
Recursion Diagrams: ideas for a Geometry of
Formal Methods

Dr. Andrew Butterfield,
Foundations and Methods Group,

Trinity College,
Dublin University,

Andrew.Butterfield@cs.tcd.ie

July 9, 1998

Abstract

This paper describes work leading towards the concept of a Ge-
ometry of Formal Methods[Mac96],[HM97], which explores the rela-
tionship between various formal specifications and aspects of modern
abstract algebraic theories with a strong geometric interpretation, in
particular such concepts as fibre-bundles, sheaves and related ideas in
topology and category theory. Inspired by ideas and notions of seek-
ing a geometry of computing and of formal methods, and with the
category theoretic concepts of topos in mind, we explore how such a
geometry might be expressed in concrete diagrams, and explore their
ability to lay clear some of the concepts behind tail recursion optimisa-
tion. We also indicate how this approach can be used in an exposition
of various published program transformation rules in this area. We
also show the use of category theoretic notions to help explain the sim-
ilarity of two apparently quite different diagrams. All of this points
towards a future foundation for our geometry, both in diagrammatic
and algebraic form, in the area of category theory.

1 Introduction

This paper describes work leading towards the concept of a Geometry of
Formal Methods, as originally proposed in [Mac96]. The idea there was to

1

find an analogue, in the area of formal methods, of the Cartesian Duality
which was so successful in uniting Euclidean geometry with algebra. These
ideas were expanded upon in [HM97], which explored the relationship be-
tween various formal specifications and aspects of modern abstract algebraic
theories with a strong geometric interpretation, in particular such concepts
as fibre-bundles, sheaves and related ideas in topology and category theory.
In this paper we adopt a different tack, taking as a cue various remarks made
regarding the concept of an algorithm [Mac] as being in some sense a tra-
jectory through some form of space. The notion of algorithm or program
state space is not new [Dij76, p10] [DS89, pp4–5], but here we attempt to
use diagrams to visualise the behaviour of different algorithms, particularly
those that implement the same function. A key goal here is to explore the
notion of a geometry of algorithms as an aid to seeing the relationships be-
tween those of interest. The connection with formal methods is retained
in that our main interest is using diagrams to aid in understanding various
correctness-preserving transformation rules.

As a concrete area to work in, and because it has been of interest to our
colleagues, we choose to use the relationship between tail and other forms of
recursion as a vehicle to explore this aspect of formal methods “geometry”.

The rest of this paper is organised as follows: First we introduce the con-
cepts and notation, by considering the example of the recursive factorial
algorithms, looking at tail and linear (or “naive” [Mac90]) variants; Then we
look at some more complex examples, before moving on to consider the use
of the proposed diagrams as a means of describing and comprehending var-
ious recursion transformation rules; Finally, we relate this material back to
contemporary related work, such as the ideas of [HM97], automata theory,
and various approaches possible from within category theory, and explore
suggested future avenues of research.

2 Setting the Scene: Factorial

Our starting point is an observation about the motion of a tail-recursive
function in some sort of “trajectory space”, as made by my colleague, Dr.
Mı́cheál Mac an Airchinnigh.

Consider the tail-recursive form of factorial:

f(n) 4 f [n]1 (1)

f [0]a 4 a (2)

f [n]a 4 f [n− 1](n · a) (3)

2

Notation Note : We make overloaded use of the symbol f here, using it to
denote both the top-level call, as well as the tail-recursive form. Here the two
uses are clearly distinguished on account of their different signatures. In order
to emphasis this point, and the fact that we prefer to express multivariate
functions as higher-order single variable forms, using currying, we put the
first curried argument in square brackets. Hence f(3) denotes a call at the
top level to f : N→N, whereas f [3] denotes a call to the curried tail recursive
form: f : N→ N→ N.

When we look at the recursive step, we see that it can be viewed as the re-
peated action of a parameterised morphism (f []), whose parameter decreases
as it operates upon an accumulator argument:

a0

f [3] - 3a0

f [2] - 6a0

f [1] - 6a0

f [0] - 6a0

We can also view f [n] itself as a mapping taking a 7→ n! · a, an hence as
an instance of an affine transformation — this connection into a possible
geometric interpretation was mentioned in [Mac96]. However, our concern
here is more with the diagrammatic way in which it was presented above.

Now let us consider the linear (or “naive”) recursive version:

f(0) 4 1 (4)

f(n) 4 n · (f(n− 1)) (5)

An attempt to display a trajectory similar to that above fails almost im-
mediately, because the multiplication here is “external”, occurring after the
recursive call has returned, and is a binary operation, which requires two ar-
guments, which makes it harder to come up with a nice linear picture, similar
to that above for tail recursion.

In order to simplify matters, we will recast all binary operators into curried
form, so that a ⊕ b, for an arbitrary operator ⊕, becomes ⊕[a]b instead.
We see that this reformulation allows us to express things in a much neater
diagrammatic form than if product constructions were present. As our binary
or 2-place operators are all generally total and well-behaved, we do not need
to concern ourselves with subtleties regarding the relationship between ⊕ :
A× A→ A and ⊕[] : A→ A→ A, such as their domains of definedness.

The key to a successful display of recursion using diagrams comes from hav-
ing an explicit representation of the control argument for the recursion —
this is the argument which is tested to see if a base case has been reached,
and which is decremented according to some well-founded ordering for every
recursive call. The diagram above shows the data (accumulator argument)

3

manipulation explicitly, but the control argument changes are implicit, visi-
ble only in the changing parameterisation of the morphism f [].

Before we look at tail recursion, let us introduce our diagrams and associated
conventions,by considering the standard linear recursive form of factorial,
recast using currying for binary operators:

f(0) 4 1 (6)

f(n) 4 ×[n](f(decn)) (7)

First, let us consider the function as a whole — f has two formal placehold-
ers, one for its input argument, called n, and another implicit one for result,
which we call r. We indicate these placeholders by stacking them one above
each other as follows:

n

r

Because these placeholders are associated with a given call to f , we may stress
their linkage by connecting them with lines as shown below (this comes in
useful when we look at binary recursion later on):

n

r
?

6..........

However, for single recursion, they usually clutter up the diagram, so we tend
to omit them when the connection they denote is obvious from context.

We now consider the base case, when n = 0. In this case, the value 1 is
returned, but we wish to express this showing 0 “becoming” 1 in some sense.
We achieve this by using a constant function — we adopt the combinator
notation of [CF58], which denotes the constant function that always returns
x by Kx. Armed with this, we produce the diagram for the base case:

0

1

K1

?

4

At this stage we should point out that we are handling conditionals implicitly,
producing separate diagrams for each case, so strictly speaking we should
label this diagram with a guard:

n

n = 0

r

K1

?

We now look at the recursive case. We have two calls involved, the current
one, and the recursive sub-call that is made in order to complete the calcu-
lation. We adopt the convention of putting the current call placeholders on
the left, and the sub-call’s on the right:

n n′

n 6= 0

r r′

For the sub-call we label the placeholders with the same names but decorated
with primes. Note that we have no indication yet of the roles of the place-
holders, to wit., if they stand for inputs or outputs of the function. These
roles are made clear in the final diagram.

We use labelled arrows to express the transformations that occur

n
dec - n′

n 6= 0

@
@
@
@
@R

r �
×[]

r′

We see that n′ = decn and that r = ×[n]r′ (in that order). The arrows clearly
indicate which placeholders are inputs and which are outputs. The diagonal
arrow, feeding n to the first curried argument of ×[] is shown dashed because
it is technically of a different type to those connecting n, n′ and r, r′ (both in
the type-theoretic and category-theoretic sense, of which, more later).

We can also see that the effect of the recursive step is to make the sub-call
with work pending, namely the multiplication of the eventual result by the

5

control input argument. It is this need to “come back”, to the current value
of n, and the pending multiplication which requires stack storage to keep
track of it.

The overall flow becomes clear when we construct a diagram showing the
complete execution of f(3), were we have omitted the diagonal cross links
for clarity :

⇒ 3
dec - 2

dec - 1
dec - 0

⇐ 6 �
×[3]

2 �
×[2]

1 �
×[1]

1

K1

?

Here you clearly see the stack being built on the way out, as it is the sequence
of reversed arrows on the bottom. These same right to left arrow show the
stack unwind sequence as the successive calls terminate, rippling back up.
We have used double arrows to show the flow of arguments into the function
(⇒)and the result flow out (⇐).

The conceptual clarity afforded by these diagrams becomes much more ob-
vious when we show the tail recursive form in a similar manner. We shall
find that the optimisation of replacing tail recursion by iteration, becomes
immediately obvious.

The tail recursive form using curried functions and ignoring the initial call
(f [n]1) is:

f [0]a 4 a (8)

f [n]a 4 f [decn](×[n]a) (9)

The base case is presented diagrammatically as:

n

n = 0

a ⇒
or more compactly, omitting the guard an showing n = 0 explicitly:

0

a ⇒

6

Here we have departed in a sense from our convention, because we have only
two place holders, for n and a, but no explicit result place holder. However
we make two points in our defence — one now, the other deferred until we
have completed our look at tail recursive factorial. The first point is that
the accumulator argument a effectively is the result placeholder in this case,
although in general tail recursion it would be modified by the base case,
before the function terminated. An example of this is given later when a
transformation rule is discussed.

The recursive step is as follows:

n
dec - n′

@
@
@
@
@R

a
×[] - a′

Immediately we can see that there is no work to be done once the sub-call is
made, so there is no need to keep the current value of n around, or to stack
up any pending ×[] operations. Also we are now well-placed to make our
second point as to why a result placeholder (r) is not present. If it was, the
recursive and base step diagrams would be:

n
dec - n′ 0

a
×[n] - a′ a

r �
I

r′ r

I

?

Here we have that out-and-back flow we saw for the linear recursion, but
it is not immediately obvious that the back flow is vacuous and redundant,
consisting solely of identity morphisms (I). However, it is a good way to
illustrate the inefficiency of tail recursion if it is not optimised into iteration.

Returning to our tail recursive factorial, the following diagram shows the
computation of f [3]1, showing clearly the one-way trajectory from input to
result :

⇒ 3
dec - 2

dec - 1
dec - 0

⇒ 1
×[3] - 3

×[2] - 6
×[1] - 6 ⇒

7

The key point here is that these diagrams make the relationship between
linear and tail recursive factorial must easier to see, as well as the opportunity
for optimising tail calls. We see this as being analogous to using geometric
diagrams to illustrate a proof of some geometric property, even if the proof
itself is done algebraically, via cartesian or other such coordinates. Part of
our goal is to develop techniques and diagrams that are pedagogically sound
ways of conveying these often difficult concepts. The clarity of these diagrams
in displaying the “out-and-back” nature of naive recursion in contrast to the
“go-straight-to-the exit” track of optimised tail recursion, is for us a good
validation of the potential of this diagrammatic approach to be an effective
device for communicating such ideas.

2.1 A Key Observation: the Wreath Product

Up to this point, we have presented this diagram notation as an aid to under-
standing, to seeing, the relationship between related algorithms. But these
diagrams also triggered other more technical associations, by virtue of their
similarity to other diagrams. A case in point is the very strong resemblance
of the tail-recursive step diagram above to that used to illustrate the concept
of Wreath Product, used in automata theory [Eil74, pp26–32].

The Wreath Product of λ : P → P and δ : P → Q→ Q, denoted here by
{{λ, δ}} is defined as

{{λ, δ}} : P ×Q→ P ×Q (10)

{{λ, δ}}(p, q) 4 (λ(p), δ[p]q) (11)

We can see its behaviour in the following diagram

P
λ - P

@
@
@
@
@R

Q
δ[] - Q

Here we P and Q to denote the domain and range carrier sets of the λ and
δ operators, rather than instances of the set elements being operated upon,
as has been the case in previous diagrams in this paper.

We can immediately see that the tail recursive step of factorial can be ex-

8

pressed, with a minor change of signature1, as :

f(n, a) = {{dec ,×}}(n, a) (12)

Simply put, we specify a tail recursive step by simply providing the func-
tion that reduces the control argument, and the function that computes the
new accumulator value from the current input values. The wreath product
provides the “plumbing”.

What is the significance of all this ? First, note that the wreath product
is used to model finite state machines, as distinct from pushdown stack au-
tomata. The key point about transforming linear recursion to a tail form
is to be able to eliminate the need for a stack — to convert an algorithm
that requires a pushdown automata into one that needs a simple finite state
machine. We find that our diagrams end up showing the tail recursive step as
having the same form as an abstraction (the wreath product) used to model
finite state machines. We consider this a strong validation of the approach
being adopted here. If we are to achieve our goal of finding a geometry of
computing, or of formal methods, then the more we can exhibit close ties
with our approach between various related areas (such as finite state ma-
chine theory, and tail-call optimization), the more confidence we may have
that we are on the right track.

3 More Complicated Examples

We now proceed to look at some more complicated examples, in order to get
a better feel for how well these diagrams work. We first look at an example
of binary recursion, the well known Fibonacci function. There has been
considerable work reported on in the literature on transforming various forms
of recursion into tail recursive form [BD77, AK82, BW82, PP86, Par90]. We
look at a few examples of such transformation rules, here taken from [Par90,
§6.5].

3.1 Fibonnacci Function

Many forms of binary recursion can be transformed into linear (naive) and
hence tail recursive forms. The classic example of this is the Fibonacci func-

1As already stated, we consider f(a, b) and f [a]b as the same entity, for the purposes
of this paper.

9

tion which is usually presented with the following binary recursive definition:

f(0) 4 0 (13)

f(1) 4 1 (14)

f(n+ 2) 4 f(n+ 1) + f(n) (15)

for which we can produce the following diagram for the recursive case:

n+ 2
dec- n+ 1

dec - n

rn+1

?

6..........
rn
?

6..........

rn+2

?

6.......................
� +[]

?

rn
?

Note that here we need to explicitly indicate which placeholders are linked
in a given call, because of the presence of two recursive sub-calls. We have
also made our placeholder labelling a bit more self-explanatory.

The key step towards linear recursion is to generalise the function to return
both f(n) and f(n− 1) together - we call this function g, noting that (f(n+
2), f(n+ 1)) = (f(n+ 1) + f(n), f(n = 1)), and so obtain :

g(1) 4 (1, 0) (16)

g(n+ 2) 4 h(g(n)) (17)

where h(a, b) = (a+ b, a) (18)

This gives us the following simple diagram :

n+ 1
dec - n 0

(a+ b, a)
?

6.........
�h (a, b)

?

6.........

(1, 0)

K(1, 0)

?

The key feature to note here is the absence of effective “wreathing” (the ac-
cumulator computation ignores the control argument) — the control variable

10

(n) serves solely to count the application of h to the initial argument, so we
can reverse the bottom arrows immediately to obtain:

n+ 1
dec - n 0

(a, b)
?

6.........
h- (a+ b, a)

?

6.........

(rn, rn−1)

from which we instantly obtain the tail recursive form of g :

g(n) 4 π1(g[n](1, 0)) (19)

g[0](a, b) 4 (a, b) (20)

g[n+ 1](a, b) 4 g[n](a+ b, a) (21)

and the iterative form : f(n) = π1(h
n(1, 0)), n > 0. It is quite clear that the

diagrams provide a good aid to seeing and understanding the relationship
between the various algorithms.

4 General Recursion Transformations

We now look at some program transformation rules, using as our example
those found in Partsch’s 1990 book, [Par90]. In particular, our focus of
interest is on the contents of section §6.5, pp296–310, entitled “Simplification
of Recursion”. We have rewritten the material in our style, but keep the same
names as used there, in order to facilitate comparisons.

The first rule is Simplification of Linear Recursion I. Consider :

f(x) 4 B(x) → H(x) , p[K(x)]f(K ′(x)) (22)

subject to the condition that p is associative (p[a](p[b]c) = p[p[a]b]c), with
neutral element E (p[E]a = p[a]E = a). We can immediately draw the
following diagram illustrating both the recursive step (left side) and the base
case (right side):

x
K ′ - x′ x

@
@
@
@
@

K

R

r �
p[]

r′ r

H

?

11

For clarity we have omitted mention of B here. A simplified version of this
diagram omits the explicit arrow linking K(x) to the first argument position
of p[]:

x
K ′ - x′ x

r �
p[K(x)]

r′ r

H

?

According to Simplification of Linear Recursion I we can re-define f as the
following tail recursive form

f(x) 4 f [x]E (23)

f [x]y 4 B(x) → p[y]H(x) , f [K ′(x)](p[y]K(x)) (24)

This leads to the following diagram, which is complicated by the necessity to
keep p’s arguments in the correct order, as in general it is not commutative:

x
K′ - x′ x

k

K

?

p[]
- y′ h

H

?

p[]
- h′

�
�
�
�
��

�
�
�
�
��

y y′
?

y

Here k is a placeholder for K(x) and h = H(x). This diagram is quite
complex, but we can remove some of the clutter as follows :

x
K ′ - x′ x

p[] ◦H
- r

@
@
@
@
@

p[y] ◦K
R �

�
�
�
��

y y′ y

12

Here there is no explicit arrow linking y to the first argument position of p[],
in the recursive case.

Let us consider an example where f(x0) is such that B((K ′)3(x0)) = True.
The linear recursive execution has the following diagram:

x0

K ′ - x1

K ′ - x2

K ′ - x3

r0
�p[K(x0)]

r1
�p[K(x1)]

r2
�p[K(x2)]

r3

H

?

From this, by tracing through, we can see that what is returned is the ex-
pression:

r = p[κ0x](p[κ1x](p[κ2x](~3x)))

where κn = K ◦ (K ′)n and ~n = H ◦ (K ′)n.

The tail recursive execution is indicated as :

x0

K ′ - x1

K ′ - x2

K ′ - x3
p[] ◦H

- r0

@
@
@
@
@

p[E] ◦K
R

@
@
@
@
@

p[y1] ◦K
R

@
@
@
@
@

p[y2] ◦K
R �

�
�
�
��

E y1 y2 y3

Here the expression returned is

r = p[p[p[p[E](κ0x)](κ1x)](κ2x)](~3x)

By comparison we can clearly see the need for associativity and neutrality in
order to make this work, but also the lack of a need for commutativity.

This rule is a key motivation behind the choice of defining recursive functions
on sequences using 〈x〉_ σ, rather than x :σ, that is adopted, for instance, in
[Mac90]. The structure (Σ?,_,Λ) is a monoid so p[x]y = x _ y and E = Λ
have the relevant associativity and neutrality properties. The cons operator
is not a binary operator at all, and has a signature incompatible with that of
p[] However an analogous result is obtainable if we consider functions from
“cons-lists” (x : σ) to “snoc-lists” (σ ; x), as has been considered in [Wad87].

The next example from [Par90] is Recursion simplification II. Given

f(x) 4 B(x) → H(x) , p[f(K(x)]E(x)) (25)

13

subject to the condition that K is invertible, in the sense that K(x) being
defined means that K−1(K(x)) = x, we can redefine f as

f(x) 4 fx[f
′(x)]H(f ′(x)) (26)

f ′(x) 4 B(x) → x , f ′(K(x)) (27)

fx[y]z 4 y = x → z , fx[K
−1(y)](p[z](E(K−1(y)))) (28)

Notation Note : Here we have an argument (x) to f which is unchanged
throughout. To emphasise its once-off parametric effect, we denote it as a
subscript (fx).

The rationale behind this transformation seems very obscure. The key is
to recognise that f ′ computes the value that x will have when recursion
terminates, so that f [] is called with this final value, and effectively uses
K−1 to “recurse backwards”. Let us use our diagrams to illustrate this
transformation. First, we show the linear recursive form :

xi−1

K - xi xn

@
@
@
@
@

E

R

r′ �
p[]

r x′

H

?

Now we show the tail recursive version, in two steps. First f ′ simply goes for
the terminating x value:

x0

K - x1
.- xn−1

K- xn|B(xn)

Then f [] uses this value to compute backwards :

xi
K−1

- xi−1
- xi−1

@
@
@
@
@

E

R

z - z
p[] - z′

x - x - x

14

We could simplify the diagram a bit more, as follows :

xi
K−1

- xi−1

@
@
@
@
@

E ◦K−1

R

z
p[] - z

x - x

Comparison of this step with the linear recursive step above shows one to be
the converse of the other. To recognise this clearly we can state as a lemma
that the following diagram commutes :

a
f - b

@
@
@
@
@

g

R 	�
�
�
�
�

g ◦ f−1

c

If we reflect the tail recursive diagram about a vertical axis through its centre,
and compare this with the linear recursive diagram, and that representing
our lemma, then the equivalent of the two forms becomes obvious.

In this case, if f ′(x) is known in advance (typically when B(x) is of the form
x = x0, hence x0 = f ′(x), for any x), then the rule can be simplified, as
stated in [Par90, p300]. We simply observe that we shorten the first part of
the diagram, and replace it by x0.

5 Related and Future work — towards a foun-

dation

The purpose in looking for a geometric view for computing, is not solely to
allow interesting pictures to be drawn. In continuous mathematics, great
strides have been made since Descartes first connected geometry to algebra,
with a large amount of abstract mathematics developed, specifically in areas
such as topology, fibre bundles and sheaf theory, as previously hinted in
[HM97]. With this in mind, we also seek a firm mathematical foundation for
our geometric view — we hope to find it in the broad area of category theory

15

[Wal91, LS97], with particular emphasis on topoi [Hug98]. The desire to find
a categorical foundation for the diagrams shown here has influenced the way
they were constructed and the (often implicit) rules governing them. However
these rules are not yet established, because the most suitable categories have
yet to be identified. Initial work exploring categories made it very clear, early
on, that we needed a much better feel for what the diagrams would express,
before sensible categorical choices could be made. In computing and category
theory, there is already some material where certain categorical constructs
are interpreted as diagrams of different aspects of computing systems. An
excellent introduction to this area is [Wal91], which has, among other things:
a description of products in a suitable category with boolean functions, being
used to represent digital logic circuits [Wal91, pp32–39]; and sums in another
category with arithmetic and test functions being used to represent program
flowcharts [Wal91, 45–52]. An important point to note here is that combining
these aspects require categories with both products and sums, as well as
various other constructions. A good class of candidate categories with these
properties are topoi, hence our interest in them.

A comprehensive review of categories as a basis for an algebra of functional
programs can be found in [Bd87]. The structures adopted there (called “alle-
gories”) seem different in nature to topoi, and are oriented towards allowing
functional programs to be specified as relations, and towards providing a
means of transforming such relations into corresponding functions. However
as stated in [Bd87, p109], their concept of a “tabular allegory with a unit
and power object” is a topos. This is certainly an area we should investigate,
in order to see how our diagrams fit with this approach

6 Summary

Inspired by ideas and notions of seeking a geometry of computing and of for-
mal methods, and with the category theoretic concepts of topos in mind, we
have explored how such a geometry might be expressed in concrete diagrams,
and explored their ability to lay clear some of the concepts behind tail re-
cursion. We have seen how the relationship between linear and ail recursion
in the factorial function can be visualized, and explored the simplification of
the naive binary recursive form of Fibonacci. We have also indicated how
this approach can be used in an exposition of various published program
transformation rules in this area. Here we exploited the category theoretic
notion of a commuting diagram to help explain the similarity of two appar-
ently quite different diagrams. All of this points towards a future foundation

16

for our geometry, both in diagrammatic and algebraic form, in the area of
category theory.

6.1 Acknowledgments

I would like to acknowledge my use of Paul Taylors excellent commutative
diagrams package (Version 3.85). Also my colleagues, Dr. Hugh Gibbons and
Dr. Mı́cheál Mac an Archinnigh for their guidance and direction, particularly
in identifying prior work in the area of transforming recursive programs.

References

[AK82] J. Arscan and Y. Kodratoff. Some techniques for recursion removal
from recursive functions. ACM Trans. on Programming Languages
and Systems, 4(2), April 1982.

[BD77] R. M. Burstall and J. Darlington. A transformation system for
developing recursive programs. J. ACM, 24(1):44–67, January 1977.

[Bd87] Richard Bird and Oege de Moor. Algebra of Programming. Series
in Computer Science. Prentice Hall International, London, 1987.

[BW82] F.L. Bauer and H. Wössner. Algorithmic Language and Program
Development. Springer, Berlin, 1982.

[CF58] H.B. Curry and R. Feys. Combinatory Logic, volume 1. North
Holland, Amsterdam, 1958.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Automatic Com-
putation. Prentice-Hall, 1976.

[DS89] Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and
Program Semantics. Texts and Monographs in Computer Science.
Springer Verlag, 1989.

[Eil74] Samuel Eilenberg. Automata, Languages and Machines, volume B.
Academic Press, New York, 1974.

[HM97] Arthur Hughes and Mı́cheál Mac an Airchinnigh. The Geometry
of Distributions in Formal Methods. electronic Workshops in Com-
puting, Ilkley, West Yorkshire, U.K., September 1997. BCS-FACS,
Springer Verlag.

17

[Hug98] Arthur Hughes. Constructive mathematics in topoi. to appear at
IWFM98, 1998.

[LS97] F. William Lawvere and Stephen H. Schanuel. Conceptual Math-
ematics: a first introduction to categories. Cambridge University
Press, 1997.

[Mac] Mı́cheál Mac an Airchinnigh. unpublished comment.

[Mac90] Mı́cheál Mac an Airchinnigh. Conceptual Models and Computing.
PhD dissertation, University of Dublin, Trinity College, Department
of Computer Science, 1990.

[Mac96] Mı́cheál Mac an Airchinnigh. Towards a new conceptual framework
for the Modelling of Dynamically Distributed Systems. electronic
Workshops in Computing, Ilkley, West Yorkshire, U.K., July 1996.
BCS-FACS, Springer Verlag.

[Par90] Helmut A. Partsch. Specification and Transformation of Pro-
grams. Texts and monographs in Computer Science. Springer Ver-
lag, Berlin, 1990.

[PP86] P. Pepper and H. Partsch. Program transformations expressed by
algebraic type manipulations. Technology and Science of Informat-
ics, 5(3):pp197–212, 1986.

[Wad87] P. Wadler. Views: a way for pattern matching to cohabit with data
abstraction, pages 307–313. Association for Computing Machinery,
1987.

[Wal91] R. F. C. Walters. Categories and Computer Science. Cambridge
Computer Science Texts. Cambridge University Press, 1991.

18

