
Example-Based Machine Translation:

An Adaptation-Guided Retrieval Approach

Br�ona Collins

A thesis submitted for the degree of

Doctor of Philosophy in Computer Science

University of Dublin, Trinity College

Department of Computer Science

Spetember 18, 1998

Declaration

I declare that the work described in this thesis has not been submitted for a degree at any other

university, and that the work is entirely my own.

Signature

||||{

Br�ona Collins,

September 18th, 1998.

1

Permission to lend and/or copy

I agree that the library in Trinity College Dublin may lend or copy this thesis upon request.

Signature

||||{

Br�ona Collins,

September 18th, 1998.

2

For Desmond and Valerie Collins | for love, strength and vision.

3

Acknowledgements

This thesis owes so much to the great people who helped me learn and who made the experience

all the more enjoyable. Above all, I am grateful to Dr. P�adraig Cunningham for his excellent

supervision, encouragement, eye for detail, and not least, his spirited company during the past four

years.

I wish to thank the current and previous members of the Arti�cial Intelligence Group in Trinity

College Dublin who o�ered their valuable opinions on my ideas before they even came near to

reaching print. In particular, my heartfelt thanks go to Dr. Tony Veale, Dr. Mark Keane, Dr. Carl

Vogel and Dr. Fintan Costello.

I am grateful to the Hitachi Dublin Laboratory who provided material support for my research,

and the sta� of the Computer Science Department who have supported me in numerous ways

throughout the past four years. Particular thanks go to Prof. Byrne, Head of Department. The

humour, good-nature and good taste in music of my colleague, Arthur Hughes, has kept me sane

during the last stages of writing. Dr. Steven Collins is being thanked in advance for bringing the

manuscript to the printers.

I owe thanks to many people in the �eld who have been supportive and inspirational, especially

Orlagh Neary at Corel Corporation, Michael Carl at IAI, Dr. Christer Samuelsson at XEROX, Dr.

Martin Portman at CRE.

My dearest friends must be thanked for their immense loyalty, love and fun during this adven-

turous four year period of research and teaching. I would not have enjoyed it without you | Jens,

Lisa, Mary, Monica, Cl�iona, Tr�as, Kristen, Dan, and Killian.

4

Abstract

Example-Based Machine Translation

Br�ona Collins

Supervisor: P�adraig Cunningham

Translation can be viewed as a problem-solving process where a source language text is trans-

formed into its target language equivalent. A machine translation system, solving the problem from

�rst-principles, requires more knowledge than has ever been successfully encoded in any system. An

alternative approach is to reuse past translation experience encoded in a set of exemplars, or cases.

A case which is similar to the input problem will be retrieved and a solution produced by adapting

its target language component. This thesis advances the state of the art in example-based ma-

chine translation by proposing techniques for predicting the adaptation requirements of a retrieval

episode. An Adaptation-Guided Retrieval policy increases the e�ciency of the retriever, which will

now search for adaptable cases, and relieves the knowledge-acquisition bottleneck of the adaptation

component. A
exible case-storage scheme also allows all knowledge required for adaptation to be

deduced from the case-base itself.

The �rst part of the thesis contrasts such a CBR-motivated approach with current EBMT systems

which are either data-intensive or knowledge-intensive. A new EBMT scheme is proposed in which

the cases encode knowledge about their own reusability, determined by cross-linguistic mappings.

The information allows cases to be generalised carefully, to the degree that is necessitated by the

data. Linguistic and translational divergences | the obstacles to reusability | are investigated in

the domain of software-manual translation, and on this basis, a suitable case representation scheme

is proposed.

The second and third parts of the thesis describe the on-line and o�-line processes of an EBMT

system in which the case-base is the only knowledge source. Cases are deduced from texts auto-

matically, and at run-time, the matching and retrieval tasks exploit the adaptability information in

the cases in order to maximise coverage without compromising on accuracy. The multi-tiered case

representation scheme allows adaptation at the sub-sentential and word levels, when necessary. The

general performance of the system is shown to degrade gracefully and to improve as the case-base

size increases.

2

Contents

I Background ix

1 Thesis Overview 1

1.1 Introduction . 1

1.1.1 Thesis Structure . 3

1.1.2 Contributions of the Thesis . 5

2 Background 6

2.1 Introduction . 6

2.1.1 The Direct Approach . 7

2.1.2 The Transfer Approach . 8

2.1.3 Interlingua . 9

2.1.4 Hybrid Approaches . 9

2.1.5 Statistical Models of Transfer Functions . 10

2.1.6 MT | The AI Perspective . 11

2.2 Case-Based Reasoning . 11

2.2.1 Introduction . 11

2.2.2 First Principles . 12

2.2.3 The Standard Model of CBR . 13

2.2.4 Adaptation Rules . 14

2.2.5 Adaptation-Guided Retrieval . 14

i

2.3 EBMT . 15

2.3.1 Case Decomposition in EBMT . 17

2.3.2 Memory-Based Reasoning . 21

2.3.3 Memory-Based MT . 22

2.3.4 Summary . 24

2.4 A CBR Model of MT . 25

3 An EBMT Domain 26

3.1 Abstract . 26

3.2 Introduction . 26

3.3 Software Manuals - The Localisation Domain . 27

3.3.1 Cross-linguistic Divergences . 27

3.3.2 Parallel Corpora . 29

3.4 The English-German Corpus . 30

3.4.1 Translation Mismatches . 32

3.5 Discussion . 33

3.6 Conclusion . 36

II Case Creation and Storage 38

4 A CBR Approach to EBMT 39

4.1 Abstract . 39

4.2 Introduction . 39

4.3 System Overview . 41

4.4 Case Representation in ReVerb . 42

4.4.1 Demonology . 46

4.4.2 Overall Memory Organisation . 47

4.5 The System Dictionary . 47

ii

4.5.1 Non-linked words . 51

4.6 Template Creation . 52

4.6.1 A Careful Generalisation Strategy . 53

4.6.2 Coverage versus Accuracy . 53

4.7 Conclusion . 56

5 Case Creation and Learning 57

5.1 Abstract . 57

5.2 Introduction . 57

5.3 The Linker . 59

5.3.1 Linker Step One: Point Selection . 59

5.3.2 Previous work on subsentential alignment . 64

5.4 Case-Based Parsing . 65

5.4.1 Introduction . 65

5.4.2 Activating cases via word objects . 65

5.4.3 Chopping and Glueing Chunks . 67

5.4.4 Statistical positioning of words . 68

5.4.5 Overcoming Boundary Friction . 69

5.4.6 New words . 70

5.4.7 An example . 71

5.5 Evaluation . 72

5.5.1 Evaluation of The Parser . 72

5.5.2 Evaluation of The Linker . 73

5.5.3 Bootstrapping . 74

5.5.4 Conclusion . 76

iii

III Adaptation-Guided Retrieval 77

6 Retrieval and Adaptation 78

6.1 Introduction . 78

6.2 Adaptation Guided Retrieval . 80

6.3 Adaptation-Safety Knowledge (Links) . 81

6.3.1 Full-Case Adaptation Safety Knowledge . 82

6.3.2 Partial-Case Adaptation Safety Knowledge 84

6.3.3 Chunk-level Adaptation Knowledge (Dictionary) 86

6.3.4 Chunk-internal Adaptation Knowledge . 88

6.4 Retrieval . 90

6.4.1 Full-Case Retrieval . 90

6.4.2 Full-case Adaptability Assessment . 92

6.4.3 Full-Case Translation Assessment . 93

6.5 Partial-Case Reuse . 93

6.5.1 Feature Promotion . 93

6.5.2 Adaptability Assessment . 93

6.5.3 Translation Assessment . 94

6.6 Examples . 94

6.7 Evaluation of Adaptation-Guided Retrieval . 97

6.7.1 Inputting the test-data . 97

6.8 Discussion . 98

7 Summary and Outlook 101

7.1 Introduction . 101

IV Appendices 105

A A Sample Case 106

iv

B Case Features 117

B.1 SYNTACTIC FUNCTION . 117

B.2 PART-OF-SPEECH . 119

C Sample Translations at Various Levels of Adaptability 120

C.0.1 Full-case matching Threshold 1.6 . 120

C.0.2 Full-case matching. Threshold 1. 122

C.0.3 Partial-case matching. Threshold 0.3 . 123

C.0.4 Partial-case matching. Threshold 0.5 . 124

D The ReVerb Retriever Code 127

E The ReVerb Parser Code 144

v

List of Figures

2.1 The Pyramid of Transfer in MT. 7

2.2 First-Principles vs. EBMT . 13

2.3 Representing Examples in Dependency Trees . 19

3.1 Divergences and Mismatches between languages. 28

3.2 Divergence-types in a 200 sentence sample from the CorelDRAW corpus. 34

4.1 Overview of the ReVerb system architecture. 42

4.2 A case-frame and chunk-frames in ReVerb. 44

4.3 A ReVerb word frame . 45

4.4 A view of ReVerb's memory organisation . 47

5.1 A bitext space . 58

5.2 Linking words from SL and TL in the bitext space. 61

5.3 Linking parsed chunks of the SL and TL in the bitext space. 63

5.4 Parsing in ReVerb . 66

5.5 Three possible chunk positions for the non-matching word w5 68

5.6 Deciding how to chunk the input sentence. 70

5.7 A sample 2-case coverage of the input string . 72

6.1 Adaptability versus Similarity in retrieval. 81

6.2 The �ve possible scenarios in the SL ! SL0 ! TL0 interface for full-case matching. 82

vi

6.3 Abstraction of a Case at di�erent Adaptability Thresholds. 83

6.4 The 8 possible matching scenarios in the SL! SL0 ! TL0 interface when partial case

matching is permitted. 84

6.5 Delete Operation in partial-case matching. 85

6.6 Dictionary-based substitutions with various degrees of constraint relaxation. 88

6.7 Retrieval Stages in ReVerb. 91

6.8 A Full-Case Translation Episode. 95

6.9 A Partial Case Translation Episode. 96

6.10 Results of Translation of 180 sentences at Di�erent Levels of Adaptability. 99

vii

List of Tables

5.1 Statistics to help glue-together cases. 71

5.2 ReVerb Parser Performance . 73

5.3 ReVerb Linker Performance . 74

5.4 Post-processing of chunk-inclusion decisions made by Lingsoft's ENGCG 75

viii

Part I

Background

ix

Chapter 1

Thesis Overview

1.1 Introduction

The existence of deep-seated formal universals [..] implies that all languages are cut

to the same pattern, but does not imply that there is any point to point correspondence

between particular languages. It does not, for instance imply that there must be some

reasonable procedure for translating languages.[Cho65]

When one is suddenly faced with a text in a remote foreign language, the page might as well be

blank. We cannot begin to process it, because there are no familiar points of reference. Our innate

ability to process language doesn't stretch as far as deducing the meaning of arbitrary collections

of symbols of one language on the basis of another. Nevertheless, given a few starting points,

such as the meaning of the �fty most frequently occurring words, one could begin to deduce the

gist of shorter sentences containing those words. Despite Chomsky's pessimism on the matter,

the fastest growing area in empirical MT research has centred around the very idea of identifying

points of correspondence in parallel texts. Statistical procedures, let loose on vast amounts of text,

churn out models of equivalences between languages whose parameters become more �nely tuned

to the patterns of both languages, the more exposure to such texts they get. Such techniques have

created the raw material for a new brand of Machine Translation - the example-based machine

1

translation (EBMT) approach. EBMT is the mimicking of previous translation experience which

can be expressed as a set of equivalences between di�erent languages. Each translation experience

is stored as a trace in memory which can be used to guide later processing.

Simultaneously, a new trend in Arti�cial Intelligence research has focused on equipping machines

with the means to acquire and reuse problem solving experience for tasks in general. This demands

an ability to detect similar problems and also a means of adapting the solution of a previous case

to suit a new situation. The Case-Based Reasoning (CBR) paradigm is thus the perfect vehicle

for EBMT. Emphasis is placed on the representation and indexing of experience in memory which

facilitates the selection of a relevant experience. Often the representations are highly abstract or

complex denoting air-tra�c control decisions, cutting plans for machine tools or routing plans for

emergency vehicles. CBR extends the notion of having a translation model to having a set of

instances of that model and being able to adapt them to new situations.

Now the interest in bringing re-use technology back into MT has been motivated in the commer-

cial sector. Multinational companies and localisation �rms have discovered the bene�ts of translators'

tools such as bilingual lexicons, concordancers, terminology databases, and translation memories.

New interfaces are being built for old MT systems, and translators, far from feeling threatened by

MT, are now eager to exploit the huge quantity of old data for the slavish tasks of translating up-

dated versions of documentation in bulk and consistency checking across multiple versions of similar

texts.

Formally, in order for a pair of texts to be reusable, a measure of translation equivalence

must hold between them. Translation equivalence is a relation which holds between expressions

with the same meaning. In some controlled translation scenarios, the sentence is a reliable basic

unit of equivalence but even with this assumption, EBMT faces the same extraordinary problems of

complex language transfer as every other MT architecture. Below the sentence level, equivalence is

a complicated relation to express and symbolic representations can only approximate the point-to-

point correspondences. Part of this thesis is devoted to describing how such equivalences between

languages can be stored in cases on the basis of information automatically extracted from the data.

2

To translate a text from scratch from one language to another requires knowledge about the

kinds of structures that exist in language and how they can interact. Hence, an EBMT system

must reuse cases carefully, for adaptation operations may cause these structures to clash or cancel

each other, or render the sentence ungrammatical, or meaningless, or too long. In traditional MT,

grammar formalisms and �xed sets of rules describe what combinations are allowable in the domain

of expressions. However, the whole idea behind EBMT is not to have domain rules but to rely on

experience alone, and so the validity of the reused and adapted solution may be at stake.

This dilemma may be solved by identifying pieces of text which, with respect to a new problem,

do not require complex adaptation. This is not to say that these pieces do not stand in a complex

equivalence relationship, they may well do, but with respect to a given input problem the necessary

adaptation may not upset the original transfer relation. With a vast quantity of sentences avail-

able for EBMT, many of which will be very similar, a policy of favouring the particular example

which is adaptable in the \correct" positions is an improvement on algorithms which merely seek a

similar example. This policy is called Adaptation-Guided Retrieval. This thesis describes the

implementation of such a policy and the learning of the data structures which support it. Most

EBMT systems choose adaptable fragments by trial and error, no system reported uses a policy of

adaptation-guided retrieval to restrict the search space in the �rst place. A large part of this thesis

describes how an EBMT system can be con�gured to retrieve cases carefully.

1.1.1 Thesis Structure

In Part I of this thesis, EBMT is examined in context of theoretical and practical approaches to MT

to highlight the merits of a CBR approach to translation reuse. Part II presents a novel solution to

the case-creation knowledge bottleneck using a data-oriented parser and linker. Part III describes

Adaptation-Guided Retrieval (AGR) showing how cautious reuse of translations results in very

e�ective exploitation of the examples present in the case base.

3

Part I: Motivation and Application

Chapter 2 provides the background against which to introduce a novel approach to EBMT. In

introducing a CBR philosophy to EBMT, a methodology is proposed wherein the only knowledge

for translation is stored in cases alone, and yet these cases are structured enough to provide some

generalisation of patterns in and across languages. The actual patterns which can be expected to

arise in \real" data, for sample texts from the localisation domain, are investigated in Chapter 3.

Part II: Automatic Creation of an EBMT Case Base.

Chapter 4 presents the data structures and memory organisation of the ReVerb system, which

supports incremental updating of knowledge at three levels of description - word, chunk and sentence.

The information
ow between such frames in the memory gives rise to a host of knowledge sources

for EBMT which re
ect the tendencies present in the training corpus. Chapter 5 describes the

data-oriented tools which allow the creation of more cases. The symbiosis between case storage

and creation is shown to result in a gradual, steady improvement in performance as more cases are

created.

Part III: Adaptation Guided Retrieval for full and partial case matches.

In the �nal part of the thesis, a detailed mechanism for the assessment of adaptability of cases on

a structural basis is presented. This includes both full and partially matching cases. A templatisa-

tion scheme is proposed whereby cases are generalised on the basis of their individual patterns of

equivalence. A novel thresholding �lter ensures that a user-determined adaptability score can be

imposed before retrieval to ensure a certain level of adaptability of the cases retrieved. Candidates

are thus chosen on the basis of adaptability and similarity rather than similarity alone. A means of

assessing the adaptation after candidate selection (as in other EBMT systems) is also presented as

an additional indicator of translation reliability. The AGR methodology is tested and evaluated on

real data in the �nal sections.

4

1.1.2 Contributions of the Thesis

To summarise, the contributions of this work have been the following:

� A Generalisation strategy for examples according to system-determined adaptability

� A knowledge-free means of creating new examples from raw data for Example Based Machine

Translation

� Procedures for retrieving cases on the basis of similarity and adaptability combined

The main innovations in this thesis have been evaluated in each of the relevant chapters, on \real"

data. It is demonstrated that assessing the
exibility of examples in this way avoids the problems of

knowledge-intensive approaches and extends the functionality of translation memories in a dramatic

manner. The coverage and generalisation power of the system is demonstrably higher than any other

EBMT system working with the same number of examples. In the current information explosion at

the very end of this millenium, the reader may foresee many further extensions of the ideas presented

here, which will take EBMT right into the next century.

5

Chapter 2

Background

2.1 Introduction

If language transfer were a trivial problem, the world would have a host of high-quality MT systems

whose output quality matched that of the best mono-lingual analysers around. However this is

not so. The problem is that the structural rules and the expressivity of lexical items of languages

do not map isomorphically at any level of description. And within each language there are many

exceptions to those default rules that may be identi�ed at all. This has prompted researchers to

climb up the \classic" pyramid of abstraction shown here in Figure 2.11 in order to �nd a suitable

representation where information could be transformed from SL to TL, divorced from the confusions

and language speci�city of string mutations at the bottom of the pyramid. The units of transfer

at the top are more primitive elements of language -packets of concepts, which are held as being

universal across languages. The knowledge-acquisition bottleneck which plagued such approaches

caused researchers to climb down the pyramid in recent years. Now however, more sophisticated

string-to-string models of translation have been created due to enhancements in technology and the

availability of on-line corpora. These in turn have allowed researchers to build more abstract models

of translation processing, inspired by ideas from Arti�cial Intelligence, where stored translations

1This was �rst proposed by researchers working on the GETA project.

6

Source
Language

Interlingua

Target
Language

STRUCTURE TRANSFER

DIRECT TRANSLATION

Figure 2.1: The Pyramid of Transfer in MT.

are abstracted and reused. So researchers are once again climbing up the pyramid but this time

armed with the means of automatically determining regularities within languages. The following

sections guide the reader through these more-or-less chronological developments, starting with the

well-documented \traditional" MT classi�cation.

Traditionally MT approaches have been divided into three categories (see [HS92] [Kin87] for

a detailed survey), characterised by the amount of linguistic abstraction which takes place before

transfer of structures. These are:

� The Direct (First Generation) Approach

� The Transfer (Second Generation) Approach

� The Interlingua (Second Generation) Approach

2.1.1 The Direct Approach

The simplest, First Generation (henceforth G1) of MT systems used word-for-word and phrase-

to-phrase translations with little or no capability for rearranging syntactic constructions or lexical

selection restrictions, i.e. a direct approach. Because the analysis stage is so information-deprived,

7

there is a heavy burden on the bilingual lexicons to guide the translation, and often the structural

changes are simply ad-hoc or default actions. The �rst public demonstration of the MT system, which

resulted as a colloboration between Georgetown University and IBM, showed a system that could

translate a carefully selected 49 Russian sentences into English using a very restricted vocabulary

of 250 words and a mere 6 grammar rules. The earlier incarnations of the Systran system can also

be classi�ed as being direct, depending heavily on large bilingual dictionaries and lacking a clear

separation between analysis and generation. The USAF Russian English Systran system [Bos86] has

been in use since 1970 producing almost 100,000 pages of text per annum with an error rate of less

than 5

2.1.2 The Transfer Approach

The Transfer Approach is inherent in most Second Generation (henceforth G2) MT systems, so

called because of their step-up in linguistic sophistication from the First Generation of MT engines.

In general these systems produce a data structure representing the syntax and semantics of the

SL text and transform it into a new one which represents the same semantics but the TL syntax.

Sub-tasks such as analysis, transfer and generation are performed in separate modules, and within

these, linguistic descriptions are distinct from the algorithms which use them. Also, on the linguistic

side, the G2 architecture is \strati�cational" in the sense that morphology, syntax, semantics and

perhaps non-linguistic knowledge are described separately. In 1977, the successful implementation

of the M�et�eo system which translated Canadian public weather forecasts, con�rmed that MT can

work extremely well when applied to simple natural sublanguages. There are unfortunately few

situations of this kind of success on the translation market. The Eurotra [ABD+86] and Ariane

(GETA) systems [VB85], [Boi89] systems exemplify the modular, strati�ed transfer-based approach

to MT while others like METAL [HS92] allow some interaction between analysis and transfer. It

is a common observation (e.g. in [Tsu89]) that those systems which have been based on existing

linguistic theories designed for monolingual analysis are linguistically elegant but disappointing in

terms of performance on real data, possibly because monolingual grammars are not suitable for the

8

task of transferring meaning across languages.

2.1.3 Interlingua

Another G2 approach was to abstract the transfer representation even further in order to capture

the meaning of the SL in a structure which is divorced from the surface-level considerations of

that language. This interlingua, a high-level representation, would act as a mediator between the

two languages at a semantic level, and so concepts, rather than syntactic representations would be

transferred. The TL would then be generated from a conceptual representation. This approach is

exempli�ed in Unitran [Dor93] which uses lexical-conceptual structures [Jac83] and in Rosetta

[LOS89], which uses Montagovian Grammar as an interlingua and adheres to principles of isomor-

phicity and compositionality. The DLT project [MS89] is unique in using the language, Esperanto,

to mediate between source and target. Transfer between highly di�erent language pairs, for example

English and Sign language [VC96], clearly warrant a completely abstracted meaning representation.

However, researchers have found it extremely di�cult to identify a set of primitives for such an all-

encompassing meaning representation language, and the coverage and robustness of such systems

tend to be rather poor.

2.1.4 Hybrid Approaches

The problem with \traditional" approaches, i.e. the direct approach (G1), and transfer and inter-

lingua systems (G2) approaches, is that natural language expertise has to be manually encoded into

their data structures and algorithms, whether as special cases in FORTRAN (as in M�et�eo), or as a

full representation of the conceptual content of the utterance [Dor93] [SA77]. This has been at the

expense of coverage and robustness. The practical systems which have enjoyed commercial success

are mostly non-theoretical in their syntactic approach and rely heavily on lexical pragmatics rather

than any well-de�ned theory of grammar. This caused one researcher to declare in 1993:

\..no existing theory is very good at accounting for real-life data, and many of the

better existing systems are based on rather silly theories". [Isa93].

9

Attempts were made to improve coverage and accuracy without abandoning completely the notion

of a well-de�ned theory of translation, for example the DLT system incorporated an example-based

bilingual knowledge bank, or BKB, [SV90] to complement its otherwise linguistically motivated

lexical transfer component. Another hybrid approach, the Kant system [CT87], integrated knowl-

edge into the translation process such that the transfer of syntactic structures was mediated by a

separate level of domain-knowledge representation, and translation of terms was performed by statis-

tical means. However in other camps, there was a complete overhaul of the \rationalist" rule-based

paradigm, in favour of completely empirical approaches.

2.1.5 Statistical Models of Transfer Functions

In the last two decades, the amount of computing power available to researchers, and the huge

increase of linguistic resources on the Web has meant that empirical approaches have enjoyed a

dramatic renaissance. The question to be asked is whether computers can deduce the language

models from the vast data available which rationalist approaches failed to do. MT in particular had

a new raw material |the growing quantity of parallel texts in multiple languages. At the word-

to-word level, there have been several proposed algorithms for deducing translation lexicons from

text automatically. These are often non-probabilistic or greedy algorithms [Fun95] [Mel96b] which

operate on a pre-de�ned similarity function. Statistical model re-estimation algorithms based on

co-occurrence of word tokens have also been used [BDPDPM92] [Mel98], though to a lesser degree

due to the computational complexity of estimating the many parameters involved. In [BCDP+88]

the idea was introduced that the word correlations between languages with similar word order

could be exploited when estimating translation-model parameters, and subsequent research [DMM93]

(also working on a French-English corpus) focused on improving the parameters. Nevertheless,

the \word-order correlation bias" inherent in these approaches makes them language-dependent.

Statistical translation models which do not take word order into account, i.e. \bag-to-bag" models,

are described in [Mel98] who also discusses an algorithm for automatic discovery of non-compositional

compounds in parallel texts. In the later version of the IBM research [BDPd+93], the processes

10

were modularised into analysis, statistical transfer and synthesis. Statistical bilingual parsing is

another attempt to avoid using linguistic rules, and some of these approaches [Wu95] have reported

success even for languages with vastly di�erent character sets. A more linguistics inspired approach,

although still within the empirical paradigm, is to try to infer a grammar and symbolic transfer

functions from an aligned bilingual corpus of examples, as described for example in [Juo95] who

optimises his model parameters using simulated annealing. This approach requires pre-parsing of

the texts and a dictionary. Typical performance on French-English test data (simple sentences with

one verb) resulted in 36% fully correct translations. A similar, though computationally expensive

neural network approach [KG94] performs better (98%) but only on the very simple grammatical

constructions it had learned.

2.1.6 MT | The AI Perspective

The problem of translation has occasionally been viewed from an AI perspective, in particular from a

Case-Based Reasoning (CBR) or Memory Based Reasoning (MBR) perspective. Indeed the earliest

CBR systems were designed to deal with problems of natural language understanding, for example

IPP (Integrated Partial Parser) [Leb83] and CYRUS (Computerised Yale Retrieval and Updating

System) [Kol83]. From an AI stance, MT is just another problem to solve, and perhaps analogical

problem-solving techniques can be applied in this domain. Here we motivate a CBR approach to

MT in a broader sense than is usual in the EBMT literature | to demonstrate that recent CBR

techniques can be exploited for EBMT, and also that EBMT can mean more than simply another

transfer architecture in disguise, as suggested by some researchers [Isa93].

2.2 Case-Based Reasoning

2.2.1 Introduction

Case Based Reasoning (CBR)is founded on an appealing idea: expertise comprises experience. One

of the aims of AI research has always been to emulate human problem solving abilities in a com-

11

putational process [Min63] [Tur50]. In CBR the aim is to know how to modify an old solution to

�t a new situation. CBR is a general technique for reasoning from experience. From a theoretical

psychological point of view, CBR explores the possibility of encapsulating episodic rather than static

knowledge in oder to deal with new situations, and this aspect has been explored by Tulving [Tul72]

and by Schank and Abelson [SA77] among others. Notwithstanding these psychological motivations,

CBR was in fact largely proposed as a solution to the problems of searching for solutions in a �rst-

principles approach. In general, CBR approaches tend to avoid the need for complicated domain

models by relying solely on descriptive cases and rules which can modify their solutions when re-

quired, see [Kol93], [AP94] or [RS89] for more details. Indeed, the main thrust of CBR research since

the early nineties has focused on enginnering issues. The following sections highlight the contrast

between �rst-principles (FP), case-based reasoning (CBR), and memory-based reasoning(MBR) as

problem solving strategies. Interestingly, these three problem solving techniques are analagously

re
ected in the three general categories of MT | G2, EBMT and MBMT.

2.2.2 First Principles

In �rst principles problem solving, a solution is generated from a set of speci�cation features. This

may involve an elaborate search of the possible solution components derivable from the speci�ca-

tion or incorporating knowledge sources which are expensive to compute. In MT for example, G2

approaches rely on the application of consecutive grammar rules where at each level, any number

of routes may be chosen which can only be constrained by a set of requirements speci�ed by the

domain model (e.g. the grammar formalism) and the rules which have already been applied. Thus,

the speci�cation is gradually transformed into a solution. Previous solutions have no bearing on the

problem solving process so given the same sentence twice in succession, a G2 MT system will take

just as long to process it on the second run. Moreover, if particular problems crop up frequently

this will not make them any more solvable.

12

Specification
feature space

Solution
feature space

S

L

T

L

A
T

L

'

S

L

'

S

L

T

L

R

G
2

E
B

M
T

F
ig
u
re

2
.2
:
F
irst-P

rin
cip

les
vs.

E
B
M
T

F
irst-P

rin
cip

les
p
ro
blem

-so
lvin

g
in

th
e
G
2
m
od
el

o
f
M
T

versu
s
th
e
C
a
se-B

a
sed

R
ea
so
n
in
g
m
od
el

o
f

E
B
M
T

2
.2
.3

T
h
e
S
ta
n
d
a
rd

M
o
d
e
l
o
f
C
B
R

C
B
R
ta
ck
les

p
ro
b
lem

-so
lv
in
g
in
a
m
a
n
n
er
w
h
ich

h
a
s
b
een

sta
n
d
a
rd
ised

in
to

a
series

o
f
step

s.
A
lth

o
�

[A
lt9

5
]
su
m
m
a
rised

th
e
step

s
a
s
th
e
m
em

o
ra
b
le
fo
u
r
R
's:

R
etriev

e,
R
eu
se,

R
ev
ise,

a
n
d
R
eta

in
.
R
eu
se

a
n
d
R
ev
isio

n
a
re

co
m
m
o
n
ly

co
lla
p
sed

in
to

th
e
term

'A
d
a
p
ta
tio

n
'
[C
u
n
9
8]

w
h
ich

in
v
o
lv
es

ch
a
n
g
in
g

p
a
rts

o
f
a
ca
se

to
su
it
a
n
ew

,
a
n
d
slig

h
tly

d
i�
eren

t
p
ro
b
lem

.
T
h
e
R
etrieva

l-A
d
a
p
ta
tio

n
-R
eten

tio
n

sch
em

e
a
ssu

m
es

a
m
em

o
ry

m
o
d
el
fo
r
rep

resen
tin

g
,
in
d
ex
in
g
a
n
d
o
rg
a
n
isin

g
p
a
st
ca
ses

a
n
d
a
p
ro
cess

m
o
d
el
fo
r
retriev

in
g
a
n
d
a
d
a
p
tin

g
th
em

a
n
d
a
ssim

ila
tin

g
n
ew

o
n
es.

T
h
is
en
g
in
eerin

g
ov
erh

ea
d
o
ften

m
ea
n
s
th
a
t
C
B
R
a
p
p
ro
a
ch
es

o
n
ly

in
co
rp
o
ra
te

a
su
b
set

o
f
th
ese

sta
g
es,

fo
r
ex
a
m
p
le
R
etrieva

l-o
n
ly

sy
stem

s
ex
ist

w
h
ich

sim
p
ly

p
ro
d
u
ce

a
p
rev

io
u
s
so
lu
tio

n
in

th
e
h
o
p
e
th
a
t
it
is
su
�
cien

tly
sim

ila
r
to

so
lv
e
th
e
p
ro
b
lem

a
t
h
a
n
d
.
O
th
er
sy
stem

s
a
ttem

p
t
to

reliev
e
th
e
co
st
o
f
reu

se,
b
y
en
su
rin

g
th
a
t
o
n
ly

su
�
cien

tly
sim

ila
r
o
r
a
d
a
p
ta
b
le
ca
ses

a
re

retriev
ed
.

E
x
p
lo
rin

g
th
e
sta

g
es
in
m
o
re
d
eta

il,
th
e
m
o
st
cru

cia
l
sta

g
e
o
f
C
B
R
is
o
ften

reg
a
rd
ed

a
s
b
ein

g
th
e

�
rst,

R
etrieva

l,
i.e.

sera
ch
in
g
fo
r
a
best

ca
se

in
th
e
m
em

o
ry

stru
ctu

re
w
h
o
se

p
ro
b
lem

sp
eci�

ca
tio

n

is
th
e
m
o
st
a
n
a
lo
g
o
u
s
to

th
e
n
ew

p
ro
b
lem

.
T
h
is
in
v
o
lv
es

sea
rch

in
g
fo
r
a
m
a
tch

in
th
e
sp
eci�

ca
tio

n

sp
a
ce.

It
is
a
ssu

m
ed

th
a
t
th
e
so
lu
tio

n
retriev

ed
w
ill

b
e
clo

se
to

th
e
d
esired

so
lu
tio

n
in

th
e
sen

se

1
3

that a few minor adaptations performed in the solution space will render it into the correct form.

This is depicted in Figure 2.2. What is signi�cant from a computational point of view is that there

is no laborious transformation between the speci�cation space and the solution space. The work is

instead done in the retrieval and adaptation stages. The easier these retrieval and adaptation stages

prove to be, the more persuasive the argument for adopting a CBR approach becomes.

2.2.4 Adaptation Rules

In most CBR systems, adaptation is guided by �xed case adaptation rules. Researchers working

on the problem [SK94] [Kas94] [Lea94] have shown that it is di�cult to determine such de�nite

rules. A trade-o� exists between speci�city and generalisation. Speci�c rules are easy to apply and

perform reliably but they do not cover many cases, whereas more generalised rules, while spanning

a broader range of problems, often do not provide speci�c task and domain speci�c guidance. In

creating speci�c rules, the developer is often required to perform detailed analysis of the task and

domain to determine which rules are required. On the brighter side however, there are domains in

which lightweight, speci�c adaptation rules can be derived by comparison of the problem and the

retrieved case (our approch to EBMT is one), and recent research has begun to focus on the issue

of automatic learning of more generalised rules, see [SK94] [LKW95] [HK96].

2.2.5 Adaptation-Guided Retrieval

The CBR processes of Retrieval and Adaptation need not be separate entities. In many systems

they are however | the retrieval of a case is done on a similarity basis of the problem speci�cation

alone, without any regard for the necessary changes to the solution, possibly close to the way in

which humans make analogies. The basic idea behind Adaptation-Guided Retrieval, �rst introduced

in [SK93] (later appearing as [SK94]), is that the retrieval process should be directly in
uenced by

a metric which estimates the adaptation-cost of applying an old case solution to a new problem.

Of course, if the engineering overhead in estimating the adaptability of the case is too high then

the overall saving in retrieval expense will be minimal. To take an example where the adaptability

14

of a retrieved solution is a wiser metric to employ than similarity when retrieving a past solution,

consider the following informal example. If a novice CBR-robot wanted to buy food in McDonald's

he would search through an index of cases embodying human experience and possibly retrieve the

Restaurant-case in order to guide him. The procedure for eating in McDonald's may seem close

enough to eating in a restaurant on the face of it (buying food). Unbeknownst to him, had he

chosen the case for Buying-a-Stamp in a post-o�ce, the action sequence constituting the solution

would be more similar and hence require less adaptation (queue, order at counter, pay at counter,

leave) than the Restaurant-case did. Re-enacting an old solution for a new problem involves

adaptation, which humans are good at. Computers struggle with adaptation | it requires knowledge

of how a modi�cation of some aspect will a�ect an already complete solution. Adaptation-Guided

Retrieval (AGR) attempts to redress this problem by allowing the retriever and adaptor to share

adaptation knowledge. The retriever uses this knowledge to assess how adaptable a case is before

deciding whether or not to reuse it, and the adaptor carries out the modi�cations stipulated in the

knowledge.

Adaptation-Guided Retrieval is highly relevant for Example Based Machine Translation in the

sense that many previouly translated pieces of text may be close to the new problem translation

judging by surface-similarity of the source texts, but yet only a subsection of these might be reusable.

This could be due to divergences (see Chapter 3) between the structures of the SL and TL in the

case being reused, or the fact that either 'side' of the case omits some information present in the

other side. In such scenarios, a retrieval metric which also determines adaptability of the SL-to-TL

solution, should save on adaptation costs, as well as reducing the retrieval search space.

2.3 EBMT

EBMT is the application of Case-Based Reasoning to MT. It is an attempt to avoid the problems

of assuming a compositional transfer from source to target, translating instead by analogy. EBMT

systems store a huge set of translation examples which provide coverage in context for the input.

15

The store of translation examples is maintained in the form of of SL TL pairs, usually aligned at

the sentence level. An input sentence is matched against this repository in order to �nd a similar

match. The identi�cation of similarity depends on some measure of distance of meaning; in current

proposals this is based on the classi�cation of lexical items in semantic hierarchies [SOI+93] [SN90],

or on the distribution of key elements such as function words [Juo95] words, or similarity of part-

of-speech sequences[MJS94], or a combination of these [CC96] [CHP94] [Car97]. Although the idea

of electronically storing past translations in bilingual format in oder to reuse their contents was

discussed as far back as 1978 by Peter Arthern [Art78] and slightly later, by Melby [Mel81], the

term Example-Based Translation is accredited to Nagao who introduced the notion of analogical

translation in [Nag84]. He stressed the notion of detecting similarity:

The most important function ... is to �nd out the similarity of the given input sentence

and an example sentence, which can be a guide for the translation of the input sentence.

[Nag84]

Nagao also suggested how the adaptability of a example could be checked: \the replaceability of

the corresponding words is tested by tracing the thesaurus relations". If the thesaurus similarity

was high enough then the example was accepted for the translation of that particular substring, if

not, then another example was searched for. A simple, and oft quoted example of this procedure

was demonstrated by Sumita et al. in [SOI+93]. Here, a system is described which translated only

phrases of the form \Noun no Noun", where no is the general partitive ad-position in Japanese. In

most contexts, it is similar to the English preposition of see (1) below:

(1) \N1 no N2" ! \N2 of N1".

But in others, the more natural English translation would be something else, as the following mis-

translations show:

(2) a. The conference of Tokyo

16

b. The holiday of a week

c. Hotels of three.

Sumita incorporated a commercial thesaurus of everyday Japanese and calculated semantic dis-

tance of nouns in the corpus which appeared either side of the no particle on the basis of their

distance apart in this hierarchically organised thesaurus. The hierarchy was searched bottom up

from the nodes where the relevant words occurred until a most speci�c common abstraction was

found. The resulting score was multiplied by weightings based on the probability of the translation,

for example in the case of no, it was translated as in for all its occurrences and so received a maxi-

mum score of 1. This method was an improvement on traditional approaches to selecting the correct

translation from a set of synonyms of a word in context. However, it still required a suitable parser,

generator and thesaurus for similarity judement.

2.3.1 Case Decomposition in EBMT

Similarity judgement is not the only issue in EBMT however. Particularly in systems which strive

to produce translations for a whole string, coverage is the major issue. There cannot be an exact

example for every sentence so in the absence of compositional rules, examples must be able to

provide some means of matching the generative power of natural language. The requirement for case-

decomposition is that the problem be covered by sub-cases whose solution parts are recomposable. In

EBMT, any number of linguistic contortions (see Chapter 3) may have occurred between the source

and target strings (head switching, ellipsis, con
ation, promotion, demotion, etc.) so this forces

case decomposition to take cross-linguistic mapping into account at some level. In the absence of

an accurate model for sub-sentential translational equivalence, the creation of such examples has

ironically required rule-based linguistic processing.

Attempts to store translation examples in linguistically motivated structures are described in

[SN90] and [SV90]. Sato and Nagao proposed that o�-line linking of dependency trees (see Figure

2.3) was the answer to the coverage problem while not compromising on accuracy of the solution.

17

In order to determine the combinatorial possibilities, they created a database of source and target

language dependency trees for each example translation pair, as depicted by the simple example in

Figure 2.3. Correspondence points or \links" determined the substitutable regions of the dependency

tree by other subtrees in the data base, which provided the generative power required for coverage

of a new input, for example:

(3) \He buys a book on international politics."

The source string (3) is decomposed into a \source matching expression" SME which indexes the

example base for translation units using hashing techniques. For example, decomposition of the

input means replacement of the subtree e3 with e13 (see Figure 2.3). The head verb matches here.

The isomorphic Target Word Dependency tree is a matching expression called the TWD. Transfer

is merely the replacement of each source ID with its corresponding ID as indicated by the links in

each example. The actions in source and target for a simple substitution are given in (4) below:

(4)

(e1 (r, e3, (e13)))

(j1 (r, j5, (j15)))

This assumes that the portion of the tree j1 to j4 is una�ected by the substitution. To choose

among several translation candidates the heuristics of preferring large translation units over smaller

ones and choosing a unit from a similar syntactic environment were used. Similarity of environments

relied on the use of a hand-coded thesaurus de�ning semantic similarity between words.

sim([book,n][notebook,n],0.8).

sim([buy,n][read,n],0.5).

sim([hon,n][nouto,n],0.8).

sim([kau,v][yomu,v],0.5).

18

v:buy

pron:he n:notebook

pron:kare n:nouto

v:kau

p:ha p:wo

"he buys a notebook" "kare ha nouto wo kau"

E4

E2 E3

E1 J1

J2 J3

J4 J5

v:read

pron:I n:book

pron:watashi n:hon

v:yomu

p:ha p:wo

"I read a book on
international politics"

"watashi ha kokusaiseiji
nitsuite kakareta hon wo yomu"

E15

E12 E13

E11 J11

J12 J14

J13 J15

det:a

E14

det:a prep:on

E16

n:politics
J20

adj:international
ta
reru
kaku
nitsuite
kokusaiseiji

Figure 2.3: Representing Examples in Dependency Trees
Taken from [SN90]. The input sentence is \he buys a book on international politics". This can be
covered by substituting e3 above with e13 below, and performing the reciprocal action in the target
language dependency tree, i.e. substituting j5 with j15

19

Sato and Nagao scored the replacement within a space they call a restricted environment preferring

substitutions where the substituter subtree comes from a similar background to the substitutee in

the input expression in both languages. Similarity of environment was approximated by de�ning a

context around the relevant subtree pairs (substituter and substitutee) including the mother node

and any sisters and their daughters. This was done for both source and target matching expressions

scores and the minimum score is given as the overall translation score. This is interesting as it is

judging similarity of matching contexts within the two languages, i.e. they did not assume that

similar matches on the source language side will produce good matches on the target side. The

overall advantage of this approach is the high-quality of solutions it seems to o�er. This is at the

price of maintaining a thesaurus for de�ning synonymy however, and the computation necessary for

creating and linking dependency trees of the source and target languages.

Another system based on the o�-line alignment of translation fragments or \templates" was that

of [KKM92]. At the o�-line template learning stage, sentences were parsed and the resulting chart

structures were coupled at the word level using a dictionary, and at the chunk level, using constituent

boundary information present in the charts of both languages. The coupling was restricted to content

words and the following restriction applied:

A phrase X in one language sentence S is not coupled to any phrase in the other

language T if T does not include a phrase which includes counterparts for all the words

inside X. [KKM92]

Each coupled pair of phrases was a candidate for replacement with a variable. A sentence with

variables in replaceable positions was known as a template. Unlike in Sato and Nagao's approach,

the templates were
at structures; any substitutions that occurred could not take syntactic similarity

(i.e. positioning in a tree) into account. A series of templates could arise from one sentence pair and

these fragmentory templates could be embedded in the result of translation by another template.

Thus generalisation and fragmentation of templates served to increase coverage while taking care not

to chop templates at implausible positions in either the TL or the SL. In [Car97] it is argued that
at

20

representation is preferable \because the length shape and type of chunks that can be compositionally

translated may vary from language pair to language pair". In this CBR-inspired proposal, an input

string is abstracted by allowing horizontal decomposition | representing a string in terms of its

lexical and grammatical features (POS, lemmas, agreement information), and vertical composition

| chunking of the sentence into compositional chunks. Chunks of the SL are compositional if the

case base contains examples of similar chunks which map to a fully formed TL phrase. It is not

discussed how the examples are entered in the case base and it would appear that an example of

every non-decompositional compound is required in the case base in order for correct decomposition

to take place. Assuming that the retriever does decompose and cover the problem, the sequence

of translated chunks is then passed to the CAT2 MT-system [Str95] which performs adaptation

in terms of chunk-ordering and the agreement requirements of the words. It is therefore hard to

say whether their sentence decomposition scheme is conducive to avoiding adaptation costs, as the

adaptation is performed by a powerful MT system.

2.3.2 Memory-Based Reasoning

Memory-based reasoning(MBR) places memory at the base of all intelligence, and in a sense embodies

a highly empiricist stance with regard to problem solving. It is basically CBR with less emphasis

on the \R", as it tries to solve problems using the cases alone without relying on a well-de�ned

domain model for validity checking of the solution features [SW86] [CS93] [CSV95]. The techniques

used are variations on the classic k-nearest neighbour classi�er algorithm. The instances of a task

are stored in a table as patterns of feature-value pairs representing the problem speci�cation, along

with the associated \correct" solution. When a new pattern is processed the k-nearest neighbours

of the pattern are retrieved from memory using some similarity metric. The problem solution is

then determined by extrapolation from the k nearest neighbours, that is the output is chosen which

has the highest relative frequency among the nearest neighbours. Because adaptation is rarely

attempted in MBR, it requires that near matches be retrieved and hence that the case base be

large. In certain circumstances, MBR has proven useful for restricted domains and NLP tasks, for

21

example census-classi�cation [SW86], lexical acquisition [Dae95] word pronunciation [DZBG96] and

information-retrieval tasks. With high-power parallel processors, it is also a feasible approach to

MT, as demonstrated in [KH91] and [SOI+93].

2.3.3 Memory-Based MT

MBMT involves the direct reuse of previous translations rather than the use of language models

extracted from corpora, or otherwise. Since 1990, there have been several approaches to MBMT

which try to resolve the bottleneck of rule-based parsing for the case-creation and matching stages

by using simpler matching techniques (e.g. the longest common substring algorithm, similar to the

unix diff algorithm). For example, the EBMT component of the multi-engine Pangloss system

[Nir95] used this approach. To illustrate, (SLCS) in (4) below indicates the problem source string

and where CC denotes the longest matching substring in the corpus which matches it, TLCS, the

corresponding sentence and TCC, the fragment of the TLCS which is deemed to be the equivalent

sub-part. The following basic problem is highlighted. Even though a word, z, may not correspond

to anything in the source side of the example SLCS, it could quite plausibly be an inherent part of

the translation of CC, the substring which best matches the input.

(4) SLCS = (a b c d e f g h i)

CC = (a b c d)

TLCS= (z a' b' c' d' m n o p)

TCC = (z a' b' c' d')

The longest substring for TLCS is calculated, and the \best" candidate, chosen from all cases will

be used for the translation of the input. This problem was recognised and in [Bro97] it is described

how the later PanEBMT engine does not attempt to �nd an optimal partitioning of the input but

instead seeks the corresponding TL chunk in an indexed corpus of every word sequence greater than

2 which appears in the input source string. This involves alignment at runtime of many fragments

and so the test functions for determining the TL chunk are kept simple (number of matching and

22

non-matching words, length di�erences, etc.) The �nal selection of the \correct" cover of the input

is left for a separate statistical language model. Brown comments on the advantage from a TL point

of view:

An advantage of this approach is that it avoids discarding possible chunks merely

because they are not part of the \optimal" cover for the input, instead selecting the input

coverage by how well the translations �t together to form a complete translation.[Bro97]

The earlier system of [MJS94] used a similar non-linguistic approach to covering the input at

run-time in that the fragments were not produced by a parse scheme but by a simple dynamic

programming algorithm, which took into account fragment length, word and POS matching. A

limited number of gaps were allowed in the matching procedure and the resulting TL fragment

recombinations were assessed for plausibility on the basis of corpus statistics and a process of \back-

translation".

Cranias et al. [CHP94] used minimal linguistic information to identify function words, lemmas

and POS features of words in a sentence and encode this into a vector which is then compared

against the corpus also using dynamic programming. To reduce the search space at run-time, the

examples were clustered into fragments beforehand and each cluster had a representative fragment

called a \cluster centre". A succession of sub-parts of the sentence vector were compared against

cluster centres using the same matching criteria as in other MBMT approaches (matching words,

POS). The chosen cluster centres were associated with SL sentence fragments. The SL-TL alignment

was based on the assumption that words retain their grammatical category under translation. In

choosing the TL fragments which correspond to these, Cranias et al. admitted they had a problem:

If the sentences in the translation archive have been segmented, the problem is that

now we do not know what the \translatable" units of the input sentence are (since we

do not know its target language equivalent) We only have potential translation units

markers.[CHP94]

23

They claimed that by specifying that the threshold for a match of the input with a segment be high

enough

we can be sure that the part of the input sentence that contributed to this good match

will also be translatable an we can therefore segment this part

This embodied an assumption that sections of parallel text which are each self-composed and trans-

latable as a unit would combine smoothly in the TL solution. It is an extension of Kaji's idea of a

replaceable element in a template, or Sato and Nagao's subtree substitutions. However, whereas the

former approaches built a translation from one or two basic templates, �lling in substitutions where

necessary, the MBMT approaches aims to cover an input sentence using a series of n-grams. Without

a basic template, no kind of similarity checking can guarantee grammaticality of the TL. In MBMT,

there is no structural representation of the TL to adapt. Thus, adaptation in MBMT invariably

relies on the existence of monolingual TL models to remedy the solution, and most systems are used

in tandem with standard MT engines.

2.3.4 Summary

CBR systems re-use packets of experience when solving problems rather than expensive reasoning

from scratch using domain principles, i.e. �rst-principles. In the standard CBR model, a new

problem is solved by retrieving and adapting the solution of a suitable case, and EBMT is a re
ection

of this approach. Standard G1 and G2 approaches to MT can be seen as a CBR process with an

atomic case-base where the whole translation task is performed by the adaptor. These systems

cannot make use of larger chunks which allow items to be translated in a similar context and hence

require less adaptation. In full EBMT, large chunks can be reused but it is their ability to be

decomposed and recombined which will determine the success (coverage) of the system. Some form

of case-decomposition is required such that parts of a case can be substituted with fragments from

di�erent contexts. In general, EBMT and MBMT models strive to avoid adaptation in the �rst

place either by attaining good coverage (MBMT) or using sophisticated retrieval engines (EBMT).

One EBMT method is to translate each fragment and assess its plausibility in its new environment

24

using thesauri and other outside knowledge sources. MBMT exploits large amounts of text and

combines fragments according to likely patterns in the data. To date, no reliable technique between

the knowledge-rich (in the sense of having structural knowledge) and knowledge-poor extremes has

been reported which can assess adaptability for EBMT. Moreover, no EBMT system directly uses

adaptability assessment information to help prune the search space at retrieval time.

2.4 A CBR Model of MT

The proposed �ller of the gap in the EBMT spectrum takes the form of an adaptation-guided

CBR approach to machine translation. The examples are structured enough to assess and represent

correspondence between sentences and hence, adaptability, o�ine (�a la Sato) but their structures are

not so hierarchical as to require rule-based parsing and complex disambiguation. A range of retrieval

modes re
ect the various types of matching possible. For instance, variabilisation (�a la Kaji) is a

safer means of providing coverage in most situations. Should that fail, decomposition can also be

done in careful stages, taking the potential adaptability of the template into account all the while.

Retrieval, being a run-time procedure which should be e�cient, adheres to memory-based principles

of letting the data decide the indices (�a la Cranias) yet this does not mean that the data that decided

the indices is necessarily the best source of the solution TL. The data-determined indices indicate

typical patterns in the SL data and impose them on the input string. However an adaptation guided

retrieval policy uses these indices to identify among all cases those which will be adaptable on the

basis of their SL0!TL0 equivalence maps.

Part II will describe the creation of such an example-base for EBMT and Part III, the run-time

exploitation of cases for translation. As the merits of a methodology cannot be assessed entirely in

isolation from its intended domain of application, the remainder of Part I of this thesis, Chapter 3,

discusses the properties of texts in a practical domain for EBMT| that of technical documentation.

25

Chapter 3

An EBMT Domain

3.1 Abstract

This short chapter exposes the kinds of transfer problems that may exist in a selected text domain

identi�ed as being useful for reuse technologies | software documentation. The desiderata for a

suitable case representation on the basis of this data are explored.

3.2 Introduction

There are many potential roles for EBMT in the translation process, as described in the literature. It

can be integrated into existing MT architectures to �ne-tune lexical rules [SV90], or to translate non-

compositional compounds [Car97], or to improve coverage in general in a system which integrates

multiple knowledge sources [Nir95]. In limited domains, such as avalanche warning reports in the

Alps, it can even be a stand-alone generation system [MJS94]. However most of today's tedious,

repetitive translations tasks involve texts that are not entirely sublanguages and which may have

a high readership. A representative text genre is that of manuals |technical manuals, software

documentation, and instruction sets. This chapter investigates the potential for fully-automatic

EBMT on texts from this domain.

26

3.3 Software Manuals - The Localisation Domain

The reuse of previous translations in the localisation domain is nothing new. An important part of

any localisation manager's pre-production analysis is to investigate the leverage of existing Transla-

tion Memory systems, that is the degree to which the texts recalled are actually useful to translators

who use them. The development and exploitation of support tools for the translator has advanced in

leaps and bounds since the mid-nineties. At present, the four most widely used translator's worksta-

tions originate from Europe: Transit 2.7 from Star, Workbench 2.0 from TRADOS, Optimizer from

Eurolang and IBM's translation manager. Despite their ever increasing popularity, they do little or

no decomposition of the problem. They store complete phrases and sentences in a database, and

use distance-based metrics for comparing string similarities, similar to those of MBMT approaches

(Section 2.4.3) in determining a good match. The buzz-words in TM circles are \fuzzy matching"

and \fuzzy logic". From a CBR-theoretical viewpoint, a major shortcoming of these systems is the

fact that they cannot capture certain \near-misses" successfully. There is also the \utility problem"

[SK95] whereby the case-base grows linearly in size while coverage remains very limited, due to lack

of generalisation. The following is an investigation into the feasibility of a more knowledge-based

approach to reusing texts in this domain. First, the general obstacles to compositional transfer in

language translation are examined in Section 3.3.1. and the assumption of parallel text is examined

in Section 3.3.2. Then the degree to which these, and other non-linguistic factors arise in a chosen

sample text is discussed in Section 3.4. In Section 3.5, the consequences such divergences have on

EBMT is discussed and Section 3.6 motivates a particular case-representation scheme for an EBMT

approach to machine translation, on the basis of the data investigated.

3.3.1 Cross-linguistic Divergences

Distinctions between the SL and the TL can be divided into two categories - translation divergences,

in which the same information is conveyed in the source and target texts, but the structures of the

sentences are di�erent, and translation mismatches, in which the information that is conveyed is

27

Thematic
changes in
argument
structure

E: He lacks something
G: Ihm fehlt etwas
E': To-him lacks something

Promotional head
switching

G: Er ist zufaellig krank
E: He happens to be sick
E' He is coincidentally sick

Demotional head
switching

G: Er liest gern
E: He likes reading
E': He reads likingly

Structural
changes in
argument
structure

E: He aims the gun at him
G: Er zielt auf ihn mit dem Gewehr
E': He aims at him with the gun

Conflational
1-to-N lexical
gaps

G: Schwimmbad
E: Swimming pool
E' Swimmingpool

E: See again
G: Wiedersehen
E': (to) againsee

Categorial
category
changes

E: Postwar(adj)
G: Nach dem Krieg(pp)
G' After the war(pp)

"

"

E: Give a cough
G: Husten
E' cough

N-to-1 lexical
gaps

Lexical

"

E: I like the car
G: Mir gefaellt den Wagen
E': To-me pleases the car

Figure 3.1: Divergences and Mismatches between languages.
[Taken from [Dor93] On the left side, Dorr's classi�cation is denoted while Lindop and Tsujii's
[LT91] classi�cation appears in the second column (which is the preferred one in describing the data
in this chapter). The table is modi�ed from the original, in that it only shows the German-English
comparisons, with additional examples, where there were none in the original version.]

28

di�erent. Translation divergences are widely discussed in MT literature. General cross-linguistic

divergences are discussed in [LT91] and [Dor93]. Language-pair speci�c divergences are described

for English-German in [SSW96] and for Italian-French in [Pod92], among others. Translation mis-

matches tend to be ignored in the MT literature. In EBMT, however, any di�erences between SL

and TL, whether linguistically motivated or not, must be accounted for, and these are also included

in the assessment below. The two classi�cations of translations divergences are summarised in Figure

3.1 above, taken from [Dor93].

3.3.2 Parallel Corpora

EBMT being a corpus based approach to MT fundamentally requires a parallel-aligned corpus, that

is, a text together with its translation. Some examples of parallel bilingual corpora in the public

domain are the parliamentary proceedings of the Canadian (the \Hansards") and the Hong Kong

parliaments, which have been favourites of researchers since the early nineties. Having located a

parallel corpus the two texts must then be aligned into corresponding segments, if they are to be

useful for EBMT or TM systems. As other multilingual corpora became available, it quickly became

obvious that texts like the Hansards were exceptionally clean translations. As pointed out in [GC93],

\Real texts are noisy". Earlier alignment methods are likely to wander o� track when faced with

deviations from the standard \linear" progression of translation, as for instance when parts of the

source text do not make their way into the translation (omissions), or end up in a di�erent order

(inversions). This might equally be the result of a stylistic choice made by the translator, or an

unintended omission. Thus, sentence-level alignment is a non-trivial task and calls for smarter

methods, see [FM97], [Som98], and [GC93].

One solution to the sentence alignment problem is to build the database of examples manually.

Another is to use a parallel corpus where it is known that strict authoring guidelines have been

adhered to by the translators. Many localisation companies, or companies who engage in in-house

localisation, impose such guidelines in order to facilitate the creation of future translation memories

or example bases. One fundamental requirement is that sentences be translated in a one-to-one fash-

29

ion, even if readability should su�er slightly. One can go even further and impose restrictions on the

vocabulary used, as for example in the ScaniaSwedish Controlled Language for Truck maintenance

experiment [SH97] where the vocabulary size was reduced. The resulting decrease in complexity

enables more sentences to coincide, and for EBMT this would mean more examples which either

coincide and mutually reionforce each other, or con
ict with each other, i.e. examples with higher

discriminatory power. The bilingual corpus used in the system described here, was not a controlled

language in the stricter sense. Nevertheless, the translators did manage to translate over 99

3.4 The English-German Corpus

The parallel bilingual corpus used in this system was the manual for CorelDRAW V.6., a popular

drawing package, localised into several languages on an on-going basis by Corel Corporation. The

English and German versions of the texts were used. In order to assess the validity of using this cor-

pus as the basis for creating a case-base for EBMT, it was decided to investigate a subsection of the

data. Thus, a representative sample of 200 sentences was taken from the bilingual corpus. This text

was made up of the Help �les, and so contained vocabulary speci�c to many of the functionalities

explained further in the manual. The sentences were translated almost exclusively in a one-to-one

fashion, and the average sentence length was approximately 20 words. The amount of divergence

was therefore the main factor that needed to be investigated. Most sentences in the sample exhibited

at least one translation divergence type, and examples are given per divergence type in the following:

CHANGES IN ARGUMENT STRUCTURE

(1) X lets you..

Mit X k�onnen Sie..

With X can you..

(2) There's no limit to X.

30

X ist night eingeschrankt

X is not limited

(3) Use X when you want to..

X dient folgenden Zwecken.

X performs the following goals

LEXICAL GAPS

(4) ..as long as ..

..vorausgesagt

(5) You can also weld single objects with intersecting lines .

Sie k�onnen einzelne objekte auch durch Schnittpunkte miteinander

verschmelzen.

You can individual objects also through Intersection-points together weld

CATEGORY CHANGES

(6) X is unavailable.

X steht nicht zur Verf�ugung.

X is not for availability.

(7) Closer inspection shows..

Wenn Sie dies genauer ansehen..

When you this closer inspect..

31

VOICE: active ! passive

(8) Ungroup breaks up one level of grouping at a time

Die jeweils letzte Gruppierungsebene wird aufgel�ost

The respective last Grouping-level is broken-up

3.4.1 Translation Mismatches

There are other extra-linguistic factors which a�ect the SL$TL mapping. These relate to the trans-

lator's style, dislike of the SL construction, or absent-mindedness. Another problem is anaphora,

especially when the objects of reference appear in other sentences. Anaphoric e�ects are very much

kept under control in this corpus. They are not, however, completely eliminated. Some sample

translation mismatches are shown below:

PARAPHRASES

(9) this means...

Mit anderen Wortern..

With other words

OMISSIONS

(10)With Inside selected, the O�set value will take precedence over

the Steps value.

Bei Konturen die nach Innen verlangen, hat der eingestellten

Abstand Vorrang vor den Schritten.

For Contours that to Inside tend, has the set O�set precedence over

the Steps

32

(11)Samples of the selected style appear in the sample �eld

Der gew�alte Stil wird im Feld Beispiel angezeigt.

The selected Style is in the �eld Sample shown.

ANAPHORA

(12)..the blend will reform automatically to incorporate your changes

..wirkt sich dies automatisch auf alle anderen Elements der

�Uberblendungsgruppe aus

..e�ects itself this automatically on all elements of the Blending-group

3.5 Discussion

It is clear from the data in Figure 3.2 that the likelihood of at least one divergence type occurring in

a sentence of this domain is very high. In fact, only 8.5% of the sentences in the sample contained

no divergences at all. The divergences shown have been speci�c to language-pair and domain of

application, but the divergence types are language universal. The three predominant divergence

types found were lexical gapping, category changes and voice di�erences. Lexical gapping can cause

1-to-n mapping at the word level within corresponding constituents as in (4) above, or between

constituents, as in (5). What this means for adaptation is that when replacing an item in the SL

with another it might very well happen that the replacer word does not exhibit the same 1 to n

mapping. For example, a given sentence (13):

(13) You can also delete single objects with intersecting lines.

is quite likely to retrieve:

33

D
i
v
e
r
g
e
n
c
e

T
y
p
e
s

i
n

2
0
0

s
e
n
t
e
n
c
e
s

o
f

t
h
e

C
o
r
e
l
D
R
A
W

c
o
r
p
u
s

0

10 20 30 40 50 60 70

Lexical Gaps

Categorial

Voice

Head-Switch

Omissions

Arg-Struct

Anaphora

Idioms

Number of Sentences

F
ig
u
re

3
.2
:
D
ivergen

ce-types
in

a
2
0
0
sen

ten
ce

sa
m
p
le

fro
m

th
e
C
o
relD

R
A
W

co
rp
u
s.

3
4

(5) You can also weld single objects with intersecting lines.

Sie k�onnen einzelne objekte auch durch Schnittpunkte miteinander

verschmelzen.

You can individual objects also through Intersection-points together

weld.

Unfortunately however, the word which requires replacement is one which undergoes the divergence

(delete ! weld ! miteinander verschmelzen) and the resulting translation must adapt the

solution by deleting two words and replacing them with one. It would be advisable to store this

template in such a way as to disallow the variabilisation of the sentence in the position for weld

(and intersecting lines for that matter). This of course assumes an ability to detect the divergence

in the �rst place. The second-most common divergence type was category changes as typi�ed in

(6) and (7). In terms of their reuse, they are extremely dangerous and non-decomposable! Even if

the input sentence is semantically similar, as in (8), the cross-linguistic divide renders the TL into

a sentence which re
ects a di�erent meaning (7)0:

(7) Closer inspection shows..

Wenn Sie dies genauer ansehen..

When you this closer inspect..

(8) Closer inspection indicates..

(7)0Wenn Sie dies genauer andeuten..

When you this closer indicate (= When you mark this more clearly)

Some of the divergences involve a change in syntactic function { passivisation (8), argument-structure

((1), (2), and (3)) which, in both English and German, a�ects the agreement restrictions between

constituents. In German, case-marking is also a�ected and in English, strict constituent ordering

35

must be maintained (subjects always precede objects). From the point of view of coverage, much

structural repetition was evident. For example the phrase \For more information see X" occurred

several times, as did \X allows you to Y". Sometimes X and Y were quite long which suggests that

a TM or MBMT system might miss them. However at a syntactic functional level, the similarities

would be captured.

3.6 Conclusion

There is no one representation above the word-to-word level which successfully accounts simulta-

neously for all the matching possibilities between SL and SL0 and all the divergences which may

occur in isolation or interactively. Yet most divergences taken in isolation are describable in terms

of syntactic functional changes and often, if an input string is very similar to an example then only

one or two adaptations will be required. Even translation mismatches can be expressed as syntactic

functional non-maps. It is therefore desirable to represent the syntactic functional mappings across

the source and target languages as an approximation of its underlying complex linguistic structure.

This allows for generalisations in the more stable positions (replace the whole syntactic function

with a variable) to improve coverage. A word level correspondence is necessary to maintain if the

divergence is only describable at a sub-constituent level. We conclude on this basis that, for EBMT,

the desiderata for a suitable representation of bilingual data are the following:

� Allow for similarity assessment of SL and SL0 above the word-level

� Detect SL0$TL0 correspondances at the syntactic-functional level, for adaptation of struc-

turally divergent sentence-pairs

� Allow SL0$TL0 correspondances at a word level for adaptation of lexical changes

In the next part of the thesis, a
exible case-representation scheme is described which was designed

speci�cally to deal with the issues involved in translating such \real" data via a careful generalisation

strategy. The language independent scheme represents bilingual data at three levels: the sentence

36

level, syntactic functional level, and the word level. We will subsequently argue that this granularity

of representation is coarse enough to capture many linguistic generalisations and �ne enough to

allow links to be established between non isomorphic SL and TL structures along which adaptation

information can be propagated.

37

Part II

Case Creation and Storage

38

Chapter 4

A CBR Approach to EBMT

4.1 Abstract

Our system achieves its generalisation templates by investigating which surface level links exist

between SL0 and TL0, as determined by the set of previous inter-sentential links contained in the

case base. Not only are links between words and word chunks recorded, but also the non-links. That

is, the template which describes an SL0 sentence in the case-base, will crucially contain information

on the degree to which it linked to the TL0. Non-mapped words are retained in their surface form

whereas well-mapped words or groups of words are abstracted by variable-replacement, with the

syntactic function and linear ordering of the original words acting as the only index.

4.2 Introduction

In this chapter we present our general architecture for EBMT and its main data structures. Our

approach to EBMT sits �rmly in the realm of CBR where well-de�ned symbolic retrieval and adap-

tation procedures are the order of the day. Moreover, it is an adaptation-guided system in that

the retrieval and storage of cases takes their potential adaptability into account. There are three

principal characteristics of our system which make it di�erent from other EBMT systems. These

39

are namely:

� Cases based on o�-line sub-sentential links (Section 4.4)

� Step-wise Generalisation instead of Fragmentation (Chapter 5)

� Adaptation Guided Retrieval (Chapter 6)

Most reuse approaches to MT use a sentence-aligned corpus as the primary source of knowledge.

However string-to-string alignments are too coarse-grained to allow for
exible and reliable matching

of the input problem and example-problem speci�cations. Even the \purest" of EBMT systems

either attempt some form of word alignment between SL and TL0 examples to account for di�erences

that arise on comparison with the input speci�cation, or they use an outside bilingual dictionary.

The preferred approach for most MBMT (Chapter 2) researchers is to perform alignment at run

time [Bro97] [BF95] [MJS94] when the matching occurs. This makes sense if the corpus is huge

and most sentences will never be reused. However, in keeping with a more case-based reasoning

approach, we argue for the o�-line linkage of the case base for three reasons. Firstly, this represents

a valuable means of restricting the search for adaptable cases (see Chapter 6). Secondly, once

sentences are matched, the information remains in the case base and does not have to be computed

every successive time the matcher retrieves the template. In some domains, particularly localisation

domains, certain sentences recur frequently. Thirdly, the subsentential links approximate a domain

model for translation, which is used for assessing and performing adaptability, assessing similarity

and linking. Section 4.5 demonstrates how a
exible contextualised dictionary function can be

de�ned on this data-set, while the linker and retriever are described in Chapters 5 and 6 respectively.

The added
exibility of cases counterbalances their inevitably smaller number in comparison to

MBMT.

The second characteristic is one of performance, namely ReVerb's stance on the generalisation

versus fragmentation question. While case decomposition at run time is the standard means of

overcoming the coverage problem as deployed in [SN90] [MJS94] and [Bro97], the resulting solution

is unpredictable as fragments originating in many di�erent contexts meet up unharmoniously in a

40

new string; a stumbling block become known in EBMT circles as the boundary friction problem

[MJS94]. The second means of overcoming coverage de�ciencies is to create generalised templates

[KKM92] [CC96] [CC97] [Car97] which match a variety of strings by noting some features in common

which stem from a representation more abstract the string itself. A typical heuristic is to replace

terms or nouns, which arguably behave predictably across languages, with a variable thus allowing

the example to match with any string, at that position. We present a novel case representation

scheme which supports a step-wise generalisation of templates for matching. Instead of simply

making certain linguistic types (e.g nouns) in the sentence invisible by variabilisation, we associate

each part with a score indicating the strength of the link to the target. By means of thresholding,

this score will determine whether a \chunk" will be replaced by a variable for the matcher or not

on the grounds of concrete linking evidence. Those chunks that are less adaptable according to

the linker will be forced to match with the input at the string level. We show how the system

architecture supports such a scheme in this chapter.

The remainder of this chapter proceeds as follows. In Section 4.3 we provide a view of the basic

architecture of the ReVerb system. Section 4.4 describes the case representation scheme in terms

of the levels of linguistic information stored in the translation examples themselves, and their overall

organisation in memory. Section 4.5 shows how a bilingual dictionary can be de�ned on this data and

the way in which the lookup procedure can be parameterised for di�erent tasks (e.g. for adaptation

or for helping alignment). The template generalisation scheme is presented in Section 4.6 and the

chapter conclusions appear in Section 4.7.

4.3 System Overview

ReVerb's functionality can be described in terms of its two main tasks | which are o�ine and online

(or runtime), as depicted in Figure 4.1. The o�ine task is to learn reusable cases from sentence-

aligned bilingual corpora. This can be sub-divided into a bootstrapping stage and a fully automatic

case-learning stage which includes case-based parsing and linking (Chapter 5). At runtime, ReVerb

41

Bilingual
Corpus

LEARNING

Case-Base

Input Source
 String

RETRIEVAL &
ADAPTATION

Target
String

OFF-LINE

ON-LINE

Figure 4.1: Overview of the ReVerb system architecture.

performs adaptation-guided retrieval on the cases learned in the learning stage and adapts the

selected candidate translation example(s) to produce a target solution. Both runtime procedures are

described in Chapter 6. This chapter is devoted to presenting the actual structure of the knowledge

that cases embody and their organisation in memory.

4.4 Case Representation in ReVerb

Cases are the sole repository of information for all the functions in the ReVerb EBMT cycle. A

retrieved case's SL0$TL0 mapping description is mirrored during translation (Chapter 6). The

SL0 components of all cases are used for parsing the new input sentence and for providing chunk-

boundary information during linking (Chpater 5). For adaptation and linking purposes, a bi-lingual

dictionary is required. This dictionary function (see Section 4.5) can be deduced from the SL0$TL0

knowledge spread across all the cases. In this section, a general description of case content is given

�rst, and then the motivation for certain aspects of this representation is given by referring to the

42

various processes which depend on the case-base. To support the
exible reuse of translation cases

for translating from SL to TL1 a case must represent the following knowledge:

� SL0 problem speci�cation -The SL0 \side" of a case

� TL0 target speci�cation - the TL0 \side" of a case

� links between SL0 and TL0

ReVerb uses a frame-based representation for its cases (Figure 4.2). Each case represents an SL0

! TL0 sentence pairing and acts as a pointer to all its component chunks which contain the linguistic

properties of the substring pairs. Each \chunk" is a syntactic function somewhere between the pre-

terminal level and the top nodes of a traditional parse tree. A chunk is annotated with the sub-

strings' syntactic-functions in the SL0 and TL0 sentences respectively. Cross-linguistic divergences

and general non-correspondence in translation mean that links are given an approximated score

based on quantitative dictionary correlation and qualitative comparison of their respective syntactic

functionalities.

This looks deceptively like the chunks are being considered to be compositional elements of

the SL0 and TL0 sentences, but as will soon be demonstrated in Chapter 5, compositionality is

only assumed when chunks receive a good \adaptability" score. Furthermore, this compositionality,

which is determined with respect to a new input problem (see Chapter 6), restricts how the target

speci�cation is pieced together at run time in ReVerb. That is, ReVerb adheres to the notion

that recombining the chunks after adaptation can only guarantee a valid solution TL if the policy

of adaptation guided templatisation and retrieval have been followed.

The Case Representation Frame

At the topmost level, a case representation frame speci�es what the source and target languages

are, for example, German, Irish, etc. This is depicted in the CASE-1 representation frame in Figure

1The labels SL and TL are actually arbitrary and used for clarity. The case representation scheme is unbiased
towards direction. A given case SL0 $TL0 can equally translate in the TL!SL as well as the SL!TL direction
without any modi�cation.

43

SL'

TL'

Ba choir an cod
TDR

a dhiailiu roimh an
uimhir

The STD
code

should be dialled before the
number

+FAUXV OBJ -FMAINV ADVL

SUBJ +FAUXV -FAUXV -FMAINV ADVL

chunk-1-1

sl-text:
sl-syn-function:
sl-lin-order:
sl-pos:
tl-text:
tl-syn-function:
tl-lin-order:
tl-pos:
map-score:

(Ba cho/ir)
+FAUXV
1
(v v)

+FAUVX
2
(v)
1.5

(should)

chunk-1-5

sl-text:
sl-syn-function:
sl-lin-order:
sl-pos:
tl-text:
tl-syn-function:
tl-lin-order:
tl-pos:
map-score:

<NONE>
<NONE>
<NONE>
<NONE>

-FAUXV
3
(v)
0

(be)

...
CASE-1

sl-lang:
tl-lang:
chunks:
sl-template:
tl-template:

Gaeilge
English
(chunk-1-1 chunk1-2 chunk-1-3 chunk-1-4 chunk-1-5)
(+FAUXV ?1)(OBJ ?2)(-FMAINV ?3)(ADVL ?4)
(SUBJ ?1)(+FAUXV ?2)(-FAUXV ?3)(-FMAINV ?4)(ADVL ?5)

...

Figure 4.2: A case-frame and chunk-frames in ReVerb.
This corresponds to a linked Irish-English sentence pair from the `Telecom' Corpus.

44

should

appears-in-case: (case-1, case-23)
appears-in-chunk: (chunk-1-1) (chunk-23-1),

(chunk-23-4)

Figure 4.3: A ReVerb word frame

4.2). The identities of the case's component chunks, and a templatised version of the SL0 and TL0

sentences it represents, based on mapping scores, are also provided.

Chunk Representation Frame

A chunk representation frame provides all the linguistic information required to describe aligned

sub-components of SL0 and TL0. If a chunk on either \side" did not align to the opposite language

then that side of the chunk will be given the value <none> for all features, and the adaptability

score is set to zero. Figure 4.2 shows a sample sentence alignment in an Irish-English corpus along

with the chunk frames which describe it.

The frame-based language in which the cases are represented supports (multiple) inheritance

among frames. Chunks inherit global information, such as the identity of SL0 and TL0, from their

mother case. The local slots are chunk-speci�c and denote the linear order, syntactic functionality,

POS information and the actual string of the SL0 and-or TL0 chunk(s). There is very little typing, or

restrictions of any kind, on the values save to say that linear-order can only be a positive natural

number, and map-score, a non-negative integer. The frames can thus be used to store any form

of bitext mappings not necessarily linguistic in nature. It is assumed for this application however

that the syn-function slots receives a single value which is a valid syntactic function (see Appendix

C.1.1 for the full range) and that the pos values are a subset of the POS set described in Appendix

C.1.2. Appendix B shows a full example of a case. The adaptability value denotes the strength

of the link between SL0 and TL0 units. This is zero if either side is absent.

45

Word frames

Each individual word type receives a separate word object. This is a frame indexing a list of the

cases and chunks which contain an occurrence of the word type. The word frame structure is

shown in Figure 4.3. The ID of a word frame is the word token itself. The appears-in-case and

appears-in-chunk slots contain at least one case-id and chunk-id respectively (otherwise they

wouldn't have been created). As previously mentioned, entering a chunk containing an unknown

word will trigger the creation of a word frame. So, for every word in the system there is a record of

where it appears in the data and from this, one can ascertain its neighbouring words, the syntactic

function of the chunk which contains it, and its left and right context extended to the sentence

extremities if required. The only information that is not accessible via the word object is the

identity of the previous or following sentence.2

4.4.1 Demonology

A demon3 is a program that is not invoked explicitly, but lies dormant waiting for some condition(s)

to occur. Demons are often used at the operating systems level, e.g. for device drivers. Certain

demons hang o� frame slots waiting to perform some action as soon as a slot's value is modi�ed.

For example, when a chunk's source-text or target-text slot is set, a word demon is activated

which creates a new object for that word type, or if the word type is already present in the system,

this will be updated by the demon as shown below. In general, demons are responsible for preserving

the consistency of the expanding case base as it grows during the learning phase.

2Case-id's are treated here as being arbitrary, though case-naming according to their ordering in the original text
could be imposed if required, in order to provide extra-sentential context.

3The term demon or daemon was introduced to computing by people working on the CTSS (Compatible Time-
Sharing System) project which was an early (1963) experiment in the design of interactive time-sharing operating
systems, ancestral to Multics, Unix, and ITS. The name ITS (Incompatible Time-sharing System) was a hack on
CTSS, meant both as a joke and to express some basic di�erences in philosophy about the way I/O services should
be presented to user programs.

46

CASE

CASE-1 CASE-2 CASE-3

CHUNK-1-1

CHUNK-1-2

CHUNK-1-3

CHUNK-2-1

CHUNK-2-2

CHUNK-2-3

CHUNK-3-1

CHUNK-3-2

CHUNK-2-4

WORD

should ba choir...

...

...

Figure 4.4: A view of ReVerb's memory organisation
Links are created by demons between cases and their chunks, and between word-frames and cases
(chunks). Top-level objects WORD and CASE keep track of all words and cases currently in the system.

4.4.2 Overall Memory Organisation

Demons ensure that the entire case base is updated each time a new case is entered. This in e�ect

only means updating word objects with pointers to the new context of their word types, that is the

chunk and hence the case which contains one or more occurrences of it. A higher level case-object

frame maintains a list of case-ids of all cases in the system so this is updated also. A small section

of the memory is shown in Figure 4.4.

4.5 The System Dictionary

This scheme for organising memory supports the creation of a dynamic model of word to word

translation equivalence, in other words, a dictionary. Every new case addition causes word objects

to be updated with links to a new context of use. On the monolingual side, the system is receiving

more information on the context of the particular word, in terms of chunk regions and sentence

regions. This will be useful for parsing (Chapter 5) On the bilingual side, the word is associated

with a new opposite language chunk and sentence. Therefore, the higher the frequency of the word,

the more reliable is its list of proposed translation candidates.

The algorithm for proposing the translation candidate for a particular word SLw, is shown below.

47

We assume that SL is the source language.

dict(SLw,SL-ID,TL-ID,n,SPEC-LIST,CB)

Inputs:

SLw: The source word from SL

SL-ID: The identity of the SL, e.g. English

TL-ID: The identity of the TL, e.g. German

n : Desired length of translation candidates

CB : The case base

SPEC-LIST : Extra restrictions

Outputs:

TL : list of length � n

procedure dict

begin

1. CHUNK-LIST get-chunks(SLw)

2. until empty(CHUNK-LIST)

3. do CURRENT-CHUNK first(CHUNK-LIST)

4. CURRENT-TL-WORDS get-tl-text(Current-chunk)

5. TL-WORD-LIST CURRENT-TL-WORDS

6. enduntil

7. TL sort(TL-WORD-LIST)

8. return(first-n(TL)

If the SPEC-LIST, is empty, TL-WORD-LIST will contain all words contained in TL0 sides of

chunks which are connected to an SL0 chunk containing that word. That is, there is no one-to-

one assumption about words within linked chunks. The sort function sorts the TL-WORD-LIST

according to relative word frequency, moving the most frequent towards the head of the list. Some

48

examples of unrestricted word lookups are shown below.4

a) dict('the', EN, GE, 4, []) = (der die das des)

b) dict('das', GE, EN, 2, []) = (the this)

c) dict('the', EN, IR, 2, []) = (an na)

Explicit probability scores for each correspondence using the heuristic that the probability of a

particular word, s, being the translation equivalent of t is proportional to the ranking of s in the

dictionary's output, as shown in (4.1) below. Here P does not mean conditional probability in the

strict sense, for the sum of the probabilities of all events conditional on a given event should be 1

which is not the case here5

P (s j t) =
1

rank(s;DictTL(t))
;P (t j s) =

1

rank(t;DictSL(s))
(4.1)

Score(s; t) =
P (s j t) + P (t j s)

2
(4.2)

In the example above, the word occurrences are restricted to the chunk level. Thus for a) above

the probabilities would be:

P (der j the) =
1

1

P (das j the) =
1

3

4Here a) and b) are based on a German-English aligned corpus of size 750 sentences. c) is based on an Irish-English
corpus of size 120 sentences.

5There are other possibilities for calculating the probability, which could use probability scoring in this strict way,
but the metric given above was the one which proved most useful in experiments on linking. One suggestion (by
Michael Carl) is to use the following:

for all i < rankmax(dict(b))

P (ai j b) =
1

2rank(i;dict(b))

for all i = rankmax(dict(b))

P (ai j b) =
1

2rank(i;dict(b))�1

49

P (des j the) =
1

4

P (the j der) =
1

1

The formula for calculating the probability that a word pair stands in a translation equivalence re-

lation is calculated by summing the probability in each direction (4.2) and dividing by 2. This joint

probability, denoted Score, is always less than or equal to 1. If we wish to restrict the dictionary

lookup we do so by adding information to the CONTEXT-LIST list. For example, if we wish to retrieve

correspondences for SL0 from TL0 but wish to restrict the words retrieved to being of a certain part

of speech then we put the symbol for that part of speech in the CONTEXT-LIST list. The algorithm

mirrors that of dict without restrictions except for the addition of an extra line:

5. CURRENT-TL-WORDS = check-spec(CURRENT-CHUNK,TL,CONTEXT-LIST)

This has the e�ect of only putting those TL words into the candidate translation list which sat-

isfy some requirement. This is a crucial functionality of the dictionary as will become obvious in

Chapter 6 when adaptation is discussed. Adaptation requires highly contextualised lookups. In fact,

myriad restrictions are possible on the dictionary function but here a sample few of the parameters

which proved most useful for particular system tasks are described.

Chunk-level Dictionary for Adaptation

For chunk-level replacement, (see Section 6.3.4) words are preferably chosen to substitute TL0 el-

ements which appear in a similar context, and are linked to the same SL0 word(s). Every chunk

containing the SL chunk in a certain syntactic function CONTEXT-SL must also be linked to an TL

chunk of a certain function CONTEXT-TL in order to be an optimal adaptation.

adapt (SL-CHUNK,SL-ID,TL-ID,n,CONTEXT-LIST)

forall s in SL-CHUNK

50

CHUNK-LIST find(s,SL,TL,n,CONTEXT-LIST)

COMMON-LIST CHUNK-LIST \ COMMON-LIST

find-most-freq(get-tl-text(COMMON-LIST))

Here is an example:

adapt(``the mouse'',EN,GE,(EN:SUBJ,GE:ADVL)) =

find(``the'',EN,GE,4,(EN:SUBJ,GE:ADVL))

\ find(``mouse'',EN,GE,4,(EN:SUBJ,GE:ADVL))

find-most-freq(get-tl-text (CHUNK-3-2,CHUNK-5-6,CHUNK-24-9)...)

=find-most-freq((auf der maus)(der maus)(von der maus)

(auf der maus) (mit der maus) ...)

= (auf der maus)

As their names suggest, the find-most-freq procedure gathers all chunks containing the SL words

speci�ed, in the SL$TL context speci�ed, and get-tl-text gathers the text strings associated

with these chunks; the chunks themselves are indexed on the basis of all SL words in the adapter

chunk, i.e. \the" and \mouse".

4.5.1 Non-linked words

Sometimes a word object points to chunks containing no translation equivalents for the word. This

omission may be due to a translation error, a mis-alignment, or a genuine �-production6in the cross-

linguistic transformation. If the latter, then the symbol <NONE> is likely to be the most frequently

6A common epsilon production is the disappearance of the SUBJECT under passivisation: \This command saves
your drawing" ! \Die Zeichnung wird gespeichert" (The Drawing is saved).

51

occurring equivalent for certain words. For example, the desired translation for the re
exive particle

\sich" in a German to English mapping is a blank.

1. Die Objekte bewegen sich am oberen Rand

2. The objects move (themselves) to the uppermost edge

dict('sich', GE, EN, 3, []) ! (<NONE>, it, them)

4.6 Template Creation

At matching time an input problem speci�cation and an example problem speci�cation will match if

all their chunks are similar, or, the chunks have been generalised in those positions where the input

happens to di�er. Therefore generalisation should occur in those positions where problem-example

di�erences can be felicitously transported to the problem solution where a reciprocal adaptation is

performed in the corresponding position. ReVerb's heuristic in determining such \safe" adaptation

sites is based on the following two metrics:

� translation equivalence probability between the words on the SL0 and TL0 side of the chunk.

� functional equivalence on either side of a chunk.

The intuition is that if two groups of words perform the same function in their respective sentences

and if all their meaning is self-contained in the lexical items then adapting the set of words in one

language will have the same e�ect in the other.

The following sections are devoted to explaining the processes involved in measuring these equiv-

alences. The equivalence of syntactic function is assessed simply by looking at the relevant slots in

the chunk's frame representation. This is a Boolean measure of similarity | either identical or not

so. The second equivalence, a cross-linguistic measure, is determined by the strength of word-to-

word translation equivalence and some fanout heuristics as described in section 5.4. The combined

scores produce a base adaptability measure for each chunk of a case, which is stored as a template

52

and which will ultimately determine whether the case is reusable for the speci�c input problem at

retrieval time.

4.6.1 A Careful Generalisation Strategy

If the domain of the case base is a sublanguage (e.g. weather bulletins, avalanche warning reports),

and the input is from the same genre, then one would expect reasonable coverage even when the

example templates retain some degree of speci�city. In certain restricted domains, the probability

of certain \shapes" of sentences reoccurring is high enough to allow the luxury of \careful" generali-

sation strategies based on the intuition described above. As the current domain of application is the

translation of technical documentation and thus relatively well-behaved, the emphasis here is too on

careful generalisation. In ReVerb 'generalisation' is a restricted operation whereby surface lexical

details are made invisible. Here, all linguistic information is bunched together on an equal basis in

the chunks. No modularity between any levels of linguistic description is assumed. Generalisation

in both the input and the examples is simply the wiping out of the chunks' surface details (i.e. the

words), whose speci�city might otherwise prevent a match.

4.6.2 Coverage versus Accuracy

The more variables a SL template contains, the more input sentences it will be able to match. At

retrieval time (run-time), a threshold of adaptability is set, above which only chunks of a certain

mappability score may be variablised. This blanks out word information, and therefore any implicit

linguistic constraints that their presence ensured (e.g. number, case and gender agreement). The

justi�cation lies in the idea that well-linked chunks are usually parts of a sentence that are replaceable

by chunks of similart syntactic functionality. Setting a threshold of adaptability will determine the

range of cases that the system is allowed to retrieve for a given input. If the case base is large, the

threshold may be set quite high. If a certain input construction is mirrored frequently in the corpus

the threshold can be raised even higher, ensuring with some certainty that only adaptable templates

will be retrieved. This is good news for translators of highly repetitive text.

53

In ReVerb, the granularity of a case is potentially at two levels -at the syntactic functional

description which the parser decided upon during linking (for the examples) and during run-time

(for the input), and at the word level (via WORD objects). The criterion in AGR is to retrieve

examples which are adaptable with respect to the knowledge available to the system and we wish

to demonstrate how our policy of careful template generalisation supports this. Firstly it is safer to

adapt entire chunks than it is to poke around inside the chunks adapting single words. The most

reliable adaptation is that of replacing an entire chunk with another from the same context. The

adaptability score is biased towards a reliable \clean" chunk mapping at the lexical level not just

similar syntactic functionality. For example the verb to remove in English could be translated as

das Entfernen (the removal) in German via nominalisation:

This command enables you to remove the last object.

Dieser Befehl erm�oglicht das Entfernen des letzten Objekts.

This Command allows the removal of-the last Object

dict('the', EN, GE, 4, []) = (der die das des)

This pairing recieves a high score by virtue of there not being any other words in the SL0 or TL0

(Chapter 5) which have the same lexical characteristics as the verb remove. Even though the

corresponds to two chunks in the TL0, one either side of the word Entfernen, there is very little

possibility that there will be any confusion in the linking pattern, as the the in the SL maps so well

to the des in the last chunk of the TL0. Thus the LexScore (Chapter 5) is high. If the syntactic

functions of the pair are di�erent then when it comes to adapting the chunk in the SL0 at run rime,

this di�erence is noted and a suitable adaptation SL0 TL0 pair is chosen which re
ects a similar

divergence in syntactic function (i.e. a pair with a Finite Main Verb in SL0 and Subject in TL0).

On the other hand, if the lexical information in the chunk of one language gets interspersed among

various chunks in the TL0, then the chunk link decided for that group of words is given a low

54

score. The overall map-score which appears in the map-score value position of the chunk frame is

calculated on the basis of its lexical score (Chapter 5) and the similarity of the syntactic functions

(Boolean value), as shown below:

MapScore = SynFunScore+ LexScore (4.3)

SunFunScore =

8>><
>>:

1 if synfun(SL) = synfun(TL);

0 otherwise:

(4.4)

If however the chunk link is poor, that is, several words are missing from the mirror chunk, it

could mean that some transformation has scattered the words across di�erent chunks, making an

entire substring unadaptable, starting at the point where the �rst word of the chunk containing

the non-mapping words occurs and ending at the last word of the chunk containing the rightmost

non-mapping word(s). Indeed a well-mapping chunk may occur in the middle of this dangerous area.

(The last object) (you) (select) is placed on the upper layer.

(Das zuletzt markierte Objekt) wird auf der obersten Ebene positioniert.

(The last selected object) is on the uppermost layer positioned.

Here you is missing in the TL0. Surrounding you in the SL0, are words which map to the �rst chunk

in the TL0 only. So the TL0's words are scattered among two chunks in the SL0, and this would get

a poor score as a result. The score is calculated by dividing the dictionary determined lexical score

(Section 5.3.1) by the cardinality of the larger matching chunk. In the example above, the singleton

chunks you and select get a score of zero. and The last object receives a score of its LexScore

divided by 4.

55

4.7 Conclusion

The memory organsiation presented here allows for the
ow of information between words, chunks

and cases, thus providing the basis for dictionary creation and the structured data necessary to

deduce links between new sentence pairs. The dictionary is highly customisable to each task in the

EBMT process | linking, adaptability assessment and adaptation itself. The careful generalisation

strategy, introduced here as a concept, is solely based on the linking data which is calculated in

the algorithms which are the subject of the next chapter. The test of the validity of the careful

generalisation scheme which supports an adaptation guided retrieval policy, is evaluated in terms of

accuracy and coverage in Chapter 6.

56

Chapter 5

Case Creation and Learning

5.1 Abstract

Cases are created via a process of parsing both sides of a bilingual corpus and linking the corre-

sponding chunks between the two halves. As with most empirical approaches to multilingual NLP,

the �rst step in linking is to detect sets of corresponding word tokens in the two halves of a bi-

text. This is followed by a novel technique of superimposing chunk-boundary information on this

word-mapping in order to determine one-to-one chunk mapping patterns desired for case creation.

These two tasks are performed by the ReVerb Linker. Chunk-boundary information is supplied

by ReVerb's data-oriented Parser which uses only the cases as its knowledge source. This parsing

algorithm is described. Both the ReVerb Linker and ReVerb Parser are testably e�ective, even

when the training corpus is less than 1,000 cases.

5.2 Introduction

Bitexts are texts which express the same meaning in two di�erent languages. They provide the raw

material for many corpus-based and EBMT systems. In a direct fashion, translation models can

be derived by statistically comparing tokens across texts [BCDP+88] [Mel96a]. Also, tools such as

57

X = word position in SL

Y

=

w
o
r
d

p
o
s
i
t
i
o
n

i
n

T
L

0,0

m,n

Figure 5.1: A bitext space

translation memories, concordancers and lexicons which help the (human or machine) translator

can be de�ned on the parallel data. Bitext correspondence can be expressed at various levels of

granularity to provide a picture of how two languages match up in terms of the relative positioning

of their corresponding elements. For two languages with similar alphabets, the word level is a useful

�rst step in determining translational equivalence. Every bitext de�nes a rectangular space as shown

in Figure 5.1. The lower left corner is the origin, representing the beginning of both texts, and the

upper right corner represents the terminus of both. The X and Y axes are the lengths of the two

texts in terms of the units under comparison (e.g. character, word, sentence). Most of the previous

work in bitext mapping has focused on sentential alignment as this is the starting point of statistical

model derivation.

The main diagonal from origin to �nish has a certain angle. For some closely related language

pairs, the points of correspondence between sections of text will create a diagonal line with an angle

close to that of the main diagonal, indicating similar relative positioning of tokens. Some approaches

[Mel96a] exploit this quality of bitexts to limit the search space or to determine omissions. It is rare

for two languages to have the same tokens in the same order so there is usually some deviation in

the angle of the bitext map.

58

5.3 The Linker

The ReVerb Linker assumes that each sentence in the bitext has been aligned on a one to one

basis1. Hence, linking proceeds at the word level. ReVerb builds a chain of correspondence points

for each sentence in two stages. In the �rst stage, generation, all points of correspondence are plotted

in the bitext space. Correspondence is detected by a matching predicate for words which uses the

system dictionary. This decides if two words are mutual translations. If the words match, their

respective positions in the SL and TL sentences are plotted as an (i,j) co-ordinate. A heuristic of

map-uniqueness is used to �lter out some of the noise. There are no word order assumptions2; a

word match any distance from the main diagonal in the rectangular bitext map has the same apriori

probability.

The second stage of linking sees a coarser grained chunk-level map being superimposed on the

word-level map. As the sentence pair has already been parsed by the system, each word token will

occur with the boundary of some chunk. the combined word-links in a given chunk space determine

the overall one-to-one chunk linking pattern. The ReVerb Linker is a general pattern-matching

algorithm which in this application happens to be operating on words, and chunks of words. The

dictionary (Chapter 4) is the sole information source for the matching predicate upon which the

Linker depends. This dictionary is automatically updated each time a new case enters the system

after Linking. This cyclic, symbiotic process allows the dictionary and the Linker to become more

accurate as the case-base increases.

5.3.1 Linker Step One: Point Selection

The system dictionary is likely to have more than one translation equivalent for a given word, i,

say. Let DictSL(i)
3 be the word set derived from looking up i. If one of the words in DictSL(i) is

1This assumption is not unrealistically optimistic in software localisation domains, where translators are often
instructed to adhere, as far as stylistically possible, to the sentential structure of the original text. See Section 3.3.2
for more details on this assumption.

2Additional heuristics exploiting English and German's relatively similar word-order were tested in initial experi-
ments, but these were ultimately abandoned due to their unattractive language dependency.

3Here, the mnemonics dictSL and dictTL are used for the functions dict(x,source,target,n,[]) and
dict(x,target,source,n,[]) respectively. See Section 4.5 for more details.

59

identical to a word in the TL, then a tentative link is made between i and its assumed counterpart j,

say. At this word level, the Linker does not assume a one-to-one mapping however and it will try a

list of n possible translations of i against the TL, creating links where applicable. Each link is given

a score based on the ranking of the corresponding TL word in the dictionary's list (see Figure 5.2).

The Linker then proceeds to word i+ 1 in the SL, and repeats the process until the end of the SL

string is reached. The whole process is repeated in the opposite direction. Ultimately, a good lexical

link between the word pair i and j occurs if i 2 dictSL(j) and j 2 dictSL(i). The point selection

algorithm proceeds as follows:

dotimes i in SL,

dotimes j in TL,

if match(i; j) or match(j; i)

then plot(Score(i; j))

The matching predicate match(i; j) is de�ned as follows:

match(i; j) =

8>><
>>:

True if Score(i; j) > 0;

False otherwise:

(5.1)

The linking is fully bi-directional so even if the link is not obvious in one of the directions, a single

link in the opposite direction will still capture the word pairing:

Score(i; j) =
P (i j j) + P (j j i)

2
(5.2)

P (i j j) =
1

rank(i;DictTL(j))
P (j j i) =

1

rank(j;DictSL(i))
(5.3)

60

1

o
b
j
e
k
t

d
a
s

e
i
n

m
a
r
k
i
e
r
t
e

t
h
e

l
a
s
t

o
b
j
e
c
t

y
o
u

s
e
l
e
c
t

m
a
i
n
t
a
i
n
s

i
t
s

p
o
s
i
t
i
o
n

das

zuletzt

markierte

Objekt

behaltet

seine

position

d
e
r

d
i
e

d
a
s

d
e
m

z
u
l
e
t
z
t

d
e
r

l
e
t
z
t
e
n

g
e
r
a
d
e

s
i
e

w
e
r
d
e
n

i
h
n
e
n

i
n

w
a
e
h
l
e
n

m
a
r
k
i
e
r
t
e

m
a
r
k
i
e
r
t
e

<
n
o
n
e
>

i
h
r
e

i
h
r
e
n

s
e
i
n
e

d
i
e

p
o
s
i
t
i
o
n

z
e
i
c
h
n
u
n
g

l
e
g
t

e
i
n

the object box directory

the object last of

selected object of you

object the to an

<none>

its to position original

position the of at

0.66

0.660.5 0.5

0.75

0.37 0.25

0.66

0.660.25

0.12

0.66 1

0.12

rank

r
a
n
k

dict(ENG, GER,4) + dict(GER, ENG,4)

Figure 5.2: Linking words from SL and TL in the bitext space.
Linking is performed on the basis of dictionary scores (where n=4 in this example) in both directions.

61

Step Two: Chunk-based Alignment

Although individual word tokens rarely map in one-to-one fashion between SL and TL, their higher

level constituent forms (syntactic functions) often do. The procedure at the chunk level is analogous

to that for word alignment except that now the output required is a bijective mapping between the

chunks of the two languages. The sentences are parsed by the ReVerb Parser, and the resulting

chunks can be of variable size (see Figure 5.3). The linking pattern may contain crossings also, for

example where a chunk at the beginning of SL corresponds to a chunk at the end of TL (or vice

versa). Each chunk region Ir�Js delimits a subset of word pairs from SL � TL and the lexical-scores

for each word-pair contained in this space is summated and normalised by the number of words in

the longest chunk, as shown in (5.4).

ChunkLex(Ir; Js) =

P
i2Ir

P
j2Js

Score(i; j)

max(size(Ir; Js))
(5.4)

The overall score of a chunk link also depends on its uniqueness. For each chunk pair (Ir; Js),

let fanout(Ir) be the number of SL!TL matches for chunk Ir , and fanout(Js) be the number of

TL!SL matches for chunk Js. The overall score for the chunk link (Ir; Js) is given in (5.5) below.

ChunkScore(Ir; Js) =
ChunkLex(Ir; Js)

fanout(Ir) + fanout(Js)
(5.5)

If two chunks in one language map to one in the other the highest scoring chunk wins out. The

linking algorithm chooses the highest scoring chunk-pair for each I in SL and each J in TL. This

\winner takes all" chunk linking algorithm is as follows:

until empty(MATRIX)

dotimes Ir in SL

dotimes Js in TL

WIN-SL get-highest-link(Ir)

WIN-TL get-highest-link(Js)

62

1

t
h
e

l
a
s
t

o
b
j
e
c
t

y
o
u

s
e
l
e
c
t

m
a
i
n
t
a
i
n
s

i
t
s

p
o
s
i
t
i
o
n

das

zuletzt

markierte

Objekt

behaltet

seine

position

0.66

0.660.5 0.5

0.75

0.37 0.25

0.66

0.660.25

0.12

0.66 1

0.12

I1 I2 I3 I4 I5

J1

J2

J3

FANOUT J

FANOUT I

2 1 1 1

3

0

0

2

Figure 5.3: Linking parsed chunks of the SL and TL in the bitext space.
This is performed taking into account the word-linking scores of all words contained in a given chunk
and the fanout of the chunk with respect to the opposite language.

63

if WIN-SL = WIN-TL

WINNER WIN-SL

WMATRIX plot(WINNER, WMATRIX)

MATRIX delete-all(WINNER,MATRIX)

Any rival chunks are deleted from the bitext map, that is, in subsequent calculations, no points

with Ir as an x co-ordinate or Js as a y co-ordinate will be regarded as being potential candidates for

mapping. This may allow loosers to win out on the next iteration. The algorithm terminates when

all points have been eliminated from the start matrix, MATRIX. The winner matrix, W-MATRIX

contains all the winning chunk pairs in a one-to-one mapping. The potential one-to-oneness of the

initial MATRIX, depends on a number of factors: the extent of linguistic or stylistic divergence and

translation noise, the quality of the data upon which the dictionary is de�ned, and the parameter n

of the dictionary matching predicate. For any one of these reasons, some chunks in either language

may not be mapped. In the sense that ReVerb cannot distinguish between the source of the non-

map, that is, translational divergences and mismatches (Chapter 1), they are all treated the same

and receive a score of zero. The output of the aligner is therefore a set of chunk pairings in the

SL� TL space. This is the raw input for the case-building component.

5.3.2 Previous work on subsentential alignment

In general, sentences are an easy starting point for alignment because they usually appear in the same

order in a translation (but see Section 3.3.2), and early bitext mapping concentrated on sentential

alignment, see [KR93] or [GC93] or [BLM91]. Bitext mapping algorithms at the word-level usually

assume that the texts have been pre-aligned at the sentence level. However some approaches do

not even assume this much. Melamed [Mel98] reports on a portable algorithm for mapping bitext

correspondence called SIMR which does not use sentence boundary marking as a clue to alignments.

His matching predicate works on raw text and detects common cognates -words that appear with

the same surface or phonological form in both languages due to a similar etymology, borrowing,

64

etc. A matching predicate based on characters is reported in [MEO95] who use the longest common

subsequence ratio as a similarity metric and [KG97] describe how to �nd phonetic cognates even in

languages with di�erent alphabets.

5.4 Case-Based Parsing

The Parser has two functions in the ReVerb system. It provides the Linker with the necessary

chunk boundary information, as just described. It also parses the input problem sentence at run-time

(Chapter 6). The data-oriented algorithm is described below.

5.4.1 Introduction

The case base contains structural knowledge about both languages because each side of a translation

pair in the case-base represents the result of monolingual parsing to a
at-dependency level. The SL

side of each case is information that can be reused in order to produce a most likely parse of the input

SL sentence. Even if the system is faced with a new word, the Parser gives a good pattern-matching

guess as to where it should stand in relation to its neighbours, on the basis of all previous instances

of that word token in the data. The fact that it is parsing to a
at-dependency structure means

that the procedure can be reduced to a simple \include in this chunk or not" -type decision for each

word, because at this shallow level of description, there are only three levels to be concerned with

-the case-level (i.e. the entire sentence), the chunk-level, and the word-level.

5.4.2 Activating cases via word objects

ReVerb maintains a word object for every word type in the case-base. Demons (see Chapter 3)

update this object by recording the case and chunk which contains every new occurrence of the same

word token. It is worthwhile to note here the di�erence between parsing and translating. In parsing,

the task is simply to cover the sentence with the most probable sequence of syntactic function

chunks for those words in that particular order. Although cases are being re-used in parsing, the TL

65

w1 2w 3w 5w4w 6w 7w

4w

CASE A CASE B CASE C CASE D

. . .

w1 w3

w4 w2

P1

Figure 5.4: Parsing in ReVerb
Determining chunk boundaries in the input string.

information is ignored. Translation on the other hand requires not only coverage of the input sentence

but also that the target language chunks hanging o� the covering SL example chunks will actually

combine smoothly, which may involve additions, deletions and reordering of words. So parsing is

reduced to the task of producing the most likely series of chunks which cover the input string. The

input string then assumes this chunking pattern and all syntactic information annotated onto each

covering chunk (syntactic function and POS info). The algorithm is deterministic and proceeds in

bottom-up fashion. On encountering the next word, the parser activates the corresponding word

object. This in turn beckons all chunks which are linked to it. In Figure 5.4, a typical snapshot of a

parsing session is depicted. The current word is w4, and the previous words w1:::w3 have collectively

activated cases A, B, C and D but only CASE-A has managed to cover the string entirely up to w4

so it is the natural choice to pursue.

66

5.4.3 Chopping and Glueing Chunks

Optimally, some case will exist that contains all the input words, because then it is quite likely that

the input words will be in a similar grammatical relationship. The parser activates cases whose

chunks contain words which coincide with the string so far and as it moves from left to right across

the string, the list of chunks which are still valid will trail o�. Once a word is encountered for which

the set of chunks containing both it and the previous sub-string is empty, then case fragmentation is

necessary, as depicted in Figure 5.5. Case fragmentation in this application simply involves choosing

a new chunk, which may or may not entail a new case (one could continue using a case by skipping

over a non-matching chunk), from which to derive information concerning the current input word.

However, before the old chunk is forgotten, the parser decides whether or not the current parse

chunk should be extended to include the current word or not. This will depend on whether the

case chunk had nearly been completely \used-up" to cover the string to this point, or only partially.

Preferably, the next chunk will originate from a case which already covered part of the input string.

The following algorithm describes the parser's decision process when a word in the input string is

di�erent from the word in the appropriate position of the chunk being followed:

1. Match the input word wi against the next word

in the currently activated chunk CHj from the case-base

if success include wi in current parse-chunk, Pk

move rightwards in CHj

move rightwards in Pk

else if CHj is used-up, Store Pk

Remember CASECHj
which contains CHj , proceed to 2

else use statistics to decide whether to abandon or chop Pk

2. Index new set of chunks for wi+1, giving preference to CHj+i.

Proceed to Step 1.

67

w5w4w 7w

CASE A

CASE B

CASE C

. 6

ch A,3 chA,4

B,3 ch B,4 chB,6ch ch B,7

C,3 ch C,4 chC,6ch

LEFTMOST

MIDDLE

RIGHTMOST

*

*

*

ch A,6 . . .

. . .

Pk
P

k+1

Figure 5.5: Three possible chunk positions for the non-matching word w5

5.4.4 Statistical positioning of words

The notion of modifying chunks to �t the data in the input string may seem ad-hoc but statistics

can be used to increase the likelihood of a reasonable chopping point of a chunk. ReVerb's data

representation scheme allows the calculation of every word's statistically most-probable positioning

within a chunk, based on all its occurrences 4in the data. The data in Table 5.1 indicates the

typical positioning in their respective chunks of the 20 most frequent words in a case-base of size

800. For example, determining the right-peripherality of a word involves activating all case-chunks

which contain the word of the input chunk, and counting the times it appears in the rightmost

position in each chunk. This is expressed as a fraction of the total appearances of the word in

the case-base. If the pre-de�ned threshold is reached, the chunk is deemed right-peripheral. A

high right-peripheral followed by a high left-peripheral probability score indicates a reliable cutting

point. In English, determiners and in�nitive markers words are very typically left-peripheral, and

common nouns and in�nitival verbs are right peripheral. Words which have closely scoring left and

4This calculation does not take polysemy into account, so all similar word tokens, e.g. points(verb) and
points(noun) are presumed to be occurrences of the same word type.

68

right counts are either typical middles (e.g. adjectives) or one-word constituents, called singletons

(e.g. verbs, and co-ordinators like \if"). Note that the chunks re
ect the word-groupings which

appear in the case base, which are determined by linking patterns between source and target, and

are not absolute mono-linguistically derived constituents. In other words, the positioning is data-

dependent; a word considered to be left-peripheral in one data-set and one language-pair may be

typically right-peripheral in another domain, and/or for another target language.

5.4.5 Overcoming Boundary Friction

With the aid of the statistical positioning data, the parser now has a better chance of making the

correct decision for any word which deviates from the example and there are two dimensions along

which to decide how to \glue" chunks from di�erent cases together - the position of the word in the

chunk which covered the previous substring, and the typical placement of such a word in this data

set. Figure 5.6 summarises this decision process. The three columns indicate the departure point in

the case chunk, i.e., where the case- and input strings begin to deviate, whether in a chunk-initial

position, in the middle or at the end of the case chunk. The four rows distinguish actions taken when

wi is statistically a singleton, left-peripheral, middle, or right-peripheral, (see Table 5.1) respectively.

If a word deviates at chunk-initial position, it means that either a more-rightmost chunk from the

same case must be used, or a chunk from an entirely new case. Regardless of whether the input

word is statistically leftmost or not, the parser trusts the structure it followed from the previous

case, and does not try to extend the previous parse chunk. Hence the uniform decision in the �rst

column to seek a completely new chunk. The situation is di�erent, however, when the parser has

committed at least one word to a certain chunk, and then discovers that a word doesn't match. It

can decide either to ignore the fact that the words are di�erent and include the deviant word into

the current parse chunk anyway include, or it can abandon the current chunk restart in the search

for a new chunk which can cover the string from the current point onwards. The include decision

is taken when the word is typically a middle, and the decision to chop the previous chunk is taken

when the word is typically rightmost.

69

w5w4w 7w

CASE A

CASE B

CASE C

. 6

ch A,3 chA,4

B,3 ch B,4 chB,6ch ch B,7

C,3 ch C,4 chC,6ch

LEFTMOST

MIDDLE

RIGHTMOST

*

*

*

ch A,6 . . .

. . .

Pk
P

k+1

Statistics Actions for each Position of wi in Example Chunk
Leftmost Middle Rightmost

Singleton activate wi chop, activate wi chop, activate wi

Leftmost activate wi chop, activate wi chop, activate wi

Middle activate wi include wi include wi, chop
Rightmost activate wi include wi, chop include wi

Unknown activate wi+1 include wi include wi, chop

Figure 5.6: Deciding how to chunk the input sentence.
The diagram at the top indicates the three potential sites of deviation between the input word w5

and a case from the case-base. In the table below, general word inclusion decisions are based on the
deviation site (X axis) and the corpus-based statistical positioning (Y axis).

5.4.6 New words

In the case of new words, the parser has no access to statistical data and will make the include or

chop decision purely on the basis of its position in the chunk. In practice, this method could result

in over-long chunks for words which have low frequencies, say one or two occurrences, which might

easily have occurred atypically in non-right-peripheral positions but which in this context really

should mark a chunk boundary. To address this problem, the parser has an additional check for

uncharacteristically long chunks. It calculates the average lengths of all case-chunks which feature

the words in the chunk so far. If the chunk length exceeds this average value the chunk is cut at the

position of the word, leaving the new word as a singleton.

70

Word Freq L R L% R% V erdict
THE 996 574 0 58% 0% leftmost
TO 369 346 6 94% 1% leftmost
IN 298 119 8 40% 3% middle
Y OU 285 274 281 96% 99% singleton
A 226 154 0 68% 0 leftmost
OF 199 44 14 22% 7% middle
AND 185 168 169 91% 91% singleton
OBJECT 129 5 116 4% 90% rightmost
FILE 123 14 80 11% 65% rightmost
OR 116 107 107 92% 92% singleton
ON 109 91 8 83% 7% leftmost
Y OUR 103 41 10 40% 10% middle
WITH 102 94 9 92% 8% leftmost
FOR 97 88 5 91% 5% leftmost
OBJECTS 89 28 73 31% 82% rightmost
IS 84 83 80 99% 95% singleton
IF 84 82 84 98% 100% singleton
BOX 83 5 77 6% 93% rightmost
DRAWING 83 6 72 7% 87% rightmost
PRINT 80 40 34 50% 42% leftmost
COMMAND 75 11 48 15% 4% middle

Table 5.1: Statistics to help glue-together cases.
The positioning information depicts typical positions of English words calculated on the basis of 750
cases. The 20-most frequent words are shown.

5.4.7 An example

In Figure 5.7, the parser pursued CASE-A until it came to the word �le in the input string which

fails to match centre from the case. It has already committed to two words of this chunk, namely

in and the, and thus uses statistical data to determine the next move. The data shows �le to be

right-peripheral, so according to the decision process outline above, the decision is to include �le

into the chunk. The parser then moves on to the next word with and abandons the current case

chunk, in favour for any chunks that begin with the word with. It will prefer any chunks of this form

that CASE-A has to o�er �rst, and then search the list of cases which coincided with the previous

substring albeit not as directly as CASE-A. For example, it would choose CASE-B to cover with the

other options, by virtue of the fact that it contained some of the string so far, namely the dialog box.

71

INPUT: (The dialog box) (will) (appear) (in the file) (with the other options)

CASE-A: (The dialog box) (will) (appear)(in the centre of the screen)

CASE-B: (The dialog box) (gives) (information) (on how to print) (with the other

options).

Figure 5.7: A sample 2-case coverage of the input string

5.5 Evaluation

The performance of the Linker and Parser were assessed separately on a training case-base size of 800

cases taken from the CorelDRAW v6 manual. These originated in 10 di�erent help �les, describing

functionalities of that drawing package such as Document Editing, File Management, and particluar

drawing functionalities. This case-base was bootstrapped using outside knowledge sources (Section

5.3) for the �rst 200 cases and the remaining 600 were subsequently acquired via a process of

automatic parsing, and post-editing. The test data for the parser consisted of 100 English sentences

from the CorelDRAW v7 manual which were taken from a di�erent section (Colour Commands)

than that of the test data. For the Linker, the same test corpus was used; this time both the

English and German texts were parsed beforehand. In a fully-automatic system con�guration, the

Linker relies heavily on the Parser's ability to determine correct boundaries. The overall system

performance depends in turn on the Linker's ability to create re-usable, accurate cases.

5.5.1 Evaluation of The Parser

The algorithm's evaluation was performed by manual assessment of each parse result by a bilingual

evaluator. The evaluation here was therefore restricted to 100 cases. For this experiment, the case-

base was not updated with each new parsed sentence. This was in order to have a steady measure

of the coverage of the training set.

Results

Each false inclusion or exclusion of word(s) was recorded. Also, each wrongly assigned syntactic

function was noted, and unknown input. With an average of 9.2 chunks per sentence, this means

that approximately one chunk in every sentence is askew, see Table 5.2 above.

72

ReVerb Parser Performance
Av. chunk-splitting accuracy: 92.25%
Av. categorisation accuracy: 79.6%
Av. categorisation accuracy (exc. unknowns) 85%

Table 5.2: ReVerb Parser Performance

Discussion

Of the chunk categorisation errors the most typical at 20.8% was classifying FMAINVs as ADVLs,

for example (to create ADVL) ! (to create -FMAINV). This is due to \to" being interpreted as a

preposition as in \to the screen" instead of as an in�nitive marker. Other common mis-classi�cations

(9.6%) were between subjects and objects, which is not surprising as these are not case marked

in English. It can be concluded that parsing (chunk-splitting, and chunk categorisation) can be

done on a pattern-matching basis, without applying linguistic knowledge at run-time, but that on

average, one chunk in every sentence is wrong, more than likely due to incorrect labeling. The

chunk-splitting accuracy is quite high which means that the linking algorithm will not su�er. The

chunk-categorisation accuracy is lower however. As the parser is also used at run-time for retrieval,

incorrect labeling of the input chunks may decrease the likelihood of �nding a similar match.

5.5.2 Evaluation of The Linker

The Linker algorithm's evaluation was performed by manual assessment of each linking result by

a bilingual evaluator. The input to the linking algorithm was a set of 100 error-free pre-parsed

sentence pairs, which were not contained in the system. The output, a set of new cases, was

assessed for chunk-linking accuracy between the SL and TL. This was as much a test of the linker's

ability to deal with sparse data as a test of its link-selection algorithm. For the dictionary function,

dict(word,lang1,lang2,n,[]), the length n of the word list was set to 4.

Results

Linking accuracy was calculated as the fraction of correct links of the total links which the linker

created. Coverage was assessed in terms of the number of links divided by the total number of links

73

ReVerb Linker Performance
Av. chunk-linking accuracy: 96%
Av. chunk-linking recall: 40.4%
Av. performance 72.9%

Table 5.3: ReVerb Linker Performance

which the human evaluator made. These scores are provided in Table 5.3 above.

Discussion

The linker performed extremely well once the data was available in the system dictionary, which

would suggest that the link-selection algorithm is suitable for this task. Future experimentation

with a larger case-base, and perhaps varying the parameter n, could improve the lower recall score.

From a translation point of view, the 100 cases created automatically would be useful for translation

as each was found to contain a certain number of matching chunks, albeit not all possible, some of

which have a high lexical score (see Chapter 5). The cases which had 100% linking recall tended

to be less than 7 words long, and cases with over 25 words (which made up over a quarter of the

test corpus) were likely to have a low linking score, leveling out at around 30%. This would suggest

breaking longer sentences into clauses if possible.

5.5.3 Bootstrapping

Bootstrapping the linker and parser is a necessary part of the system cycle in ReVerb, as with many

other approaches to EBMT (see [VW97], [Bro97]). Some initial input of cases and supervised linking

is necessary to create the system dictionary. The quality of o�-line case creation gradually improves

as the size and quality of the case-base increases. An incomplete dictionary will cause ReVerb

to miss some potential links and a smaller case base results in less accurate chunk patterns, but

there is no point at which the entire engine suddenly ceases to function. There is no de�nite point

at which optimum reliability can be said to be reached but a workable level of dictionary accuracy

was evident for the CorelDRAW corpus after linking 200 cases under supervision. One can take

advantage of this gradual behaviour by building the knowledge source (the case base) incrementally

74

word ENGCG-tag ReVerb-tag ReVerb chunk

he @SUBJ @SUBJ (he @SUBJ)
is @+FMAINV @+FMAINV (is @+FMAINV)
in @ADVL @ADVL (in the car @ADVL)
the @DN> premodi�er
car @<P postmodi�er

Table 5.4: Post-processing of chunk-inclusion decisions made by Lingsoft's ENGCG
Output from this constraint grammar was reformatted in order to bootstrap ReVerb by \
attening"
any dependency structures, e.g. post- and pre-modi�ers were placed in the same chunk as their head,
and their modi�cation-direction information subsequently lost.

and using it for creating new cases even when the case-base size is small. In particular, by adding

the post-edited cases back into the case-base after automatic parsing and linking, the system can be

bootstrapped from a relatively modest case-base size.

English

In the case of English, 200 sentences were parsed �rst by the ENGCG grammar [Vou95] [VJ95]

[KVHA95] using heuristics, to a syntactic functional description and then manually corrected. EN-

GCG proved roughly 90% accurate for this corpus, with the majority of the errors arising due

to the presence of headings and domain-speci�c command names, for example \Copy Attributes

From Command", which it treated as being several constituents rather than a single noun-phrase.

The resulting lists of annotated words were then gathered into chunks by distinguishing between

pre-modi�ers, post-modi�ers and non-modi�ers. To highlight the post-processing performed on the

ENGCG output, Table 5.4 shows a typical sentence.

German

There was no equivalent German parser available from Lingsoft at the time of training, however

there was a lemmatiser GERTWOL, which output morphological information for the German input.

The 800 sentences were passed through this module and subsequently parsed using the author's

context-free grammar. The results were checked manually to ensure that the chunking was accurate.

75

5.5.4 Conclusion

The o�-line procedures have been described which allow the ReVerb system to create its own cases.

Bootstrapping provides the system with chunking information and cross-linguistic linking patterns.

From this data, which may be any number of examples, ReVerb guesses new monolingual chunking

patterns and links between languages. The linked chunks are scored on the basis of their common

lexical similarity and syntactic functional similarity, and this information is stored in memory as a

case-frame. The case-building procedures improve as more cases are created and it has been shown

that reasonable performance can be expected even when the number of cases on which to base

parsing and linking decisions is quite small. The next chapter describes an innovative approach to

reusing these cases carefully during run-time, thus completing the ReVerb system description.

76

Part III

Adaptation-Guided Retrieval

77

Chapter 6

Retrieval and Adaptation

6.1 Introduction

Retrieval is the most important stage in any case-based reasoner and much e�ort has been devoted to

this aspect alone. The general procedure is as follows. A system seeks to be reminded of a previous

episode, call it SL0 !TL0 of problem solving, on the basis of salient features of the new problem task

at hand, SL. This so-called \reminding" is a process of searching the retrieval space (Chapter 3) for

a suitable case by promoting SL features which are deemed relevant to the problem solving process.

These relevant features or indices may describe very low-level features of a problem, or they may

be highly abstract. The reminding may even be performed on multiple levels of abstraction in an

e�ort not to miss out on good matches. An observation, which is quickly becoming a standardly

recognised issue, is that similarity between input and retrieved problem speci�cations does not

necessarily guarantee that the solution TL can be constructed with ease. We have found this to be

particularly true in the area of EBMT because the problem speci�cations are in one language and

the solutions in another! The SL! SL0 comparisons may not produce clear TL! TL0 adaptation

requirements when the description language in which to represent these analogies is not rich enough.

This means that some cases which may seem similar to the problem at the SL0 side may not have

a TL0 component which is also easy to adapt. The solution is to choose an adaptation-guided

78

approach, as motivated in Section 6.2.

When it comes to the actual adaptation itself, some CBR application domains are so well de�ned

in terms of states, actions and goals that it is possible to store most of the knowledge required to

perform even complex adaptation in an explicit model of the domain. It has been demonstrated

by [HK96] that such adaptation rules can even be learned from the case base itself. For EBMT

however there are simply too many domain rules to enumerate. Of course, the question of adaptation

only arises if the system is expected to produce a �nal solution. If the EBMT engine is merely a

component of a larger multi-engine MT system [Bro97], [Car97] then a standard MT engine can

take the result of SL !SL0 similarity-based retrieval and apply the necessary MT rules to produce

a solution. However, in fully-automatic EBMT, the solution is heavily dependent on the retrieval

of valid cases from which a quality solution can be derived by simple substitutions without having

to acquire an explicit model of the domain. The only \model" of the domain should be an implicit

model of translation spread across the entire case-base of previous translations. In our system we

show that by limiting the amount of complex adaptation required, chunk-based substitutions provide

good solutions without resorting to extra knowledge sources for adaptation

The major features of our run-time algorithm for fully-automatic EBMT are the following:

i. A pattern-matching similarity metric which prunes the case-base

ii. Adaptability ranking of retrieved cases to suggest best candidates

iii. Simple adaptation and further ranking of candidates

As the case base is not partitioned in any way beforehand, the run-time similarity metric (i)

must be e�cient at ciphering out the \good" cases from the entire case-base. To combat the needle

in the haystack e�ect, we describe in Section 6.4 how features are promoted in an e�cient manner.

For ranking (ii), the trick is in �nding the most speci�c example speci�cation which matches the

input problem speci�cation especially in all its non-compositional positions. Section 6.3 describes

the two types of adaptation knowledge required by the system. The �rst is Adaptation-Safety

knowledge which predicts whether the necessary changes to a case are likely to render the solution

79

grammatical or not. This knowledge is a combination of the chunk-link strengths of the case and

the similarity of the SL and SL0 strings. We describe the calculation of this information for full-

case reuse and partial-case reuse in Sections 6.3.1 and 6.3.2 respectively. High-scoring cases will be

preferred over low-scoring ones at retrieval time. The second form of adaptation knowledge is what

we call Adaptation-Availability knowledge. For e�ciency, this is only calculated after candidates

have been chosen and it indicates the level of success the system had when adapting chunks with

the only souce of information available to it the cases themselves, i.e. the system-dictionary. This

gives the user a measure of con�dence in the output translation which is desirable if the user is not

pro�cient in the target language. In Section 6.4, the �ltering stages of retrieval are described which

test for Adaptation-Safety knowledge. Section 6.5 describes the actual adaptation of candidates and

the subsequent �ner-grained Adaptation-Availability assessment. This is where translation happens.

Some examples of translation in ReVerb are presented in Section 6.6. Then, by way of evaluation,

Section 6.7 presents a set of experiments translation. Finally, section 6.8 discusses these results.

6.2 Adaptation Guided Retrieval

To appreciate the di�erence between retrieval for similarity and adaptation-guided retrieval consider

the following example. Figure 6.1 depicts typical matches that are computed during the retrieval

stage between an input sentence and two cases from the case base. On similarity grounds alone,

Case-A wins hands down because only one of its chunks does not match. The opposite is true

for Case-B, which would seem to be the poorer candidate for translation. However if we look

to the interlingual mapping patterns for both cases, Case-B now fares much better -it has good

correspondances between all chunks indicating that a compositional transfer took place and hence

that it should be relatively \safe" to adapt chunks of the solution where necessary. Case-A, the

victim of linguistic divergences or lack of linking data, is less adaptable. The e�ect of modifying the

chunk containing the verb \specify" is not determinable.

In general, cases will prove adaptable either if they have very similar surface-level descriptions to

80

speichern

Use your changesto saveThe Save Option to disk

Use to
specify

between the
shapes

Use the
spacing

to
increase

The Offset
Command

between the
shapes

den AbstandlegenMit der Option
Abstand

zwischen den
Formen

Sie fest

ihre
Anderungern

koennenMit der Option
Speichern

auf
Diskette

Sie

CASE-A

CASE-B

INPUT INPUT

the
spacing

The Offset
Command

Figure 6.1: Adaptability versus Similarity in retrieval.

Case-A is more Similar to the Input but Case-B is more adaptable because all its chunks that di�er
from the input, are adaptable. In Case A, it is only necessary to adapt \to specify" but this has not
linked well to the TL, and hence it is dangerous to reuse Case A.

the input speci�cation thus requiring little or no adaptation, or if the case represents a very compo-

sitional translation, that is, lots of variabilised positions which allow for string di�erences, or both

(the measures are not necessarily diametrically opposed). The close string-match scenario produces

translations which mirror the \free translations" present in the corpus. The highly compositional

case is more structure-preserving and is relying on the SL! TL mapping being describable as a

compositional mapping such that adapted sub-parts of the solution can be re-assembled without

boundary friction or violation of underlying linguistic relations.

6.3 Adaptation-Safety Knowledge (Links)

Adaptation-safety knowledge quanti�es the risk involved in choosing a particular case (SL0 $TL0)

given that the SL ! SL0 di�erences must be percolated across these SL0 !TL0 links. It is related

to the compositionality of the solution. The chunk linking scores are the key to compositionality

and hence, adaptability. The template storage mechanism described in Chapter 4.6 already enforces

non-compositional components to show their surface details on a template, so in a full-case matching

81

SL

SL'

TL'

X

X

X X X

Y X Y

1 2 3 4 5

SAME ADAPT IGNORE ADAPTZERO IGNOREZERO

Figure 6.2: The �ve possible scenarios in the SL ! SL0 ! TL0 interface for full-case matching.

Operations Ignore and AdaptZero will only arise if the Adaptability Threshold is set to 0. At a
threshold of above 0, the input will not unify with zero-mapping SL0 chunks.

scenario, simple uni�cation ensures that the example speci�cation will not unify with the input string

in these positions unless the surface details are exactly matching or are deemed similar enough to

allow the equivalent target solution to remain un-adapted. If a case only matches partially then

extra information has to be calculated as described in Section 6.3.2 below.

6.3.1 Full-Case Adaptation Safety Knowledge

When a problem is fully covered by a case then the target solution is created by substitutions alone.

The only possible structure-changing operations are Adapt or AdaptZero as shown in Figure 6.2.

To ensure a basic level of \safety", a threshold is set before the retriever starts to work, such that

only those chunks above this level will have their words variabilised thus allowing a new problem to

unify. Figure 6.3 shows the attempted uni�cation of the input string with the example at di�erent

levels of threshold-determined adaptability. This simple thresholding scheme ensures that, at given

levels of adaptability, certain templates will not unify with the input speci�cation. This in e�ect

means that, in order to replicate the problem solution, the adapter will not be asked to percolate

changes to TL via unreliable links. Raising the level of adaptability required increases the speci�city

of the problem speci�cation and is analogous to increasing the level of similarity except that this

time the similarity is more than skin deep | it looks beneath the surface at the compositionality of

82

Use the
spacing

to
specify

The Offset
Command

between the
shapes

den
Abstand

legenMit der Option
Abstand

zwischen den
Formen

Sie fest

0.75 2 20.25

2

0

0.25

0.75

0.50

1.0

1.25

1.50

1.75

>2

A
d
a
p
t
a
b
i
l
i
t
y

T
h
r
e
s
h
o
l
d

Use OBJto
specify

The Offset
Command ADVL

legenMit der Option
Abstand

Sie fest

0.75 2 20.25

ADVLOBJ

Use OBJOBJ ADVL

Sie fest

0.75 2 20.25

ADVLOBJ

FMAINV OBJ-FMAINVOBJ ADVL

Sie fest

0.75 2 20.25

ADVLOBJ

ADVLADVL legen

to
specify

ADVL +FMAINV

Figure 6.3: Abstraction of a Case at di�erent Adaptability Thresholds.

If the threshold is lower than the link-score of a particular chunk, then it can be variabilised.

83

SL

SL'

TL'

X

X

X X X

Y X Y

X

1 2 3 4 5 6 7 8

SAME ADAPT IGNORE ADAPTZERO ADD DELETE IGNORE DELETEZERO

Figure 6.4: The 8 possible matching scenarios in the SL! SL0 ! TL0 interface when partial case
matching is permitted.

the links to the target speci�cation.

6.3.2 Partial-Case Adaptation Safety Knowledge

If a single, unifying case does not exist then the process of translation becomes an even more extreme

form of \adaptation" than is required when the two problem speci�cations actually unify. Now there

will be some SL chunks which have no SL0 counterparts let alone adaptable ones! In fact, with the

bijective chunk mapping patterns, there are eight possible scenarios as depicted in Figure 6.4.

Situations 1 to 3 (and optionally, 4) can occur in a whole-case scenario, i.e, with uni�cation.

Situations 5|7 do not arise in whole-case reuse because they involve some deviation between SL

and SL0. Situation 8 can also arise in full-case matching but there it is called IgnoreZero. This is

because in full-case matching, the TL0 non-link is likely to still be part of the solution, whereas in

partial-case matching, the non-link may occur in a portion of the TL0 whose SL0 equivalent does not

even cover the input string, SL. In 5, The input chunk has no counterpart in the case and so the chunk

must be somehow Added to the target solution but this time without guidance from the case. In both

6 and 7, the case problem speci�cation contains a chunk which is not in the input. The SL0 chunk in

6 has a counterpart in the TL0 solution which must be Deleted. The SL0 chunk in 7 has no obvious

counterpart in the solution, and it will simply be ignored, but this is less desirable as it indicates that

84

SL

SL'

TL'

Figure 6.5: Delete Operation in partial-case matching.

This is dangerous, due to \crossing". ReVerb penalises such Delete operations highly.

some complex transfer took place which escapes description by the chunk links and that the elements

may still be present in the TL0 which link invisibly to this SL chunk. Finally, from the TL0 point

of view, there may be non maps, as shown in 8. Deleting these, using DeleteZero may upset the

target's grammaticality but including them may be including extra information not required by the

input which confuses the translation. We have developed meta-adaptation heuristics which delete

such chunks if they are obvious content words and leave them there if they are \helper" function

words. The distinction is based purely on frequencies of non-mapping words in the dictionary and

not on any outside knowledge.

It will now be shown why some of these adaptations are dangerous. In Figure 6.5 below, we

wish to delete the extra shaded chunk in SL0 which corresponds to nothing in the input, yet due

to crossing, this e�ects the resultant target's canonical ordering. This problem is dealt with in

many systems by imposing a crossing constraint, disallowing this sort of SL!SL0 matching. In the

methodologies of [KKM92, BF95, Wu95] for example, the TL0 would be split into three fragments.

ReVerb on the other hand, allows it, but at a penalty higher than normal for a Delete operation.

Thus the overall assessment of Adaptability is calculated by summing all the Deletions, Additions,

AdaptZeros, DeleteZeros, and dividing the total number of good matches (Adapts or Sames) by this

85

number, as shown in equation (6.1)

Adapt+ Same

Adaptzero+Deletezero+Delete+DeleteCrossing � 2 +Add
(6.1)

This is a simple metric which has many adjustable parameters such as the penalty weighting for each

operation. In all the following experiments the weightings were kept equal, except for Deletions over

Crossings, which were doubly penalised. Ignores are not penalised. The adaptability assessment for

an input and case pair usually yields a score between 0.2 and 1.

6.3.3 Chunk-level Adaptation Knowledge (Dictionary)

Adapting chunks is performed in the same manner regardless of whether the solution is whole-case

or partial. While ReVerb's Adaptation-Safety knowledge is created cheaply via uni�cation of the

input template with the source speci�cation template, the second type of knowledge is case-base

dependent and more expensive to compute. Therefore this knowledge is used only to assess the best

n matches from the adaptation guided retrieval stage. This could also be seen as the �nal stage

in translation before the translation is output to the user. At this stage the adapter, which could

equally be called \the translator" is endeavouring to choose an SL-chunk which not only matches

on the SL side but which also matches on the TL side. For instance, given the input sentence SL

and the SL0 TL0 below, :

SL ..., allowing you to restore an object to its original location

SL0 ..., allowing you to restore an object to its original size.

TL0 ..., so dass Sie die Originalgrosse eines Objektes wiederherstellen kann.

..., so that you the original-size of-an object restore can

It is wiser to replace the pair:

(to its original size ADVL) ! (die Originalgrosse OBJ)

with:

86

(to its original location ADVL) ! (der Originalplatz OBJ)

than it is to replace it with:

(to its original location ADVL)! (zu seinem OriginalPlatz ADVL)

The actual directive to the dictionary is:

dict(to its original location, SL:ADVL, TL:OBJ)

The resulting TL strings would be as follows, where the �rst is grammatical and meaningful in

German whereas the second is dubious:

ADVL ! OBJ

So dass Sie (den Originalplatz) eines Objektes wiederherstellen k�onnen.

so that you (the original-location) of-an object restore can.

ADVL ! ADVL

? So dass Sie (zu seinem Originalplatz) eines Objektes wiederherstellen k�onnen.

so that you (to its original-location) of-an object restore can.

TL words from chunks of similar syntactic functionality1 are preferred for replacing adaptation-

needy words in the TL case, with a subsequent relaxing of this constraint if no such items are found.

The heuristics in Figure 6.6 show the decision process. The parameters which have been relaxed

(are not required to match) in the dictionary are highlighted in boldface with a corresponding

adaptability score on the right hand side:

Each constraint relaxation for the dictionary lookup procedure has an associated penalty as sum-

marised in Figure 6.6. Failing a match under these circumstances, the next preference is to �nd a

chunk containing a similar, albeit unequal, string of words and with the same syntactic functions in

SL and TL, as in the chosen case to adapt. The �rst place to look for such a chunk is in the record

1ReVerb is capable of using the surrounding lexical content and syntactic functionality to determine the best chunk
to use for substitutions. However our data-set was not large enough in our tests to render this option bene�cial.

87

Dictionary Lookup Constraints Adaptability Score
dict(I-String, SL-String, SL-SynFun, TL-SynFun) 1
dict(I-String, SL-String, SL-SynFun, TL-SynFun) 0.5
dict(I-String, SL-String, SL-SynFun, TL-SynFun) 0.5
dict(I-String, SL-String, SL-SynFun, TL-SynFun) 0.25

Figure 6.6: Dictionary-based substitutions with various degrees of constraint relaxation.

The constraints are indicated in bold such that these can di�er from the desired values. Each con-
straint relaxation has an associated Adaptation-Availability score, which decreases as constraints on
the dictionary lookup are relaxed.

of parsing, which indicates the chunk originally used to assign syntactic functionality to the input

words at that position. The parse trace will indicate the best chunk match for this position in the

input string, and it is this which is used as the basis for \keyhole" adaptation.

6.3.4 Chunk-internal Adaptation Knowledge

Keyhole adaptation is adaptation of the internals of a chunk. This is a form of decomposition at a

lower level than the chunk-linking description and can have undesirable e�ects if chunks of an already

low adaptability are altered. Often the poor linkage of a chunk is due to 1-to-n word mapping which

in turn is a consequence of lexical gaps (Chapter 3) in either of the languages. For example, the

English verb weld maps to two separate chunks in German miteinander (together) and verschmelzen

(melt). The latter chunk receives the link to weld on account of it appearing more frequently in

its context, whereas the former is left as a stray chunk in TL. Altering weld to say delete in the

adaptation fails to delete the extra dependent modi�er miteinander.

You can weld objects with this option.

You can delete objects with this option.

Mit dieser Option k�onnen Sie Objekte miteinander verschmelzen.

Mit dieser Option k�onnen Sie Objekte miteinander l�oschen.

With this option can you objects together weld/ delete

88

However, often the adaptation of a chunk only has a chunk-internal e�ect. This means that all

the words inside each chunk map only to the chunk to which they are linked. In this domain, chunk

internal adaptation is often merely the substitution of a single noun or adjective. If there is more

than one word in a chunk then the words have to be linked chunk internally2. The system locates

the word(s) to be adapted in the TL chunk and leaves the rest untouched thus retaining the original

context as much as possible. Word adaptations in the middle of a multi-word chunk are preferable

to those at the edges to lessen the e�ects of boundary friction between chunks. The partial keyhole

adaptation of a chunk is shown below:

SL: (the Printing process)

SL0: (the scanner calibration process)

TL0: (mit der Scanner Kalibrierung)

This results in a word level directive of:

adapt(Printing, (Scanner Calibration))

which in turn calls dict with the parameters (Printing,n,(n n)) where now POS information

of the SL word and TL words (arguments 2 and 3 respectively) is used to contextualise the dictio-

nary lookup. The �nal result is the TL solution chunk with the word substitution, for example:

TL: (mit der Drucken)

Note that there is a case agreement problem; der is accusatively marked when it should be da-

tive. This is a side-e�ect of adapting inside a chunk. Had the dictionary lookup succeeded on a

full-chunk basis as in Section 4.5, then this problem would not arise. Hence, keyhole adaptation

2Word-linking speci�c to this example has already been performed by the linker at the learning stage, but such
information is not stored in the system as it rarely gets reused.

89

receives a lower adaptability score. Finally, if the dictionary did not contain any equivalents for

Printing, it will inform the user of its gap by printing the following as part of the solution:

(mit der �Printing process�).

6.4 Retrieval

An overall view of the retrieval process is shown in Figure 6.7. The system �rst tries to �nd a single

matching by uni�cation (Section 6.4.1). This involves using the input template as a key for hash-

table lookup. The threshold can be set to any level of adaptability. The retriever then passes the

templates through an Adaptation-Safety Filter (Section 6.4.2), whose threshold of adaptability is

set by the user at run time depending on the amount of data available in the case-base. This ensures

that only adaptable cases remain to be re�ned further if necessary, hence the name adaptation

guided retrieval. Should one or more full matches occur at the desired level of adaptability then

these are assessed for adaptability and similarity and passed to the adaptor.

If the retriever fails to �nd a complete match at the desired level of adaptability then the partial-

case retrieval mechanism comes into force. This �rst �nds cases which are syntactically similar to

the input template as described in Section 6.5.1 and then searches the �ltered cases for the best

(most adaptable) case according to the global adaptability scoring mechanism outlined in Section

6.3.2.

6.4.1 Full-Case Retrieval

The �rst step of the retriever is to ascertain whether at least one single case can cover the input

problem. If so, the retriever will perform, and score the adaptation of each and present the result

to the user, as described in the next section. Before determining the level of thresholding required

for a match however, for e�ciency reasons the retriever �rst tests whether the templates will unify

at all, i.e. at their most general level of description. The template for matching now only contains

90

PARSING

Case-Base

Input Source
 String

SL
template

UNIFICATION?

YES

NO

Adaptability
Threshold

THRESHOLD = 0?

NO

Lower
Threshold

YES
PARTIAL
MATCHING

ADAPTABILITY
RANKING

ADAPTATION

Figure 6.7: Retrieval Stages in ReVerb.

91

syntactic functional information in terms of an ordered
at structure of syntactic-function labels

and variable pairs. Cases are automatically stored o�-line in a hash table using their most general

template as a key. This is (optionally) done at case-storage time by demons. At run time, the

retriever now only needs to perform a hash lookup using the input template as a key in order to

retrieve a set of structurally matching cases. All cases which share the same basic syntactic structure

(same syntactic functions in the same order) will appear under the same key in the hash table. As

there is repetition in the sentences which belong to a domain, the hash table grows at a less than

linear rate3

6.4.2 Full-case Adaptability Assessment

The matching cases are �rst assessed and ranked for global adaptability according to equation (6.2)

below. If a case chunk requires no adaptation because of a complete string match as well as syntactic

functional matching then a score of 3 is given to this match. Otherwise the adaptation score is taken

to be the chunk link score as determined by the Linker (cf. Section 5.5).

P
i2case linkscorei

jChunksj
(6.2)

linkscorei =

8>><
>>:

3 ifInputChunki = CaseChunki;

ChunkScore otherwise:

(6.3)

This means that the attempt to adapt a non-mapping chunk (e.g. \use" in Section 6.3.1 above,

will be given a score of zero, as this is the linkscore of any non-linked chunk. This will decrease

greatly the Adaptability Score of the case. Adaptation scores will range between 0 and 2, as this

is the range of linkscore values for a given chunk (see Section 4.6). Chunks with link scores higher

than 1 have similar syntactic functions in their respective languages, and the closer to 2 this �gure

is, the more similar the lexical content of the linked chunks, as determined by the system dictionary.

3In a case-base of 750 cases taken from the CorelDRAW corpus, approximately 20% were stored under the same
SL template (key) as at least one other case where the SL was English.

92

This score is pushed right up to 3 if no adaptation is required, i.e. if there is a complete SL ! SL0

match

6.4.3 Full-Case Translation Assessment

To include the case-base dependent measure of adaptation availability, each solution is ranked ac-

cording to equation (6.4) below. This predicts how reliable the actual substitution is.

P
i2Adaptee TranslationAvailabilityi+KeyholeAdaptationi

jAdapteeChunksj
(6.4)

The higher the score, the more reliable ReVerb considers the translation to be according to the

knowledge it has available to it, that is, the corpus alone.

6.5 Partial-Case Reuse

6.5.1 Feature Promotion

The Retriever uses the Input template as the basis for feature promotion. Each cell of the template

activates all chunks in the case-base which match it in syntactic functionality and linear-order. No

case will match exactly for otherwise it would have uni�ed but it is quite possible that many near

matches exist. This pattern matching scheme is
exible enough to allow gaps of arbitrary length

but crossovers4 will be penalised. The best n-matches are retrieved and assessed for adaptability as

explained below.

6.5.2 Adaptability Assessment

P
i2case linkscorei

Adaptzero+Deletezero+Delete+Add
(6.5)

4If English were not the source language, crossovers may not be detrimental to the accuracy of the retrieval for in
many languages word order is not the primary encoder of meaning. Hence this constraint can easily be relaxed by
allowing near-matches in linear-ordering to be valid.

93

linkscorei =

8>><
>>:

3 ifInputChunki = CaseChunki;

ChunkScore otherwise:

(6.6)

6.5.3 Translation Assessment

The translation of partial case solutions are judged in the same way as full cases and the assessment

of (6.2) is repreated here as (6.7) for the sake of clarity.

P
i2Adaptee TranslationAvailabilityi+KeyholeAdaptationi

jAdapteeChunksj
(6.7)

6.6 Examples

A diagrammatic view of a translation retrieval episode is provided here for a) a full case solution as

in Figure 6.8 and b), a partial-case solution as in Figure 6.9. In Figure 6.8, the SL ! SL0 full-case

match is strong; only two chunks di�er | the �rst, denoting \choose", and the third, \to increase".

However, the �rst chunk of the SL0, \Use", which requires adaptation, has no obvious counterpart in

the TL0. It has instead been translated as \Mit .." (with..) which is contained within a chunk which

links to the second SL0 chunk, \The O�set Command". The AdaptZero operation would translate

\Use" nevertheless, and join it to the beginning of the TL solution. For the other adaptation, that of

\to increase" ! \to specify", there is a link to the target TL0, namely the chunk \legen". However

this is a poor link because \legen" is a separable verb and its dependent particle \fest" is stranded

at the end of the TL0. It will be IgnoreZeroed which means that it will surface in the TL solution

exactly as it did in the TL0, but penalised. As it is not a correct particle in the translation of \to

specify", which is not a separable verb, this will cause an error (extra word) in the TL solution. The

resulting TL solution that would be expected in this scenario is (1) below:

(1) (W�ahlen)(Mit der Option Abstand)(vermehren)(Sie)(den Abstand)(zwischen den Formen)(fest)

(1)0 (Choose) (with the O�set Command)(increase)(you)(the distance)(between the shapes) [particle]

94

Use the
spacing

to
specify

The Offset
Command

between the
shapes

Choose the
spacing

to
increase

The Offset
Command

between the
shapes

den
Abstand

legenMit der Option
Abstand

zwischen den
Formen

Sie fest

ADAPTZERO ADAPTSAME SAME SAMEIGNORE IGNORE

Figure 6.8: A Full-Case Translation Episode.

(1)00 Choose Increase the distance between the shapes with the O�set Command [particle]

The resulting translation in (1) is equivalent to (1)00 in which there are two extra words, \Choose"

and the particle. The adaptor did not realise that in this context, \use" and \choose" could be trans-

lated in the same way and hence be ignored. Only a word-based similarity metric would achieve this.

Instead, ReVerb penalises such adaptations so heavily that other cases would be favoured before

this one. This is a safer policy as \use" and \choose" may not always be translatable in the same

way, and it is quite reasonable to expect this template shape to recur frequently in the data of the

test corpus. The second example, in Figure 6.9 is actually extremely poor, and it demonstrates the

full-range of adaptation operations which may be required to produce a TL. The �rst half of the SL

chunks are covered by the chosen case. The blackened chunks in the SL0 and TL0 have no equivalents

in the opposite language according to the Linker. The blackened chunks in the input SL have no

covering chunks in the SL0 so these must be Added to the solution TL eventually. Any non-linking

SL0 chunks are to be AdaptZeroed. This means the SL chunk is looked up in the dictionary and

simply added to the solution where an non-linking chunk can be found. The non-linking TL0 chunks

themselves will be DeleteZeroed, i.e. deleted. Any non-linking SL0 chunks which are outside of the

partial match (e.g. \it" in Figure 6.9) are IgnoreZeroed, i.e. Ignored, but penalised, unlike the

Ignore operation (see Figure 6.4).

95

When

where

differ

to see

easy

becomes
it

to the same
model

mapped

are

color
spaces

Once

to its original object
type

it
to
return

possible

is
it

to
curves

converted

is

an
object

not

Nachdem

wurde

ungewandelt

in kurven

ein Object

wieder

kann

es

den ursprunglichen
Objekt

annehmen

the capabilities
of
different devices

ADAPT ADAPT ADAPT

ADAPT ADAPT

DELETE-ZERO

ADAPT

DELETE

nicht

DELETE-ZERO

ADAPT-ZERO

ADAPT-ZERO

IGNORE

ADD

ADD

ADD

ADAPT ADAPT

ADAPT-ZERO

Figure 6.9: A Partial Case Translation Episode.

96

6.7 Evaluation of Adaptation-Guided Retrieval

This section describes the results of both types of translation | full-case and partial | which the

system performed on the input data at di�erent levels of Adaptability.

6.7.1 Inputting the test-data

A set of 90 input sentences was taken from the English Corel Draw (v7) manual. For each sentence,

the best two cases would be retrieved so that a total of 180 translations were produced. The 90

sentences were chosen at random, but they were all between 4 and 25 words long. The �les used were

not from the equivalent part of the previous version of the manual, which the system was trained

on, and they contained much new terminology. We had access to the equivalent German sentences,

which allowed us to do a manual comparison of the German sentences that ReVerb was producing.

It was not uncommon for the system to produce reasonable paraphrases of the input sentences which

di�ered quite extensively from the human translations, therefore these could not be used as part

of an automatic evaluation measure. Each sentence retrieved the two highest scoring cases on the

basis of the Adaptation Safety scoring (Section 6.3). The output of 180 sentences was examined by

a bi-lingual evaluator. The evaluator speci�ed for each translation the necessary changes to render

it into grammatical form conveying all the information in the input problem string. Errors occurred

at both the chunk and word level. The chunk errors noted were the following:

� chunk-order errors

� missing chunks

� extra chunks

All chunk errors were assigned a penalty of 1. These errors result from adapting poorly link-

ing chunks, and all the operations described in section 6.3, namely, Delete, Add, DeleteZero,

AddZero and IgnoreZero. In addition, the performance of the dictionary was assessed in terms of

the grammaticality and information content of the substitutions (whether whole-chunk or \keyhole"

as described in Section 6.4. The errors were classi�ed into the following types:

97

� word-order errors within chunk

� missing word

� extra word(s)

� n-to-1 or 1-to-n errors

� incorrect translation

� POS error

Although these errors were sometimes very minor in hindsight, it still takes a translator time and

e�ort to identify and correct each one, hence in the spirit of creating a tool that quanti�es how much

post-editing work is really necessary, they were all assigned a score of 1. The chunks errors are a

function of the cases themselves and the input sentence, and we would expect them to be distributed

according to the adaptability score of the cases. The second error group is more arbitrary as it

depends on the input sentence words being present in the system in the right context. An unknown

word was recorded as being a 'missing word' error.

6.8 Discussion

As predicted in the previous Section, these results show a steady increase in accuracy as the Adapt-

ability Score increases (see Figure 6.10). The overall error rate, including unknown words tended

to diminish as more adaptable cases were reused. This is because the highly adaptable cases of-

ten received their high scores by virtue of the fact that very little adaptation was required (i.e.

high similarity). The retrievals around the half-way mark, that is from an adaptability score of

0.7 to 1.0 had
uctuating numbers of errors, but once the number of exact matches and adaptable

chunks (Same, Adapt) together exceeded the number of badly adaptable chunks (AdaptZero, Add,

Delete), i.e. any value over 1, the performance improved dramatically. The coverage of ReVerb

degrades gracefully, that is, at no point does it refuse to retrieve a sentence. Many of the input

words may not be adaptable and will be returned as English. Thus, the less the systems can adapt

98

Translation Results

Adaptability Score

M
ea

n
 N

o
. o

f
E

rr
o

rs

0.00

1.00

2.00

3.00

4.00

5.00

6.00
0.

00

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

1.
10

1.
20

1.
30

1.
40

1.
50 1.

6

1.
70

Total Errors

Global Chunk Errors

Figure 6.10: Results of Translation of 180 sentences at Di�erent Levels of Adaptability.

the sentence, the more Source-language-like the translation will be. The higher scoring retrievals

result in sentences which capture the stylistics and idioms of the German expressions available in the

case base The results here show that performance improves in relation to the systems adaptability

calculations, and hence, that adaptability is a good indicator of the usefulness of a case for EBMT.

Bilingual readers can judge for themselves the usefulness of cases retrieved, as solutions with both

Adaptability Scores and Translation Scores are provided in Appendix D.

Conclusion

The question for EBMT retrieval is what level of abstraction is necessary to extract structures from

the case base whose TL components will re
ect the meaning of the entire SL structure in grammatical

form while maintaining a reasonable retrieval cost. Indexes should preferably delimit the composable

parts of a problem and solution and inhibit the splitting up of a sentence in these areas. A method for

exploiting the similarity and adaptability information simultaneously in retrieval has been described.

The system's performance embodying this methodology has been shown to degrade gracefully and

99

in tune with the adaptability assessment performed at retrieval time. Even when the case-base is

relatively small (800 cases), the output indicates that this system would be useful to translators

in this domain. Also, the guarantee of accuracy it o�ers at high levels of adaptability mean that,

on scaling up the case-base, high-quality automatic translations would be possible for texts of this

domain.

100

Chapter 7

Summary and Outlook

7.1 Introduction

In Part I of this thesis, EBMT was examined in context of theoretical and practical approaches

to MT to highlight the merits of a CBR approach to translation reuse. Part II presented a novel

solution to the case-creation knowledge bottleneck using a data-oriented parser and linker. Part III

described Adaptation-Guided Retrieval (AGR) showing how cautious reuse of translations results

in very e�ective exploitation of the examples present in the case base.

Part I: Motivation and Application

Chapter 2 provided the background against which to introduce a novel approach to EBMT. The

spectrum of EBMT was found to contain a "gap". This rift spanned from the knowledge-rich ap-

proaches which used EBMT in conjunction with dictionaries and thesauri to retrieve and patch

together phrases in context, to the memory-based (MBMT) approaches which retrieve many frag-

ments on the basis of surface similarity. CBR is a methodology which relies on cases having structure

(unlike MBMT) but where the domain knowledge is only inferred from the cases themselves (as op-

posed to \thesaurus-based" EBMT). In introducing a CBR philosophy to EBMT, a methodology is

proposed wherein the only knowledge for translation is stored in cases alone, and yet these cases are

101

structured enough to provide some generalisation of patterns in and across languages. The actual

patterns which can be expected to arise in \real" data, for example texts from the localisation do-

main, were investigated in Chapter 3. Here it was concluded by analysis of a representative sample,

that a
exible multi-layer representation at a shallow syntactic level of abstraction would capture

the range of divergences evident in the data.

Part II: Automatic Creation of an EBMT Case Base.

Chapter 4 presented the data structures and memory organisation of the ReVerb system, which

supports incremental updating of knowledge at three levels of description - word, chunk and sentence.

The information
ow between such frames in the memory give rise to a host of knowledge sources

for EBMT which re
ect the tendencies present in the training corpus. Chapter 5 showed that an

e�ective an language-independent data-oriented parser and linker for text from a similar corpus

could be devised, which in turn allows the creation of more cases. The symbiosis between case

storage and creation ensures that there is a gradual, steady improvement in performance as more

cases are created.

Part III: Adaptation Guided Retrieval for full and partial case matches.

In the �nal part of the thesis, a detailed mechanism for the assessment of adaptability of cases on

a structural basis was presented. This includes both full and partially matching cases. A templati-

sation scheme was proposed whereby cases are generalised on the basis of their individual linking

patterns. A novel thresholding �lter ensures that a user-determined adaptability score can be im-

posed before retrieval to ensure a certain level of adaptability of the cases retrieved. Candidates

are thus chosen on the basis of adaptability and similarity rather than similarity alone. A means of

assessing the adaptation after candidate selection (as in other EBMT systems) was also presented

as an extra indicator of translation reliability. The feature promotion and adaptability �ltering

stages were organised schematically to ensure maximum e�ciency at run-time. Base-�ltering before

adaptability assessment minimised the number of cases to be assessed, for both full and partial

102

matching. The AGR methodology was tested in the �nal sections. A correlation was found between

Adaptability and Accuracy of the solutions. This demonstrated that the Adaptation-Guided Re-

trieval methodology is a highly e�ective means of producing the accurate translations even with a

very small training corpus.

Outlook

The solution proposed here is a wide-ranging rethink on the reuse of examples in translation. It

encompassed the full cycle of translation and in each sub-area, possibilities for future exploration

and improvement became evident. The most central of these issues include the following:

� The idea of reusing translations on the basis of the trace between SL0 and TL0 as well as

SL0! SL0 similarity does not in itself exclude memory based approaches to Adaptation-Guided

Retrieval. This could be attempted without the limited form of linguistic abstraction inherent

in ReVerb, for example, by using a Memory-based classi�er algorithm like k-NN.

� As the system is bidirectional, a procedure for automatic evaluation of the translation may be

to backtranslate the TL, and compare it against the SL. If this results in a paraphrase of SL,

call it SL00, then some means of assessing the similarity of SL and SL00 must be devised.

� The granularity of chunks at the syntactic functional level may not be the only subsentential

linking pattern applicable to this system. This may be suitable for Indo-European languages

but alternative sub-sentential alignments may prove more bene�cial when dealing with less

related language pairs (e.g. English, Japanese). At any rate, the system should be tested on a

variety of language pairs and domains before any claims about universality of the bene�ts of

AGR in EBMT can be made.

� Information at the sub-word level would increase the generality and accuracy of the dictionary

and linker. A word frame would thus refer to a morphological root and point to all its

morphological variants in the case base. Other forms of word decomposition (e.g. case marking,

gender marking) would be useful particularly for languages with a richer morphology than

103

English.

� The system has the potential to learn from its own translation e�orts. by storing the result

of translation (SL, TL). This would require some automatic checking of the TL and the util-

ity problem would have to be addressed so as to discard cases which no longer provide new

information to the system.

104

Part IV

Appendices

105

Appendix A

A Sample Case

This shows one case from the training data (CorelDRAW v.5). It was created by ReVerb but

subsequently checked manually for any alignment errors. The sentence pair it represents is:

(Click) (on the color) (you) (want) (or) (choose) (More) (to display) (another dialog box) (where)

(you) (can) (create) (your own colors) (and) (select) (them) (by name)

(Klicken) (Sie) (auf die gewuenschte Farbe) (oder) (auf Mehr) (um) (ein dialogfeld) (zu o�nen)

(in dem) (Sie) (eigene Farben) (einstellen) (und) (nach Namen) (auswaehlen) (koennen)

(krell-frame case-C15

(super case)

(source-language English)

(target-language German)

(chunk chunk-C15-1 chunk-C15-2

chunk-C15-3 chunk-C15-4 chunk-C15-5

106

chunk-C15-6 chunk-C15-7 chunk-C15-8

chunk-C15-9 chunk-C15-10 chunk-C15-11

chunk-C15-12 chunk-C15-13 chunk-C15-14

chunk-C15-15 chunk-C15-16 chunk-C15-17

chunk-C15-18 chunk-C15-19 chunk-C15-20))

(krell-frame chunk-C15-1

(super chunk)

(SOURCE-SYN-FUNCTION @ADVL)

(SOURCE-LIN-ORDER 25)

(SOURCE-POS N)

(MAPPING 1=6)

(SOURCE-TEXT BY NAME)

(TARGET-SYN-FUNCTION @ADVL)

(TARGET-TEXT NACH NAMEN)

(TARGET-LIN-ORDER 15)

(TARGET-POS PREP N))

(krell-frame chunk-C15-2

(super chunk)

(SOURCE-SYN-FUNCTION @-FMAINV)

(SOURCE-LIN-ORDER 23)

(SOURCE-POS V)

(MAPPING 3=2)

(SOURCE-TEXT SELECT)

(TARGET-SYN-FUNCTION @-FMAINV)

(TARGET-TEXT AUSWAEHLEN)

107

(TARGET-LIN-ORDER 16)

(TARGET-POS V))

(krell-frame chunk-C15-3

(super chunk)

(SOURCE-SYN-FUNCTION @CC)

(SOURCE-LIN-ORDER 22)

(SOURCE-POS CC)

(MAPPING 3=2)

(SOURCE-TEXT AND)

(TARGET-SYN-FUNCTION @CC)

(TARGET-TEXT UND)

(TARGET-LIN-ORDER 14)

(TARGET-POS CC))

(krell-frame chunk-C15-4

(super chunk)

(SOURCE-SYN-FUNCTION @OBJ)

(SOURCE-LIN-ORDER 19)

(SOURCE-POS PRON N)

(MAPPING 1=3)

(SOURCE-TEXT YOUR OWN COLORS)

(TARGET-SYN-FUNCTION @OBJ)

(TARGET-TEXT EIGENE FARBEN)

(TARGET-LIN-ORDER 12)

(TARGET-POS ADJ N))

108

(krell-frame chunk-C15-5

(super chunk)

(SOURCE-SYN-FUNCTION @-FMAINV)

(SOURCE-LIN-ORDER 18)

(SOURCE-POS V)

(MAPPING 9=8)

(SOURCE-TEXT CREATE)

(TARGET-SYN-FUNCTION @-FMAINV)

(TARGET-TEXT ERSTELLEN)

(TARGET-LIN-ORDER 13)

(TARGET-POS V))

(krell-frame chunk-C15-6

(super chunk)

(SOURCE-SYN-FUNCTION @+FAUXV)

(SOURCE-LIN-ORDER 17)

(SOURCE-POS V)

(MAPPING 3=2)

(SOURCE-TEXT CAN)

(TARGET-SYN-FUNCTION @+FAUXV)

(TARGET-TEXT KOENNEN)

(TARGET-LIN-ORDER 17)

(TARGET-POS V AUXMOD))

(krell-frame chunk-C15-7

(super chunk)

(SOURCE-SYN-FUNCTION @SUBJ)

109

(SOURCE-LIN-ORDER 16)

(SOURCE-POS PRON)

(MAPPING 1=2)

(SOURCE-TEXT YOU)

(TARGET-SYN-FUNCTION @SUBJ)

(TARGET-TEXT SIE)

(TARGET-LIN-ORDER 11)

(TARGET-POS PRON))

(krell-frame chunk-C15-8 (super chunk)

(SOURCE-SYN-FUNCTION @ADVL)

(SOURCE-LIN-ORDER 15)

(SOURCE-POS ADV)

(MAPPING 7=16)

(SOURCE-TEXT WHERE)

(TARGET-SYN-FUNCTION @ADVL)

(TARGET-TEXT IN DEM)

(TARGET-LIN-ORDER 10)

(TARGET-POS PREP DET))

(krell-frame chunk-C15-9

(super chunk)

(SOURCE-SYN-FUNCTION @OBJ)

(SOURCE-LIN-ORDER 12)

(SOURCE-POS N N)

(MAPPING 3=8)

(SOURCE-TEXT ANOTHER DIALOG BOX)

110

(TARGET-SYN-FUNCTION @OBJ)

(TARGET-TEXT EIN DIALOGFELD)

(TARGET-LIN-ORDER 7)

(TARGET-POS DET N))

(krell-frame chunk-C15-10

(super chunk)

(SOURCE-SYN-FUNCTION @-FMAINV)

(SOURCE-LIN-ORDER 10)

(SOURCE-POS V)

(MAPPING 9=16)

(SOURCE-TEXT TO DISPLAY)

(TARGET-SYN-FUNCTION @INFMARK>)

(TARGET-TEXT ZU OEFFNEN)

(TARGET-LIN-ORDER 8)

(TARGET-POS INFMARK V))

(krell-frame chunk-C15-11

(super chunk)

(SOURCE-SYN-FUNCTION @OBJ)

(SOURCE-LIN-ORDER 9)

(SOURCE-POS PRON)

(MAPPING 1=2)

(SOURCE-TEXT MORE)

(TARGET-SYN-FUNCTION @ADVL)

(TARGET-TEXT AUF MEHR)

(TARGET-LIN-ORDER 5)

111

(TARGET-POS PREP N))

(krell-frame chunk-C15-12

(super chunk)

(SOURCE-SYN-FUNCTION @CC)

(SOURCE-LIN-ORDER 7)

(SOURCE-POS CC)

(MAPPING 3=2)

(SOURCE-TEXT OR)

(TARGET-SYN-FUNCTION @CC)

(TARGET-TEXT ODER)

(TARGET-LIN-ORDER 4)

(TARGET-POS CC))

(krell-frame chunk-C15-13

(super chunk)

(SOURCE-SYN-FUNCTION @ADVL)

(SOURCE-LIN-ORDER 2)

(SOURCE-POS N)

(MAPPING 13=252)

(SOURCE-TEXT ON THE COLOR)

(TARGET-SYN-FUNCTION @ADVL)

(TARGET-TEXT AUF DIE GEWUENSCHTE FARBE)

(TARGET-LIN-ORDER 3)

(TARGET-POS PREP DET ADJ N))

(krell-frame chunk-C15-14

112

(super chunk)

(SOURCE-SYN-FUNCTION @+FMAINV)

(SOURCE-LIN-ORDER 1)

(SOURCE-POS V)

(MAPPING 3=2)

(SOURCE-TEXT CLICK)

(TARGET-SYN-FUNCTION @+FMAINV)

(TARGET-TEXT KLICKEN)

(TARGET-LIN-ORDER 1)

(TARGET-POS V IMP))

(krell-frame chunk-C15-15

(super chunk)

(SOURCE-SYN-FUNCTION @OBJ)

(SOURCE-LIN-ORDER 24)

(SOURCE-POS PRON)

(MAPPING 0)

(SOURCE-TEXT THEM)

(TARGET-SYN-FUNCTION <NONE>)

(TARGET-TEXT <NONE>)

(TARGET-LIN-ORDER <NONE>)

(TARGET-POS <NONE>))

(krell-frame chunk-C15-16

(super chunk)

(SOURCE-SYN-FUNCTION @+FMAINV)

(SOURCE-LIN-ORDER 8)

113

(SOURCE-POS V)

(MAPPING 0)

(SOURCE-TEXT CHOOSE)

(TARGET-SYN-FUNCTION <NONE>)

(TARGET-TEXT <NONE>)

(TARGET-LIN-ORDER <NONE>)

(TARGET-POS <NONE>))

(krell-frame chunk-C15-17

(super chunk)

(SOURCE-SYN-FUNCTION @+FMAINV)

(SOURCE-LIN-ORDER 6)

(SOURCE-POS V)

(MAPPING 0)

(HEAD WANT)

(TARGET-SYN-FUNCTION <NONE>)

(TARGET-TEXT <NONE>)

(TARGET-LIN-ORDER <NONE>)

(TARGET-POS <NONE>))

(krell-frame chunk-C15-18

(super chunk)

(SOURCE-SYN-FUNCTION @SUBJ)

(SOURCE-LIN-ORDER 5)

(SOURCE-POS PRON)

(MAPPING 0)

(SOURCE-TEXT YOU)

114

(TARGET-SYN-FUNCTION <NONE>)

(TARGET-TEXT <NONE>)

(TARGET-LIN-ORDER <NONE>)

(TARGET-POS <NONE>))

(krell-frame chunk-C15-19

(super chunk)

(SOURCE-SYN-FUNCTION <NONE>)

(SOURCE-LIN-ORDER <NONE>)

(SOURCE-POS <NONE>)

(MAPPING 0)

(SOURCE-TEXT <NONE>)

(TARGET-SYN-FUNCTION INFMARK>)

(TARGET-TEXT UM)

(TARGET-LIN-ORDER 6)

(TARGET-POS INFMARK))

(krell-frame chunk-C15-20

(super chunk)

(SOURCE-SYN-FUNCTION <NONE>)

(SOURCE-LIN-ORDER <NONE>)

(SOURCE-POS <NONE>)

(MAPPING 0)

(SOURCE-TEXT <NONE>)

(TARGET-SYN-FUNCTION @SUBJ)

(TARGET-TEXT SIE)

(TARGET-LIN-ORDER 2)

115

(TARGET-POS PRON))

116

Appendix B

Case Features

B.1 SYNTACTIC FUNCTION

subject, @SUBJ:

You can however click any of the patches to select and enter a measurement for it

object, @OBJ:

You can however click any of the patches to select and enter a measurement for it

�nite main verb, @+FMAINV:

If this option is not available inform your supplier

non-�nite main verb @-FMAINV:

You can however click any of the patches to select and enter a measurement for it

adverbial @ADVL:

You can however click any of the patches to select and enter a measurement for it

117

�nite auxilliary verb @+FAUXV:

You can however click any of the patches to select and enter a measurement for it

non-�nite auxilliary verb, @-FAUXV:

Check to see if it has been loaded

constituent sub-ordinator, @CS:

If this option is not available please inform your supplier

constituent coordinator, @CC:

You can however click any of the patches to select and enter a measurement for it

'stray' noun-phrase, @NPHR:

Note You can however click any of the patches to select and enter a measurement for it

complement of a subject, @PCOMPL-S:

If this option is not available please inform your supplier

negative particle, @NEG:

You can however click any of the patches to select and enter a measurement for it

in�nitive verb phrase, @INFMARK>:

You can however click any of the patches to select and enter a measurement for it

118

B.2 PART-OF-SPEECH

noun n patches, measurement

verb v click, enter

auxiliary verb fauxv can

negative particle neg not

preposition p of, for, to

pronoun pron you it

determiner det a, the, any

in�nitival marker inf to

coordinator cc and

subordinator cs if

adverbial adv however

119

Appendix C

Sample Translations at Various

Levels of Adaptability

The folling is a selection of translations which ReVerb performed on a test set of 90 cases, given a

training set of 800 (see Chapter 6). In each scenario, the Adaptability Threshold is stated, above

which the match would not have happened. In the Adaptation Recipe the ADAPT operation is for-

matted as follows:

(1 :ADAPT (SL0-CHUNK) TL0-SYNFUN (SL-CHUNK) (TL0-CHUNK))

C.0.1 Full-case matching Threshold 1.6

|||||||||||||||||||||-

CASE-91 Found Match of strength 1.666667 with CASE-CO24

SL :((GAMMA) (CONTROLS) (THE MONITOR-S BRIGHTNESS))

SL0:(CANCEL CLOSES TASK LIST)

120

TL0:(ABBRECHEN MIT DIESER OPTION WIRD DIE TASK-LISTE GESCHLOSSEN)

Adaptation Recipe

(2 IGNORE: MIT DIESER OPTION)

(3 IGNORE: WIRD)

(1 :ADAPT (CANCEL) @NPHR (GAMMA) (ABBRECHEN))

(5 :ADAPT (CLOSES) @-FMAINV (CONTROLS) (GESCHLOSSEN))

(4 :ADAPT (TASK LIST) @SUBJ (THE MONITOR-S BRIGHTNESS) (DIE TASK-LISTE))

TL: (gamma) (mit dieser option) (wird) ((das �monitor-s �) helligkeit)) (optionen)

Translation Score = .625

|||||||||||||||||||||-

Errors: 2

One missing word \monitor's" and one mis-translated word: \optionen". The chunk-ordering is

perfect. This would be a useful translation for a translator.

The threshold for this match was 1.6. This means that all the SL0 chunks have to match the

SL and that all SL0 chunks match a TL0 chunk with a score of 1.6 or more. Hence, they are ei-

ther complete string and synfun-matches(3) or they are synfun matches with some word di�erences

(1...3). In this example, there were no string matches, so all words of the TL0 had to be adapted,

except for those that were IGNORE'd. The mistranslated word, \optionen"(options) was supposed

to be the translation of \controls". This suggests a dictionary look-up as follows (see Section 4.4):

dict(controls,EN,GE,v) ! NIL

dict(controls,EN,GE,n) ! Optionen(n)

The third-person singular verb controls should in fact be translated as \kontrolliert". The possessive

noun \monitor's" did not occur in the data. As mentioned in Chapter 7, a possible remedy for this

121

sparse data e�ect would be to encode morphological variants of word forms.

C.0.2 Full-case matching. Threshold 1.

|||||||||||||||||||||-

SL: :((TO DO) (SO) (CLICK) (VIEW COLOR CORRECTION NONE))

SL0:(TO PRINT ODD PAGES ENTER 1TILDE)

TL0:(UNGERADE SEITEN ZU DRUCKEN GEBEN SIE 1 EIN)

CASE-104 Found Match of strength 1.0 with CASE-F200

(1 :IGNORE UM)

(5 :IGNORE SIE)

(7 :IGNORE EIN)

(3 :ADAPT (TO PRINT) @NPHR (TO DO) (ZU DRUCKEN))

(2 :ADAPT (ODD PAGES) @OBJ (SO) (UNGERADE SEITEN))

(4 :ADAPT (ENTER) @+FMAINV (CLICK) (GEBEN))

(6 :ADAPT (1�) @OBJ (VIEW COLOR CORRECTION NONE) (1�))

TL: (um) (dass) ((zu tun)) (klicken) (sie) ((ansicht farben �correction � keine)) (ein)

Translation Score = .607

|||||||||||||||||||||-

Errors 2.

One missing word \correction" The chunk-ordering is perfect, but there is a stray particle \ein" at

the end.

The verb which was replaced \enter ! geben" is actually a separable verb \eingeben". The lower

match strength is partially due to the fact that \geben" received a low score. This would be a useful

translation for a translator.

122

C.0.3 Partial-case matching. Threshold 0.3

|||||||||||||||||||||-

CASE-118 Found Match of strength 0.32118326 with CASE-CO13

SL: ((SEPARATIONS PRINTERS) (PROCESS) (IMAGES) (USING) (THE CMYKCOLORMODEL))

SL0:(MAXIMIZE COMMAND CONTROL MENU EXPANDS THE ACTIVE WINDOW TO FILL

THE ENTIRE SCREEN)

TL0:(BEFEHL VOLLBILD SYSTEMMENUE DIENT ZUR VERGROESSERUNG DES AKTIVEN

FENSTERS AUF DIE GROESSE DER GESAMTEN BILDSCHIRMFLAECHE)

(2 :IGNORE DIESER BEFEHL)

(3 :IGNORE DIENT)

(1 :ADAPT (MAXIMIZE COMMAND CONTROL MENU) @NPHR (SEPARATIONS PRINTERS)

(BEFEHL VOLLBILD SYSTEMMENUE))

(4 :ADAPT (EXPANDS) @ADVL (PROCESS) (ZUR VERGROESSERUNG))

(5 :ADAPT (THE ACTIVE WINDOW) @ADVL (IMAGES) (DES AKTIVEN FENSTERS))

(7 :ADAPT (TO FILL) @ADVL (USING) (AUF DIE GROESSE))

(8 :ADAPT (THE ENTIRE SCREEN) @ADVL (THE CMYK COLORMODEL) (DER GESAMTEN

BILDSCHIRMFLAECHE))

TL: ((auszuege drucker)) (dieser befehl) (dient) (zur bearbeitung)(bildtypen) (verwenden) ((das

cmyk farben farbmodellname))

Translation lity 0: useless, 1: perfect = .536

|||||||||||||||||||||-

Errors 3.

123

One n-to-1 word error: \Separations Printer" would normally be translated as one word in German

: \Auszugsdrucker". One 1-to-n word error: \Images", a generic noun in English, cannot be trans-

lated as a generic noun in German (\Bildtypen"). It would be necessary to add a preposition here

(\von Bildtypen") (of images). Finally, one erroneous chunk inclusion \verwenden" for \using".

The substitution (\using"@-FMAINV) involved the following chunk in the example:

(``using'' @-FMAINV) ! (``to fill'' @-FMAINV) $ (``auf die grosse'' @ADVL)

This is very tenuous link as \auf die grosse" (to the size of) is a highly speci�c translation of

\to �ll". It would probably not arise often in the data and hence, the chunk Adaptability score is

low. This is re
ected in the overall low score of 0.32 above.

C.0.4 Partial-case matching. Threshold 0.5

|||||||||||||||||||||-

CASE-175 Found Partial Match of strength 0.53846157 with CASE-F333

SL : (COREL COLOR MANAGER ALLOWS YOU TO CREATE A NEW PRINTER PROFILE

OR REVISE AN EXISTING PROFILE)

TL: (THIS ALLOWS THE PRINTER TO READ THE TYPE ONE FONT RATHER=THAN

HAVING THE FONTS CONVERTED TO CURVES OR BITMAPS)

TL0:(DADURCH KANN DERDRUCKER DIE TYPE 1-SCHRIFTART LESENWAS ZU BESSEREN

ERGEBNISSEN FUEHRT ALS DAS UMWANDELN VON SCHRIFTARTEN IN KURVEN ODER

BITMAPS)

(7 :ADD <NONE> <NONE> (REVISE) <NONE>)

(1 :IGNORE DADURCH)

(2 :IGNORE KANN)

124

(6 :IGNORE WAS)

(7 :IGNORE ZU BESSEREN ERGEBNISSEN)

(10 :ADAPT (THE FONTS) @ADVL (AN EXISTING PROFILE) (VON SCHRIFTARTEN))

(6 :ADAPTZERO (RATHER=THAN) <NONE> (OR) (<NONE>))

(4 :ADAPT (THE TYPE ONE FONT) @OBJ (A NEW PRINTER PROFILE)

(DIE TYPE 1-SCHRIFTART))

(5 :ADAPT (TO READ) @+FMAINV (TO CREATE) (LESEN))

(3 :ADAPT (THE PRINTER) @SUBJ (YOU) (DER DRUCKER))

(2 <NONE>)

(1 :ADAPTZERO (THIS) <NONE> (COREL COLOR MANAGER) (<NONE>))

TL: ((corel farben farben-manager)) (dadurch) (kann) (sie) ((neue strecke)) ((erstellen)) (oder) (was)

(zu besseren ergebnissen) ((�(revise�)) ((eine vorhandene zeichnung))

Translation lity 0: useless, 1: perfect = .615

|||||||||||||||||||||-

Errors 4.

One agreement error: \kann" should be \koennen" to agree with the polite pronoun \Sie". two

extra chunks \was" (what) and \zu better ergebnissen" (to better results). Both were non-matching

chunks in the case, hence they were ignored (Chapter 6). While the other IGNORE operations are

prefectly valid (and necessary), this chunk is adding irrelevant information to the TL. It links indi-

rectly to something in the SL0 but the linker couldn't make the connection. In fact, this seems to

be a translation mismatch (See Chapter 2) as shown below:

\rather than having to X"

\was zu bessere Erbebnisen fuehrt als das X"

what to better results leads as X = which leads to better results than X

125

This may be useful to a translator as the additions are only locally upsetting to the translation.

The rest of the sentence is �ne. If a monolingual German speaker was using ReVerb to get the gist

of a text however, he or she might be rather confused.

126

Appendix D

The ReVerb Retriever Code

(defun reverb(l &optional manual)

(setf *position-in-pchunk* 0)

(setf *sl-list* nil)

(setf *translation-list* nil)

(if manual (setf *sl-list* (input-new l))

(parse l))

(get-case-name nil *sl-list* nil)

(krell-demon-status :ON)

(load "n1.lisp")

(let ((probe-case (car (krell-children 'case))))

(streamline-linear-order probe-case)

(format t "~&ReVerb is now retrieving cases..")

127

(format t "~& ~S" (ebmt-template probe-case))

(let ((stream (open *out-data* :direction :output :if-ex

ists :append)))

(find-and-show-matching-template probe-case 0 stream)

(close stream))))

(defvar *out-data* "ReVerbOutput")

(defvar *template-hash* nil)

(defun ebmt-template(case &key (threshold 0))

(let* ((chunks (krell-get-local-values case 'chunk))

(tchunks (krell-get-local-values case 'gerchunk))

(target-chunks (if tchunks (unlist (cons chunks

tchunks)) chunks))

(num-list nil)

(t-num-list nil)

(nums (dolist (c chunks num-list) (if (krell

-get-local-value c 'lin-order) (push (cons (krell-get-local-

value c 'lin-order) c) num-list))))

(t-nums (if tchunks (dolist (c target-chunks

t-num-list) (if (krell-get-local-value c 'target-lin-order)

(push (cons (krell-get-local-value c 'target-lin-order) c)

t-num-list)))))

(size (caar (sort nums #'> :key #'first)))

(t-size (if t-nums (caar (sort t-nums #'> :key'first))))

128

(source-template nil)

(target-template nil))

(when chunks

(dotimes (position size)

(dolist (chunk chunks)

(when (eq (krell-get-local-value chunk 'lin-

order) (+ position 1))

(if (>= (or (krell-get-local-value chunk 'mapping) 0) threshold)

(push (make-template-variable (krell-get

-local-value chunk 'syn-function) position) source-template)

(push (list (krell-get-local-value chunk

'syn-function)(krell-get-local-values chunk 'source-text))

source-template))))))

(when tchunks

(dotimes (position t-size)

(dolist (chunk target-chunks)

(when (eq (krell-get-local-value chunk 'target

-lin-order) (+ position 1))

(if (>= (or (krell-get-local-value chunk

129

'mapping) 0) threshold)

(push (make-template-variable (krell-get

-local-value chunk 'target-syn-function) position) target-tem

plate)

(push (list (krell-get-local-value chunk

'syn-function)(krell-get-local-values chunk 'target-text))

target-template))))))

(krell-set-values case 'target-template (nreverse target

-template))

(krell-set-values case 'source-template (nreverse source

-template))))

;; Generate a template variable that codes for syntactic

;; function

(defun make-template-variable(syn pos)

(list syn

(read-from-string (format nil "?~D" pos))))

(defun create-template-table()

(setq *template-hash* (make-hash-table :size 1000 :test

'equal)))

130

(defun index-for-retrieval(case)

(streamline-linear-order case)

(let ((similar-case-list (gethash (source-template case)

template-hash)))

(if similar-case-list

(setf (gethash (source-template case) *template-hash*)

(push case similar-case-list))

(setf (gethash (source-template case) *template-hash*)

(list case)))))

(defun index-all(&optional limit)

(create-template-table)

(clrhash *template-hash*)

(dolist (c (nthcdr (- (length (krell-children 'case))

limit) (krell-children 'case)))

(index-for-retrieval c)

(format t " ~S" c)

"finished"))

;;* Simple accessors

(defun source-template(case)

(reverse (krell-get-local-values case 'source-template)))

131

(defun target-template(case)

(krell-get-local-values case 'target-template))

;;* compare the templates of two cases

(defun compare-templates(case1 case2)

(unify::unify

(if (listp case1) case1 (source-template case1))

(if (listp case2) case2 (source-template case2))))

;;* Build templates for the cases in memory

(defun build-all-templates(&key (threshold 0))

(let ((count 0))

(dolist (case (krell-get-values 'case 'children))

(when (krell-get-local-values case 'source-text)

(incf count)

(ebmt-template case :threshold threshold)

(format t "~&[~S] ~S~&" case (krell-get-local-

values case 'source-template))))

(format t "~&~D cases templatized.~&" count)

"o.k"))

132

(defun find-matching-template(probe)

(let ((found nil))

(dolist (case (gethash (ebmt-template probe) *template-

hash*))

(unless (eq probe case)

(when (krell-get-local-values case 'source-template)

;(format t "~&~S" case)

(let ((match? (compare-templates probe case)))

(when (listp match?)

(push (list case (cons (sim-cases

probe case) (carry-across-adaptation probe case)))

found))))))

found))

(defun find-and-show-matching-template(probe threshold

&optional outf)

(let ((found 0))

(when (gethash (ebmt-template probe) *template-hash*)

(dolist (case (reverse (gethash (ebmt-template probe)

template-hash)))

133

(unless (eq probe case)

(when (krell-get-local-values case 'source-template)

(let ((ex-template (ebmt-template case :threshold

threshold)))

(format t "~& ~S" ex-template)

(let ((match? (unify::unify (ebmt-template

probe :threshold threshold) ex-template)))

(when (listp match?)

(incf found)

(let ((source (krell-get-local-

values probe 'source-text))

(example-text (krell-get-local

-values case 'source-text))

(score (sim-cases probe case))

(adapt (carry-across-adaptation

probe case)))

(format t "~&[~S] Found Match of

strength ~S with [~S]~&" probe (+ 0.0 score) case)

(if outf (format outf "~&[~S] Found Match of strength ~S with [~S]~&" probe (+ 0.0 score)

case))

(dolist (a adapt) (format t "~&~S" a))

(if outf (dolist (a adapt) (format

outf "~&~S" a)))

134

(format t "~&Probe :")

(dolist (word source) (princ " ")

(princ word))

(terpri)

(if outf (format outf "~&Probe :

~S " source))

(format t "~&Example: ~S" example-text)

(if outf (format outf "~&Example: ~S" example-text))

(if outf (translate-with-adaptation case outf adapt)

(translate-with-adaptation case outf adapt))))

; ********* Partial Matching

(when (equal found 0)

(format t "~&PARTIAL MATCH")

(let* ((case-list (template-retrieval probe)))

(dolist (candidate case-list)

(let* ((case (second candidate))

(pprobe (third candidate))

(pcase (fourth candidate))

(case-left (fifth candidate))

(probe-left (sixth candidate))

135

(source (krell-get-local-values probe

'source-text))

(example-text (krell-get-local-values case

'source-text))

(score (car candidate))

(adapt (carry-across-adaptation-partial

probe case pprobe pcase case-left probe-left)))

(format t "~&[~S] Found Partial Match

of strength ~S with [~S]~&" probe (+ 0.0 score) case)

(if outf (format outf "~&[~S]

Found Partial Match of strength ~S with [~S]~&" probe

(+ 0.0 score) case))

(dolist (a adapt) (format t "~&~S" a))

(if outf (dolist (a adapt) (format

outf "~&~S" a)))

(format t "~&Probe :")

(dolist (word source) (princ " ")

(princ word))

(terpri)

(if outf (format outf "~&Probe : ~S

" source))

(format t "~&Example: ~S" example-text)

(if outf (format outf "~&Example: ~S"

136

example-text))

(if outf (translate-with-adaptation

case outf adapt)

(translate-with-adaptation case

nil adapt)))

found))

;;* Find all possible matches in a case-base

(defun find-all-matches(&optional (threshold 0))

(Let ((fname nil))

(format t "Put output in which file? [~a]: " *out-data*)

(let ((given (read-line)))

(setf fname (if (equal given "") *out-data* given)))

(let ((threshold nil))

(format t "~&Specify Threshold (press return for default

= 0)")

(let ((given (read-from-string (read-line))))

(setf threshold (if (equal given "") nil given)))

137

(find-all-matches-file fname threshold))))

(defun find-all-matches-file(fname &optional threshold)

(let ((total 0)

(stream (open fname :direction :output)))

(format t "~&Find all matches in ~D cases ...~&~&" (length

(krell-children 'case)))

(format stream "~&Find all matches in ~D cases ...~&~&" (length

(krell-children 'case)))

(dolist (case (nthcdr 80 (krell-get-values 'case 'children)))

(when (krell-get-local-values case 'source-text)

(format t "~& ~S" case)

(incf total (find-and-show-matching-template

case threshold stream))))

(format t "~&~D matches found.~&" (/ total 2))

(format stream "~&~D matches found.~&" (/ total 2))

(close stream)

"o.k"))

;partial case matching

(defun template-retrieval(probe)

138

(let ((bigstore nil)

(bigstore-vals nil)

(count 0))

(dolist (cell (reverse (source-template probe)) bigstore)

(push (one-cell count cell) bigstore)

(incf count))

(format t "~&best structure: ~S" (car (check-most-freq

bigstore)))

(setf bigstore (reverse (delete-nils (check-most-freq

bigstore))))

(dotimes (i 2)

(when bigstore

(format t "~&Checking ~S and ~S" probe (caar

bigstore))

(let* ((case (caar bigstore))

(sim (partial-assess-sim probe case))

(pcase (first sim))

(deletezero (krell-get-values case 'gerchunk))

(pprobe (second sim))

(add (third sim))

(delete (fourth sim))

(ignore (fifth sim))

(adaptzero (sixth sim))

139

(score (/ (if (listp pprobe) (length pprobe) 1)

(+

(if (listp add) (length add) 0.2)

(if (listp delete) (length delete) 0.2)

(if (listp ignore) (length ignore) 0.2)

(if (listp deletezero) (length

deletezero) 0.2)

(if (listp adaptzero) (length

adaptzero) 0.2)))))

(push (list score case pprobe pcase delete add)

bigstore-vals))

(setf bigstore (cdr bigstore))))

(sort bigstore-vals '> :key 'car)))

(defun one-cell(count cell)

(let ((store nil))

(maphash #'(lambda (key val) (if (equal (car (nthcdr

count key)) cell) (push val store))) *template-hash*)

store))

(defun partial-assess-sim(probe case)

(let ((add-chunk-list nil)

(delete-chunk-list nil)

(common-chunk-list-probe nil)

140

(common-chunk-list-case nil)

(adaptzero-chunk-list nil)

(deletezero 0)

(ignore-chunk-list nil))

(dolist (chunk-1 (krell-get-values probe 'chunk))

(when chunk-1

(let* ((syn-fun (krell-get-local-value chunk-1

'syn-function))

(lin-ord (krell-get-local-value chunk-1

'lin-order))

(corrs (krell-get-values case syn-fun))

(corr (if (cdr corrs)

(dolist (try corrs (first corrs))

(if (eq lin-ord (krell-get-local

-value try 'lin-order))

(return try)))

(if (eq lin-ord (krell-get-local-

value (first corrs) 'lin-order)) (first corrs)))))

(cond ((or (null corr) (member corr common-chunk-list

-case)) (push chunk-1 add-chunk-list))

((equal (krell-get-value corr 'mapping) 0) (progn

(push corr adaptzero-chunk-list)

(push chunk-1 common-chunk-list-probe) (push corr common

141

-chunk-list-case)))

(t (progn (push chunk-1 common-chunk-list-probe)

(push corr common-chunk-list-case)))))))

(dolist (chunk-2 (krell-get-values case 'chunk))

(let* ((syn-fun (krell-get-local-value chunk-2 'syn-fun

ction))

(lin-ord (krell-get-local-value chunk-2 'lin-order))

(corrs (krell-get-values probe syn-fun))

(corr (if (cdr corrs)

(dolist (try corrs (first corrs))

(if (eq lin-ord (krell-get-local-

value try 'lin-order))

(return try)))

(if (eq lin-ord (krell-get-local-value

(first corrs) 'lin-order)) (first corrs)))))

(cond ((and (null corr) (> (krell-get-value chunk-2

'mapping) 0))

(push chunk-2 delete-chunk-list))

((null corr) (push chunk-2 ignore-chunk-list)))))

;(t (push chunk-2 common-chunk-list-case)))))

(list (or common-chunk-list-case '<nocommon-case>) (or

142

common-chunk-list-probe '<nocommon-chunk>) (or add-chunk-list

'<no-add>) (or delete-chunk-list '<no-delete>)

(or ignore-chunk-list '<no-ignore>) (or adaptzero

-chunk-list '<noadaptzero>))))

(defun retrieve-on-structure(case &key (display t) (structu

re nil))

(let ((source nil))

(dolist (word (krell-get-values case 'source-text))

(push word source))

(when display

(format t "~&Source String: ")

(dolist (word (reverse source))

(format t " ~s" word))

(terpri))

(let* ((lexical-filter (retrieve-on-sentence source))

;;:structure t :display display))

(structural-filter (reward-structure lexical-filt

er case)))

(display-returned-cases structural-filter))))

143

Appendix E

The ReVerb Parser Code

(defun parse (sentence &optional previous-case previous-chunk)

;indexing any cases whose chunks contain this word..

(let*

((word (car sentence))

(chunk-list (krell-get-values word 'appears-in-chunk))

(all-cover-cases nil)

(current-case nil)

(current-chunk nil))

(when sentence

(when (and chunk-list (>= (length chunk-list) 1))

(progn

(dolist (chunk chunk-list all-cover-cases)

144

(dolist (cover-case (krell-get-values chunk 'case

-of) all-cover-cases)

(push cover-case all-cover-cases)))

; Now we have a set of cases which contain a chunk covering

; the current word of input. Now check to see if it is the

; case we used to cover the previous substring

(cond ((and (member previous-case all-cover-cases

:test 'equal)

(member previous-chunk chunk-list :test

'equal))

(progn

(setf current-case previous-case)

(setf current-chunk (cadr (member

previous-chunk (krell-get-values current-case 'chunk))))))

; SAME CASE DIFFERENT CHUNK

((member previous-case all-cover-cases :test

'equal)

(let ((cover (find-longest-cover sentence

previous-case)))

(setf current-case (car cover))

(setf current-chunk (cdr cover))))

145

; DIFFERENT CASE DIFERENT CHUNK

(t (progn (let ((cover (find-longest-cover

sentence)))

(setf current-case (car cover))

(setf current-chunk (cdr cover))))))

; Now we have a case and its chunk to follow, push the

; current word onto a parse chunk which'll assume the

; characteristics of the cover-chunk

(let ((parse-chunk-text (list word)))

(if (and (> (length (krell-get-values current-

chunk 'source-text)) 1)

(cdr sentence))

(if (cdr sentence)

(continue-case parse-chunk-text (cdr

sentence) current-case current-chunk)

(write-parse-chunk parse-chunk-text current

-chunk))

(progn (write-parse-chunk parse-chunk-text

current-chunk)

(parse (cdr sentence) current-case current-

chunk))))))

(unless chunk-list (write-parse-chunk word '<none>)

146

(parse (cdr sentence) previous-case previous

-chunk))))

sl-list)

(defun continue-case(parse-chunk-text sentence current-case

current-chunk)

; at this stage we are comitted to one chunk and have read

; one word in the current chunk is not exhausted but it may

; not match!

(when sentence

(let ((word (car sentence)))

(if (and (member word (cdr (krell-get-values current-

chunk 'source-text)) :test 'equal)

(> (length (krell-get-values current-chunk

'source-text)) (length parse-chunk-text)))

(progn (push word parse-chunk-text)

(if (and (cdr sentence) (not (or (equal (kr

ell-get-values current-chunk 'source-text) parse-chunk-text)

(equal (krell-get-values current-chunk 'source-text)

(reverse parse-chunk-text)))))

(continue-case parse-chunk-text (setf

sentence (cdr sentence)) current-case current-chunk)

147

(progn (write-parse-chunk parse-chunk-text

current-chunk)

(if (cdr sentence)

(parse (cdr sentence) current-

case current-chunk)))))

(let ((stat-pos (determine-statistical-pos word)))

(cond ((or (equal stat-pos 'singleton)(equal stat-

pos 'left-peripheral))

(progn (write-parse-chunk parse-chunk-text

current-chunk)

(format t "~&cut, new parse with ~S"

word)

(parse sentence current-case current-

chunk)))

((or (equal stat-pos 'middle) (equal stat-pos

'unknown))

(progn (push word parse-chunk-text)

(if (cdr sentence)

(continue-case parse-chunk-text

(cdr sentence) current-case current-chunk)

(write-parse-chunk parse-chunk

-text current-chunk))))

((equal stat-pos 'right-peripheral)

148

(progn (push word parse-chunk-text)

(write-parse-chunk parse-chunk-text

current-chunk)

(parse (cdr sentence) current-case

current-chunk))))))))

"finito")

(defun find-longest-cover(sentence &optional previous-case)

(let ((one-word nil)

(cclist NIL)

(ans nil)

(candidate-chunks (krell-get-values (first sentence)

'appears-in-chunk)))

(dolist (c candidate-chunks one-word)

(if (equal (first sentence) (first (krell-get-

values c 'source-text)))

(push c one-word)))

(if previous-case

(progn (setf cclist (cons previous-case (car (inters

ection (krell-get-values previous-case 'chunk) candidate-

chunks :test 'equal))))

(setf ans 'Some)))

149

(unless previous-case

(when one-word

(let* ((two-words (if (cdr sentence)

(intersection

one-word (krell-get-values (sec

ond sentence) 'appears-in-chunk))))

(three-words (if (third sentence)(intersection

two-words (krell-get-values (third sentence)'appears-in-chunk))))

(four-words (if (fourth sentence)(intersection

three-words (krell-get-values (fourth sentence)'appears-in-

chunk)))))

(cond (four-words (progn (setf cclist (cons (krell-

get-value (car four-words) 'case-of) (car four-words))) (setf

ans '4)))

(three-words (progn (setf cclist (cons (krell

-get-value (car three-words) 'case-of) (car three-words)))

(setf ans '3)))

(two-words (progn (setf cclist (cons (krell-

get-value (car two-words) 'case-of) (car two-words)))

(setf ans '2)))

(t (let ((best-single-cover (find-best-single-cover

one-word)))

(setf cclist (cons (krell-get-value best-

single-cover 'case-of) best-single-cover))

(setf ans '1)))))))

150

(format t "~& ~S words in a row from ~S [~S] " ans

(krell-get-values (cdr cclist) 'source-text) (car cclist))

cclist))

; this starts off the search for a new case when you know

; that the previous case cannot be followed anymore..

(defun find-best-single-cover (chunk-list)

(let ((common-features nil)

(most-common-feature nil)

(good-case nil))

(format t "~&position >>>>>> ~S~&" *position-in-

pchunk*)

(dolist (c chunk-list most-common-feature)

(push (length (krell-get-values c 'source-text)) common

-features))

(setf most-common-feature (check-most-freq common-

features))

(format t "~S" most-common-feature)

(unless good-case

(dolist (c chunk-list)

(unless good-case

(cond ((and (equal (length (krell-get-values c

'source-text)) (car most-common-feature))

151

(equal (krell-get-value c 'lin-order

) *position-in-pchunk*))

(progn (setf good-case c) (format t "~&

pos and length match")))

((equal (krell-get-value c 'lin-order)

position-in-pchunk)

(progn (setf good-case c) (format t "~&

just position match")))

((equal (length (krell-get-values c

'source-text)) (car most-common-feature))

(progn (setf good-case c) (format t

"~& just length match")))))))

(format t "GOOD CASE ~S lin-ord: ~S" good-case (krell-

get-value good-case 'lin-order))

(if good-case good-case (car chunk-list))))

(Defun determine-statistical-pos(word)

(when word

(let ((chunk-list (krell-get-values word 'appears-in

-chunk))

(chunk-length-vals nil)

(lpscore 0)

152

(rpscore 0)

(verdict nil))

(when chunk-list

;(format t "~&~S" chunk-list)

(dolist (c chunk-list)

(let ((length-chunk (or (length (krell-get-values

c 'source-text)) 1))

(left-peripheral (equal (length (member word

(reverse (krell-get-values c 'source-text)) :test 'equal))

1))

(right-peripheral (equal (length (member word

(krell-get-values c 'source-text) :test 'equal)) 1)))

(if right-peripheral (progn (incf lpscore)))

(if left-peripheral (progn (incf rpscore)))))

(cond ((> (- (+ lpscore rpscore) (length

chunk-list)) 10)

(setf verdict 'singleton))

((> lpscore (/ (length chunk-list) 2))

(setf verdict 'left-peripheral))

((> rpscore (/ (length chunk-list) 2))

(setf verdict 'right-peripheral))

(t (setf verdict 'middle))))

(unless chunk-list (setf verdict 'unknown))

153

verdict)))

(defun write-parse-chunk (words current-chunk)

(let ((parse-chunk-text (or (if (atom words) (list words)

(reverse words)) '<none>))

(parse-chunk-syn-function (or (krell-get-value curr

ent-chunk 'syn-function) '<none>))

(parse-chunk-lin-order (or (incf *position-in-pchunk

*) '<none>))

(parse-chunk-cat (or (krell-get-value current-chunk

'cat) '<none>))

(translation-words (or (krell-get-values current

-chunk 'target-text) '<none>))

(translation-syn-function (or (krell-get-value curr

ent-chunk 'target-syn-function) '<none>))

(translation-lin-order (or (krell-get-value current-

chunk 'target-lin-order) '<none>))

(translation-cat (or (krell-get-value current-chunk

'target-cat) '<none>)))

(push (list (list translation-words parse-chunk-text)

(list translation-syn-function parse-chunk

-syn-function)

(list translation-lin-order parse-chunk-lin

-order)

154

(list translation-cat parse-chunk-cat)

(krell-get-values current-chunk 'source-text)

current-chunk) *translation-list*)

(push (list parse-chunk-text parse-chunk-syn-function

parse-chunk-cat parse-chunk-lin-order) *sl-list*)))

155

Bibliography

[ABD+86] V. Allegranza, P. Bennett, J. Durand, F. van Eynde, L. Humphreys, P. Schmidt, and

E. Steiner. Linguistics for machine translation: The eurotra linguistic speci�cations.

Technical report, CEC, 1986.

[AE95] S. P. Abney and W. H. Erhard, editors. Proceedings of the Seventh Conference of the

European Chapter of the Association for Computational Linguistics EACL, Dublin,

Ireland, 1995. ACL.

[Alt95] K. D. Altho�. Knowledge acquisition in the domain of cnc machine centres; the

moltke approach. In S. P. Abney and W. H. Erhard, editors, Proceedings of the

Seventh Conference of the European Chapter of the Association for Computational

Linguistics EACL, pages 180{195, Dublin, Ireland, 1995. ACL.

[AP94] A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues, methodological

variations, and system approaches. AICOM, 7:39{59, 1994.

[Art78] P. Arthern. Machine translation and computerized terminology systems: A transla-

tor's viewpoint. In B. Snell, editor, Translating and the Computer: Proceedings of a

Seminar, pages 77{108, London, 1978. North Holland.

[BCDP+88] P. F. Brown, J. Cocke, S. A. Della-Pietra, , V. J. Della-Pietra, F. Jelinek, J. D. Laf-

ferty, R. L. Mercer, and P. S. Roosin. A statistical approach to machine translation.

156

In Proceedings of the 12th International Conference on Computational Linguistics,

Budapest, Hungary, 1988.

[BDPd+93] P. F. Brown, V. J. Della-Pietra, P. V. deSouza, J. C. Lai, and R. L. Mercer. Class-

based n-gram models of natural language. Computational Linguistics, 18, 1993.

[BDPDPM92] P. F. Brown, S. A. Della-Pietra, V. J. Della-Pietra, and R. L. Mercer. The math-

ematics of statistical machine translation: Parameter estimation. Computational

Linguistics, 19:263{311, 1992.

[BF95] R. Brown and R. Frederking. Applying statistical english language modelling to

symbolic machine translation. In van Eynde [vE95], pages 221 { 239.

[BLM91] P. F. Brown, J. C. Lai, and R. L. Mercer. Aligning sentences in parallel corpora.

In Proceedings of the 29th Annual Meeting of the Association for Computational

Linguistics, Berkeley, CA, 1991. ACL.

[Boi89] C. Boitet. Geta project. In M. Nagao, editor, Machine Translation Summit, pages

54{65. Ohmsha Tokyo, 1989.

[Bos86] D. A. Bostad. Machine translation in the usaf. Terminologie et Traduction, 1:68{72,

1986.

[Bro97] R. Brown. Automated dictionary extraction for knowledge free example-based trans-

lation. In Nirenburg and Somers [NS97], pages 111{119.

[Car97] M. Carl. Case composition needs adaptation knowledge: a view on ebmt. In W. Daele-

mans, editor, ECML-97 MLNet Workshop: Case-Based Learning: Beyond Classi�-

cation of Feature Vectors, Prague, 1997.

[CC96] B. Collins and P. Cunningham. Adaptation guided retrieval in ebmt. In Smith and

Faltings [SF96], pages 91{104.

157

[CC97] B. Collins and P. Cunningham. Adaptation guided retrieval: Approaching ebmt with

caution. In Nirenburg and Somers [NS97], pages 119{126.

[Cho65] N. Chomsky. Aspects of the Theory of Syntax. MIT Press, Cambridge MA, 1965.

[CHP94] L. Cranias, P. Harris, and S. Piperidis. A new approach to matching technique in

example-based machine translation. In Proceedings of the 32nd Annual Meeting of

the Association for Computational Linguistics, Las Cruces, New Mexico, 1994. ACL.

[CS93] S. Cost and S. Salzberg. A weighted nearest neighbour algorithm for learning with

symbolic features. Machine Learning, 10:57{78, 1993.

[CSV95] P. Cunningham, B. Smyth, and T. Veale. On the limitations of memory based

reasoning. In J. P Haton, M. Keane, and M. Manago, editors, Advances in Case-

Based Reasoning. Springer-Verlag, 1995.

[CT87] J. Carbonell and M. Tomita. Knowledge-based machine translation, the cmu ap-

proach. In S. Nirenburg, editor,Machine Translation: Theoretical and Methodological

Issues, pages 68{89. Cambridge University Press, 1987.

[Cun98] P. Cunningham. Cbr strengths and weaknesses. In A. P del Pobil, J. Mira, and

M. Ali, editors, Proceedings of the 11th International Conference on Inductrial and

Engineering Applications of Arti�cial Intelligence and Expert Systems, Lecture Notes

in Arti�cial Intelligence 1416, page 3. Springer-Verlag, 1998.

[Dae95] W. Daelemans. Memory based lexical acquisition and processing. In P. Ste�ens,

editor, Machine Translation and the Lexicon, pages 3{12. Springer, 1995.

[DMM93] I. Dagan, S. Marcus, and S. Markovitch. Contextual word similarity and estimation

from sparse data. In Proceedings of the 31st Annual Meeting of the Association for

Computational Linguistics, Columbus, OH, 1993. ACL.

[Dor93] Bonnie J. Dorr. Machine Translation. A View from the Lexicon. MIT Press, Cam-

bridge MA, 1993.

158

[DZBG96] W. Daelemans, J. Zavrel, P. Berck, and S. Gillis. Mbt: A memory-based part of

speech tagger-generator. In I. Dagan and E. Ejerhed, editors, Proceedings of the

Fourth Workshop on Very Large Corpora, ACL SIGDAT, pages 14{27, Copenhagen,

1996.

[FM97] P. Fung and K. McKeown. A technical word and term translation aid using noisy

parallel corpora across language groups. Machine Translation, 12:53{87, 1997.

[Fun95] P. Fung. A pattern matching method for �nding noun and proper noun transla-

tions from noisy parallel corpora. In Proceedings of the 33rd Annual Meeting of the

Association for Computational Linguistics, Boston, MA, 1995. ACL.

[GC93] W. A. Gale and K. W. Church. A program for aligning sentences in bilingual corpora.

Computational Linguistics, 19:75{103, 1993.

[HK96] K. Hanney and M. Keane. Learning adaptation rules from a case-base. In Smith and

Faltings [SF96], pages 179{192.

[Hov96] E. Hovy, editor. Expanding MT Horizons - Second Conference of the Association for

Machine Translation in the Americas - AMTA-96, Montreal, Canada, 1996.

[HS92] W. J. Hutchins and H. L. Somers. An Introduction to Machine Translation. Academic

Press, London, 1992.

[Isa93] P. Isabelle. Current research in machine translation: A reply to somers. Machine

Translation, 7:265{273, 1993.

[Jac83] R. S Jackendo�. Semantics and Cognition. MIT Press, Cambridge, 1983.

[Juo95] P. Juola. Learning to Translate: A Psycholinguistic Approach to the Induction of

Grammars and Transfer Functions. PhD thesis, University of Colorado, Boulder,

USA, 1995.

159

[Kar90] H. Karlgren, editor. Papers Presented to the 13th International Conference on Com-

putational Linguistics, volume 3, Helsinki, 1990.

[Kas94] A. Kass. Tweaker: adapting old explanations to new situations. In R. Schank,

C. Riesbeck, and A. Kass, editors, Inside Case Based Reasoning, pages 263{295.

Lawrence Erlbaum Associates, 1994.

[KG94] N. Koncar and G. Guthrie. A natural language translation neural network. In Inter-

national Conference of the International Conference on New Methods in Language

Porcessing (NeMLaP), pages 71{77, Manchester, UK, 1994.

[KG97] K. Knight and J. Graehl. Machine transliteration. In Proceedings of the 35th Annual

Meeting of the Association for Computational Linguistics, Madrid, Spain, 1997. ACL.

[KH91] H. Kitano and T. Higuchi. Massively parallel memory-based parsing. In Proceedings

of the thirteenth International Joint Conference on Arti�cial Intelligence, pages 918{

924, Chamberry, France, 1991. IJCAI.

[Kin87] M. King, editor. Machine Translation today the state of the art. Edinburgh Informa-

tion Technology Series 2. Edinburgh University Press, Edinburgh, 1987.

[KKM92] H. Kaji, Y. Kida, and Y. Morimoto. Learning translation templates from bilingual

text. In Papers Presented to the 14th International Conference on Computational

Linguistics, pages 672{678, Nantes, 1992.

[Kol83] J. Kolodner. Reconstructive memory: A computer model. Cognitive Science, 7(4),

1983.

[Kol93] J. Kolodner. Case-Based Reasoning. Morgan Kaufmann, San Mateo, 1993.

[KR93] M. Kay and M. R�oscheisen. Text-translation alignment. Computational Linguistics,

19:121{143, 1993.

160

[KVHA95] F. Karlsson, A. Voutilainen, J. Heikkila, and A. Anttila, editors. Constraint Grammar

- A language-Independent System for Parsing Unrestricted Text. Natural Language

Processing. Mouton de Gruyter, Berlin New York, 1995.

[Lea94] D. Leake. Towards a computer model of memory search strategy learning. In Proceed-

ings of the 16th Annual Conference of the Cognitive Science Society, pages 549{554,

Atlanta, 1994.

[Leb83] M. Lebowitz. Memory-based parsing. Arti�cial Intelligence, pages 363{404, 1983.

[LKW95] D. Leake, A. Kinley, and D. Wilson. Learning to improve case adaptation by in-

trospective reasoning and cbr. In M. Veloso and Aamodt A., editors, Case-based

Reasoning Research and Development: Lecture Notes in AI 1010, pages 229{240.

Springer, 1995.

[LOS89] J. Landsbergen, J. Odijk, and A. Schenk. The power of compositional ttranslation.

Literary and Linguistic Computing, 4:191{199, 1989.

[LT91] J. Lindop and J. Tsujii. Complex transfer in mt: A survey of examples. Technical

report, Centre for Computational Linguistics, UMIST, 1991.

[Mel81] A. Melby. A bilingual concordance system and its use in linguistic studies. In Pro-

ceedings of the Eight LACTUS Forum, pages 541{549, Columbia SC, 1981. Hornbeam

Press.

[Mel96a] D. I. Melamed. A geometric approach to mapping bitext correspondance. In Proceed-

ings of the First Conference on Empirical Methods in Natural Language Processing

EMNLP 96, pages 1{10, Philadelphia, PA, 1996.

[Mel96b] Dan I Melamed. Automatic construction of clean broad-coverage translation lexicons.

In Hovy [Hov96], pages 125{134.

[Mel98] D. I. Melamed. Empirical Methods for Exploiting Parallel Texts. PhD thesis, Uni-

versity of Pennsylvania, Pennysylvania, 1998.

161

[MEO95] T. Mc Enery and M. Oakes. Cognate extraction in the crater project: Methods and

assessment. In E. Tzoukermann, editor, Proceedings of the ACL SIGDAT Workshop,

pages 77{86, Dublin, Ireland, 1995. ACL.

[Min63] M. Minsky. Steps towards arti�cial intelligence. In E. Feigenbaum and J. Feldman,

editors, Computers and Thought. McGraw-Hill, 1963.

[MJS94] I. McLean, D. Jones, and H. Somers. Experiments in multilingual example-based

generation. In A. Monaghan, editor, Proceedings of the third International Conference

on the Cognitive Science of Natural Language Processing, Dublin, Ireland, 1994. DCU.

[MS89] D Maxwell and K. Schubert. Metataxis in practice: dependency syntax for multilin-

gual machine translation. Foris, Dordrecht, 1989.

[Nag84] M. Nagao. A framework of a mechanical translation between japanese by analogy

principle. In A. Elithorn and R. Banerji, editors, Arti�cial and Human Intelligence,

pages 173{180. North Holland Publications, 1984.

[Nir95] S. Nirenburg. Cmu-cmt-95-145 the pangloss mark iii machine translation system.

Technical report, Computing Research Laboratory (NMSU) Center for Machine

Translation (CMU), Information Sciences Institute (USC), 1995.

[NS97] Sergei Nirenburg and Harold Somers, editors. Seventh International Conf. on The-

oretical and Methodological Issues in Machine Translation, Santa Fe, New Mexico,

1997.

[Pod92] J. Podeur. La trasposizione. In La practica delle traduzione. Liguoiri Editore, 1992.

[RS89] R. K. Reisbeck and R. C. Schank. Inside Case-Based Reasoning. Lawrence Erlbaum

Associates, Hillsdale, New Jersey, 1989.

[SA77] R. C. Schank and R. P. Abelson. Scripts, Plans, Goals, and Understanding. Lawrence

Erlbaum Associates, Hillsdale, New Jersey, 1977.

162

[SF96] Ian Smith and Boi Faltings, editors. Third European Workshop, EWCBR-96, Ad-

vances in Case-Based Reasoning, Lausanne, Switzerland, 1996.

[SH97] A. Sagvall Hein. Language control and machine translation. In Nirenburg and Somers

[NS97].

[SK93] B. Smyth and M. Keane. Retrieving adaptable cases. In I. Smith and B. Falt-

ings, editors, Proceedings of the First European Workshop on Case-Based Reasoning,

EWCBR-93, Volume 1, pages 76{82, Germany, 1993.

[SK94] B. Smyth and M. Keane. Retrieving adaptable cases. In M. Richter, S. Wess, and

K. Althof, editors, Topics on Case-Based Reasoning. Lecture Notes on AI, pages

209{220. Springer-Verlag, 1994.

[SK95] B. Smyth and M. Keane. Remembering to forget: A competence-preserving dele-

tion policy in case-based systems. In Proceedings of the �fteenth International Joint

Conference on Arti�cial Intelligence. IJCAI, 1995.

[SN90] S. Sato and M. Nagao. Towards memory-based translation. In Karlgren [Kar90],

pages 247{252.

[SOI+93] E Sumita, K. Oi, H. Iida, T. Higuchi, N. Takahashi, and H. Kitano. Ebmt on

massively parallel processors. In Proceedings of the thirteenth International Joint

Conference on Arti�cial Intelligence, pages 1283{1288, Chamberry, France, 1993.

IJCAI.

[Som98] H. Somers. Further experiments in bilingual text alignment. International Journal

of Corpus Linguistics, 3:1{36, 1998.

[SSW96] O. Streiter and A. Schmidt-Wigger. Patterns of derivation. In Hovy [Hov96], pages

256{272.

[Str95] O. Streiter. Linguistic reference manual for the cat2 machine translation system.

Technical report, IAI, Saarbr�ucken, 1995.

163

[SV90] V. Sadler and R. Vendelmans. Pilot implementation of a bilingual knowledge bank.

In Karlgren [Kar90].

[SW86] C. W. Stan�ll and D. L. Waltz. Toward memory-based reasoning. Communications

of the ACM, 29(12), 1986.

[Tsu89] J. Tsujii. Machine translation: Current research trends. In I. B�atori, editor, Com-

putational Linguistics, An International Handbook on Computer Oriented Language

Research and Application. Walter de Gruyter, 1989.

[Tul72] E Tulving. Episodic and semantic memory. In E. Tulving and W. Donaldson, editors,

Organization of Memory. Academic, 1972.

[Tur50] A. Turing. Computing machinery and intelligence. Mind, 59:433{460, 1950.

[VB85] B. Vauquois and C. Boitet. Automated translation at grenoble university. Compta-

tional Linguistics, 11:28{36, 1985.

[VC96] T. Veale and B. Collins. Space, metaphor, and schematization in sign: Sign language

translation in the zardoz system. In Hovy [Hov96], pages 157{168.

[vE95] Frank van Eynde, editor. Sixth International Conf. on Theoretical and Methodological

Issues in Machine Translation, Leuven, Belgium, 1995.

[VJ95] A. Voutilainen and T. Jarvinen. Specifying a shallow grammatical representation for

parsing purposes. In Abney and Erhard [AE95], pages 210{214.

[Vou95] A. Voutilainen. A syntax-based part-of-speech analyser. In Abney and Erhard [AE95],

pages 157{164.

[VW97] T. Veale and A. Way. Gaijin: A bootstrapping approach to example-based machine

translation. In R. Mitkov, editor, International Conference, Recent Advances in

Natural Language Processing, pages 239{244, Tzigov Chark, Bulgaria, 1997.

164

[Wu95] D. Wu. Grammarless extraction of phrasal translation examples from parallel texts.

In van Eynde [vE95], pages 354{372.

165

