
Proceedings of the APSEC'97/ICSC'97: Joint 1997 Asia Pacific Software Engineering Conference and International Computer Science Conference.
Hong Kong, China. 2-5 December 1997. pp 312-320, Ed. IEEE Computer Society.

Legacy Systems Migration - A Method and its Tool-kit Framework

Bing Wu, Deirdre Lawless, Jesus Bisbal, D O’Sullivan1, Ray Richardson2

 Jane Grimson, Vincent Wade Broadcom Éireann Research,

 Computer Science Department, Dublin, Ireland.

 Trinity College, Dublin, Ireland. Email: 1 : dosullivan@ broadcom.ie;

 Email: {name.surname}@cs.tcd.ie 2 : rr@broadcom.ie

Abstract
The problems posed by mission-critical legacy systems

- brittleness, inflexibility, isolation, non-extensibility, lack
of openness etc. - are well known, but practical solutions
have been slow to emerge. Most approaches are “ad
hoc” and tailored to peculiarities of individual systems.
This paper presents an approach to mission-critical
legacy system migration : the Butterfly Methodology, its
data migration engine and supporting tool-kit framework.
Data migration is the primary focus of the Butterfly
methodology, however, it is placed in the overall context
of a complete legacy system migration. The fundamental
premise of the Butterfly methodology is to question the
need for parallel operation of the legacy and target
systems during migration. Much of the complexity of the
current migration methodologies is eliminated by
removing this interoperation assumption.

1. Introduction

The system engineering process normally involves
phases of requirement definition, system design, sub-
system development, system integration, installation,
evolution and finally system decommissioning [22].
Within this process, system evolution plays, during the
whole lifetime of the developed systems, a very important
role in maintaining system performance and enhancing it
to meet new requirements.

The widespread use of computer technology over
several decades has resulted in some large, complex
systems which have evolved to a state where they
significantly resist further modification and evolution.
Such systems are termed Legacy Systems [3]. These
systems typically form the backbone of information flow
within an organisation and are normally mission-critical :
if one of these systems stops working the business will

generally grind to a halt. Thus for many organisations,
decommissioning these systems is not an option [22]. An
alternative solution is legacy system migration which has
become an important research and practical issue, for
both the system engineering and database areas ([3], [22],
[11] and [27]).

Legacy system migration is concerned with developing
a target system which retains the functionality and,
importantly, data of the original legacy system [3] but
which can be easily maintained and adapted to meet
future business requirements. There is an urgent need to
provide a strategy which will allow the migration of the
systems to new platforms and architectures and to provide
tools and methodologies to support such a strategy.

In this paper an approach to legacy information
systems migration is presented: the Butterfly
methodology, and a framework tool-kit to support the
methodology is outlined. In the following section current
approaches to legacy system migration are briefly
reviewed. Section 3 presents the Butterfly methodology in
detail. Section 4 presents some detail of the Butterfly
methodology for legacy data migration, a core part of a
migration project. Section 5 then briefly discuss a
framework of tool-kit for supporting the Butterfly
methodology. Finally, Section 6 presents a summary of
findings and discusses a number of future directions.

2. Related work

Legacy system migration encompasses many research
areas. A single migration project could, quite legitimately,
address the areas of reverse engineering, business
reengineering, schema mapping and translation, data
transformation, application development, human
computer-interaction and testing. Due to space
limitations, only a brief outline of research directly
related to legacy system migration will be presented.

Current practical solutions mainly adopt what is
referred to as “Wrapping”. Wrapping involves
surrounding existing data, individual programs,
application systems, and interfaces to give a legacy
system a ‘new and improved’ look or improve operations
[26]. The most popular implementation of this is “Screen
Scraping”. Screen Scraping is the process of replacing the
character based front ends of legacy systems with a client
based graphical user interface. Introducing a graphical
interface does not address many of the serious problems
posed by legacy systems. At best it reduces training costs
for new employees and allows an interface to the legacy
system be placed on the desktop. Thus the problems
legacy systems pose can only be overcome using a
comprehensive migration strategy.

Tilley [27] discusses legacy system reengineering from
several perspectives: engineering, system, software,
managerial, evolutionary and maintenance. A framework
for legacy system reengineering is proposed for each
perspective. Using the system reengineering framework,
the implication is that the legacy system will operate
normally while the target system is developed
independently. When the target system is complete, the
legacy system will be shut down and the target system
switched on. However, the proposed frameworks are
presented at too high a level to be applied in practice and
no consideration is given to the migration of legacy data.
This is unacceptable when considering migration of
mission-critical legacy systems.

Ganti and Brayman [11] propose general guidelines
for migrating legacy systems to a distributed
environment. Using these guidelines, the business is first
examined and the business processes found are re-
engineered as required. Legacy information systems are
linked with these processes to determine which systems
have data and business logic of value in the new target
environment. A set of processes are selected and the
associated legacy systems are analysed. New applications
are then developed to fit these processes. These guidelines
are not really suitable for use in migrating a mission-
critical legacy system. Only the data and its structure are
used in the decentralised target system. Mention is made
of retaining logic encoded in applications but it appears
that the legacy systems will be discarded and replaced
with new applications. This approach recognises that
legacy system migration should cause as little disruption
to the current business environment as possible.
However, it is unclear how the cut-over to the new,
separately developed, target system will be handled.

In their Chicken Little Methodology Brodie and
Stonebraker ([2], [3]) propose an 11 step generic

migration strategy employing complex gateways, shown
in Figure 1. In this method the legacy and target
information systems are operated in parallel throughout
the migration. Initially the target information system is
very small, perhaps only one application with a very
small database. However as the migration progresses the
target system will grow in size until it performs all the
functionality of the legacy system which can then be
retired. During the migration, the legacy and target
information systems interoperate to form the operational
mission-critical information system. This interoperability
is provided by a module known, in general, as a gateway,
“a software module introduced between operation
software components to mediate between them” [3].

An example of Chicken Little’s general migration
architecture is shown in Figure 2 (modified from [3]). Data
is stored in both the migrating legacy and the growing
target systems. A forward gateway is employed to enable
the legacy applications access the database environment
in the target side of the migration process and a reverse
gateway is employed to enable target applications to
access the legacy data management environment.

In most cases, gateway co-ordinators have to be
introduced to maintain data consistency. However, as
Brodie and Stonebraker themselves recognise,
maintaining update consistency across heterogeneous
information systems represents a complex technical
problem which has no general solution and is an open
research challenge [3]. Thus it seems that to apply the
Chicken Little approach would represent a major
challenge to any migration engineer.

In summary, the few complete migration
methodologies available are either so general that they
omit many of the specifics or are too complex to be
applied in practice. Little focus is given to legacy data
migration in most methodologies. Brodie and

 Step 1 : Incrementally analyse the legacy information system
 Step 2 : Incrementally decompose the legacy information
 system structure
 Step 3 : Incrementally design the target interfaces
 Step 4 : Incrementally design the target applications
 Step 5 : Incrementally design the target database
 Step 6 : Incrementally install the target environment
 Step 7 : Incrementally create and install the necessary
 gateways
 Step 8 : Incrementally migrate the legacy databases
 Step 9 : Incrementally migrate the legacy applications
 Step 10 : Incrementally migrate the legacy interfaces
 Step 11 : Incrementally cut over to the target information
 system.

Figure 1 Chicken Little Migration Approach

Stonebraker’s Chicken Little methodology offers the most
mature approach. However, the need for the legacy and
target systems to interoperate via gateways during the
migration process adds greatly to the complexity of an
already complex process and is also a considerable
technical challenge. Thus a need exists for a safe,
comprehensive, gateway-free approach to legacy system
migration.

3. The Butterfly methodology

The Butterfly methodology is being developed as part
of the MILESTONE project, a collaborative project
involving Trinity College Dublin, Broadcom Éireann
Research, Telecom Éireann, and Ericssons.
MILESTONE aims to provide a migration methodology
and a generic supporting tool-kit for the methodology to
aid migration engineers in the process of migrating legacy
information systems to target systems. The project began
in July, 1996 and will finish in June, 1998. A trial legacy
system migration following the Butterfly methodology is
currently being planed and results will be available in the
future.

The objective of the Butterfly methodology is to
migrate a mission-critical legacy system to a target
system. Different from Chicken little, the Butterfly
methodology eliminates, during the migration, the need
for system users to simultaneously access both the legacy
and target systems, and therefore, eliminates the need of
interoperation between these two (heterogeneous)
information systems.

It is very important to bear in mind that, using the
Butterfly methodology, the target system will not be in
production while the legacy system is being migrated.
The legacy system will remain in full production during

the whole migration process. There will never be a case
where live data is stored, at the same time, in both the
legacy and target systems.

3.1 Overview

Legacy system migration can be a very expensive
procedure which carries a definite risk of failure. In order
to perform a successful migration, a sound model of the
migration process is obviously needed. Currently,
however, no general model exists.

MILESTONE’s considers that migration consists of
five major tasks:

1) Justification;
2) Legacy System Understanding;
3) Target System Development;
4) Migration
5) Testing.

This is illustrated in Figure 3.

Within each task, general software/system engineering
techniques can be applied. Testing plays a very important
role in all tasks.

Justification involves an intensive study to quantify the
risk and benefits and fully justify the redevelopment of
the legacy system involved. Legacy System
Understanding mainly involves reverse engineering of the
legacy system. Target System Development is a
constrained forward engineering task, the main constraint
being the requirement for function-equivalence to the
legacy system. Migration involves the physical
transformation of whole the legacy system environment
(i.e. legacy application, data, interface and the system
users) to the target system. Due to its mission-critical
nature, legacy system migration should cause as little
disruption to the business environment as possible.

Within the process tasks are related and the process
itself is iterative. Initially, Justification has to be done.
Only after this, can Legacy System Understanding, Target

Co-OrdinatorCo-Ordinator

Forward GatewayForward Gateway

Legacy Component

Target Component

M 1
M 1

SI1SI1 UI1
UI1

M j
M j

SIjSIj UI j
UI j

SIkSIk UI k
UIk SImSIm UI m

UI m SIhSIh UI h
UI h SInSIn UIn

UIn

Mapping
Table

Mapping
Table

SI UI

Reverse GatewayReverse Gateway

Target DBMSTarget DBMS

M h
M h M n

Mn

SI System Interface

UI User Interface

M Application Module

Legacy Data /
Database Service

Legacy Data /
Database Service

Target
Data

Target
Data

Legacy System
Understanding

5. Testing

4. Migration

4.1 Interfaces and Applications
 Migration

4.2 Legacy Data Migration

4.3. Target System
 User Training

Target System
Development

Migration Process

3

2

Migration
Justification

1

Figure 3 Major activities in legacy system migration

Figure 2 An Example of Chicken Little’s
 General Migration Architecture

System Development and Migration be performed.
Testing is addressed in all these tasks. Each task can be
sub-divided into a number of sub-tasks. The results of
these will affect the procedure and results of tasks in both
previous and subsequent phases. In this sense, the
migration process is a spiral model for tasks 2, 3, 4 and 5.

3.2 The Butterfly methodology phases

Using MILESTONE’s view of the migration process,
the Butterfly methodology divides legacy system
migration into six major phases, Figure 4. An extra phase
is introduced to produce sample data to facilitate testing
and training. Activities related to data migration are
presented in more detail because this is the particular
focus of the Butterfly methodology.

Before explaining the detail of the methodology, it is
worth emphasising two points. First, the Butterfly
methodology deliberately stores live data at the legacy
system side during migration, and the target system will
not be in production before the full migration process
finish. This is different from gateway-based migration
approaches where live data is distributed at both legacy
and target systems during migration. This presents a great
technical challenge to maintain data consistency, for
which no general solution is available currently. Second,
the Butterfly methodology proposes a legacy data
migration engine, suitable for mission-critical system
migration, so that the legacy system need only be shut
down for a minimal amount of time. This differs from
the so called Big-Bang, Forward and Reverse Migration
[3] approaches where the legacy system must be shut
down for a considerable time to facilitate data migration
before the target system is made available.
• Phase 0: Prepare for migration.

Once the decision to migrate a legacy system has been
made, the next stage is to prepare everything for the
migration. Although many issues essential to a migration
project must be clarified at this stage, for example
management, organisational issues or budget, the

Butterfly methodology focuses only on the technical
issues. Among these issues the Butterfly methodology
considers user requirements for migration and target
system determination to be most important.

The main activities within this phase are listed in
Figure 5. Obviously these activities can only succeed
through intensive co-operation among the legacy system
experts, migration engineers and users.

• Phase 1: Understand the semantics of the legacy
system and develop the target data schema(s).

The activities identified within this “reverse
engineering” phase are listed in Figure 6. Activity 1.4 is
optional because a legacy system may not interact with
other systems. Activity 1.5 to finalise the migration
requirements is needed as it may not be possible to
identify all the requirements until the legacy system has
been understood.

A wide range of tools has been developed to assist in
this reverse engineering area and there are more to come
in future. The Butterfly methodology will take advantage
of these tools and develop new tools only if it becomes
absolutely necessary. One such tool is Data-Access-
Allocator (DAA) developed by activity 1.6 which will be
used to redirect all manipulations of legacy data, and data
stored in TempStores once the data migration has begun,
by the legacy system. (Refer to Section 4.)

 Phase 0: Prepare for migration
 0.1 Getting the migration preliminary requirements;

0.1.1Determining user requirements;
0.1.2 Determining benchmarks for measurement
 of migration success;

 0.2 Determining the target architecture;
0.3 Preparing the target hardware system;

 Phase 1: Understand the semantics of the legacy system
and develop the target data schema(s)

1.1 Understanding the legacy interfaces, identifying redundancies
 and determining the function of the target interfaces;

1.2 Understanding the legacy applications, identifying
 redundancies and determining the function of the target
 applications;

1.3 Understanding the legacy data; identifying
 redundancies and determining to-be-migrated data;
(optional) 1.4 Identifying and understanding interactions

 with other systems;
1.5 Finalising the migration requirements;
1.6 Developing the Data-Access-Allocator (DAA);
1.7 Developing the target data schemas and determining

 the mapping rules.

Figure 5 Migration Activities in Phase 0

Figure 6 Migration Activities in Phase 1

 Phase 0: Prepare for migration.
 Phase 1: Understand the semantics of the legacy system and
 develop the target data schema(s).
 Phase 2: Build up a Sample Datastore, based upon the Target
 SampleData, in the target system
 Phase 3: migrate all the components (except for data) of the
 legacy system to the target architecture.
 Phase 4: Gradually migrate the legacy data into the target
 system and train users in target system
 Phase 5: Cut-over to the completed target system.

Figure 4 Six Phases of the Butterfly methodology

• Phase 2: Build up a Sample Datastore, based upon
the Target SampleData, in the target system.

The main activities of this phase are to determine the
legacy SampleData and to develop the data transformer :
Chrysaliser, another special tool required by the Butterfly
methodology. The main function of Chrysaliser is to
transform the legacy data, as well as the data in
TempStores, to the target system. Initially, the legacy
SampleData will be transformed by Chrysaliser to form
the target Sample DataStore. This will be used to develop
and test the target system. Figure 7 lists the activities
involved in this phase. (Also refer to Section 4.)

• Phase 3: Migrate all the components (except for
data) of the legacy system to the target architecture.

“Forward” system engineering principles and methods
will be one guideline for migration in this phase. The
Sample DataStore, built up in Phase 2, will be used to
support the cycle of the ‘design-develop-test’ for newly
developed target components. Figure 8 lists activities in
this phase.

Activity 3.4, target components/system integration, is
applied to test interactions among the components of the
evolving target system. Because the evolving target
system is built upon the Sample DataStore, some aspects

of user training can be introduced here without the risk of
data inconsistency. This activity is optional.
• Phase 4: Gradually migrate the legacy data into the

target system and train users in target system.
This phase is mainly devoted to legacy data migration

and is the core part of the Butterfly methodology. The
legacy data will be gradually migrated into the target
system by introducing a series of TempStores, the Data-
Access-Allocator (DAA) and the data-transformer
(Chrysaliser). The activities of this phase are listed in
Figure 9. Section 4 will present an overview of data
migration in the Butterfly methodology. One point may
worth emphasising is that, during whole the data
migration, legacy system always remains in full
production.

• Phase 5: Cut-over to the completed target system.
The last phase of the Butterfly methodology is the cut-

over phase, Figure 10. Once the target system has been
built up and all the legacy data have been migrated, the
new system is then ready to run.

 Phase 2: Build up a Sample Datastore, based upon the
Target SampleData, in the target system
 2.1 Determining the Legacy SampleData;
 2.2 Developing Chrysaliser;

2.3 Transforming the Legacy SampleData into the Target
 SampleData and building up the Sample DataStore;

Figure 7 Migration Activities in Phase 2

 Phase 5: Cut-over to the completed target system
5.1 Cut over to the completed target system.

Figure 9 Migration Activities in Phase 4

Figure 10 Migration Activities in Phase 5

 Phase 4: Gradually migrate the legacy data into the
target system and train users in target system

4.1 Incorporate DAA into legacy system;
4.2 Create TempStore TS1; then set legacy datastore (TS0)

to read-only;
4.3 Migrate all the data in TS0 into the target datastores

through the Chrysaliser. While this migration is taking
place all access to the legacy data store is redirected by
the DAA and all the results of manipulations are stored
into the new TempStore, TS1. Continue until TS0 has
been fully migrated;

4.4 Create TempStore TS2; then set TS1 to read-only;
4.5 Migrate all the data in TS1 into the target datastore(s)

 through Chrysaliser. As before all access to the legacy
 data is redirected by the DAA and all manipulation
 results are stored in the new TempStore TS2. Continue
 until TS1 has been fully migrated;

4.6 Repeat step 4.4 and 4.5 for TSn+1 and TSn until the
 Termination-Condition is met, i.e. TSn has been fully
 transformed and, at the same time, there exists
 size(TSn+1) ≤ ε;

4.7 Freeze the entire legacy system and migrate all the data
in TSn+1 into target datastore(s) through the Chrysaliser;

4.8 Train users for the target system;

 Phase 3: migrate all the components (except for data) of the
legacy system to the target architecture

3.1 Incrementally migrating legacy interfaces
 3.1.1 Migrating/developing a fragment of target interface;
 3.1.2 Testing it against Sample DataStore on Correctness;
(optional)3.1.3 Validating it against User’s requirements;

3.2 Incrementally migrating legacy interface applications
 3.2.1 Migrating/developing a target application;
 3.2.2 Testing it against Sample DataStore on Correctness;
(optional) 3.2.3 Validating it against User’s requirements;

3.3 Incrementally migrating reusable legacy components
3.4 Target components/system integration;
3.5 Target components/system testing on Correctness;
3.6 Target components/system validating against User’s

requirements;
(optional) 3.7 Training users on target components/system;

Figure 8 Migration Activities in Phase 3

4. The Butterfly methodology data
transformation

It is commonly agreed that the successful migration of
the data management service from the legacy to the target
system is the key to overcoming many of the problems
posed by legacy information system [3]. The Butterfly
methodology gives particular focus to the migration of
legacy data in a mission-critical environment.

As can be seen from previous section, phases 2 and 3
of the Butterfly methodology deal with legacy system
understanding and target system development. Target
system development is supported by a sample-datastore,
derived from legacy data and mapped to target side. Once
phases 0, 1, 2 and 3 have finished, Phase 4 : data
migration can then start. Only after all data in the
legacy datastore and TempStores has been
transformed to the target system, will the target
system be in production.

Once data migration commences, the legacy data store
is “frozen” to be read-only. Manipulations of legacy data
are redirected by the Data-Access-Allocator (DAA),
Figure 11, and the results stored to a series of auxiliary
datastores named TempStore(s) (TS). When legacy
applications access data, the DAA retrieves data from the
correct source, e.g. the legacy data or the correct
TempStore.

A Data-Transformer, named Chrysaliser, is employed
to migrate, in turn, the data in the legacy system as well
as in the series of TempStores to the target system. When
Chrysaliser is migrating the legacy data (TS0) all
manipulations are stored in TS1; when migrating the data
in TS1, all manipulations are stored in TS2; and so on. In
general, when data in TSn-1 has all been transformed into
target system, then 1) TSn+1 is built up (with both read and
write access right to DAA) to store the manipulation
results of legacy application. 2) TSn is “frozen” to be read-
only and Chrysaliser migrates the data held in it.

The Butterfly methodology introduces a Termination-
Condition, and a Threshold Value (represented by ε), to
determine when migration has reached the requisite stage
to cut-over to the target system. ε is a pre-determined

1

value representing the allowable amount of data in the
final TS. If size(TSn) ≤ ε, the amount of time necessary to
migrate the data is sufficiently small to allow the legacy
system to be brought down without causing any serious
inconvenience to the core business. Thus using the
Butterfly methodology, at no time during the migration

1 Most likely by the Administrator of the Legacy System.

process will the legacy system be inaccessible for a
significant amount of time.

Figure 11 shows a scenario during data migration. It can
be seen that the DAA and Chrysaliser combine to serve
as a data migration engine for the legacy data migration.

The legacy system can continue to operate normally
during migration until the last TempStore has reached the
pre-determined threshold value. At no time does the
legacy system need to co-operate, during migration, with
the target system.

Further discussion on the soundness and completeness,
and the implementation mechanisms of DAA and
Chrysaliser for different legacy system data models is
beyond the scope of this paper. Details can be referenced
to at ([29], [30], [31]).

5. The Butterfly methodology outline
supporting tool-kit

Research into software tools has been ongoing for
decades. Numerous tools have already been developed to
assist in many stages of migration and research is still
ongoing ([1], [4], [5], [6], [7], [12], [15], [17], [20], [21],
[28]). However no single tool can completely automate
any single phase, let alone migration as a whole.

The aim of MILESTONE is not to develop an
integrated tool-kit for migration as a whole. Due to time
and resource limitations, MILESTONE’s main focus is
restricted to identifying the requirements of supporting
tools, with particular reference to the Butterfly
methodology. Where possible, MILESTONE will take
advantage of results from other research projects (or
ideally off-the-shelf products) which serve its purpose,
and only develop tools unique to the Butterfly
methodology : DAA and Chrysaliser.

Chrysaliser

Legacy
DataStore

Read-Only

Pupa DataStore

CATERPILLAR SYSTEM

TS1
TS2 ... TSn+1TSn

DAA

Legacy Interface
+

Legacy Applications
+

Database Services

CHRYSALIS SYSTEM

Graphic User Interface

...

Target DataStores

...

...

Middleware + Netware + DB Services

Target
App1.

Target
App2.

Target
Appm-1.

Target
Appm.

Turned on,
for

Development
and Testing

Turned on,
for

Development
and Testing

Users

Figure 11 The Butterfly methodology, Migrating the
Data in TempStore TSn

The following sections identify the supporting tools
for the Butterfly methodology based on MILESTONE’s
view of the migration process. MILESTONE’s tool-kit is
intended to support rather than automate the migration
process. The basic structure and flow of information in
the MILESTONE tool-kit is illustrated in Figure 12. The
following sections briefly outline tasks for which tools
could be used and identify tools which could possibly be
employed by the Butterfly methodology.

5.1 Project support

As for any large systems development project,
migration using the Butterfly methodology will require
the support of tools to manage the project schedule and
resources. A conventional project management tool (e.g.
[10], [14], [20]) may be used to support the management
of the migration. A project repository will be used to store
information needed to support tools used, and people
involved, in all phases of migration.

5.2 Justification tools

The requirement for justification tools in migration is
also similar to that for any systems development project.
It is however more crucial that the risks and benefits of a
migration be clearly understood as a failed migration
project can result in an unusable legacy and an unusable
target system. Obviously estimation of risk and benefit
involves a degree of intuition based on experience, and
knowledge of the individual organisation, and cannot be

completely automated. However, once a plan has been
formulated, cost and schedule uncertainty can be
estimated using a risk analysis tool (e.g. [5], [6], [20]).

5.3 Legacy system understanding tools

Legacy system understanding is a core part of
migration. Information retrieved or produced in this phase

affects tasks in all other phases. Tasks to be performed
include reconstructing system documentation, identifying
and extracting the legacy data schema, identifying
reusable components and redundancies and investigating
how the legacy system interacts with other systems and
resources. Much research has focussed on this area and
numerous tools exist to assist in this process, although
many may not be sufficiently mature for use in real
migration efforts (e.g. [1], [4], [7], [12], [15], [17], [21],
[28]).

5.4 Target system development tools

Any appropriate system development tools can be used
to support the target system development. Numerous tools
exist to assist in this task (e.g. [8], [13], [18], [25], [24]).
There are also some tasks specific only to migration, such
as schema mapping, for which tool support would be
invaluable. Mapping tools will therefore be used to build
the new target data schema from the legacy data schema
(e.g. [7], [9], [16], [19], [23]).

#XCKN�

4GUQWTEGU

4GSWKTGOGPVU

#PCN[UKU

+PKVCN

4GUQWTEG

4GSU

2TQLGEV

5EJGFWNG

2QVGPVKCN 4KUMU

�

$GPGHKVU

6GUVKPI

4GSWKTGOGPVU

+PKVKCN 6CTIGV

5[UVGO

4GSWKTGOGPVU

4KUM

#PCN[UKU

+PKVKCN 4GSU�

4KUMU �

$GPGHKVU

2TQLGEV

5EJGFWNG

4GHKPGF

4GUQWTEG

4GSU�

2QVGPVKCN

4GWUCDNG

%QORQPGPVU

.GICE[

#RRNU� .GICE[

5[UVGO 4GHKPGF

4GUQWTEG

4GSU�

4GWUCDNG %QORQPGPVU

+PVGTCEVKQPU YKVJ

QVJGT U[UVGOU �

4GFWPFCPEKGU

5[UVGO &QEWOGPVCVKQP

.GICE[&CVC 5EJGOC

5VTWEVWTG QH 6GOR� 5VQTGU

4GHKPGF 6CTIGV 5[UVGO

4GSWKTGOGPVU

4GHKPGF 6GUVKPI 4GSWKTGOGPVU

.GICE[&CVC

5EJGOC

4GFWPFCPEKGU

+PVGTCEVKQPU

4GWUCDNG

%QORQPGPVU

6CTIGV 5[UVGO

4GSWKTGOGPVU

6GUVKPI

4GSWKTGOGPVU

6CTIGV

5EJGOC

&GXGNQRKPI

6CTIGV

5[UVGO

4KUMU �

$GPGHKVU

.GICE[

&CVC

&GXGNQRKPI

6CTIGV

5[UVGO

5CORNG

&CVC

5[UVGO 'ZRGTV�

&GVCKNGF

-PQYNGFIG

*KIJ

.GXGN

5[UVGO

-PQYN�

5CORNG

&CVC

&GEKUKQP QP

/KITCVKQP

.GICE[
+PVGTHCEG

.GICE[
#RRNKECVKQP

.GICE[

&CVC

.GICE[5[UVGO

7PFGTUVCPFKPI 6QQNU 6CTIGV 5[UVGP

&GXGNQROGPV

'PXKTQPOGPV

6CTIGV

5EJGOC

/CRRKPI

6GUVKPI

'PXKTQPOGPV

5CORNG

&CVC

)GPGTCVQT

1WVUKFG 'PVKV[(TQO CPQVJGT UVCIG-G[� 6QQN 6GORQTCT[&CVC 5VQTG� 6U
P
�%WTTGPV 5VQTG

.GICE[

&CVC

5EJGOC

6CTIGV

&CVC

5EJGOC

6GUVKPI

4GSWKTGOGPVU

.GICE[

&CVC

5EJGOC

5VTWEVWTG

QH6GOR�

5VQTGU

.GICE[5[UVGO

KPQRGTCVKQP

65
�

65
P��

65
P

5VTWEVWTG

QH6GOR�5VQTGU

4GFWPFCPEKGU

6CTIGV

&CVC

5EJGOC

65
�

65
P��

.GICE[5[UVGO

2GTHQTOCPEG

5VCVKUVKEU

.GICE[5[UVGO

2GTHQTOCPEG

5VCVKUVKEU

&CVC#EEGUU

#NNQECVQT

&##�

2GTHQTOCPEG

/QPKVQTKPI

6QQN

&CVC6TCPUHQTOCVKQP

6QQN

%JT[UCNKUGT�

6CTIGV&CVC

5VQTG

(TQ\GP.GICE[

&CVC5VQTG6U
�

(TQ\GP.GICE[

&CVC5VQTG6U
�

P R O J E C T REPOSITORY

Figure 12 MILESTONE tool-kit framework and information flow

P R O J E C T M A N A G E M E N T T O O L

5.5 Testing tools

Testing is an essential part of migration using the
Butterfly methodology and is an ongoing process in all
phases. Apart from the general testing environment
needed for any system development, some particular
requirements exist for migration testing. One important
aspect of migration testing is to ensure that there are no
unexpected inconsistencies between the critical
functionality of the legacy system and its replacement.
Unfortunately, to date, no specific migration testing
environment exists. It is beyond the main focus of
MILESTONE to develop such an environment. However,
because it is important to use "legacy" data to test the
target system i.e. actual data which will be used in the
target system, an application/tool for sample data
generation will be introduced in the MILESTONE tool-
kit.

5.6 Migration tools

The critical part of a migration project is the cut over
from the legacy system to the target system. An important
migration requirement is to cause as little disruption to
the business environment as possible. The most essential
and difficult migration process is that of migrating the
mission-critical legacy data. Using the Butterfly
methodology, two tools are used to control this process :
Data Access Allocator (DAA) and a Data Transformation
Tool (Chrysaliser). These tools will be application
specific and may have to individually constructed for
each migration effort.

 6. Conclusions and future work

In this paper MILESTONE’s approach to the problem
of legacy system migration has been presented. The
migration process as a whole is a very complex procedure
encompassing many different fields of research. The
focus of discussion was thus necessarily limited. The
proposed Butterfly methodology applies to the whole
process of legacy system migration with the main focus
specifically on the migration of legacy data in a mission-
critical environment. The Butterfly methodology is a
simple, safe, and open approach to this problem. It
represents a departure from current thinking on how
legacy systems as a whole can be migrated to new
architectures.

The main difference between the Butterfly
methodology and other proposed migration
methodologies, is that the Butterfly methodology is a
gateway-free approach. It eliminates, during migration,

the need for system users to simultaneously access both
the legacy and target systems. There is therefore, no need
to keep consistency between these two (heterogeneous)
information systems as the Butterfly methodology always
stores live data at legacy system side!. In practice, using
gateway-based approaches, gateway co-ordinators [3]
have to be introduced to maintain data consistency.
However, as Brodie and Stonebraker point out “Update
consistency across heterogeneous information systems is
a much more complex technical problem with no general
solution yet advised, and it is still an open research
challenge” [3]. Thus to design and implement a gateway
co-ordinator is a task without general methods or even
guidelines. In contrast, generic mechanisms of the
Butterfly methodology’s data transformation engine :
DAA and Chrysaliser for legacy (flat file, hierarchical)
systems have been developed [31].

MILESTONE is an ongoing project, working with real
life legacy systems in Telecom Éireann, the Irish national
telecommunications service provider. Immediate future
work of MILESTONE includes further investigating the
framework tool-kit which supports the Butterfly
methodology. Future work also includes an effort to
implement the Chrysaliser Data Transformer and the
DAA Data-Access-Allocator subsystems for a migration
process, and criteria and techniques to develop a Sample
Datastore. MILESTONE is aware that many factors such
as the structure of the TempStores and the placement of
the Chrysaliser and DAA will affect the migration process
and is investigating these issues. A trial migration
applying the Butterfly methodology to a legacy system is
being planned, and the results will be available when the
project ends.

7. References

[1] Bachmann, ‘A CASE for Reverse Engineering’,
 Datamation, pp. 49-56, July 1988
[2] M. Brodie and M. Stonebraker, ‘DARWIN: On the
 Incremental Migration of Legacy Information Systems’,
 Technical Report TR-022-10-92-165 GTE Labs Inc.,
 http://info.gte.com/ftp/doc/tech-reports/tech-reports.html,
 March 1993
[3] M. Brodie and M. Stonebraker, ‘Migrating Legacy
 Systems: Gateways, Interfaces and the Incremental
 Approach’, Morgan Kaufmann 1995
[4] D. N. Chin and A. Quilici, ‘DECODE: A Co-operative
 Program Understanding Environment’, Journal of Software
 Maintenance 8(1), pp. 3-34, 1996.
[5] Concept Sales Ltd., ‘Dependency Modelling Tool (DMT)’,
 http://www.bucks.net/concept/dmthome.html, May 1997
[6] C/S Solutions Ltd., ‘Risk+’, http://cssolution.com/riskov.

 htm, May 1997
[7] Computer Science Department - The University of Namur,
 ‘DB-MAIN: A R&D Programme in Database Applications
 Engineering and Case Technology’, http://www.info.fundp
 .ac.be/~dbm/, February 1996
[8] Dynamics Research Coporation, ‘VisualMagic’,
 http://www.visualmagic.com, May 1997
[9] Evolutionary Technologies International, ‘ETI-EXTRACT
 Tool Suite’, http://www.evtch.com, May 1997
[10] Fresnelsoft, ‘ReFind’, http://www.fresnelsoft.com,
 May 1997
[11] N. Ganti & W. Brayman, ‘Transition of Legacy Systems to
 a Distributed Architecture’, John Wiley, 1995
[12] Z-Y Liu, M. Ballantyne and L. Seward, ‘An Assistant for
 Re-Engineering Legacy Systems’, Proc. 6th Innovative
 Applications of Artificial Intelligence Conf. pp 95-102,
 Seattle, WA, http://www.spo.eds.com:80/eds/papers/
 asstreeng.html, August 1994
[13] Magna Software Corporation, ‘Magna X Application
 Generator’, http://www.magna.com, May 1997
[14] Microsoft Corporation, ‘Microsoft Project’,
 http://www.microsoft.com/project, May 1997
[15] Dr. H. A. Muller, ‘Understanding Software Systems Using
 Reverse Engineering Technologies Research & Practice’,
 Tutorial presented at Int. Conf. on Software Engineering
 18, http://tara.uvic.ca/UVicRevTut/UVicRevTut.html,
 March 1996
[16] B. Narasimhan, S. B. Navathe and S. Jayaraman, ‘On
 Mapping ER and Relational models into OO schema’,
 Proc. 12th Int’l Conf. on the entity-relationship Approach
 ER’93 (LNCS 823) pp. 402-413
[17] J. Q. Ning, A. Engberts and W. Kozaczynski, ‘Automatic
 Support for Legacy Code Understanding’, In
 Communications of the ACM, 37(5), pp. 50-57,
 May 1994
[18] Object Domain Systems, ‘Object Domain Object Oriented
 Analysis and Design Tool’, http://www.object-domain.
 com, May 1997
[19] Ontos Inc., ‘OIS Development Tools’,
 http://www.ontos.com, May 1997
 [20] Quantitative Software Management(QSM), ‘SLIM
 (Software Life-Cycle Model)’,http://www.qsm.com,
 May 1997
[21] Dr. H. Muller, ‘RIGI Project - An Extensible System for
 Retargetable Reverse Engineering’, University of
 Victoria, Canada, http://tara.uvic.ca, November 1996
[22] I. Sommerville, Software Engineering Environments,
 5thEd., Addison-Wesley, 1995.
[23] F. N. Springsteel, ‘Object-based schema integration for
 heterogeneous databases : a logical approach’, Proc. 4th

 Int’l Conf. of database and expert systems Applications
 DEXA 93 (LNCS 720) pp. 166-180
[24] Structured Technology Group, ‘AxiomSys, AxiomDsn’,
 http://www.stgcase.com, May 1997
[25] S. Stobart, ‘CASE Tool Home Page’, http://www.osiris.
 sunderland.ac.uk/sst/casehome.html, May 1997

[26] Systems Techniques Inc., ‘Wrapping Legacy Systems
 for Reuse : Repackaging vs. Rebuilding’,
 http://www.systecinc.com/white/wplist.html
[27] S. R. Tilley and D. B. Smith, ‘Perspectives on Legacy
 System Reengineering’, http://www.sei.cmu.edu/
 ~reengineering/lsyree
[28] K. Wong, S. Tilley, H. Muller, M. Storey, ‘Structural
 Redocumentation: A Case Study’, IEEE Software, pp.
 46-53, January 1995.
 [29] B. Wu, D. Lawless, J. Bisbal, J. Grimson, V. Wade,
 R. Richardson and D. O’Sullivan, ‘The Butterfly
 Methodology : A Gateway-free Approach for Migrating
 Legacy Information Systems’, Proc. Of 3rd IEEE Conf.
 on Engineering of Complex Computer Systems
 (ICECCS97), Como, Italy. Sept. 1997.
[30] B. Wu, D. Lawless, J. Bisbal, J. Grimson, V. Wade,
 R. Richardson and D O’Sullivan, ‘Legacy Systems
 Migration : A Legacy Data Migration Engine’, Proc.
 17th Int’l Database Conf. (DATASEM'97), Brno, Czech
 Republic,Oct.1997.
[31] B. Wu, J. Bisbal, D. Lawless, J. Grimson, V. Wade,

 R. Richardson and D O’Sullivan, ‘Implementation
 Mechanisms of DAA and Chrysaliser for Hierarchical
 Database and Flat file Systems’, Technical Report,
 Trinity College Dublin, March 1997.

