
1

Program Restructuring to Introduce Design Patterns

Mel Ó Cinnéide Paddy Nixon
Department of Computer Science Department of Computer Science

University College Dublin Trinity College Dublin
Ireland. Ireland.

Mel.OCinneide@ucd.ie Paddy.Nixon@cs.tcd.ie

Abstract

In restructuring legacy code it may be useful to introduce a design pattern in order to
add clarity to the system and thus facilitate further program evolution. We show that
aspects of this transformation can be automated and present a nascent high-level
language for describing transformations that introduce design patterns. The role of
preconditions in preserving program behaviour during this process is also discussed. We
conclude by considering the value of this approach in dealing with legacy code.

1. Introduction

Legacy systems frequently require restructuring in order to make them more amenable to
future changes in requirements. This restructuring is normally performed by hand, but it is
interesting to consider the potential for automated support. Much of the work in this area
has suffered from a lack of a suitable target model for these restructurings, i.e., what
exactly are we restructuring the program towards? One interesting class of
transformations comprises those that introduce design patterns [Gam95]. Design patterns
loosen the binding between program components thus enabling certain types of program
evolution to occur with minimal change to the program itself. For example, the creation
of a Product object within a Creator class could be replaced by an application of the
Factory Method pattern. This enables the Creator class to be extended to use another
type of Product object without much reworking of the existing code. We are investigating
the possibilities of providing a rigorous foundation, methodology and tool support for the
introduction of design patterns into existing object-oriented programs.

Our starting point is to assume that we are dealing with a program that has been
developed without the use or knowledge of design patterns. This may be a legacy system
that a designer is maintaining, or it may be a program that is being developed from scratch
and is now being revised or consolidated [Foo94]. At some point the designer decides
that a certain set of program components are too tightly coupled and that it would be
useful to apply some particular design pattern to them. It is this type of transformation
that we are interested in automating. Also, since the program already exhibits useful

2

behaviour, this transformation should ideally be behaviour-preserving. It may however
prove infeasible to apply the desired pattern because there are elements in the program
that make it unsuitable or inapplicable, and the designer should be informed of this.

What we are considering therefore is transforming a given design structure into another
design structure, the latter being the implementation structure of some design pattern. By
implication, the initial structure has some poor design quality that is resolved by the
application of the chosen design pattern. For this reason we call the initial design
structure that is being transformed an antipattern [Koe95]. By this term we mean simply
a micro-architecture that has some inherent weaknesses or inflexibilities and that suggests
that a suitable design pattern might be applied1.

There are several desirable features that we would expect a tool that performs these
transformations to exhibit:
(1) It should be possible to describe the transformations in a way that is abstracted from

the details of the programming language being used.
(2) The applicability of the chosen transformation to the program being operated on

should be assessed in some way2.
(3) For any design pattern there are several sets of similar but slightly different

antipatterns. It should be possible to write a single transformation that covers as
many of these as possible.

(4) The transformation should preserve the behaviour of the program.

In section 2 we look at a solution to the first problem, namely the development of a high-
level language that supports the specification of these design pattern transformations. In
section 3 we consider an approach that deals with the remaining issues by allowing each
transformation to be given a set of preconditions. Finally in section 4 we present some
conclusions.

2. Design Pattern Transformation Language (DPTL)

We have taken a set of design patterns, the so-called “Gang of Four” [Gam95] creational
patterns (Abstract Factory, Factory Method, Builder, Singleton and Prototype) and for
each pattern we have identified a typical antipattern and designed a transformation that
converts this antipattern to the corresponding pattern. These transformations have been
implemented in a tool called Design Pattern Tool (DPT) that operates on Java3 programs.

1 The term antipattern has caused an enormous amount of controversy judging by the amount of traffic
recently generated on this topic on the pattern mailing lists. In our opinion this controversy is due to the
proposal to treat antipatterns as first-class objects and to document them with the same rigour as is given
to design patterns themselves. Our intention in using this term is considerably weaker than this.
2 The scheme we describe in this paper merely assesses whether or not the present program is suited to the
required design pattern transformation. A more complicated scheme involves deriving metrics from the
design structures of the program and using these metrics as a basis to decide which design pattern
transformation to recommend to the designer.
3 We conjecture that there is already a significant amount of legacy Java code that has been designed
without the use of design patterns.

3

The transformations themselves are also implemented in Java and perform surgery directly
on the parse trees of the Java program being operated on.

Using our existing Design Pattern Tool as a basis, we are developing a high-level
language (DPTL) for describing transformations that introduce design patterns. Some of
the properties of this language are as follows:

• It provides the basic types that represent the common elements of an object-oriented
program, for example Statement, Method, Constructor, Class, Interface etc.

• The low-level primitives are operations like addClass, addMethod, addInterfaceLink,
addSuperclassLink and so on.

• High-level operations are provided that have proven useful in writing DPT so far, e.g.,
abstractClass, replaceObjectCreations etc.

• Set operations are supported that obviate the need for any form of iteration statement.
For example:

 for all Methods m in class C do
 m.addInitialStatement(s);

• A decision statement is provided such as (for method m and Class c):
if (m ε c)

…

To give an example of how DPTL appears, the algorithm that describes the application of
the Factory Method pattern is expressed as follows.

ApplyFactoryMethod(Class creator, Class product) {

addInterface(product, “abs”+product.name());

creator.renameType(product.name(), “abs”+product.name());

for all Constructor c in Class product do{
Method newMethod(“create”+product.name());
newMethod.returnType=“abs”+product.name();
newMethod.paramList=c.paramList;
newMethod.body=(“return new P(” + c.paramList + “);”);
creator.addMethod(newMethod);

}

creator.replaceObjectCreations(product, “create”+product.name());
}

This algorithm works as follows. The public methods of the Product class are abstracted
into an interface and an “implements” link is added from the Product class to this
interface. All references to the Product class in the Creator class are then updated to
refer to this interface. Now for every constructor in the Product class, a similar method

4

is added to the Creator class that returns an instance of the Product class. Finally all
creations of Product objects in the Creator class are updated to use these new methods.

At present the syntax of DPTL is described by a formal grammar while the semantics are
stated informally in English. We intend to formalise the object model upon which DPTL
is based and then specify more precisely the semantics of DPTL in terms of this model.
We require this model to support notions such as classes, methods, fields, inheritance,
interfaces, and object creation. Two possible models under consideration to base this
work on are described in [Cas92] and [Aba96].

3. Behaviour-Preservation and Preconditions

The application of a transformation to introduce a design pattern should not change the
behaviour of the program being transformed. In general this can only be guaranteed if the
initial structure of the program fulfils certain requirements. These can be specified as a set
of preconditions that must hold before the transformation is applied. The resultant
transformation is then amenable to mathematical proof, although this is clearly not
tractable in all cases. This approach is also taken in other work on refactoring object-
oriented programs, e.g. [Opd92], but to our knowledge it has not as yet been applied to
design pattern transformations.

Consider the application of the transformation described above that introduces the Factory
Method pattern. An obvious requirement is that the Creator class does actually create an
instance of the Product class. Also, if the Product class has a public data field this
transformation cannot be applied, as such a field cannot be accessed through an interface.
A similar problem occurs if the Product class contains a static method.

We can specify these preconditions as follows:

applyFactoryMethod Preconditions:

creator.creates(product) // antipattern precondition
not product.hasPublicField() // refactoring precondition
not product.hasStaticMethod() // contraindication

The three conjuncts of this precondition illustrate three quite distinct types of requirement.
In the following paragraphs we describe each one.

Antipattern precondition: The first conjunct describes the antipattern that this
transformation resolves. To state that “class A instantiates class B” is an antipattern may
appear extreme, but in fact this does reflect a tight coupling between the two classes. It is
reasonable to inspect this relationship and determine what future program evolutions
would be facilitated were it to be replaced by a suitable design pattern.

Refactoring precondition: The second conjunct is an example of a minor problem that
prevents this transformation from being applied. The class has public data, which is a
well-established example of poor class design. This class can be refactored automatically

5

to make this data private and instead provide access to the fields via public accessor and
mutator methods4. This then removes this obstacle to the application of the
transformation.

Contraindication: The final conjunct suggests that there is a more serious problem in
applying the Factory Method pattern. The Product class has a static method that is used
by the Creator class. This implies that the Creator class depends on the concrete class of
the Product it uses and this cannot be replaced by access via an abstract interface. This is
an inherent problem in the program design that prevents the application of the required
pattern. In this case the design must be revisited to determine if it is possible to resolve
this issue.

Note that the antipatterns that can be resolved by any given pattern are impossible to
completely specify. For a description of the preconditions for a more complicated
transformation (one that introduces the Decorator pattern) see [OCi96].

4. Assessments and Conclusions

We have described a scheme that enables the semi-automatic introduction of design
patterns to legacy programs. This has the potential to remove an amount of the repetitive
and error-prone work involved in restructuring legacy code. Other similar approaches
([DMR97], [EGY97], [FMW97]) address these issues as well; our approach differs
primarily in the use of preconditions to:
• assess the suitability of the pattern the designer wishes to apply;
• perform some pre-transformation refactorings;
• assess if the application of this transformation is contraindicated by other properties of

the program.

We chose to describe our transformations as algorithms. Another approach is to simply
state the postconditions for the transformation in a declarative style. This opens the
interesting possibility of automatically deriving an algorithm to achieve the
transformation. Postconditions are used in [FMW97] to ensure that the intent of a design
pattern is maintained in the program during later evolution. At a later stage in this
project we plan to evaluate the merits of algorithmic versus postcondition approaches.

Our work from here involves developing DPTL further, working on the model within
which to rigorously define its meaning and gaining more practical experience with the
expression of preconditions for design pattern transformations. We hope to demonstrate
that these techniques make a useful contribution to the problem of restructuring legacy
code to enhance extendibility.

5. References

[Aba96] Abadí, M. and Cardelli, L., A Theory of Objects, Springer-Verlag, 1996.

4 The techniques described in [Opd92] can be used effectively here.

6

[Cas92] Casais, E., An Incremental Class Reorganisation Approach, ECOOP, June
1992.

 [DMR97] Demeyer, S., Meijler, T.D. and Rieger, M., Towards Design Pattern
Transformations, Proceedings of the Workshop on Object-Oriented Software
Evolution and Re-Engineering, ECOOP, June 1997.

[EGY97] Eden A.H., Gil J., Yehudai, A., Precise Specification and Automatic
Application of Design Patterns, Twelfth IEEE International Automated
Software Engineering Conference, 1997.

[FMW97] Florijn, G., Meijers, M. and van Winsen, P., Tool Support in Design Patterns,
ECOOP, June 1997.

[Foo94] Foote, B. and Opdyke W. F., Lifecycle and Refactoring Patterns that Support
Evolutions and Reuse, PLoP, 1994.

[Gam95] Gamma, E. et al, Design Patterns: Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995.

[Koe95] Koenig, A., Patterns and Antipatterns, Journal of Object-Oriented
Programming, April, 1995.

[OCi96] Ó Cinnéide, M., Towards Automating the Introduction of the Decorator
Pattern to Avoid Subclass Explosion, Technical Report TR-97-7, Department
of Computer Science, University College Dublin, Ireland (also accepted for
the Object-Oriented Evolution and Re-engineering Workshop, OOPSLA, San
José, October 1996).

 [Opd92] Opdyke, W. F., Refactoring Object-Oriented Frameworks, PhD thesis,
University of Illinois, 1992.

