconds. The simulated client

context was then degraded to a cpu of 700Mhz, ram 70MB and network bandwidth of

700Kbps. Again the image service was invoked, and this resulted in the service character-

ising the client device as a MediumClient profile. Figure 5.4 shows the same PNG image

returned from the image service, except altered for a MediumClient.
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Figure 5.4: Image displayed on android device for a MediumClient profile

As is evident from the diagram, the PNG image dimensions have been reduced to a

width of 261 pixels and a height of 185 pixels. Additionally, the PNG colour depth was

reduced to 4 bits, meaning 16 colours in total. This results in less colour in the PNG

image and can be seen in the screenshot. By virtue of reducing the colour depth to 16, and

scaling the image down, the image file size was reduced to 91kb. The RTT for a service

request assuming a MediumClient profile was 1.418 seconds, which was less than half the

time taken for a PowerfulClient profile. Finally, the simulated client context was reduced

to a cpu of 20Mhz, a ram of 8MB and a network bandwidth of 10Kbps. When invoking

the downloadImage operation of the image service, the client context was characterised

as a WeakClient profile. The resulting PNG image is shown in figure 5.5.
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Figure 5.5: Image displayed on android device for a WeakClient profile

Again, the manipulations of the PNG image for a WeakClient profile have resulted

in the image dimensions being scaled down even further. Also, the colour depth for the

PNG image has been reduced from 4 bits to 3 bits, resulting in only 8 possible colours.

Additionally, the image’s dimensions were scaled down even further to a width of 191

pixels and a height of 136 pixels. Collectively, these manipulations resulted in a final

image file size of 37kb. The RTT for invoking the service using a WeakClient profile

resulted in the lowest RTT of all client profiles, with a time of 1.072 seconds.

The perception of the QoS for the end user is entirely subjective. In this case, it

depends on how satisfied the end user is with the quality of the image returned from

the image service, as well as the total RTT for the request. It was observed that the

RTT for downloading the image decreased, as the context of the device degraded from a

PowerfulClient profile, to a WeakClient profile. In this use case, the sacrifice for a quicker

RTT was a degradation in image quality, yet the image was still discernible irrespective of

the client profile. If it so happened that the programmer decided that the PNG was too

large for the MediumClient profile, for example, the service would need to be recomposed.
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In this case, the image scaling functionality for a WeakClient profile, would be more

suitable for reducing the PNG image size for a MediumClient profile. With the creational

patterns, achieving this modification would require the introduction of an additional class

dependency, along with a code modification in order to call the appropriate method from

the dependee. However, with the slice-oriented model, all that is required to recompose

the service logic is to update the QoS-related compositions section of the DSL instance.

In other words, no additional dependencies are introduced, nor are any code modifications

required by virtue of the flexibility offered by the DSL.

5.2.2 Load-time

The results for loading an implementation bean for each of the different creational patterns

are depicted in figure 5.6, and are measured in nanoseconds.

Figure 5.6: Time to load a service implementation bean in nanoseconds

The creation of a service bean, as composed using the abstract factory pattern, gives

the quickest load time of 9130 nanoseconds. The reason is that the implementation bean

does not contain any instance reference variables. Creating a service bean using the

conventional approach took on average 11424 nanoseconds. When instantiating a service

bean composed using the conventional technique, there are 2 instance reference variables
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defined within the service bean, namely an ImageManager and a FileManager. These 2

variables are instantiated as part of their declaration, and as such, their corresponding

classes are loaded by Java’s system ClassLoader. Subsequently, the Java Virtual Machine

(JVM) will need to allocate heap space for the class’ instance variables. A service bean

created using the builder approach contains 4 instance variables, only one of which, in turn,

contains a method-instantiated instance variable. This approach returned an average of

12688 nanoseconds. Instantiating a service bean using the slicing technique incurs a higher

average load time of 31113 nanoseconds. The reason for the higher average load-time, is

a result of the auto-generated SliceBinder instance that must be placed into the service

bean as an instance variable. When the service bean is then loaded, it will instantiate

the binder, which in turn instantiates the necessary slices that make up the composition.

Each slice in turn contains its own object graph that needs to be constructed by the JVM.

Collectively, this attributes to a longer load-time than the other compositional approaches.

Finally, instantiating a service bean that has been composed using dependency injection

incurs a load-time of 513148. This is up to 16 times longer than that of the slicing

technique, and 56 times longer than the abstract factory approach. The reason for this

additional overhead is twofold. First, when the service bean is created, the binding

modules for dependency injection must be generated. Secondly, Google Guice will take

this binding module and build up an object graph to fulfill the underlying dependencies.

Although a higher load time is incurred for service beans composed using the slicing

technique, the instantiation of a service bean only occurs at service start-time.

5.2.3 Run time

The run time performance metrics for the slicing technique are much more favourable than

the load-time metrics. Examining the run time metrics in figure 5.7, the slice-oriented

technique is quicker in fulfilling service requests for a weak and medium profile, than all

other approaches. Only the abstract factory approach is marginally quicker for fulfilling
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Figure 5.7: Total time taken for a service bean to fulfill a request in milliseconds

requests from client’s that are characterised by a strong profile. The reason for the quicker

response time using the slice-oriented approach, is a result of how the program is designed.

Since the SliceBinder will load all the necessary slices at service initialisation time, when

a service request is received from a client, the slices are already loaded in memory. The

corollary is that no further initialisation is necessary, which means better performance

metrics. This is in contrast to the abstract factory approach, for example, which needs to

instantiate a factory implementation that pertains to the client profile at hand. Figure 5.8

shows the average cpu usage for fulfilling a service request from a client characterised by

a weak profile. In addition, figure 5.9 shows the average heap size for the same scenario.

The averages are taken from 1000 service requests. The 2 graphs show a lower average

cpu usage and lower average heap size required for the slice-oriented approach.
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Figure 5.8: Average % cpu usage for servicing a request from a client characterised by a
WeakClient profile

Figure 5.9: Average heap size for servicing a request from a client characterised by a
WeakClient profile, in megabytes

5.3 Software metrics evaluations

5.3.1 Weighted methods per class

Figure 5.10 shows that the slice-oriented technique for composing the service logic incurred

an overall WMC metric of 61, which was the second highest of all approaches.
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Figure 5.10: Weighted methods per type

Only the builder pattern had a higher WMC metric of 67. The WMC metric is

indicative of the estimated time and effort required to develop and maintain the core

service logic, moving forward. The reason for the relatively high WMC for the slice-

oriented approach is due to the number of additional software modules, that are generated

using this technique. After functionally decomposing the service logic, the number of

software modules that will be generated will be a factor of the number of compositions

defined in the DSL. For example, for the use case outlined in this chapter, the original

service logic that contains the criteria methods is modularised in 2 components. Since

the DSL instance defines 3 different compositions, the number of resulting modules after

functional decomposition will increase from 2 to 6. This will inevitably affect the WMC,

as there are now more methods from which to generate it.

The WMC metric is inextricably linked to the cardinality and cyclomatic complexity

of class methods [41]. The average number of methods within the slice-oriented approach,

as show in figure 5.11, is 1.7. This is lower than both the builder and conventional

approaches. The benefit of a lower method count per type is that it indicates greater class

reuse [41]. Furthermore, although the conventional approach has the lowest WMC with a

value of 45, figure 5.12 shows that its average cyclomatic complexity is higher than every
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Figure 5.11: Average methods per type

other approach. This is because the conventional approach is peppered with conditional

statements. These statements are necessary in order to determine the correct logic to

invoke, with regard to the current client profile. The average cyclomatic complexity for

the slice-oriented approach is 1.52, which is well below the recommended threshold of 10

[49]. The overall average cyclomatic complexity for all approaches is 1.64, which shows

us that the slice-oriented complexity is just below this average.

Figure 5.12: Average cyclomatic complexity per method
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5.3.2 Depth of inheritance tree

The average DIT metric for each approach is shown in figure 5.13. The slice-oriented

approach has the lowest average DIT of all approaches, with a value of 1.64. The builder

pattern for composing the service logic yields the highest DIT with 2.22, which is still

considerably low, and as such, won’t pose considerable issues for maintainability.

Figure 5.13: Average depth of inheritance tree

The reason for the lower DIT metric with the slice-oriented approach is because the

other methodologies, such as the abstract and builder, inherently rely upon abstract

classes. These abstract classes must be extended by concrete implementations, which will

result in a higher DIT metric. A lower DIT is more favourable, which means that there

are less classes in the inheritance hierarchy. This means that there are ultimately less

methods that are inherited from the root of the object graph, resulting in less complexity

[49][41]. There is a comparison that can be made between the slice-oriented approach,

and one which relies on inheritance, such as the abstract factory pattern. The similarity

is that the slice-oriented approach allows multiple definitions of a single method within

the declaring class, through the use of the criteria annotations. This is comparable to

overriding a superclass method multiple times using class extensions.
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5.3.3 Number of children

The average NOC for the core service logic using the slice-oriented approach, as shown in

figure 5.14, is 0.25.

Figure 5.14: Average number of children per type

Again, the slice-oriented technique has a lower NOC value than other approaches, as

it doesn’t innately rely on inheritance to generate the service logic. A higher NOC can

be a sign of the misuse of subclassing [49]. The reason is that classes that are further up

in the inheritance hierarchy, should have a higher number of children than those lower

down in the hierarchy. From a maintainability perspective, the more children that a

class has, the greater the testing effort required for changes to methods in the parent

class [41]. However, although the NOC metric for the slice-oriented approach is low, the

auto-generated slices are comparable to subclasses, as they are generated from the logic

containing the criteria methods. With this in mind, the NOC metric doesn’t provide an

accurate result here for the slice-oriented approach; it can be argued that the more slices

that are generated, the greater the maintainability effort required for testing. Conversely,

when making code modifications, the programmer can do so in the class from which the

slices are calculated. After, all that is required is for the slice-oriented tool to be run

again, in order to regenerate the slices.
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5.3.4 Couplings between objects

Figure 5.15 shows the couplings for the different approaches.

Figure 5.15: Afferent and efferent couplings

The slice-oriented approach has a total of 8 afferent couplings and 14 efferent couplings.

The afferent couplings for the slices are representative of the dependencies between the

SliceBinder and the generated slices. Recall that the SliceBinder is responsible for return-

ing a slice to the implementation bean, based on the profile of the client that is invoking

the service. As a result, it will inevitably have dependencies on each of the slices. The

efferent couplings for the slices, are equivalent to the dependencies that exist between the

core service logic, from which the slices are generated. This is similar in nature to cou-

plings that are inherited from a superclass. A higher degree of coupling between objects

outside of the inheritance hierarchy is unfavourable, as it can increase the sensitivity to

change within the code [41]. This can result in poor modularity for the software, and as

a result, impact the reusability of the code. In summary, the afferent and efferent cou-

plings that have been measured here, are indicative of couplings within the inheritance

hierarchy. As a result, it does not reflect as a high a sensitivity to change as the metrics

would suggest.
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5.3.5 Lack of cohesion in methods

A low LCOM metric means greater underlying cohesion within the class, and as a result,

greater encapsulation. Conversely, a higher LCOM metric indicates a higher number of

methods operating on disjoint sets of instance variables. In other words, there is a lack of

similarity between the methods, and ultimately, less cohesion within the class. It follows

that lack of cohesion incurs a greater level of complexity, and a higher probability of errors

during the development process [41]. Since the maintainability of a system is correlated

with the underlying complexity, the higher LCOM will mean a greater maintainability

effort for the programmer. In figure 5.16, it is observed that the LCOM for the slice-

oriented approach is 0, along with both the abstract factory and conventional techniques.

Figure 5.16: Lack of cohesion in methods

When an LCOM value of 0 is observed, there are more method pairs which don’t

share instance variables than methods that do share instance variables. In other words, the

LCOM is undefined. Figure 5.16 shows that there were only 2 defined LCOM values, those

of the builder and dependency patterns. These values were 0.083 and 0.028 respectively,

which suggest strong cohesion.
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5.3.6 Lines of code

Figure 5.17 shows that the LOC metric for the slice-oriented approach was the highest

of all approaches, with a value of 507. The closest LOC to this was that of the Builder

pattern, with a value of 389.

Figure 5.17: Total lines of code

Methods containing a large quantity of code, will pose problems for the programmer

and will adversely affect program understandability, reusability and maintainability [49].

So, in theory, the high LOC suggests that the slice-oriented approach will not bode well

for ease of maintenance. However, the high LOC value for the slice-oriented approach is a

result of the additional code from the auto-generation of the 6 slices. This results in some

boilerplate code that otherwise would be hidden if inheritance was used. For example,

in the ImageManager class, there is a method entitled “encodeImage”, which employs

base64 encoding to convert an image to a String. This method is present in 3 of the 6

slices that are generated from the ImageManager class.

Since executable slices are generated from the ImageManager class, it can therefore

be comparable to a superclass. If the ImageManager class was indeed a superclass, the

“encodeImage” method would be compartmentalised in subclasses, and as such, would

not be counted in the total LOC metric. Instead, the LOC metric for the slice-oriented
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approach does count these methods, hence the higher overall LOC.

Figure 5.18: Average lines of code per method

In figure 5.18, the metrics relating to the average LOC per method are shown. What

is evident is that the slice-oriented approach has, on average, 9 lines of code per method,

which is low. A lower LOC metric per method means that the programmer incurs less

effort in understanding the method. Additionally, a lower LOC metric per method can

increase the longevity of a program [50].

5.4 Evaluations summary

The slice-oriented program model incurred a higher load time than most other approaches.

However, this overhead meant that more auspicious performance metrics, in terms of

average time taken to fulfill client service requests, could be achieved. It was shown that

the slice-oriented model resulted in a higher lines of code metric than other approaches,

since it does not rely on inheritance, unlike the abstract factory and builder approaches.

The tradeoff here is that the slice-oriented model has a lower depth of inheritance tree

than all other approaches. Furthermore, the average lines of code per method was lower

for the slice-oriented methodology, than the conventional approach. Finally, the average

cyclomatic complexity for the slice-oriented programming model was below the average of
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1.64. In conclusion, this shows that the slice-oriented approach is not the most complex

of all evaluated approaches. This means that the estimated maintainability effort will

not be among the highest of all evaluated techniques. It is estimated that the builder

and conventional approaches incur a higher maintainability effort than the slice-oriented

model. It was also shown, through a practical use case, that the slice-oriented model can

indeed deliver an acceptable application QoS for the end user. However, the programmer

must use discretion and consider potential QoS tradeoffs carefully, when using the slice-

oriented approach.
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Chapter 6

Conclusions

This dissertation proposed a build-time slice-oriented programming model, to allow a pro-

grammer to specify QoS-related compositions of a web service’s logic. These compositions

result in slices of the overall service logic, which can be correlated with different client

operational contexts. By virtue of the implementation of a slice-oriented prototype tool,

it has been shown that the level of abstraction of the service composition process can

indeed be raised. This in turn provides the programmer with the flexibility required for

recomposing the slices at maintenance-time, without introducing additional dependencies

or code modifications. Also, the evaluation of an SOA application, developed using the

slice-oriented prototype tool, yielded favourable run time performance in terms of time

taken to fulfill service requests. It was also shown that the generated slices can deliver an

acceptable application QoS, for the service client, with regard to its operational context.

In addition, the service logic composed using the slice-oriented prototype did not exhibit

the greatest level of complexity, when compared with the same service logic composed

using different object-oriented creational patterns. This shows that the estimated main-

tainability effort, for service logic composed using the slice-oriented methodology, would

not be significantly higher when compared to the creational patterns. Although the eval-

uated service was a SOAP service, the slice-oriented methodology is scalable and could be

applied to other architectures. For example, the representational state transfer (REST)
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architecture [51] has been studied extensively for integrating embedded devices into the

WoT [52, 53, 54, 55]. The slice-oriented model could also be applied to REST based

web services. In fact, it could be applied to just about any scenario where QoS-related

software compositions are required.

6.1 Future work

The slice-oriented programming model relies on the use of criteria methods for defining

QoS-related logic. Criteria methods for a particular function have the exact same name

and signature, since the slice-oriented model does not explicitly rely on inheritance. The

other syntactic alternative for defining methods with the same name, within a single class,

is method overloading. However, method overloading only allows the same method name

to be reused, if the method’s argument list is changed. This means that it is not a viable

option for the slice-oriented methodology, as the API for the generated slices would not

be consistent. Thus, the slice-oriented criteria methods must be compiled individually,

which can be tedious. The alternative would be to investigate the viability of a framework,

which would allow the declaration of methods with identical signatures, within the same

enclosing class. This would involve a bytecode manipulation of each method name. More

specifically, there would need to be a mapping from the source code method name to the

underlying bytecode name. Also, the original method name would need to be preserved

in the bytecode, so that polymorphism could be preserved. Updating the method names

in the bytecode, would have no underlying implications for the compositions specified in

the DSL.
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Abbreviations

Short Term Expanded Term

API Application programming interface

AST Abstract syntax tree

CBO Coupling between objects

DIT Depth of inheritance tree

DOM Document object model

EMF Eclipse modelling framework

IDE Integrated development environment

IoT Internet of Things

JDT Java development tooling

JVM Java virtual machine

LCOM Lack of cohesion in methods

LOC Lines of code

NOC Number of children

PNG Portable network graphics

QoS Quality of service

REST Representational state transfer

RTT Round trip time

SEI Service endpoint interface

SIB Service implementation bean

SLA Service level agreement

SOA Service-oriented architecture
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Short Term Expanded Term

StAX Streaming API for XML

UDP User datagram protocol

UI User interface

URI Uniform resource identifier

WMC Weighted methods per class

WoT Web of Things

WSDL Web service description language

XMI XML metadata interchange
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Appendix B

DSL Grammar

1 grammar org . xtext . slicing . CriteriaDsl with org . eclipse . xtext . common . Terminals

2

3 generate criteriaDsl ”http ://www. xtext . org / s l i c i n g / Cr i t e r i aDs l ”

4

5 Model :

6 ” p r o j e c t ” projectName=STRING

7 (properties+=Property )+

8 (definitions+=Definition )+

9 (criteria+=Criterion )+

10 ;

11

12 //============= GRAMMAR FOR DEFINING CLIENT CONTEXT PROPERTIES ==================

13 Property :

14 ” p r op e r t i e s ” ”{”

15 (propertyDefs+=PropertyDefinition )+

16 ”}”

17 ;

18

19 PropertyDefinition :

20 name=ID ” : ” type=typeDef

21 ;

22

23 typeDef :

24 ” i n t ”

25 | ”double ”
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26 | ” long ”

27 ;

28

29 //============= GRAMMAR FOR DEFINING CLIENT PROFILES ============================

30 Definition :

31 ” d e f i n i t i o n s ” ”{”

32 (profiles+=ProfileSpecification )+

33 ”}”

34 ;

35

36 ProfileSpecification :

37 name=ID isDefault=(” de f au l t ” ) ? ”{”

38 (conditions+=Condition )+

39 ”}”

40 ;

41

42 Condition :

43 property=[PropertyDefinition ] operator=ComparisonOperation value=ConditionValue

44 (compoundCondition=SecondaryCondition ) ?

45 ;

46

47 SecondaryCondition :

48 compoundOperator=( '&& ' | ' | | ' ) property=[PropertyDefinition ] operator=←↩

ComparisonOperation value=ConditionValue

49 ;

50

51 ComparisonOperation :

52 ( ' != ' | '== ' | '> ' | '>= ' | '< ' | '<= ' )

53 ;

54

55 ConditionValue :

56 DOUBLE | INT

57 ;

58

59 terminal DOUBLE :

60 INT ' . ' (INT )+

61 ;

62

63 //============= GRAMMAR FOR DEFINING QOS−RELATED COMPOSITIONS ===================

64 Criterion :

65 ” Cr i t e r i on ” name=[ProfileSpecification ] ”{”

66 (classes+=Class )+
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67 ”}”

68 ;

69

70 Class :

71 ” c l a s s ” name=ClassFQN ”{”

72 ( ( singleProfileDeclarations+=SingleProfileDeclaration )+ | globalProfile=←↩

GlobalProfileDeclaration | isVoid=VoidDeclaration )

73 ”}”

74 ;

75

76 VoidDeclaration :

77 ” void ”

78 ;

79

80 ClassFQN :

81 ID ( ” . ” ID ) *

82 ;

83

84 SingleProfileDeclaration :

85 (methodName=ID ” : ” methodAnnotationName=ID )

86 ;

87

88 GlobalProfileDeclaration :

89 annotationName=ID ”*”

90 ;
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