Heuristical Real-time Shadows

Meaney, D.
CBT systems, Dublin

1 Introduction

Computer-generated graphica scenes benefit greatly from
the incluson of accurately rendered shadows. Shadows
contribute to the redism of a scene, and adso provide
important depth cues, providing information relating to the
relative position of objects within ascene. Indeed, it has been
demongrated in [Wanger et d. 1992] that compared to other
visud cues, such as eevation, texture, perspective and
motion, shadows result in the grestest improvement in the
accuracy of podtiond perception and sze perception of
objectsin ascene.

Dynamic scenes, such as animations and red-time
smulations, employ shadows to more clearly illustrate object
interaction. However, shadow generdtion imposes a
significant pendty in terms of the time required to render a
scene, epecidly as the complexity of the scene and the
number of polygons needed incresse. Soft shadows, i.e
shadows generated by light sources of finite size rather than
point light sources, further complicate and prolong the
rendering process. The time needed to generate redidtic
scenes with shadows becomes an issue warranting serious
congderation in the area of red-time scenes. A frame rate of
15 frames per second is normaly required and therefore
established rendering techniques such as ray tracing and
radiosity, which handle shadowed scenes very effectively,
become impractical.

This paper proposes that red-time scene generation
benefits from the use of a heurigticd agpproach to the
determination of shadow areas. For example, the shape of a
moving object is perceved less accurady by a viewer than
the shape of adatic object. Soit isreasonableto say that less
effort - and therefore less time - should be expended on
redising the shadow of a moving object compared to that of
a datic object. The main objective is to suggest a number of
heurigtics that might be employed to facilitate red-time
animation at acceptable framerates. An OpenGL gpplication
was cregted to investigate some aspects of the proposed
gpproech. This overview will bresk down as follows.
Section 2 discusses the background of shadow generation,
and outlines exiging work done in this area. Section 3
introduces the heurigical techniques proposed and gives
some background to established heuristical techniques used
in other aress of computer graphics. Section 4 outlines the
technical aspects of the application written to illustrate some
of the techniques proposed in Section 3 and Section 5
presents and anadyses results. Findly, Section 6 draws
conclusions from the work and proposes some future work.

O'Sullivan, C.
Image Synthesis Group, Trinity College Dublin

2 Technigues for Generating
Shadows

Shadows are an important pat of a scene generated by
computer software, but in many gpplications are neglected
because of reaulting performance degradation, excessive
memory usage or lack of generdity [Heckbert and Herf,
1997]. In essence, a shadow is an aea of reduced
illumination, caused, for a given point, by the obstruction of
a direct path between that point and a given light. The
obstruction is referred to as the shadow cagting object, or
occluder. Theinclusion of shadowsin a computer generated
scene can be approached in anumber of ways. In addition to
the various techniques described in the next section, a
decision can be made as to whether to render shadows as
hard or soft:

- Hard Shadow: A hard shadow is characterised by
having a diginct edge and uniform shading across its
areg, typicaly caused by a point light source, i.e. alight
source that has no area, just apostion (figure 1).

- Soft Shadow: A soft shadow is characterised by having
a less digtinct edge, often blending from the colour of
the shadow at its darkest to the colour of the plane the
shadow is being projected onto. It is the effect of an
extended light source, i.e. a light source of finite area,
that causes this softening a the edge of the shadow
(figure 2). The darkest and most solid area of such a
soft shedow is cdled the umbra. The less distinct area
at the edgeis cdled the penumbra.

The generaion of shadows in computer graphics has been
addressed extensively, using a number of techniques.

- Projection shadows

- Shadow volumes

- Shadow maps

- Raytracing

- Radiogity

- Discontinuity meshing

The following sections describe each of these techniques and

asess exch in terms of its relevance to red-time shadow
generdion.

Point Light Source

Occluder

Hard Shadow

Figurel Creation of a hard shadow

Umbra

Penumbra

Soft
Shadow

Figure2 Creation of a soft shadow

2.1 Projection Shadows

This method uses a projection transformetion to smply
apply an orthographic or perspective projection matrix to the
modelview transform, rendering the projected object in an
gppropriate shadow colour [Blinn 1998]. The mechanics of
generating the shadows for a scene using OpenGL smply
involve the determination of the correct projection matrix,
multiplying this with the current moddview matrix, and
rendering the entire scene.

One dtribute of projection shadows that is very
useful is the fact that each shadow is an entity that exigs in
the scene, rather than being smply an area of reduced
illumination or a lighting effect. This means that each
shadow can be manipulated just as any other object can. It
aso meansthat information relating to the shape and location
of ashadow can be used in calculations relating to the scene.
For example, in an application that employs collison
detection techniques, shadows can often provide information
that might smplify or speed up the process by which a
decison is made as to whether two objects are in contact.
The flexibility to manipulate shadows generated by
projection made this an attractive technique for the work
donein this project.

2.2 Shadow Volumes

Shadow volumes can be briefly described as the volume on
the oppodite side of an occluder from a light source that is
blocked from a view of the light source by the occluder
[Crow 1977]. Therefore any object in a scene that intersects
this volume can be said to be in the shadow of the occluder,
and by determining the exact intersection, the shadow
boundary on that object can be drawn. Binary Space Partition
(BSP) trees have been shown to efficiently and eegantly
represent the total shadow volume formed by a st of
polygons [Chin and Reiner 1989].

The shadow volume technique is an efficient
dgorithm for the computation of shadows, especialy in
scenes with relatively smple occluders. The agorithm can
be easly extended to handle multiple light sources by
repegting the second pass of the algorithm.

2.3 Shadow Maps

In essence, a shadow map is a depth map rendered from the
point of view of the light source [Williams 1978]. Its
advantage over the shadow volume technique is that its
performance is not directly dependent on the complexity of
the shadowing object. It is essentidly a technique involving
the transformation of distances from one viewpoint, that of
the viewer, to distances from another viewpoint, that of the
light source.

A shadow map is essentidly a depth map that
represents the distance of each pixel in a scene from the light
source. On rendering the scene from the point of view of the
camera, each pixe is andysed by transforming it back into
the co-ordinates appropriate to the scene as viewed from the
light source. Next the distance from the pixe to the light
source is caculated and compared with the value stored in
the shadow map for this pixd in the co-ordinate system
representing the view from the light source. If this pixd has
a larger vaue than that stored in the shadow map, it can be
concluded that there is a shadow-casting object between the
pixel and the light source, and o, returning to the scene as
observed by the camera, the point should be drawn in
shadow.

Shadow mapping provides a very degant technique
for rendering shadows. It offers the advantage of not being
directly dependent on the complexity of any occluding
objects in the scene, and does not require an analyss of the
scene using binary space partition trees as with shadow
volumes. However, a problem that can arise is diasing
artefacts that are introduced by the fact that the shadow map
is point sampled. It is possible that the area coverage of a
pixd in one co-ordinate sysem may be dgnificantly
different to that of the same area in the other co-ordinate
system, thus introducing quantisation errors. Consider, for
example, a point in a modd tha is close to the camera
position, but distant from the light source. Upon rendering
the scene, when this point is transformed into the light source
co-ordinate system, the resolution of this area of the scene
could be significantly reduced. This could be evident in the
find rendering of the scene as the shadow boundary may be
displayed in the same low resolution that is associated with
the light source view of the scene. In generd it can be said
that there is an uneven mapping of resolution between the

scene rendered form each viewpoint. Therefore precision is
an issuethat can be very important to this technique.

A version of this algorithm has been implemented in
hardware, as described in [Segd et d. 1992]. The shadow
map in this example was stored as a texture map, so that the
texture co-ordinate transformaion hardware could be
employed to perform a comparison between the transformed
z co-ordinate and the stored z co-ordinate stored in the
shadow map. While this technique is useful in speeding up
these calculations, it does present the drawback of requiring a
very high precison in the texture mapping hardware, and it is
adso susceptible to creating a bottleneck in the texture
mapping hardware when it is required for pure texture
mapping functiondlity while the scene is being rendered.

Ancther problem is thet it is difficult to use the
shadow map technique to cagt shadows from a light
surrounded by objects. This is because the shadow map is
cregted by rendering the entire scene from the light' s point of
view, and therefore it is not dways possible to come up with
a tranform to do this, depending on the geometric
relationship between the light and the objectsin the scene.

In genera, these issues can be overcome and thisisa
very useful technique. However, for the purposes of this
project, and as with the shadow volume technique, the
shadows are generated globaly with no digtinction made
between individua shadows. Also, as the overdl shape of
individual shadows are not resultant from this technique,
there is little scope for manipulating the shadows based on
the perceived importance of each shadow in the scene.

2.4 Shadow Volume and Shadow Map
Hybrid

One very interesting shadow generation technique that has
been demondrated recently in [McCool 1998] is a hybrid of
the shadow volume technique and the shadow map
technique. This technique, Shadow Volume Reconstruction,
is based on the observation that once a shadow map has been
generated, the information in the shadow map (i.e. the depth,
or z information for the scene as observed from the light
source), combined with the x, y co-ordinates for each pixel as
observed from the light source actudly define a volume.
That volume, when transformed to the gppropriate co-
ordinates for rendering from the point of view of the camera,
isashadow volume,

The generation of this shadow volume is more
efficient than that generated by the pure shadow volume
technique described by Crow. This is because the volume
generated in the pure shadow volume technique is composed
of many polygons which are often overlgpping. The shadow
volume recongtruction technique generates shadow volumes
that are minimal in size; they extend to the shadowed surface
from the occluding object, but no further. This technique dso
offers advantages over the shadow mapping technique by
diminating the requirement - in the hardware
implementation — for the use of texture maps. Therefore the
scene can contain textured polygons without the need for an
extrarendering pass.

However, this technique retains some of the less
desirable attributes of the two existing methods. It inherits
the quantisation problems outlined above. Also, the most

basic variant of this hybrid suffers the disadvantage of
Crow's dgorithm, i.e. the potentidly large number of
shadow polygons generated. The report, however, describes
edge detection techniques that were employed to smplify the
shadow volume such that only inefficiencies are removed.

2.5 Non-Real-Time Approaches to

Shadow Generation

Non-realtime techniques are important to the area of shadow
generation in computer graphics. However, these techniques
are computationaly intensive and could not be considered
for use in a red-time gpplication. Ray tracing dgorithms
determine the visibility of surfaces by tracing imaginary rays
of light from the viewer's eye to the objects in the scene
[Whitted 1980]. Ray traced scenes can be extremdly redlidtic,
particularly for shiny objects (pecular lighting effects), but
they require consderable computation time to generate. A
ray tracing process will inherently reved aress of the scene
that lie in shadow. However, paying specia attention to
aress that represent shadow boundaries can enhance the
overd| effect.

Radiosity agorithms determine the direct and indirect
illumination for diffuse surfaces in an environment and
produce a view-independent solution. They do this by
subdividing a surface into small eemental surface patches
and, assuming they are smal enough, approximeting their
intensity digtribution over the surface using a constant value
that depends on the surface and the direction of the emission.

3 Heuristical Techniques

A characterigtic of graphica applications is the amount of
error that can be tolerated in the find result. Unlike many
applications that might be more analytica in nature, the
product of a graphicsrendering system can ultimately be
judged for qudity by the viewer of the graphic. It is
common for graphics to be inaccurate in many respects while
il conveying an effective representetion of the scene.

Some very well-established techniques in computer
graphics rely on this characteristic. For example, texture
mapping alows scenes of great complexity to be redised in
quite asmple way. For example, such objects as buildings,
which might require a large humber of polygons, can be
represented by a single cube with its sides texture mapped
with the graphic of an exidting building. In fact, many
substances that are extremey difficult to render, such as
bodies of water, vegetation, and hair can be represented
efficiently by this method.

This paper approaches the use of heuristics with
severa objectives. High-level knowledge of the system is
used to decide how important a shadow is, and therefore how
much effort should be expended in drawing it. However, a a
lower leve, for a shadow that is deemed suitable for
rendering with superior accuracy, a way of doing this more
efficiently than otherwise will be described. A shadow that is
deemed to be important to the scene is said to have a high
priority, and a shadow that is consdered to have relatively
ittle impact on the overall sceneissaid to have alow priority.

The idess presented here reguire a high level of flexibility in
terms of manipulating the shape, dimension, position, and
colour of each shadow. Therefore it is important to be able
to identify individual shadows — even to the point that their
vertices are known, thus dlowing manipulation of the
shadow objects to be performed. For example, a rough
egimate of the overdl length and width of a shadow alows a
very low-priority shadow to be approximated smply by
rendering an dliptical object of these dimensions.

The god of a heuristical approach is to find a good
balance between the richness of the shadows and the time it
takes to digplay them, in order to maintain a constant frame
rate. To thisend, there are three types of shadow defined for
the system:

- detailed shadows
- correct shadows
- vague shadows

3.1 Detailed Shadows

A rdétively large effort is expended in creating detailed
shadows. These shadows should be rendered in a way that
will enhance their accuracy and redism. This includes
drawing the shadow to the correct dimensions and position
and aso softening the edges of the shadow, i.e. creating an
umbra and penumbra. Much work has been done on the
cregtion of soft shadows, but most of these techniques are
suitable only for static scenes. To achieve soft shadows in
redl-time requires speed-up techniques. One such technique
would be to perform an andysis on the extent — or area— of
the light source and the relative distance of the occluder from
the light source and the shadow projection plane at the area
the shadow will appear. Thiswould give an indication of the
relative sizes of the umbraand penumbra.

3.2 Correct Shadows

Correct shadows are drawn to the shape and dimensions that
are exact for the occluder. The role that correct shadows
play in this system is to render shadows that have some
visua sgnificance in the scene in a time-efficient manner.
Thisis achieved by disregarding such shadow features as the
penumbra. These shadows are essentidly hard shadows.
However, a further optimisation is redised in the analys's of
the occluder to shadow transformation, and the convex hull
operation that is performed on the shadow vertices.

3.3 Vague Shadows

A shadow being judged as having a low priority in a scene
will have the least amount of time spent rendering it. Asthe
lowest-priority shadows in the system, the emphasis is on
quick rendering as opposed to an accurate representation of
the shadow. Therefore these shadows will be rendered as
smple circular or dlipticd flat objects. To maintain some
degree of accuracy, the dimensions of the shape will reflect
the true dimengions of the shadow as it should gppear. This
should present no dgnificant overhead, as the shadow
dimensions are stored in the object representing the shadow.

Idedly these shadows would not be required in a scene.
Their importance liesin the completion of a scene when time

isvery limited. When it is necessary to use them, as few as
possible should be introduced into the scene.

3.4 Criteria for Use of Heuristics

Much research has been conducted in the area of visud
perception in computer graphics. This research is largely
directed towards such gpplications in computer graphics as
redigic image synthess, scientific and information
visudisation, and time-critical rendering for virtud
environments. Rendering a scene in computer graphics is
largely concerned with providing enough information on a
2D plane, i.e. a page or computer screen, to an observer to
dlow the obsarver to interpret it correctly three
dimensondly. This means that the relative postion of
objects, their orientation, and their speed and direction if they
are in motion, are important visua cues that are not inherent
in two dimensons. However, there must be enough
additiona information in these two dimensions to derive
three dimensiona scenes unambiguoudy.

Pictoriad cues were firg employed by panters
wishing to creste the effect of depth and correct spatia
relationships in pictures. In [Wanger et d. 1992] thee are
broken down into the following, and the relaive importance
of eachis assessed:

- Pergective — the foreshortening effect caused by
increased distance from the viewpoint, thus establishing
a dzeto-distance relationship, which provides clear
indications of the distance of an object when the size of
that object isknown

- Texture — a graphicd indication of the nature of the
substance of a surface, which is dso an important visua
cue for the determination of the spatial orientation and
relief of flat and curved surfaces

- Shading and shadow — aress of varying illumination
caused by the amount of light faling on different areas
of a scene, which provide information on the shape and
location of an object

- Madtion — the rdédtive displacement of objects in
consecutive frames, due either to the movement of the
objects or the viewpoint, can indicate distance between
those objects

3.5 Relative Importance of a Shadow

to a Scene

A number of techniques intended to speed up the
determination and rendering of shadows are dependent on
the following factors:

- Digtance of the shadow from the viewpoint

- Motion of the shadow

- Location of the shadow in the viewer's periphera vison

- Extent —or area— of thelight source

- Rdative digance of the occluder from the light source
and the shadow projection plane

These are expanded upon in the sections below. Each aspect
of a shadow as described here can be used to determine the

importance of that shadow to the accuracy and rediism of the
scene. From the consideration of each of these criteria, alist
of shadow objects may be drawn up and prioritised in order
of decreasing importance to the scene. This prioritised list
can then be used to select the method of rendering — detailed,
correct, or vague — for each shadow. This decision should be
based on the available time and the desired frame rate, taking
into account the expense of each technique in terms of time.

3.5.1 Distance of Shadow from Viewpoint

Firdly the distance of the shadow from the viewpoint can be
taken into account. In the context of this thesis this is only
relevant if the scene is rendered using perspective. This is
because the use of orthographic projection does not alow an
observer to digtinguish the distance of an object based on its
sze — dl objects are drawn to their correct dimensions
regardiess of their position in the scene.

The foreshortening effect on objectsthat are distant in
a scene rendered using perspective projection means that the
accuracy with which they are drawn is necessarily reduced.
Thisisaresult of the same screen resolution being applied to
objects pogtioned in both the foreground and the
background of the scene. In [Funkhouser et d. 1992] this
idea is applied usng spatid subdivison and vishility
andysis to perform a red-time architectura walk-through.
Teking account of the distance of an object from the
viewpoint will be extended to shadowsin thisdiscussion. As
the shadow of an object moves toward the background of a
scene, its detail will become increasingly obscured and
therefore less time should be spent rendering it. As such, it
would be a candidate for occupying a position of lower
priority in the overal list of shadowsin ascene.

3.5.2 Motion of Shadow

In ascene, objects that are in motion present the problem that
they must be fully re-rendered for each scene. However, the
details of moving objects are not as eadly discerned by
people as are the details of datic objects. This is an
observetion that is commonly employed in computer
graphics. For example, in the area of collison detection,
much effort is expended in determining whether two objects
arein contact. However, acommonly used shortcut relies on
the fact that objects in a collison detection system will
adways be in motion and therefore the exact moment of
contact between two objects will never be discerned
accurately by an observer. Therefore a tolerance of
proximity can be utilised [Hubbard 1995].

The same can be goplied to shadows that are in
motion. By taking into account the velocity of a shadow
upon rendering a scene, a decision can be made to lower the
priority of that shadow and render it as either a correct or
vague shadow if it ismoving rapidly.

3.5.3 Shadow Located in Viewer's
Peripheral Vision / Direction of Gaze

When deciding to prioritise the shadows in a scene, or indeed
any other object in generd, some assumptions may be made

as to the importance of the object based upon its location in
the scene. One such assumption is the fact that objects that
lie in the centre foreground will be the main focus of the
scene. Therefore al other objects may be considered to be of
lessimportance in the scene.

This technique is rather quditative — much more o
than the others discussed here. The more that is known
about the context of the scene and the details of the elements
that compose the scene, the more effective this approach will
be. While this technique can be employed effectively in
certain gpplications, it is not a suitable candidate for
incluson in a system that attempts to generdise to any 3D
scene. Alternatively, an eye-tracking device could be used to
locate the viewers point of fixation, and prioritise objects
based on their distance from this point, as in [O'Sullivan
1999.

Light Source

Figure 3. Soft shadow generation (occluder more distant
from light source)

Light Source

-

Figure 4. Soft shadow generation (occluder less distant
from light source)

3.5.4 Extent of Light Source

The area occupied by the light source can have a Sgnificant
impact on the nature of the shadow cast by an occluder.
Point light sources will aways cast hard shadows — shadows
with no penumbra. A light source that occupies afinite area
will result in a softer edge to shadows associated with it, and
as the area increases, the degree of softness will increase for
agiven shadow. Computer graphic systems usudly smulate
this by rendering the scene with multiple point light sources
digtributed across the area of the light source.

The dternative to performing this costly computation
is to draw up some heurigtics relating to the size of the light
source. One approach would be to devise atable rdating the
size of alight source to the extent of penumbraobservedin a
corresponding shadow. Then an gpproximetion of the soft
shadow could be rendered using a technique such asjittering
(see Section 4.4.3).

3.5.5 Relative Distance of Occluder from
Light Source and Shadow Projection
Plane

Finaly, one other attribute of a graphica scene employing
shadows is the location of the occluder relative to the light
source and the projection plane of the shadow. This
information can be used to quickly deduce an gpproximation
of the degree of softness of a shadow. It relies on the
observation thet the softness of a shadow is rdated to the
relative distance of the occluder from the light source and the
shadow projection plane; the closer the occluder is to the
light source, the softer the shadow will be. Thisisaresult of
the geometry of the path of the ray travelling from the light
source to the shadow projection plane (see figures 3 and 4).

4 RTShadow

RTShadow (Red Time Shadow) is a Microsoft Windows
goplication, employing OpenGL and the Microsoft
Foundation Classes (MFC), which was written to
demongrate some aspects of the generation of shadows in
thisthess. It isbased on the ideas for generating shadowsin
a number of different ways, increesing in accuracy and
definition as the shadow is determined to be more prominent
within a scene. It employs three types of shadow, as
described earlier, namely detailed, correct, and vague
shadows.

The gstarting point for the application was a sample
program from [Fosner 1996], which provides an MFC
framework application enhanced with an additiona class,
COpenGLView.

4.1 Determining Shadow Polygons

The shadows generated in RTShadow are based on objects
within the gpplication, each object representing one shadow.
Each shadow object contains a list of vertices that represent
the outline of a two-dimensiona figure on the y = O plane,
and can be drawn as a polygon. These vertices can be used
in anumber of ways, depending on the type of shadow that is
to be generated for a given shadow object. Vague shadows
are based on a subset of the shadow vertex points, correct
shadows use dl the vertices, and detailed shadows use more
advanced techniques to creste a redidic shadow
representation. These shadow types and the details of how
they are created are expanded on in subsequent sections.
Projection shadows, as outlined in section 2.1, are
used in RTShadow. Implementing the Shadow Projection
Matrix in RTShadows could eesily have been done in
RTShadow by multiplying such a matrix onto the current

OpenGL ModdView stack. Rendering the object after doing
this would have resulted in what would essentidly be a
correct shadow, as defined in this application. However, it
was desrable to have as much flexibility as possble in
rendering and manipulating the different types of shadow.
For this reason it was necessary to obtain the actua vertices
of the shadow figure. This turns out to be much more
difficult than it appears. Because smply re-rendering the
occluding object with the shadow projection metrix on the
ModdView gack creates the shadow, the vertices of the
shadow do not need to be explicitly known. Indeed,
OpenGL does not provide a way of returning the co-
ordinates of the transformed vertices. Therefore a dightly
different approach was taken.

The shadows in RTShadow make use of the shadow
projection matrix, but ingtead of multiplying it onto the
ModeView gack, each vertex in the occluding object is
explicitly multiplied by the matrix to determine its
corresponding vertex on the shadow. The application
maintains a list of al the objects in the scene, and each of
these objects contains a full ligt of the co-ordinates of the
vertices in that object. At this point the performance of the
gpplication can be condderably enhanced by acting on the
observation that in a shadow only the vertices that define the
outline of the shadow need to be considered. In RTShadow,
a Package-Wrapping convex hull agorithm has been
implemented to handle this[Sedgewick 1992].

4.2 Vague Shadows

Vague shadows are drawn smply as quadrilateral shapesin
the scene. These shadow types are included specifically to
dlow some shadows in the system to be drawn with the very
least effort and impact on performance. Any shadows
chosen to be drawn as vague shadows will be very digtant in
a scene or fast moving or both. The intention is ultimately
that these shadows would only be used if the system redly
does not have enough time between frames to render fully
the scene with correct and detailed shadows, and so they
should be rendered asfast as possible.

Early on in the design of the gpplication, the intention
was to use circular or dliptical shapes to represent vague
shadows. However, because of the number of vertices
contained in these shapes, rendering them would mean that
in many cases rendering smple correct shadows would be
more efficient.

4.3 Correct Shadows

The drawing of correct or hard shadows is rdatively
graightforward. They are drawn as black polygons on the
grey surface representing the floor of the application. The
vertices for a sngle hard shadow polygon are stored as the
culled vertices of the entire occluding object, projected onto
the floor (y = 0) plane. The culling is achieved as described
above using aconvex hull agorithm.

Firgly, the colour for the shadows is set to black. In
many respects, OpenGL behaves as a date meachine,
applying a setting to al relevant operations until that setting
iseither cleared or changed. This colour setting will gpply to
al vertices drawn through OpenGL, in any buffer, until
another colour setting is pecified.

As dl the vertices marking the outline of the projected
occluder are stored for each frame, shadows of arbitrary
complexity can be rendered quickly.

4.4 Soft Shadows

RTShadow uses the OpenGL accumulaion buffer to
smulate soft shadows. The accumulation buffer holds
RGBA colour data just like the colour buffers do in RGBA
mode. It is not drawn into directly, rather the accumulation
buffer is filled in rectangular blocks from data stored in a
colour buffer. It dlows a number of images to be
accumulated into a fina composite image, which is then
transferred back to a colour buffer to alow the image to be
displayed. Effects that are commonly crested by use of the
accumulation buffer are scene antialiasing, mation blur, and
simulation of photographic depth of field.

4.4.1 Using the OpenGL Accumulation
Buffer

Before adrawing operation is performed in a colour buffer or
the accumulation buffer, there are a number of tests thet are
applied to the buffer before any information can be written to
it, and the outcome of these tests determines the results of
writing data to the buffer. The tests that are applied to these
buffersare

- Scissor test

- Alphatest

- Stencil test

- Depthtest

- Blending

- Dithering

- Logica operations

The Scissor test is employed in this project when cresting
soft shadows and is described in detail in the section
Enhancing the Performance of the Accumulation Buffer
below. Alpha testing is based on the fourth vaue in RGBA
representetion of vertices, it dlows the drawing of a
fragment to be accepted or rejected, based on a comparison
with areference dphavaue. The Sencil test is performed in
conjunction with a stencil buffer. The stencil buffer contains
values with a one-to-one correspondence with the pixdsin a
scene. By a comparison technique, the values contained in
the stencil buffer determine whether or not to draw pixdsin
acolour buffer or the accumulation buffer.

The depth buffer is used in the Depth test. Like the
sencil buffer, the depth buffer maintains a one-to-one pixe
correspondence with the colour and accumulation buffers.
The values stored for each pixd in the depth buffer represent
the distance between the viewpoint and the object occupying
that pixe. The depth test updates the depth buffer by
replacing values for objects that are discovered to be closer
to the viewpoint than the existing value for agiven pixd.

Blending, dithering, and logical operations are not
tests as such, they are image-processing techniques that can
be applied in the colour or accumulation buffers. Instead of
samply overwriting existing vaues in a buffer, blending
dlows the new vaues of afragment to be combined with the

exigting vaues. Dithering is a hardware-dependent operation
that can improve the colour resolution of an image with a
anal number of colour bitplanes. There are a number of
logical operations that OpenGL dlows to be performed
between the pixels existing in a buffer and incoming pixels
representing a fragment of an object in a scene. Such
operations as AND, OR, NAND, NOR, XOR, INVERT,
COPY, and CLEAR, amongst others, are available.

4.4.2 Generating Soft Shadows Using the
Accumulation Buffer

Early scenes incorporating shadows simplified the light
source o that it could be consdered to be a point light
source. The reault is shadows with edges as sharply defined
as the object cregting the shadow . This takes from the
reglism of the scene and was condgdered an identifying
feature of early computer-generated graphica scenes.

Soft shadows are a result of light sources that are of finite
size, reaulting in a shadow is composed of two parts — the
umbra and the penumbra. Soft shadows can be derived from
any of the shadow-generation techniques described in this
report. The most common way of doing this is to
approximate the extended light source by multiple point light
sources distributed across its surface area, essentidly
quantising it.

A huge cogt is incurred by generating accurate soft
shadows in this way. Not only does the scene have to be
rendered multiple times, but particularly for techniques such
as projection shadows and shadow volumes the shadows
themsalves must be recalculated for esch rendering. The
more times the scene can be rendered, i.e. the more point
light sources are used to represent the extended light source,
the better the quality of the shadows generated; artefacts such
as gep effects are less agpparent. This, of course, dows the
process down further, dthough it can be very effective for
scenesthat don't require redl-time rendering rates.

The method used by RTShadow to generate soft
shadows is a variation on this goproach. It is possble to
speed up the rendering process by taking some shortcuts,
resulting in soft shadows that, while they are not perfectly
accurate, are neverthdess effective. This agpproach ill
requires the shadow to be rendered multiple times to the
accumulation buffer, but the position of the shadow is varied
on each iteration by arule of thumb, rather than by carefully
caculating the correct postion. The method employed to
produce the soft shadow is called jittering.

4.4.3 Jittering

Jttering is a method of effectively vibrating the image, and
of accumulating the images as they move by reaively small
amounts about a centre point. In the context of soft shadow
generdion, it istheinitialy calculated shadow that isjittered,
and the overal image accumulated. To increase the area of
the shadow that appears as the penumbra, the degree of
movement about the centre can be increased.

Jttering is an iterative process, the image iswritten to
the accumulation buffer, transformed by a relatively smal
amount, then rewritten to the accumulation buffer, and so on.
The distance by which the image is transformed on esch

iteration isimportant. While it might seem natura to choose
positions that are equaly spaced, thisis not aways the case.
It is conddered better to use a uniform or normalised
digtribution, clustering toward the centre of the image.

4.4.4 Rendering the Shadow

The vertices describing the outline of the shadow will have
been determined at the time the rendering of the shadow is
done. Within the RTShadow project, soft shadows are
cregted in the method RT Shadow:: softShadow(), but this
function is supported by anumber of others. While the other
shadow types in this gpplication are drawn individudly as
they are encountered in the globa list of associated occluder
objects, the use of the accumulation buffer necessitates a
dightly different gpproach for soft shadows.

5 Performance

This section outlines some issues relaing to the performance
of the RTShadow application and makes observations on the
relevance of these issues to the area of red-time shadow
generation.

5.1 Comparing Detailed, Correct and

Vague Shadows

Figures 5, 6, and 7 show detailed, correct, and vague
shadows respectively, as RTShadow renders them. In each
cae the shadows are cast by two cubes created by
RTSOccluderCube objects. The example of the detailed
shadows required moving the positions of the cubes to alow
the shadows generated to overlap somewhat. The postion of
the cubesfor the correct and vague shadows are identicdl.

. Untitled - DpenGL ¥iew Cla:> M=l E

File Edit Help

Figure5 Overlapping detailed shadowsin RTShadow

The detailed shadows shown in figure 5 demondrate the soft
shadow effect created by jittering a number of hard shadows
and superimposing them on each other. The number of
shadows used in the jittering process for this example was
eight. It is aso worth noting the way that the two shadows
blend into each other. To achieve this it was necessary to
render both shadows simultaneoudy in the accumulation
buffer.

. Untitled - NpenGL View Class W=l E3

—
‘\Jﬂ

Figure6 Correct shadowsin RTShadow

< Untitlad - DpenGl View Claz: [I=] E3

File Edit Help

Figure7 Vague shadowsin RTShadow

The correct shadows shown in figure 6 demongtrate the fdll
off in visua qudity by rendering hard shadows. However,
the result is gill accurate and provides a reasonable visua
representetion of the shadows for the cubes. The advantage
of the correct shadows is a dramatic improvement in
rendering time.

The vague shadows shown in figure 7 are obvioudy a
method of compromise. However, the intention is to use
these in Stuations where they would be very much more to
the background and where their importance to the scene
would be reduced due to other objects with either detailed or
correct shadows.

5.2 The Performance of RTShadow

This section outlines the performance in time of RTShadow
for detailed, correct, and vague shadows. It further bresks
down the demongtration of detailed shadows by considering
the generation of these shadows by writing to the full
accumulation buffer and by clipping the area used in the
accumulation buffer to the area occupied by the shadows.
The timings given below were based on rendering the
detailed shadows with and without the OpenGL Scissor test
enabled, rendering the correct shadows once, and rendering
the vague shadows three times, with between two and ten
occludersin the scene.

5.2.1 Detailed Shadows - No Clipping

At 4.817 seconds to draw detailed shadows for two objects,
this approach cannot be considered. Assuming that for red-
time rendering a frame rate of 15 frames per second is
adequate, that trandates to arendering time of 0.067 seconds.
The peformance of RTShadow in this specific case is
obvioudy not to be consdered a candidate for red-time
gpplications. The use of the accumulation buffer isthe cause
of the poor performance here. However, it is worth noting
that the accumulation buffer used to perform this test was
implemented in software on the test machine. Much better
results could be expected with hardware acceleration for the
accumulation buffer functionality.

5.2.2 Detailed Shadows - Clipped

In order to improve the performance of the accumulation
buffer, it is possible to clip the area of the buffer used to the
areathat needs the functionality provided The time taken to
perform the accumulation buffer operations was 0.832
seconds, to generate the same shadows that took 4.817
seconds in the previous example. Although thisis obvioudy
aussful technique for speeding up the accumulation buffer's
performance, it is probably best suited to honing the
performance of an dready fast gpplication. The results show
that thisis not enough to take this gpplication into the realm
of redl-time shadow generation.

5.2.3 Correct Shadows

The scene for correct shadows is set up exactly as with the
examples for the detailed shadows. At 38.626 milliseconds
to render the scene, it is gpparent that correct shadows
provide a much faster solution than detailed shadows, the
obvious reason being the lack of dependence on the use of
the accumulation buffer. This is demonstrated by the fact
that the most time-consuming function in the example of
correct shadow generdtion is RecalculateShadow(), which
determines the vertices of the shadow and is not directly
involved in the rendering process. There are two important
operations performed in this function: the matrix
multiplication by the shadow projection matrix, and the
convex hull agorithm used to cull the ligt of vertices in the
shadow to just those needed.

The performance of the correct shadow example here
can be said to be reaching redl-time performance, especidly
in terms of rendering time. However, it would benefit from a
more efficient convex hull agorithm.

5.2.4 Vague Shadows

The results for vague shadows (39.7 milliseconds) are
broadly similar to those for correct shadows. Aswith correct
shadows, the bulk of the computation timeis concentrated on
caculating the area of the shadow. A performance gain over
correct shadow generetion is realised for vague shadows in
the OpenGL operation of rendering the shadows.

6 Conclusions

In this paper, existing techniques in 3D computer graphics
for generating shadows were appraised, focusing specificaly
on their relevance and suitability for real-time gpplications.
This overview included an outline of several heurigtical
techniques to help improve the overdl visud effect of the
graphic with a minimum additional performance overhead.
A practicd implementation of one of these techniques was
devised in order to illugtrate some of the issues associated
with redl-time shadow generation.

In Section 2, the subgtantia body of work done on
the theory and practice of shadow generation in computer
graphics was outlined. The earlier ideas, centring on the
graightforward projection of the outline of an object onto a
projection plane, were quickly built upon with such practices
as shadow volumes and shadow maps, which alowed more
efficient incluson of shadows in complex scenes. These
methods are considered suitable candidates for development
of red-time shadow generation. Some other important
methods thet alow the inclusion of shadows are not suitable
for red-time applications. Ray tracing, radiosity and
discontinuity meshing, while they are capable of rendering
shadowed scenes of remarkable accuracy and detail, are
employed in the area of photoredlism and as such are time-
consuming in the rendering process.

Red-time shadow generation remains a huge
chalenge to the developers of computer graphic applications.
Fifteen frames per second is considered a standard for red-
time animation. This dlows a mere 66 milliseconds to
congtruct and render the entire scene — a formidable task
consdering the fact that most viable shadow-generation
techniques require at least one complete re-rendering of the
scene in addition to the caculation of the shadow arees.
Much of the literature avalable on shadows in computer
graphics concentrates on accurate and redigtic gtatic images
and the depth that this work achievesillustrates the problems
that realigtic red-time gpplications must surmount. Thereis
a clear trade off between the effectiveness of red-time
shadows as an animated element of a scene and the visual
quality of the shadowed arees. Further complicetions are
introduced when the ability to cast shadows, not only on a
shadow projection plane — for example, a floor area — but
aso on other occluding objectsin the scene is required. This
vadtly increases the computation time required, and rules out
techniques such as projection shadows.

Also congdered, in Section 3, was the use of some
heurigtical techniques to aid the generation of red-time
shadows. These techniques are employed to speed up the
rendering process, but a the expense of the qudity of the
graphic produced. Such techniques have been applied to
many computer visudisstion problems, and their
applicability to the area of shadow generation was discussed.
A number of heurigtical techniques were outlined. These
included such established computer graphics methods as
taking into consideration the relaive importance of an object
based on its position and mation within ascene. Also, some
techniques specific to the topic of shadow generation were
outlined. These tended to concentrate on ways of producing
shadows of good quality in an efficient way.

The application presented in Section 4 of this project
— RTShadow - was written to illustrate some of the outlined
agpects of red-time shadow generation. It employs three
shadow types. detailed, correct, and vague. The detailed
shadows emulate most accurately the way shadows should
appear, being correct in outline and softened at the edges.
The softening effect is achieved by rendering the shadows
multiple times in dightly different positions, accumulating
the renditions, atechnique cdled jittering. While it would be
desirable to render every shadow in a scene in thisway, it is
not practica due to the computational expense of this
method. Correct shadows are accurae in outline, but
dispense with the most time-consuming aspect of detailed
shadows, namely the jittering. Vague shadows are drawn as
smple polygon shapes, the emphasis being on rendering a
dark areato represent the shadow asfast aspossible.

RTShadow clearly demongrates the dependence a
good redl-time shadow-generation engine would have on the
use of graphics accderation hardware. The poor
performance of the jittering process is a direct result of the
fact that the generic verson of OpenGL provided with
Microsoft Windows NT provides only a software
implementation of the accumulation buffer. To generate
such redigic shadows & red-time frame rates would
certainly require good quality graphics hardware support.

The gpproach taken for the caculation of the shadow
aress in RTShadow presents interesting possibilities in a
more genera 3D red-time animation application. The
shadows are treasted as independent entities which, while
they are closdy related to the objects that act as the
occluders, are fully described as objects in the scene. This
atribute can have crossover benefits for the process of
collison detection. This is because the shadows provide
additiona information about the location of objects rative
to each other. For example, from a certain viewpoint it may
be difficult to discern the proximity of two objectsif they are
closy in line. However, if the light source projecting the
shadows is sufficiently distant from the viewer, the shadows
may clearly indicate that the relevant objects are not in
contact with each other. Such techniques are useful for
speeding up the decison process in collison detection
systems. The redl-time shadows considered in this discusson
are of adynamic nature. Typicaly generated on aframe-by-
frame bads, they are caculated from objects and light
sources that may be manipulated by auser of the system.

[Blinn 1998] Blinn, James, “Me and my (fake) shadow”,
|EEE Computer Graphics and Applications, January 1998.

[Chin and Reiner 1989] Chin, N., Reiner, S. “Near Red-
Time Shadow Generation Using BSP Trees’, Computer
Graphics 23(3), pp 99-106, 1989.

[Crow 1977] Crow, F., “Shadow Algorithms for Computer
Graphics’, Proc. SIGGRAPH, val. 11, pp 242-248, Jly
1977.

[Fosner 1996] Fosner, Ron, “OpenGL Programming for
Windows 95 and Windows NT”, Addison-Wedey
Developers Press, 1996

10

[Heckbert and Herf, 1997] Heckbert, Paul S., Herf, Michael
“Simulating Soft Shadows With Graphics Hardware’,
School of Computer Science, Carnegie Mdlon University,
Pittsburgh, PA 15213, 1997.

[Hubbard 1995] Hubbard, Philip M., “Callison Detection
for Interactive Grgphics Applications’, IEEE Transactions
on Visudisation and Computer Graphics, 1(3), Sept. 1995,
pp. 218-230

[McCoal 1998] McCool, Miched D., “Shadow Volume
Recongtruction”, Technica Report. Computer Graphics
Laboratory, Department of Computer Science, University of
Weaterloo, Waterloo, Ontario, Canada N2L 3G1, March
1998.

[O'sullivan 1999] O'sullivan, C. A Mode of Collision
Perception for Real-Time Animation. Technical Report
TCD-CS-1999-02, Trinity College Dublin, January 1999.

[Sedgewick 1992] Sedgewick, Robert, “Algorithmsin C++7,
Addison-Wed ey Publishing Company, 1992.

[Segd et d. 1992] Segd, M., Korobkin, C., van Widenfet,
R., Foran, J, Haebeli, p., “Fast Shadows and Lighting
Effects usng Texture Mapping.”, Proc. SIGGRAPH,
volume 26, pp 249-252, July 1992.

[Wanger et d. 1992] Wanger,L.R. Ferwerda, JA. Greenberg,
D.P. "Perceiving spatid relationships in computer-generated
images', IEEE Computer Graphics and Applications, 12(3),
pp.44-58, 1992.

[Whitted 1980] Whitted, T., “An Improved [llumination
model for Shaded Display”, Communications of the ACM,
Volume 32, number 6, June 1980, pp. 343-349.

[Williams 1978] Williams, L., “Casting curved shadows on
curved surfaces”, Proc. SIGGRAPH, volume 12, pp 270
274, August 1978.

