
Quartz: Supporting QoS-Constrained Services in Heterogeneous Environments

Frank Siqueira and Vinny Cahill
Distributed Systems Group, Department of Computer Science, Trinity College Dublin, Ireland

E-Mail: Frank.Siqueira@cs.tcd.ie, Vinny.Cahill@cs.tcd.ie

Abstract

This paper describes an architecture that addresses
common problems found in systems supporting QoS
specification and enforcement, such as lack of flexibility
and expressiveness in the specification of requirements
and dependencies on specific platforms. The Quartz QoS
architecture aims to solve these problems by adopting a
highly extensible and platform-independent design.

1. Introduction

‘Quality of Service’, or QoS for short, represents the
set of requirements imposed by a user (human being or
software component) on the behaviour of services being
provided to an application. In order to achieve the level of
QoS requested by users, applications such as distributed
multimedia, including video on demand, media broadcast
and video telephony, as well as real-time control systems,
which are migrating from embedded architectures to open
environments, require that the access to resources
provided by the underlying system support occur in a
predictable fashion.

Despite the evolution of computing platforms,
computational resources are still scarce because of the
increased complexity of applications such as those
described above. Modern networks and operating systems
provide predictable behaviour through the use of resource
reservation mechanisms. However, most applications are
still being adapted to make use of these mechanisms in
order to support QoS specification and enforcement.

QoS architectures consist in middleware software that
provides applications with mechanisms for QoS
specification and enforcement, organising the resources
provided by the system with the intent of fulfilling the
QoS requirements imposed by the user. Substantial work
on QoS architectures can be found in the literature
[1][2][3]. However, the architectures proposed so far
consider only part of the overall problem of QoS
specification and enforcement [4].

QoS specification can be done expressing requirements
at different levels of abstraction: at the application level
(e.g. stating the quality desired from a video application)
or at the system level (e.g. the network bandwidth or
processing time required by the application).

Requirements specified at different levels are related, but
differ strongly in their interpretation. For the user it is
easier to abstract from the system level and concentrate
on his own view of quality at high level. However, many
QoS architectures do not provide mechanisms for
mapping QoS requirements between different levels of
abstraction, forcing the user to deal with a system-level
notion of quality that may not be clear for him.

The specification of QoS requirements at application
level creates another problem. QoS requirements are
represented in different manners for distinct application
areas. Consequently, a QoS parameter that is appropriate
for describing video quality (such as ‘window size’ or
‘colour depth’) may be inadequate for other application
areas such as audio broadcast and real-time systems. The
adoption of a limited set of QoS parameters for QoS
specification constrains the expressiveness of the user and
limits the range of applications that could make use of a
QoS architecture.

Furthermore, most of the QoS architectures proposed
so far target only a particular configuration of processing
and communication hardware. This tight dependency on a
specific platform constrains their application in open
environments, where heterogeneity is always present.
Real-time operating systems combined with ATM are the
most popular platforms for the development of QoS
architectures because of their suitability for the
implementation of QoS mechanisms for resource
reservation [1][2]. Some architectures are also targeted at
particular application areas, with distributed multimedia
being the one where the technology is most mature [5].

In this paper we present Quartz, a generic QoS
architecture for open systems which addresses the
limitations of previous proposals in this area. The main
requirements considered in the design of Quartz were:
• support for high expressiveness, allowing users to

specify QoS requirements according to the notion of
quality that is appropriate at application level;

• transparency of the characteristics of reservation
mechanisms and platforms present at lower levels;

• adequacy to open systems, in which different protocols
and hardware coexist; and

• support for dynamic resource adaptation to be
performed by the system without loss of service
consistency at application level.



Internet Real-Time OS ATM LinkDesktop OS

Video App.

Quartz QoS Architecture

CSCW App. Real-Time App. Data Pkt. App.

Figure 1. Quartz in a heterogeneous environment

The remaining of this paper is organised as follows.
Section 2 presents our proposed architecture, and section
3 describes a prototype implementation and its integration
into a CORBA-based environment. Finally, section 4
presents some conclusions and plans of future work.

2. The Quartz Architecture

In order to fulfil the requirements listed previously, we
have adopted a highly flexible, extensible, and platform-
independent architectural design that allows us to support
different application fields and lower-level platforms. The
development of an architecture with these characteristics
represents an important challenge in this area of research.

Figure 1 illustrates the use of Quartz in a
heterogeneous environment. Applications requiring QoS
enforcement use the mechanisms provided by Quartz to
specify their requirements. To provide the required QoS,
Quartz employs the resource reservation protocols
available in the target network and operating system.

In order avoid having a translator for each combination
of application field and reservation protocol, we have
adopted a three-step translation process. Application-
specific QoS parameters are first translated into generic
application-level parameters, which are then translated
into generic system-level parameters and balanced
between the network and the operating system. Finally,
generic system-level parameters are translated into the
lower-level parameters understood by each of the
reservation protocols used by the application. Since the
user deals only with QoS parameters understood at his
abstraction level and meaningful for his application field,
his power of expression is not affected.

2.1. Architectural Components

The QoS agent, the major component of the Quartz
architecture, is responsible for implementing the QoS
mechanisms necessary for the provision of services with
the quality requested by the user. This involves two main
tasks: the translation and balancing of QoS parameters
between different levels of abstraction, and the interaction
with the underlying reservation mechanisms provided by
the resource reservation protocols present in the system.
Because of the intrinsically open nature of the target
environment, different component-specific reservation
protocols may be available.

 Quartz QoS Agent

 Network O.S.

Quartz Application

 Translation Unit
Application Filter

QoS Interpreter

Application-Specific QoS Parameters

Generic Application-Level QoS Parameters

Component Filter Component Filter

Generic System-Level QoS Parameters

Component Agent Component Agent

Reservation
Protocol

Reservation
Protocol

Component-Specific QoS Parameters

Figure 2. Detailed structure of the QoS agent

The QoS agent, as illustrated by Figure 2, is composed
of a translation unit and multiple component agents
associated with the reservation protocols responsible for
administering the use of the available resources.

The translation unit contains QoS filters and a QoS
interpreter. QoS filters can be subdivided into application
and component filters, which are responsible for
translating their respective set of specific QoS parameters
to and from the generic set of parameters at the same
abstraction level. The QoS interpreter maps between the
two sets of generic parameters and balances resources
between the network and the operating system.

Finally, the component agents get the values of QoS
parameters provided by the translation unit and perform
the necessary reservation of resources using the
corresponding reservation protocol.

2.2. Extending the Architecture

The structure of Quartz is highly portable, reusable and
extensible, because the particularities of application
fields, system components and reservation protocols are
encapsulated by application and component filters, and
component agents respectively. Changes at application or
system level imply the replacement of filters and
component agents, or the plugging of new ones into the
QoS agent. Filters are supposed to be simple to
implement because they handle parameters described at
the same abstraction level. The most complex translation
step is executed by the QoS interpreter provided by
Quartz. Since component agents are restricted to dealing
with a single reservation protocol, the knowledge
necessary to implement them is limited.



2.3. Resource Adaptation and Rebalancing

The Quartz architecture provides support for dynamic
resource adaptation at the lower level. Resource
adaptation results in adjustments in the level of QoS
provided by the system to the application. In Quartz, the
QoS agent reports dynamic changes in QoS to the user as
application-level QoS parameters. Consequently, the
translation unit has to provide a reverse translation path,
with a set of component-level QoS parameters being
translated into application-level QoS parameters.

However, in some cases the resource adaptation can be
accommodated at a low level without interfering with the
QoS seen by the application. In the Quartz architecture,
some QoS requirements such as cost and delay are
fulfilled by the sum of resources provided by both the
operating system and the network. The component
responsible for dividing QoS requirements between
components is the balancing agent, which is basically a
resource trader that is encapsulated by the interpreter.

When one of the operating system or the network
reduces the number of resources allocated for the
application, the balancing agent execute a process called
‘rebalancing of resources’. This process tries to
compensate for the loss of resources on the one side
requesting more resources from the other. When this is
possible, the resource adaptation occurs only at the lower
level, and the quality seen by the application is not
affected. In this case, the adaptation is completely
transparent from the application’s point of view.

If rebalancing at the lower level fails, Quartz tells the
application to adapt its requirements in order to decrease
the consumption of resources. This can be done reducing
the quality of a video stream or changing the compression
method used for data transfer for example.

3. Example of Application

We have developed a functional prototype of Quartz in
order to analyse its behaviour while supporting
applications with QoS requirements. This first prototype
has component agents for the RSVP protocol [6] and for
the real-time mechanisms provided by Windows NT©.

This prototype is being integrated into a complete
framework for the deployment of applications with QoS
constraints in CORBA-based systems [7]. The proposed
framework relies on the audio and video streaming
mechanism adopted by OMG for media transfer between
objects distributed over the network. For synchronisation
of media we have adopted the notification service, an
extension to the CORBA event service that allows the
specification of constraints on the latency of events
propagated between objects.

The CORBA streaming mechanism interacts with
Quartz in order to impose QoS constraints on services

used by the application. All tasks related to QoS
specification and enforcement, including the translation of
QoS parameters and reservation of resources, are handled
by Quartz. This makes the application more portable and
simplifies the job of the programmer. In addition, the QoS
agent controls the amount of resources provided by the
operating system and the network, and starts adaptation
when necessary.

4. Conclusions and Future Work

In this paper we have described Quartz, a QoS
architecture that addresses the problems associated with
QoS specification and enforcement in heterogeneous
environments. Quartz allows the development of
distributed applications such as multimedia tools and real-
time systems providing QoS-constrained behaviour. The
architecture makes the lower-level aspects of resource
reservation transparent to the user, while allowing the
necessary control through notification in the case of
resource adaptation. The design of Quartz allows its easy
extension to support new classes of applications,
operating systems and communication infrastructures.

 We have illustrated the use of Quartz by presenting a
framework for developing multimedia applications based
on CORBA. This framework, which is currently being
implemented, relies on the QoS agent to provide QoS-
constrained behaviour in heterogeneous systems. In the
sequence, we intend to evaluate the architecture by
implementing more applications with QoS requirements
and by executing a series of performance measurements.

Acknowledgements

This work is supported by Iona (http://www.iona.com)
and Capes (http://www.capes.gov.br).

References

[1] A. Campbell, G. Coulson and D. Hutchison, “A Quality of
Service Architecture”, ACM Computer Communications
Review, Vol. 24(2), pp. 6-27, April 1994.

[2] A. Lazar, K.-S. Lim, and F. Marcocini, “Realizing a
Foundation for Programmability of ATM Networks with
the Binding Architecture”, IEEE Journal of Selected Areas
in Communication, No. 7, pp. 1214-27, September 1996.

[3] K. Nahrstedt and J. M. Smith, “The QoS Broker”, IEEE
Multimedia, Vol. 2(1), pp. 53-67, Winter 1995.

[4] R. Steinmetz and L.C. Wolf “Quality of Service: Where are
We?”, 5th Int’l Workshop on Quality of Service, May 1997.

[5] A. Vogel et al, “Distributed Multimedia & QoS: A Survey”,
IEEE Multimedia, Vol. 2(3), pp. 10-19, Summer 1995.

[6] R. Braden et al, “Resource Reservation Protocol: Version 1
Functional Specification”, IETF RFC2205, Sept. 1997.

[7] Object Management Group, “OMG Technical Library”,
http://www.omg.org/library/, 1991-98.


