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Abstract

In “Something to Reckon With” [6], a system for diagramming syllogistic

inferences using straight line segments is presented (see also Englebretsen

[5]). In the light of recent research on the representational power of di-

agrammatic representation systems (Lemon and Pratt [12, 13]) we point

out some problems with the proposal, and indeed, with any proposal for

representing logically possible situations diagrammatically. We shall first

outline the proposed linear diagrammatic system of Englebretsen [5], and

then show by means of counterexamples that it is inadequate as a represen-

tation scheme for general logical inferences (the task for which the system

is intended). We also show that modifications to the system fail to remedy

the problems. The considerations we present are not limited to the partic-

ular proposals of Englebretsen [5, 6]; we thus draw a more general moral

about the use of spatial relations in representation systems.
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1 Diagrammatic representation systems

Diagrammatic representation systems are of increasing interest for at least two

reasons. Philosophically, diagram systems interest those concerned with the

nature of representation itself – in particular, those who argue that too much

attention has been given to sequential symbol systems. These writers claim

that diagrams represent by “analogy” or “surrogacy” – in virtue of sharing

structure with the domains that they represent (eg: Barwise and Shimojima

[2], Cummins [4], Swoyer [19]). Practically, diagrammatic representations are

frequently used in visual interfaces to databases, programming languages, and

in logic teaching. Each of these domains demands careful consideration of

the formal properties of the diagrammatic systems in question. For both of

these reasons we propose to investigate the expressive power of one proposed

diagram system, and to determine its utility in reasoning tasks.

2 The diagrammatic system LD

In [5, 6], George Englebretsen presents us with a system for diagramming syllo-

gistic inferences. In this system, individuals are represented by labelled points,

and sets are represented by labelled straight line segments. Relationships be-

tween sets and individuals or between sets and sets are then represented by

incidence relations between the corresponding points and line segments. The

author explains how such a representation system can be used to carry out syl-

logistic reasoning tasks, and illustrates his explanation with many examples.

We shall call the basic system of Englebretsen [5] (i.e. without representation

of relations or pronouns) “LD” for “linear diagrams”. Figure 1 shows an ex-

ample of a diagram of LD, together with its intended interpretation.

More formally, we may reconstruct LD as follows. A linear diagram is a

finite set of “dots” and “dashes”. A dot is simply a labelled point in the plane,

and a dash is a finite line segment with a dot attached to its right terminus.

The restriction to right termini is Englebretsen’s, not ours: Englebretsen does
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DALMATIANS

PHILOSOPHERS

VEGETARIANS

DESCARTES

DOGS
CARNIVORES

Figure 1: Some philosophers are vegetarians, Descartes is a philosopher, no

dogs are philosophers, all dalmatians are dogs, all dogs are carnivores.

not consider vertical dashes, but we may assume that these are labelled by dots

at their upper terminus. The terminology of “dots” and “dashes” is ours, not

Englebretsen’s: it is introduced simply to avoid confusion with the infinitely

many unmarked points and lines in the space occupied by an LD diagram,

and changes nothing of substance.

LD is to be interpreted as follows.

Definition 1 (Linear diagrams, Englebretsen [5] p. 38-47)

1. Dashes represent sets.

2. Any dot which is not the right terminus of some dash represents an individual.

3. The presence of a dot on a dash (other than its right terminus) indicates that the

individual represented by the dot is a member of the set represented by the dash.

4. That two dashes intersect represents the fact that the sets they represent have a

nonempty intersection.

5. That two dashes do not intersect represents the fact that the sets they represent

have an empty intersection.
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6. That a dash l lies within a dash l0 represents the fact that the set represented by l

is a subset of the set represented by l0.

Actually, Englebretsen further insists that dashes representing a set L and not-

L (the complement of L) must be parallel. However, given that line segments,

rather than lines, are employed in the system it is unclear precisely what is

gained by insisting that line segments representing complementary sets be par-

allel (as opposed to merely non-intersecting). On the other hand, it is not clear

that any harm is done either.

Note that there is some ambiguity regarding the representation of individ-

uals as dots. It is not clear from [5] whether two coincident dots must represent

the same individual; nor is it clear whether one individual can be represented

by multiple (in particular, non-coincident) dots. Englebretsen claims that,

“: : : identity statements are : : : easily diagrammed by our method.

A proposition of the form ‘a is (identical to) b’ : : : means that ‘a’ and

‘b’ label the same point.” ([5], p. 47).

But it is unclear how to interpret this pronouncement. Certainly, Englebretsen

cannot wish to claim that every point in the plane can represent no more than

one individual. For “some As are Bs” is to be represented by line intersection,

and that intersection, though a single point, may contain more than one indi-

vidual. However, in the counterexamples which we present below, we take no

particular stance as regards these issues.

Inference in LD is to be carried out, as is usual with diagrammatic repre-

sentations, by enumeration of cases. That is, a conclusion follows from a set

of premises if all ways of diagramming the premises result in a diagram de-

picting the conclusion. Clearly, it follows from the premises of figure 1 (some

philosophers are vegetarians, Descartes is a philosopher, no dogs are philoso-

phers, all dalmatians are dogs, all dogs are carnivores) that all dalmatians are

carnivores, since this fact must hold (by part 6 of definition 1) however, exactly,

the diagram of the premises is drawn. Equally clearly, it does not follow that
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Descartes is a carnivore, because the diagram shows us a way for the premises

to be true and the conclusion false.

While there has been much recent research in the logical analysis of dia-

grammatic reasoning (Allwein and Barwise [1], Barwise and Shimojima [2],

Glasgow et al. [8], Shimojima [14], Shin [15], Stenning and Oberlander [18]) we

believe that some basic properties of diagrammatic representation systems de-

serve more attention, particularly when their suitability for performing logical

inferences is in question. In particular, the following two properties of repre-

sentation systems are of central importance.

1. For every representation of the system there is some possible situation of

which it is true (“self-consistency”).

2. Every possible situation has some representation true of it.

The inference system of Euler’s Circles (see e.g. Hammer [10]) has been

shown (Lemon and Pratt [13]) to exhibit the first, but not the second of these

properties, thus making it unsuitable for syllogistic inference in general. In

particular, since not all logical possibilities can be represented in the system,

attempts to diagram some situations will lead to incorrect inferences. In the

present paper we perform a similar analysis for the proposal to use linear dia-

grams in syllogistic inference.

Englebretsen’s stated aim is to design a diagram system which is simple

but which also avoids the expressive limitations imposed by the geometry of

closed plane figures (e.g. Euler’s Circles) – limitations which, according to

Englebretsen, are often overlooked by those in the “diagrammatic reasoning”

community. Thus:

“The geometric restrictions on closed plane figures which prevent

perspicuous representations involving more than four terms using

simple continuous figures do not apply to the still simpler linear

figures.” (Englebretsen [5], p. 47, our italics)
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“ : : : the major advantage of line diagrams is their ability to rep-

resent inferences involving relatively large numbers of terms : : :”

(Englebretsen [5], p. 46)

We are not told which geometric restrictions Englebretsen has in mind (the

above claims are not proven formally); he merely mentions a four-term limit on

the use of closed plane figures, due to geometric restrictions from the use of the

plane as a representational medium. The reference given (Gardner [7]) men-

tions only a “virtual four term limit” based on psychological rather than geo-

metrical restrictions, which suggests that the restrictions Englebretsen seeks to

avoid are practical in nature. Roughly, the problem seems to be that, when dia-

grammatic systems are used to represent large numbers of premises, the result

tends to look like a plate of spaghetti.

We shall show in sections 3 and 4 that, contrary to Englebretsen’s assertions,

the system LD is subject to geometrical constraints which compromise its util-

ity for logical inference, regardless of considerations of perspicuity and read-

ability. In earlier work (Lemon and Pratt [12, 13]), it has been demonstrated

that other diagrammatic representation systems, based on the representation

of sets by areas, fall victim to similar problems. Thus, Englebretsen’s claim to

have overcome the expressive limitations imposed by plane geometry through

the use of line segments rather than areas cannot be maintained.

3 First counterexample to the correctness of LD

Let Pi (1 � i � 3) be individuals and Lj (1 � j � 3) sets. Consider the

following situation:

Individual Pi is a member of the setLj if and only if i 6= j (1 � i � 3,

1 � j � 3).

It is clear that this situation corresponds to a finite set of statements of the

forms “P is an L” and “P is not an L”, and thus falls within the purview of
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LD. Indeed, it can be diagrammed as shown in figure 2. Here, the individuals

Pi are represented by dots pi (1 � i � 3), and the sets li are represented by the

dashes li (1 � i � 3).

p

p

p
1 2

3

not

not

l

l

l

l

l

not l

2

3

2

3

1

1

Figure 2: A linear diagram.

But now let P4 be a fourth individual, and consider above the situation but

augmented by:

Individual P4 is a member of the all the sets Lj (1 � j � 3).

To see why this augmented situation cannot be diagrammed in LD, suppose

that the new individual is represented by a dot p4. Then the four dots pi must

all be distinct (since no two may lie on exactly the same dashes lj). It follows

that the dashes l1 and l2 are collinear, since they both contain the distinct dots

p3 and p4; by similar reasoning, l1 and l3 must be collinear, so all the dashes lie

on some common line � (say).

Orient the diagram so that � is horizontal. Let us write p � p0 to in-

dicate that dot p is to the left of dot p0 (with the obvious interpretation for
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p � p0). Finally, let _lj stand for the right terminus of the dash lj (1 � j � 3).

It follows from what we are told about L1 that either p2; p3; p4 � _l1 � p1

or p1 � p2; p3; p4 � _l1. Whence, from what we are told about L2, either

p2 � p3; p4 � _l1 � p1 or p1 � p3; p4 � p2 � _l1. Either way, p3 lies between

p1 and p2, which contradicts what we are told about L3.

Note that this type of behaviour means that LD could be used to make

invalid inferences. For instance, suppose we omit from the above (augmented)

situation the fact that individual P1 does not belong to set L1. Then the above

geometrical argument shows that all ways of diagramming the remaining facts

will force the dot p1 to lie on the dash l1, thus inviting the inference that P1

belongs to L1. Of course, this inference would be invalid.

There is a way in which Englebretsen might save his system from the prob-

lem just raised. He could point out that the restriction to straight line segments

is inessential. To be sure, the original motivation for using lines to represent

sets was to avoid the unreadable diagrams resulting from region-based repre-

sentation systems; but perhaps there is a middle way. For example, one might

represent sets as connected chains of straight line segments, or even as arbi-

trary algebraic curves. Since we can only guess at the possibilities here, we

shall assume only that the plane figures used to represent sets are algebraic

curves. This generalization of Englebretsen’s system, which we call “curved

LD”, will now be investigated.

4 Second counterexample

We now investigate “curved LD”—the generalization of LD employing alge-

braic curves instead of straight line segments. Henceforth, then, we use the

term “dash” to refer to algebraic curves (continuous algebraic functions from

[0; 1] to IR2) in a diagram, with dots at one of their endpoints, where, again, we

interpret dashes as representing sets.

Let Pi (1 � i � 5) be individuals and Ljk (1 � j < k � 5) sets. Consider the

following situation (we label it S):
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Individual Pi is a member of the set Ljk if and only if i = j or i = k.

No Ljks are Lj0k0s if fj; kg \ fj0; k0g = ;.

It is clear that this situation corresponds to a finite set of statements of the

forms “P is an L”, “P is not an L”, and “No Ls are L0s”, and thus falls within

the purview of LD; let us see how we might represent it.

Let each individual Pi be represented by a dot pi (1 � i � 5) and each set Lij

by a dash lij (1 � i < j � 5). Then the five dots pi must all be distinct (since no

two may lie on exactly the same dashes lkj). Now, each dash lij (1 � i < j � 5)

contains the dots pi and pj , so that every pair of the five points is to be joined

by some dash (an algebraic curve). In addition, the algebraic curves ljk and

lj0k0 may not intersect if they do not share one of the pi.

Now consider the following definition and theorem – a generalization of

the well-known non-planarity result for the graph K5 (see Bollobás [3]).

Definition 2 Let v1; : : : ; v5 be distinct points in the plane and let fvi ! vjg1�i<j�5

be algebraic curves such that vi ! vj(0) = vi and vi ! vj(1) = vj . We say that

the fvi ! vjg1�i<j�5 are drawn without intersection violations if vi ! vj and

vi0 ! vj0 are disjoint for fi; jg and fi0; j0g disjoint.

Theorem 1 The fvi ! vjg1�i<j�5 cannot be drawn without intersection violations.

Proof:

(We conflate the functions fvi ! vjg1�i<j�5 with their ranges throughout). If

v1 ! v2 and v1 ! v3 divide the plane into more than one residual domain, it is

easy to see that there must be such a residual domain E of v1 ! v2 and v1 ! v3

containing none of v1; v2; v3 and such that v2 does not lie on the boundary of

E (since v2 cannot lie on v1 ! v3). Suppose that some node v4 lies in E. Then

since E is bounded by v1 ! v2 and v1 ! v3, v5 lies in E, for otherwise v4 ! v5

could not be drawn without an intersection violation.

Now v3 ! v4 cannot cross v1 ! v2, but certainly touches the segment of

v1 ! v3 between v1 and X in figure 3 – i.e. the segment of v1 ! v3 bounding

E. Let � be the final section of v1 ! v3 after X , let � be the initial section of
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Figure 3:

v1 ! v3 up to X , let Z be the last point on v3 ! v4 touching �, let Y be the

first point on v3 ! v4 touching �, let 
 be the segment of v3 ! v4 from Z to

Y , and let � be the segment of v1 ! v3 from Y to Z. Then 
 and � together

bound a Jordan region separating v2 and v5 so that v2 ! v5 cannot be drawn.

Hence we can choose one such domain E, with no nodes inside E. Suppose

E is penetrated by some arc �. Since no nodes lie in E, figures 4 and 5 show

the only possibilities for � : � intersects just one of v1 ! v2 and v1 ! v3, or �

intersects both of them.

If � intersects just one of the two arcs, say v1 ! v2, then we can replace

v1 ! v3 by � and obtain an exactly similar arrangment involving a smaller

residual domain E0, as shown in figure 4. Moreover, E0 will be penetrated by

fewer arcs than E. So we may assume this case does not arise.

Thus, without loss of generality, all arcs penetrating E intersect both v1 !
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Figure 4:

v2 and v1 ! v3. So, let X and Y be consecutive crossing points on v1 ! v2 as

shown in figure 6.

Now switch the segments of v1 ! v2 and v1 ! v3 between X and Y . By

assumption, all arcs penetrating E cut both v1 ! v2 and v1 ! v3, so no inter-

section violations occur. The result is shown in figure 7.

Let a; b be edges in the abstract graph K5 not involving any common ver-

tices. Let e be some embedding of K5 in the plane (allowing some arcs to cross)

such that the corresponding arcs e(a) and e(b) do not intersect. Then, because

e(a) and e(b) are closed sets, there is a minimum distance � > 0 between any

point on e(a) and any point on e(b). Now let e0 be any embedding in which

a and b correspond to the arcs e0(a) and e0(b), such that every point in e0(a)

lies within �=2 of some point in e(a) and every point in e0(b) lies within �=2 of

some point in e(b). In other words, e0 is a “small adjustment” of e. Then by

the triangle inequality for distances, there cannot be a common point of e0(a)

and e0(b). Thus, these arcs still do not intersect. A virtually identical argument

shows that a sufficiently small adjustment (in the above sense) to any arcs can-

not introduce new intersection violations anywhere in the embedding.
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Now, there exists a small adjustment (in the above sense) which will remove

the points of contact X and Y . Thus the number of critical points (points where

arcs cross over, touch, merge or split1) will have been reduced.

By carrying out successive simplifications of this form, we can be assured

that v1 ! v2 and v1 ! v3 do not separate the plane into more than one residual

domain. Proceeding in this fashion for all triples, all arcs involving a common

node must from a tree as shown in figure 8.

By a series of arbitrarily small adjustments, this tree can be converted into

a fan (see figure 9) without introducing any intersection violations.

Thus we obtain a planar embedding of the graph K5, which is impossible.

2

1It is obvious from the assumption that the arcs are algebraic that there are at most finitely many

such points.
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Figure 6:

Returning to our counterexample, and the situation S, note that in any rep-

resentation of the situation S, the dots pi (1 � i � 5) and the sections of the

dashes lij lying between pi and pj (1 � i < j � 5) constitute drawing (i.e.

a plane embedding) of fpi ! pjg1�i<j�5. Since (by theorem 1) these curves

cannot be drawn without intersection violations, the constraint that “No Ljks

are Lj0k0s if fj; kg \ fj0; k0g = ;” cannot be met by any representation of the

situation S in curved LD. It follows that, for any of the statements in the above

situation, its negation will, according to the LD inference procedure, be implied

by the others. Of course, such an inference would be invalid. Figure 10 shows

one attempt to realize these premises in the system of curved LD. Any other

attempt would fail similarly. Again, we have shown that there are consistent

statements of set theory which cannot be represented in the system LD.

5 Conclusion

We have shown that the proposed system of Englebretsen [5, 6] for diagram-

ming syllogistic inferences does not manage, by employing lines rather than

regions, to avoid important geometric limitations on plane figures. The above

examples show that the diagram system cannot perform the representational
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Figure 7:

task set for it. Thus, using the proposed representation system, or indeed slight

generalizations of the proposal (employing algebraic curves in place of straight

line segments), would lead to mistakes in logical inferences.

The study of the system LD and its variants illustrates a general point about

the representational use of spatial relations; that use of such relations is only

appropriate in the representation of similarly constrained structures (e.g. triv-

ially, spatial objects and relations). The use of space in representations of more

abstract structures, such as sets or models (e.g. Hammer [9, 10]), is thus to be

approached with some caution.
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[3] Béla Bollobás. Graph Theory: An Introductory Course. Springer, New York,

1979.

[4] Robert Cummins. Representations, Targets, and Attitudes. MIT Press, 1996.

[5] George Englebretsen. Linear Diagrams for Syllogisms (with Relationals).

Notre Dame Journal of Formal Logic, 33(1):37–69, 1992.

[6] George Englebretsen. Something to Reckon With. University of Ottawa

Press, Ottawa, 1996.

[7] Martin Gardner. Logic Machines and Diagrams. Harvester Press, Sussex,

1958.

15



v

v

v

v

v1

2

4

3

5

Figure 9:

[8] Janice Glasgow, N. Hari Narayanan, and B. Chandrasekaran, editors. Dia-

grammatic Reasoning: Cognitive and Computational Perspectives. AAAI Press

/ The MIT Press, Cambridge, Mass., 1995.

[9] Eric M. Hammer. Reasoning with Sentences and Diagrams. Notre Dame

Journal of Formal Logic, 35, 1994.

[10] Eric M. Hammer. Logic and Visual Information. Studies in Logic, Language,

and Computation. CSLI Publications and FoLLI, Stanford, 1995.

[11] Oliver Lemon. Review of “Logic and Visual Information” by E. M.

Hammer (CSLI Publications). Journal of Logic, Language, and Information,

6(2):213–216, 1997.

[12] Oliver Lemon and Ian Pratt. Logical and Diagrammatic Reasoning: the

complexity of conceptual space. In Michael Shafto and Pat Langley, edi-

tors, 19th Annual Conference of the Cognitive Science Society, pages 430–435,

New Jersey, 1997. Lawrence Erlbaum Associates.

16



l

l

l

l

l

l

l

p p

p

p

p

2

1

24

255

45

15

35

13

14

34

Figure 10: A counterexample using a non-planar graph (according to the

premises lines l35 and l24 should not cross, but due to the system “curved LD”

l35 must cross at least one other line if it is to join p3 and p5).

[13] Oliver Lemon and Ian Pratt. Spatial Logic and the Complexity of Di-

agrammatic Reasoning. Machine GRAPHICS and VISION, 6(1):89 – 108,

1997. (Special Issue on Diagrammatic Representation and Reasoning).

[14] Atsushi Shimojima. Reasoning with Diagrams and Geometrical Con-

straints. In Logic, Language and Computation, volume 1, number 58 in Lec-

ture Notes, pages 527 – 540. CSLI, Stanford, 1996.

[15] Sun-Joo Shin. The Logical Status of Diagrams. Cambridge University Press,

Cambridge, 1995.

[16] Sun-Joo Shin and Oliver Lemon. Diagrams. In Stanford Encyclopedia of

Philosophy. (to appear).

[17] Keith Stenning and Oliver Lemon. Aligning logical and psychological per-

spectives on Diagrammatic Reasoning. Artificial Intelligence Review, 1998.

(to appear).

17



[18] Keith Stenning and Jon Oberlander. A Cognitive Theory of Graphical

and Linguistic Reasoning: Logic and Implementation. Cognitive Science,

19(1):97 – 140, 1995.

[19] Chris Swoyer. Structural representation and surrogative reasoning. Syn-

these, 87:449 – 508, 1991.

18


