Architecture for Location Independent CORBA
Environments

Raymond Cunningham
B.A.

September 1998

A Dissertation submitted in partial fulfilment of the requirements for the
Degree of MSc in Computer Science

University of Dublin
Trinity College Dublin

Page 1

Declaration

I, the undersigned, declare that this dissertation is entirely my own work, except where
otherwise accredited, and that it has not been previously submitted for a degree at this or
any other university or institution.

Raymond Cunningham
September 1998

Permission to Lend and/or Copy

| hereby declare that Trinity College may lend or copy this dissertation upon request.

Raymond Cunningham
September 1998

Page 2

Abstract

The construction of distributed applications is a complex and time consuming task, which

has been addressed by the Object Management Group’s Common Object Request Broker
Architecture. However implementations of this standard are typically designed for
stationary hosts connected to a fixed network and do not take into account the problems
associated with mobile computing. These problems include limited processing resources
on the mobile host and the use of unreliable and low-bandwidth wireless networks.

A full CORBA implementation is unsuitable for use on mobile hosts, such as
laptops and personal digital assistants, since it is too resource intensive. It is however
desirable for mobile hosts to be able to interopate with existing CORBA applications
while simultaneously taking advantage of mobility.

This dissertation describes the design and implementation of a collection of
components suitable for building applications, which are capable of interoperating with
CORBA implementations and which are suitable for mobile hosts. The collection of
components allows an application to act as a client or as a server in a CORBA context.

The implementation was carried out on Windows NT and Solaris using C and

C++, Windows and Unix Sockets are used for network communication.

Page 3

Acknowledgements

Many thanks to my supervisor, Dr. Vinny Cahill, for his guidance and advice throughout

the course of this project.

Thanks to Mads Haahr, who was ever willing to help with any problems, however trivial.
Thanks a so to other members of the Distributed System Group; Tilman Schaefer, Jim
Dowling, Frank Siquera, Stefan Weber and Tim Walsh.

Thanks to other members of the M Sc course for their assistance and friendship

throughout the year.
Specia thanksto my family. To my three brothers for their support through thick and

thin. To my Mother and Grandmother, without whose love and support, this project

would never have been completed.

Page 4

INTRODUCTION

11 M OBILE COMPUTING. ...cteutteuteeueesteesseesteesessesessaeesseesseasseasssassesseesseessesssesasesssesseesaeessesnsesnsesnsessesssenns 7
0 @ . SRS 9
13 L N =0 B €10 .Y OSSR 10
14 OVERVIEW OF DESIGN ...uiiiiiiitiiiieiiisttest e sie e te sttt este ettt satesbee st e e beentesmeesaeesaeesaeeseensesnsesneensenns 10
15 PROJECT ACHIEVEMENTS. .cotittertesttstesteeseeeeseesseseestessessesseessessessessessessesseensessessessessessessesnsessessessenes 11
16 ROADMAP ...ttt ettt h e h e bt ae e et et e eae e et et e ae e e be e e ae e e a b e e e neeenbeeeneeenbeeeneeenee 11
STATE OF THE ART ittt st sttt aesa e et s besseeaeesee e e beseeebesseeseene et ensenseneeneeses 13
2.1 INTRODUGCTION ...teutieurieusiaueesseesseessesasessessessueesseesseessesssesseesseessesssesssesasssaessaeesseensesnssansessesssesssesnsesnsesns 13
A% I R o =i = o] o (o) S 14
WA I @ o = 1V o =1] o 16
ARG N O o L= v L= = = o] o 17
2.1.4 Connection Transparency and Disconnected OPerationccccceeveviesieeseeseeseeseeseeseeseeeseens 17
2.2 INFLUENTIAL RESEARCH PROJECTS ...c.utiiieeiieesteesteereenesseesseestesssessesessaeesmeesseenessnesnssssesssesssesssesnnesnnes 18
2.2.1 Rover: A Toolkit for Mobile INformation ACCESS........ccceiiiiieiieiiie ettt 19
2.2.2 XeroX ParC BayOu PrOJECL..........ccueiriiieiriieetisieiet sttt 21
A 1 B o [117 o F OO TSROSO 25
224 MODIE TPttt ettt et e et e st e e b e et e et e sae e sheesbe e beeabeeaeeebeeebe e beeteenresaeas 28
2.2.5 ONTREMOVE........c.ei ettt sttt ettt e et e et e e be e beeabesaeesheesaeebeeasesaeeeaeesbeenteebeenbeensesanas 31
BACK GROWUND ...ttt sttt ee s e te s eestessees e e esebesaesbesaeeseeneeneesessebesaesbenneeneensansensessens 36
3.1 CORBA AND INTEROPERABILITY ..eiuttitiieesueesteesseenseasesseesseessesssesssessssssessmeesseessesnssssssssesssesssesssesnsesnns 36
3.1.1 ObJECt REQUESE BIrOKEIS......eciiciecie ettt rte et ettt s sae e sae e aeene e eneeste e teenteeteeneennnas 36
3.1.2 Interface DefiNition LanQUAGEcceieeieerieeie e sees e e sieete e s s steesae e ena et e te e seenteeneennes 37
TR G B 110] 1= = o 1 1 37
.2 GIOP AND HOP ...ttt bbbt a et e e b et e b e s heehe e e e e e beseeebesaeene e e e e e nbesneas 38
.21 GOAIS Of GIOP.........oicteeeeeee ettt ettt et s b e sbe e s be et e s e e saeesteesbeenbeesteebeenresanas 38
3.2.2 Common Data REPrESENTALIONc.coviriiieiirieieiesi ettt b e se e s 38

3. 2.3 CDR TFANSFEN SYNEAX ...eveveeeiertirieiesteseeie sttt sie st b et b et b e eb e na e eb e e b nenes 39

3. 2.4 Primitive DAL TYPES.eevereeuertereeiestereeiest sttt sttt sb st se et se et sb s s s bt s e et b et e e b et et esenneneenes 39
3.2.5 CONSLIUCIEA DALA TYPES.....veveueeterieneetertieetestese ettt eie e ebe e eb b e bt sb e bt e s bt s ese b sesenseneenes 40
3.2.6 OLNEr IDL TYPES....eecuiiterieieetereeeet ettt ettt b e bt et b et b e et b s b et b b et bt b e e b et e s e b e nnenes 41
3.2.7 Interoperable ObJeCt REFErENCES.cccuiieeciece et 41
328 SINGITIEA TORS......c.eiieiitee e e bbbt se e bbbt bt sae e st et e e e e e nnenbesre s 42
3.3 GIOP IMIESSAGES......cetitettetesueeueeeestasbeshesbe s it eseesensesbesbeebesaees e e s e e s e besheebesaeeaeene e s e besaeabesaeeneennennenbesreas 42
3.3.1 GIOP MESSAQE HEAUENecuveceieceiecee sttt sttt ettt et e e e s e s neenre e teenteenreenns 43
3.3.2 REJUESE MEBSSA0Eveivtieiiiee sttt site e sttt ste e sttt st e e st e e saae e sbe e e sbeeebe e e bae e bae e beeebe e e nbaeebeeesbeesabeesaneeans 44
3.3.3 REGUESE BOOYcueeeeetirieeieeiee sttt sttt sttt b et eae et se e b e bt ebeeb e et e e e se et e ene e e e nnenbesnens 45
3.4 REDIY IMESSAGE. ...ttt b b e bt et b e bbb et h bt b e Rt h bt n e s 45
3.3.5 CanCel REQUESE MESSAQE.cuerueieierterieiestereei sttt b ettt b et b bbbt e e nbennenes 46
3.3.6 LOCAE REQUESE ...ttt et e e r bt r e nenenn e renne s 47
3.3.7 LOCAtE REPIY MESSAGE. ..ottt ettt b ettt b et b et n e nb e s 47
3.3.8 ClOSe CONNECLION IMESSAGEc.veueeeteeeiestereete sttt ettt b et b e bbbt b bt sae e s 48
3.3.9 MESSAGE ENTOr IMESSAJE. ... eeiitii ittt ettt st st sa e e s aae e sa b e e sate e sabeensaeesabeesaneenn 48
3.3.10 Fragment IMESSAgEuiiiierrieiireesiieestee st ste e st ssbe e st e st e sb b e e saae e sbbe e s bae e sbbe e naee e sbteenaee e sbeesneena 48
DESIGN .ttt ettt b bt a bt e e e b e e R e e b £ e Reeh e e E e R e R e SR £ e R e Re SR £ e RE e R e e ReeRenEeehe R e e Rt eneetennenrenreas 49
4.1 OVERVIEW ..eeiteeteeteeiteete st sseesmee s st e st easeeasesseease e seesesasesaeesaeesaeeaR e e st eaneeRe e eReeaE e e b e enEeeanesanesaeesreenneenneenns 49
4.2 COMPARISON TO RELATED RESEARCH.ctiiiiteetiestesresesseesieessee st snesssesseessessseessessesnessnessneesseensesnns 52
4.3 MOBILE LAYER OPERATION.....ceiutesttettereeuresseesteesseessessesssssessseesseesseansessssssssssesssesssesasesnsssessneessesnsesnes 53
4.3 1 MODIIE HOSE @S A ClIENL.....ccueiieieciecte ettt et et e s b s be e teetesaeesaeesaeenneenns 53
4.3 2 MODIE HOSE @S 8 SENVET ... ettt ettt ettt st e ste et e e e e sbeesbe e be e beentesntesanesaeesaeenreenns 59
L@ I N = PP 63
A 4.1 DESIGN GOAIS....c.ecueitiieeiiitireeest ettt b et b e a e b bt b et bt e ae b et e 63

4.4.2 Components Of the TTOP [QYENcceeieeceeece ettt sre e nneenne e 64

4.5 SWIZZLING LAYER (S/ TTOP) ...t ceeeteese ettt ste e ste e te st e st e e e e entesnaesnaesaeesneensesnnesnnesneanseanes 65
SIS U LY Y 1 23 2T 67
IMPLEMENTATION ..ottt ettt ettt e ettt e e e ettt e s et e e e s bt e e s sasteeesaaseeesaabeeeseastesssasbaeessbeeessaseesesannnes 638
DL IMPLEMENTATION GOALS ... uuetttiiiee e ieeitttiee e e e s ettt et e e e s s e e aabaeeeeassessaabaeeeeassessasbabeseassesasbasesesesssessbarenenas 68
5.2 IMPLEMENTATION DECISIONS....ciiiiiiiicttttiiee e e sestteee s e e s s eesabreesesssessasbassseassesssbasssessssssasbasesesessssssssrsness 69
D3 TTOP LAYER CLASSES.....ccciiiictttiiiee e e ieettttee e s et estatae et e s s sessaabaeeseassessssbaseseassesssbassseassssaasbasaeesesssessbarenesas 69
5.3.1Overview of Class HIEIarChycocoeireiririeise ettt 70
5.3.2 Representation Of IORSociie ettt e et e et nte e teennesnnas 72
TG TG B V= T =1 T oo 74
5.3.4 GIOP MeSsage REPIESENEALIONcc.eeieeieeiieeiteeteeeestees e e steeteseesreeseeesaeenaeeneesnaesreesseeseensesneesnnes 76
5.3.5 TraNSPOM CIASSES.ueeiuieieeieceestee st e e e ste st e st e st e s e e te et e st e steeste e teeteeneesaeesaeesseenseanseenseeteensennnas 83
5.3.6 Communication ENAPOINESoiueiieiieie et e s e sttt e e e e e e teenteentesnaeeneennes 84
LAY R I 88
6.1 FOOTPRINT AND CODE SIZE COMPARISONcoeccuutiieieeeiieisteeiiesssesssssssseesssesssssssssesssssssssssssesssssssssssseses 89
6.1.1 Distributed Whiteboard APPIICALTONc.coirieiriiieiee e 89
B.1.2 FOOLPITNE SZE....eoeeeietieeiete et bt bt b bbbt b bbbt nb e s 90

(ST IR 00 o (IS 1T 92

6.2 COMPARISON OF AVERAGE INVOCATION TIME ..uuutiiiieeiiiiiiureeiieessesssbeseeesssesssssssssesssssssssssssesessssssssssseses 93
RVAY 10 (03 N TR 93

S0 T 1 94

[O(@ AN (O IR0 LS KO 1\ T 96
T. L VWORK COMPLETED ..uttttiieiieiiiuttreteesseiiisssseesssssasisstssssesssesssssssssssssesssssssssssssesssssssssssssissssssssesesssssssssseses 96
T2 REMAINING WORKtttiiiiiiiiiitiriiee e e e teibbtreee e s st ssbabaeesesssesaabaaeeeaesessaabaaeeesssessaababeseeesesasbabaeesesssaababanesas 97
T2 FUTURE WORKcoiuuttitiiti i e iiitttiiee e s et eibbateee e s st e sababaeesessseabab s e eeeeesesaa b e aeeeeese s aababeseeesesansbabanesesssasbabrnness 97
APPENDIX A OMG IDL oottt ettt e ettt e sttt e s s st et e s ettt e s sbaeessasbeeesassaaessbaeesssstesssesseessareneean 99
YN R L@ Y o T I =TT 99

F A 11 1Y, K] o U I 101
BIBLIOGRAPHY .ottt ettt ettt e e et e e e et et e s s aaeeesaaaeeesabeeessasasessasseessabeeessasaeassasbenessatenesanes 102

Page 6

Chapter 1

Introduction

In recent years, two noticeable areas of growth in the computer industry have been the

number of distributed applications being built using Object Request Brokers (ORBs) and

the rapid growth in the area of mobile computing. These ORBSs are implementations of

the Object Management Group’s (OMG) Common Object Request Broker Architecture
(CORBA) [OMG’98]. The OMG has specified a protocol to allow ORBs to interwork
called the Internet Inter-ORB Protocol (1IOP). This thesis describes an implementation of
the IIOP protocol, which is suitable for mobile devices.

This chapter introduces the area of mobile computing and the OMG’s recent
standard to facilitate ORB interoperability. An analysis of the requirements to bring ORB
interoperability into the mobile computing arena is, then, presented. Following this, the
specific goals of this project are covered. An overview of the project is then presented as
well as some of the project’s achievements. Finally, a roadmap of the rest of the

dissertation is presented.

1.1 Mobile Computing

Over the past decades, many transitions in the computer industry are clearly discernible.
The transition from mainframes to minicomputers during the 1970’s, then the subsequent
move from minicomputers to personal computers during the 1980’s and early 1990’'s are
clearly discernible. A similar transition has recently begun and that is from the
widespread use of personal computers to the widespread use of mobile computers.
Mobile users typically employ a laptop computer or a personal digital assistant (PDA),
perhaps with a mobile phone being used for network communication. Other equipment
that is used to provide the communications mechanism includes Wireless LAN and

Wireless ATM technologies.

Page 7

The obvious advantage provided by mobile computing, is freedom of movement.
Computer users will no longer be restricted to their office or their homein order to use
applications that are essential to their work. Sales representatives will no longer need to
return to their office to place an order for a company’s product or make a phone call to
place the order. Instead the sales representative will place orders electronically using
his/her mobile device. This will also allow greater flexibility in people’s work practices
and working hours as they increasingly utilise the emerging mobile computing devices.

Along with the obvious advantages brought by mobile computing, there are
obstacles that need to be overcome. These problems are faced by both the users of mobile
devices and the developers, of applications, for these devices. To make the mobile device
portable, the processing resources available on the device are usually somewhat limited
in comparison to what can be found on a typical desktop machine today. This restricts the
user of the mobile device in that only a limited number of applications are available and a
smaller subset of functionality of these applications is possible. This restriction also
applies to the application developer as the onus is upon him/her to maximise the use of
the available resources.

Other disadvantages include the limited bandwidth available over the wireless
communications media in comparison to typical Local Area Networks (LANs) (9600bps
for wireless media versus 10/100Mbps for LANS). As well as the limited bandwidth,
there is a significant difference in the error rates between, for example, a GSM phone and
a LAN. Another difference to be aware of is the expense of using a GSM phone
compared to the minimal cost of using a LAN. All of these problems impact on a
developer as they begin development of new mobile computing applications.

As the solutions to these problems are more fully understood, more applications
will quickly follow. Obvious applications are those that are currently common on today’s
desktop machines. Web browsers and E-mail reading programs are typical of the type of
applications that are required for the mobile environment.

However, limiting the applications on mobile devices to those that are common
on fixed networks does not capitalise on the advantages of mobile computing.
Applications that are aware of their mobility are only beginning to be thought of. An

example of such a mobile-aware application would be an in-car navigation system.

Page 8

The applications, whether they are mobile-aware or not, will require a complex
distributed system to be in place to enable mobile devices to be located, receive and send
information as they move. One of the most widely used architectures for building
distributed applications isthe OMG’s CORBA standard.

1.2 CORBA

The Common Object Request Broker Architecture (CORBA) from the Object
Management Group (OMG) defines a framework for developing object oriented
distributed applications. This framework makes network programming easier by allowing
a distributed application to be built as though it were being implemented for a single
computer. CORBA also brings object-oriented techniques to a distributed environment.

CORBA defines a standard architecture for Object Request Brokers (ORBs). An
ORB allows the creation of software objects whose member functions can be invoked by
client programs located anywhere in the network.

The CORBA standard initially made no provision for interoperability between
ORBs, leaving it to ORB developers to create their own proprietary interoperability
protocols for their own products. This was addressed by the OMG with the CORBA 2.0
standard. This defined a standard protocol, which allowed 2.0 compliant ORBs from
different vendors to interoperate. This standard protocol is called the General Inter-ORB
Protocol (GIOP) and a mapping of this onto TCP/IP is called the Internet Inter-ORB
Protocol (IIOP).

The 11OP protocol makes a distinction between clients and servers using
request/reply interactions. A client creates an [IOP request message to invoke the method
of an object, which is stored at a particular server (typically supported by an ORB). IIOP
also defines the format of reply messages that can be sent by the server in response to the
request message. Other facilities that are possible with 1IOP include querying for the
location of an object and the cancellation of a previous request message.

With 1IOP, applications using different ORB implementations now have the
capacity to interoperate. These applications are typically developed for stationary hosts as
the CORBA standard was not developed with mobile computing in mind. A naive

solution to developing distributed applications in the mobile environment, would be to

Page 9

port an ORB implementation to a mobile device. However, thisisinfeasible due to the
complexity of the CORBA standard and the limited processing resources typically
available on the mobile device.

Thus support for building mobile applications, which are able to interoperate with
ORB implementations is required. This support would obviously have to be based around
[1OP and would also require some form of mobility support. The mobility support is
necessary since the wireless link in a mobile environment isnot asreliable asits LAN
counterpart. Therefore TCP/IP connections will typically be lost with greater frequency

in a mobile environment.

1.3 Project Goal

The goal of this project was to produce a collection of software objects that allow
computer programmers to build applications that are suitable for mobile devices and have
the capacity to interoperate with existing ORB implementations.

These objects should be simple and intuitive to program with. They should hide
the complexity of the [1OP protocol, which it supports to provide ORB interoperability.
In addition it should attempt to hide broken TCP connections from the applications using
it. This becomes important when the characteristics of the wireless communications
medium are considered. Finally, the collection of objects should be useable on different
operating systems architectures, in particular, it should be useable on both the Windows
NT and Solaris operating systems. Although these objects do not provide any
multithreading facilities, their implementations should be re-entrant and allow

multithreaded applications to be built using them.

1.4 Overview of Design
The basis of the software objects identified above is to aid application developers when
building applications, which need to interoperate with other CORBA objects. These
software objects model a particular aspect of 110P, request messages or the marshalling
of datainto and out of communication buffers for example.

To produce the required software objects, a sequence of research, testing, design

and implementation was carried out. The research involved investigating approaches

Page 10

taken in other mobile computing related research projects. In addition to this, a

proprietary 1HIOP implementation, IONA Technologies’ IIOP Engine, was used to gain
experience of programming with [IOP. Other programming experience was gained in the
area of inter-process communication and multithreading.

Following an analysis of the IIOP protocol and other issues relating to
characteristics of mobile devices, a design to allow mobile devices to send and receive
CORBA object invocations was produced. The design features three distinct components:
the Mobile layer, the IIOP layer and the Swizzling IIOP (S/IIOP) layer.

The Mobile layer allows broken or lost TCP/IP connections to be hidden. The
[IOP layer allows [IOP messages to be sent to and received from CORBA objects.
Finally, the S/IIOP layer allows a mobile device to store CORBA objects and receive

method invocations for these objects.

1.5 Project Achievements

A design for the three components introduced above was produced. The IIOP layer was
implemented using C++ [Stroustrup’97] and C [Kernighan’88] on the Windows NT 4.0
operating system. Subsequent work was done to port the IIOP layer to the Solaris
operating System. The two implementations were then tested with the proprietary
implementation mentioned above. One part of the two part Mobile layer was
implemented which allows clients on mobile devices to create connections on a LAN.

This has yet to be tested.

1.6 Roadmap

The remaining chapters in this document detail the various phases of the project

introduced above. The following is an outline of the particular chapters:

Chapter 2 State of the Art
This chapter presents the problems encountered in a typical mobile environment and
introduces general techniques used to overcome them. Related research projects, which

utilise these various techniques are then presented.

Page 11

Chapter 3 CORBA and Interoperability

An introduction to the OMG’s CORBA standard is presented, followed by a detailed
discussion of how interoperability is achieved using the GIOP and 1IOP protocol.
Chapter 4 Design

An analysis of the interoperability problem, as it relates to mobile environments, is given
along with the design of the Mobile layer, IIOP layer and Swizzling layer.

Chapter 5 Implementation

This chapter describes the implementation of the various layers.

Chapter 6 Evaluation

An evaluation of the work carried out is given in this chapter as well as a comparison of
the performance of the IIOP layer with another IIOP implementation.

Chapter 7 Conclusion

Details of further possible work are given along with some concluding remarks.
Appendix A IDL Definitionsfor GIOP and I10OP

The OMG IDL definitions of the GIOP and IIOP protocols are given.

Page 12

Chapter 2

State of the Art

This chapter provides an overview of the main technical problems that are encountered in
mobile computing environments, followed by a description of the most important
techniques that have been used to address these problems.

This chapter includes areview of a number of influential research projectsin
which these techniques have been employed including: Rover, Bayou, Dolmen, Mobile
IP and, finally OnTheMove.

2.1 Introduction

Figure 2.1 isatypica architecture allowing a mobile host to access services available on
afixed network and, in the opposite direction, clients on the fixed network to access
services on a mobile host.

Server /

Host Gateway

Figure 2.1 Mobile Host accessing and providing services

The mobile host (MH) is alaptop or personal digital assistant with one or more interfaces
for communication across awireless link (e.g. WaveLAN and/or GSM phone). The MH
may aso have an interface that allowsiit to connect directly to the fixed network.
Supporting multiple interfaces on the MH introduces the problem of support for
connection transparency. For example, a user with a MH connected directly to the fixed
network goes to a meeting within the same building. The MH might then switch to the
Wireless LAN interface and later, as the user moves out of the building, to the GSM
phone interface. Thistransition should ideally be done transparently to the user of the
MH.

Page 13

The Mobility Gateway (MG) is similar to a Base Station in mobile telephony and
provides arouting facility for the mobile hosts that it is currently serving. The MG routes
data from a MH to nodes on the fixed network and relays data from nodes on the fixed
network destined for the MH. There can be many M Gs attached to the fixed network and
asaMH moves, it can be "handed over" from one MG to another. The cause of this
"hand over" could be the MH going out of range of one MG or a superior quality wireless
link to adifferent MG being established. This again introduces the problem of connection
transparency as a user of the MH should not necessarily need to know that the MG has
changed (unless, for example, a different tariff scheme is being used at that MG).

One problem in the mobile environment described above is the low bandwidth
wireless link between the MH and the MG. Added to thisisthe fact that such awireless
link is typically more unreliable than atypical local area network and also usually more
expensive to use. Moreover, the MH could be disconnected from the MG for intermittent
periods. This again raises the issue of connection transparency, asthe MH and MG
should be able to continue operation despite a connection being lost and regained. All
these problems suggest that transmission over thiswireless link should be minimised as
much as possible. Another issueis provision of support for disconnected operation to
allow applications on the MH’s to continue operation even when the MH is disconnected
from the fixed network for a prolonged period of time.

To overcome the problems described above, three main techniques are used in
object-support systems designed for use in mobile environments [Chen’97]. These are:
* Object Replication
* Object Migration
* Object Delegation

2.1.1 Object Replication

To increase the availability of various server resources on the fixed network, objects held
by the server can be replicated and stored at multiple nodes on the fixed network or
possibly at MHs. This technique is particularly useful in the event of network partitions
(e.g. when an MH becomes disconnected from the fixed network) but it introduces the

problem of consistency management. In essence, the server object is copied across the

Page 14

network to a secondary host. The secondary host must then create a context for the newly
created object (known as areplica) so that it can be accessed in asimilar way to the
original object.

A strategy for the management of these multiple server objects must be chosen.
Two possible choices are pessimistic replica control and optimistic replica control. In a
pessimistic replica control scheme, such as read any/write one, awrite lock has to be
obtained by the object’s user before the object can be modified. Such a scheme leadsto
low availability and isimpractical in the mobile environment since aMH may obtain the
write lock and then become disconnected from the fixed network preventing other users
from modifying the object for prolonged periods.

In optimistic replica control schemes aread any/write any policy is used. Any
object’s user can read or modify any replica of the shared object at any time. It is clear
that preserving absolute consistency with this strategy is not possible but it allows
applications to be minimally interrupted when there are network partitions or temporary
disruptions in the network connection. In this case, thereis a possibility of read/write and

write/write conflicts arising. These are illustrated in the figures below.

o
\ /
o] |® @ | ©

Client A Client B

Client A | Client B

(b) Client A remains connected and client B becomes disconnected.
Client A modifies X, yielding Xa at both client A and server, while
X continues to be stored at client B.

(a) Client A and client B
both connected, make local
replicas of object X

Figure 2.2(a)

Page 15

Server Server

_ Write/write
Read/write \ conflict

conflict

| |®

) Client A Client B
Client A | Client B

|
(a) Client B readsitslocal (b) Client B modifiesitslocal replicaof X to produce Xb,
replicaof X resulting in a reconnects, and attempts to write Xb to the server, producing a
read/write conflict. write/write conflict.

Figure 2.2(b)

Read/write conflicts are usually not detected immediately when they happen. Thisis
because the client reading the object may not know that the version of the object that it is
reading is not the most up to date. Read/write conflicts can be detected by a server, which
maintains alist of al replicaobjects. If an object on the list is modified by some
application while another application, on a MH, reads the object while it is disconnected,
the application must be notified of the changes when the MH becomes connected again.

Write/write conflicts may easily be detected when multiple replicas are reconciled
or merged back into one primary copy by the use of version vectors [Colouris’94]. The
time taken for this clean-up stage may be short if consistency among the replicas is
maintained during replication.

In summary, object replication may incur a high set-up cost, maintenance during

usage to ensure consistency, and clean-up overhead.
2.1.2 Object Migration

Like object replication, object migration suffers from the same high set-up costs when the

server object migrates from its original host to a secondary host. The uniqueness of the

Page 16

server object eliminates the need to propagate modifications to multiple replicas. This
technique is particularly useful for aMH when it is subject to disconnection fromaMG
and consequently the fixed network. This allows an application on a MH to continue
operation during disconnection since the server objects it requires will have been pre-
fetched by the MH and cached. Thisis also possible with object replication but object
migration doesn’t require replicas to be merged back into a single copy during a clean-up
phase, as there is only ever one server object at any time.

2.1.3 Object Delegation

As aready stated, object replication and object migration are expensive in set-up costs
and thus may not be the ideal solution to provide access to afixed network server’s
resources. Object delegation is when arequest, from aclient, is forwarded by an
intermediate host to aremote host. The intermediate host contains a proxy object, which
appears to the client to be the actual remote object. Object del egation introduces an extra
level of indirection, which resultsin poorer performance. However, it may be used to
allow a MH to act as a server to clients on the fixed network or other MHs. The proxy
object in thisinstance would be placed at the MG to forward requests to the MH and
return replies.

2.1.4 Connection Transparency and Disconnected Operation

In a mobile environment, a connection to a server may not be maintained through the
lifetime of an application session or even of a single operation. MHs may move, causing
aswitch to another MG, to fulfill an application’s requests. To the end-user, the
application should appear to run uninterrupted, oblivious to the MH’s connection status.
To achieve such connection transparency, a session abstraction must be provided, which
IS capable of spanning several connections and disconnections in sequence. The particular
details of reconnecting should remain hidden from the user as much as possible. In effect,
the layers of software underlying the application must emulate the server during

disconnected operation.

Page 17

Pre-fetching:
Pre-fetching uses object migration to cache server objects at the MH in order to support

disconnected operation. This requires that the application and/or underlying layers can
predict which objects will be needed, depending on what tasks the user will perform
during disconnection.

This introduces the problem of what level of knowledge the user will need to
ensure that the correct server objects are cached. The user could explicitly pick the
objects that will be needed. A more transparent approach would be to alow the user to
merely specify which applications will be used during disconnection. The burden is then
placed on the MH to automatically determine which objects a particular application will

require.

Server Emulation and Reintegration
During disconnection, the goal of the system isto emulate the server as much as possible

in order to permit continued execution of applications that invoke operations on objects
held at servers. Operations originally performed on objects at the server are instead
performed on replicated or migrated objects in the cache on the MH.

If an application needs an object but does not find it in the cache, the operation
may be recorded in an operations log to be performed later upon reconnection. This may
cause an application on the MH to become blocked waiting for the requested operation to
complete, thus defeating the usefulness of disconnected operation.

When the MH becomes reconnected, any cached objects, which were modified,

must be reconciled with the object held at the server.

2.2 Influential Research Projects

All of the above techniques have been employed in various research projects and in
formulating proposals for the various Internet standards that address support for mobile
computing. Several research projects, of which Rover and Bayou are among the most
influential, have provided object replication and migration as well as supporting
connection transparency. Mobile |P addresses the issue of routing data to mobile hosts

within the context of a proposal for an Internet standard. The Dolmen project dealt

Page 18

specifically with supporting mobility in a CORBA environment. Thislatter project built
an Environment Specific Inter-ORB Protocol, which was very similar to the OMG'’s
Internet Inter-ORB Protocol (110P). Each of these research projects will now be
discussed.

2.2.1 Rover: A Toolkit for M obile Information Access

The Rover [Joseph’97] toolkit provides mobile applications with a set of tools designed
to isolate them from the limitations of mobile communications systems. The Rover
Toolkit provides mobile communications support based on two ideas: Relocatable
Dynamic Objects (RDOs) and Queued Remote Procedure Call (QRPC).

An RDO is an object with a well-defined interface that can be dynamically loaded
into a client computer from a server computer (or vice versa) to reduce client-server
communication requirements. QRPC is a communications abstraction that permits
applications to continue to make non-blocking Remote Procedure Calls (RPCs) even
when a host is disconnected, with client requests and server responses being exchanged
upon network reconnection.

Rover client applications import RDOs into their address spaces from servers,
invoke methods provided by the RDOs and export the RDOs back to the servers.
Complex RDOs may create threads of control when they are imported. This is possible
since RDOs are executed in a controlled environment. Rover objects are named by
unique object identifiers, which are called Universal Resource Names (URNS).

Rover permits disconnected hosts to update shared objects. Object consistency is
provided by application level locking or by using application-specific algorithms to
resolve uncoordinated updates to a single object. In Rover, every object has a home
server and update conflicts are detected at this server when two or more replicas are
reconciled.

The toolkit supports several transport protocols including TCP/IP, HTTP, and
SMTP. Using these protocols, an E-mail reader, a calendar program and a WWW
browser were developed, as these were thought to represent the applications that mobile

users are likely to require.

Page 19

Rover Operation
Rover applications employ a check-in/check-out model of data sharing, they import
objectsinto alocal object cache, invoke methods provided by the objects and export the

objects back to the servers as shown in Figure 2.3 on the following page.

Application

Import/Invoke/Export

_ 1. > _
Object Cache | Network 2. P Modify
» Conflict ?
QRPCLog | Scheduler 3 4. ! — Resolve
Mobile host 1. Fetch RDO Server
2. Return RDO

3. Export RDO
4. Confirm RDO

Fig 2.3 Rover Operation

Rover applications can choose the degree of consistency used for replicating objects.
Rover caches objects on mobile hosts in a cache that is shared by all applications running
on that host. Cached objects are secondary copies of objects, the exporting server
maintains the primary copy.

When Rover invokes a method on an object, it first checks the object cache. If the
object isresident in the cache, Rover modifies the object without contacting the server.
The updates to the cached copy are marked as being tentatively committed.

If arequired object is not present, Rover lazily fetches it from the server using QRPC.
Rover stores a QRPC in a stable log at the mobile host and returns control to the
application. The application can register a call back routine, which will be called by
Rover to notify the application when the object has arrived.

Upon receipt of afetch request, the server retrieves the requested object and sends
it back to the mobile host. If the mobile host becomes disconnected between sending a

request and receiving areply, Rover will replay the request from its stable log upon

Page 20

reconnection. Upon receiving afetch reply Rover inserts the object returned into the
cache and deletes the QRPC from the log. In addition if a callback routine is registered,
Rover will perform the callback. The application can then invoke methods on the local
copy.

When a method modifies a cached object, Rover lazily updates the primary copy
at the server by sending the method call in a QRPC to the server and returns control to the
application. When the QRPC arrives at the server, the server checks whether the object
has changed since it was last imported by a mobile host. Rover maintains version vectors
for each object so that methods can easily detect such changes. Upon arrival of areply,
the Rover toolkit on the MH changes the object from tentatively committed to committed.
If amethod call at the server detects a write/write conflict then the conflict is resolved in
the application-specific manner. The Rover toolkit itself provides a mechanism for

detecting conflicts but leavesit up to applications to reconcile them.

2.2.2 Xerox Parc Bayou Project

Bayou [Petersen’97] is a replicated, weakly-consistent storage system designed for a
mobile computing environment. To maximise availability, users can read and write any
accessible replica. Bayou's design has focused on supporting application-specific
mechanisms to detect and resolve the update conflicts that naturally arise in such a
system ensuring that replicas move towards eventual consistency. It introduces
techniques for conflict detection called dependency checks and pre-write conflict
resolution based on client provided merge procedures.

This requires that Bayou servers must be able to rollback the effects of previously
executed writes and re-do them according to a global serialised order. Furthermore,
Bayou permits clients to observe the results of all writes received by a server including
tentative writes whose conflicts have not been ultimately resolved.

The Bayou design requires only occasional pair-wise communication between
computers. This takes into account the characteristics of mobile computing such as
expensive connection time, frequent or occasional disconnections, and the fact that
collaborating computers may never be all connected simultaneously. Groups of
computers may be partitioned from the rest of the system, yet remain connected to each

Page 21

other. Supporting disconnected workgroupsis a central goal of the Bayou system. By
relying only on pair-wise communications in the normal mode of operation the Bayou
design copes with arbitrary network connectivity.

The goal of Bayou was not to provide transparent replicated data support for
existing file system and data base applications. Applications built using Bayou must be
aware that they may read weakly consistent data and also that their write operations may
conflict with other users and applications. Moreover, applications must be involved in the
detection and resolution of conflicts since these naturally depend on the semantics of the
application. Bayou allows applications to achieve automatic conflict detection and
resolution using merge procedures.

Automatic conflict resolution is highly desirable because it enables a Bayou
replicato remain available. Conflicts may be detected arbitrarily far from the users who
introduced the conflicts. Moreover, conflicts may be detected when no user is present.
Bayou allows clients to read data whose conflicts have not been fully resolved either
because human intervention is needed or because other conflicting updates may be

propagating through the system.

Bayou System Operation
In the Bayou system, each data collection is replicated in full at a number of servers.

Applications running as clients interact with the servers using the Bayou Application
Programming Interface (API), which isimplemented as a client stub bound with the
application. This API, aswell as the underlying RPC protocol, supports two basic
operations: read and write. Read operations permit queries over a data collection while
write operations can insert, modify, and/or delete a number of dataitemsin the

collection. Figure 2.4, on the following page, illustrates the Bayou Architecture.

Page 22

Application Read or Write
<+“—r

Bayou API

O Machine Boundary

Figure 2.4 Bayou Architecture
Note that a client and a server may be co-resident on the same machine as would be

typical of alaptop or PDA during disconnected operation. Access to one server is
sufficient to perform useful work. The client can read the data held by that server and
submit writes to the server. Having done so, the client has no further responsibility for
that write. In particular, the client does not wait for the write to propagate to other
servers.

To support application-specific conflict detection and resolution, Bayou writes
contain more than atypical file system write or database update. Along with the desired
updates a Bayou write carries information that |ets each server receiving the write decide
if thereisaconflict and, if so, how to fix it. In particular, each Bayou write contains a
globally unique write identifier assigned by the server that first accepted the write.

The storage system at each Bayou server conceptually consists of an ordered log
of these writes plus the data resulting from the execution of the writes. Each server
performs each write locally with conflicts detected and resolved as they are encountered
during execution.

Unlike Rover which makes the effects of all known writes available for reading,
Bayou servers propagate writes among themselves during pair-wise contacts called "anti-

Page 23

entropy" sessions. The two serversinvolved in a session exchange write operations so
that when they are finished they agree on the set of Bayou writes they have seen and the
order in which to perform them.

Conflict Detection and Resolution
Supporting application-specific conflict detection and resolution is a major emphasisin

the Bayou design. The Bayou system implements the mechanisms for reliably detecting
conflicts while the application must specify its notion of a conflict along with its policy
for resolving these conflicts. This design goal follows from the observation that different
applications have different notions of what it means for two updates to conflict and that
such conflicts cannot always be identified by simply observing reads and writes
submitted by the applications. The Bayou system includes two mechanisms for automatic
conflict detection and resolution that are intended to support arbitrary applications:
dependency checks and merge procedures

Each write operation includes a dependency check, which consists of an
application supplied query and its expected results. A conflict is detected if the query
when run at a server against the current copy of the data does not return the expected
result. If the check fails then the requested update is not performed and the server invokes
amerge procedure to solve the detected conflict.

Once a conflict is detected, the server executes a merge procedure in an attempt to
resolve the conflict. Bayou merge procedures are general programs written in SQL. They
can contain data such as application-specific knowledge related to the update that was
being attempted and can perform arbitrary reads on the current state of the server’s
replica.

The merge procedure associated with awrite is responsible for resolving any
conflicts detected by its dependency check and for producing arevised update to apply.
The complete process of detecting a conflict running a merged procedure and applying
the revised update is performed atomically at each server as part of executing awrite. The
potential drawback of this approach is that newly issued writes may depend on data that
Isin conflict and may lead to cascaded conflict resolution.

Page 24

Replica Consistency
A fundamental property of the Bayou design isthat all servers move toward eventual

consistency. The Bayou system guarantees that all servers eventually receive all writes
and that two servers holding the same set of writes will have the same data contents.
However, it cannot enforce strict bounds on write propagation delays since these depend
on network connectivity.

To ensure eventual consistency writes are performed in the same well defined

order at all servers and dependency checks and merge procedures are deterministic.

2.2.3 Dolmen

The Dolmen [Raatikainen’97] project examined CORBA-based object communication in
the context of wireless networks and host mobility. Dolmen used the interoperability
mechanisms introduced in the CORBA 2.0 specification to support host mobility. The
mechanism is completely transparent to client and server objects. Dolmen uses the
concept of interoperability bridges, described in the CORBA 2.0 architecture. This is

illustrated in the Figure 2.5 below.

Mobility Domain A Mobility Domain B

Wireless Access Domain Mobile Host

Core Network

MDBR FDBR

Fig 2.5 Dolmen Architecture
The Fixed Distributed Processing Environment Bridge (FDBR) serves as an access point
for mobile hosts. A Mobile Distributed Processing Environment Bridge (MDBR)

connects the local ORB of a mobile host to the fixed network by interacting with the

Page 25

FDBR over the wireless link. Together the MDBR and FDBR perform location
management functions and handover enabling host mobility. A Light Weight Inter-ORB
Protocol (LW-10P) between the FDBR and MDBR was defined to enhance reliability
and performance of object communication in the mobile environment. The LW-10OP
protocol defines efficient message formats and a compressed data representation for
object communication.

The wireless access domain and part of the fixed network domain are divided into
mobility domains. The fixed network part of each mobility domain instantiates a set of
mobile specific support services including one or more FDBRs.

Each mobile host hasits own ORB that provides object servicesto the
applications running on the mobile host. Invocations of objects outside the local ORB are
directed to the MDBR on the maobile host. The MDBR forwards the invocation to the
FDBR, which then invokes the desired object. The FDBR acts as an endpoint for the
mobile terminal within the fixed network. The FDBR also accepts invocation requests for
objects located on the mobile terminal from objects within the fixed network. The FDBR
forwards the request to the MDBR, which then invokes the actual object and returns the
response through the FDBR.

Bridge Associations
A Dolmen bridge association models the logical relationship between a particular MDBR

and FDBR. The bridge association is created whenever the mobile host appears within a
new bridging domain and continues to exist for aslong as there are objects using it for
intercommuni cation.

As the mobile host moves across bridging domains, connectivity to the fixed
network is maintained by a sequence of bridge associations. The most recent bridge
association is called the primary association and it controls the physical signalling
channel to the FDBR currently serving as the mobile terminal’s access point to the fixed
network. A trail of bridge associations called secondary associations are |eft as a mobile
host moves. The secondary associations are required for processing object invocations
that were in an unfinished state when the mobile host switched bridging domains. A

Page 26

secondary association continues to exist for as long as objects within the fixed network

store and use object references pointing to that particular FDBR.

Bridge Handover
Bridge handover in Dolmen occurs when a mobile host moves from one bridging domain

to another. Bridge handover deals with maintaining and updating the bridge association.
In Dolmen there are two types of handover, "backward bridge" handover and "forward
bridge" handover. Backward bridge handover is the normal case when the mobile host is
still able to communicate with the old FDBR. A forward bridge handover occurs when
the mobile host unexpectedly looses its connection to the old FDBR and must re-establish
communication with the fixed network. The old FDBR and MDBR synchronise their
messages through the new FDBR.

A connection between the new FDBR and the old FDBR, called atunnel, is set-up
for al remaining unfinished invocations. The old FDBR forwards new object invocation
reguests to the new FDBR viathe CORBA location forward mechanism.

Typically, tunnel connections are needed only for a short time. Moreover, tunnel
connection chains are usually short. If amobile host returnsto an old FDBR to which it

has a tunnelled association, the FDBR notices this and bypasses the tunnel loop.

Object Address Resolution

Each mobile host is assigned a Global Terminal Identifier (GTID), which uniquely
identifiesit. The basic problem in mobility isthat, in order to enable objects in the fixed
network to invoke objects in the mobile terminal, the location of the mobile terminal
must be known at all times.

In particular, the bridge through which the mobile host can currently be accessed
must always be known. The location register (LR) is a database that stores this
knowledge within the fixed network. The address of the current primary bridge of the
mobile host can always be retrieved from the LR if the GTID of the mobile host is
known. The LR stores copies of the GTID and FDBR address and, during bridge
handover, the new FDBR replaces the old FDBR’s address for the particular GTID.
There are two cases of object address resolution that need to be taken into account. The

simplest case is an invocation that originates from an object on a mobile host destined for

Page 27

an object on the fixed network. The invocation request is intercepted by the MDBR and
forwarded to the FDBR. The FDBR then invokes the object method operation directly.
An object invocation that terminates at a mobile host is more difficult. The Dolmen
bridging mechanism trand ates the reference of an object into a relocatable object
reference (ROR). The ROR contains the current address of the FDBR serving the mobile
host and the GTID of the mobile host. The FDBR address identifies the FDBR, whichis
currently serving the mobile host and the GTID identifies the mobile host to the FDBR.
Asthe FDBR address in areference may become out of date after a handover, FDBRs
can receive invocations for objects located on mobile hosts that they are no longer
bridging. When such an invocation arrives at a FDBR, the FDBR usesthe GTID to query
the LR for the current address of the primary FDBR serving the mobile host.

The secondary FDBR returns an up to date object reference to the client proxy on
the fixed network using the CORBA location forward mechanism. The client proxy then
proceeds to invoke the required operation at the primary FDBR using the returned object
reference from the secondary FDBR.

2.2.4 MobilelP
Mobile IP [Perkins’96] is a proposed standard protocol that builds on the Internet
Protocol (IP) with the goal of making mobility transparent to applications and high level
protocols such as TCP and UDP. The most fundamental obstacle that mobile IP is
designed to address is the way that IP routes IP packets to their destinations based on IP
addresses. These addresses are associated with a fixed network location. As a mobile host
moves, it attaches at new points to the fixed network. This means that each new point of
attachment is associated with a new network number and hence a new IP address. This
makes mobile transparency impossible at the IP level.

However Mobile IP solves this problem by allowing the mobile host to use two IP
addresses: a fixed home address and a transient "care-of" address that changes with each

point of attachment to the fixed network.

Page 28

Mobile I P Operation
I P routes packets from a source to a destination by allowing routers to forward packets

from incoming network interfaces to outbound network interfaces according to routing
tables. The routing tables typically maintain the next hop (outbound interface)
information for each destination address according to the number of networks to which
that IP address is connected. To maintain existing transport-layer connections the mobile
host must keep the same IP address as it moves from place to place. On the other hand
correct delivery of packetsto a mobile host’s current point of attachment depends on the
IP address at its current point of attachment. In Mobile IP, two addresses are used, the
home address is used to identify TCP or UDP connections. The care-of address changes
at each new point of attachment. The home address makes it appear that the mobile host
is continually able to receive data on its home network, at which Mobile IP requires the
existence of a network node called the home agent. A foreign agent also exists for each
care of address, its purpose is to route data to the mobile host using the care-of-address.
Whenever the mobile host is not attached to its home network, the home agent gets all the
packets destined for the mobile host and arranges to deliver them to the mobile host's
current point of attachment.

Whenever the mobile host moves, it registersits new care-of address with its
home agent. To get a packet to a mobile host from its home network, the home agent
delivers the packet from the home network to the care of address. Thisrequiresa
redirection where the |P packet is placed in another |P packet with the destination address
of the outer |P packet set to the care-of address. This allows intermediate routers to
correctly route the IP packet to the care-of address. The care-of address extracts the inner
IP packet and then sendsiit to the mobile host. This encapsulation of the origina IP
packet within another 1P packet is called tunnelling, since the original packet bypasses
the usual effects of IP routing.

The operation of Mobile IP is based on three separate mechanisms:
» Discovering the care-of address
* Registering the care-of address

* Tunnelling to the care-of address.

Page 29

Discovering the care-of address

Mobile IP extends the standard protocol for Router Advertisement as specified in RFC
1256. It simply extends the original fields to provide mobility functions. A router
advertisement typically carries information about default routers. It can also carry further
information about one or more care-of addresses. When arouter advertisement contains
the additional care-of address, it is known as an agent advertisement. Home agents and
foreign agents typically broadcast agent advertisements at regular intervals.

If amobile host needs to get a care-of address and does not wish to wait, the
mobile host can broadcast or multicast a solicitation that will be answered by any foreign
agent or home agent that receives it. Home agents use agent advertisements to make
themselves known, even if they don’t offer any care-of addresses. Once a mobile host has
acare-of addressit must register it with its home agent. If advertisements are no longer
detectable from aforeign agent, that had previously offered a care-of address, the mobile
host presumes that the foreign agent has gone out of range and it beginsto "hunt" for a

new care-of address.

Registering the Care-of-address

Once amobile host has a care-of address from an agent advertisement, it notifies its home
agent about it. The mobile host, possibly with the assistance of aforeign agent, sends a
registration request with the care-of address information.

When the home agent receives this request, it typically adds the necessary
information to its routing table and sends a registration reply back to the mobile host.
Registration requests contain parameters and flags that characterise the tunnel through
which the home agent will deliver packets to the care-of address. When a home agent
accepts arequest it begins to associate the home address of the mobile host with the care-
of address until the registration lifetime expires.

The home agent must be certain that the registration request originated from the
mobile host and not some other malicious host pretending to be the mobile host. A
malicious host could cause the home agent to alter its routing table with erroneous care-of

Page 30

address information, which would cause the mobile host to be unreachable to all
Incoming communications from the Internet. To overcome this problem, Mobile IP uses
the Message Digest Algorithm, which provides unforgeable digital signatures.

When a mobile host cannot contact its home agent, it can use automatic home
agent discovery. This method works by using a broadcast |P address instead of the home
agent’s IP address as the target for the registration request. Other home agents on the
home network send arejection in reply to this but include their own IP address for the
mobile host to use in afreshly attempted registration message. The broadcast in this case
isadirected broadcast that only reaches hosts on the home network.

Tunnelling to the Care-of Address

Using IP within IP, the home agent inserts a new |P header, or tunnel header, in front of
the IP header of any datagram addressed to the mobile host’s home address. The new
tunnel header uses the mobile hosts care-of address as the destination |P address.

To deliver the original packet, the foreign agent must eliminate the tunnel header and
deliver the rest to the mobile host.

2.250nTheMove

The objective of the OnTheMove project was to design a Mobile Applications Support
Environment (MASE) [Meyer'96]. The MASE was designed to support both mobile-
aware and non-mobile-aware applications running on mobile hosts. Non-mobile-aware
applications are applications, which typically run on stationary computers and don’t
require knowledge of the host’'s mobility to operate. Typical non-mobile-aware
applications include Web browsers and E-mail reading programs. Mobile aware
applications utilise the host’s mobility in some fashion to execute. An example would be
navigation systems, which are currently being used in some luxury car models.

The MASE provides a layered architecture and is illustrated in the figure below.

Page 31

Applications

Mobile API

et Replication & § Communi- System
Ag Transaction | cation [Adaptability

Manager Manager Manager Manager Manager J| Manager

General Support Layer

UMTS Adaptation Layer

Accountin | Location |

Fig 2.6. Layered Architecture of the MASE

As can be seen from the above figure, the MASE provides alarge set of facilities that can

be accessed through the Maobile API. These components will now be discussed.

The UMTS Adaption Layer. (UAL)

This layer provides a uniform interface to network specific details. The UAL is
responsible for selecting the appropriate transport protocol and to configureit for
efficient use. The UAL chooses the appropriate transport medium depending on various
Quality of Service parametersif more than one transport medium is available. The UAL
also monitors the protocol stack for changes in the Quality of Service provided and the
network state.

The General Support Layer (GSL)
As its name suggests, the GSL provides common mobility support functionality for both
applications as well as other MASE managers. The GSL is broken into four distinct
components. the Mobile Object Manager, the Event Manager, the Security Manager and
Directory Services.

The Mobile Object Manager (MOM) provides a storage facility for MASE mobile
objects. These mobile object differ from the typical notion of objects (methods + data)

since the mobile object comes from a set which include amongst others MIME objects,

Page 32

Filesand HTML links. The MOM provides pre-fetching, caching and accounting of these
mobile objects.

The Event Manager (EM) API provides functions to monitor all activitiesin the
MASE. Clients of the EM can register interest in certain events or states of the MASE.
The outcome of the event can be specified as notification or log-file entry. Immediate
response can be provided by notifications while log-file entry is used for post processing
responses. Typica events of interest would be battery life or strength of signal from the
transport medium.

The Security Manager exports an API, which provides typical security facilities
such as authentication, non-repudiation and confidentiality. The Directory Services
provides a uniform logical address representing each mobile device as well as providing a

“Yellow pages” service.

Communication Manager (CM)

The CM component provides applications and other MASE managers with the facilities
to communicate. This includes establishing, maintaining and terminating application
communication. More importantly, it provides support for disconnected operation and
connection transparency by protecting applications against disruption if a transport failure
occurs.

Applications can specify various Quality of Service parameters using the CM’s
API depending on the information being sent or received (e.g. voice, text, video). The
type of communication can also be specified whether it is synchronous or asynchronous.
Communication exchanges can also be assigned a higher priority to ensure delivery as
soon as communication has been restored. Other features include assured delivery of
information.

The CM can be thought of as three components: Session Control, Disconnected
Operation and Application independent protocols. The Session Control handles requests
for communication from local and remote applications. The Disconnected operation
component deals with problems related to unplanned disconnections such as radio signal
loss. This requires pre-fetching of required data in conjunction with the MOM.

Application independent protocols provide various types of communication such as

Page 33

Messaging, E-mail, HTTP and Alerting. Each of these is provided as part of the CM’s

API. Messaging support is based on the IBM MQSeries and has the following

functionality.

» Messages are delivered in order

» Messages can be linked together to form a single atomic transaction (using roll-back
or commit operations)

» Message can be prioritised, ensuring delivery of higher priority messages first

The electronic mail API follows the X.400 standard closely. The HTTP API provides

operations to build Web based applications such as web page retrieval. Finally, the

Alerting API builds on the Messaging API to allow users and/or applications to be

notified when an event occurs, such as reception of an e-mail message.

System Adaptability Manager (SAM)

The SAM maintains information about the current configuration and state of the mobile
device. Examples of such configuration information would be a set of user preferences
such as applications or files to be pre-fetched by the MOM. State information examples
would be available bandwidth, battery life and strength of radio signal. The SAM also
attempts to optimise bandwidth usage according to user preferences. This may involve
changing the format of a mobile object to suit the characteristics of the mobile device
(e.g. changing a colour image to black and white if a mobile host does not have a colour
display).

MASE V2.0

The components, described above, were part of the initial version (1.0) of the MASE. The
other components in Fig 9 are specified as part of the second version of the MASE
[Kemp’96]. The Agent Manager provides an execution environment for mobile agents,
which have the capability to migrate to or from a mobile device as necessary. The
Replication and Transaction Manager (RTM) is in charge of replicating, managing and
synchronising shared data objects. Local copies of the objects that are needed by the
mobile host are stored in the mobile host's MOM, however it is the responsibility of the

RTM to ensure consistency of the local copies of the objects with the primary copies on

Page 34

the fixed network. The Location Manager (LM) was part of the first version of the MASE

and was extended in the second version. The LM simply provides functions, which alow
applications to retrieve information about a mobile host’s current position. The
Accounting Manager allows the building of electronic commerce applications on mobile
hosts. This manager utilises the Secure Electronic Transaction (SET) standard to provide

the payment mechanism.

Page 35

Chapter 3

Background

This chapter provides a brief introduction to the Object Management Group's (OMG)

Common Object Request Broker Architecture (CORBA). In particular, this chapter

describes the CORBA Interoperability standard, the General Inter ORB Protocol (GIOP)
[GIOP’98]. A brief introduction to the CORBA standard is given first. This is followed

by description of the goals of GIOP. The methods used to marshall GIOP messages are
then described. Finally, the GIOP messages are described.

3.1 CORBA and Interoperability

The heterogeneity of modern data communications networks and computer systems make
the task of network programming very difficult. Distributed applications often consist of
several communicating programs, possibly running on different operating systems and
written in different programming languages. Network programmers must consider all of
these factors when developing applications.

CORBA defines a framework for developing object-oriented distributed
applications. This framework makes network programming easier by allowing a
distributed application to be built as though it were implemented in a single programming
language to run on a single computer. CORBA also allows object-oriented techniques to
be employed in distributed environments. This allows distributed applications to be

designed as collections of co-operating objects as well as the re-use of existing objects.

3.1.1 Object Request Brokers

The central component of the CORBA architecture is the Object Request Broker or
"ORB". An ORB allows the creation of software objects whose member functions can be
invoked by client programs located anywhere in the network. In particular, using an
ORB, the complexity of network communications is hidden from the applications

developer(s).

Page 36

When a client invokes a CORBA object’'s methods, the ORB intercepts the
method call. It then redirects the method call across the network to the target object and
eventually returns results of the method call (if any) to the client.

3.1.2 Interface Definition Language

Although CORBA objects are implemented using standard programming languages, each
CORBA object has aclearly defined interface. Thisinterface is specified in the CORBA
Interface Definition Language (IDL) and primarily describes the methods provided by an
object that are available to its clients.

Note that the interface definition makes no assumption about the implementation
of the object. This allows the object implementation to be changed without needing to
change the clients access to the object.

To use an object, aclient need only know the IDL definition. It does not need to
know details such as the programming language used to implement the object, the
operating system on which it runs, or the host at which the object is located.

3.1.3 Interoperability

Severa ORB implementations conforming to the CORBA standard are currently
available from different vendors. The existence of multiple ORB implementations gave
rise to the requirement for the OMG to define a protocol for communication between
distinct ORBs in order to allow objects hosted by one vendor’s ORB to interwork with
objects hosted by an ORB supplied by a different vendor.

This requirement has been addressed by the OMG with the Genera Inter-ORB
Protocol (GIOP). GIOP can be mapped onto any connection-oriented transport protocol.
A mapping of GIOP that runs directly over TCP/IP, called the Internet Inter-ORB
Protocol (110P), has also been specified by the OMG. 110P must be supported by any
ORB that claims to conform to the CORBA standard, regardless of other aspects of its
implementation.

Page 37

3.2GIOPand II1OP

3.2.1 Goalsof GIOP

GIOP and, in particular 11OP, are based on the most widely used and flexible
communications transport mechanisms available (TCP/IP in the case of 110P) and define
the minimum additional protocol necessary to transfer invocations between ORBs. This
should lead to the widest possible availability of GIOP and [10P.

Moreover, GIOP isintended to be as smple as possible in order to ensure a
variety of independent and compatible implementations. GIOP and 110P should aso be
scal able and support ORBs to the size of today’s Internet and beyond. Adding support for
GIOP/I10P to an existing ORB should also require a small engineering investment as the
GIOP specification makes minimal assumptions about the architecture of the systems that

support it.

3.2.2 Common Data Representation
The Common Data Representation (CDR) is atransfer syntax mapping OMG IDL data
typesinto alow level representation for "on-the-wire" transfer between ORBs. CDR has

the following features:

» Variable byte ordering - Machines with acommon byte order may exchange
messages without byte swapping. When communicating machines use different
byte orders, the message originator determines the message byte order and the
receiver is responsible for swapping bytes to match its native ordering. Each
GIOP message contains aflag that indicates the appropriate byte order.

» Aligned primitive types - Primitive OMG IDL datatypes are aligned on their
natural boundaries within GIOP messages, permitting data to be handled
efficiently by architectures that enforce data alignment in memory.

e Complete OMG IDL Mapping - CDR describes representations for all OMG IDL
datatypes.

Page 38

3.2.3CDR Transfer Syntax
The CDR transfer syntax is the format in which GIOP represents OMG IDL datatypesin
the octet stream. An octet stream corresponds to a memory buffer that isto be sent to
another process over some inter-process communication mechanism. It can be an
arbitrarily long (but finite) sequence of eight-bit values with a well-defined beginning.
Each octet can be logically indexed from O to n-1 where nis the length of the octet
stream. The position of the octet in the stream is called its index. These indices are used
to aign OMG IDL datatypesin the octet stream.

GIOP defines two distinct kinds of octet streams, messages and encapsulations.
Messages are the Protocol Data Unitsin GIOP. OMG IDL data types may be
independently marshalled into encapsulation octet streams. In this case, the first octet

contains a boolean value indicating the byte ordering of the encapsulated data.

3.2.4 Primitive Data Types

Primitive data types are specified for both big-endian and little-endian machines. To
allow primitive data to be moved into and out of octet streams with instructions
specifically designed for those data types, CDR requires that all primitive data types must
be aligned on their natural boundaries. The alignment of a primitive datatypeis equal to
the size of the datatype in octets. A primitive data type of size n must start at an octet
stream index that isamultiple of n. In CDR, n can be either 1, 2, 4, or 8.

When necessary, an alignment gap precedes the representation of a primitive data
type. The values of octets in these alignment gaps are undefined. The following table
gives the alignment boundaries for the OMG IDL primitive data types. Alignment is
relative to the beginning of the octet stream.

Table 3.1 Alignment requirementsfor primitive data types

TYPE OCTET ALIGNMENT
Char 1
Octet 1
Short 2
unsigned short 2
Long 4

Page 39

unsigned long

long long

unsigned long long
Float
Double

long double

Boolean

M| | 0O 0O M| 0| 0O &~

Enum

The size and bit ordering in big-endian and little-endian encodings of primitive data types
iswell-defined. These primitive data types include short, long, long long, float, double

and long double.

3.2.5 Constructed Data Types
Constructed data types are built from OMG IDL primitive data types using facilities
defined by the OMG IDL language.

3.2.5.1 Struct
The elements of a Struct data structure are encoded in the order of their declaration. Each

element is marshalled into an octet stream according to its data type.

3.2.5.2 Union
The discriminant tag of the Union is marshalled into an octet stream first followed by the

selected member according to its data type.

3.2.5.3 Array
Asthe length of the array is known, each element of the array is marshalled into an octet
stream as defined for their type. Multidimensional arrays are ordered so the index of the

first dimension varies most slowly.

3.2.5.4 Sequence
An unsigned long value containing the number of elementsin the sequence is marshalled

in an octet stream followed by each element of the sequence according to its data type.

Page 40

3.2.5.5 Enum
Enum values are encoded as unsigned long values. The first enum identifier has the

numeric value zero. Successive identifiers take increasing numeric values.

3.2.5.6 String
A String is encoded as an unsigned long value specifying the length of the string in
octets. Each element of the String is then marshalled into an octet stream as a char. Both

the String length and contents include a terminating null character.
3.2.6 Other IDL Types

3.2.6.1 TypeCode
Type Codes are marshalled into an octet stream as a TCKind Enum value (unsigned

long), potentially followed by values that represent the TypeCode parameters.

3.2.6.2 Principal
Principal types are marshalled into an octet stream as a Sequence of octets. They are used
to identify the potential caller of an object’s methods.

3.2.6.3 Exception
Exceptions are encoded as a String followed by Exception members. The String contains

the Interface Repository Identifier for the Exception.

3.2.7 Interoper able Object References
An Interoperable Object Reference is encoded as an IDL Struct with two components: a
String called the type identifier and a Sequence of Tagged Profiles. The type identifier is
marshalled as a String into an octet stream first. The type identifier identifies the most
derived type of the object at the time that the reference was published.

The Sequence of Tagged Profiles are then marshalled into the octet stream. A
Tagged Profileisan IDL Struct consisting of an unsigned long value, which identifies the
type of the Tagged Profile and a Sequence of octets containing the data in the Tagged

Profile.

Page 41

There are currently two types of Tagged Profile specified by the OMG: An [10OP Tagged
Profile and a Multiple Component Tagged Profile. The 110OP Tagged Profile contains a
hostname and port number to identify the process at which the object is stored and an
object key to identify to the process the particul ar object that is being invoked.

A Multiple Component Tagged Profile is used to indicate ORB services that are
being used A typical ORB service that uses this feature of IORs is the Transaction
Service. Each Tagged Profile can also contain one or more Tagged Components, which

are typically used to provide security as part of the CORBA Security Service.

3.2.8 Stringified IORs

To alow IORs to be passed between different ORB implementations, a stringified
representation of an IOR is specified. A stringified IOR consists of a prefix followed by a
sequence of hexadecimal digits. The prefix isthe string "IOR:" The hexadecimal digits
are obtained by converting the octet stream, into which an IOR was marshalled, using the
following procedure. Each octet in the stream beginning at index zero is divided into two
4 bit values. This4 bit valueis then used to give the ASCII representation of the
hexadecimal digit. The most significant four bits are converted first then the second 4
bits.

3.3 GIOP Messages

GIOP supports full CORBA functionality between ORBs with only seven GIOP
messages. These seven messages allow an object implementation to be activated at
different locations during its lifetime and, also, allow object migration. ORBs are not
required to implement these mechanisms, but should of course implement the full 110P
protocol.

GIOP is designed to operate over any connection-oriented transport protocol.
(Recall that 110OP is a mapping of GIOP onto TCP/IP). It isimportant to make a
distinction with respect to the usage of connections for GIOP messages. The client side
opens the connection to the object server and sends object invocations over the

connection. The server side receives requests and returns replies. The server side may not

Page 42

send object invocations over the connection to the client. This restriction allows certain
race conditions to be avoided.

Multiple clients within an ORB may share a connection to send object invocations
to another ORB or server. Multiple independent invocations for different objects or the
same object may be sent on the same connection. GIOP also defines messages for
cancellation of object invocations and for connection shutdown. These features allow
ORBSs to reuse or reclaim unused connections.

3.3.1 GIOP Message Header
All GIOP messages begin with the following header.

Message Message
Size type Flags Minor Major Magic

Fig 3.1 A GIOP Header

The GIOP Header identifies GIOP messages and their byte ordering (Big-Endian or
Little-Endian). The Header is independent of byte ordering except for the field encoding
the message size.

The magic field is four octets and always contains the upper case characters
"GIOP". The magjor and minor octets identify the version of GIOP that is being used. For
the current versions of GIOP, the major version number is 1 while the minor version
number can be O or 1.

Theflagsfield is an octet whose least significant bit indicates the byte ordering.
The second least significant bit indicates whether, or not, more GIOP fragments follow.
The most significant 6 bits are reserved for future use. The flags field is specific to GIOP
version 1.1 and has replaced the byte order octet in GIOP version 1.0, which indicated the
"endianness’ of the remaining elements of the GIOP message.

The message type field is an octet and indicates the type of the GIOP message. It
can be one of the following eight message types.

* Request (Verson1.0& 1.1)
* Reply (Verson1.0& 1.1)

Page 43

» Cancel Request (Verson1.0& 1.1)

* Locate Request (Verson1.0& 1.1)
» Locate Reply (Verson1.0& 1.1)
* Close Connection (Verson1.0& 1.1)
* Message Error (Verson1.0& 1.1)
* Fragment (Version 1.1)

The message size is an unsigned long encoded according to the preceding byte order
indicator. It contains the number of octets in the message following the message header.

3.3.2 Request M essage
Request messages encode CORBA object method invocations and are sent by aclient to a
server. They consist of three partsin the following order:

1. A GIOP Message Header

2. A Reguest Header

3. A Request Body

The Request Header has the following format

Requesting Object Key Response Request Service
Principal Reserved Expected |dentifier Context

Fig 3.2 A GIOP Request Header

The Service Context field isan IDL defined Struct used to implicitly pass OMG Common
Object Services specific information with a Request or Reply message.

The Request Identifier field is an unsigned long value used to associate Reply
messages with Request messages. The client is responsible for generating values so that
ambiguity is eliminated. The Response Expected field is set to true if a Reply message is
expected for this Request. The value isfalse for a"oneway" invocation. The Reserved
field consists of three octets that are always set to zero. It is specific to GIOP version 1.1
and was not part of version 1.0.

Page 44

The object key is a sequence of octets and is used to identify the target object of
the object invocation. This value is only meaningful to the server and is left unaltered by
the client. Operation is a string containing the name of the object’s method that is being
invoked. The name identifies the method only within the scope of the object’'s IDL
defined interface. Finaly, the Requesting Principal is encoded as a string and identifies
the client making the invocation.

3.3.3 Request Body

The Request Body includes al in and inout parameters, in the order in which they are
specified in the operation’s IDL definition from left to right. An optional Context pseudo
object can be marshalled into the Request body after the in and inout parameters if the
IDL interface definition includes a context expression.

For example, the Request body for the following IDL operation

doubl e operation(in long m out string str, inout short);

is equivalent to the following IDL Struct:

struct { long m; short n ; };

3.3.4 Reply Message
Reply messages are sent in response to Request message if and only if the Response
Expected flag in the Request is set to true. Replies are sent in three parts from server to
client in the following order

1. GIOP Header

2. Reply Header

3. Reply Body
The Reply Header has the following format

Request Request Service
Identifier Identifier Context

Fig 3.3 A GIOP Reply Header

The Service Context field is similar to the Service Context field in the Request Header.
The Request Identifier contains the same value as the Request Identifier in the

Page 45

corresponding Request. The Reply Status field is an octet that indicates the completion
status of the associated Request, it aso determines the contents of the Reply Body.

If the Reply Statusis No Exception, the invocation completed successfully and
the Reply body contains return values. These are encoded as if they were an IDL Struct
holding first any return value, then any inout and out parameters in the order in which
they appear in the operation’s IDL definition.

For example, the Request body for the following IDL operation
doubl e operation(in long m out string str, inout short n);

is equivalent to the following IDL Struct:
struct { doublereturn_value; String str; short n; };

If the Reply Statusis User or System Exception, then the Reply body contains an
exception. If the Reply Status is Location Forward, then the Reply body contains a
stringified IOR. The client must then resend the original Request to the new object

|ocation.

3.3.5 Cancel Request M essage
Cancel Request Messages are sent from clients to serversto indicate to the server that the
client isno longer expecting a Reply or Locate Reply for a Request or a Locate Request
respectively.
The Cancel Request has two elements

1. A GIOP Header

2. A Cancel Request Header

The Cancel Request has the following format

Request
Identifier
—»

Fig 3.4 A GIOP Cancel Request Header
The Request Identifier identifies the Request or Locate Request to which the Cancel
Request applies. This value is the same as the Request Identifier in the original Request

Page 46

or Locate Request message. The server is not required to acknowledge the cancellation
and may subsequently send a Reply or Locate Reply.

3.3.6 Locate Request
L ocate Request messages can be sent from a client to a server to determineif an IOR is
valid, whether the server is capable of directly receiving Requests for the IOR and if not,
to what location Request messages should be sent.
Locate Request messages are sent in two parts

1. A GIOP Header

2. A Locate Regquest Header

The format of the Locate Request Header is as follows:

Object Key Request
[dentifier

Fig 3.5 A GIOP Locate Request Header
The Request Identifier is used to associate Locate Reply messages with the corresponding
Locate Request messages. The object key is a string and identifies the object that is being
located.

3.3.7 Locate Reply M essage
Locate Reply messages are sent from serversto clients in response to Locate Request
message. A Locate Reply message has three parts encoded in the following order.
1. A GIOP Header
2. A Locate Reply Header
3. A Locate Reply Body
The Locate Reply header has the following format:

Page 47

Object Key Request
Identifier

Fig 3.6 A GIOP Locate Reply Header

The Request Identifier associates Locate Replies with Locate Requests. The valueisthe
same as the Request Identifier in the corresponding Locate Request. The Locate Statusis
an octet and determines whether a Locate Reply body exists. It can have one of three
values

* Unknown Object - The object is unknown at this server (no body exists)

* Object Here - This server can directly receive Requests for the specified

object (no body exists)
* Object Forward - A Locate Reply body exists

If the Locate Status is Object Forward, the Locate Reply body contains a stringified IOR
that may be used for future Requests.

3.3.8 Close Connection M essage

Close Connection messages are sent only by the server. Further Replies over this
connection must not be expected after this message is received by clients. Clients can re-
send any Requests, which had no corresponding Replies, on a new connection. The Close
Connection message consists only of the GIOP header.

3.3.9 Message Error Message

This message is sent in response to any GIOP message whose magic or version number is
incorrect or whose message type is unknown. This message consists only of the GIOP
header.

3.3.10 Fragment M essage

This message is added in GIOP 1.1 and is sent following a previous Request or Reply
message that has the more fragments bit set in the flags field. The body of the Fragment
message contains marshalled data.

Page 48

Chapter 4

Design

This chapter begins with an overview of the design, introduced in Chapter 1, paying

particular attention to the various layers of the design, namely the Mobile layer, IIOP

layer and Swizzling layer, and their interaction. A brief comparison of the design with the
related research covered in Chapter 2 isthen made. Thisis followed by detailed

descriptions of the Mobile layer, the I1OP layer and the S/I1OP layer.

4.1 Overview

In amobile environment, there are many problems that need to be addressed. These

include the use of unreliable and low bandwidth wireless link, the availability of limited

resources on the Mobile Host (MH) and, possibly, the need to support multiple network

interfaces on the MH (e.g., WaveLAN and GSM phone). To overcome the above

problems, the design is divided between two machines, the Mobile Host and the Mobility

Gateway, asillustrated in Figure 4.1.

Mobile
Host

D EEE—

Mobility
Gateway

This division between the MH and the MG allows applications on the MH to

Figure4.1

Fixed Network

Network
Host

communicate with applications on the fixed network. Thisis achieved asthe MG acts as

a bridge between the wireless network and the fixed wired network. A specific protocol

between the MH and the MG can thus be used to overcome the problems of the unreliable

and low bandwidth wireless link. This protocol can be used to optimise the use of

multiple network interfaces, if present, on the MH and the MG.

Page 49

The MH istypically alaptop or personal digital assistant, possibly with multiple
interfaces. The MG may also have multiple network interfaces and is connected to afixed
network such as an Intranet or, more generally, the Internet. Typically, the server is
located either on the fixed network, possibly at the MG or on the MH. The client
application on the MH sends requests to the MG. The MG forwards these requests to the
server. Replies from the server are returned through the MG to the client.

If the server islocated on the MH, then requests originating from clients on the
fixed network are routed to the MG. The MG then forwards these requests to the
particular MH. Replies from the server are returned through the MG to the client.

Following from the description of the division in the design between the MH and
the MG, the design takes alayered approach to provide 110P functionality and to
overcome the problems associated with the wireless link. This layered approach is
illustrated in Figure 4.2 below.

Application Application
S/IIoP lHoP ¢ —» S0P IOP [€—————— » [IOP/ORB
Mobile Layer Mobile Layer
TCP/IP < > TCP/IP <« »| TCPI/IP
Mobile Host Mobility Gateway Network Host

<4—» Actua flow of TCP/IP protocol data units

<4+ % Logical flow of 11OP protocol data units

Figure 4.2 Layered Architecture
Typica ORBs are built on top of TCP/IP. However, TCP/IP connections are broken with

a higher frequency in a mobile environment than in afixed network environment. The
Mobile layer hides lost TCP/IP connections from the layers above it by providing a
logical connection abstraction. The Mobile layer provides mobility support, which can
be plugged in and out as required. The I1OP layer allows the methods of an object located
ina CORBA 2.0 compliant ORB to be invoked.

The Application on the MH uses an 110P implementation to invoke aremote

object’s methods since a full implementation of a CORBA 2.0 compliant ORB would be

Page 50

infeasible due to the limited processing resources of the MH. The Application on the

fixed network could also use the [1OP layer but would more often have enough

processing resources to run a complete ORB.

The S/11OP layer works in tandem with the [1OP layer to allow aMH to act as a
server to clients on the fixed network. The IIOP layer is unaware of the existence of the
MG. When an IOR is created by the 11OP layer, the { address of MH,port #} pair is placed
within the IOR. A client on the fixed network would be unable to use this IOR as it does
not have direct accessto the MH (i.e. the client typically does not have awireless
network interface).

It isthe job of the S/11OP layer to replace this { address of MH, port #} pair,
substituting the pair { address of MG, port #} inits place. This alows a client on the fixed
network to contact the MG and send data to the MG. The MG then forwards the data to
the server on the MH.

It is conceivable that other swizzling layers could be used, for example with
HTTP. Inthe HTTP case, there can be no guarantee that the port requested by the server
on the MH, for example port 80, will be available on the MG since another application on
this MH or another MH may have already requested this port.

The Mobile Layer on the MH and the Mobile Layer on the MG should provide
the following capabilities:

* A socketslike APl on the MH to allow network programs to be ported to the mobile
device while still providing mobility support.

» The ability to hide broken TCP/IP connections from the layer above. This requires
that any lost datais retransmitted across the wireless link and that datais received at
most once by the layer above the Mobile layer on the MH and by the server on the
fixed network.

Page 51

4.2 Comparison to Related Resear ch

This solution is similar to Dolmen’s Fixed DPE Bridges (FDBRs) and Mobile DPE
Bridges (MDBRs) with the MH as the MDBR and the Mobility Gateway (MG) as the
FDBR. However, Dolmen relies on the underlying TCP/IP protocol stack to be
configured for the wireless link being used. The layered approach taken in this design
does provide connection transparency in contrast to Dolmen.

Dolmen does provide an Environment Specific Inter-ORB protocol called the
Light Weight Inter-ORB Protocol (LW-IOP). This design provides an IIOP layer to
enable interoperability with existing CORBA objects. A transformation is needed at the
Dolmen FDBR to convert a LW-IOP message to the corresponding IIOP message and
vice versa. No such transformation is necessary with the layered design given above.

The layered design also contrasts with Mobile IP, which provides mobility
support at the IP layer. The MG acts as a bridge joining heterogeneous networks, in
particular a wireless network and a fixed wired network. This bridging is done by routers
at the network layer in Mobile IP, transparent to higher layers. However, this requires
upgrading of router software in Mobile IP while no such router upgrades are necessary in
this solution.

The Rover Toolkit provided Queued Remote Procedure Call, which required the
application to make asynchronous calls to the Rover API. The Mobile layer provides a
sockets like API, which most network programmers would be familiar with. As already
stated, the Rover Toolkit requires asynchronous calls to the Toolkit to be made. This
contrasts with this design since object invocations using IIOP are synchronous.

The Rover Toolkit also provides Relocatable Dynamic Objects (RDOs) that can
migrate to and from a mobile device. No such support for object migration is provided in
this design with the exception that the 11OP location forward mechanism can be used.

Bayou provides two mechanisms to help detect and resolve read/write and
write/write conflicts in a mobile environment. These are dependency checks and merge
procedures and have to be implemented by the application developer. This design
provides at most once delivery of data to its destination, attempting to prevent conflicts

from arising by using a logical connection abstraction to hide TCP/IP connections.

Page 52

The Mobile layer of this design is similar to the Communication Manager in the
on OnTheMove project. Similar to the CM, the Mobile layer provides facilities to
establish, maintain and terminate application communication as well as providing for

connection transparency.

4.3 Mobile Layer Operation

The Mobile layer provides alogical connection abstraction to allow lost or broken
TCP/IP connections to be hidden from the layers above it. This abstraction requires data,
originating at the MH, to be cached by the MH before sending. When the MH receives an
acknowledgement of the data from the MG, the data can be removed from the cache. Ina
similar fashion any data sent from a network host to the MH is cached at the MG until
acknowledged.

There are two cases to consider for the operation of the Mobile layer outlined
above. The first and more simple case is when a client application, using the [1OP layer,
Islocated on the mobile host. It sends requests to a server application on the fixed
network and receives replies from the server application.

The second case is when a server application, using the 110P layer, islocated on
the mobile host. Client applications on the fixed network or other mobile hosts send
reguests to the server application and receive replies. Each of these two cases will now be
discussed.

4.3.1 MobileHost asa client

When an application on the MH is aclient of some service on the fixed network, there are
four distinct stages to consider. These are
1. Connection establishment — These are the steps taken to create a new
logical connection.
2. Data Transmission — The steps needed to transmit data associated with
a logical connection
3. Connection Re-establishment — Re-establishing an existing logical

connection after a TCP/IP connection has been lost.

Page 53

4. Connection Shutdown — The steps involved in closing down a logical

connection

Connection Establishment

During connection establishment, the [IOP layer calls the Mobile tayeket ()

function to create a socket. This call causes the Mobile layer to create a unique socket
identifier and pass it back to the caller.

[1OP

l 1. Create Mobile layer

Mobile Layer

M obile Host

Figure4.3

The IIOP Layer next calls the Mobile laygonnect () function to establish a TCP/IP
connection with the fixed network server (Step 2). This call causes the Mobile Layer to
extract and cache the server address and port number, associating it with the socket
parameter of theonnect () function. The Mobile Layer delays opening an underlying
TCP/IP connection to the MG until there is data to be sent to the server. This is done in
an attempt to minimise the use of the wireless link since it is both unreliable and
expensive in comparison to a fixed network. Tlemnect () call returns indicating that

the connection has been established.

[1OP

i 2. Open logical connection using connect()

Mobile Layer

M obile Host

Figure4.4

Page 54

When the I10OP Layer sends or attempts to receive data for the first time using the
send() orrecv() functionsover what appearsto it to be a TCP/IP connection, the
Mobile Layer on the MH sets up alogical connection to the Mobile Layer on the MG
(Step 3). Thisisatwo step process.

[OP
3. Send data l 3(a). Open logical connection
Mobile Layer Mobile Layer
4 ___________________
3(b). Return LCID I
TCPIP |4 | TCPIP
M obile Host Moability Gateway

Figure4.5

Note that the Mobile Layer on the MH has two options at this point. It could open a new
TCP/IP connection to the MG for this logical connection or the Mobile layers on the MH
and MG could multiplex any data, associated with the logical connection, onto an already
established TCP/IP connection. If the Mobile Layer on the MH is using multiplexing and
there are no TCP/IP connections already established, then the Mobile Layer would have
to establish a new connection.
The second option was chosen since it would utilise the wireless link more
efficiently, although making the implementation slightly more complicated. The first
option would be inefficient when open TCP/IP connections are not being used.
The Mobile Layer on the MH sets up the logical connection to the Mobile Layer
on the MG by passing the server address, port number and other relevant information
(Step 3(a)). The server’s port number and address were already cached (see Step 2). The
{server address and port number} pair allow the MG to open a TCP/IP connection to the
server on the fixed network at this or some future time.
The Mobile Layer on the MG assigns the server address, port number and other

information a uniquéogical connection identifier (LCID) which it passes back to the

Page 55

Mobile Layer on the MH (Step 3(b)). This LCID allows the MH to identify to the MG the
TCP/1P connection between MG and Server when data is being transmitted.

Since the MG assigns the LCID, an unauthorised MH would have to guess this
value to impersonate the MH and invoke a patrticular object’s methods on a server. Once

this logical connection has been established, data can then be transmitted.

Data Transmission

The Mobile Layer in the MH will assign a unique identifier to the data passed to it for
transmission by the layer above it. The Mobile layer caches the data, identifier and LCID.
The data and identifier are then sent to the Mobile Layer of the MG (Step 4). The LCID

is included with the identifier and the data.

ORB/IIOP
4. Send Request A
MobileLayer [~~~ """~ —» Mobile Layer
l 5. Acknowledge 6. Forward data
TCP/IP < > TCP/IP < > TCP/IP
M obile Host M obility Gateway Server
Figure 4.6

The Mobile Layer on the MG acknowledges the sent items (Step 5) and transmits
the data on the TCP/IP connection to the server (Steps 6). This TCP/IP connection is
established when the Mobile Layer on the MH sends data, associated with the LCID, to
the MG for the first time. The Mobile Layer on the MG then retrieves the server address
and port number associated with the LCID (see Step 3 above) to establish the TCP/IP
connection. This data is sent using one of the socket funsteams(), sendt o()
and sendnsg() to the server on the fixed network. When the sent items are

acknowledged, the Mobile Layer in the MH removes the items from the cache.

Page 56

In asimilar fashion, when the Server sends data (Step 7), the Mobile Layer in the
MG will assign it aunique identifier. The Mobile Layer on the MG caches the data along
with the LCID.

ORB / 1IOP
8. Send data T
Mobile Layer [&—————————— Mobile Layer 7. Reply data
I 9. Acknowledge I
TCPIP | p| TCPIP | 3| TCPIP
Moaobile Host Mobility Gateway Server

Figure4.7

The Mobile Layer on the MG then sends the identifier and data to the Mobile Layer of
the MH (Step 8). The Mobile Layer on the MH acknowledges the sent items (Step 9) and

this causes the Mobile Layer on the MG to remove the previously cached items.

Connection Reestablishment

The Mobile layer, which has data to send, is responsible for re-establishing any lost
TCP/IP connections between the MH and the MG. In this case, the Maobile layer sends a
re-open logical connection request to its peer Mobile layer. Since multiplexing is being
used, the LCID will be included only when data is being sent and is not needed when re-
establishing the connection.

Page 57

Mobile Layer [€&——————————— Mobile Layer

11. Acknowledge

TCP/IP < > TCP/IP

M obile Host M obility Gateway
Figure 4.8
Note that both Mobile layers could conceivably have datato send after a TCP/IP
connection has been lost. This race condition can easily be solved, by agreeing that the
Mobile layer on the MH’s Re-open logical connection is used with the Mobile layer on
the MG’s Re-open logical connection being ignored.

Any unacknowledged data that was sent over the lost connection is retransmitted
over the new TCP/IP connection when more data arrives at either Mobile layer. If no
more data arrives after a specific time, then the data can be retransmitted over the new
TCP/IP connection between the Mobile layers. This helps to maximise throughput on the

wireless link and minimise use of the expensive wireless link.

Connection Shutdown

[HOoP

i 12. Logical connection shutdown

Mobile Layer

M obile Host

Figure4.9

The IIOP layer calls the Mobile layehut down() function to close down a logical
connection. The Mobile layer on the MH retransmits any unacknowledged data to the
MG, until all the data is acknowledged by the MG. The Mobile layer on the MH then

Page 58

sends a shutdown logical connection message to the MG. The MG removes al data
associated with the logical connection and acknowledges the shutdown message. On
receipt of the shutdown acknowledgement, the Mobile layer on the MH removes all data
associated with the logical connection.

If the server on the fixed network closes down its connection to the MG, then the
MG ensures that all data sent from the MG to the MH is acknowledged before sending a
shutdown message. On receipt of a shutdown message, the Mobile layer onthe MG
removes all data associated with the logical connection and then sends a shutdown

acknowledgement.

4.3.2 MobileHost asa server

When a MH isaserver to clients on the fixed network, there are two distinct stages to
consider
* Accepting Connections — This allows clients connection attempts to be
accepted by the server on the MH.
» Data Reception — These are the steps involved when receiving data
from the client
Note that Connection Re-establishment and Connection shutdown are similar to the case
where a MH is a client of services located on the fixed network.

Accepting Connections

[1OP

l 1. Create aMobile layer socket

Mobile Layer

M obile Host

Figure4.10

Page 59

The l1OP layer callsthe Mobile layer socket () function to establish an unbound

stream socket. This call causes the Mobile layer to create a unique socket identifier and
pass it back to the caller.

[1OP

i 2. Bind Mobile layer socket to { address, port #} pair

Mobile Layer

M obile Host

Figure4.11
The l1OP layer callsthe Mobile layer bi nd() function specifying a port number and an
address to bind to a particular socket. The Mobile layer ensures that the { address, port #}
pair is not already being used. The { address, port #} pair is cached by the Mobile layer
and it is associated with the socket parameter passed to the bind function.

[HOoP

i 3. Specify queue size for incoming connection attempts with
listen

Mobile Layer

M obile Host

Figure4.12

ThellOP layer callsthel i st en() socket function specifying a queue size for the
number of incoming connection attempts. The Mobile layer caches the queue size

parameter, associating it with the socket parameter passed to the listen function.

Page 60

[1OP

4. accept() i 5. Start accepting connections
Mobile Layer Mobile Layer
4 ___________________
6. Accept incoming connections I
TCPIP |4 | TCPIP
M obile Host M obility Gateway
Figure4.13

When the I10P layer invokes the Mobile layer accept () function on the MH (Step 4),
the Mobile layer on the Mobile host must start the Mobile layer on the Mobility Gateway
accepting connections from clients on the fixed network (Step 5). This request to start
accepting connections could specify the address and the port number to the Mobile layer
on the MG. However, the Mobile layer on the MG returns an LCID, which identifies this
{address, port #} pair. This allows the Mobile layer on the MG control over allocation of
port numbers as well as solving the following problem.

Having the MG act as a proxy for server applications on mobile hosts introduces
the problem of two or more MHs sharing the same MG and wishing to use the same port
number. For example, if two server applications on two MHs wanted to operate as HTTP
servers using the same default port, port 80, they would be unable to as thereis only one
such port on the MG. Thisis overcomein a CORBA context by using the S/11OP layer to
swizzle any IORs produced by the server application. The Swizzling layer is discussed
later.

As multiplexing is being used, the Mobile layer on the MH must block the caller
until a multiplexed connect request comes from the Mobile layer on the MG.

When a client on the fixed network attempts to set-up a connection with the server
application on the MH (Step 7), it must possess the { address of MG, port #} pair. The
Mobile layer on the MG relays the connection attempt to the Mobile layer on the MH

Page 61

(Step 8). The Mobile layer on the MH acknowledges the connection attempt and un-
blockstheaccept () call (assuming there was one). If multiplexing is being used, the
connection attempt between MG and MH includes the LCID already allocated (Step 6)

along with anew LCID for the new connection between the MG and the client on the

ORB / IIOP
8. Connect attempt
Mobile Layer [&—————————— Mobile Layer
—————————— —» 7. connect()
I 9. Acknowledge I
TCP/IP < > TCP/IP < TCP/IP
Mobile Host Mobility Gateway Client
fixed network
Figure4.14

Data Reception
The l1OP layer callsthe Mobilelayer r ecv() function to receive data over the

connection, which has previously been accepted.

[HoP

i 10. Receive data

Mobile Layer

M obile Host

Figure4.15

When a client on the fixed network sends data, it is cached by the Maobile layer on the
MG and then sent to the Mobile layer on the MH (Step 8). The Mobile layer on the MH
acknowledges the sent data (Step 9). The Mobile layer on the MG then removes the data
from its cache.

Page 62

12. Send data ORBII IIOP

Mobile Layer [€——————————- Mobile Layer
—————————— 11. send(...)
I 13. Acknowledge I
TCP/IP < > TCP/IP < TCP/IP
Moaobile Host Mobility Gateway Client
Figure4.16

The Mobile layer on the MH un-blocks the previousr ecv() call. If thereisno
corresponding r ecv() , the Mobile Layer on the MH caches this data for afuture
recv() cal. Whenthe Mobilelayer on the MH has data to send, it proceedsin asimilar
fashion to data transmission when the MH is a client as described earlier.

4.4110P Layer

The 110OP layer provides software components that allow software developers to build
applications, which can communicate using [1OP. This section will discuss the 11OP layer
design goals and then describe the major software components used to achieve these
design goals.

4.4.1 Design Goals

The first design consideration to be taken into account is that the [1OP layer should be as
efficient as possible and have as small afootprint as possible. Thisis necessary since the
implementation will be used to develop applications for mobile hosts, which have limited
CPU speed and memory size.

Although the I10P protocol only defines eight different message types, it must
cater for the complexity of the CORBA Common Object Services. Another goal of the
[1OP layer design was to hide the complexity of [1OP as much as possibly from the

software developer. The software devel oper, using the 11OP layer should not need to

Page 63

know every detail of the I1OP protocol. However, the [1OP layer should allow the
software developer change various parameters to the [1OP protocol if necessary.

Finally, the 110OP layer should allow dynamic switching between the Mobile layer
and the TCP/IP layer whenever needed. Thisis necessary so that mobility support can be

plugged in and out whenever it is required.

4.4.2 Components of the [IOP layer

The 11OP layer implements the 11OP protocol providing an easy to use collection of
objects to send and receive [1OP messages and to create IORs. The most important
aspects of the I1OP layer design will now be discussed and how they address the issues
raised above. For amore in depth description of the 11OP layer see Chapter 5.

IOR
- iiopProfileNode : [IOPProfileNode *
- ior_mutex : Mutex
+ type_id : char *

GetTypelD() : char *
SetTypelD(char * type_id)
Stringify(char *)
Destringify(char *)
AddProfile(char * object_key,
char * hostname,
unsigned short port)

Figure 4.17 Class Diagram for 10OR class
The IOR class, shown above represents an |10P Interoperable Object Reference. The

class definition allows for an 11OP IOR to be converted from its well-defined
hexadecimal representation (see Chapter 3) into a more useable format using the
Destringify(...) method and allows a new IIOP IOR to be constructed using
AddProfile(...) and to be converted to its hexadecimal representation using the

Stringify(...) method.

Page 64

To allow an IOR to be swizzled, the Stringify(...) function would need to be
changed to do the swizzling. How this swizzling is achieved is discussed in greater detail
in the description of the Swizzling layer in the next section.

4.5 Swizzling Layer (S/110P)

This layer will work with the 1IOP layer and the Mobile layer to allow a MH to act as a
Server in a CORBA context. A Server produces Interoperable Object References (IORs)
for objects stored at that Server. An IOR contains enough information (hostname, port
number and object key) to allow clients to locate the object and consequently invoke its
methods.

Clients on the fixed network are unable to directly contact a Server on the MH,
they must go through the MG. Thus, the address information consisting of the {address of
MH, port #} pair, in an IOR needs to be changed to allow clients, on the fixed network to
invoke methods of an object stored in a MH. This change is done in the Swizzling layer.

There are two possible places that this change could occur. It could occur when
the IOR is created or when it is stringified. This second option is better as an IOR can
only be exported from the MH when it is in stringified form and not all IORs will be
exported. This, possibly, reduces the number of IORs that the Swizzling layer will have
to change.

The MG has a well-known proxy port on which the S/IIOP layer is listening. The
S/IIOP layer on the MH knows the fixed network address and proxy port of the MG. It
can then swizzle any IORs produced. This involves changing the {address of MH, port #}
pair in an IOR to the {fixed network address of the MG, well-known proxy port} pair.
After switching the address information contained in an IOR, the S/IIOP layer needs to
prepend the {address of MH, port #} pair to the object key in the IOR. This allows the
S/IIOP layer on the MG to identify the particular server application that is running on a

particular MH. This is illustrated in table 4.1 on the following page.

Page 65

IOR CONTENTS
IOR before change Address: address of MH
Port : 1234
Object key : foobar
IOR after change Address: Addressof MG
Port : proxy port number
Object key : {Addressof MH, 1234} : foobar

Table4.110R contents before and after swizzling

When a Server application iswilling to accept connection attempts, the S/IOP layer must
override the Mobile layer accept(...) functionality since a Mobile layer accept call
dynamically allocates ports on the MG (see section 4.3.2).

The S/IIOP layer on the MH will override this by setting up a connection to the
S/IIOP layer on the MG to allow connection attempts from clients on the fixed network
to be forwarded to the S/IIOP layer on the MH. The S/IIOP layer on the MH will then
block until a connection attempt is received from the S/IIOP layer on the MG.

When a client receives a “swizzled” IOR and wishes to invoke the IOR’s
methods, it opens a TCP/IP connection to the MG, using the {fixed network interface
address, allocated port number} pair described above. It sends an IIOP Request to the
S/IIOP layer on the MG. The S/IIOP layer receives this Request.

The object key within the Request identifies the address of the MH and port
number on which the server application is listening. The S/IIOP layer removes the
{address of MH, port #} pair that was prepended onto the object key in the IOR when the
IOR was stringified. The S/IIOP layer then replaces the {fixed network address of the
MG, well-known proxy port} pair with the {address of MH, port #}.

Note that both the client on the fixed network and the server application on the
MH are unaware that the S/IIOP layer on the MG is acting as a proxy when it forwards
[IOP Requests and Replies. The client on the fixed network perceives that the object it is
invoking is at the MG. The S/IIOP layer on the MG also has the capability to use the
OBJECT_FORWARD capability in IIOP (see section 3.3.3) to allow object invocations

Page 66

to be forwarded to other Mobility Gateways. Thiswould be necessary when aMH is
handed over from one Mobility Gateway to another and clients on the fixed network still
maintain old swizzled IORs.

4.6 Summary

This chapter began with an overview of the design followed by a comparison of the
design with the research projects covered in Chapter 2. The design is similar in certain
aspects to these projects but also possesses features, which are unique to it. A detailed
description of the Mobile layer and the S/IIOP layer was then given. The IIOP layer is
described in detail in Chapter 5.

Page 67

Chapter 5

Implementation

This chapter describesin detail the design and implementation of the [1OP layer. Recall
from Chapter 4 that the Mobile layer implementation is near completion but has yet to be
tested while the Swizzling layer has yet to be implemented. Both of these layers will not
be discussed further.

The goals of the implementation are presented first. Thisisfollowed by a
description of the implementation decisions, followed by a description of the various

classes within the I1OP layer and their interaction.

5.1 Implementation Goals

The goal of the implementation was to produce a set of classes that allow applications to

be built, which can interoperate with other applications using the OMG’s IIOP protocol
for communication. The set of classes should also be suitable for use on a mobile host
that has limited CPU speed and a small amount of memory. This requires that the
implementation be as efficient as possible and, in particular, avoids unnecessary copying
of data.

In addition, the 1IOP layer should be useable on both Windows NT and on
Solaris. This allows IIOP enabled applications to be built for the Windows CE and/or the
Palm Pilot operating systems. An application written using the IIOP layer on Windows
NT should recompile on Solaris without the need to make changes to the application
(assuming that the application does not use other operating system dependent
functionality, such as Win32 API calls on Windows NT).

Although the IIOP layer does not make use of multiple threads, the
implementation of the IIOP layer should be reentrant. This allows multithreaded
applications to be built on either Windows NT or Solaris using the IIOP layer without

causing synchronisation problems.

Page 68

Finally, the 110OP layer should hide as much of the complexity of the IOP
protocol as possible, while still allowing the application devel oper access to the various
parameters of the I1OP protocol.

5.2 Implementation Decisions
The 110OP layer was implemented initially on Windows NT using Visual C++. It was
ported to Solaris using SparcWorks C++. The I1OP layer uses a Mut ex class abstraction,
which is implemented on Windows NT using the CriticalSection API [Pham’96] and on
Solaris using the Solaris threads mutex API [Chan’97].

Network communication is achieved in the IIOP layer using Winsock sockets on
Windows NT [Hall’93] and BSD sockets on Solaris [Stevens’90]. The
Mobi | eEndpoi nt class ot cpEndpoi nt class implements the network
communication depending on whether mobility support is required or not. Both of these
classes inherit from the Endpoint abstract base class. This makes it possible to

dynamically switch between the Mobile layer and the TCP/IP layer.

5.3110OP Layer Classes
The IIOP layer classes encapsulate the 11IOP protocol functionality. Each class
implements a particular function in the IIOP protocol. This allows the application
developer to instantiate various classes to implement all or part of the 1IOP protocol
without having to have an in-depth knowledge of the 11IOP protocol. The rest of the
chapter describes the various parts of the IIOP layer under the following headings:

* Overview of Class Hierarchy

* Representation of IORs

* Marshalling

* GIOP Message Representation

» Transport Classes

* Communication Endpoints

Page 69

5.3.1 Overview of Class Hierarchy

As can be seen from the UML diagrams [Fowler'97] in figures 5.1a, 5.1b and 5.1c, the

[IOP layer classes can be divided into the following subsets:

Representation of IORs
Marshalling

GIOP Message Representation
Transport Classes

Communication Endpoints

CDR
Message Encapsulation
ClientMessage ServerMessage
Request LocateRequest CancelRequest Reply LocateReply CloseConnection
Figure5.1a GIOP M essage Representation classes and M ar shalling classes
ClientEndpoint Endpoint
EndpointFactory 1 1
ServerEndpoint : / 1> %
% ' |
tcpEndpoint MobileEndpoint
tcpEndpointFactory MobileEndpointFactory

Figure5.1b Communication Endpointsand Transport Classes

Page 70

IOR

0.*

1IOPProfileNode

Figure 5.1c Representation of IORs

The class used to represent an 11OP IOR isthe | OR class. This class uses the

I 1 OPPr of i | eNode classto represent an 110P profile within the IIOP IOR. These
classes are used to allow easy manipulation of the various elements within an I1OP IOR.
Methods are provided to convert an I1OP IOR in stringified form (see section 3.2.8
Stringified IORs) to an 11OP layer | ORand vice versa. Thel OR classis available as part
of the I1OP layer APl whilethel | OPPr of i | eNode isnhot sinceit isonly used
internally by the IOR class.

The Marshalling classes, CDR and Encapsul at i on are used to push datainto
and pop data out of communication buffers ensuring adherence to the alignment
requirements of the I1OP protocol, described in section 3.2.4 of Chapter 3. Both these
classes are available to the application devel oper as part of the I1OP layer API.

The GIOP Message Representation classes are used to represent GIOP messages
in an easy to use form by application developers. The classes Request , Repl vy,
Cancel Request, Locat eRequest, Locat eRepl y, O oseConnecti on,

Cl i ent Message, Ser ver Message and CDR are available for use by application
developers while the other classes are not.

The Transport classes are used to allow the creation and simplify the use of
TCP/IP connections and Mobile layer logical connections, using thet cpEndpoi nt and
Mobi | eEndpoi nt classes. Aninstance of the corresponding factory classis used to
create instances of each class. Each of these classes is part of the IIOP layer APl and is
available to an application developer.

The Communication Endpoint classes, C i ent Endpoi nt and
Ser ver Endpoi nt are used to send and receive I1OP messages. The |1OP messages are
represented as instances of Request, Reply, etc, to the application developer. Both of
these classes are part of the I1OP layer API available to an application developer.

Page 71

5.3.2 Representation of IORs

In the [1OP protocol, each IOR has one or more 11OP profiles, which specify where the
object represented by the IOR is stored and how it isidentified. In the I1OP layer, each
[1OP profileis represented as anode in alinked list. Each node is an instance of the

I 1 OPPr of i | eNode class, which isillustrated in the UML diagram below. A linked list

| 1 OPProfil eNode

/Il IOR classisafriend of this class

- Conponent Li st TaggedConponent
+ host nane : char *

+ port : unsi gned short
+ obj ect _key : char *

- |1 OPProfileNode next

Set Profile(char * object key,
char * host nane,
unsi gned short

port): Status

Figure 5.2 Class Diagram for | OPProfileNode class
storage mechanism was chosen ahead of asimple array as the data within the

I 1 OPProfi | eNodes areaccessed only once by instances of the ClientEndpoint and
ServerEndpoint classesin the Connect () and Li st en() methods respectively.
Therefore alinked list representation is more efficient in terms of adding a new
[1OPProfileNode instance than a dynamically growable array.

Thecomnponent Li st instance variable points to the head of alinked list of data
structures that represent the sequence of Tagged Components within the [IOP IOR. The
host name and por t instance variables identify the process where the object is stored
in the network, whilethe obj ect _key identifies to the process the particular object.
Thenext instance variable points to the next member of the linked list. The
Set Prof i | e() member function allows the location information of an
I 1 OPProf i | eNode to be s&t.

Page 72

I OR

- iiopProfil eNode : 1 OPProfileN
- ior_nmutex : Mut ex
+ type_id : char *

Get Typel D() : char *

Set Typel D(char * type_id)

Stringi fy(char **)

Destringify(char *)

AddProfil e(char *object key,
char * host nane,
unsi gned short port)

Figure 5.3 Class Diagram for IOR class
The IOR class represents an [1OP IOR. The iiopProfileNode instance variable points to
the top of alinked list of 110OP profiles. The type id instance variable corresponds to the
typeidentifier in an I1OP IOR. Theior_mutex instance variable is used to prevent a
multithreaded program corrupting the internal representation of an instance of the IOR
class. The type id instance variable can be retrieved and modified by using the member
functions GetTypelD(...) and SetTypelD(...).

The member functions Stringify(...) and Destringify(...) convert an IOR object
into an IIOP IOR in stringified or hexadecimal form and vice versa. Finally, the
AddProfile(...) member function allows an IIOPProfileNode, which corresponds to an
[IOP profile to be added to an IOR object.

Page 73

5.3.3 Marshalling

The CDR class marshalls data into and out of a marshalling buffer. The marshalled data
Instance variable points to the start of the marshalling buffer and the two instance
variables data_start and data_end indicate where in the marshalled buffer data will be
popped from or pushed into. Thisisillustrated in Figure 5.5 below, where the string

CDR

- marshal | ed_data

data_start

unsi gned | ong
data_end unsi gned
| ong
- endi an_type char
- nutex : Mut ex
- grow()
+ Push(char) St at us
+ Push(short) St at us
+ Push(long) St at us
+ Pop(char *) :Status
+ Pop(short *) St at us
+ Pop(long *) St at us

Figure 5.4 Class Diagram for CDR class

“HELLQO” has been pushed into the marshalled buffer.

mar shal | ed_dat a > H
data_start] g E

L

L

o]

dat a_end q 0

Figure 5.5 Representation of marshalling buffer

Page 74

The endian_type instance variable specifies whether the datain the marshalling buffer is
encoded according to the Big Endian or Little Endian machine architectures. The mutex
instance variable ensures that the marshalling buffer does not get corrupted when two or
more threads accessiit.

The grow(...) member function allows the marshalling buffer to expand and
contract dynamically as data is pushed into or popped from the buffer. The Push(...)
member functions push data into the marshalling buffer, ensuring that the correct I1OP
alignment is maintained. It is important to note that the Push(...) member functions do
not use the endian_type instance variable. Instead data is pushed into the buffer using the
current machine architecture.

The Pop(...) member functions retrieve data from the marshalling buffer after the
data_start instance variable. The Pop(...) member functions retrieve the data according to
the endian_type instance variable and each function transforms the data from being Big
Endian specific to Little Endian specific or vice versa. If the endian_type instance

variable matches the current machine architecture then no transformation is necessary.

Encapsul ati on

Figure 5.6 Class Diagram for Encapsulation class

TheEncapsul at i on class inherits from th€DR class. Thé&encapsul at i on class
allows the creation of an encapsulated sequence of data, complying with the CORBA
Specification. The encapsulated data hagtiti an_t ype instance variable as the first

in the marshalling buffer. The various methods to push data into and pop data from the

marshalling buffer are inherited from tlBR class.

Page 75

5.3.4 GIOP M essage Representation

Message

- magic : char [4]

- G OP_mpjor : octet

- G OP_m nor : oct et

- flags : oct et

- nessage_type : oct et

- message_si ze : unsi gned | ong

Message(char, char, bool ean,
unsi gned | ong, char *) ;

Figure 5.7 Class Diagram for M essage class
The Message class represents a GIOP message header, as defined in Chapter 13 of the
CORBA Specification. The Message class constructor allows various aspects of the
GIOP header to be manipulated including what version of the GIOP is being used and
whether the GIOP message is one fragment of alarger message.

ClientMessage

- request_id: unsigned long
- endpoint: Endpoint *

+ ClientMessage(char, char, boolean,

unsigned long, char *);

Figure 5.8 Class Diagram for ClientM essage class
Thed i ent Message class represents any GIOP message that can be sent by a client.
The class inherits the GIOP header representation from the Message class. The
request i d instance variable contains the GIOP request identifier, which
unambiguously identifies a GIOP message. Ther equest _i d isassigned avaue by the
Cl i ent Message class by using a static member variable, which isincremented with
every |1OP message sent. This relieves the application developer from having to assign

an unambiguous value to the request identifier in an 110OP message. The endpoi nt

Page 76

instance variable is a pointer to an underlying transport connection, whether it is TCP/IP

connection or a Mobile layer logical connection.

Ser ver Message

- reply_id : unsi gned | ong
- endpoint : Endpoi nt *

+ Server Message(char, char,
bool ean,
unsi gned | ong, char);

Figure 5.9 Class Diagram for Server M essage class
Similar tothe d i ent Message class, the Ser ver Message class inherits from the
Message class and represents any GIOP message that can be sent by a server. The
repl y_i d instance variable contains the GIOP message request identifier. The
endpoi nt instance variable is a pointer to an underlying transport connection, whether

it is TCP/IP connection or a Mobile layer logical connection.

Page 77

Request

+

servi ce_cont ext
Ser vi ceCont ext

+ response_expected : oct et
+ nore_fragnents : oct et
+ operation : char *
+ requesting_principal : char

- object_key : char *

+ Request (char *, char, char,
char, bool ean, char *,
unsi gned | ong, char *)

Request (char, char, bool ean,
unsi gned short, unsigned
| ong, char *)

Figure 5.10 Class Diagram for Request class

The Request class represents a GIOP Request message and it inherits from the
Cl i ent Message class. The various instance variables correspond directly to the GIOP
Request header fields with the exception of the mor e_f r agnent s instance variable,
which indicates whether or not there are more fragments of this message to follow.

There are two constructors used to create aRequest object. The first
constructor, which is public, and is used by a client, to create a GIOP Request message,
which isthen sent to a server. It operates by pushing the GIOP header and the GIOP
Request header into the inherited marshalling buffer. The GIOP header information is
inherited from the inherited Message object, while the GIOP Request header
information is obtained from the Request object. The various parametersto the
constructor are fields in the GIOP Request header. Most of these parameters are given
default values with the exception of the first, which identifies the method name being
invoked. These default values relieve the application developer from having to know
each field in the GIOP request message.

The construction of a Request by a client application isillustrated the interaction
diagram in Figure 5.11 on the following page. The application must instantiate a Request

Page 78

object passing the operation name to the constructor. This constructor causes the creation
of the inherited constructors, including the CDR constructor. The parametersto the
Request are then pushed into the CDR marshalling buffer using callsto the various
Push() methods.

Client Reguest ClientMessage Message

(@)
g
py)

1 Request("operation");

ClientMessage()

Message()
CDR()

* Push()

Figure 5.11 Creation of a Request object by a client
The second constructor is used to construct a Request object by a server application
from a GIOP request message, which is stored in a buffer. The various fields of the GIOP
Request header arefilled in from the buffer using the Pop() member functions inherited
from the CDR class.

Page 79

Server

Request ClientMessage Message CDR
Request();
ClientMessage()
Message()
CDR()
* Pop()

The Repl y class represents a GIOP Reply message and it inherits from the
Ser ver Message class. The various instance variables correspond directly to the GIOP

Reply header fields with the exception of nor e_f r agnent s, which playsasimilar role

Figure5.12 Creation of a Request object by a server

Reply
+ service_context :ServiceContext
+ nore_fragnents : octet
+ reply_status : oct et

+ Repl y(unsi gned | ong,

unsi gned | ong,

Request &)

Reply(char, char, bool ean,

char *)

Figure5.13 Class Diagram for

to more_fragmentsin the Request class.

long asitsfirst parameter, which corresponds to the locate status field of the GIOP reply
message (see section 3.3.4). The constructor also takes a Request object as a parameter

There are two constructors used to create Repl y objects. The first isused by a
server when sending a GIOP Reply message. The constructor marshalls the GIOP header
and the GIOP Reply header into a buffer for sending. The constructor takes an unsigned

Page 80

Reply class

to link the Repl y object with the original Request . Thus the application devel oper
does not need to know the request identifier that is part of the GIOP reply message. Once
the Repl y object has been created, the return values for the original method invocation
can be appended to the buffer using the Push() functionsinherited from the inherited
CDR class.

The second constructor is, used by a client to reconstruct the Repl y object from
a GIOP Reply message, when it is stored in a buffer. The various Reply header fields are

filled in from the buffer using the Pop() member functions from the CDR class.

Cancel Request

+ Cancel Request (Request &)

- Cancel Request (char, char,
bool ean,
unsi gned | ong, char)

Figure 5.14 Class Diagram for CancelRequest class
Likethe Request class, the Cancel Request class simplifies the construction of a
GIOP Cancel Request message before sending by a client and upon reception by a server.
Ther equest _i d of the Request parameter to the constructor is used as the request
identifier part of the GIOP Cancel Request header. Again this eliminates the application
developer from having to keep track of which request identifier belongs to which Request

object.

Locat eRequest

-object_key : char *

+ Locat eRequest ()

Locat eRequest (char, char,
bool ean,
unsi gned short
unsi gned | ong,
char *)

Figure 5.15 Class Diagram for LocateRequest class

Page 81

Like the Request class, the Locat eRequest class simplifies the construction of a
GIOP LocateRequest message before sending by a client and upon reception by a server.
Againthe public Locat eRequest constructor does not require the application
developer to assigntheobj ect _key andr equest _i d. The object key isassigned in
thed i ent Endpoi nt classand ther equest _i d isassigned in the inherited
Cl i ent Message class.

The second constructor allows the creation of LocateRequest object from a GIOP
L ocateRequest message. The various parameters to this constructor are used to initialise

various instance variables of the LocateRequest object.

LocateReply

+ locate_status: unsigned long

+ LocateReply(unsigned long,
LocateRequest &)
LocateReply(char, char, boolean,

unsigned long, char *)

Figure5.16 Class Diagram for L ocateReply class
Like the Reply class, the Locat eRepl y class simplifies the construction of a GIOP
LocateReply message before sending by a server and upon reception by aclient. The
Locat eRequest parameter to the public constructor allows the GIOP LocateReply to
be linked with the corresponding GIOP LocateRequest message. Again this relievesthe
application devel oper from having to keep account of which request identifier value
belongs to which instance of the Locat eRequest class.

The second constructor is used at the client side. The various parameters are used
toinitialise various fields of the Locat eRepl y object. This constructor also uses the
inherited CDR Pop() methodsto create an instance of the Locat eRepl y classfrom a
buffer, passed as a parameter.

Page 82

Finaly, the Cl oseConnecti on, Fragnent and MessageEr r or are simple classes,
which allow the construction of a GIOP header with the correct message type, either

Cl oseConnecti on, Fragnent or MessageEr r or . These classes will not be
discussed further.

5.3.5 Transport Classes

Endpoi nt

+ socket () : SOCKET

+ bi nd(char *, unsigned short
port) : int

+ listen() : SOCKET

+ accept () : SOCKET

+ connect (char *, unsigned
short) : int

+ send(char *, int, int): int
+ recv(char *, int, int) : int
+ shutdown(int node) : int

Figure 5.17 Class Diagram for Endpoint class

The Endpoi nt classisan abstract class that represents the functionality available for
creating and manipulating an underlying connection. This allows dynamic switching
between thet cpEndpoi nt and Mobi | eEndpoi nt classes that inherit from this class.
Thet cpEndpoi nt and Mobi | eEndpoi nt classesimplement each function using

TCP/IP connections or Mobile layer logical connections, as appropriate.

Endpoi nt Factory

+MakeEndpoi nt () : Endpoi nt *

Figure5.18 Class Diagram for EndpointFactory class
The Endpoi nt Fact ory classisan abstract class, which is based on the Abstract
Factory Design Pattern [Gammaet a]. Thet cpEndpoi nt Fact ory and
Mobi | eEndpoi nt Fact or y classesinherit from this class, each implementing the
MakeEndpoi nt () method to createt cpEndpoi nt objectsor Mbbi | eEndpoi nt

Page 83

objects. These classes allow the creation of instances of t cpEndpoi nt and
Mobi | eEndpoi nt classes and the Abstract Factory Design Pattern allows other
factories to be added subsequently.

5.3.6 Communication Endpoints

C i ent Endpoi nt

+ endpoint _p : Endpoi nt
- client_nmutex : Mut ex

+ Connect (IOR & : Status
+ Send(C i ent Message &): Status
+ Recei ve(Server Message *&): Status

Figure5.19 Class Diagram for ClientEndpoint class
Thed i ent Endpoi nt class represents a communication endpoint over which GIOP
messages can be sent and received by a client. The instance variableendpoi nt _p has
static type Endpoi nt but whose dynamic type can be either t cpEndpoi nt or
Mobi | eEndpoi nt . The onusis on the application developer to switch between an
instance of thet cpEndpoi nt classand an instance of the Mbbi | eEndpoi nt class.
Some form of end-to-end agreement would also be necessary before performing this
switch. Thecl i ent _nut ex variable ensures that a multithreaded client does not
corrupt the internal state of the Cl i ent Endpoi nt object.

The Connect () method sets up an underlying connection, either TCP/IP or
Mobile layer logical connection to the server address as specified inthel OR. If an| OR
contains more than one I1OP profile, the Connect () method attempts to set-up a
connection using each profilein turn. The Send() method sends a GIOP message
represented by aCl i ent Message over the previously established connection. If the
underlying connection is broken or if the parameter passed is not avalid
Cl i ent Message, thenthe Send() method returns an error. The Recei ve() method
receives a GI OP message from the underlying connection and returns the GIOP message
tothecaller asaSer ver Message object. Note that if thereis no GIOP message
buffered to be received, then the Recei ve() method will block.

Page 84

The creation and sending of aRequest messageusingaCl i ent Endpoi nt is
illustrated in Figure 5.20 below.

Client IOR Request ClientEndpoint
| Destringify
Request(‘operation”) %
* Push()
Connect() /L
Send() 1
g

Figure 5.20 Sending an |1 OP Request message
In figure 5.20, the client application creates an | OR object by calling the

Destringi fy() method passing an IIOP IOR in hexadecimal form to it. It then
createsaRequest object, specifying the operation name it wishes to invoke

(“operation” in this instance) and pushes the parameters of the method invocation. The
client application then connects to the address specified in the IOR by using the
Connect () method. The client application can then send and receive IIOP messages
using theSend() andRecei ve() methods. In this instance it proceeds to send an

IOP Request message.

Page 85

Ser ver Endpoi nt

endpoints p : Endpoint * *
server_mutex : Mitex

+ Listen(IOR & : Status
+ Receive(dient Message *& : Status
+ Send(Server Message & : Status

Figure 5.21 Class Diagram for Server Endpoint class
The Ser ver Endpoi nt class represents a communication endpoint over which GIOP
messages can be sent and received by a server. The instance variable endpoi nts_p is
an array of pointers whose static type is Endpoint but whose dynamic type could be either
t cpEndpoi nt or Mobi | eEndpoi nt . An array was chosen over alinked list data
structure to allow fast access to the various pointers to Endpoint objects. The
server _mut ex variable ensures that a multithreaded server does not corrupt the
internal state of the Ser ver Endpoi nt object.

TheLi st en() method waits for connection attempts and GIOP messages to be
received on the endpoints p array. The elements of theendpoi nt s_p array are
initialised using the 11OP profilesin the | OR.

Th Recei ve() method receives a GIOP message from one of the elements of
theendpoi nts_p array and returnsaCl i ent Message object to the caller. Note that
if thereis no GIOP message buffered to be received, then the Recei ve() method will
block. The Send() method sends the GIOP message represented by the
Ser ver Message object on an element of theendpoi nt _p array, theelement is
identified from the Ser ver Message object.

Page 86

The receiving of an [1OP Request message isillustrated in Figure 5.22 below.

Server IOR Request ServerEndpoint
L AddProfile()
Stringify()
Listen() /L
Receive()
Request()
* Pop() (
T |

Figure 5.22 Receiving an || OP Request message
In figure 5.22, the server application creates an | OR object and adds a number of profiles
using the AddPr of i | e() method. The server application then stringifies this IOR
converting it into an 11OP IOR and passes it to the client possibly using a Name Service
or by sharing a common file. The server application then waits for I1OP messages from
clientsusingtheLi st en() method. When an 110OP Request message is sent by aclient,
itisreceived by caling the Recei ve() method. This method in turn uses the Request
constructor to create a Request object, which is passed back to the server application. The
server application can then pop off the parameters to the method invocation using the
Pop() methods inherited from the CDR class.

Page 87

Chapter 6

Evaluation

This chapter compares the implementation of the I1OP layer with that of IONA
Technologies 110OP Engine. This comparison is carried out to ensure that the 11OP |ayer
conformsto the I1OP protocol standard and to test the performance of the 110P layer
against a highly optimised [IOP implementation, namely IONA Technologies’ IIOP
Engine. The evaluation criteria include:

* A comparison of the footprint sizes of both the IIOP layer implementation and

the IIOP Engine implementation.

» A comparison of the footprint size of a client and server application built

using both the 11IOP layer and the 1IOP Engine.

* The number of lines of code needed to develop the client and server

applications mentioned above.

* The time taken to send an IIOP request message and receive the

corresponding IIOP reply message.
Conformance to the IIOP protocol was repeatedly tested both during and after
development of the IIOP layer. The testing involved ensuring interoperability with the
[IOP Engine on both Windows NT and Solaris and ensuring interoperability between the
[IOP layer implementation on Windows and Solaris.

The comparison in the rest of this chapter will be made in two parts. Firstly the
footprint size of the static and dynamic link libraries of the IIOP layer and the 1IOP
Engine are compared. In addition, the footprint size and code size of a distributed
whiteboard application written using both the IIOP layer and the [IOP Engine are
compared. Secondly, the average time taken to send an IIOP request message and receive
the corresponding IIOP reply message will be compared for various IDL data types of
differing sizes.

Page 88

6.1 Footprint and Code Size Comparison

A distributed whiteboard application was developed to compare both the footprint size
and code size of an application using the 11OP layer and the 11OP Engine. A brief
description of this application will now be given.

6.1.1 Distributed Whiteboard Application

The Distributed Whiteboard Application (DWA) consists of a single server and one or
more clients. The server application was initially developed on Windows NT and the
code was ported to Solaris using firstly the [1OP layer and then the IIOP Engine. The
client program was developed only for the Windows NT platform using firstly the [1OP
layer and then the 11OP Engine. The client makes extensive use of Microsoft Foundation
Classes (MFC) to provide the graphical user interface. The client application is
multithreaded while the server is single threaded.

At startup, clients register with the server by sending an I1OP request, with the
operation name set to “Register”. A stringified IOR is included in the IIOP request
message, which the server uses to “callback” the client and update its screen when
another client draws a line. The server sends an IIOP reply message back to the client,
allocating a unique identifier to the client. This identifier is used when the client begins to
draw.

The user of the client program is then presented with a drawing window, similar

to the one shown in Fig 6.1.

Page 89

i Digtributed Whiteboard

Figure6.1

As the user moves the mouse over the client window, the client program creates an [1OP

request message, with the operation name set to “DrawLine”. The IIOP request body
consists of the identifier mentioned above and two (X, Y) points, indicating the old
mouse position and the current mouse position. This [IOP request message is then sent to
the server, which relays this IIOP request message to all other registered clients, causing
the clients to draw a line at between the two points mentioned above.

6.1.2 Footprint Size

It is important to note that the IIOP Engine was designed to use the C programming

language while the 11OP layer was designed to use the C++ programming language. This

Page 90

difference isreflected in the sizes of the static library and dynamic link libraries for both
the I1OP layer and I1OP Engine. This differenceis aso reflected in the footprint sizes of
the client and server applications since they were only linked with the static versions of
the libraries. A program developed using C++ has usually alarger footprint than asimilar
application developed using C. One possible reason for this, is the overhead associated
with object creation and object deletion.

The footprint sizes for the various libraries on Windows NT are given in Table
6.1 below. A shared library for [IOP Engine on the Solaris platform was unavailable for

this comparison.

[IOP LAYER [1OP ENGINE
Static library on Windows NT 96.1 KB 38KB
Dynamic Link library on Windows NT | 64 KB 16 KB
Static library on Solaris 120 KB 38.3KB

Table6.1 Library size comparison
The footprint sizes for the client and server programs are given below in Table 6.2. The
client was developed on a 266MHz Intel Pentium Pro with 64 MB of RAM, using
Microsoft Visual C++ 5.0 and running Windows NT 4.0. The server used asimilar
machine asitsNT platform and used a 143 MHz Sun Ultra Sparc with 64 MB of RAM
running Solaris 2.5. The server on Solaris was developed using GNUs gcc version 2.8.1.

[IOP LAYER [1OP ENGINE
Client 60.5 KB 435KB
Server on Windows NT 63.5KB 52.5KB
Server on Solaris 90 KB 56 KB

Table 6.2 Client and Server footprint size comparison
As can be seen from table 6.2, all programs developed using the I1OP layer are larger
than their counterparts devel oped using the 11OP Engine. This was expected due to the
reasons outlined above.
The server on Windows NT using the I10OP layer is approximately 20% larger
than its |1OP Engine counterpart. The client on is approximately 39% larger when using

Page 91

the [1OP layer than when using the 11OP Engine. One possible reason for this larger
percentage difference could be the fact that the client is multithreaded opposed to the
single threaded server, with two threads having alarger footprint due to twice as many
[1OP layer objects being created and del eted.

6.1.3 Code Size

One of the goals of the I1OP layer was to hide the complexity of the I1OP protocol as
much as possible. This contrasts with the 110P Engine where knowledge of the structure
of 110OP requests and repliesis needed in their creation. The amount of code needed to
create the applications described aboveis givenin Table 6.3. Note that all blank lines
were removed from the particul ar files before the comparison was carried out.

[IOP LAYER [IOP ENGINE
Client 213 lines 295
Server 108 236

Table 6.3 Number of lines of code comparison
The server when written with [1OP Engine requires 118% more code to be written than
when the IIOP layer is used. This extra code is heeded to marshall and unmarshall the
[1OP messages into communication buffers, the 110P layer carries out these low level
tasks.

The client when written with 11OP Engine requires 38% more code to be written
than when using the I1OP layer. This however ignores the amount of common code
written using the MFC to handle mouse events and painting on the screen. The amount of
code to handle the GUI specific function comesto 169 lines. Thisimpliesthat 44 lines
were specific to the [1OP layer and 127 lines to the I1OP Engine. Thisworks out at a
188% difference. This larger difference, when compared with the server code, could in
part be due again to the fact that the client is multithreaded while the server is not. With a
multithreaded application, more lines of code are necessary to create |1OP messages and
send and receive them than a single threaded application. Thiswould imply from the
server comparison above that thisis the reason for the percentage being higher in the

client application.

Page 92

6.2 Comparison of Average Invocation Time

The average time taken to send an 11OP request and receive a corresponding 11OP reply
was timed on both the Windows NT and Solaris platforms. The results for each of these
will now be presented. It isimportant to note that although the average time required to
send an |1OP request and receive a corresponding I11OP reply will be similar on Windows
NT and Solaris, acomparison of the 110P layers performance on Windows NT versus
Solaris would be difficult due to various hardware differences. As well as these
differences, there is no uniform method of calculating millisecond timing differences on
both Windows NT and Solaris.

Windows NT

The average invocation time for the 11OP layer and the 11OP Engine was cal culated using
two computers. One machine acted as a client sending an 11OP request message and
receiving the corresponding 110P reply message while the other machine acted as a
server receiving an [1OP request message and returning an 110P reply message.

The client machine had a 200MHz Intel Pentium Pro microprocessor and 96 MB
of RAM while the server had a 133MHz Intel Pentium microprocessor with 48 MB of
RAM. Each machine had a 10/100Mbps dual speed Ethernet cards connected to a 3Com
Super Stack 11 Ethernet Switch.

The average invocation time was calculated for the IDL primitive data types of
different sizes and for the String data type. The test program used to carry out the
calculation consisted of creating and sending an 110OP request and receiving the
corresponding 11OP reply one thousand times. The average time for sending the request
and receiving the reply was calculated. This program was then executed ten times to
eliminate possible timing differences due to process scheduling on the Windows NT
operating system and the average of these ten executions was cal cul ated.

The average invocation time for the primitive IDL data types and the String data
type are given in Table 6.3 on the following page.

Page 93

1IOP LAYER 11OP ENGINE
Char (16337, 1.8183) (0.6353, 0.6647)
Short (15217, 1.5263) (0.637, 0.6513)
Long (15217, 1.5263) (0.6397, 0.6513)
Float (1.4787, 1.5227) (0.6314, 0.6546)
Double (15046, 1.5514) (0.6353, 0.6568)
String (16644, 1.7916) (0.6523, 0.6777)

Table 6.3 Average Invocation timesfor Windows NT

From the above table it is obvious that the [1OP Engine outperforms the [1OP layer on
average for each IDL datatype tested. This presumably is due the [1OP layer client and
server constructing two 11OP layer objects during execution of the test program. The
client creates a Reguest object and sendsiit to the server as an I11OP request message. The
server receives the 11OP request message and creates a corresponding Request object. To
send an 11OP reply message to the client, the server must create a Reply object. On
receiving the 110P reply message, the client creates a Reply object.
Solaris
The client and server programs described in the calculation of the average invocation
time for Windows NT were ported to the Solaris platform. The client machine and server
machines each had a 143MHz Ultra Sparc microprocessor with 64 MB of RAM. The
machines were connected by a 10Mbps broadcast Ethernet link.

The average invocation time for the various IDL datatypesisgivenin Table 6.4
below.

1IOP LAYER 11OP ENGINE
Char (0.967,1.042) (0.695, 0.708)
Short (0.974,0.980) (694.06 , 0.698)
Long (0.974,0.981) (0.696,0.709)
Float (0.975,0.981) (0.696,0.70)
Double (0.974,1.002) (0.707,0.710)
String (1.038, 1.047) (0.836,0.916)

Table 6.4 Average Invocation timesfor Solaris

Page 94

Again the I1OP Engine outperforms the IOP layer in terms of average invocation time
but not as significantly as on Windows NT. One possible factor underlying this
improvement could be the increased power of the server from 133MHz microprocessor
and 48 MB of RAM to 143MHz and 64 MB of RAM. Another less obvious reason could

be the method used to calculate the timing difference. This method differs on Windows
NT from Solaris

Page 95

Chapter 7

Conclusions

This chapter gives a summary of the work completed during the course of this project and
the remaining work that needs to be done. Finally, possible future work will be discussed

in the context of the overall design described in Chapter 4.

7.1 Work Completed

The main achievement of this project is the design of alayered architecture to enable
mobile devices to interoperate with CORBA objects. An understanding of the limited
processing resources and bandwidth available in atypical mobile environment was
attained during the course of the project. Aswell asthis, significant experience was
gained working with the CORBA standard. In particular, how object invocations are
transferred from aclient to a server that hosts CORBA objects.

An easy to use implementation of the 110OP protocol was completed. During the
course of the implementation, network programming experience was gained on the
Windows NT and Solaris operating systems using Winsock and BSD sockets
respectively. Aswell asthis, knowledge of multithreaded programming and in particul ar
writing reentrant software was gained. Other experience gained includes debugging
network and multithreaded programs as well as writing Windows GUI programs using
Microsoft Foundation Classes in the contrast of the Distributed Whiteboard Application
described in Chapter 6.

Significant testing of the implementation of the 110P protocol was carried out
both on Windows NT and Solaris. Aswell asthis interoperability was tested using IONA
Technologies 11OP Engine, again on Windows NT and Solaris. In addition to this testing,
an evaluation of the I1OP layer was carried out by comparing it to the [IOP Engine. This
comparison took placein three parts:

» Comparison of footprint sizes of the I10OP layer and the I10OP Engine

Page 96

e Calculation of the amount of code needed to be written by both the 110P layer
and the IIOP Engine
» Comparison of the average time taken to send an I1OP request message and
receive the corresponding 11OP reply message
The design for the Mobile layer and Swizzling layer, described in Chapter 4, has been
completed. A significant part of the implementation of the Mobile layer is completed but
has yet to be tested and implementation of the Swizzling layer has yet to be started.

7.2 Remaining Work

The implementation of the 11OP layer, described in Chapter 5, will need to be ported to a
PDA, for example Windows CE and tested. In addition, the Swizzling layer and the
Mobile layer need to be implemented and then ported to a PDA. Thiswill allow the
completed implementation of the design, described in Chapter 4, to be tested in atypical

mobile environment.

7.2 Future Work

Other possible avenues for future work include dynamic switching between TCP/IP
connections and Mobile layer connections when the available bandwidth becomes low or
intermittent. This dynamic switching would include how to close down and existing
connection (TCP/IP or Mobile layer) and open a new connection (Mobile layer or
TCP/IP) in an application without the need for intervention from the application user.
This switching would require the transfer of state information about one connection to
enable the creation of another connection.

Another possibility for future work would involve the handover from one
Mobility Gateway (MG) to another when a mobile device changesits location. If the
mobile device acts as a server, storing CORBA objects, then object invocations directed
to the old MG would need to be directed to the new MG and then forwarded to the
mobile device.

Finally, the implementation of the design when completed could be used as the
[1OP specific part, in the construction of an ORB. This ORB may be a minimal

Page 97

implementation of the CORBA standard suitable for a mobile, providing some of the
CORBA Common Object Services.

Page 98

Appendix A OMG IDL

This section contains the OMG IDL for the GIOP and | 1OP modul es.

A.1GIOP Module

nodule GOP { // I1DL extended for version 1.1

struct Version {
octet mmjor;
octet mnor;

3
#ifndef GOP_1 1

/Il dOP 1.0

enum MsgType_1 O{ // renanme from MsgType
Request, Reply, Cancel Request,
Locat eRequest, LocateReply,
Cl oseConnecti on, MessageError

H

#el se
/Il dOP 1.1
enum MsgType_1 1{
Request, Reply, Cancel Request,
Locat eRequest, LocateReply,
Cl oseConnecti on, MessageError,
Fragment // G OP 1.1 addition

B
#endi f
/Il dOP 1.0
struct MessageHeader 1 0 { // Renaned from
MessageHeader
char magic [4];
Versi on G OP_versi on;
bool ean byte_order;
octet nessage_type;
unsi gned | ong nessage_si ze;
3
/Il dOP 1.1

struct MessageHeader 1 1 {
char magic [4];
Versi on G OP_version;
octet flags; // G OP 1.1 change
octet nessage_type;
unsi gned | ong nessage_si ze;

Page 99

};
1:// GOP 1.0

struct RequestHeader _1 0 {
| OP:: Servi ceCont extLi st service_context;
unsi gned | ong request id;
bool ean response_expect ed;
sequence <octet> obj ect key;
string operation;
Princi pal requesting_principal;

1
/Il dOP 1.1
struct RequestHeader 1 1 {
| OP:: Servi ceContextList service_context;
unsi gned | ong request id;
bool ean response_expect ed;
octet reserved[3]; // Added in GOP 1.1
sequence <octet> object key;
string operation;
Princi pal requesting_principal;

1

enum Repl ySt at usType {
NO_EXCEPTI ON,
USER_EXCEPTI ON,
SYSTEM EXCEPTI ON,
LOCATI ON_FORWARD

1

struct Repl yHeader {
| OP:: Servi ceCont extList service_context;
unsi gned | ong request id;
Repl ySt at usType reply_stat us;

struct Cancel Request Header ({
unsi gned | ong request id;

struct Locat eRequest Header {
unsi gned | ong request id;
sequence <octet> object key;

s

enum Locat eSt at usType {
UNKNOWN_OBJ ECT,
OBJECT_HERE,
OBJECT_FORWARD

s

struct Locat eRepl yHeader {
unsi gned | ong request id;
Locat eSt at usType | ocat e_st at us;

s

Page 100

A.2110P Module

nodule I1OP { // 1 DL extended for version 1.1

struct Version {
octet mmjor;
octet mnor;

H

struct ProfileBody 1 0 { // renaned from Profil eBody
Version iiop_version
string host;
unsi gned short port;
sequence <octet> object key;

H

struct ProfileBody_1 1 {
Version iiop_version
string host;
unsi gned short port;
sequence <octet> object key;
sequence <I OP:: TaggedConponent > conponents;

Page 101

Bibliography

[Chan’97]

[Chen’97]

[Colouris’94]

[Fowler97]

[Gamma’94]

[GIOP’98]

Terence Chan. Unix System Programming using C++.
1997

Prentice Hall

Larry T. Chen etal. Designing Mobile Computing Systems
Using Distributed Objects.

1997.

IEEE Communications Magazine, February 1997.

George Colouris et al. Distributed systems concepts and design.
1994
Addison-Wesley

Martin Fowler et al. UML Distilled.
1997.
Addison-Wesley

Eric Gamma et al. Design Patterns — Elements of Reusable
Object Oriented Software.

1994,

Addison-Wesley

Chapter 13, CORBA Specification.
1998
http://www.omg.org/corba/cichpter.htm

Page 102

[Hall'93] Martin Hall et al. Winsock APL.
1993.

www.medusa.uni-bremen.de/intern/knowhow/winsock/

[Joseph’97] Anthony D. Joseph et al. Mobile Computing with the Rover
Toolkit.
1997.
IEEE Transactions on Computers: Special Issue on Mobile
Computing.
[Kemp’'96] Peter Kemp et al. Design of MASE V2.
1996.
http://lwww.sics.se/~onthemove/docs/OTM_d33.doc
[Kernighan’88] Brian Kernighan et al. The C programming language.
1988.
Prentice Hall.
[Meyer’'96] Michael Meyer et al. Design of MASE V1.
1996

http://www.sics.se/~onthemove/docs/OTM d17.doc

[OMG’98] CORBA Specification.
1998

www.omg.org/corba/c2index.htm

[Perkins’96] Perkins et al. P Mobility Support.
1996
http://info.internet.isi.edu:80/in-notes/ric/files/rfc2002.txt

[Petersen’97] Karin Petersen et al. Flexible Update Propagation for Weakly
Consistent Replication.

Page 103

[Pham’96]

[Raatikainen’97]

[Stevens’90]

[Stroustrup’97]

1997
http://www.parc.xerox.com/csl/proj ects/bayou/pubs/sosp-97/

Thuan Q. Pham. Multithreaded programming with Windows.
1996.
Prentice Hall.

Raatikainen et al. Service Machine Development for an Open
Long-term Mobile and Fixed Network Environment.
1997
DOLMEN Consortium. ACTS Ref: AC036 DOLMEN.
Richard W. Stevens. Unix network programming.
1990
Prentice Hall

Bjarne Stroustrup. The C++ programming language. 1997

Addison Wesley

Page 104

