
Real-Time Collision Detection and Response Using Sphere-Trees

O'Sullivan, C. Dingliana, J.
Image Synthesis Group, Trinity College Dublin.

Abstract

In this paper we address the problem of collision
detection and response in real-time animation systems.
We describe an approach, which approximates objects
using sphere-trees, and uses an interruptible detection
algorithm to approximately test for collisions between
them, trading accuracy for speed. A model of human
visual perception of collisions is used to decide which
collisions deserve more processing time. Collision
processing is then scheduled to minimise the perceived
inaccuracy within the time available. In response to such
approximate collisions, a new adaptive collision response
algorithm is presented, which also uses sphere-trees to
approximate the appropriate response for colliding
objects.

1 INTRODUCTION

Many interactive animation systems, such as games or
simulations, require large numbers of virtual entities
which are moving and interacting with each other, and/or
with one or more users. In these applications, we cannot
predict in advance how the user or the entities will
behave, so we must create the animation as we watch it,
i.e. in real-time. This means that the image must be re-
drawn at least 10 times per second, although for true real-
time performance the generation of up to 60 frames per
second (f.p.s) may be required. Hence, there will be 100
milliseconds available, at the most, to update all entities
in the simulation, and then render the new scene.

A possible scenario could be a game where a user
must navigate his/her way through a rockfall without
being hit. As multiple rocks are falling, they hit off each
other and the edges of a ravine, either bouncing or
breaking into smaller rocks. In order to achieve this
effect, collisions between the rocks and with the ravine
edges must be detected. Many other application areas
exist: Large-scale Virtual Reality (VR) systems with
thousands of moving entities; Crowd simulations; Flocks
of birds or other organisms; Educational simulations with
chemical molecules or blood cells. Anything, in fact,
where you have large numbers of entities moving around
a virtual world in real-time.

There are many bottlenecks in such systems.
Depending on the level of realism required, rendering and
motion synthesis algorithms require a large amount of
processing power. In multi-user systems, network lag is a
major issue. Some solutions to these problems could be to
increase the computational power, add hardware
accelerators, and develop parallel algorithms that may be
implemented on multiple processors. However, using

such approaches, the problem is postponed rather than
eliminated, and such computational power will not be
available to a wide range of users. An additional
challenge is maintaining a constant frame rate. The time
taken to render a given scene is dependent on the current
level of complexity. Some frames may require only one
object to be rendered, whereas a sudden change of view
may cause many more interacting objects to be visible in
subsequent frames. Obviously, the latter set of frames will
take longer to process than the former, regardless of the
computational power available. Hence, increasing
computational power alone is not the solution. It may
sometimes be necessary to trade realism and accuracy for
speed, and aim to achieve optimal realism in the time
available, thus maintaining a high and constant frame-
rate.

In this paper, we address the problem of collision
handling, and demonstrate how interactions between
objects may be handled in real-time, reducing the
variability of the frame-rate by interrupting processing
when required. Artefacts will inevitably be introduced
due to the reduced accuracy of our calculations, but we
reduce the visual impact of these inaccuracies by using
perceptual information. In Section 2 we introduce the
problems of collision detection and response, and review
current work. In Section 3 we describe the collision
handling algorithms we have developed, and an
application which uses them. Section 4 presents
conclusions and plans for future work.

2 BACKGROUND

In many interactive real-time animation systems,
such as those described above, the entities often need to
be viewed not as geometric shapes devoid of physical
properties, but as real entities having properties such as
mass, moment of inertia, elasticity, and friction. Their
motions are constrained not only by their own physical
properties, but also by collisions with other objects. If two
solid objects collide in the real world, they bounce off
each other, or break into pieces, and deform if their
surfaces are non-rigid. In a computer world, there is
nothing to stop geometrically modelled objects from
simply floating through each other like ghosts! A
Collision Handling system is necessary to enforce
solidness, and ensure that entities behave as expected
when they come into contact, i.e. they should not
interpenetrate, and their behaviour subsequent to collision
should be compatible with their physical properties. This
involves two very distinct phases: Collision Detection,
and Collision Response. Detection is a problem of
kinematics, while response is a problem of dynamics.

2.1 Collision Detection

Traditional collision detection algorithms have required a
large amount of geometrical intersection tests, checking if
any of the polygons used to model the surface of one
entity touch or penetrate any polygon on the other entity.
To improve the efficiency of such algorithms, hierarchical
representations of entities were generated, to localise the
areas where the actual collision occurred. Such
representations approximate the topology of an object at
different levels of detail. These include Sphere-Trees
[Palmer and Grimsdale 1995][Hubbard
1995,1996][Quinlan 1994], OBB-trees (Oriented
Bounding Boxes) [Gottschalk et al. 1995], ShellTrees
[Krishnan et al. 1998], and hierarchies of k-DOPs
(Discrete Orientation Polytopes)[Klosowski et al. 1997].
Most of these algorithms are actually hybrid algorithms,
involving two or more phases of detection at varying
degrees of accuracy. The broad phase is where
approximate intersections are detected, eliminating
objects which are far away from each other. More
accurate collision detection is then performed in the
narrow phase.

While the speed and efficiency of algorithms has
been the main focus of such research, the issue of a
constant frame rate is also paramount. Consider a room
with a hundred bouncing balls in it. As long as the balls
are evenly distributed around the room, the number of
collisions will be reasonable, with several small groups of
two or slightly more balls coming into contact with each
other every few milliseconds. As long as the balls remain
evenly distributed around the room, the time to detect
collisions between them, and hence the frame-rate, will
remain fairly constant, e.g. about 10 milliseconds.
However, eventually the balls all drift to one corner of the
room. Now each ball in the room will be in contact with
many other balls, each of which will also be colliding
with many others. There are now very many possible
combinations of entity-entity collisions to detect every
few milliseconds, so the time to process collisions, and
hence the frame rate, will increase dramatically. This
could result in several frames that take 200, 300 or even
more milliseconds to process until the balls again separate
to a more even distribution. The resulting animation will
be very jerky and unrealistic.

This problem has been addressed in part by
exploiting coherence [Cohen et al. 1995]. This approach
uses the fact that with small time-steps, the positions of
objects are unlikely to change too much from frame to
frame, enabling efficient sorting algorithms to be used.
Another approach to the problem has been to develop an
interruptible collision detection algorithm [Hubbard
95,96]. The entities are approximated by sphere-trees, and
entities close to each other are tested for collisions at
increasing levels of accuracy in round-robin order. When
the application wishes, e.g. after an allocated amount of
time runs out, the collision detection algorithm is
interrupted, even though it may not have finished
processing each collision fully. The application may then
decide to completely ignore the collisions that have not
been fully tested, or it may decide to treat such

incompletely tested collisions as real collisions, and
compute the appropriate collision response. In the former
case, it takes the risk of letting two entities float into each
other i.e. interpenetrate. In the latter case, some entities
may be seen to approach each other, and then strangely
repulse each other without touching, as if by some form
of magnetic repulsion. We will refer to these two cases
respectively as inter-penetration and repulsion from
now on.

The advantage of an interruptible algorithm is that
the application has full control over the length of time that
the collision detection algorithm may take. It can then use
this to control frame rate, keeping it constant and high.
The disadvantages of this approach are obvious. The
viewer may be unlucky enough to see the artefacts we
have just mentioned, i.e. repulsions or inter-penetrations.
The application can control which of these artefacts
occur, depending on how it handles collisions which have
not been fully processed, but it cannot prevent them
occurring. With a simple round-robin approach, the
collision detection algorithm may have been busy with
some collisions that are out of sight, either out of the
camera view, or far away in the distance, while two large
entities directly in front of the viewer, parallel with the
viewing plane, are allowed to repulse or interpenetrate
dramatically.

2.2 Collision Response

Closely related to collision detection is the issue of
collision response. The problem of predicting how objects
react to collisions is not a new one and methods exist for
calculating to a high degree of accuracy, in real-time, how
simple objects react to collision events [Baraff 97].
However this is based on the assumption that accurate
data is available about the collision such as the exact
instant of the collision, the states of the colliding objects
at this instant in time and the exact point (or indeed
points) of contact between the colliding entities. Before
we can apply any mathematics to the problem we must
first derive the required parameters which will determine
how an object reacts to a collision. It is not enough
merely to determine whether or not objects have collided
but we must also determine the nature of the collision
which has occurred.

With the burden of delivering real-time frame
rates, we must always be aware that any processor time
spent on collision response determination must be
subtracted from the time available for the collision
detection mechanism in our system. However, collision
detection is the main bottleneck in real-time animation
because we have to check all objects in the scene (at the
very least in the broad phase) to determine if they have
collided. Whereas collision response (including all
required data gathering operations) is required only when
we actually detect such a collision. With this in mind
many Physically Based Simulation systems attempt to
implement highly accurate collision response calculations
and this is a feasible option when the number of colliding
objects is always expected to be fairly small. In such
cases we might have a resolution mechanism, which is

largely independent of the detection system, with the
required parameters passed to it by the detection
mechanism.

On the other hand, for crowded scenes with a large
number of potential collisions in each frame (e.g.
rockfalls, debris) a quick and efficient mechanism would
seem the ideal choice; trading accuracy for speed. In such
cases we would have to strive to deliver plausibility of
response rather than mathematical accuracy [Barzel et al.
1996]. In fact it would be desirable if collision response
determination (including all data gathering operations
involved) could also be packaged into a refineable
process in a similar way to our detection system, with the
accuracy of response increasing with the amount of CPU
time allocated to it. However, refining the response of an
object to a collision is not a straightforward problem.
Making guesses about the response of an object falls
under the broader topic of Behavioural Culling [Chenny
97] and certain problems arise where dependencies exist
between the behaviour of several objects. Certain
guidelines must always be followed (e.g. laws of
conservation of energy and momentum) and we must
ensure that some level of consistency is always
maintained in our system.

2.3 Visual Perception of Collisions

Considering the above problems, some common-sense
solutions immediately spring to mind: Process the
collisions in the camera view more fully than those
outside the current viewing window; Attach more
importance to entities that are bigger, nearer, parallel with
the viewing plane. These actions in themselves would
alleviate the problem considerably. However, much more
is possible. What effects do entity properties such as
colour, luminance, velocity, and semantics have on our
perception of the collisions in which they are involved?
How can a combination of weights be given to these
effects, in order to prioritise and schedule collision
processing? What if it was known where exactly in the
visible scene the viewer was looking? It is a well-
established fact that visual and spatial acuity falls off
rapidly with increasing eccentricity of stimuli from the
point of the eye's fixation. Is this also true for collisions?
Would a viewer be less likely to notice a repulsion or
inter-penetration if it happened on a part of the screen at
which they were not directly looking, or how close to the
point of fixation, and how significant must the anomaly
be for it to be noticed?

In [O'Sullivan 1999] a model of human visual
perception of collisions is presented, based on two-
dimensional measures of eccentricity and separation.
The model is validated by performing psychophysical
experiments. It is demonstrated how this model could be
used as the basis for perceptual scheduling of interruptible
collision detection in a real-time animation of large
numbers of homogeneous objects. Using an eye-tracker
to locate the user's point of fixation, perceived collision
inaccuracy was approximately halved for up to 500
tightly-packed objects. The ideas presented are applicable
to other tasks where the processing of fine detail leads to

a computational bottleneck.

3 THE APPLICATION

To apply and test the concepts and algorithms
described above, a real-time animation system has been
developed. This allows implementation and testing of
various different collision scheduling and testing
strategies.

3.1 Overall design

The application may be considered as consisting of
an object, of type Animation. This Animation object
represents a "world" in which entities exist, move around
and interact depending on their physical properties, and
are rendered and displayed on a 2-dimensional display.

Figure 1. Some sample entities

The Animation object contains the entities in the world,
represented as an array of objects of type Entity, a
volume/box within which the entities move and interact,
and viewing parameters, i.e. a description of the current
state of the "synthetic camera" used to gain a view of the
world. It also contains lists and tables to keep track of
interactions and collisions between objects. An all-pairs
table sets a flag for every pair of entities if the projection
of their bounding boxes onto each of the x, y and z axes
overlap. Overlaps in all three dimensions means that the
bounding boxes themselves overlap, indicating a potential
collision of the entities themselves. In addition, two or
more lists of collisions are maintained, represented as
linked lists of objects of type Collision:

- The active collision lists: one or more lists of
potential collisions created from the all-pairs table,
and consisting of all pairs of entities suspected of
colliding, due to an overlap of their bounding boxes,
but which need further processing by our
intersection-testing algorithm to determine whether
they are really colliding or not.

- The real collision list, which contains all pairs of
entities that have been detected as really colliding by
our intersection-testing algorithm.

The main methods/operations that an Animation object
can perform are Construction/Initialisation and Execution.

A new animation can be instantiated, specifying exactly
how the "world" should be, i.e. number of objects,
dimensions of the box, initial viewing parameters. The
objects will be given their initial positions in the world,
and the collision lists and tables will be set to reflect the
interactions of the objects. Once the world has been
created, with all the objects in it, the animation may then
begin. In its simplest form, execution consists of the
following loop:

DO
- Update the position of all objects
- Update the all-pairs table by testing object bounding

boxes for overlaps in all three dimensions
- Generate the active collision list from the all-pairs

table
- Process the active collision list, removing collisions

as they are resolved, placing detected collisions on
the real collision list, and discarding those where the
objects are found not to be touching.

- Process the real collision list, computing the
appropriate collision response for each colliding pair
of objects.

- Draw all objects
UNTIL animation is terminated.

The Entity objects contain all information about
the entity, such as position, size, translational and
rotational velocity, colour, material, along with a pointer
to an object of type Sphere, which will be the root of the
sphere tree that approximates it. We have used a very
simple volumetric representation for the entities in our
application. Each entity is defined by a 3-dimensional
array of 1's and 0's, a 1 indicating the presence of a cube,
a 0 representing the absence. This simplifies the tasks of
rendering, updating and generating sphere-trees greatly,
and it is for this reason that we chose this scheme. Figure
1 shows some entities modelled in this way. Although this
modelling scheme is fairly simplistic, the collision
detection routines are designed to work with any sphere-
trees generated from any type of model. Therefore, our
work may easily be adapted to work in more general
cases. The main methods/operations that an object of type
Entity may perform are:

- Initialisation
- Set initial properties, i.e. colour, position, etc...
- Generate sphere tree, centred at origin.
- Update
- Render

The Sphere objects are the building blocks of the
sphere hierarchies that approximate an entities, described
in detail in section 3.3. A sphere contains the information
about its radius, its centre relative to the origin, and its
centre relative to the entity in its updated state. The sphere
also contains pointers to other spheres, allowing the
sphere tree to be built up recursively. The Collision
objects are nodes which may be linked together to make a
dynamic list. These objects consist of:

- Two pointers to objects of type Entity, i.e. to the
entities involved in the collision

- A pointer to the previous collision in the list (if any).
- A pointer to the next collision in the list (if any).
- A sphere hit list (see section 3.3)
- The centre of collision (see section 3.4)
- The distance of the centre of collision from the

(estimated) fixation location
- The priority of the collision.
- The status of the collision (i.e. colliding, not

colliding, or further processing required).

The main methods/operations that an object of type
Collision may perform are:

- Initialisation
- Maintain the links to the previous and next collisions

in the list
- Intersection test: Tests one level of one sphere tree

against one sphere on the other tree. Section 3.3
discusses the sphere-tree intersection algorithm in
more detail.

- Set collision priority: This is where we will use the
perceptual model, which is based on the results of
psychophysical and physiological studies.

3.2 Broad Phase Collision Detection

For the broad phase of our collision detection algorithm,
we use the “Sweep and Prune” algorithm proposed by
[Cohen et al. 95]. This algorithm is based on the
observation that:

For two 3-dimensional objects to overlap
in 3-dimensional space, their 2-
dimensional projections onto each of the
xy, xz, and yz planes must overlap in all
three cases.

If axis-aligned bounding boxes are used, they can be
projected onto the x,y and z axes, resulting in one-
dimensional intervals. Intersection of a pair of 3-
dimensional bounding boxes would result in overlaps of
their corresponding intervals in all three dimensions. This
leads to a very quick and simple one-dimensional
algorithm. At the first iteration, the bounding boxes are
generated for all objects, and projected onto the x, y and z
axes. A list is constructed for each dimension, containing
the endpoints of all intervals corresponding to that
dimension. These lists are then sorted using an efficient
sorting algorithm for previously unsorted lists, such as
Quick Sort. Any intervals that overlap are then detected,
and if overlaps occur in all three dimensions for a pair of
bounding boxes, the Narrow Phase is triggered.

At each subsequent iteration of the application,
bounding boxes are updated, and appropriate changes
made to the interval lists. Due to inter-frame coherence,
and the fact that the lists were previously sorted,
Insertion Sort is used to keep them sorted. Again,
overlaps in all three dimensions will trigger the Narrow

Phase of the algorithm. One issue which arises is whether
to use Fixed-Size bounding cubes, which are large
enough to hold the convex object at any orientation, or
Dynamically-Sized bounding boxes, which will be
recomputed at every frame to be the smallest axis-aligned
box that contains the object at its current orientation.
Although dynamically sized boxes are more accurate,
they add a computational load at each frame. Fixed-sized
cubes are simpler to update, but may give rise to many
unnecessary Narrow Phase collision tests. The choice of
bounding volume may depend on the shape of the object.
If it is almost spherical, the fixed cube fits it well, and if
it’s long and thin, dynamically sized rectangles fit it
better, and give rise to fewer overlaps. Perhaps both could
be used, with each object being bounded by the most
suitable volume.

The number of objects moving in the scene may
also be a factor. [Cohen et al. 95] claim that if many
objects are moving, the computational burden of updating
bounding volumes at each frame could significantly
degrade performance, whereas if only a few objects are
moving, the reduction in Narrow Phase collision tests
achieved by using tighter bounding boxes, outweighs the
computational cost of computing the boxes. We choose
to use fixed-size bounding boxes for our application, as
we will be animating large numbers of entities.

3.3 Sphere trees.

Spheres are frequently used in computer graphics
as approximations to objects. One reason is that it is very
simple to test for intersections between them. Another
more important reason is the fact that they are rotationally
invariant. Because of this property, it is possible to build a
hierarchy of spheres to approximate any non-convex
object once in a pre-processing phase, centred at the
origin. Whenever we wish to test for a collision between
two entities, we translate and rotate the centres of the
spheres on each approximating tree as we need them, and
test for intersections between them

For the narrow phase of our algorithm, we have
developed an interruptible algorithm based on sphere
trees. We have adapted a "staircase" algorithm from
[Palmer and Grimsdale 1995], and have made it
interruptible, as in [Hubbard 1995]. The sphere trees are
generated during a pre-processing phase, each tress
consisting of 4 levels of spheres, each level representing
a closer approximation to the surface of the object (see
Figure. 2).

3.3.1 Building Sphere Trees

[Hubbard 1996] lists three requirements for generating
hierarchies of spheres:

1. The pre-processing phase must be automatic, with no
user-intervention necessary

2. The hierarchy must be structured in such a way as to
make searching it efficient, with each level
eliminating the need to search a significant subset of
the next level

3. Each hierarchy should fit the entity as tightly as
possible.

Because of criterion 2, (i.e. efficient searching and
elimination at each level), a tree is the obvious data
structure to use. Another possible structure is a Directed
Acyclic Graph (DAG) in which parents can share
children. The structure of the sphere-tree which we use is
shown in Figure 3. Each sphere in the tree contains a
pointer to the first sphere in its child list. If this sphere is a
leaf, this pointer will be NULL. In turn, each sphere
contains a pointer to its parent (NULL for the root), and
to its next sibling in the sibling list, if any.

Sphere trees may be built so that children must
fully cover all parts of the object that their parent does, or
simply a subset of those parts. We have chosen to build
our sphere-trees to represent a conservative over-
approximation of the object’s exposed volume. Collisions
involving any uncovered areas of the surface will remain
undetected by the detection system so we require that our
hierarchy of spheres at each level encompasses the object
completely. On the other hand, we need to ensure that
there are no redundant spheres in our sphere-tree such as
those that are occluded by other spheres and thus play no
part in the actual collision detection. The accuracy of both
collision detection and response in our system is
dependent on our sphere-tree representations of the
objects in our system so we would desire that the sphere
trees fit the object as tightly as possible. At the same time,
limiting the number of nodes at each level of the sphere
tree directly implies less computation for the detection
mechanism so a simple model would also be desirable.
What we require then is an automatic method of
generating sphere-tree representations, which will be as
tight as possible and yet simple enough so that it would be
feasible to use it in our real-time application. The method
implemented in our system is based on octree subdivision
of the object volume.

Figure 2. An entity and 4 levels of its sphere-tree

An octree representation of the object is generated
by recursive subdivision [Sammet & Webber 88]. The
smallest bounding cube needs to be determined, which
will completely encompass the object. This is the coarsest
level of the octree and represents the bounding cube for
our object. This cube is then subdivided into eight equal
partitions or octants. If any of these partitions contains
any part of the object then it is enabled as a node on the
octree. Each octant is then recursively subdivided in a
similar way up to the level of decomposition required.
Determining whether or not a 3D sub-partition contains
any part of the object can be done in several ways
depending on the method initially used to describe the
object’s volume (e.g. face intersection tests). In our

present system we require that each object has a voxel
representation of its volume so determining whether or
not to attach a child node simply involves checking if the
corresponding octant contains an enabled voxel.

Once the required octree has been generated, it is a
simple matter to find the smallest radius of sphere
required to completely encompass any particular node of

the octree. For regular cubes (side α) the required radius
is simply:

For a cuboid of dimensions x, y, z :

Finally we remove all nodes from the octree which are
occluded on all sides by other nodes and the finished
sphere-tree is obtained by generating all the spheres
corresponding to the remaining nodes of the octree.

3.3.2 Sphere-Tree Intersection Algorithm

We test for intersection between two sphere trees
as follows: Take two sphere-trees, tree 1 and tree 2, which
approximate two objects whose bounding boxes overlap
in all three dimensions. This has caused an object of type
Collision to be created, with pointers to the roots of both
trees. Each collision object contains a pointer to a list of
sphere hits. A sphere hit contains a record of the current
state of the collision object, i.e. what spheres on one tree
must be tested against what spheres on the other tree. This
consists of a target sphere on one tree, and a test list of
spheres on the other tree.

At the start of the algorithm, the list consists of one
sphere hit, i.e. the root of tree 1 is the target, and the root
of tree 2 is the test list. If these do not intersect, then there
is no collision between the objects. If they do, a new
sphere hit is added to the collision's sphere hit list, the
root of tree 2 becomes the target sphere, and the children
of the root of tree 1 now become the test list. Continuing
on in this fashion, every time an intersection is found
between a target sphere and a member of the test list, a
new sphere hit is created with the intersecting member of
the test list becoming the new target sphere, and the

children of the old target becoming the new test list. In
this way, the algorithm is fully interruptible, allowing the
detection to descend one level of one tree at a time,
reducing the complexity of the algorithm, and enabling a
fast, albeit approximate, response when necessary.

3.4 Interruptible Collision Detection

The application performs the broad-phase testing,
and creates a list of collision objects called the active
collision list. This is a linked list of all collisions that have
not yet been resolved. As collisions are resolved, they are
placed on the real collision list if a real collision was
detected, or are destroyed, if it has been determined that
the entities are definitely not colliding. If all collisions are
fully resolved, the frame-rate will be highly variable.
Therefore, it is sometimes desirable to interrupt
processing when a target time has elapsed. The control of
the processing order of collisions on the active collision
list is determined by the chosen scheduling mechanism.

3.4.1 Adding Interruption

At any point in time during collision processing,
there will be unresolved collisions on the active list, and
resolved collisions on the real list. At some point the
application will deem that collision processing should
stop. In our case the criterion for stopping is when a pre-
defined target time has been exceeded. However, other
criteria could just as easily be used. When the request for
an interruption is generated, the collision processing must
stop, and this will leave us with a list of real collisions
and a list of unresolved collisions still on the active
collision list. We have chosen to treat these collisions as
real collisions. In this case all the active collisions are
added to the end of the real collision list. We could just as
easily have chosen to reject these collisions, thus allowing
inter-penetration, but for reasons explained in later
chapters, we will accept all unresolved collisions as being
real. There are four possible results at each iteration of the
test for a collision object.

1. An intersection is detected between two leaves of the
trees. In this case the objects are deemed to be
colliding, and the collision is resolved. The collision
will be removed from the active collision list, and
added to the real collision list.

2. No intersections are detected between any of the
targets of each sphere hit and the members of the test
lists. In this case, the objects are definitely not
colliding, and the collision is resolved. The collision
is removed from the active collision list and
destroyed.

3. An intersection is detected between the target sphere
and a test sphere of at least one sphere hit, but at
most one of the spheres is a leaf, so the collision test
is non-conclusive. In this case, new sphere hits are
created, and the collision remains on the active
collision list for further processing if needed.

4. During the iteration, the application indicates that it
wishes to interrupt collision processing. In this case,

Figure 3.Design of a sphere-tree

if the sphere hit list is non-empty, the entities are
deemed to be colliding, and the collision is removed
from the active collision list and added to the real
collision list.

Although our application creates 4 levels of sphere
trees for every object, the intersection algorithm has been
designed to handle intersection tests between two sphere
trees of unequal height. This is handled by stopping the
cross-over in the algorithm, i.e. instead of adding a new
sphere hit between the children of the old target, and the
intersecting member of the test list, if the old target has no
child, the new sphere hit is created with the old target
remaining as target, and the test list is the child list of the
intersecting member of the old test list. The target
remains the same until an intersection is detected between
it and a leaf of the other sphere tree, or until an
interruption occurs. This means that in the future, more
complex objects can be approximated by more levels of
more spheres, and more simple objects by only a few
levels (or even just one, in the case of spherical objects).

3.4.2 Measuring Inaccuracy and Prioritising
Collisions

This application provides a framework within which
different collision detection, prioritisation and scheduling
algorithms may be implemented and evaluated for
computational and perceptual performance. A model of
collision perception based on eccentricity and separation
is used both to prioritise collisions, and also to estimate
perceived inaccuracy [O'Sullivan 1999]. This model,
plotted in figure 4, has been validated by psychophysical
means, and represents a good approximation to a human's
perception of collision anomalies (i.e. repulsions) at
different eccentricities and separation distances.

When considering the inaccuracy present in a
frame of an animation, we must distinguish between
geometrical inaccuracy ∇∇, and perceived inaccuracy P.
The geometrical inaccuracy in a scene is an estimate of
the overall three-dimensional error that has been incurred
by accepting non-collisions as real, causing entities to
repulse without touching. It can be estimated by summing
the sizes of all potential gaps left during such "non-
collisions". In our applications, we cannot calculate the
exact size of the gap between two colliding entities, as
this would take an excessive amount of time and defeat
the purpose of approximate collision testing. Instead, we
can use the information available to us to estimate an
upper bound on the maximum gap size between two
entities. We use the three-dimensional distance between
the centres of the last two spheres found to be intersecting
from the sphere-trees of each colliding pair, or the
distance between the centres of the two entities if
collision testing is interrupted before any spheres have
been tested. We estimate the geometrical inaccuracy ∇∇ in
a given frame by simply summing these distances. Hence,
the further down the sphere-tree hierarchy each collision
is allowed to progress, the more accurate the estimate will
become. Alternatively, we could pre-compute the
Hausdorff distance for all spheres in each tree (as in

[Hubbard 1995]), and use the sum of these distances as
our estimate.

Not all collision inaccuracies contribute equally to
the inaccuracy perceived by the user in a single frame of
an animation. Hence, the perceived inaccuracy P present
in two frames of an animation with identical geometrical
inaccuracy ∇∇, may be quite different depending on how
the frame is viewed. It has been proven that eccentricity e,
i.e. distance from the viewer's fixation point, and
separation, estimated by maximum 2D gap size g, are the
two most important factors which affect perceived
inaccuracy, when large numbers of similar objects are
being animated. Work is ongoing to determine the effect
of other factors, in other circumstances.

If two spheres are interpenetrating, we find the
midpoint on the line segment inside the intersection. We
call this the Centre of Collision. We track the user's gaze,
so we know the fixation point F for each frame,
expressed as an x,y location on screen. We can therefore
calculate the eccentricity e as follows: We find the x,y
location in screen co-ordinates of the centre of collision
projected onto the view-plane, then e is simply the 2-
dimensional distance from F of the centre of collision.
Collisions closer to the fixation point contribute more to
the perceived inaccuracy of a frame than those further
away and hence should receive higher weighting.
Collisions closer to F should receive lower weighting.

Similarly, the size of the maximum on-screen gap,
g, may also be used to weight each collision, with larger
gaps contributing more to inaccuracy than smaller ones.
We calculate an upper bound on the 2-dimensional gap
size as follows: We take the centres of the last two
spheres found to be intersecting, and calculate the 2-
dimensional distance between their projections onto the
screen.

Figure 4. Perceptual function, f, showing the relationship
between eccentricity e, and gap size g, The function f(e g)
shows the probability of the viewer noticing a gap of that
size at that eccentricity.

3.4.3 Scheduling

The key to controlling the collision inaccuracy
perceived by a viewer in a given frame of an animation
lies in the scheduling method adopted. We have seen in
previous sections that upon completion of the broad phase
of collision testing, an active list of collisions exists, one

f(e,g) = g / (exp(e/100))

0.0

1.2

0 320e

f(
e,

g
)

10

20

30

g

collision object for each pair of entities whose bounding
boxes overlap. In [Hubbard 1995] round-robin
scheduling is used, i.e. this list is resolved in round-robin
order, descending one level in the hierarchy of every
sphere tree at each iteration of the algorithm. However, no
account is taken of the perceptual importance of each
collision. Other strategies are: sequential scheduling
collisions are resolved fully one by one until completion
or interruption. Again, perception is ignored with this
strategy. In perceptually sorted sequential scheduling,
perceptual information is used to schedule collision
testing. A perceptual importance is attached to each
collision, based on some criteria, and the active collision
list is then sorted based on this priority. Sequential
scheduling is then used, but now the collisions which are
most important perceptually will be resolved first, leaving
the more unimportant collisions to be resolved only if
there is time left. However, a significant overhead is
incurred through the sorting process, and has been shown
to reduce the time for collision detection so much as to
degrade, rather than improve performance.

Another strategy is to generate not one active
collision list, but a set of priority queues, and to round
robin within them. The perceptual model is used only to
decide which queue a collision belongs to, thus reducing
the computational overhead. A higher priority queue
would be resolved first, and only when all collisions on
that queue have been resolved would the next highest
queue be handled. This is called priority queue
scheduling. It has been shown that priority queue
scheduling, using the above model of collision perception
to measure inaccuracy and to prioritise collisions, is the
most effective scheduling mechanism, with perceived
inaccuracy being approximately halved for large numbers
of objects.

3.5 Collision Response

A simple way of achieving refineable collision
response might be by treating all of the objects in our
system as the union of spheres represented by their sphere
trees. This seems like a logical approach as we have
already made this assumption in the detection phase. Not
only will we inherit all the data (variables and pre-
computed constants) but we also have a built in
consistency to our system. It becomes possible to
interleave the two processes of detection and response
(including all contact point determination etc.) and make
our whole system more cohesive. This is desirable in a
time-critical system as it would allow for more interaction
between the two processes. Certain calculations (for
instance determination of gap-size, and the centre of
collision) would be useful to both detection and response
mechanisms and interleaving the two processes would
avoid repetition and make the system more efficient.

A simplified impulse based method is used to
calculate responses [Baraff 97][Baraff & Witkin 98]
given the point of collision and the collision direction.
The full details of the collision response calculations fall
outside the scope of this paper and we only describe here
the process involved in obtaining the required data used in

these calculations. The details required for an adequate
level of response calculations are outlined below:

i. mass (or relative mass of objects)
ii. centre of mass of objects
iii. moment of inertia of objects
iv. state of colliding objects at the instance of collision

(e.g. velocity, position).
v. the points of collision and
vi. the direction of the applied impulses

Mass and centre of mass are determined at the pre-
computation phase; moment of inertia can be computed
relatively quickly based on the current orientation of the
object and some pre-computed constant. We treat the
objects as if they actually were a union of spheres and use
this to approximate the other required parameters (i.e. the
collision direction, and collision points). Due to the very
nature of our collision detection system the data passed on
to the collision response system will at best be an
approximation for all but the highest priority collision
events in the scene. Once our detection system has
indicated that the nodes of two sphere trees have collided
that is when the collision resolution phase begins. We
cannot justify doing further intersection tests (e.g.
checking for polygon level intersections) to determine the
exact nature of the collision, as that would defeat the
purpose of our interruptible algorithm. However given the
positions of the colliding spheres, a fair approximation of
the collision data can be made.

Figure 5: A quick approximation of the collision data
(given the identities and properties of the colliding
spheres on the sphere trees)

Collision direction is taken as line joining the centres of
the two spheres (see Fig. 5). The collision point C lies on
this line and divides the line between O1 and O2 in
proportion to the radii of the spheres. We have illustrated
the situation when we let the sphere trees interpenetrate,
however the same principles would be applied if we
forced them to repulse at a distance. Note: similar
calculations are done to compute the “centre of collision”
in the Collision Detection phase. Using this method, we
do not require a separate mechanism for prioritising
events for the purposes of response calculation. This has
been done for us at the detection phase, as the more
important collision events will have been resolved to a

deeper sphere-tree level. The deeper we go down the
sphere tree, the more accurate our representation of the
object and hence our approximations of the collision point
and collision plane. In Figure 6, a, b and c show different
levels of detail for the collision data approximation. Fig.
6d shows the actual collision point determined by
polygon intersection tests. Note that in 6c two collision
points are detected. However resolving the two impulses
leads to a reasonably accurate approximation of the actual
impulse.

Figure 6: How the response data automatically gets
refined as we go deeper into the sphere tree

The response mechanism will only have an
approximation of the actual values at the moment of
collision. A conservative approximation of the state of the
objects, the point of collision and the collision plane
would be obtained by taking the states of the objects the
frame before inter-penetration of sphere-trees was
detected. This would ensure that no inter-penetration of
the actual objects ever takes place. However, as the
sphere tree bounds themselves are conservative
approximations of the space occupied by objects such an
restriction would even further increase the inaccuracy. A
simpler approximation would be the states of the objects
at the instance when collisions were detected. This would
mean that our spatial model of the objects (i.e. the sphere
tree representations) would in fact overlap over the course
of the animation. Again because the spheres are
overestimates of the object volume, overlap to a certain
degree is acceptable. There is no way of determining for

certain if the actual objects will overlap when sphere trees
intersect but it may be preferable to have objects
overlapping during collisions than to have a large gap-
size.

Inter-penetration in the system is a direct result of
being limited to discrete time-steps; a limitation which all
real-time systems suffer from. It is the single largest
source of inaccuracy in our system and we would want to
minimise this as much as possible. If our time-steps were
arbitrarily short or the velocities of entities in our system
were arbitrarily small, inter-penetration and the resulting
inaccuracy could be reduced to an acceptable level. This
cannot always be guaranteed in a real-time system and the
exact values, if required, must be obtained by performing
some form of backtracking or interpolation to determine
the states of the objects at the exact instant of collision
(i.e. before they actually interpenetrate).

4 CONCLUSIONS

In this paper we introduced a method of collision
handling which produces a refineable approximation of
the behaviour of objects due to collisions. The computing
cost for the response phase is fairly minimal so there is
more time available for other parts of the system
including collision detection and rendering, making it
suitable for an interactive real-time system. An
approximate model of collision response is implemented
in the attempt to generate plausible motion as opposed to
mathematically accurate motion, which would be
computationally more expensive. This is usually justified
as there is always a certain degree of uncertainty in the
real world which prevents us from predicting how exactly
an object will behave. The question that needs to be
answered is how to get the best return from the speed-
accuracy trade-off.

The model of collision perception which we use is
very specific. It represents typical human reactions to
collision anomalies, where large numbers of
homogeneous objects are being animated. Work is in
progress to make it applicable in more general cases.
Other factors, such as location and direction of motion,
velocity, acceleration, colour and luminance can have
very strong effects under certain circumstances, and if
necessary must also be included if the model is to be truly
representative of human behaviour.

At present all collision events are prioritised on a
scheme based on tests, which were done with a number of
subjects to determine how sensitive they were to
approximate collision events occurring on different parts
of the scene. So far, this has largely been a test of how
collision detection can be prioritised effectively. Similar
tests might be done to determine how sensitive viewers
are to approximations of particular responses to collisions
and implement this in our prioritisation scheme. Inter-
penetration is a major source of inaccuracy and needs to
be minimised (or ideally eliminated) in order to ensure the
robust and consistent operation of our system. However it
would be undesirable to err too far on the side of caution

as this too affects accuracy and more so the believability
of the animation. Some means of closely approximating
the collision point needs to be implemented in real-time
by backtracking or interpolation.

Further behavioural detail still needs to be added
to the system to increase the realism and the general
applicability of the system. For instance, friction forces
during collisions, gravity and elasticity of collisions have
been experimented with but are not fully implemented in
the current system. Such factors would undoubtedly add
further complexity to the system and we need to
investigate how much more complexity we can afford and
how we might also cull these behaviours in a fully
adaptive real-time system.

Bibliography

[Baraff 97] Baraff, D. Physically Based Modelling.
SIGGRAPH ’97 Course Notes.

[Baraff & Witkin 98] Baraff, D. and Andrew Witkin.
Physically Based Modelling. SIGGRAPH ’98 Course
Notes.

[Barzel et al. 1996] Barzel, R. Hughes, J.F. Wood, D.N.
(1996) Plausible Motion Simulation for Computer
Graphics Animation. Computer Animation and
Simulation '96. 183-197.

[Chenny 97] Chenny, S. Culling Dynamical Systems in
Virtual Environments. 1997 Symposium on Interactive
3D Graphics.

[Cohen et al. 1995] Cohen, J.D. Lin, M.C. Manocha, D.
Ponamgi, M.K.(1995) I-COLLIDE: An Interactive and
Exact Collision Detection System for Large-Scaled
Environments. Proceedings of ACM Int. 3D Graphics
Conference. 189-196.

[Ferwerda et al. 1996] Ferwerda, J.A. Pattanaik, S.N.
Shirley, P. Greenberg, D.P. (1996) A Model of Visual
Adaptation for Realistic Image Synthesis. SIGGRAPH
'96. 249-258.

[Ferwerda et al. 1997] Ferwerda, J.A. Pattanaik, S.N.
Shirley, P. Greenberg, D.P. (1997) A Model of Visual
Masking for Computer Graphics. SIGGRAPH '97. 143-
152.

[Funkhouser and Sequin 1993] Funkhouser,T.A. Sequin,
C.H. (1993) Adaptive Display Algorithm for Interactive
Frame Rates During Visualization of Complex Virtual
Environments. SIGGRAPH '93 247-254.

[Gottschalk et al. 1996] Gottschalk, S. Lin, M.C.
Manocha, D. (1996) OBB-Tree: A Hierarchical Structure
for Rapid Interference Detection. SIGGRAPH '96.

[Greenberg et al. 1997] Greenberg D.P. et al. A
Framework for Realistic Image Synthesis.
SIGGRAPH'97. 477-494.

[Hubbard 1995] Hubbard, P.M. (1995) Collision
Detection for Interactive Graphics Applications. IEEE
Transactions on Visualization and Computer Graphics.
1(3) 218-230.

[Hubbard 1996] Hubbard, P.M. (1996) Approximating
Polyhedra with Spheres for Time-Critical Collision
Detection. ACM Trans. on Graphics, 15(3) 179-210.

[Klosowski et al. 1998] Klosowski, J.T. Held, M.
Mitchell, J.S.B. Sowizral, H. Zikan, K. (1998) Efficient
Collision Detection Using Bounding Volume Hierarchies
of k-DOPs. IEEE Trans. on Visualization and Computer
Graphics 4(1).

[Krishnan et al. 1998] Krishnan, S. Gopi, M. Lin, M.
Manocha, D. Pattekar, A. Rapid and Accurate Contact
Determination Between Spline Models using ShellTrees.
in Proceedings of Eurographics'98.

[O'Sullivan 1999] O'Sullivan, C. A Model of Collision
Perception for Real-Time Animation. Technical Report
TCD-CS-1999-01, Trinity College Dublin, January 1999.

[O'Sullivan and Reilly 1997] O'Sullivan, C. Reilly, R.
REACT: REal-time Adaptive Collision Testing, , D.
Thalman, M. van de Panne (eds.) Computer Animation
and Simulation '97 163-175.

[Mirtich 96] Mirtich, B. Impulse Based Dynamic
Simulation of Rigid Body Systems. Phd Thesis, University
of California, Berkeley, 1996.

[Mirtich and Canny 95] Mirtich, B. and Canny, J.
Impulse-based Dynamic Simulation. In Proceedings of
1995 Symposium on Interactive 3D Graphics. 181-188.

[Palmer and Grimsdale 1995] Palmer, I.J. Grimsdale,
R.L.(1995) Collision Detection for Animation using
Sphere-Trees. Computer Graphics Forum, 14(2) 105-116

[Quinlan 1994] Quinlan, S. (1994) Efficient Distance
Computation between Non-Convex Object. Proceedings
International Conference on Robotics and Automation.
3324-3329.

[Sammet and Webber 1988] Sammet, H. and Webber, R.
Hierarchical Data Structures and Algorithms for
Computer Graphics. 1988 in IEEE Comp. Graphics and
Applications. Vol.8 No. 3 48-68

