
Heuristical Real-time Shadows

Meaney, D. O'Sullivan, C.
CBT systems, Dublin Image Synthesis Group, Trinity College Dublin

1 Introduction

Computer-generated graphical scenes benefit greatly from
the inclusion of accurately rendered shadows. Shadows
contribute to the realism of a scene, and also provide
important depth cues, providing information relating to the
relative position of objects within a scene. Indeed, it has been
demonstrated in [Wanger et al. 1992] that compared to other
visual cues, such as elevation, texture, perspective and
motion, shadows result in the greatest improvement in the
accuracy of positional perception and size perception of
objects in a scene.

Dynamic scenes, such as animations and real-time
simulations, employ shadows to more clearly illustrate object
interaction. However, shadow generation imposes a
significant penalty in terms of the time required to render a
scene, especially as the complexity of the scene and the
number of polygons needed increase. Soft shadows, i.e.
shadows generated by light sources of finite size rather than
point light sources, further complicate and prolong the
rendering process. The time needed to generate realistic
scenes with shadows becomes an issue warranting serious
consideration in the area of real-time scenes. A frame rate of
15 frames per second is normally required and therefore
established rendering techniques such as ray tracing and
radiosity, which handle shadowed scenes very effectively,
become impractical.

This paper proposes that real-time scene generation
benefits from the use of a heuristical approach to the
determination of shadow areas. For example, the shape of a
moving object is perceived less accurately by a viewer than
the shape of a static object. So it is reasonable to say that less
effort - and therefore less time - should be expended on
realising the shadow of a moving object compared to that of
a static object. The main objective is to suggest a number of
heuristics that might be employed to facilitate real-time
animation at acceptable frame rates. An OpenGL application
was created to investigate some aspects of the proposed
approach. This overview will break down as follows.
Section 2 discusses the background of shadow generation,
and outlines existing work done in this area. Section 3
introduces the heuristical techniques proposed and gives
some background to established heuristical techniques used
in other areas of computer graphics. Section 4 outlines the
technical aspects of the application written to illustrate some
of the techniques proposed in Section 3 and Section 5
presents and analyses results. Finally, Section 6 draws
conclusions from the work and proposes some future work.

2 Techniques for Generating
Shadows

Shadows are an important part of a scene generated by
computer software, but in many applications are neglected
because of resulting performance degradation, excessive
memory usage or lack of generality [Heckbert and Herf,
1997]. In essence, a shadow is an area of reduced
illumination, caused, for a given point, by the obstruction of
a direct path between that point and a given light. The
obstruction is referred to as the shadow casting object, or
occluder. The inclusion of shadows in a computer generated
scene can be approached in a number of ways. In addition to
the various techniques described in the next section, a
decision can be made as to whether to render shadows as
hard or soft:

- Hard Shadow: A hard shadow is characterised by
having a distinct edge and uniform shading across its
area, typically caused by a point light source, i.e. a light
source that has no area, just a position (figure 1).

- Soft Shadow: A soft shadow is characterised by having
a less distinct edge, often blending from the colour of
the shadow at its darkest to the colour of the plane the
shadow is being projected onto. It is the effect of an
extended light source, i.e. a light source of finite area,
that causes this softening at the edge of the shadow
(figure 2). The darkest and most solid area of such a
soft shadow is called the umbra. The less distinct area
at the edge is called the penumbra.

The generation of shadows in computer graphics has been
addressed extensively, using a number of techniques:

- Projection shadows
- Shadow volumes
- Shadow maps
- Ray tracing
- Radiosity
- Discontinuity meshing

The following sections describe each of these techniques and
assess each in terms of its relevance to real-time shadow
generation.

2

Figure 1 Creation of a hard shadow

Figure 2 Creation of a soft shadow

2.1 Projection Shadows

This method uses a projection transformation to simply
apply an orthographic or perspective projection matrix to the
modelview transform, rendering the projected object in an
appropriate shadow colour [Blinn 1998]. The mechanics of
generating the shadows for a scene using OpenGL simply
involve the determination of the correct projection matrix,
multiplying this with the current modelview matrix, and
rendering the entire scene.

One attribute of projection shadows that is very
useful is the fact that each shadow is an entity that exists in
the scene, rather than being simply an area of reduced
illumination or a lighting effect. This means that each
shadow can be manipulated just as any other object can. It
also means that information relating to the shape and location
of a shadow can be used in calculations relating to the scene.
For example, in an application that employs collision
detection techniques, shadows can often provide information
that might simplify or speed up the process by which a
decision is made as to whether two objects are in contact.
The flexibility to manipulate shadows generated by
projection made this an attractive technique for the work
done in this project.

2.2 Shadow Volumes

Shadow volumes can be briefly described as the volume on
the opposite side of an occluder from a light source that is
blocked from a view of the light source by the occluder
[Crow 1977]. Therefore any object in a scene that intersects
this volume can be said to be in the shadow of the occluder,
and by determining the exact intersection, the shadow
boundary on that object can be drawn. Binary Space Partition
(BSP) trees have been shown to efficiently and elegantly
represent the total shadow volume formed by a set of
polygons [Chin and Reiner 1989].

The shadow volume technique is an efficient
algorithm for the computation of shadows, especially in
scenes with relatively simple occluders. The algorithm can
be easily extended to handle multiple light sources by
repeating the second pass of the algorithm.

2.3 Shadow Maps

In essence, a shadow map is a depth map rendered from the
point of view of the light source [Williams 1978]. Its
advantage over the shadow volume technique is that its
performance is not directly dependent on the complexity of
the shadowing object. It is essentially a technique involving
the transformation of distances from one viewpoint, that of
the viewer, to distances from another viewpoint, that of the
light source.

A shadow map is essentially a depth map that
represents the distance of each pixel in a scene from the light
source. On rendering the scene from the point of view of the
camera, each pixel is analysed by transforming it back into
the co-ordinates appropriate to the scene as viewed from the
light source. Next the distance from the pixel to the light
source is calculated and compared with the value stored in
the shadow map for this pixel in the co-ordinate system
representing the view from the light source. If this pixel has
a larger value than that stored in the shadow map, it can be
concluded that there is a shadow-casting object between the
pixel and the light source, and so, returning to the scene as
observed by the camera, the point should be drawn in
shadow.

Shadow mapping provides a very elegant technique
for rendering shadows. It offers the advantage of not being
directly dependent on the complexity of any occluding
objects in the scene, and does not require an analysis of the
scene using binary space partition trees as with shadow
volumes. However, a problem that can arise is aliasing
artefacts that are introduced by the fact that the shadow map
is point sampled. It is possible that the area coverage of a
pixel in one co-ordinate system may be significantly
different to that of the same area in the other co-ordinate
system, thus introducing quantisation errors. Consider, for
example, a point in a model that is close to the camera
position, but distant from the light source. Upon rendering
the scene, when this point is transformed into the light source
co-ordinate system, the resolution of this area of the scene
could be significantly reduced. This could be evident in the
final rendering of the scene as the shadow boundary may be
displayed in the same low resolution that is associated with
the light source view of the scene. In general it can be said
that there is an uneven mapping of resolution between the

Umbra

Penumbra

Soft
Shadow

3

scene rendered form each viewpoint. Therefore precision is
an issue that can be very important to this technique.

A version of this algorithm has been implemented in
hardware, as described in [Segal et al. 1992]. The shadow
map in this example was stored as a texture map, so that the
texture co-ordinate transformation hardware could be
employed to perform a comparison between the transformed
z co-ordinate and the stored z co-ordinate stored in the
shadow map. While this technique is useful in speeding up
these calculations, it does present the drawback of requiring a
very high precision in the texture mapping hardware, and it is
also susceptible to creating a bottleneck in the texture
mapping hardware when it is required for pure texture
mapping functionality while the scene is being rendered.

Another problem is that it is difficult to use the
shadow map technique to cast shadows from a light
surrounded by objects. This is because the shadow map is
created by rendering the entire scene from the light’s point of
view, and therefore it is not always possible to come up with
a transform to do this, depending on the geometric
relationship between the light and the objects in the scene.

In general, these issues can be overcome and this is a
very useful technique. However, for the purposes of this
project, and as with the shadow volume technique, the
shadows are generated globally with no distinction made
between individual shadows. Also, as the overall shape of
individual shadows are not resultant from this technique,
there is little scope for manipulating the shadows based on
the perceived importance of each shadow in the scene.

2.4 Shadow Volume and Shadow Map

Hybrid

One very interesting shadow generation technique that has
been demonstrated recently in [McCool 1998] is a hybrid of
the shadow volume technique and the shadow map
technique. This technique, Shadow Volume Reconstruction,
is based on the observation that once a shadow map has been
generated, the information in the shadow map (i.e. the depth,
or z information for the scene as observed from the light
source), combined with the x, y co-ordinates for each pixel as
observed from the light source actually define a volume.
That volume, when transformed to the appropriate co-
ordinates for rendering from the point of view of the camera,
is a shadow volume.

The generation of this shadow volume is more
efficient than that generated by the pure shadow volume
technique described by Crow. This is because the volume
generated in the pure shadow volume technique is composed
of many polygons which are often overlapping. The shadow
volume reconstruction technique generates shadow volumes
that are minimal in size; they extend to the shadowed surface
from the occluding object, but no further. This technique also
offers advantages over the shadow mapping technique by
eliminating the requirement - in the hardware
implementation – for the use of texture maps. Therefore the
scene can contain textured polygons without the need for an
extra rendering pass.

However, this technique retains some of the less
desirable attributes of the two existing methods. It inherits
the quantisation problems outlined above. Also, the most

basic variant of this hybrid suffers the disadvantage of
Crow’s algorithm, i.e. the potentially large number of
shadow polygons generated. The report, however, describes
edge detection techniques that were employed to simplify the
shadow volume such that only inefficiencies are removed.

2.5 Non-Real-Time Approaches to

Shadow Generation

Non-realtime techniques are important to the area of shadow
generation in computer graphics. However, these techniques
are computationally intensive and could not be considered
for use in a real-time application. Ray tracing algorithms
determine the visibility of surfaces by tracing imaginary rays
of light from the viewer’s eye to the objects in the scene
[Whitted 1980]. Ray traced scenes can be extremely realistic,
particularly for shiny objects (specular lighting effects), but
they require considerable computation time to generate. A
ray tracing process will inherently reveal areas of the scene
that lie in shadow. However, paying special attention to
areas that represent shadow boundaries can enhance the
overall effect.

Radiosity algorithms determine the direct and indirect
illumination for diffuse surfaces in an environment and
produce a view-independent solution. They do this by
subdividing a surface into small elemental surface patches
and, assuming they are small enough, approximating their
intensity distribution over the surface using a constant value
that depends on the surface and the direction of the emission.

3 Heuristical Techniques

A characteristic of graphical applications is the amount of
error that can be tolerated in the final result. Unlike many
applications that might be more analytical in nature, the
product of a graphics-rendering system can ultimately be
judged for quality by the viewer of the graphic. It is
common for graphics to be inaccurate in many respects while
still conveying an effective representation of the scene.

Some very well-established techniques in computer
graphics rely on this characteristic. For example, texture
mapping allows scenes of great complexity to be realised in
quite a simple way. For example, such objects as buildings,
which might require a large number of polygons, can be
represented by a single cube with its sides texture mapped
with the graphic of an existing building. In fact, many
substances that are extremely difficult to render, such as
bodies of water, vegetation, and hair can be represented
efficiently by this method.

This paper approaches the use of heuristics with
several objectives. High-level knowledge of the system is
used to decide how important a shadow is, and therefore how
much effort should be expended in drawing it. However, at a
lower level, for a shadow that is deemed suitable for
rendering with superior accuracy, a way of doing this more
efficiently than otherwise will be described. A shadow that is
deemed to be important to the scene is said to have a high
priority, and a shadow that is considered to have relatively
ittle impact on the overall scene is said to have a low priority.

4

The ideas presented here require a high level of flexibility in
terms of manipulating the shape, dimension, position, and
colour of each shadow. Therefore it is important to be able
to identify individual shadows – even to the point that their
vertices are known, thus allowing manipulation of the
shadow objects to be performed. For example, a rough
estimate of the overall length and width of a shadow allows a
very low-priority shadow to be approximated simply by
rendering an elliptical object of these dimensions.

The goal of a heuristical approach is to find a good
balance between the richness of the shadows and the time it
takes to display them, in order to maintain a constant frame
rate. To this end, there are three types of shadow defined for
the system:

- detailed shadows
- correct shadows
- vague shadows

3.1 Detailed Shadows

A relatively large effort is expended in creating detailed
shadows. These shadows should be rendered in a way that
will enhance their accuracy and realism. This includes
drawing the shadow to the correct dimensions and position
and also softening the edges of the shadow, i.e. creating an
umbra and penumbra. Much work has been done on the
creation of soft shadows, but most of these techniques are
suitable only for static scenes. To achieve soft shadows in
real-time requires speed-up techniques. One such technique
would be to perform an analysis on the extent – or area – of
the light source and the relative distance of the occluder from
the light source and the shadow projection plane at the area
the shadow will appear. This would give an indication of the
relative sizes of the umbra and penumbra.

3.2 Correct Shadows

Correct shadows are drawn to the shape and dimensions that
are exact for the occluder. The role that correct shadows
play in this system is to render shadows that have some
visual significance in the scene in a time-efficient manner.
This is achieved by disregarding such shadow features as the
penumbra. These shadows are essentially hard shadows.
However, a further optimisation is realised in the analysis of
the occluder to shadow transformation, and the convex hull
operation that is performed on the shadow vertices.

3.3 Vague Shadows

A shadow being judged as having a low priority in a scene
will have the least amount of time spent rendering it. As the
lowest-priority shadows in the system, the emphasis is on
quick rendering as opposed to an accurate representation of
the shadow. Therefore these shadows will be rendered as
simple circular or elliptical flat objects. To maintain some
degree of accuracy, the dimensions of the shape will reflect
the true dimensions of the shadow as it should appear. This
should present no significant overhead, as the shadow
dimensions are stored in the object representing the shadow.
Ideally these shadows would not be required in a scene.
Their importance lies in the completion of a scene when time

is very limited. When it is necessary to use them, as few as
possible should be introduced into the scene.

3.4 Criteria for Use of Heuristics

Much research has been conducted in the area of visual
perception in computer graphics. This research is largely
directed towards such applications in computer graphics as
realistic image synthesis, scientific and information
visualisation, and time-critical rendering for virtual
environments. Rendering a scene in computer graphics is
largely concerned with providing enough information on a
2D plane, i.e. a page or computer screen, to an observer to
allow the observer to interpret it correctly three
dimensionally. This means that the relative position of
objects, their orientation, and their speed and direction if they
are in motion, are important visual cues that are not inherent
in two dimensions. However, there must be enough
additional information in these two dimensions to derive
three dimensional scenes unambiguously.

Pictorial cues were first employed by painters
wishing to create the effect of depth and correct spatial
relationships in pictures. In [Wanger et al. 1992] these are
broken down into the following, and the relative importance
of each is assessed:

- Perspective – the foreshortening effect caused by
increased distance from the viewpoint, thus establishing
a size-to-distance relationship, which provides clear
indications of the distance of an object when the size of
that object is known

- Texture – a graphical indication of the nature of the
substance of a surface, which is also an important visual
cue for the determination of the spatial orientation and
relief of flat and curved surfaces

- Shading and shadow – areas of varying illumination
caused by the amount of light falling on different areas
of a scene, which provide information on the shape and
location of an object

- Motion – the relative displacement of objects in
consecutive frames, due either to the movement of the
objects or the viewpoint, can indicate distance between
those objects

-
3.5 Relative Importance of a Shadow

to a Scene

A number of techniques intended to speed up the
determination and rendering of shadows are dependent on
the following factors:

- Distance of the shadow from the viewpoint
- Motion of the shadow
- Location of the shadow in the viewer’s peripheral vision
- Extent – or area – of the light source
- Relative distance of the occluder from the light source

and the shadow projection plane

These are expanded upon in the sections below. Each aspect
of a shadow as described here can be used to determine the

5

importance of that shadow to the accuracy and realism of the
scene. From the consideration of each of these criteria, a list
of shadow objects may be drawn up and prioritised in order
of decreasing importance to the scene. This prioritised list
can then be used to select the method of rendering – detailed,
correct, or vague – for each shadow. This decision should be
based on the available time and the desired frame rate, taking
into account the expense of each technique in terms of time.

3.5.1 Distance of Shadow from Viewpoint

Firstly the distance of the shadow from the viewpoint can be
taken into account. In the context of this thesis this is only
relevant if the scene is rendered using perspective. This is
because the use of orthographic projection does not allow an
observer to distinguish the distance of an object based on its
size – all objects are drawn to their correct dimensions
regardless of their position in the scene.

The foreshortening effect on objects that are distant in
a scene rendered using perspective projection means that the
accuracy with which they are drawn is necessarily reduced.
This is a result of the same screen resolution being applied to
objects positioned in both the foreground and the
background of the scene. In [Funkhouser et al. 1992] this
idea is applied using spatial subdivision and visibility
analysis to perform a real-time architectural walk-through.
Taking account of the distance of an object from the
viewpoint will be extended to shadows in this discussion. As
the shadow of an object moves toward the background of a
scene, its detail will become increasingly obscured and
therefore less time should be spent rendering it. As such, it
would be a candidate for occupying a position of lower
priority in the overall list of shadows in a scene.

3.5.2 Motion of Shadow

In a scene, objects that are in motion present the problem that
they must be fully re-rendered for each scene. However, the
details of moving objects are not as easily discerned by
people as are the details of static objects. This is an
observation that is commonly employed in computer
graphics. For example, in the area of collision detection,
much effort is expended in determining whether two objects
are in contact. However, a commonly used shortcut relies on
the fact that objects in a collision detection system will
always be in motion and therefore the exact moment of
contact between two objects will never be discerned
accurately by an observer. Therefore a tolerance of
proximity can be utilised [Hubbard 1995].

The same can be applied to shadows that are in
motion. By taking into account the velocity of a shadow
upon rendering a scene, a decision can be made to lower the
priority of that shadow and render it as either a correct or
vague shadow if it is moving rapidly.

3.5.3 Shadow Located in Viewer’s
Peripheral Vision / Direction of Gaze

When deciding to prioritise the shadows in a scene, or indeed
any other object in general, some assumptions may be made

as to the importance of the object based upon its location in
the scene. One such assumption is the fact that objects that
lie in the centre foreground will be the main focus of the
scene. Therefore all other objects may be considered to be of
less importance in the scene.

This technique is rather qualitative – much more so
than the others discussed here. The more that is known
about the context of the scene and the details of the elements
that compose the scene, the more effective this approach will
be. While this technique can be employed effectively in
certain applications, it is not a suitable candidate for
inclusion in a system that attempts to generalise to any 3D
scene. Alternatively, an eye-tracking device could be used to
locate the viewers point of fixation, and prioritise objects
based on their distance from this point, as in [O'Sullivan
1999].

Figure 3. Soft shadow generation (occluder more distant
from light source)

Figure 4. Soft shadow generation (occluder less distant
from light source)

3.5.4 Extent of Light Source

The area occupied by the light source can have a significant
impact on the nature of the shadow cast by an occluder.
Point light sources will always cast hard shadows – shadows
with no penumbra. A light source that occupies a finite area
will result in a softer edge to shadows associated with it, and
as the area increases, the degree of softness will increase for
a given shadow. Computer graphic systems usually simulate
this by rendering the scene with multiple point light sources
distributed across the area of the light source.

6

The alternative to performing this costly computation
is to draw up some heuristics relating to the size of the light
source. One approach would be to devise a table relating the
size of a light source to the extent of penumbra observed in a
corresponding shadow. Then an approximation of the soft
shadow could be rendered using a technique such as jittering
(see Section 4.4.3).

3.5.5 Relative Distance of Occluder from
Light Source and Shadow Projection
Plane

Finally, one other attribute of a graphical scene employing
shadows is the location of the occluder relative to the light
source and the projection plane of the shadow. This
information can be used to quickly deduce an approximation
of the degree of softness of a shadow. It relies on the
observation that the softness of a shadow is related to the
relative distance of the occluder from the light source and the
shadow projection plane; the closer the occluder is to the
light source, the softer the shadow will be. This is a result of
the geometry of the path of the ray travelling from the light
source to the shadow projection plane (see figures 3 and 4).

4 RTShadow

RTShadow (Real Time Shadow) is a Microsoft Windows
application, employing OpenGL and the Microsoft
Foundation Classes (MFC), which was written to
demonstrate some aspects of the generation of shadows in
this thesis. It is based on the ideas for generating shadows in
a number of different ways, increasing in accuracy and
definition as the shadow is determined to be more prominent
within a scene. It employs three types of shadow, as
described earlier, namely detailed, correct, and vague
shadows.

The starting point for the application was a sample
program from [Fosner 1996], which provides an MFC
framework application enhanced with an additional class,
COpenGLView.

4.1 Determining Shadow Polygons

The shadows generated in RTShadow are based on objects
within the application, each object representing one shadow.
Each shadow object contains a list of vertices that represent
the outline of a two-dimensional figure on the y = 0 plane,
and can be drawn as a polygon. These vertices can be used
in a number of ways, depending on the type of shadow that is
to be generated for a given shadow object. Vague shadows
are based on a subset of the shadow vertex points, correct
shadows use all the vertices, and detailed shadows use more
advanced techniques to create a realistic shadow
representation. These shadow types and the details of how
they are created are expanded on in subsequent sections.

Projection shadows, as outlined in section 2.1, are
used in RTShadow. Implementing the Shadow Projection
Matrix in RTShadows could easily have been done in
RTShadow by multiplying such a matrix onto the current

OpenGL ModelView stack. Rendering the object after doing
this would have resulted in what would essentially be a
correct shadow, as defined in this application. However, it
was desirable to have as much flexibility as possible in
rendering and manipulating the different types of shadow.
For this reason it was necessary to obtain the actual vertices
of the shadow figure. This turns out to be much more
difficult than it appears. Because simply re-rendering the
occluding object with the shadow projection matrix on the
ModelView stack creates the shadow, the vertices of the
shadow do not need to be explicitly known. Indeed,
OpenGL does not provide a way of returning the co-
ordinates of the transformed vertices. Therefore a slightly
different approach was taken.

The shadows in RTShadow make use of the shadow
projection matrix, but instead of multiplying it onto the
ModelView stack, each vertex in the occluding object is
explicitly multiplied by the matrix to determine its
corresponding vertex on the shadow. The application
maintains a list of all the objects in the scene, and each of
these objects contains a full list of the co-ordinates of the
vertices in that object. At this point the performance of the
application can be considerably enhanced by acting on the
observation that in a shadow only the vertices that define the
outline of the shadow need to be considered. In RTShadow,
a Package-Wrapping convex hull algorithm has been
implemented to handle this [Sedgewick 1992].

4.2 Vague Shadows

Vague shadows are drawn simply as quadrilateral shapes in
the scene. These shadow types are included specifically to
allow some shadows in the system to be drawn with the very
least effort and impact on performance. Any shadows
chosen to be drawn as vague shadows will be very distant in
a scene or fast moving or both. The intention is ultimately
that these shadows would only be used if the system really
does not have enough time between frames to render fully
the scene with correct and detailed shadows, and so they
should be rendered as fast as possible.

Early on in the design of the application, the intention
was to use circular or elliptical shapes to represent vague
shadows. However, because of the number of vertices
contained in these shapes, rendering them would mean that
in many cases rendering simple correct shadows would be
more efficient.

4.3 Correct Shadows

The drawing of correct or hard shadows is relatively
straightforward. They are drawn as black polygons on the
grey surface representing the floor of the application. The
vertices for a single hard shadow polygon are stored as the
culled vertices of the entire occluding object, projected onto
the floor (y = 0) plane. The culling is achieved as described
above using a convex hull algorithm.

Firstly, the colour for the shadows is set to black. In
many respects, OpenGL behaves as a state machine,
applying a setting to all relevant operations until that setting
is either cleared or changed. This colour setting will apply to
all vertices drawn through OpenGL, in any buffer, until
another colour setting is specified.

7

As all the vertices marking the outline of the projected
occluder are stored for each frame, shadows of arbitrary
complexity can be rendered quickly.

4.4 Soft Shadows

RTShadow uses the OpenGL accumulation buffer to
simulate soft shadows. The accumulation buffer holds
RGBA colour data just like the colour buffers do in RGBA
mode. It is not drawn into directly, rather the accumulation
buffer is filled in rectangular blocks from data stored in a
colour buffer. It allows a number of images to be
accumulated into a final composite image, which is then
transferred back to a colour buffer to allow the image to be
displayed. Effects that are commonly created by use of the
accumulation buffer are scene antialiasing, motion blur, and
simulation of photographic depth of field.

4.4.1 Using the OpenGL Accumulation
Buffer

Before a drawing operation is performed in a colour buffer or
the accumulation buffer, there are a number of tests that are
applied to the buffer before any information can be written to
it, and the outcome of these tests determines the results of
writing data to the buffer. The tests that are applied to these
buffers are

- Scissor test
- Alpha test
- Stencil test
- Depth test
- Blending
- Dithering
- Logical operations

The Scissor test is employed in this project when creating
soft shadows and is described in detail in the section
Enhancing the Performance of the Accumulation Buffer
below. Alpha testing is based on the fourth value in RGBA
representation of vertices; it allows the drawing of a
fragment to be accepted or rejected, based on a comparison
with a reference alpha value. The Stencil test is performed in
conjunction with a stencil buffer. The stencil buffer contains
values with a one-to-one correspondence with the pixels in a
scene. By a comparison technique, the values contained in
the stencil buffer determine whether or not to draw pixels in
a colour buffer or the accumulation buffer.

The depth buffer is used in the Depth test. Like the
stencil buffer, the depth buffer maintains a one-to-one pixel
correspondence with the colour and accumulation buffers.
The values stored for each pixel in the depth buffer represent
the distance between the viewpoint and the object occupying
that pixel. The depth test updates the depth buffer by
replacing values for objects that are discovered to be closer
to the viewpoint than the existing value for a given pixel.

Blending, dithering, and logical operations are not
tests as such, they are image-processing techniques that can
be applied in the colour or accumulation buffers. Instead of
simply overwriting existing values in a buffer, blending
allows the new values of a fragment to be combined with the

existing values. Dithering is a hardware-dependent operation
that can improve the colour resolution of an image with a
small number of colour bitplanes. There are a number of
logical operations that OpenGL allows to be performed
between the pixels existing in a buffer and incoming pixels
representing a fragment of an object in a scene. Such
operations as AND, OR, NAND, NOR, XOR, INVERT,
COPY, and CLEAR, amongst others, are available.

4.4.2 Generating Soft Shadows Using the
Accumulation Buffer

Early scenes incorporating shadows simplified the light
source so that it could be considered to be a point light
source. The result is shadows with edges as sharply defined
as the object creating the shadow . This takes from the
realism of the scene and was considered an identifying
feature of early computer-generated graphical scenes.
Soft shadows are a result of light sources that are of finite
size, resulting in a shadow is composed of two parts – the
umbra and the penumbra. Soft shadows can be derived from
any of the shadow-generation techniques described in this
report. The most common way of doing this is to
approximate the extended light source by multiple point light
sources distributed across its surface area, essentially
quantising it.

A huge cost is incurred by generating accurate soft
shadows in this way. Not only does the scene have to be
rendered multiple times, but particularly for techniques such
as projection shadows and shadow volumes the shadows
themselves must be recalculated for each rendering. The
more times the scene can be rendered, i.e. the more point
light sources are used to represent the extended light source,
the better the quality of the shadows generated; artefacts such
as step effects are less apparent. This, of course, slows the
process down further, although it can be very effective for
scenes that don’t require real-time rendering rates.

The method used by RTShadow to generate soft
shadows is a variation on this approach. It is possible to
speed up the rendering process by taking some shortcuts,
resulting in soft shadows that, while they are not perfectly
accurate, are nevertheless effective. This approach still
requires the shadow to be rendered multiple times to the
accumulation buffer, but the position of the shadow is varied
on each iteration by a rule of thumb, rather than by carefully
calculating the correct position. The method employed to
produce the soft shadow is called jittering.

4.4.3 Jittering

Jittering is a method of effectively vibrating the image, and
of accumulating the images as they move by relatively small
amounts about a centre point. In the context of soft shadow
generation, it is the initially calculated shadow that is jittered,
and the overall image accumulated. To increase the area of
the shadow that appears as the penumbra, the degree of
movement about the centre can be increased.

Jittering is an iterative process; the image is written to
the accumulation buffer, transformed by a relatively small
amount, then rewritten to the accumulation buffer, and so on.
The distance by which the image is transformed on each

8

iteration is important. While it might seem natural to choose
positions that are equally spaced, this is not always the case.
It is considered better to use a uniform or normalised
distribution, clustering toward the centre of the image.

4.4.4 Rendering the Shadow

The vertices describing the outline of the shadow will have
been determined at the time the rendering of the shadow is
done. Within the RTShadow project, soft shadows are
created in the method RTShadow::softShadow(), but this
function is supported by a number of others. While the other
shadow types in this application are drawn individually as
they are encountered in the global list of associated occluder
objects, the use of the accumulation buffer necessitates a
slightly different approach for soft shadows.

5 Performance

This section outlines some issues relating to the performance
of the RTShadow application and makes observations on the
relevance of these issues to the area of real-time shadow
generation.

5.1 Comparing Detailed, Correct and

Vague Shadows

Figures 5, 6, and 7 show detailed, correct, and vague
shadows respectively, as RTShadow renders them. In each
case the shadows are cast by two cubes, created by
RTSOccluderCube objects. The example of the detailed
shadows required moving the positions of the cubes to allow
the shadows generated to overlap somewhat. The position of
the cubes for the correct and vague shadows are identical.

Figure 5 Overlapping detailed shadows in RTShadow

The detailed shadows shown in figure 5 demonstrate the soft
shadow effect created by jittering a number of hard shadows
and superimposing them on each other. The number of
shadows used in the jittering process for this example was
eight. It is also worth noting the way that the two shadows
blend into each other. To achieve this it was necessary to
render both shadows simultaneously in the accumulation
buffer.

Figure 6 Correct shadows in RTShadow

Figure 7 Vague shadows in RTShadow

The correct shadows shown in figure 6 demonstrate the fall
off in visual quality by rendering hard shadows. However,
the result is still accurate and provides a reasonable visual
representation of the shadows for the cubes. The advantage
of the correct shadows is a dramatic improvement in
rendering time.

The vague shadows shown in figure 7 are obviously a
method of compromise. However, the intention is to use
these in situations where they would be very much more to
the background and where their importance to the scene
would be reduced due to other objects with either detailed or
correct shadows.

5.2 The Performance of RTShadow

This section outlines the performance in time of RTShadow
for detailed, correct, and vague shadows. It further breaks
down the demonstration of detailed shadows by considering
the generation of these shadows by writing to the full
accumulation buffer and by clipping the area used in the
accumulation buffer to the area occupied by the shadows.
The timings given below were based on rendering the
detailed shadows with and without the OpenGL Scissor test
enabled, rendering the correct shadows once, and rendering
the vague shadows three times, with between two and ten
occluders in the scene.

9

5.2.1 Detailed Shadows – No Clipping

At 4.817 seconds to draw detailed shadows for two objects,
this approach cannot be considered. Assuming that for real-
time rendering a frame rate of 15 frames per second is
adequate, that translates to a rendering time of 0.067 seconds.
The performance of RTShadow in this specific case is
obviously not to be considered a candidate for real-time
applications. The use of the accumulation buffer is the cause
of the poor performance here. However, it is worth noting
that the accumulation buffer used to perform this test was
implemented in software on the test machine. Much better
results could be expected with hardware acceleration for the
accumulation buffer functionality.

5.2.2 Detailed Shadows – Clipped

In order to improve the performance of the accumulation
buffer, it is possible to clip the area of the buffer used to the
area that needs the functionality provided The time taken to
perform the accumulation buffer operations was 0.832
seconds, to generate the same shadows that took 4.817
seconds in the previous example. Although this is obviously
a useful technique for speeding up the accumulation buffer’s
performance, it is probably best suited to honing the
performance of an already fast application. The results show
that this is not enough to take this application into the realm
of real-time shadow generation.

5.2.3 Correct Shadows

The scene for correct shadows is set up exactly as with the
examples for the detailed shadows. At 38.626 milliseconds
to render the scene, it is apparent that correct shadows
provide a much faster solution than detailed shadows, the
obvious reason being the lack of dependence on the use of
the accumulation buffer. This is demonstrated by the fact
that the most time-consuming function in the example of
correct shadow generation is RecalculateShadow(), which
determines the vertices of the shadow and is not directly
involved in the rendering process. There are two important
operations performed in this function: the matrix
multiplication by the shadow projection matrix, and the
convex hull algorithm used to cull the list of vertices in the
shadow to just those needed.

The performance of the correct shadow example here
can be said to be reaching real-time performance, especially
in terms of rendering time. However, it would benefit from a
more efficient convex hull algorithm.

5.2.4 Vague Shadows

The results for vague shadows (39.7 milliseconds) are
broadly similar to those for correct shadows. As with correct
shadows, the bulk of the computation time is concentrated on
calculating the area of the shadow. A performance gain over
correct shadow generation is realised for vague shadows in
the OpenGL operation of rendering the shadows.

6 Conclusions

In this paper, existing techniques in 3D computer graphics
for generating shadows were appraised, focusing specifically
on their relevance and suitability for real-time applications.
This overview included an outline of several heuristical
techniques to help improve the overall visual effect of the
graphic with a minimum additional performance overhead.
A practical implementation of one of these techniques was
devised in order to illustrate some of the issues associated
with real-time shadow generation.

In Section 2, the substantial body of work done on
the theory and practice of shadow generation in computer
graphics was outlined. The earlier ideas, centring on the
straightforward projection of the outline of an object onto a
projection plane, were quickly built upon with such practices
as shadow volumes and shadow maps, which allowed more
efficient inclusion of shadows in complex scenes. These
methods are considered suitable candidates for development
of real-time shadow generation. Some other important
methods that allow the inclusion of shadows are not suitable
for real-time applications. Ray tracing, radiosity and
discontinuity meshing, while they are capable of rendering
shadowed scenes of remarkable accuracy and detail, are
employed in the area of photorealism and as such are time-
consuming in the rendering process.

Real-time shadow generation remains a huge
challenge to the developers of computer graphic applications.
Fifteen frames per second is considered a standard for real-
time animation. This allows a mere 66 milliseconds to
construct and render the entire scene – a formidable task
considering the fact that most viable shadow-generation
techniques require at least one complete re-rendering of the
scene in addition to the calculation of the shadow areas.
Much of the literature available on shadows in computer
graphics concentrates on accurate and realistic static images
and the depth that this work achieves illustrates the problems
that realistic real-time applications must surmount. There is
a clear trade off between the effectiveness of real-time
shadows as an animated element of a scene and the visual
quality of the shadowed areas. Further complications are
introduced when the ability to cast shadows, not only on a
shadow projection plane – for example, a floor area – but
also on other occluding objects in the scene is required. This
vastly increases the computation time required, and rules out
techniques such as projection shadows.

Also considered, in Section 3, was the use of some
heuristical techniques to aid the generation of real-time
shadows. These techniques are employed to speed up the
rendering process, but at the expense of the quality of the
graphic produced. Such techniques have been applied to
many computer visualisation problems, and their
applicability to the area of shadow generation was discussed.
A number of heuristical techniques were outlined. These
included such established computer graphics methods as
taking into consideration the relative importance of an object
based on its position and motion within a scene. Also, some
techniques specific to the topic of shadow generation were
outlined. These tended to concentrate on ways of producing
shadows of good quality in an efficient way.

10

The application presented in Section 4 of this project
– RTShadow - was written to illustrate some of the outlined
aspects of real-time shadow generation. It employs three
shadow types: detailed, correct, and vague. The detailed
shadows emulate most accurately the way shadows should
appear, being correct in outline and softened at the edges.
The softening effect is achieved by rendering the shadows
multiple times in slightly different positions, accumulating
the renditions, a technique called jittering. While it would be
desirable to render every shadow in a scene in this way, it is
not practical due to the computational expense of this
method. Correct shadows are accurate in outline, but
dispense with the most time-consuming aspect of detailed
shadows, namely the jittering. Vague shadows are drawn as
simple polygon shapes, the emphasis being on rendering a
dark area to represent the shadow as fast as possible.

RTShadow clearly demonstrates the dependence a
good real-time shadow-generation engine would have on the
use of graphics acceleration hardware. The poor
performance of the jittering process is a direct result of the
fact that the generic version of OpenGL provided with
Microsoft Windows NT provides only a software
implementation of the accumulation buffer. To generate
such realistic shadows at real-time frame rates would
certainly require good quality graphics hardware support.

The approach taken for the calculation of the shadow
areas in RTShadow presents interesting possibilities in a
more general 3D real-time animation application. The
shadows are treated as independent entities which, while
they are closely related to the objects that act as the
occluders, are fully described as objects in the scene. This
attribute can have crossover benefits for the process of
collision detection. This is because the shadows provide
additional information about the location of objects relative
to each other. For example, from a certain viewpoint it may
be difficult to discern the proximity of two objects if they are
closely in line. However, if the light source projecting the
shadows is sufficiently distant from the viewer, the shadows
may clearly indicate that the relevant objects are not in
contact with each other. Such techniques are useful for
speeding up the decision process in collision detection
systems. The real-time shadows considered in this discussion
are of a dynamic nature. Typically generated on a frame-by-
frame basis, they are calculated from objects and light
sources that may be manipulated by a user of the system.

[Blinn 1998] Blinn, James, “Me and my (fake) shadow”,
IEEE Computer Graphics and Applications, January 1998.

[Chin and Reiner 1989] Chin, N., Reiner, S. “Near Real-
Time Shadow Generation Using BSP Trees”, Computer
Graphics 23(3), pp 99-106, 1989.

[Crow 1977] Crow, F., “Shadow Algorithms for Computer
Graphics”, Proc. SIGGRAPH, vol. 11, pp 242-248, July
1977.

[Fosner 1996] Fosner, Ron, “OpenGL Programming for
Windows 95 and Windows NT”, Addison-Wesley
Developers Press, 1996

[Heckbert and Herf, 1997] Heckbert, Paul S., Herf, Michael
“Simulating Soft Shadows With Graphics Hardware”,
School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213, 1997.

[Hubbard 1995] Hubbard, Philip M., “Collision Detection
for Interactive Graphics Applications”, IEEE Transactions
on Visualisation and Computer Graphics, 1(3), Sept. 1995,
pp. 218-230

[McCool 1998] McCool, Michael D., “Shadow Volume
Reconstruction”, Technical Report. Computer Graphics
Laboratory, Department of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1, March
1998.

[O'Sullivan 1999] O'Sullivan, C. A Model of Collision
Perception for Real-Time Animation. Technical Report
TCD-CS-1999-02, Trinity College Dublin, January 1999.

[Sedgewick 1992] Sedgewick, Robert, “Algorithms in C++”,
Addison-Wesley Publishing Company, 1992.

[Segal et al. 1992] Segal, M., Korobkin, C., van Widenfelt,
R., Foran, J., Haeberli, p., “Fast Shadows and Lighting
Effects using Texture Mapping.”, Proc. SIGGRAPH,
volume 26, pp 249-252, July 1992.

[Wanger et al. 1992] Wanger,L.R. Ferwerda,J.A. Greenberg,
D.P. "Perceiving spatial relationships in computer-generated
images", IEEE Computer Graphics and Applications, 12(3),
pp.44-58, 1992.

[Whitted 1980] Whitted, T., “An Improved Illumination
model for Shaded Display”, Communications of the ACM,
Volume 32, number 6, June 1980, pp. 343-349.

[Williams 1978] Williams, L., “Casting curved shadows on
curved surfaces.”, Proc. SIGGRAPH, volume 12, pp 270-
274, August 1978.

