
“An Internet Protocol Testing Framework”

ipTF

Submitted for the qualification of

 M.Sc in Computer Science

at

Trinity College Dublin

1998

John Cashman B.Sc.

Distributed Systems Group
Department of Computer Science



“An Internet Protocol Testing Framework”
ipTF

Declaration

I hereby declare that this dissertation is my own work except where otherwise stated and it has not been

previously submitted to this or any other university.

John Cashman

29th September 1998

I hereby agree that Trinity College Library may lend or copy this dissertation upon request.

John Cashman

29th September 1998



Abstract

As the Internet expands and proliferates it gives rise to new technologies that require supporting

Internet protocols. Some recent examples include HTTP, POP, IMAP and IIOP. Internet applications

are generally based on a client server model. This results in protocols being developed to support

communication between the client and server. Additionally many existing protocols are updated

regularly to support new and enhanced features.

There is a user requirement for software products that include native support for both new and

upgraded Internet protocols as they become available. Software development organizations seek to

meet this demand by including new protocol implementations into their software products. Many

companies now support multiple Internet Protocol implementations as standard in their communication

products. For example products such as Lotus Domino communication server currently include support

for several Internet Protocols. (SMTP, HTTP, IIOP, IMAP4, POP3). As new protocols mature and they

become generally available, corresponding implementations are added to the communications server.

Developers need to ensure that their protocol implementation can communicate/inter-operate with other

products that implement the protocol. This is achieved by having the implementation conform to the

protocol specification. Considerable resources are spent on the design and implementation of test

applications that check protocols for conformance to specification. To date the general approach used

in testing Internet Protocols is to design protocol specific test applications. As the number of new

protocols increases and existing protocols are revised a common methodology for testing Internet

Protocols would substantially reduce the time spent on developing protocol test applications.

Internet protocols are normally specified in RFCs. Other than this general procedural requirement there

is no set of rules or guidelines that must be followed for specifying an Internet protocol. This lack of

formality allows developers to design new protocols in an efficient and flexible manner but results in

each Internet protocol having unique syntax and semantics. Designing a common protocol testing

application is therefore difficult.

The goal of this dissertation is to examine the feasibility of applying a common method to testing

multiple Internet Protocols. Object-oriented framework technology and design patterns were used to

design a set of related classes both abstract and concrete that can be used as a basis for creating an

Internet protocol testing application.  To create a new application the Internet Protocol Test Framework

(ipTF) is extended through inheritance and object composition. A sample implementation of the

framework was completed using the DSG Mobile IIOP and Telnet protocols.

The framework is evaluated against the criteria of re-usability, simplicity and efficiency. The factoring

out of common design structure and behavior of Internet protocols provides the basis for framework

design. Syntactic or semantic similarities in protocols are used at a lower level to help refine the

framework. Some additional improvements and refinements are suggested which could make the

framework more black-box in nature.



“An Internet Protocol Testing Framework”

ipTF

Abstract

John Cashman
M.Sc. Dissertation 1998

As the Internet expands and proliferates it gives rise to new technologies that require supporting
Internet protocols. Some recent examples include HTTP, POP, IMAP and IIOP. Internet applications
are generally based on a client server model. This results in protocols being developed to support
communication between the client and server. Additionally many existing protocols are updated
regularly to support new and enhanced features.

There is a user requirement for software products that include native support for both new and
upgraded Internet protocols as they become available. Software development organizations seek to
meet this demand by including new protocol implementations into their software products. Many
companies now support multiple Internet Protocol implementations as standard in their communication
products. For example products such as Lotus Domino communication server currently include support
for several Internet Protocols. (SMTP, HTTP, IIOP, IMAP4, POP3). As new protocols mature and they
become generally available, corresponding implementations are added to the communications server.

Developers need to ensure that their protocol implementation can communicate/inter-operate with other
products that implement the protocol. This is achieved by having the implementation conform to the
protocol specification. Considerable resources are spent on the design and implementation of test
applications that check protocols for conformance to specification. To date the general approach used
in testing Internet Protocols is to design protocol specific test applications. As the number of new
protocols increases and existing protocols are revised a common methodology for testing Internet
Protocols would substantially reduce the time spent on developing protocol test applications.

Internet protocols are normally specified in RFCs. Other than this general procedural requirement there
is no set of rules or guidelines that must be followed for specifying an Internet protocol. This lack of
formality allows developers to design new protocols in an efficient and flexible manner but results in
each Internet protocol having unique syntax and semantics. Designing a common protocol testing
application is therefore difficult.

The goal of this dissertation is to examine the feasibility of applying a common method to testing
multiple Internet Protocols. Object-oriented framework technology and design patterns were used to
design a set of related classes both abstract and concrete that can be used as a basis for creating an
Internet protocol testing application.  To create a new application the Internet Protocol Test Framework
(ipTF) is extended through inheritance and object composition. A sample implementation of the
framework was completed using the DSG Mobile IIOP and Telnet protocols.

The framework is evaluated against the criteria of re-usability, simplicity and efficiency. The factoring
out of common design structure and behavior of Internet protocols provides the basis for framework
design. Syntactic or semantic similarities in protocols are used at a lower level to help refine the
framework. Some additional improvements and refinements are suggested which could make the
framework more black-box in nature.



Acknowledgements

I would especially like to thank my dissertation supervisor Dr Vinny Cahill for his valuable assistance,

encouragement and advice in the completion of this dissertation.

I wish also to thank Dr Brian O’Donovan of Lotus Development Ireland for his support given

throughout this work. I am grateful to Ray and Tony for their advice on technical matters. Thanks to

Alice and Tadhg for reviewing my work and to Deirdre for her consistent encouragement to complete

this dissertation.  To all my family and friends who supported me in many different ways over the past

year I am very grateful.



i

TABLE OF CONTENTS

1. INTRODUCTION ..................................................................................................................... 1-1

1.1. BACKGROUND ......................................................................................................................... 1-2
1.1.1. Frameworks and Design Patterns ................................................................................. 1-2
1.1.2. Network Communication Protocols .............................................................................. 1-4
1.1.3. Protocol Conformance Testing...................................................................................... 1-4

1.2. PROBLEM OUTLINE.................................................................................................................. 1-6
1.3. FRAMEWORK DESIGN & IMPLEMENTATION............................................................................. 1-6
1.4. ACHIEVEMENTS ....................................................................................................................... 1-7
1.5. DISSERTATION ROADMAP........................................................................................................ 1-8

2. FRAMEWORKS & DESIGN PATTERNS............................................................................. 2-1

2.1. FRAMEWORKS ......................................................................................................................... 2-1
2.1.1. Background ................................................................................................................... 2-2
2.1.2. Frameworks Definition.................................................................................................. 2-3
2.1.3. Software Reuse .............................................................................................................. 2-4
2.1.4. Frameworks v Class Libraries ...................................................................................... 2-4
2.1.5. Framework development process .................................................................................. 2-5
2.1.6. Benefits & Costs ............................................................................................................ 2-7
2.1.7. Framework types ........................................................................................................... 2-8
2.1.8. Design Process .............................................................................................................. 2-8

2.2. DESIGN PATTERNS................................................................................................................... 2-9
2.2.1. Pattern Types............................................................................................................... 2-10
2.2.2. Pattern Formats .......................................................................................................... 2-11

2.3. PATTERN LANGUAGES AND ARCHITECTURE.......................................................................... 2-11
2.4. SUMMARY ............................................................................................................................. 2-13

3. NETWORK PROTOCOLS & CONFORMANCE TESTING.............................................. 3-1

3.1. PROTOCOL BACKGROUND ....................................................................................................... 3-1
3.2. PROTOCOL DESIGN AND SPECIFICATION.................................................................................. 3-1
3.3. OSI V INTERNET PROTOCOLS .................................................................................................. 3-3
3.4. GENERAL TESTING CONCEPTS................................................................................................. 3-4
3.5. PROTOCOL CONFORMANCE TESTING....................................................................................... 3-5

3.5.1. Test Methods ................................................................................................................. 3-6
3.5.2. Test Suite Structure ....................................................................................................... 3-7
3.5.3. Test Case Selection........................................................................................................ 3-8
3.5.4. Automated Test Case Generation.................................................................................. 3-9

3.6. IIOP & TELNET (INTERNET PROTOCOLS) ................................................................................ 3-9
3.6.1. Telnet Protocol .............................................................................................................. 3-9
3.6.2. IIOP Protocol.............................................................................................................. 3-10
3.6.3. IIOP message structure detail ..................................................................................... 3-11

3.7. SUMMARY ............................................................................................................................. 3-13

4. DESIGN...................................................................................................................................... 4-1

DESIGN PROCESS ................................................................................................................................... 4-2
General Testing Model .................................................................................................................... 4-3
Message format and protocol behavior ........................................................................................... 4-4
4.1.1. Test suite design ............................................................................................................ 4-5
Test Method ..................................................................................................................................... 4-6
Object Model & Classes .................................................................................................................. 4-7
Application of Design Patterns........................................................................................................ 4-8

SUMMARY............................................................................................................................................ 4-10

5. IMPLEMENTATION ............................................................................................................... 5-1

5.1. PROJECT PLAN AND SCHEDULE ............................................................................................... 5-1



ii

5.2. LANGUAGES AND TOOLS ......................................................................................................... 5-2
5.3. USER INTERFACE DESIGN ........................................................................................................ 5-3

5.3.1. Msg Center view............................................................................................................ 5-3
5.3.2. Log view ........................................................................................................................ 5-4
5.3.3. Test Results view ........................................................................................................... 5-5

5.4. MULTI-PROTOCOL IMPLEMENTATION FEATURE ....................................................................... 5-5
5.5. IMPLEMENTATION CODING...................................................................................................... 5-6

5.5.1. Object Creation ............................................................................................................. 5-6
5.5.2. Connection establishment.............................................................................................. 5-8
5.5.3. Sending and Receiving Messages.................................................................................. 5-9
5.5.4. Message file reader ..................................................................................................... 5-11
5.5.5. Message comparison ................................................................................................... 5-11

5.6. SUMMARY ............................................................................................................................. 5-12

6. EVALUATION .......................................................................................................................... 6-1

6.1. DESIGN GOALS......................................................................................................................... 6-2
6.2. IPTF DESIGN ............................................................................................................................ 6-4
6.3. IPTF BENEFITS & COSTS .......................................................................................................... 6-4

6.3.1. Protocol Revisions......................................................................................................... 6-6
6.3.2. Multiple Protocol Testing.............................................................................................. 6-6

6.4. CONCLUSION ........................................................................................................................... 6-7
6.5. SUMMARY ............................................................................................................................... 6-7

7. REFERENCES .......................................................................................................................... 7-1

8. APPENDIX A – OBJECT MODEL & SEQUENCE DIAGRAM......................................... 8-2



iii

LIST OF FIGURES AND TABLES

Figure 1: Conformance Testing.............................................................................................................1-5
Figure 2: IS 9646 Test Suite Structure ..................................................................................................1-5
Figure 3: A Unified Object Topology ...................................................................................................2-2
Figure 5: Class libraries v Frameworks.................................................................................................2-5
Figure 6: A framework evolution process [John96]..............................................................................2-6
Figure 7: Framweork benifits v costs [Tal94a] .....................................................................................2-7
Figure 8: Defect Testing Process [Som96]............................................................................................3-5
Figure 9: Conformance Testing.............................................................................................................3-6
Figure 10: Remote Test Method [Knig93] ............................................................................................3-7
Figure 11: Telnet protocol client to server data path [Comer95] ........................................................3-10
Figure 12: ipTF Design Process ............................................................................................................4-2
Figure 13: ipTF testing model ...............................................................................................................4-3
Figure 14: TestMsg and Protocol Classes .............................................................................................4-4
Figure 15: ipTF Test Suite Structure.....................................................................................................4-5
Figure 16: ipTF testing method .............................................................................................................4-6
Figure 17: Protocol Adapter Pattern......................................................................................................4-9
Figure 18: ipTF project stages...............................................................................................................5-1
Figure 19: ipTF framework application ...............................................................................................5-3
Figure 20: Message Center view...........................................................................................................5-4
Figure 21: Function options ..................................................................................................................5-4
Figure 22: Log Record View.................................................................................................................5-5
Figure 23: Comparison View ................................................................................................................5-5
Figure 24: Multi-protocol testing ..........................................................................................................5-6
Figure 25: Protocol Dropdown List.......................................................................................................5-6
Figure 26: Message list, send message and send sequence user interface elements..............................5-9
Figure 27: Message comparison compilation......................................................................................5-11
Figure 28: ipTF Object  Model .............................................................................................................8-3
Figure 29: ipTF Sequence Diagram ......................................................................................................8-4

Table 1: Pattern Format Headings.......................................................................................................2-11
Table 2: ipTF Classes............................................................................................................................4-7



1-1

1. INTRODUCTION

As the Internet expands and proliferates it gives rise to new applications that require supporting

Internet protocols. Some recent examples of this include HTTP, POP, IMAP and IIOP. HTTP is the

underlying protocol of the World Wide Web (WWW). POP enables remote user access to Internet

mailboxes. IMAP offers a similar service to POP but has additional features such as disconnected

replication. IIOP is a protocol designed to relay remote object invocations between Object Request

Brokers (ORB’s). Internet applications are generally based on a client/server model. This results in

protocols being developed to support communication between the client and server. Additionally

many existing protocols are updated regularly to support new and enhanced features.

There is a user requirement for software products that include native support for both new and

upgraded Internet protocols as they become available. Software development organizations seek to

meet this demand by including new protocol implementations into their software products. Many

companies now support multiple Internet Protocol implementations as standard in their

communication products. For example products such as the Lotus Domino communication server

[Domino] currently include support for several Internet Protocols (SMTP, HTTP, IIOP, IMAP4,

POP3). As new protocols mature and become generally available, corresponding implementations

are added to the communications server.

Developers need to ensure that their protocol implementations can communicate/inter-operate with

other products that implement the protocol. This is achieved by having the implementation conform

to the protocol specification. Considerable resources are spent on the design and implementation of

test applications that check protocols for conformance to specification. To date, the general approach

used in testing Internet Protocols has been to design protocol-specific test applications. As the

number of new protocols increases and existing protocols are revised, a common methodology for

testing Internet Protocols would substantially reduce the time spent on developing protocol test

applications. It would also provide a consistent approach to testing a range of Internet protocols for

conformance to specification.

Internet protocols are normally specified in Request for Comments (RFCs) documents. Other than

this general procedural requirement there is no set of rules or guidelines that must be followed for

specifying an Internet protocol. This lack of formality allows developers to design new protocols in

an efficient and flexible manner. It results, however, in each Internet protocol specification having

unique syntax and semantics. Designing a common protocol testing application is therefore difficult.

The goal of this dissertation is to examine the feasibility of applying a common approach or method

to testing multiple Internet Protocols. The dissertation examines this concept with particular

reference to conformance testing. Object-oriented framework technology and design patterns are



1-2

used to design a set of related classes, both abstract and concrete, that can be used as a basis for

creating an Internet protocol testing application. To create a new application the Internet Protocol

Test Framework (ipTF) is extended through inheritance and object composition. A sample

implementation of the framework was completed using the DSG Mobile IIOP and Telnet protocols.

The framework was evaluated against the criteria of re-usability, simplicity and efficiency. The

factoring out of common design structure and behaviour of Internet protocols provides the basis for

the framework design. Syntactic or semantic similarities in protocols are used at a lower level to help

refine the framework. Some additional improvements and refinements are suggested which could

make the framework more black-box in nature.

1.1. Background
This section briefly reviews some background material that is relevant to the dissertation. The first

part focuses on the use of framework technology.  This discussion makes reference to design

patterns, which are used to help design and implement a framework. Following this, the general

nature of communication protocols is discussed. Special reference is made to Internet and OSI

protocols. In the final part general software testing concepts are outlined and the specific

requirements for protocol conformance testing reviewed. An understanding of these areas is central

to the design of the ipTF.

1.1.1. Frameworks and Design Patterns
A key problem in designing a re-usable protocol test application is how to factor out the common

functionality and behaviour from the protocol specific parts. Framework technology was chosen as

the design methodology because it promotes a re-usable software design and a component

architecture.

Object-oriented framework technology is commonly used as a basis for developing a set of related

applications. It builds on the traditional object-oriented design concepts of inheritance,

polymorphism, encapsulation and dynamic binding. A framework is composed of a set of classes

(abstract and concrete) and the defined relationships between them. New application instances are

created by extending the basic framework either through inheritance or object composition. The

framework concept has been applied successfully to a large number of problem domains including

the design and development of network protocol software itself [Hüni94].

Creating a framework begins with general analysis of the problem domain and ideally, specific

analysis of a selection of existing applications in the problem domain. Three applications are

considered about right for this type of analysis (rule of three). Framework analysis differs from the

traditional object-oriented analysis of “find the objects” exercise. Instead, the focus is on finding

areas of common functionality between applications. Based on this type of analysis a framework is



1-3

modeled which describes a set of abstract base classes, the relationships between them and a

sample/default concrete realisation of an application instance.

Frameworks provide the application developer with a pre-defined structure for creating a particular

application instance. A set of abstract classes is used as a design basis for all application instances.

The developer is required only to extend the framework in order to create a new application.

Extension is achieved either through inheritance (subclassing) or object composition.

A framework is more than a set of class libraries in that it defines the flow of control for a new

application instance. Application development based on class libraries alone requires the developer

to design the flow of control in the application and define the interaction between objects.

Furthermore, no default behaviour is specified in class libraries that could serve as a guide for

application developers.

Frameworks result in a longer-term saving as they leverage domain expertise, promote consistency

and integration across applications, reduce maintenance and enhance developer productivity. They

do however require more effort to build and learn and require extra documentation, maintenance and

support.

Initially most frameworks are extended through inheritance. This is known as a white box

framework. The developer must be aware of the structure of the framework and is responsible for

design and coding of the extended classes. This allows for flexibility in design but can result in

violating the encapsulated nature of the framework classes. As the framework evolves through re-

use, common functionality is factored out and placed in generic classes. Design patterns are applied

to resolve common problems encountered in the framework design. Most pattern solutions are based

on a compositional structure. This leads to the framework becoming more black-box in nature.

Though more difficult to achieve, a black-box framework is easier to use and has a higher re-use

potential. In this regard it is the preferred type.

As stated in the previous paragraph design patterns help identify framework design issues and can be

used to implement solutions that build and refine the framework. The notion of patterns is very broad

and they can be applied in many contexts. Originally they were first applied in the design of

buildings. In more recent years software developers have used them in the design and

implementation of software systems. Software patterns are sometimes classified as architectural

patterns, design patterns and idioms. Architectural patterns are the highest level of abstraction. They

are capable of representing whole systems. Design patterns deal with micro-architectures or object

structures. Idioms are low-level patterns found in programming languages.

In this dissertation we are primarily concerned with design patterns (object structures). The Design

Patterns book [Gam94] is almost entirely devoted to patterns of this type. A set of creational,



1-4

structural and behavioural design patterns is the subject of this book. These patterns provide

solutions for common framework design issues. The abstract factory, strategy and adapter design

patterns documented in this book were applied in the design of the ipTF. The application of these

design patterns has significantly improved the re-use potential of the framework.

1.1.2. Network Communication Protocols
Before designing a network protocol testing framework it was useful to examine the general nature

and characteristics of communication protocols. This analysis helped identify the structure and

behaviour that is common to all protocols. Communication protocols are rules that govern the

communication between different components in a distributed environment. Protocol engineering is

concerned with developing communication protocol specifications, implementations and performing

validation. A protocol specification defines the required behaviour of a protocol entity. It consists of

five parts:

 i. the service to be provided by the protocol

 ii. assumptions about the environment in which the protocol is executed

 iii. a vocabulary of messages used to implement the protocol

 iv. a method of encoding (formatting) messages in the vocabulary

 v. a set of procedure rules guarding the consistency of message exchanges

Protocols are sometimes compared to spoken languages as follows.

Spoken language: Vocabulary Syntax Grammar Semantics

Communication
protocol:

Message
types

Encoding rules Procedure Rules Service
Specification

Each part of the protocol specification can define a hierarchy of elements. The protocol vocabulary,

for example, can consist of a hierarchy of message classes. Some aspects of protocol design are

relevant to conformance testing. For example a test message is generally taken from the protocol’s

message vocabulary.  Messages are represented in the ipTF by the abstract class TestMsg. An

understanding of protocol design issues is helpful in designing a protocol implementation test

application.

1.1.3. Protocol Conformance Testing
When a protocol implementation is tested against the protocol specification to ensure compatibility

with other implementations of the protocol this is referred to as protocol conformance testing. A

conformance test will fail only if the implementation and specification differ.



1-5

Reference
Specification Tester

Implementation
Under
Test

(IUT)

Test
Sequence

Network Protocol Conformance Test Model

Figure 1: Conformance Testing

Figure 1 describes the general model used for protocol conformance testing. Many protocols can be

specified as a finite state machine, with a limited number of states and a finite set of inputs and

outputs. Given a reference specification and an implementation of the protocol, input sequences are

applied to test the protocol for conformance to its specification. The implementation effectively acts

as a black box that accepts inputs and produces outputs in response. The resulting outputs are

checked against the outputs as prescribed by the formal specification. This type of testing is referred

to as black box testing.

A conformance protocol test passes if all observed

outputs match outputs as prescribed by the formal

specification. The series of input sequences used to

exercise the protocol specification is known as the

conformance test suite. [IS 9646] defines an abstract test

suite structure that is used for testing of all Open

Systems Interconnection (OSI) protocols. The hierarchy

of this test suite structure is shown in Figure 2. A Test

Case is the fundamental building block of the test suite.

It stores a sequence of test events, which are used to test

a particular feature of the protocol. A Test Event is the

smallest indivisible test unit. A Test Group is simply a

selection of Test Cases. This structure is sufficiently

abstract to be applied to the testing of Internet protocols.

For this reason the design of the ipTF test suite is based

on this structure.

The method for developing test cases is dependent on the specification formalism. Internet protocols

are generally specified in natural language. This can lead to ambiguities of meaning and can make it

difficult to check for completeness and correctness of the test suite. To fully test a protocol

implementation, a series of sequences must be defined to form the test suite. This requires generating

a set of sequences to fully test all functions described in the specification and to verify that the

implementation will reject invalid inputs. It is almost impossible to check an unknown

implementation for all possible behaviours simply by probing it and observing its responses. A

representative subset of all possible test sequences is generally sufficient to cover conformance

Test Suite

Test Group

Test Case

Test Event

Test Sequence

Figure 2: IS 9646 Test Suite Structure



1-6

testing of protocols. Automated test case generation of appropriate test cases can greatly improve the

efficiency of a testing application.

A test sequence that has the potential to uncover many faults is better than one that can only uncover

a few faults. It is virtually impossible to establish in advance how many faults a given test sequence

can potentially uncover. One approach to resolving this problem is that of using test adequacy

criteria to distinguish good sequences from bad. Based on this paradigm algorithms have been

developed [Kore96] to automate the generation of test sequences.

1.2. Problem Outline
Finding a common method for testing multiple Internet protocols is the main goal of this dissertation.

Object-oriented framework technology was considered a suitable design methodology to help

achieve this goal. When complete the framework should provide a structure capable of generating

protocol test applications for a wide range of Internet Protocol implementations and revisions. For

the purposes of this dissertation Internet protocols are those in the TCP/IP application layer.

Assessing the suitability of framework technology to design and implement the protocol testing

application is also an important objective.

The testing requirement for rapidly developing new and existing Internet protocols requires that the

framework be adaptable, extensible, efficient and simple to implement. It is important that design

consideration be given to these criteria especially as the framework evolves through refinement. The

initial objective however, is to design the basic structure of the protocol test framework. The analysis

of three domain applications (rule of three) combined with domain expertise gained through research

of communication protocols and conformance testing provides the basis for generating this initial

design. The application of design patterns and the factoring out of lower level common functionality

such as protocol syntax and semantics should eventually lead to a framework design that accurately

models the protocol testing application domain.

Ultimately the framework should have the capability of generating a test application for any new or

existing protocol in an accurate, efficient, and simple way. The framework could then be used to

build a multi-protocol test application for testing a communication server that implements multiple

Internet protocols such as the Lotus Domino communication server.

1.3. Framework Design & Implementation
Following initial background research on a range of Internet protocols it became clear that most

Internet protocol specifications have unique syntax and semantics. Protocols do however have some

common structures and behaviour. For this reason the framework design was largely based on the

common structure and behaviour of Internet protocols and the common features of protocol

conformance test applications.



1-7

To capture the domain requirements an SMTP test application developed by Lotus International and

a simple Java Beans Telnet implementation were analyzed for common design structures and

functionality. Two existing framework models Conduits+ “A Framework for Network Software”

[Huni94] and “A Framework-Based approach to the Development of Network Aware Applications”

[Boll98] were especially relevant to the design of a framework for protocol testing.

From analysis the main classes identified were Protocol, ProtocolAdapter, TestSuite, Log, TestMsg,

and MsgPanel. An initial framework design was created using these classes. Subsequently the

framework was refined using design patterns and by factoring out common parts. TestFactory was

introduced to implement the abstract factory pattern. Its purpose is to control the creation of protocol

specific objects required by a new application instance. MsgReader and MsgComparitor classes were

used to encapsulate message reading and comparison algorithms from TestEvent and TestMsg

respectively. Removal of the comparison and reading algorithms from TestEvent and TestMsg

classes allowed them to become generic.

Java was chosen as the framework development language. Java fully supports the object-oriented

programming paradigm and by extension is suitable for framework development. Borland’s Java

rapid application development tool JBuilder was selected as the development environment. Protocol

implementations developed in C/C++ such as the DSG Mobile IIOP require interface adaption using

the Java C/C++ native interface.

1.4. Achievements
The main output of this project is the design and implementation of a framework for testing multiple

Internet protocols. An understanding of framework concepts, conformance testing and network

protocol design were acquired during the course of this dissertation. Many aspects of object-oriented

design were also encountered including framework development principles, design patterns, the

Unified Modeling Language (UML) and use of the Rational Rose, a UML based design tool. Many

new Java and C++ programming skills were developed during the implementation phase. The

integration of the DSG Mobile IIOP implementation into the framework was perhaps the most

difficult technical task. C++ was used as the language of development for the DSG Mobile IIOP

implementation while the basic framework itself was written in Java. This required becoming

familiar with Java’s native C++ API, the C++ DLL creation process and mapping of Java data types

to C++ data types.

Meeting the original dissertation goals and the specific criteria established for the framework design

required an assimilation of a wide range of new skills and knowledge to create an appropriate

solution. Both the design and implementation of the ipTF framework give proof that a common

approach to Internet protocol testing is feasible. More specifically the use of framework technology



1-8

to achieve this is vindicated. This dissertation can be used as foundation material for subsequent

research in developing a more extensive framework for Internet protocol testing.

1.5. Dissertation Roadmap
The structure of the dissertation is given below. Each chapter’s content is described in brief.

Chapter 1.  Introduction. The introductory chapter is intended as an overview of the

dissertation. The general problem of protocol testing and the motivation for applying framework

technology in this scenario is discussed. Necessary background information on framework

technology, design patterns and protocol conformance testing is given. ipTF design considerations

and implementation issues are reviewed. Dissertation achievements are summarised in the

concluding part of this chapter.

Chapter 2. Frameworks and Design Patterns  A review of literature and research undertaken

in the area of frameworks and design patterns is included here. The survey reviews each area with

reference to the current state of the art.

Chapter 3. Network Protocols & Conformance Testing This chapter reviews literature

covering the nature of communication protocols and conformance testing in general.

Chapter 4. Framework Design. This chapter describes the framework design stage and

highlights the main issues encountered. Rational Rose, a UML based design tool was used to

generate Use Case diagrams, Object Models and Interaction Diagrams from the analysis phase.

References are made to these models in discussions about the framework design. The ipTF

framework structure and classes are described here. Refining the framework through the application

of design patterns is also discussed in this chapter.

Chapter 5. Implementation  This chapter describes the main features of the ipTF

implementation and the main user-interface screens are highlighted here. The framework itself is

written in Java. Interface adapter classes for IIOP are written in C/C++ to run natively within a Java

framework. The practical application of applying design patterns in Java is discussed briefly and

finally, a description of how to use the framework to create a new protocol test application is

included.

Chapter 6. Evaluation  This chapter assesses the framework design based on the criteria of re-

usability, efficiency and simplicity. Particular attention is given to the criteria of framework re-

usability. The framework is also evaluated in relation to possible improvements and refinements that

could be incorporated into future versions of the framework.



2-1

2. FRAMEWORKS & DESIGN PATTERNS

The use of framework technology and design patterns is an important aspect of this dissertation. This

chapter presents a literature survey of the research undertaken on frameworks and design patterns.

The survey reviews each area with reference to the current state of the art. The first part of the review

examines the background, definition, characteristics, and advantages of framework technology.

Particular reference is made to design and implementation features. The second part of the review

looks at the concept of design patterns. Their role in relation to framework development is examined.

Architectural styles and pattern languages are discussed in the final part of the review.

2.1. Frameworks
The main goal of this project was to design a framework for testing Internet protocols. In this section

framework technology is reviewed with reference to various articles and publications. The review

looks at a range of current object-oriented technologies. It begins with a look at software

development processes adopted in recent years. Procedural programming, object-oriented design and

frameworks are contrasted. The main body of the review focuses on frameworks and design patterns.

Other object-oriented technologies that provide a context for examining and understanding the

framework concept are reviewed. These include concepts such as architectural styles and pattern

languages.

Figure 3 offers a view of several separate but related object technologies and techniques. [Tepf97]

describes this chart as the “The Unified Object Topology”. It relates frameworks, kits, object

patterns, domain models, architectural styles, and domain taxonomies. The topology provides a

context to better understand and use these technologies in large-scale distributed systems. Each

technology is represented in a two dimensional grid based on the attributes of Implementation and

Domain.

Implementations are to some degree either abstract or concrete. An abstract implementation might be

expressed in natural language whereas a concrete implementation might for example be expressed in

machine executable code. The domain-dependency attribute describes development topics in relation

to the application domain. If the topic is described using domain terms it is considered detailed

otherwise it is considered domain independent.

[Tepf97] describes each technology in relation to Implementation and Domain concepts and suggests

a path for developing frameworks based on the topology. The upper arch in Figure 3 illustrates the

suggested path for developing frameworks.  The main technologies highlighted in the topology are

examined with particular reference their role in framework creation.



2-2

2.1.1. Background
[Tal94b] describes object-oriented frameworks in the context of other development approaches. It

describes how Taligent Inc. has used frameworks to realise the benefits of object technology. A

review of this paper illustrates the reasons why object-oriented frameworks have become state of the

art in developing modern

software systems. The paper

begins by charting the key

improvements in each of the three

major software development

approaches, procedural

programming, object–oriented

programming and framework-

oriented programming.

The procedural programming  approach brought major improvements to software quality through

increased clarity and reliability of programs. As demands on software capability grew some

limitations of procedural programming became apparent. Most importantly a lack of extensibility

became evident. Inflexible interfaces did not allow developers to make selective changes or extend

the structure or behaviour of applications. Common functionality was difficult to factor out allowing

little re-use in software design. There were problems ensuring that changes inter-operated correctly

with other systems that depended on modifications. Minimal software design reuse leads to high

maintenance costs. In summary procedural programming did not address large-scale programming

Independent

Detailed

Domain

ImplementationConcrete Abstract

Application

Kits

Frameworks

Object
Design
Patterns

Domain
Models

Architectural
Styles

Domain
Taxonomy

Unified Object Topology

Ref: IEEE Software Feb 97 P27-67

Verification Paths

Figure 3: A Unified Object Topology

Procedural Programming

Frameworks

Object Oriented Development

Figure 4: Software development processes



2-3

issues. It was primarily concerned with low-level algorithm and procedural issues. The object-

oriented approach sought to address these issues.

Object-oriented programming (OOP) emphasises the binding of data structures with methods that

operate on that data. Both data and methods are stored in objects. Object classes are designed to

correspond to the essential features of the problem. Emphasis is placed on effective modeling of

solutions to real-world problems. The OOP principals of inheritance, encapsulation and

polymorphism allow developers to break problems in smaller and more manageable modules.

Encapsulation frees the developer from having to know implementation details. Inheritance allows

the developer to derive new subclasses from existing ones and provide hooks for adding new

extensions. Polymorphism provides a mechanism for the creation of multiple definitions for

functions. These characteristics greatly improve class reuse. New components are added without

disturbing existing ones.

OOP permits developers to work at a higher level of abstraction through classes and objects. This

gives rise to improved extensibility, flexibility, interoperability and ease of maintenance. Developers

design applications by assembling classes and objects and connecting them in a coherent way. The

developer is responsible for implementing the structure and flow of control of the application. This is

achieved by defining the relationships between the classes and objects. 

Frameworks attempt to address this by providing the developer with a predefined structure for an

application and freeing them to concentrate on implementation specifics.

2.1.2. Frameworks Definition
Frameworks build on OOP concepts by providing infrastructure and flexibility for deploying object-

oriented technology (OOT). Ralph Johnson’s framework definition is a widely accepted one:

“A framework is a set of classes that embodies an abstract design for solutions to a family of related

problems” [Joh88]

Other definitions offer alternative views of the framework concept:

 “Frameworks are sets of co-operating classes that make up re-usable design for a specific software

class providing the entire domain independent infrastructure you need to implement an application.”

[Mel97]

“A Framework is a set of prefabricated software building blocks that programmers can use, extend,

or customise for specific computing solutions” [TAL94]



2-4

“A framework helps a developer provide solutions for problem domains and better maintain those

solutions. It provides a well designed and thought out infrastructure so that when new pieces are

created, they can be substituted with minimal impact on other pieces of the framework”  [Nel 94]

The four definitions highlight the main features of frameworks. A framework consists of a set of

classes. This set of classes is more than a class library. Relationships exist between the classes that

are defined in the library. These relationships model the basic design structure of the framework.

Frameworks place strong emphasis on the re-use of both design and code. They are based on a

component architecture of prefabricated building blocks that are used to generate an application

instance. These features are examined in more detail in following sections.

2.1.3. Software Reuse
The demand for software productivity is ever increasing. Software reuse can help meet this demand

by reducing the time to market. The reuse of software components is recognised as an important way

to increase productivity in software development. In the past developers have sought to reuse code

design through programming experience and examining old code designs. However the reuse of

analysis and design can have significantly higher value. The framework concept makes it possible

reuse both analysis and design as well as code.

“An object oriented approach moves much of the software development effort up to the analysis

phase of the life cycle. It is sometimes disconcerting to spend more time during analysis and design,

but this extra effort is more than compensated by faster and simpler applications. Because the

resulting design is cleaner and more adaptable, future changes are much easier.” [Rum91]

2.1.4. Frameworks v Class Libraries
In developing reusable software the aim is to produce extensible software components. Traditionally

developers have tried to achieve this through providing domain-specific procedural libraries of

functions or reusable class libraries. Domain applications were built using these individual

components. When developing an application in this way the developer is responsible for defining

the communications between the many small components. “Class Libraries do not impose a

particular design on an application; they just provide functionality that can help the application do

its job. The developer must provide the interconnections between the libraries.” [Lan95]

Figure 5 illustrates the difference between using class libraries and frameworks to build applications.

Part A of the figure shows the application developer defining the basic application structure and

adding components from the library. A framework is not simply a collection of classes. The wired in

interconnections and rich functionality give the developer a basic infrastructure with which to work.



2-5

Figure 5: Class libraries v Frameworks

In designing a framework the application designer does not need to know how or when to call each

function. The basic application design is defined in the composition of framework classes. Part B of

Figure 5 illustrates the application development process using frameworks.  The framework model

frees the developer to focus on implementing solutions for application specific problems. The

standard code implemented in the framework reduces considerably the level of test and debug

necessary in the client application.

2.1.5. Framework development process
Domain expertise is embodied in a framework. It captures the programming expertise necessary to

solve a particular class of problem. The problem solving expertise encapsulated in the framework

should be independent of both the original problem and future solutions. A well-designed framework

should appear to have been designed for each program that uses it.

A major goal of object-orientated design is to produce well-structured software that is both

extensible and re-usable. Re-usability is difficult to achieve. Frameworks attempt to address this by

placing strong emphasis on software re-usability on a large scale. OOP language support for the

properties of inheritance, polymorphism and dynamic binding make frameworks feasible. Inheritance

allows several classes to share code. Dynamic binding lets a function call be bound to an object at

runtime. Polymorphism allows variables and parameters take on different values and types. [Lan95]

With this in mind “Building Object Oriented Frameworks” [Tal94] describes four important

considerations for designing frameworks. These are:

Completeness - Frameworks should support features required by clients and provide default

implementations and built in functionality where possible. Concrete derivations of abstract classes

and default member function implementations help the client understand the framework and let them

focus on areas needing customisation.

Class Library

Framework

Call
Call

Call Call

Code written by the
 application developer

A B



2-6

Flexibility  – Abstractions should be applicable to different contexts. The framework must be re-

usable.

Extensibility  – Hooks should be supplied which allow clients to customise the behaviour of the

framework by deriving new classes.

Understandable  – Client interactions with the framework should be clear and well documented.

Sample applications that demonstrate the use of the framework should be provided.

“The most profoundly elegant framework will never be reused unless the cost of understanding it and

then using its abstractions is lower that the programmers perceived cost of writing them from

scratch” [Boo94]

From a client perspective an easy-to-use framework is the most important consideration. It should

perform useful functions with little effort. It is recommended that a framework should work with

little or no client code, even if default implementations are only placeholders. It should be possible to

get from default behaviour to sophisticated solutions in small incremental steps.

Frameworks have most value when many applications are going to be developed within a specific

problem domain.  They are designed by generalising from concrete examples. Framework

development is therefore an evolutionary process.

Figure 6: A framework evolution process [John96]

[Rob96] describes such a framework evolution process. The main steps in the process are described

in Figure 6. The process suggests the analysis of three domain examples from which a white-box

framework is created. The ability to generalise for many applications can only come by determining

which abstractions are being reused accross applications. The framework gradually evolves into a

black-box framework that is composed of discrete components or objects. As the framework



2-7

stabilises, visual design tools are created to build and customise different versions of the framework.

Programming language support features are often added to these tools.

2.1.6. Benefits & Costs
The benefit of using framework technology to develop a set of related applications is generally

greater than the cost incurred. The main benefits and costs of using framework technology are

described below.

Benefits

• Better consistency and integration: Because different applications use the same framework

greater consistency is achieved across applications generated from the framework.

Additionally application inter-operability is easier to achieve as generated applications have a

similar infrastructure.

• Improved reliability: Framework refinement is achieved through client reuse of the

framework.  This improves the inherent reliability of the framework.

• Reduced maintenance: Frameworks embody domain expertise that can be leveraged by the

developer. Fewer lines of code need testing thereby reducing the maintenance cost.

• Increased developer productivity: The framework determines the basic design and structure of

the application. Developers are free therefore to concentrate on the unique features required in

the application. This leads to an increased developer productivity. Frameworks can

dramatically reduce the time to market and are seen as a tool for innovation.

Figure 7: Framweork benifits v costs [Tal94a]

Costs

• Difficult to build a framework:  Frameworks are difficult to design and build. A designer must

find and represent the common functionality that exists in similar domain applications. This

design must be capable of being re-used to create customised framework applications.

“Components and architectures do not become reusable by themselves. They must be

designed with reuse in mind or redesigned for reuse. Designing for reuse takes longer time

%HQHILWV

5HVXOW�LQ�ORQJ�WHUP�VDYLQJV�

/HYHUDJH�GRPDLQ�H[SHUWLVH�

3URPRWH�FRQVLVWHQF\�DQG�LQWHJUDWLRQ

DFURVV�DSSOLFDWLRQV�

5HGXFH�PDLQWHQDQFH�

(QKDQFH�SURGXFWLYLW\�

&RVWV
5HTXLUHV�PRUH�HIIRUW�WR�EXLOG�DQG�OHDUQ�
3URJUDPV�FDQ�EH�KDUGHU�WR�GHEXJ�

5HTXLUHV�GRFXPHQWDWLRQ��PDLQWHQDQFH�	�VXSS



2-8

than designing systems or components without any thoughts of reuse. This extra time must be

seen as investment.” [Lan95]

• Documentation required: Frameworks must be documented. If the documentation is unclear

or the structure of the framework is incorrect, problems arise when developers try to use it for

application construction.

In summary, a well-designed framework should provide a generic application infrastructure that

models the application domain accurately. This in turn will provide the developer with opportunities

for re-using design and save considerable development time.

2.1.7. Framework types
Frameworks can be variously categorised according to different criteria. Three broad types of

Frameworks are described in [Tal94a], application frameworks, domain frameworks and support

frameworks. Application frameworks encapsulate expertise applicable to a wide variety of programs.

They capture a horizontal slice of functionality that can be applied across many client domains.

Graphical user interface (GUI) application frameworks such as Apple’s MacApp or Borland’s OWL

are examples of this type of framework. Domain frameworks encapsulate expertise in a particular

domain and capture a vertical slice of functionality for a particular client domain. Examples of

domain frameworks are manufacturing, data access and multi-media frameworks. Support

frameworks provide system-level services such as file access or device drivers. An application

developer generally uses the framework directly or uses modifications produced by the systems

provider. For the purposes of this dissertation we are concerned primarily with domain frameworks.

Frameworks can be also categorised by how they are used as architecture driven or data driven. This

is sometimes referred to as inheritance focused (white box) or composition focused (black box).

Architecture driven frameworks use inheritance for customisation whereas data driven frameworks

use object composition. Data driven frameworks have the advantage of being easy to use but can

limit customisation. Architecture driven frameworks require the developer to undertake additional

coding to achieve customisation. A hybrid approach combines an architecture driven base that

accommodates extensions and a data driven layer for ease of use. This is the most commonly used

approach.

2.1.8. Design Process
Identifying the primary abstractions, defining how clients interact with the framework and

implementing, testing, and refining the framework design are the major steps in a framework

development process.



2-9

Abstractions are identified through domain experience and/or through analysing a range of existing

solutions. Common functionality is abstracted out using a bottom up strategy. The responsibilities of

the framework itself are determined and the parts with which the client can interact are defined.

The traditional goal of object-oriented design is to find the objects that exist in the problem domain.

Identifying this set of objects helped the developer create a structure for the application. Framework

design has a higher level emphasis. It is more concerned with finding objects and the relationships

between them that represent what is common across several applications. “With or without case

tools, early adopters of the object paradigm focused on the “find-the objects” exercise, deferring or

forever losing the systems perspective of interactions between classes or between objects.” [Copl97].

When the basic structure of the framework is in place it is then examined for recurring design

patterns. If any patterns are applicable then generic solutions can be applied to refine the basic

framework structure.

2.2. Design Patterns
Design patterns play an important role in the generation of frameworks. Two alternative definitions

of design patterns are given below.

“Design Patterns are generic designs to problems that occur often during object oriented design”

[Lan95]

“A pattern is a named nugget of instructive information that captures the essential structure and

insight of a successful family of proven solutions to a recurring problem that arises within a certain

context and system of forces” [App98]

Christopher Alexander [Alex77] was first to recognise and use patterns as a tool for designing

buildings. Strong parallels exist between Alexander’s use of architectural patterns in the design of

buildings and the software designer’s use of object-oriented patterns in the construction of software

applications. Prefabricated modules are put together to create a (whole) building/application. The

success of the building/application design is not just the sum of its parts but also depends on the

relationships between the parts.

“Alexander found that patterns helped him express the relationships between the parts of the house

and the rules that transforms  those relationships.” [Copl97]

In recent years software developers have applied the pattern concept to software construction. Design

patterns can help find and represent commonality between applications. Some patterns appear in

different guises across several applications making them difficult to recognise. The goal of the

software community is to create a body of literature that helps software developers resolve common



2-10

problems in software development. This is part of an emerging culture which documents and

supports sound software design.

Many framework design problems have already been encountered and solved by software designers.

These solutions are often described as design patterns. The design pattern solutions are sometimes

documented and made available publicly. [Gam94] has produced a seminal work that documents

generic software patterns under the categories of creational, structural and behavioural. These

patterns solve specific design problems and make the framework design more flexibile, elegant, and

ultimately reusable. Creational patterns are concerned with the process of object creation. Structural

patterns deal with the composition of objects and classes. Behavioural patterns characterise the ways

in which classes or objects interact and distribute responsibility. Each pattern description embodies

the essential insight into the solution from which others may learn.

The documentation process for design patterns has been formalised to help in the creation and

development of a pattern language, which can be widely accepted and understood.  Patterns are

uniquely identified by name, have a solution description, and an applicable context.

 “Each pattern is a three part rule, which expresses the relationship between a certain context, a

problem, and a solution” [Alex77].

A pattern should address a recurring phenomenon, generally verified by examining three existing

systems. This is referred to as the rule of three. Good patterns solve a problem, are a proven concept,

provide an indirect or non-obvious solution to the problem, and describe a relationship for a given

context. The Gamma et al work and many subsequent works in this area are an invaluable reference

for both experienced and novice software designers.

2.2.1. Pattern Types
Distinctions are sometime drawn between architectural patterns, design patterns and idioms.

Architectural patterns  or architectural frameworks  describe a fundamental schema for software

systems. These are the high level patterns concerned with relationships between a set of pre-defined

subsystems. Subsystem responsibilities are specified and rules and guidelines for organising the

relationships are set out..  Design patterns provide a scheme for refining the subsystems or

components of a software system, or the relationships between them. It describes commonly

recurring structure of communicating components that solves a general design problem within a

particular context. An idiom or coding pattern is a low-level pattern specific to a programming

language.

The primary difference between the three types is the level of abstraction and detail. Architectural

patterns are concerned with high level strategies and large scale components. They effect the entire

structure of a software system. Design patterns apply to subsystems or components and are



2-11

themselves micro architectures. Idioms relate to programming language paradigms and are the lowest

level of object pattern. “You can only master a language after its idioms become second nature.”

[Copl97]

Patterns are sometimes collected and organised in categories within a catalogue. This facilitates the

developer in finding a pattern of a particular type. [Gam94] is organised in this way. Such

organisation adds structure to the pattern collection.

2.2.2. Pattern Formats
Several formats are used to describe patterns. The “Gof format” and “Alexanderian form” supply

headings to make what is known as the “canonical form.”  Patterns using this form are generally

specified with the following description headings.

Name: Single word or phrase to identify the pattern

Problem Definition: A statement describing the nature of the problem

Context/Preconditions: Context in which the problem and solution is applicable

Solution Description: Textual or graphic description of the structure, participants and

collaborations that shows how the problem is solved

Examples: One or more sample applications of the pattern

Post Conditions: The state or configuration after the pattern has been applied

Rationale: Can provide insight into deep structures and key mechanisms of the

pattern

Related Patterns Patterns, which are related in a given dcontext.

Known uses Applications in which the pattern was used.

Table 1: Pattern Format Headings

2.3. Pattern Languages and Architecture
Patterns have a much wider usage and relevance than software construction. They are applied is

several contexts including architectural design, process practice and even to marketing strategy. At

the most abstract level software development is concerned with the architectural design of a software

system. The architectural design of a software system can be compared to the architectural design of

the central structure of a building. Patterns can play an important role in defining the architecture of

the system. “To me patterns are a literature that goes beyond documentation. They capture an

important structure, a central idea, a key technique long known to expert practitioners. It can be an

architectural structure”  [Copl97]

Software architecture can have many different meanings. It is argued that an architecture is a high

level representation that determines the structure of a system and the underlying philosophy on

which the system is implemented. [Mon97] describes the roles and qualities that a software



2-12

architecture design should have. The design is at a level of abstraction at which the software

developer can reason about the function, performance and reliability of a system. The design

abstracts away from the implementation details and has a structure, abstractions for interactions and

some global properties. An architectural style is essentially a design language that provides an

architect with a vocabulary and framework with which to build design patterns to solve problems.

Good software architectures should be resilient and adaptable to change and be living architectures

capable of dynamically adapting.

Patterns are used to help define the architecture of a system. There are sets of related patterns that

support the construction and evolution of whole architectures. Such a pattern collection is more than

a catalogue of patterns. The relationships that exist between patterns are embodied in the collection

itself. Patterns languages consist of tightly interwoven and cohesive patterns. “A pattern language is

a set of patterns which are used together to solve a problem” [Rob96] The pattern language defines a

collection of patterns and the rules to combine them into an architectural style.

Alexander developed an architecture, which was based on a directed graph of patterns. He termed

this a pattern language and used it to help him design and construct buildings and towns. He applied

this to large-scale problems by breaking them into smaller problems and using pattern graphs to

connect them. The philosophical base of his architecture was embodied in his selection of patterns.

Alexander implemented his architectural designs by creating real buildings from which he

documented, reviewed, and ultimately refined his designs. The notion of a philosophical base in the

development of a pattern language is somewhat elusive. Alexander described this as the “quality

without a name”. He believed certain qualities are aesthetically beautiful in a timeless and

universally accepted way. It is these qualities that makes a structure “whole” and “alive”.

Over the past ten years software designers have worked with Alexander’s ideas to develop software

pattern languages. ”To effectively build large object systems that realise a philosophy, we must use a

pattern language. First however we must develop effective pattern languages” [Kert97]. Kerth et al.

describes three approaches introspection, artifactual and sociological that are used for recognising

recurrent situations in design. Introspection is defined as searching for an individual architectural

style. People reflect on and relate to their own experience of building systems. An artifactual

approach examines systems developed by other teams and is a more objective approach. The

sociological approach studies how people involved in building similar systems discover recurring

problems in system design. This latter approach has not been widely researched. Pattern languages

generally evolve over time and should be carefully evaluated and documented. The expert

knowledge embodied in the language must also be accessible to developers. Pattern languages

represent a future challenge for software developers.



2-13

2.4. Summary
A brief history of software design and development is described in the first section. The review

broadly covers object technologies and current methods used in software design. The key aspects of

the design and development process of object-oriented frameworks are examined. Object-oriented

design patterns play an important role in the design and practical realisation of a framework. A

discussion of pattern concepts is included in the review. Software architecture concepts and the

development of pattern languages are described in the concluding part of the review.



3-1

3. NETWORK PROTOCOLS & CONFORMANCE TESTING
The first part of this chapter examines the nature and design of communication protocols. Some of

the important developments in communication protocol history are highlighted. The main

characteristics of network protocols are described. Two important types of network protocol are

Open Systems Interconnection (OSI) and Internet protocols.  Much work has been completed on

multi-protocol conformance testing of OSI protocols and this has relevance to the creation of a

conformance testing application for multiple Internet protocols.  The design and characteristics of the

two types of protocol are compared and contrasted. Aspects of protocol conformance testing are

examined in the final part of the review. These include test suite structure, test selection, and

automated test generation.

3.1. Protocol Background
Communication protocols are rules that govern the communication between different components in

a distributed environment. Early protocols were designed to transmit information over long

distances. Among the first methods used for long distance communication was fire signals. The

number of messages that could be sent by a single fire signal was, however, limited. The use of an

array of five torch signals to represent the alphabet was a significant 2nd century B.C. improvement.

In designing early protocols the main problem encountered was the difficulty in defining a set of

signals which were clearly understood and unambiguous in meaning. This is still a major design

issue in modern protocol development.

Not until the 18th Century with the introduction of the optical telegraph and later the electromagnetic

needle telegraph was the basic design of protocols improved.  By 1875 almost 200,000 miles of

telegraph line were in operation. This became the basis for the development of early network

protocols. Morse code signaling used dots and dashes to send and receive messages in a binary

format. Eventually switching networks such as ARPA required the development of advanced

network protocols. Today many different network protocols are defined for a wide range of

applications. The need for standardisation of multiple protocols gave rise to standards organisations

and bodies that assumed responsibility for specifying protocols. The Internet Architecture Board and

OSI are two such organisations. They control the specification process for Internet protocols and OSI

protocols respectively.  Both protocol types are compared and contrasted below. They are also

discussed with respect to conformance testing in a later section of this chapter.

3.2. Protocol Design and Specification
A protocol is a well-defined set of rules for exchange of information between computer systems.

Assume we have two computer systems, A and B. All rules, formats and procedures that have been

agreed upon between A and B are collectively called a protocol. To exchange control information

between A and B the channel must be a two-way one. Control information typically includes



3-2

procedures for start, suspend, resume, and conclude transmission. Transmission control error

information is also sent between the systems. Protocols formalise the interactions between the

systems by standardising the use of the communications channel.

A protocol typically contains agreement on the methods used for:

• Initiation and termination of data exchanges

• Synchronisation of senders and receivers

• Detection and correction of transmission errors

• Formatting and encoding of data

These methods can be defined at various levels of abstraction. At the lowest level, a format definition

might consist of methods for encoding bits with analog electric signals. A level up might consist of

methods for encoding individual characters into bit patterns. At higher levels character codes are

grouped into message fields and message fields into packets or frames with a specific meaning or

structure. Layered architectures that have multiple levels of abstraction are sometimes adopted for

complex protocols.

The essential elements of a protocol definition are contained in the protocol’s specification

document. The specification is the basis for reliable protocol design. It outlines the structure and

behaviour of the protocol and makes explicit all assumptions. Protocol engineering is concerned with

developing protocol specifications and implementations, and performing validation. A protocol

specification consists of five elements: the service to be provided, the assumptions about the

environment, a vocabulary of messages, the method of encoding messages, and a set of procedure

rules for message exchange [Holz91]. These basic building blocks of the specification are discussed

in brief.

Service specification: This describes the service to be provided by the protocol. Text file transfer as

a sequence of characters across data lines assuming protection against transmission errors is an

example of a service specification.

Environment assumptions: This describes the environment in which the protocol is to be executed.

The assumptions could, for example, minimally include the existence of two users and a reliable

communication channel.

Protocol vocabulary: The protocol vocabulary defines the distinct message types. The basic IIOP

message types include Request, LocateRequest, CancelRequest, Reply, LocateReply,

CloseConnection, and MessageError. Taken together these form the message vocabulary of IIOP.

Message  Format: These are the structures that are used to encode the protocol message vocabulary.

Three low-level formats include bit oriented, character oriented and byte-count oriented. A bit



3-3

oriented protocol transmits data as a stream of bits. Pre-defined bit sequences act as flags to signal

the start and end of messages.  Character oriented protocols enforce some minimum structure on the

bit stream. For example, if the number of bits per character is fixed at n bits then all communication

takes place in multiples of n bits.

Higher-level data formatting methods can be built on these lower level structures.  For example if

flow control techniques are added to detect the loss or re-ordering of frames, a sequence number field

could be appended to the message. Similarly if more than one type of message is used, some

indication of this must be included in the message. The detailed structure of the IIOP message

vocabulary is illustrated in page 3-11.

Procedure rules: Procedure rules determine the order and meaning of possible message sequences.

Sequences can be interpreted concurrently by a number of interacting processes. These processes can

have different interpretations at various time intervals. Because of the many different time intervals

that can take place, it is not always possible to reproduce protocol behaviour. To check the

correctness of design some formal method of reasoning about protocol behaviour is preferred.

Protocol behaviour is most often represented in a formal way as a finite state machine (FSM).  The

problem of devising a complete set of rules which is unambiguous for the exchange of information is

the most difficult problem in protocol design. Two of the main types of protocol design are Internet

and OSI protocols. These are discussed in the next section.

3.3. OSI v Internet Protocols
If examined in a top down fashion the architecture and goals of OSI and Intenet protocols are

essentially the same. The principles and techniques used in each are very similar. Both have an

underlying philosophy of promoting an open systems strategy. The fact that TCP/IP is older has had

a strong influence on the development of OSI. The public availability of research on real world

TCP/IP applications is also a major factor in that regard. To a lesser extent TCP/IP itself has been

influenced by OSI. An example of this is the use of Abstract Syntax Notation (ASN.1) in defining

the management information base (MIB) for the Simple Network Management Protocol (SNMP). To

avoid overlap and make the best use of resources, an increasing level of cooperation between both

bodies and their protocols is evident.

A weakness of OSI is that it seeks to be all things to all people. Many international standards bodies

and committees are involved in the OSI standards process. A large number of steps and revisions are

required to complete the specification of a new protocol. The Internet uses a public Request for

Comments (RFC’s) specification process. It is much simpler and more efficient than the equivalent

OSI process. In addition, anyone with Internet access can participate in the process.

The Internet RFC process leads to greater flexibility and speed in the design of Internet protocols. A

downside however is the lack of commonality between Internet protocols. OSI’s more formal



3-4

process facilitates a level of design which can encompass common structures and behaviour across

protocols.

The OSI specification IS 9646 titled “OSI – Conformance Testing Methodology and Framework” is

a relevant example of this. All OSI based standards are now written in accordance with the

requirements of IS 9646. No such equivalent is specified for Internet protocols. More often than not,

testing requirements are given little consideration during design and specification of Internet

protocols. An example of this is highlighted in the OMG TSIG White Paper 1 “The OMG RFP

process gives cursory attention to testing.”   Much of the work completed for IS 9646 in the area of

test methods, test suite structure and testing process is applicable to the design of a common method

or approach to testing multiple Internet protocols. These design issues are discussed in more detail in

the sections 3.5.1 to 3.5.3.

3.4. General Testing Concepts
Verification and Validation (V&V) is the process that ensures software conforms to its specification

and meets the needs of the software customer. A software system should be verified and validated at

analysis, design, implementation, and test development stages. The difference between validation

and verification is summarised by Boehm [Boe79]:

• Verification: Are we building the product right?

• Validation: Are we building the right product?

Verification is checking that a program conforms to its specification. Validation involves checking

that the application, as implemented, meets the expectation of the customer.

Both static and dynamic techniques of system analysis and checking are used in the V&V process.

Static techniques are used for analysis and checking representations of the system such as

requirement documents, design models and program code. Static techniques check for

correspondence between a program and its specification. It does not however check that a system is

operationally correct. Static techniques are useful for identifying errors in program logic.

Dynamic techniques are applied only when an executable program is available. They are used to

exercise the application with real data inputs and check that the generated data outputs conform to

the expected outputs. Dynamic testing techniques can be applied to test applications for performance,

reliability or conformance to specification. Application performance can be judged using a statistical

                                                
1 The Object Management Group (OMG) is responsible for the specification of CORBA related

Internet protocols such as IIOP. The Test Special Interest Group is part of OMG.



3-5

testing approach. This approach is also used to test for reliability when combined with a reliability

growth model [Som96]. Statistical testing is generally based on patterns of user input.

Defect testing is a form of dynamic testing that is used to check that an application conforms to its

specification.  A successful defect test is one that causes the system to perform incorrectly and

demonstrates the presence of program faults. It does not however infer the absence of program faults

or that a program completely conforms to its specification. Defect testing is generally not exhaustive

in that sense. Test selection is therefore based on defining a subset of all possible tests.

Dependent on which type of testing is required, conformance, performance or reliability, a test data

set is generated. There is generally some overlap between such test data sets. Some indication of

performance can be inferred from conformance testing and a level of conformance can be inferred

from statistical testing. Figure 8 shows the model for defect testing as described in [Som96]. In this

model test data and test cases are distinguished. Test data are the inputs used to test the system. Test

cases are input and output specifications and include a statement of function under test.  The program

is run using the test data and test results are compared against the test case output specifications.  The

ipTF testing process is based on this model of testing.

3.5. Protocol Conformance Testing
When a protocol implementation is tested against the protocol specification to ensure compatibility

with other implementations of the protocol this is referred to as protocol conformance testing.

Testing a protocol for implementation specifics, reliability or performance is referred to as

implementation assessment. In this dissertation we are primarily concerned with protocol

conformance testing.

A conformance test is used to check that the external behaviour of a given implementation of a

protocol is equivalent to its formal specification [Holz91]. A validation test checks that the

specification of the protocol is logically correct. Conformance testing will not highlight specification

design errors, only implementation errors. For instance a conformance test will fail only if the

implementation and specification differ. Figure 9 describes a general model used for protocol

conformance testing. The tester derives test sequences from the reference specification. The test

sequences are then applied to the running implementation (IUT).

Test
Cases

Test
Data

Test
Results

Test
Report

Design Test
Cases

Prepare Test
Data

Run program with
Test Data

Compare results to
Test Cases

Figure 8: Defect Testing Process [Som96]



3-6

Figure 9: Conformance Testing

Many protocols can be specified as a finite state machine. They have a limited number of states and a

finite set of inputs and outputs. Given a reference specification and an implementation of the

protocol, input sequences are applied to test the protocol for conformance to its specification. The

implementation effectively acts as a black-box that accepts inputs and produces outputs in response.

The resulting outputs are checked against the outputs as prescribed by the formal specification.

“Verification, by the standard IEEE definition, is a way of assessing whether the input/output pairs

are correct” [Voas94]

This type of testing is referred to as black-box testing.  In contrast, white-box testing requires that

test cases be derived from knowledge of the program’s internal structure or implementation. Protocol

conformance testing is mainly based on the black-box approach.

The essential elements of a protocol conformance testing application are defined in IS 9646. These

elements are applicable to protocol conformance testing in general. Test methods, an abstract test

suite structure, a results evaluation process and a method for test case selection are all described by

IS 9646. We examine each with respect to the development of an Internet protocol testing application

or framework.

3.5.1. Test Methods
Four test methods are described by IS 9646, local, remote, distributed and co-ordinated.  These

names are not very descriptive and do not indicate the nature of the test method. The local method

requires that the IUT be built into the test application.  The IUT is surrounded by an Upper Tester at

the top of the layer under test and a Lower Tester which is underneath the layer under test. Test co-

ordination procedures co-ordinate the actions of the upper and lower testers. The other three methods

are all remote in the sense that the test application is external (remote) to the IUT. Figure 10 shows

an example of the remote test method as defined in IS 9646. It makes no assumptions about the

internal design of the System Under Test (SUT) or the IUT. It effectively treats the SUT as a black-

box. The distributed and co-ordinated methods are more complex in that they permit the tester to

have control over events within the SUT. In the co-ordinated method, for example, test management

Reference
Specification Tester

Implementation
Under
Test

(IUT)

Test
Sequence

Network Protocol Conformance Test Model



3-7

PDUs are sent to the SUT, which tell the SUT what actions to perform and what events to observe

and report.

These methods are generic for all network protocols and equally relevant for testing Internet

protocols. The remote methods are appropriate for a client/server protocol architecture that has

remotely distributed clients and servers.

Figure 10: Remote Test Method [Knig93]

3.5.2. Test Suite Structure
A conformance protocol test passes if all observed outputs match the outputs which are prescribed by

the formal specification. The series of input sequences used to exercise the protocol specification is

known as the conformance test suite.

ISO 9646 defines an abstract test suite structure, which can be used in testing any ISO protocol.  The

test structure is defined in a top down hierarchical way. The containment hierarchy is Test Suite, Test

Group, Test Case, Test Step and Test Event. A Test Case is the fundamental building block of the

Test Suite. It performs a test that corresponds to a particular feature of the protocol under test. A test

group is simply a particular selection of test cases. A Test Event is the smallest indivisible test unit

such as sending or receiving of a Protocol Data Unit (PDU). A Test Step is a sequence of Test

Lower
Tester

Test System

PCO   ASPs

Service Provider

SUT

Upper
Tester

IUT
PDUs

Test Coordination
Procedures



3-8

Events. A sequence of test events is used for transitioning between protocol states. An equivalent test

suite structure is valid for testing a range of Internet protocols. The test suite structure defined for use

in ipTF has much in common with the IS 9646 structure. The design elements of the ipTF test suite

structure are described in chapter 4 of this document.

3.5.3. Test Case Selection
Suitable test cases/data must be selected to test the implementation for conformance. Given that

protocol testing is generally based on the black-box approach the protocol specification has a strong

influence on the selection of test cases. The method for developing test cases is to a large degree

dependent on the specification. Internet protocols are generally specified in natural language. This

can lead to ambiguities and makes it difficult to check for completeness and correctness.  Formal

specification methods are commonly applied in protocol design. These include finite state machine

(FSM) models, petri nets, formal grammars and high level programming languages. The FSM model

is most often used for defining protocol specifications and for that reason most work on protocol

testing is based on FSM models.

To fully test a protocol implementation, a series of sequences must be defined to form a test suite.

This requires generating a set of sequences to fully test all functions described in the specification

and which can also establish that the implementation rejects invalid inputs. It is almost impossible to

check an unknown implementation for all possible behaviours simply by probing it and observing its

responses. Normally a representative subset of sequences is chosen. [Knig93] suggests a test suite

should include tests that cover the following generic elements of protocols:

• all the mandatory requirements

• all the optional requirements

• all messages which can be legitimately sent to the IUT

• all messages which can be legitimately received by the IUT

• particular protocol states

• time critical operations

• parameter variations

• invalid syntax or semantically incorrect events

A range of tests based on the above would provide good level of coverage for conformance testing. If

however a protocol is specified using a deterministic FSM all possible protocol states and input

combinations can be checked. A sample algorithm for an implementation with i states and j inputs

might appear as follows:

initialise implementation

For every combination of state i and input j,

Set state(i)



3-9

Send input(j)

Receive output(x)

Verify output(x)

End for

A representative subset of all possible test sequences is however generally sufficient to cover

conformance testing of protocols.

Testing for faults in a software system is another means of testing the system for conformance. Fault-

free software means software which conforms to its specification. [Mill96] describes the concepts of

the fault model and fault coverage of conformance test sequences for communication protocols

specified as FSMs. The concepts of Unique Input Output (UIO) sequences and distinguishing

sequences in FSMs are the basis for algorithms that generate test sequences which can fully verify

the IUT.

3.5.4. Automated Test Case Generation
Automated generation of test cases can greatly improve the efficiency of any test application. A test

sequence that has the potential to uncover many faults is better than one that can only uncover a few

faults. It is virtually impossible to establish in advance how many faults a given test sequence can

potentially uncover. Much research work has been completed in this area. Two papers worth

examination are by Korel et al [Kore90] [Kore96]. Methods and algorithms are suggested to achieve

automated test data generation. The approach is based on the use of test adequacy criteria to

distinguish good sequences from bad. Based on this paradigm algorithms have been developed to

automate the generation of test sequences.

3.6. IIOP & Telnet (Internet Protocols)
IIOP and Telnet Internet protocols are used as sample protocols in the testing framework. A brief

description of the main aspects of these protocols is given for reference. Telnet was originally

designed to work between any host and any terminal. It is specified in RFC 854 [Post83]. The IIOP

protocol is specified by the OMG [Corba98].

3.6.1. Telnet Protocol
Telnet is a simple remote terminal protocol. A Telnet client establishes a TCP connection to a remote

login server.  Keystrokes from the client terminal are then passed to the server’s remote virtual

terminal as if they were being typed at the local system. Information is sent back from the server to

the client’s terminal. An Internet protocol (IP) address and port number identify the remote system.

Telnet allows clients and servers to negotiate options, for example, to determine the format of data

being sent across the wire. (7 bit ASCII or 8 Bit ASCII). Many Telnet implementations exist and it is

relatively simple to implement.



3-10

Figure 11 describes the basic structure of a Telnet client and server implementation. It shows the

data path of a remote terminal session as it travels from the user’s keyboard to the remote operating

system. When a user invokes the Telnet client it establishes a connection to the server. When the

connection is established the client accepts keystrokes from the user’s keyboard and sends them to

the server. The server accepts the connection and passes the client keystrokes to the local operating

system. The term pseudo terminal describes the operating system’s entry point that allows the Telnet

server to transfer characters to the operating system as if it were a local terminal. Output travels back

from the server to the client over the same path. Usually a master server process waits for

connections and creates a new slave to handle each connection. A full discussion of Telnet is

available in [Comer95] and [Stev94]. Telnet was chosen as the initial sample protocol for ipTF

development, because of its simplicity.

3.6.2. IIOP Protocol
The OMG has defined the General Inter ORB Protocol (GIOP) protocol as the standard for

communication between two independent CORBA ORB implementations. The goal of GIOP is to

allow two independent ORB implementations communicate while still allowing for the creation of

flexible ORB implementations. The GIOP specification does not specify a particular transport layer

to be used. It states only that the transport layer must be connection oriented. The OMG has defined

a specialisation of GIOP called IIOP for use in an Internet Environment. IIOP uses TCP/IP as its

transport layer.

Encoding: GIOP defines a Common Data Representation (CDR) transfer syntax, which is used as

the coding format for all IDL data types. The sender is responsible for determining the byte order and

encoding of messages in CDR format. The receiver decodes the CDR message using the correct byte

order.

User’s
I/O

Device

Telnet
Client

TCP/IP

Internet

Telnet
Server

Client reads
from

terminal

Operating
System

Server
receives

from client

Client sends
to server

Server sends to
pseudo

terminal

Operating
System

Figure 11: Telnet protocol client to server data path [Comer95]



3-11

IOR & Connections: Objects are identified in IIOP using Interoperable Object References (IOR’s).

An IOR reference encodes the host name and port number of the remote server that holds the object

and an object reference, which is managed internally by the ORB.

Message Formats: GIOP defines seven message types Request, Reply, CancelRequest,

LocateRequest, LocateReply, CloseConnection and MessageError. All GIOP/IIOP messages have a

GIOP Header. CloseConnection and MessageError contain only a GIOP Header, CancelRequest and

LocateRequest have, in addition a message header and Request, Reply and LocateReply and

Fragment  have a GIOP Header, Message Header and a message body.

CloseConnection, MessageError

CancelRequest, LocateRequest

Request, Reply, LocateReply Fragment

3.6.3. IIOP message structure detail
In this section the structure of IIOP messages is examined in more detail. The GIOP header is

common to all IIOP messages. The first field identifies this as a GIOP message and is always 4

characters “GIOP”  (upper case), encoded in ISO Latin-1. GIOP_version contains the version

number of GIOP being used. The field byte_order indicates the byte ordering used in subsequent

elements of the message. The message type (Request, LocateRequest, CancelRequest, Reply,

LocateReply, CloseConnection and MessageError) are indicated the message_type field. The size in

octets of the message excluding this header is contained in the message_size field. The GIOP header

field structure is illustrated below.

GIOP header fields

A Request message is composed of a GIOP message header, a request header and the request body.

Service_context contains ORB service data being passed by the client to the server. The request_id is

used to associate request messages with reply messages. TRUE is set in response_expected field if a

reply messages is expected. The object_key identifies the object which is the target of the invocation.

GIOP Header

GIOP Header Msg Header

GIOP Header Msg Header Msg Body

“GIOP” GIOP_version byte_order message_type message_size



3-12

The operation field holds an OMG IDL identifier for the operation being invoked. The request body

contains all in and out parameters specified in the operation’s OMG IDL definition.

Request message fields

A Reply message consists of a GIOP header, a ReplyHeader structure and the reply body. The

service_context contains ORB service data being passes from server to client. The request_id is used

to associate requests with replies. reply_status indicates the completion status of the associated

request. If the reply status is NO_EXCEPTION, the reply body will contain any operation return

values and possibly any inout or out parameters of OMG IDL defined operations. If the reply_status

is USER_EXCEPTION or SYSTEM_EXCEPTION the reply body contains the exception that was

raised by the operation. If the reply_status is LOCATION_FORWARD, the reply body contains an

Interoperable Object Reference (IOR) which the client can use to re-send the original request.

Reply message fields

The LocateRequest message can be sent from a client to a server to determine a) if the object

reference is correct b) if the server is capable of receiving a request directly for that object reference,

and c) to find to what address requests for that object reference should be sent. The LocateRequest

message is composed of the GIOP header and a LocateRequest header. The request id is used to

associate LocateRequest messages with LocateReply messages. The object_key field identifies the

object being located.

LocateRequest

CancelRequest messages are sent from clients to servers to notify the server that the client no longer

expects a reply for a pending Request or LocateRequest message. It is composed of a GIOP header

and a CancelRequest header. The request_id field identifies the Request or LocateRequest message

to which the cancel applies.

CancelRequest

GIOP
Header

request_
id

response_
expected

object
_key

operation request_
principal

Request
Body

GIOP
Header

request_id

GIOP
Header

service_
context

request_id reply_status

object_keyGIOP
Header

request_id

service_
context

Reply
Body



3-13

LocateReply messages are sent from servers to clients in response to LocateRequest messages. They

consist of a GIOP header, LocateReply header and the locate reply body. The request_id field value

matches the original LocateRequest request_id. The locate_status determines if a locate reply body

exists. If the status is UNKNOWN_OBJECT no locate reply body exists. OBJECT_HERE indicates

the server can receive requests directly for this object and no body exists. If the locate_status value is

OBJECT_FORWARD the body contains an object reference (IOR).

LocateReply

Both CloseConnection and MessageError messages contain only the GIOP header. The

message_type field in the GIOP header identifies these message as a CloseConnection or

MessageError message.

CloseConnection & MessageError  (GIOP Header Only)

3.7. Summary
The main characteristics of network protocols were reviewed in this chapter. Special reference was

made to both Internet and OSI protocol characteristics. The OSI IS 9646 standard provides a useful

model for testing of network protocols. Test methods, test suite structure, test selection, and

automated test generation concepts were discussed. These concepts are central to the creation of a

network protocol test application or framework. The two Internet protocols Telnet and IIOP, which

are used in the ipTF implementation, are described in the final part of the chapter.

locate_statusGIOP
Header

request_id

“GIOP” Version Byte Order Close Connection
Message Error

Message Size

IOR



4-1

4. DESIGN

The goal of this dissertation is to examine the feasibility of applying a common approach or method

to testing multiple Internet Protocols. Framework technology was chosen as a design methodology to

encapsulate this application design problem. A framework provides a basic solution to a class of

problems. It should accurately model the problem domain and result in a re-usable software design

and a component architecture. The problem to be addressed by this framework is the design of a

common solution for testing a wide range of Internet protocols.

The analysis and design phase of the ipTF project is the subject of this chapter. To design a

framework it is recommended that three applications be analysed (rule of three). This analysis helps

the developer find common functionality that is inherent in the range of similar applications. An

SMTP testing application developed by Lotus International was selected as one such application for

analysis. The application tests a Lotus SMTP implementation for conformance to international

standards. The design and implementation was fully documented and available for analysis. A

sample Java Beans Telnet implementation was also used for analysis. This implementation was

chosen because Telnet is a simple Internet protocol and the implementation was written in Java, the

same language as the framework itself.

Conduits+ [Hüni95] is a framework that been used to reduce the complexity of network software and

makes it easier to extend or modify network protocols. The initial framework design started out as

white-box but gradually developed through the application of design patterns into a black box

framework. The development process was followed for the ipTF. Conduits+ also provided good

examples of how protocol structure and behavior could be represented in a framework. These

concepts needed to be addressed in the ipTF design. A framework-Based approach to the

Development of Network-Aware Applications [Boll98] deals with issues of protocol data preparation

and data transmission. This provided a useful guide for similar issues addressed in the ipTF.

The OSI IS 9646 specification (a methodology and framework for testing of ISO protocols) also had

significant influence on the design. Elements of the structure and design of a multi-protocol testing

application are outlined in the IS 9646 specification. Test methods, test suite structure, test case

selection and the process of protocol conformance testing were relevant aspects outlined in this

specification. [Boch94] describes the specific nature of protocol testing and the general methods used

for testing protocol implementations. Some features of the distributed testing method described in

this paper were included in the ipTF design.

Two sample Internet protocols (Telnet and IIOP) were chosen as a basis for the framework design

and implementation. Telnet was selected because of its simple design and ease of implementation.

IIOP represented a newer and more complex protocol. These protocols were significantly different



4-2

each having a unique syntax and semantics. A framework capable of generating test applications for

these two quite different Internet protocols would provide strong evidence that a common approach

for testing multiple Internet protocols was feasible. In addition this would also support the use of

framework technology as a suitable design methodology.

A framework relies on abstract classes to generate a basic design. The relationships between a

framework’s abstract classes and their interfaces are the key components in the design. Clients take

the basic structure and extend it by implementing concrete methods for the abstract methods defined

in the framework.  The approach taken to the design of the ipTF was to define a set of abstract

classes that encapsulated the common design structure and behavior of a protocol testing application.

A concrete realisation of the abstract classes defined was first implemented to create a Telnet test

application. Design patterns were then applied to the framework. Patterns for object creation

(abstract factory), algorithm encapsulation (strategy) and interface adatpion (adapter) were used to

resolve these design issues. All patterns used were taken from  [Gam94]. The framework design was

remodeled a second time to include the pattern solutions and finally an IIOP protocol testing

implementation was added. The main elements of this design and the process used to achieve it are

described in more detail in the following sections.

Design Process
The general process used for analysis and design of the ipTF is illustrated in Figure 12. Domain

analysis was concerned with acquiring background knowledge on conformance testing, network

protocols, and frameworks and design pattern.

Sample applicat ions and frameworks
Lotus SMTP Test ing Applicat ion

JavaBeans Telnet
Conduits+

Network Aware Applicat ions Framework

Literature Review
Conformance test ing

frameworks & design patters
Network Protocols

Framework Design

Capture Requirements
and Analysis

Domain Analysis

Design Elements
connection management

sending messages
receiving messages
test suite structure
end-point creation

user interface design
design patterns applicat ion

Figure 12: ipTF Design Process



4-3

A literature survey of these areas was completed to help establish this background information. The

capturing of requirements and analysis is the second process phase illustrated in Figure 12. This

phase involved analysis of existing protocol testing applications, examining features of similar

frameworks and the selection of an appropriate framework development environment. Common

structure and behavior across protocols was evident from the analysis. The main features

implemented in the design phase were connection management, sending and receiving of messages,

test suite design, protocol endpoint creation, and design of the applications user interface. These

elements are shown as the output of the design phase in Figure 12.

General Testing Model
The first design issue addressed was deciding on a basic testing model to be used for conformance

checking. The protocol implementation to be tested for conformance is known as the Implementation

Under Test (IUT).  Two different approaches to testing the IUT were evident from the analysis of

existing systems. The first approach (adopted by the Lotus SMTP test application) implements

relevant parts of the protocol to effect tests against the IUT. The alternative approach is testing the

IUT against a reference implementation of the protocol. This is achieved by accessing the

application programming interface (API) of the IUT. The API must provide functionality for

creating endpoints, establishing connections and sending and receiving massages to and from the

(usually remote) reference server.

If used in a framework context the first model would require part implementation of many different

Internet protocols within the framework. This latter model was considered more suitable because of

the clear separation between protocol design and protocol testing. In this model the test application

developer need not be concerned with protocol implementation details. Access to the API of the IUT

is all that is required. Figure 13 illustrates the general testing model used in the ipTF. This model is

based on the second model described above.

R em ote
R eferen ce

S ystem
(IIO P ,S M T P ,
C lien t/S erver )

L o ca l S ystem

=  Fram ew ork  cla sses/com p on en ts

=  Protocol  sp ecific com p on en ts (IIO P, SM T P..)

Figure 13: ipTF testing model



4-4

This model shows the framework classes or components (lightly shaded blocks) that form the basic

design structure of the protocol testing application. In addition they provide a set of abstract

interfaces for implementing the protocol specific parts. These components are common for all

protocol implementations being tested. Protocol specific components (darkly shaded blocks) must

implement the framework’s interfaces. These components encapsulate the implementation of the

protocol client end-points, connection management, and message sending and receiving functionality

etc. The two sets of components combine to form an application that tests the protocol

implementation against a remote reference server implementation.

It is important to note that a reference implementation should be a valid implementation of the

specification. In many cases a reference implementation of the protocol is not available from the

relevant protocol standards body. In such cases an implementation from one of the main protocol

vendors is used as a de-facto reference implementation.

Message format and protocol behavior
Two central features that any Internet protocol testing application must model are the format of

messages and protocol behavior. In the ipTF design the abstract class TestMsg represents message

data. This abstraction can be used to represent any type Internet protocol message. An instance of the

TestMsg class is composed of message elements. The semantics and syntax of the message

(elements) is determined by the protocol at runtime. A message is built using addElement() to add

message element objects to message’s element vector as required. A TestMsg is composed of an

element vector component and a MsgReader component. This is illustrated in Figure 14. The

MsgReader component is used by the application to read the message elements from a sequence file.

Figure 14: TestMsg and Protocol Classes

Test sequences are composed of a number of test messages. Each test sequences is stored in a file.

The application must read a test sequence file to compose the test message objects.  A protocol

specific algorithm is required to read a message from the test sequence file and create a TestMsg

object. The strategy design pattern is applied to encapsulate this algorithm in a MsgReader class.

This allows the TestMsg class to become generic for all protocols.

TestMsg

addElement(Object obj, element)

getMsgText ()

MsgReader  areader

Protocol

connect(ConnectAddress)
sendMsg(TestMsg)
recvMsg():TestMsg

Vector element

getElement(): vector



4-5

The abstract class Protocol was defined to represent a generic protocol end point. Three methods

connect(ConnectAddress), sendMsg(TestMsg) and recvMsg(TestMsg) implement connection

management,  send and reception functionality in the Protocol class.  Each of the three methods

defined however must be adapted to use the API of the protocol implemented. This requires writing a

separate protocol adapter class for each protocol implementation. The adapter pattern was used to

address this framework design issue.  The application of design patterns is discussed in more detail in

sectio n 0.

TestMsg and Protocol correspond in part to information chunks and conduits as defined in [Hüni95]

respectively. An information chunk is any type of protocol data that passes through a conduit.

Likewise a TestMsg is passed by the test application to the Protocol class as a parameter of its

sendMsg() method or is received by the Protocol class in the recvMsg() method. The Lotus SMTP

application defines SMTPClient and SMTPServer classes that encapsulate protocol behavior, and a

Message class that stores the data structure sent and received by the SMTPClient class. Both designs

was considered during the design of the ipTF.

4.1.1. Test suite design
Test suite structure is and important design issue in the ipTF. IS 9646 defines a comprehensive

abstract test suite structure for protocol conformance testing. This structure is described in chapter 3.

The Lotus SMTP testing application defines a much simpler test suite hierarchy. It is composed of a

MessageList that contains Message(s).  The test suite hierarchy defined for the ipTF is based on the

IS 9646 hierarchy and is illustrated in Figure 15.

TestEvent is the fundamental building block of the test suite. It contains three test messages: the

message to be sent, the message received and a valid reply message for comparison. These are

subsequently referred to as the out message, the in message and the valid reply message respectively.

The protocol adapter extracts the out message from the TestEvent object and passes it to the IUT to

•  H ier ar ch ial St r uct u re
•  ISO  9 6 4 6  In fluence

Test  Su it e

Test  Case

Test Seq

Test  Event

Test  Case Test  Case

Test SeqTest Seq Test Seq

Test  Event Test  Ev en tTest  Event

T est M sg
(out )

T est M sg
(in)

T est M sg
(v alid )

Figure 15: ipTF Test Suite Structure



4-6

send to the remote reference implementation. On receiving a reply from the remote reference the

protocol adapter then stores the received message in the TestEvent object. A protocol specific

comparison algorithm is used to compare the in message and the valid reply message.

The strategy pattern is used to encapsulate the comparison algorithm in a separate class. This allows

TestEvent to become generic for all protocols. A test sequence is composed of a number of test

events. Sequences are commonly used to transition protocol implementations into different states. A

test case is a set of test sequences that tests a particular feature of the implementation. The test suite

is composed of a number of test cases.

Test Method
In an earlier section the general testing model was discusses. A testing method was defined for the

ipTF and is illustrated in Figure 16. The method used is similar to the remote testing method

described in IS 9646.  It describes remote methods that are used for testing client/server protocols

operating in a distributed environment. Internet protocols generally follow a client/server model and

operate in a distributed Internet environment. The distributed model was therefore considered

suitable for testing of Internet protocols.   Figure 16 shows the distributed model as applied to the

ipTF.  It is based on the layered architecture of Internet protocols.

Figure 16: ipTF testing method

To test the DSG IIOP implementation an IIOP client and server must be implemented above the IIOP

implementation layer. This is also illustrated in Figure 16. IIOP messages are sent and received

ipTF
Application

Test Suite

IUT
DSG IIOP

[Client/Server](
-

TCP UDP

Network/IP

Data Link

Physical

TCP UDP

Network/IP

Data Link

Physical

Iona IIOP
Engine

[Server/Client]

IIOP
Test Log

Protocol
Messages

Server

IIOP Client
IUT API



4-7

between the client and server. These messages encapsulate object invocation and object location

operations. The model also illustrates the service access point to the IUT API required by the

framework. This API must be available to implement the general testing model as described in

section 0.

Object Model & Classes
The main classes defined for the ipTF are listed in Table 2. Classes shown in italics are abstract. The

relationship between these classes is shown in the ipTF object model and sequence diagrams. These

can be viewed in Appendix A – Object Model & Sequence Diagram. The object model describes the

main classes, methods and relationships between the classes. Pattern structures are also highlighted

in this model. The sequence diagram illustrates the object interactions in the framework.

Protocol (EndPoint) Abstract class that represents the protocol End-Point. Operations

are defined for connection establishment and send and reception of

messages.

ConnectAddress Stores connection address details.

TestSuite Stores test sequence, events and messages.

TestSequence Selection of TestEvents.

TestEvent Stores out, in & valid messages and comparitor object.

TestMsg Abstract representation of a test message.

IPTF Generic user interface part.

TestFactory Creates protocol specific concrete classes (ie.TestSuite,

MsgReader,MsgPanel etc.).

MsgPanel Protocol specific user interface part

MsgReader Reads message data from a file to create a test message.

MsgComparitor Verifies received message against valid reply message.

Log Generic class for storing a record of test messages sent/received and

application state information.

ProtocolAdapter Adapts the protocol specific interface to framework interface.

Table 2: ipTF Classes

The remaining features of the design are discussed in this section. These include connection

addresses, logging, the user interface and the application of design patterns in the framework.

Connection Address: To establish a communication channel between a client and server each must

be uniquely identified. This applies regardless of whether the protocol type is connection oriented or

connectionless. Identification is achieved by allocating every client and server a unique connection

addresses. In the Internet a connection addresses normally consists of the Internet host address and



4-8

port number of the client or server. Additional address information may be required by some

protocols. IIOP for example uses an IOR as a connection address. In the ipTF the abstract class

ConnectionAddress can be extended to represent any type of Internet protocol connection address.

Log:  Test applications generally create a dynamic record of tests completed and their results. In the

ipTF model a record of each test event and its associated timings are stored in the generic Log class.

In addition information about the testing application itself is recorded. For example the successful

creation of each object by the TestFactory is recorded in the log. All records in the log are stored in a

text format.

Application User Interface: The user-interface of the protocol testing application can be separated

into two parts. The first part is generic for all protocols while the second part is protocol specific.

The first part presents user interface elements for accessing common protocol test functions. These

include connection establishment, sending messages, viewing the log and performing message

comparisons. The second part allows for protocol specific user-interface features. Methods for

implementing these features are defined in the MsgPanel abstract class.

Application of Design Patterns
Frameworks generally evolve through the factoring out of common functionality and by applying

design patterns to common problems encountered in the framework. The original framework was

implemented to test Telnet. Subsequently this was refined using design patterns and factoring out of

common parts.  The objective was to allow the basic framework structure to be extended through

object composition rather than inheritance. Object composition leads to a greater amount of software

re-use and is the preferred type of framework.

Three pattern types were considered applicable to the original design. These were abstract factory,

strategy and adapter (wrapper).  A full description of each pattern is given in the Design Patterns

book by Gamma et al [Gam94].

TestFactory implements the abstract factory pattern. Its purpose is to centralise and control the

creation of protocol specific objects required by a new application instance. It creates the protocol

adapter, connection address, protocol specific user interface, test suite, message file reader and

message comparitor objects.

MsgReader and MsgComparitor both implement the strategy pattern. MsgReader encapsulates the

algorithm for creating a test message when reading it from a file. The algorithm would otherwise be

contained in TestMsg. Doing so allows TestMsg to become more generic. Similarly the algorithm for

comparing the in message to the valid reply message is encapsulated in the MsgComparitor class.

Removal of the comparison algorithm from TestEvent allows it also to become a generic class.



4-9

A protocol specification does not define how the protocol should be implemented.  Each

implementation of a specific protocol can therefore have a unique API. The framework protocol class

defines abstract methods for connecting to the remote server, sending a message and receiving a

message. The API of the relevant protocol implementation should define interfaces for accessing this

functionality. By applying the adapter pattern the framework (protocol class) method interfaces are

adapted to the implementation interfaces using an adapter class.

Figure 17 illustrates the use of the protocol adapter pattern in the framework. The abstract class

Protocol represents the protocol implementation (client) EndPoint. The methods connect(),

sendMsg(), and recvMsg() are defined in this class. In a framework instance these methods are

implemented by concrete protocol specific classes such as IIOPProtocol. At the protocol

implementation level an API of methods is supplied for use by an application developer. This API

typically has methods defined for connection management, and sending and receiving of messages.

The signatures of the API defined methods differ from those defined in the framework.  The

framework methods must therefore be mapped to the appropriate protocol implementation methods.

A protocol adapter class was developed to map the interfaces between the framework and the

protocol implementation. The DSG-IIOPAdapter class for example defines a connect() method for

connection establishment. This connection method calls the appropriate connect method in the

implementation API that achieves the connection functionality.  The adapter class also adapts the

framework methods sendMsg() and recvMsg() to the implementation API in a similar way.

Protocol

sendMsg(TestMsg)

recvMsg(TestMsg)

connect(ConnectAddress)

{abstract}

TelnetProtocol

sendMsg(TelnetTestMsg)

recvMsg(TelnetTestMsg)

connect(TelnetConnectAddress)

IIOPProtocol

connect(IIOPConnectAddress)

sendMsg(IIOPTestMsg)

recvMsg(IIOPTestMsg)

DSG-IIOPAdapter

connect(IIOPConnectAddress )

send(IIOPTestMsg )

recv(IIOPTestMsg )

Iona-IIOPAdapter
connect(IIOPConnectAddress )

send(IIOPTestMsg )

recv(IIOPTestMsg )

DSG- IIOPAdapter .adapter

adapter.connect( ior)

adapter.send( IIOPTestMsg )

adapter. recv(IIOPTestMsg )

ClientEndpoint endp

IOR ior=IIOPConnectAddress .getIOR ()

endp.conncect (ior)

endp.push(data)

endp.send()

Figure 17: Protocol Adapter Pattern



4-10

Summary
This chapter discusses the main issues encountered in the framework design. The initial design was

based on a Telnet implementation. Some design patterns were applied to make it more compositional

in nature and an IIOP implementation added. However a new instance of the framework is still

generated mainly through inheritance (white box framework). The factoring out of common

functionality and the further application of design patterns is recommended for future versions of the

framework. This recommendation is discussed in the evaluation chapter.



5-1

5. IMPLEMENTATION
The ipTF project plan and the schedule is described in the first section. The framework user interface

design is illustrated and briefly reviewed in the second section. In the final section code segments,

which implement object creation, logging, connection establishment, message sending/receiving, and

message comparison functionality are explained in brief.

5.1. Project Plan and Schedule
Figure 18 shows the timeframe for completion of the main stages of the ipTF project. A six-month

period was allocated for completion of the project. The overall project scope was determined on this

basis. At the outset the main project phases were identified and milestone dates for the completion of

each phase set. A brief description of the project work undertaken in each phase follows.

The project commenced with the literature survey phase. Background research on object-orientated

design, UML modeling, frameworks, design patterns, OSI and Internet protocols, software testing

concepts and protocol conformance testing was carried out. Following this an SMTP Protocol test

application developed by Lotus International was reviewed as part of the requirements analysis

phase. A number of meetings took place with the application developers in order to clarify the design

goals and implementation specifics of the application. Use Case diagrams and an object model of the

application design were made available for reference. An initial presentation of the ipTF dissertation

goals and objectives was given at Lotus. This helped highlight potential project issues and clarified

the possible scope of a feasible framework implementation.

Much of June was spent experimenting with design models for a framework application. The main

components of a protocol testing architecture were identified and some initial design concepts were

submitted for review. It was agreed that a mobile version of IIOP being developed by the DSG

Group in Trinity was suitable for implementation in a framework prototype. The IIOP

implementation was however developed in C++ while the framework itself was to be developed in

Java. A DSG IIOP implementation would first require the resolution of Java to C++ integration

issues.

Prototyp
e Im

plementation

April May June July August Sept

Literature Survey

Require
ments Analys

is

Framework and Patte
rn 

Analys
is

Framework Design

Verific
ation Testing

Presenation and 

Submission

Figure 18: ipTF project stages



5-2

A simple Java Beans Telnet protocol implementation was chosen as the basis for the initial

framework implementation because of its simplicity and the fact that it was written in Java. The

initial prototype was concerned mainly with implementing the basic framework structure and the

creation of a suitable user interface. Rational Rose, a UML based tool, was used to create an initial

design draft.

This initial design implemented the main framework classes TestSuite, TestEvent, TestMsg,

MsgPanel, and Protocol. The application of design patterns to the framework was then undertaken.

This resulted in the reorganisation of the existing framework classes and the addition of some new

classes. A TestFactory class was created to implement the Abstract Factory Pattern. Comparitor and

MsgReader classes were added to implement strategy patterns. These clasess encapsulated

algorithms that were previously part of TestEvent and TestMsg respectively. The adapter/wrapper

pattern was used to adapt the framework end-point, connection, and send/receive message interfaces

to the protocol specific implementation API.

When Java to C++ integration issues were resolved using Java’s native interface an ORB client and

server were implemented in C++ for testing of IIOP.  A second framework prototype was then

completed to include both Telnet and IIOP protocol test implementations. The original user interface

design was modified and improved upon. The completion of this second revision meet the original

project goal of creating a framework which could be used as a basis for creating the two different

protocol test applications. Finally a presentation of the framework was given and this dissertation

document was written.

5.2. Languages and Tools
Framework creation is based on object-oriented design principles. The Java language was selected

for this development because it is based on an object-oriented programming paradigm. The JBuilder2

application development tool was chosen because of its full support for JDK 1.1 and the inclusion of

an advanced user interface component library based on AWT3. This tool has an intuitive interface

and is generally easy to use. Microsoft Developer Studio 5.0 was used for developing the C++

interface of the IIOP testing implementation. An example of the ipTF framework application

developed in this environment is shown in Error! Reference source not found.. The example shows

the user-interface of the framework implementation for a simple Java Beans Telnet client and server

implementation. Both the framework application and the reference server run of the same system in

this example. The main user-interface elements and underlying framework code are described in the

following sections.

                                                
2 JBuilder is a rapid application development tool from Borland Inc. based on the Java programming language.
It is fully compliant with the JDK 1.1 specification.  More information is available at  http://www.borland.com

3 The Java Development Toolkit (JDK) provides a standard Abstract Widowing Toolkit (AWT) library.



5-3

Figure 19: ipTF framework application

5.3. User Interface Design
In this section the design of user interface elements in the ipTF is reviewed. Sample screen shots of

the framework implementation are used to illustrate the main features of the user interface.  The user

interface consists of two main parts. The first part is generic for all protocols while the second part is

protocol specific. Figure 19 illustrates a working implementation of the framework using the Telnet

protocol.

5.3.1. Msg Center view
The protocol specific part is implemented as a MsgPanel object. In the application this object is

viewed in the Msg Center panel which is highlighted in Figure 20. The message panel can vary the

representation of the user interface elements according to protocol requirements. In this

implementation however the same panel format is used for both Telnet and IIOP. The panel

represents a message sequence as a list box of messages. This message representation is textual. If



5-4

additional interface options are required by a protocol implementation they are placed in the

MsgPanel object. Regardless of the protocol implementation the MsgPanel object must provide

functionality for determining the currently selected message. This information is required by the

application when sending a message via sendMsg(). A method for returning the total number of

messages in the sequence must also be implemented for similar reasons.

Figure 20: Message Center view

The generic parts include a drop down list for selecting the required protocol implementation, fields

for entering the (usually remote) host name and port number of reference server and an option for

selecting test message sequences. Figure 21 shows the Exit, Connect, Send Msg and Send Seq

buttons which provide access to matching functions for exiting the application, connecting to a

(usually remote) server, sending a single message and sending a sequence of messages respectively.

Figure 21: Function options

A status bar at the foot of the main window gives information about the current state of application.

The Log and Test Results view panels are also generic for all protocols. These are described in the

next sections.

5.3.2. Log view
A textual record of every message sent and received by the application is written to the log. The date

and time of each message is also recorded in the log. When a received message and a matching valid

reply message are compared the result is also written to the log. Status information about the

application itself is also recorded in the log. A sample of a Log record is shown in figure Figure 22.

An option to save the log record to file is included.



5-5

Figure 22: Log Record View

5.3.3. Test Results view
When a sequence of messages is sent and replies received the Test Results panel is used to compile

and list the comparison results. Figure 23 shows a sample result compiled for a DSG IIOP test

sequence. Column 1 highlights individual test event results. Three test results are possible pass, fail,

or no response. Columns 0, 2 and 3 show a textual representation of the out, valid reply and in

messages respectively.

Figure 23: Comparison View

5.4. Multi-protocol implementation feature
The ipTF framework is capable of dynamically switching between testing of different protocols. An

example of this multi-protocol testing feature is illustrated in Figure 24. In the example the

framework dynamically connects to both Telnet and IIOP server implementations. Appropriate

protocol test sequences are sent via the client to the respective Telnet and IIOP reference servers.

This is possible because the protocol specific components are added as required while the basic

framework remains the same. The only user interface element that changes with the protocol is the

Msg Center panel (MsgPanel object).



5-6

Figure 24: Multi-protocol testing

5.5. Implementation Coding
The most important implementation features are reviewed in this section. These features include the

creation of the application objects, connection establishment, sending and receiving of messages,

logging and message comparison. Code segments that implement these features are highlighted in

lines numbered 1 to 122.

5.5.1. Object Creation
IPTF.java is the main framework class. It controls the overall flow of control within the application.

A user first selects a protocol from the protocol list (Figure 25).

Figure 25: Protocol Dropdown List



5-7

Based on this selection the protocol TestFactory object is created. For example if IIOP (DSG

Mobile) is chosen from the list an IIOPTestFactory object is created in IPTF.java (line 3).  All such

events are recorded in the Log by the addLogEntry() method (line 4).

After a new factory object is created its methods are called to create the protocol specific objects

required by the application. Each object creation method is defined in a concrete sublclass of the

abstract TestFactory class.  The test factory passes back objects of type ConnectAddress, Protocol,

TestSuite, Comparitor and MsgPanel to the calling method in IPTF.java. This implementation is

illustrated in lines 6..10.

TestFactory.java defines abstract methods for creating each object. These methods are shown in lines

11..19. A concrete method is defined in the protocol specific subclass for each abstract method

defined in TestFactory. Two concrete implementation examples are taken from IIOPTestFactory.java

(lines 11..19). The createProtocol() method is responsible for creating an IIOP endpoint object and

returning it to the calling method in IPTF.java (lines 20..23). The getComparitor() method creates an

IIOP Comparitor object and likewise returns it to the calling method in IPTF.java (lines 24..27). All

other objects are created in a similar way by the test factory.

IPTF.java
1. if (protoname.equals("IIOP (DSG Mobile)")){
2.    //Create IIOP TestFactory....
3.    tfactory=new IIOPTestFactory(this);
4.    addLogEntry(protoname + " Test Factory Creating Framework..");
5. }

6. connectadr=tfactory.setConnectAddress(); //Create connect address
7. proto=tfactory.createProtocol();         //Create Client Endpoint
8. tsuite=tfactory.loadTestSuite();     //Create the Test Suite
9. comparitor=tfactory.getComparitor(); //Create file reader object
10. msgpanel=tfactory.createMsgPanel();  //Create protocol specific ui

TestFactory.java
11. public abstract class TestFactory {
12.    public TestFactory() {
13.    }
14.    public abstract ConnectAddress setConnectAddress();
15.    public abstract Protocol createProtocol();
16.    public abstract TestSuite loadTestSuite();
17.    public abstract MsgControlPanel createMsgPanel();
18.    public abstract Comparitor getComparitor();
19. }

IIOPTestFactory.java
20. public Protocol createProtocol(){
21.    proto=new IIOPProtocol();
22.    return proto;
23. }

24. public Comparitor getComparitor(){
25.    IIOPComparitor tcomp=new IIOPComparitor();
26.    return (tcomp);
27. }



5-8

5.5.2. Connection establishment
Before messages can be sent between the client and server a protocol connection must be established.

Connection establishment is implemented at the highest level in IPTF.java. Lines 28..29 illustrate the

protocol and connection address objects

being created and returned by the

TestFactory object. The method

proto.connect(connectadr) is then called by

IPTF.java to establish the endpoint

connection. (Line 30)

An abstract connect() method is defined in Protocol.java (line 31) and implemented by the concrete

class IIOPProtocol (lines 32..41). This method calls the DSG Mobile IIOP API connect method that

establishes a connection at the lowest level.

Java is used to implement the framework and C++ to implement the DSG IIOP.  An extra layer of

adaption is required to convert between the two language interfaces. This type of adaption is made

possible through Java’s Native Interface (JNI) [Java98].

Protocol.java
31.  public abstract String connect(ConnectAddress connectadr);

IIOPProtocol.java

32.  client=new DSGIIOP();
33. 
34.  public String connect(ConnectAddress connectadr){
35.     connectadr=(IIOPConnectAddress) connectadr;
36.     if(client.connect(aconnectadr.getIOR())==0){ //native C++
37.        return ("Connected to IIOP Server");
38.     }
39.     else
40.        return ("Failed Connection ...");
41.  }

IPTF.java
28. connectadr=tfactory.setConnectAddress();//Create connect address

29. proto=tfactory.createProtocol();  //Create Client Endpoint

30. String conmsg=proto.connect(connectadr);//connect



5-9

The Java native C++ connect function call is implemented in dsgiface.cpp. A Java IOR string is first

converted to a C++ character array (line 45) and then to a stringified IOR (line 48). The client

endpoint connects (line 48) to the remote server using the stringified IOR. If successful a connection

is established to the remote server endpoint an ok status is returned and passed back to the calling

Java function (line 54).  A connection is now established between the client and server.

5.5.3. Sending and Receiving Messages
After the client/server endpoint connection is established protocol messages can be sent between the

client and server. The message to be sent to the remote server is selected by the user from the

message list (Figure 26) or by the system itself when sending a sequence of messages.

Figure 26: Message list, send message and send sequence user interface elements

The currently selected message is extracted from the TestSuite object and passed as a parameter to

the protocol sendMsg() method (lines 57..67).

DSGIIOP.java

42. public native int connect(String s);  //Java native C++ method

dsgiface.cpp

43. long IPTF_MRIIOP_connect(struct hIPTF_MRIIOP *jc_this,struct
                                     Hjava_lang_String *javaior){
44.    char buffer[MAXJSLEN];
45.    javaString2CString(javaior, buffer, sizeof(buffer));
46.    IOR aior(buffer);
47. 
48.    if(endp.Connect(aior) != OK){
49.       long status=-1;
50.       return status;
51.    }
52.    else{
53.       status=0;
54.      return status;
55.    }
56. }



5-10

A concrete implementation of the sendMsg() method is realised in the protocol specific subclass.

This method extracts the message elements from the TestMsg object and converts them into

appropriate message parameters required by the protocol specific API (lines 71..79). The class

DSGIIOP.java defines a send/receive native method (line 86). This method is implemented in

dsgiface.cpp (line 87). The reply message is converted into a TestMsg object and passed back to the

IPTF.java calling method. This message is then stored in the TestEvent object as the in message. This

completes the send/receive implementation.

IPTF.java
57.   //get index of currently selected message.
58.   outmsgindex=msgpanel.getCurrentTEvent();

59.   //Extract Test event from Test Suite
60.   atestevent=tsuite.getTestEvent(outmsgindex);
61.   sendEvent(atestevent);

62.   public void sendEvent(TestEvent tevent){
63.      TestMsg inmsg;
64.      //send out TestMsg receive in TestMsg
65.      inmsg=proto.sendMsg(tevent.getOutMsg());
66.      tevent.setInMsg(inmsg);  //Store received TestMsg
67.   }

IIOPProtocol.java
67.   public TestMsg sendMsg(TestMsg msg){
68.    Vector v; int element=0, count=0;
69.    TestMsg inmsg=new IIOPTestMsg();
70.    String instr[]=New String[];

71.    v=msg.getData();        // get abstract message data
72.    int size=v.size();      // number of msg elements
73.    String signature[]=new String[size];  //API message type

74.    //convert message data to required format for Client API
75.    for  (int i=0; i < v.size();i++){
76.       Object obj=v.elementAt(i);
77.      signature[i]=(String)obj;
78.       count=i;
79.    }

80.    instr=client.sendMsg(signature, count);  //send message

81.    for  (int i=0; i < instr.length();i++){
82.       inmsg.addDataItem(instr[I]); //convert reply message
83.   }
84.    return inmsg; // return reply  TestMsg
85. }

DSGIIOP.java
86.   public native String[] sendMsg(String s[], int i);

dsgiiop.cpp
87. HArrayOfString *iptf_MRIIOP_sendMsg(struct Hiptf_MRIIOP

                       *jc_this,HArrayOfString *jopname, long msgtype ){..}



5-11

5.5.4. Message file reader
At the lowest level a test suite is composed of protocol messages. The test suite is normally stored in

a persistent file format. Protocol message objects (TestMsg’s) are written to and read from the file as

required by the framework application. How they are read and written is dependent on the protocol

message structure. A protocol specific file reading/writing algorithm is therefore required by the

application. This algorithm is contained in the MsgReader class (line 88). The algorithm reads the

message data from file and builds a TestMsg object (lines 89..98). The object is returned to the

calling application method (line 99). Encapsulating the algorithm in the MsgReader object allows the

TestMsg to become generic.

5.5.5. Message comparison
To verify the correct behaviour of the protocol implementation received messages are compared to

matching valid reply messages.  This message comparison functionality is protocol specific

because the structure of each protocol message type differs. The comparison functionality is

defined in the Comapritor class (lines 102..108) and implemented in a protocol specific subclass.

An IIOPComparitor code segment is illustrated in lines 111..124. The encapsulation of the

message comparison algorithm in this way allows the TestEvent object to become generic for all

protocols.

Figure 27: Message comparison compilation

MsgReader.java
88. public abstract TestMsg readMsg();

IIOPMsgReader.java
89.    BufferedReader br;
90.    public TestMsg readMsg(){
91.       String s1;
92.       msg=new IIOPTestMsg();

93.       try{
94.          s1=br.readLine();
95.          msg.addDataItem(s1);
96.          …………
97.           …………
98.        }
99.        return(msg);
100.  }



5-12

The TestEvent object is passed to the message comparison method (line 101). The Comparitor

object extracts the received and valid messages from the TestEvent and performs the comparison

(lines 102..108). A protocol specific example for IIOP is shown in lines 109..122. The status of the

comparison is returned to the calling application method. All message comparison results for a

message sequence are compiled and illustrated as shown in Figure 27.

5.6. Summary
A description of the ipTF implementation was given in this chapter. To give context to the

application development a brief review of the main development stages in the project is given. This

is followed by a description and illustration of the framework application’s user-interface. In the final

part the coding of the main framework features is analysed. A selection of sample code segments

taken from the application is used to support this analysis.

IPTF.java
101. int verify=atestevent.verify(comparitor);

Comparitor.java
102. public abstract class Comparitor {
103.    TestMsg inmsg;
104.    TestMsg validmsg;

105.    public Comparitor() {
106.    }

107.    public abstract int compare(TestEvent tevent);
108. }

IIOPComparitor.java
109. public class IIOPComparitor extends Comparitor {

110.    public IIOPComparitor() {
111.    }

112.    public int compare(TestEvent tevent){
113.       Vector inv=new Vector();
114.       Vector validv=new Vector();
115.       int status =-1;
116.       inmsg=tevent.getInMsg();
117.       validmsg=tevent.getValidReplyMsg();
118.       …………
119.        …………
120.        return(status);
121.     }
122.  }



6-1

6. EVALUATION
The expanding number of new and revised Internet protocols has given rise to the need for testing

multiple protocols. Currently most protocols are tested using protocol specific applications. This

approach becomes very costly as the number of new protocol implementations increases. Full

analysis, design, implementation and testing phases must be undertaken for each new application

developed. This requires a significant resource commitment and takes considerable time to develop a

new application from scratch. Exploring how this testing process could be completed in a more

efficient and cost effective manner is the subject of this dissertation.

If a generic application could be developed to test a range of protocols this would save time and

resources spent on application design and development. Because most Internet protocols have

different syntax and semantics it is difficult to design a generic test application. The goal of this

dissertation is to determine the feasibility of designing and implementing a generic application that

tests multiple Internet protocols.

A generic application should implement features that are common to all protocol testing applications

and at the same time allow for the implementation of protocol specific testing features. Frameworks

had been successfully applied to resolve this general design problem of developing a set of related

applications. Because frameworks focus on modeling of the common features of applications and

have a high reuse potential this approach was adopted for the design and implementation of the

generic Internet protocol testing application. Application analysis and design information is captured

in the basic framework design. Much time and resources are saved through the reuse of analysis,

design and code when developing many applications of a similar type. If a protocol testing

framework can be successfully designed these benefits should follow.

Reusability is a fundamental criterion of a good framework. The framework should therefore be

capable of generating a valid test application for any new protocol implementation. Beyond this the

benefits of using the framework must outweigh the costs. Are new protocol test applications easy to

design and implement?  If a developer must take a long period to learn how to create a new

application from the framework, its value is diminished. Essentially it must be easier and quicker to

develop a new application using the framework than developing a similar application without using

the framework.  Other criteria include the ease of use and performance of the new application

generated from the framework. These criteria must satisfy user requirements.

This dissertation presents a simple framework (ipTF) for the construction of Internet protocol testing

applications. Abstractions are defined which model the basic structure and behaviour of protocol

testing applications. The feasibility of a common method for testing multiple Internet protocols is

first evaluated in this chapter. Having established the feasibility of this goal the framework itself is

evaluated against the criteria of reusability, ease of use and performance. This type of analysis



6-2

depends to some degree on the comparison of application metrics. The compilation of application

metrics is however beyond the scope of the dissertation. Given this constraint possible framework

improvements are suggested in the final part of this evaluation.

6.1. Design goals
The benefit of frameworks is that they can enable a higher level of code and design reuse than other

design approaches if successfully implemented. Class libraries for example offer reuse through

individual components. Reuse in frameworks is more than simply the reuse of components. Domain

expertise is captured in the basic framework. A framework consists of a set classes that embodies the

abstract design and implementation of the application. In this way the ipTF framework is a set of

abstract and concrete classes that embodies the basic design of a protocol testing application. The

reuse potential of the framework is based on the common structure and behaviour of Internet

protocol testing applications.

Framework design proved to be a useful design technique for modeling this particular application.

When designing a generic solution for a set of applications a top down approach to analysis is taken.

This contrasts to the bottom up approach of finding objects that model a specific application. In the

ipTF applying the top down approach involved analysing both the nature of protocols and the general

structure and behaviour of protocol testing applications. The analysis revealed that protocol testing

applications had common features such as connection establishment, sending and receiving of

messages, message comparison and logging. This functionality is not however implemented in a

uniform way across protocols. Furthermore the structure of protocol messages is different for most

all protocols.

Most frameworks start out as white box frameworks. In a similar way a white-box approach was

adopted in the initial ipTF framework design. The basic design is encapsulated in the relationships

between the objects and defined in a set of abstract class interface definitions. Protocol specific

extensions were implemented by inheriting from these abstract class interfaces. The initial

framework design was verified through the creation of a test application for a simple Telnet protocol

implementation. A framework is generally not stable after the first application has been developed

from it. An analysis of the Telnet testing implementation identified the need to redesign the

framework. The framework design was based entirely on inheritance with the common functionality

defined in abstract base classes.

Two approaches were used to evolve and update the framework design. Firstly, common protocol

testing functionality was factored out of application specific concrete classes and placed in abstract

classes. Secondly, protocol specific functionality was encapsulated in classes that are composed

rather that inherited from. This was achieved mainly through the application of design patterns. In

the second iteration some factoring out was achieved and some design patterns were applied.



6-3

Design patterns were used to identify some common framework design problems. Patterns for object

creation (abstract factory), the encapsulation of algorithms (strategy) and adapting the framework

interface (adapter/wrapper) to the protocol specific API were applied. Some functionality was moved

out of TestEvent and TestMsg classes into algorithm specific abstract classes to make them more

generic. The protocol specific functionality of message comparison and message reading was

encapsulated in classes that are composed. The adapter pattern adpated the protocol specific interface

to the framework defined protocol interface. Common protocol functionality for establishing

connections and sending/receiving messages was factored out and defined in a separate protocol

class. The protocol adaptee class is protocol specific and is implemented through inheritance. The

adapter class could have been made generic and the adaptee class compositional. However in this

iteration of the ipTF the adapter class is defined as an abstract class and the adaptee class is extended

through inheritance.

The framework approach allowed the design to evolve as the features and issues became more fully

understood. The changes made between first and second iterations of the design support this. Only

the Telnet protocol was implemented in the first design iteration. In this design test messages were

read from file using a Telnet specific algorithm. This algorithm was included in the TestMsg class. In

the second design iteration it became apparent that if IIOP were also implemented the TestMsg class

would need to contain two protocol specific algorithms. The protocol specific algorithm was

therefore encapsulated in a separate class allowing TestMsg to become generic. The second design

iteration, which included both Telnet and IIOP implementations, proved to be more stable and

flexible than the first iteration. The separation of the protocol specific parts from generic parts helped

achieve this.

IIOP and Telnet testing applications were successfully generated from the second framework

iteration. The implementation of this generic testing application for two very different protocols

supports the use of a framework design approach. Could the ipTF be used to generate similar test

applications for other Internet protocols?  The common structure and behaviour of the protocols

provides the basis for generic design within the framework. This suggests that it would be possible to

apply the framework to protocols that have a similar design structure and behaviour to either IIOP or

Telnet. Protocols that have additional features would require extensions to the framework design or

may even require a redesign of the basic framework. For example both Telnet and IIOP protocols are

stateless. Protocols such as SMTP, however, have multiple states. A testing application for SMTP

would need to address the issue of storing state information. This type of functionality is not

addressed in the current framework design. Other protocols may have particular design

considerations. Despite this the basic framework design should be applicable in large part to most

protocols.  Only through reuse in testing many protocols can the basic design be verified as stable.



6-4

6.2. ipTF design
In this section the ipTF design is evaluated. The current iteration of the framework is based mainly

on extension through inheritance. While there is considerable design reuse in the framework the level

of code reuse is perhaps relatively low. How could this be improved? Default/sample classes exist

for Telnet and IIOP implementations, which provide a useful reference for implementing protocol

specific classes. It does however require that the developer becomes aware of the ipTF framework

structure and design. If the design were compositional the developer would not need to be aware of

the framework structure. They would be free to implement new functionality without effecting other

classes. When composition is used a generic class holds only a reference to the composed object and

is therefore not effected by changes in the composed object. As the basic design becomes stable a

compositional approach is recommended for future iterations.

In many of the current ipTF abstract classes there is functionality which could be placed in lower

level abstract classes thus allowing the original classes to become generic. An example of this is the

MsgPanel class. This class represents the protocol specific user interface. It was made abstract

because it was felt that different user interface elements might be required by different protocols.

However the user-interface implemented for both Telnet and IIOP is identical. It is possible that

additional user-interface elements may be required for other protocol implementations when the

framework is reused. How to factor out common user-interface parts while allowing for the addition

of protocol specific user-interface elements is a design issue. One approach to resolving this could be

the application of the decorator design pattern. Common functionality is placed in a single generic

class and decorated through a compositional structure that holds the protocol specific user-elements.

Another potential example of making classes generic is found in the test suite structure.  A test suite

is composed of a hierarchy of test sequences, test events and test messages. In the current revision

only the TestEvent class is generic. Analysis of both the Telnet and IIOP implementations indicate

that this structure could be modeled in a generic way by factoring out of the common functionality

and placing it in generic TestMsg and TestSuite classes. This should be possible because the

TestMsg and TestSuit classes are extended in an identical way in the current revision.

6.3. ipTF benefits & costs
The steps necessary to create an imaginary SMTP protocol testing application from scratch are

compared to those of using the ipTF framework to create a similar application. The comparison is

used to illustrate some of the costs and benefits of adopting the framework approach in this project.

Protocol specific application An examination of the SMTP protocol specification at a high level

would be necessary to determine the protocol structure and behaviour. In addition lower level

analysis of features such as message formats and procedure rules for communication would also be

necessary. The general features of a protocol testing application would need to be established. The

accuracy of this analysis would depend to a great extent on the individual developer’s understanding



6-5

of the domain. Furthermore if no existing protocol testing applications were available to the

developer accurate analysis would be difficult. Based on the analysis the developer would model a

new design. This design would be the basis for implementing the protocol specific testing

application. It is likely that a number of design and implementation iterations would be undertaken

before the application would meet user requirements.

Framework generated application: The analysis of protocol testing applications and the general

features of protocols is captured to some degree in the basic ipTF framework design. The framework

is still at early stage of development and would not capture all the design features required for some

protocols. An analysis of SMTP’s syntax and semantics would be required to enable implementation

of the protocol specific parts of the framework. This analysis may reveal framework limitations. For

example SMTP has a number of defined states and specifies valid input message sequences for

transitioning between states. Testing of this type of protocol is often based on the FSM concept. The

current framework deals only with stateless protocols and consequently there is no concept of

keeping state information in the framework design.

The application code implemented in generic classes would be relevant for creating an SMTP

application design. In addition the sample IIOP and Telnet implementations would act as a guideline

for implementing protocol specific code. The developer will need to spend some time learning and

understanding the framework.  This should be a relatively short period as the basic design is

documented in an object model and sequence diagrams. The Java implementation of the framework

is based directly on this simple design model.

In summary, it is difficult to make a comparison between using and not using the framework for

application development as comparable application metrics are not available. A full evaluation of the

ipTF against protocol specific test applications is beyond the scope of this dissertation. However

observations can be made that provide some guidance in respect of this type of evaluation.

The current framework design is in its second iteration. A Telnet protocol testing application was

implemented using the first iteration. An analysis of this design led to a basic redesign of the

framework. The Telnet application was then reimplemented using this second design iteration. When

this was achieved to a satisfactory level the development of an IIOP testing application was

undertaken. The ipTF framework provided support for developing this IIOP implementation in three

ways. Firstly, it provided a structure for application analysis through the framework design.

Secondly, the design of the framework was used as the basis for creating the IIOP application design.

Thirdly, many of the concrete classes implemented for Telnet were used as a reference guide for the

IIOP implementation. If the IIOP application were developed without using the framework these

benefits would not have been available.



6-6

There were however costs associated with the framework. Firstly, considerable time was spent

creating the initial framework. This included work on analysis, design, implementation and test

phases of the framework development. The initial design was then remodeled to include factoring out

of common functionality and application of design patterns. A full protocol testing application would

require the definition of a complete set of protocol test sequences. The generated application’s

robustness, efficiency and performance would also need to be fully tested in a rigorous way.

The current ipTF framework is by no means complete and requires redesign to improve its reuse

potential. From the IIOP and Telnet implementation it is clear that a third design iteration would add

significantly to it’s reuse potential. In a third design iteration, for example, design patterns could be

applied to make the framework more compositional.  Common functionality could be factored out of

the concrete classes into abstract classes.   With each additional reuse of the framework this process

of redesign should become less significant until eventually the basic design becomes stable. As the

framework design overhead falls the basic design should improve. The benefit to the developer will

therefore become greater with each framework reuse and subsequent redesign.

6.3.1. Protocol Revisions
Protocol specifications are often revised to include new features. Existing protocol implementations

are updated to include these new features. Updated implementation must be tested to ensure

conformance to the revised specification. The framework approach offers the flexibility to adapt

existing protocol testing applications for protocol revisions. In most instances new revisions of a

protocol will have much in common with the structure, behaviour, syntax and semantics of the older

revision. Often the new protocol features require new message types and procedure rules. A

compositional framework would allow new protocol components to be added without effecting the

existing framework design or implementation. The new features and behaviour could be

encapsulated in components that are plugged into the existing framework application. For example

new protocol adaptee, message reading and message comparison components could replace existing

components in the framework. Plugging in these components to the framework may be sufficient to

entirely update the testing application for a protocol revision. The flexibility of the framework

approach would allow for quick, efficient and accurate updating of the testing application for

protocol revisions.

6.3.2. Multiple Protocol Testing
The ipTF provides a user-interface for switching between multiple protocol testing implementations.

Instances of protocol testing applications are dynamically created at runtime by the application as

required. It is for example, possible to run a sequence of Telnet tests followed by a sequence IIOP

tests within the same ipTF generated application. The verification of all tests is recorded in a single

log. This feature could be used for testing of communication of servers that implement multiple

protocols. Protocol specific test application does not result in a consistent approach to testing

protocols and cannot therefore offer this type of feature.



6-7

6.4. Conclusion
The ipTF framework achieves the basic design goal of modeling a generic protocol testing

application. The current framework design and implementation was realised in a second iteration of

the ipTF. Though the original goal was achieved there is significant scope to make the basic

framework more generic and compositional in nature. This would afford an opportunity for greater

reuse of the design and code. Using composition to extend the framework would make it easier for

the developer to add protocol specific functionality without effecting the basic framework design.

Design patterns could be applied to encapsulate the protocol specific functionality in classes that are

composed rather than inherited from. Although application metrics were not available for

comparison against other applications it is suggested from observation that the benefits of the

framework would eventually outweigh the costs. If the framework is analysed and redesigned (if

necessary) after reuse the greater will be the potential for further framework reuse.

6.5. Summary
The ipTF design and implementation were evaluated in this chapter. The need for testing of multiple

Internet protocol testing was highlighted. It was suggested that a generic test application could be

used to address this problem. This method would save resources and time over current protocol

specific testing methods. Object-oriented frameworks are a design methodology for developing a set

of related applications. The framework approach was therefore considered a suitable design

methodology for creating such a generic application. An assessment of the framework approach was

evaluated in terms of the feasibility of achieving a generic type protocol testing application. The

ipTF framework realisation gives proof of this feasibility. The relative success of the framework was

then evaluated in terms of its ability to represent the commonality of many protocol testing

applications. The current framework is at an early stage of development. To date only IIOP and

Telnet prototype testing implementations have been generated from the framework. An SMTP

example illustrated potential limitations of the current framework design. Other protocol testing

implementations may identify additional framework design issues.

Finally some suggestions are made for the future development of this framework. New prototypes

should be implemented for additional protocols. Ideally each protocol being implemented should be

representative of a particular protocol type. This would help identify and resolve basic protocol

testing functionality issues for a subset of Internet protocols. Design patterns should be applied to the

framework design as it evolves to make it more compositional in nature.  This would make it simpler

for the developer to reuse the framework. Eventually, when the design becomes stable, a full testing

application should be implemented for a protocol. A set of application metrics could be derived for

this framework application and used to fully evaluate the framework against a comparable protocol

specific testing application.



7-1

7. REFERENCES

[Alex79] Alexander Christropher The Timeless Way of Building, Oxford Univ. Press, New

York, 1979

[App98] Appleton Brad, Patterns and Software: Essential Concepts and Terminology

http://www.enteract.com/~bradapp/docs/patterns-intro.hml, 1998

[Boch94] Bochmann Gregor V., Petrenko Alexandre, Protocol Testing: review of methods and

relevance for software testing, ISSTA 94, Proceedings of the 1994 International

symposium of software testing and analysis, p109-124

[Boe79] Boehm, B.W., (1979) Software engineering: R & D trends and defense needs. In

Research Directions in Software Technology (Wegner, P., ed.) Cambridge MA: MIT

Press

[Boll98] Bolliger Jürg, Gross Thomas, A Framework-Based Approach to the Development of

Network Aware Applications, IEEE Transactions on Software Engineering, V24 No

6, May 98.

[Boo88] Booch Grady,  Best of Booch, SIGS Reference Library, 1996

[Boo94] Designing an Application Framework, Dr. Dobbs Journal 19, No.2, 1994

[Copl97] Coplien James O., Idioms and Patterns as Architectural Literature, IEEE Sofware,

January 97

[Corba98] The CORBA architecture and specification document contains the Internet Inter Orb

Protocol (IIOP) specification (Chapter 13.7). The Object Management Group (OMG)

is responsible for maintaining this document.  CORBA version 2.2, Feb 1998 is the

current revision. http://www.omg.org

[Comer95] Comer Douglas E., Internetworking with TCP/IP, 3rd Edition, Prentice Hall

International Editions, Chapter 23 Applications: Remote Login (Telnet, Rlogin),

1995

[Domino] Lotus Notes (client) and Domino (server) is a popular distributed groupware product

developed by Lotus Development Ltd.   http://www.lotus.com

[Gam94] Gamma E., Helm R., Johnson R., Vlissides J., Design Patterns – Elements of

Reusable Object-Oriented Software, Addison Wesley, 1994

[Holz91] Holzmann Gerard J., Design and Validation of Computer Protocols, Prentice Hall

Software Series,1991



7-2

[Hüni95] Hüni Hermann, Johnson Ralph, Engel Robert. A framework for Network Protocol

Software, OOPSLA’95 Proceedings, Austin, 1995,

ftp://st.cs.uiuc.edu/pub/patterns/papers/conduits+.ps

[IS  9646] International Standard (IS) 9646 is a standard devoted to the subject of conformance

testing implementations of Open Systems Interconnection (OSI) standards.

[Java98] The Java Development Toolkit (JDK 1.1) supports the Java Native Interface (JNI) for

C/C++, http://www.javasoft.com

[Joh88] Johnson Ralph E, Brian Foote.  Designing Reusable Classes, Journal of Object

Oriented Programming, June/July 88

[Kert97] Norman L., Ward Cunningham, Using Patterns to improve our Architectural Vision,

IEEE Computer, January, 1997

[Knig93] Knightson Keith G, OSI Protocol Conformance Testing, McGraw-Hill, 1993 p86.

[Kore90] Korel Bogdan, Automated Software Test Data Generation, IEEE Transactions on

Software Engineering, August 1990

[Kore96] Korel Bogdan, Ferguson Roger, The chaining approach for software test data

generation, ACM Transactions on Software Engineering and Methodology, V5 No.

1, Jan 96.

[Lan95] Landin N., Niklasson A.  Development of Object Oriented Frameworks Masters

Thesis, Dept. of Communications Systems, Lund University, 1995,

http://www.tts.lth.se/Personal/bjornr/Papers/OOFW.ps

[Mel97]  Mellor Stephen F, Johnson Ralph. Why Explore Object Methods, Patterns and

Architectures?  IEEE Software, Jan 97

[Mile94] Miller Raymond E, Snajoy Paul, Structural analysis of Protocol Specifications and

Generation of Maximal Fault Coverage Conformance Test Sequences. IEEE/ACM

transactions on Networking, Vol. 2 No. 5., October 1994

[Mon97] Monroe Robert T., Kompanek Andrew, Melton Ralph, Garland David, Carnegie

Mellon University, Architectural Styles, Design Patterns and Objects. IEEE

Computer, January 1997

[Post83] Postel J. B., Reynolds J. K., Telnet Protocol Specification, RFC 854, 15 pages, May

1993, The basic Telnet protocol specification. Many later RFC’s describe specific

Telnet options.

[Rob96] Roberts Don, Johnson Ralph, Evolve Frameworks into Domain-Specific Languages,

Procedings of the 3rd International Conference on Pattern Languages for

Programming, Monticelli, IL, USA, September 1996, http://st-

www.cs.uiuc.edu/users/droberts/evolve.html



7-3

[Run91] Rumbaugh J., Blaha M., Premerlani W., Eddy F., Lorensen W., Object Oriented

Modeling and Design, Prentice Hall, 1991, p146, 7.3 Impact of an Object Oriented

approach

[Some96] Ian Sommerville, Software Engineering, 5th edition,  Addison Wesley, 1996

[Stev94] Stevens W. Richard, TCP/IP Illustrated Volume 1. The Protocols, Addison –Wesley,

Chapter 26 Telnet and Rlogin, 1994

[Tal94a] Taligent Inc., Building Object Oriented Frameworks, A Taligent White Paper, 1994

[Tal94b] Taligent Inc., Leveraging Object Oriented Frameworks, A Taligent White Paper,

1994

[Tepf97] Tepfenhart William, Cusack James J., AT&T, A Unified Object Topology, IEEE

Computer, January 1997

[Voas94] Voas Jeffrey M. , Miller Kieth W, Software Testability: The New Verification, IEEE

Sortware, May 1995 or  Reliable Software Technologies,

http://www.rstcorp.com/testability.html



8-2

8. APPENDIX A – OBJECT MODEL & SEQUENCE DIAGRAM

T e ln e tT e stM sg

rea dM s g()
a dd Da ta Ite m ()
g e tD a ta ()

IIO P T es tM s g

re adM s g()
a dd D a ta Ite m ()
g e tD a ta ()

T e lne tM s gPane l

a d dS cre en E le m en ts ()
s h ow Tes tM sg ()

IIO P M s gP a ne l

A d dS creen E le m e n ts ()
s h ow Tes tM s g()

SM TP M s gP a ne l

ad d Sc reenE lem en ts ()
sh o w T es tM s g ()

S M T PT e stM s g

re adM s g()
a dd Da ta Ite m ()
g e tD a ta ()

T e ln e tT es tFa c to ry

lo ad T es tSu ite ()
c rea teP ro to co l()
c rea teM sg Pane l()
c rea teC onn ec tAddres s()
c rea teC om pa rito r()
c rea teM sg R eade r()

IIO PT e stF ac to ry

lo ad Te s tS u ite ()
C re a te P ro toc o l()
c rea teM sg Pa ne l()
c rea teC onne c tAddress ()
c rea teC om pa rito r()
c rea teM sg Re ade r()

S M T PT e stF ac to ry

loa d Te stS u ite ()
c re a te Pro toc o l()
c re a teM s g Pa ne l()
c re a te Co nne c tA dd res s ()
c re a te Co m pa rito r()
c re a teM s g Re ad e r()

IIO PC om p arito r

co m pare ()

Te lne tC o m parito r

c o m pare ()

SM TP C o m p arito r

c om pa re ()

T e ln e tM s g Re ad e r

re adM s g ()

IIO PM s g R e ad e r

rea dM sg ()

S M T P M s gR ead er

rea dM sg ()

s w itc h ()
c ase :Te lne t

T es tFa cto ry  tf=n e w  Te ln e tT es t
F a cto ry ()

c ase :IIO P
T es tFa cto ry  tf=n e w  IIO P Te stF ac to ry (

)
c ase  SM T P

T es tFa cto ry  tf=n e w  SM TP T es t
F a cto ry ()
e n d  s w itch

ts =tf. loa dT e stS u ite ()
p ro to =tf.c re a te Pro toc oc o l()
m sg pa ne l= tf.c rea teM sg Pa ne l()
c om pa rito r= tf.c re a te C o m pa rito r()
m sg rea de r=tf.c re a te M sg R eade r()

C om m sLog

a ddL og En try(S trin g  tex t)

C om pa rito r

co m pare (TestE ve n t)

T es tSu ite

a d dT es tEv en t(M s g Re ad e r)

M sg Pan e l

A dd S creen E le m e n ts ()
s h ow Tes tM sg ()

IPT F Ap p

cre a te Ap p ()

T es tEv e n t

ve rify (C o m pa rito r)
1 *1 *

M s gR eader

re adM s g(filena m e ) : Te s tM sg

Te stF ac to ry

loa dT e stS u ite () : T e stS u ite
cre a te Pro to c o l() : P ro toc o l
cre a teM s gPa ne l(a rgna m e ) : M sg Pa ne l
cre a te Co nn e ctA dd res s () : C o nnec tAd d re s s
cre a te Co m pa rito r() : C om pa rito r
cre a teM s gR e ad er() : M sg R eade r

T es tM s g
V e cto r d a ta Ite m

re adM s g (M s gR eade r) : T es tM s g
a d dD ata Ite m ()
g e tD a ta ()

*

1

*

1

T e ln e tT e stS u ite

ad d TestE ven t()

IIO P Te stS u ite

ad d TestE ven t()

S M T PT e stS u ite

ad d TestE ven t()

A bstract
F a ctory
P a tte rn

S tra tegy
P a ttern

S tra tegy
P a ttern



8-3

IIOPProtocol

connect()
SendMsg()
RecvMsg()

SMTPProtocol

connect()
SendMsg()
recvMsg()

IIOPConnectAddress

setIORInfo()

JBTelnet jbtn;
jbtn.connect(ConnectAdress)

jbtn.sendMsg(TelnetTestMsg)

SMTPConnectAddressTelnetConnectaddress

Protocol

connect(ConnectAddress) : boolean
SendMsg(TestMsg) : TestMsg
RecvMsg() : TestMsg

ConnectAddress

setIPAddress()
setHostname()
setPortNum()

TelnetProtocol

connect()
SendMsg()
RecvMsg()

JBTelnetClient

Start()
Stop()
setInternetAddress()
sendMsg()
getMsg()

JavaIIOPAdapter

native connect()
native sendMsg()
native recvMsg()

C++IIOPAdapter

connect()
sendMsg()
recvMsg()

ClientEndPoint

Request()
LocateRequest()
CancelRequest()
Fragment()

Internet Protocol Test Framework
Object Model

Adapter/Wrapper
Pattern

Figure 28: ipTF Object  Model



8-4

 : IIOPComparitor  IPTF   : IIOPTest  
Factory  

 : IIOPConnect  
Address  

createConnectAddress( )

createMsgReader( )

 : IIOPMsg  
Reader  

 : IIOPTest  
Suite  

 : Test  
Event  

 : IIOPProtocol   : IIOPTestMsg  MsgPanel :  
IIOPMsgPanel  

DSG MobIIOP :  
JavaIIOPAdapter  

 : CommsLog  

loadTestSuite( )

addTestEvent(MsgReader)

setIORInfo( )

readMsg(MsgReader)

addDataItem( )

CreateProtocol( )

createComparitor( )

createMsgPanel( )

AddScreenElements( )

showTestMsg( )

connect(ConnectAddress)
native connect( )

SendMsg(TestMsg)
native sendMsg( )

RecvMsg( )

native recvMsg( )

addLogEntry(String text)

addLogEntry(String text)

addLogEntry(String text)
compare(TestEvent)

ipTF Sequence Diagram

Figure 29: ipTF Sequence Diagram


