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Summary

Recently, many distributed applications have been based on Common Object
Request Broker Architecture (CORBA) compliant middleware. Such distributed
computing middleware provides the components of a distributed application with a
uniform view of local and remote application objects. It shields distributed application
programmers from having to deal with network and protocol layers and lets them
concentrate on the design of the distributed application itself.

To date, most CORBA compliant Object Request Brokers (ORBS) have been
based on monolithic implementations. Vendors typically offer the same ORB
implementation for use in any number of different application scenarios. Recently,
some ORB implementations have appeared that target specific application domains,
for example rea-time applications and fault-tolerant applications. These ORBS,
however, focus on one specific application scenario.

The purpose of this thesis is to explore the aternative approach of designing
not a “one size fits all” ORB, but rather an object-oriented framework that allows
application developers to instantiate their own customised ORBs from components
available in the framework. Thus, one user may, for example, use the framework to
create a “standard” ORB supporting mobile computing, or fault-tolerance.

In order to understand the characteristics of ORBs in general, and of those aimed at
specific application domains in particular, a number of freely available ORBs were
studied. From this, it was possible to infer which components are commonly found in
ORBs aimed at specific application scenarios.

Based on this study, an object-oriented framework for CORBA ORBs was
designed. Its design is described using the Unified Modeling Language (UML) to
illustrate its principal components. To aid in its comprehension, the framework is also
documented by describing which principal design patterns it implements. This
dissertation also documents the design process that was employed. An actual
implementation of the framework was not part of the project. Finally, a set of C++

header files is also provided to document the framework class definitions.
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Chapter 1

| ntroduction

1.1 The Problem

The Object Management Group (OMG) Common Object Request Broker
Architecture (CORBA) is an emerging standard that combines the fields of distributed
computing and object oriented programming. An Object Request Broker (ORB) is a
piece of software that enables the implementation of distributed applications that use
the object oriented paradigm. ORBs are aso known as middieware.

Recently, many distributed applications have been based on the CORBA
standard by using CORBA compliant ORBs as middleware. Such middleware
provides the components of a distributed application with a uniform view of local and
remote application objects. It shields distributed application developers from having
to deal with network and protocol layers and lets them concentrate on the design of
the distributed application itself.

Most CORBA compliant ORBs have been based on monoalithic
implementations. Vendors typically offer a single ORB implementation for use in any
of a number of different application scenarios. Some ORB implementations have
appeared recently that target specific application domains, such as fault-tolerance
applications and real-time applications. The problem, however, is that each of these
ORB implementations focuses on one specific application scenario. In order to
provide an ORB that is tailored to a specific application scenario, generally such an
ORB needs to be built from the ground up. This, however, is a non-trivia task,

especially when an application developer is more concerned with designing and
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implementing a distributed application, than having to worry about implementing the

required middleware.

1.2 Proposed Solution

This thesis proposes that an object-oriented ORB framework would allow an
application developer to focus on the distributed object application at hand, while
providing him or her with the ability to easily implement the required ORB
middleware, tailored to the particular application scenario. Such a framework
provides the architectural design for any ORB created by instantiating it.

In order to arrive at a design for an ORB framework, a number of steps were
taken. First, the CORBA specification was studied in detail in order to understand the
requirements of a CORBA compliant ORB. In addition to this, the process of
designing and developing frameworks in general was studied. Particularly relevant to
this study was the area of object-oriented design patterns, which pervade most
frameworks.

Next, a number of publicly available CORBA compliant ORBs were anal ysed.
These included one ORB aimed at general distributed object applications, and two
ORBs aimed at specific application areas. The findings of this analysis influenced the
requirements formulation of the framework design and the design of the framework
itself.

Finally, the actual ORB framework was designed. The design was documented
using Unified Modeling Language (UML) object and sequence diagrams. Design

patterns played an important role in the design of the framework.

1.3 Achievements

A number of things were achieved by this project. Firstly, adesign for an ORB
framework was developed. The design includes UML object and interaction diagrams.
C++ class definitions were also created. These can be used in a possible future
implementation of the framework.

Experience was gained in applying design patterns to the development of
object-oriented software in general, and frameworks specifically. Experience was also

12



gained in framework development in general, especially with regard to problems
encountered in framework design.

Insight was gained into the OMG CORBA specification and how it can be
implemented, by the analysis of various publicly available CORBA ORBs.

1.4 Format of Thesis

The following chapter is a survey of CORBA and frameworks in general.
Chapter 3 is an analysis of three publicly available ORBs. Chapter 4 describes the
design of the ORB framework. Chapter 5 is an evauation of the framework. Finaly,

Chapter 6 finishes with some concluding remarks about the project.

1.5 Summary

In this chapter, an ORB framework was proposed as an approach to providing flexible
and customised ORB middleware. The steps that were taken in the development of
such a framework were outlined, and the achievements of the project were stated. The

overall format of the following chapters was a so described.
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Chapter 2
Survey

2.1 Introduction

The purpose of this chapter is to introduce some of the concepts and areas of
research that are relevant to this project. The survey begins with a brief introduction to
design patterns. Design patterns are relevant to both framework and ORB design. Next,
frameworks are introduced and some characteristics of frameworks are given. Some
different types of framework are explained, and frameworks are compared to other types
of software reuse. Strategies for framework development are also outlined. After
frameworks are discussed, the CORBA architecture is briefly introduced. Some possible
CORBA application scenarios are described. Finally, the approach to developing the

framework is discussed.

2.2 Design Patterns

Design patterns play an important role in framework design. Since they will be
referred to in subsequent sections, they are briefly introduced at this point. The idea of
design patterns was adopted from the field of architecture where it was first formulated
by Alexander [Ale77]. He and his colleagues formulated a pattern language for the design

and construction of buildings and towns. In his own words “Each pattern describes a
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problem which occurs over and over again in our environment, and then describes the
core of the solution to that problem, in such away that you can use this solution amillion
times over, without ever doing it the same way twice”.

This idea also sums up design patterns in object-oriented software design. A
design pattern systematically names, motivates, and explains a general design that
addresses a recurring design problem in object-oriented systems. It describes the
problem, the solution, when to apply the solution, and its consequences. It also gives
implementation hints and examples. The solution is a general arrangement of objects and
classes that solve the problem. The solution is customised and implemented to solve the
problem in a particular context [Gam95].

The seminal work on design patterns is [Gam95]. In it, the authors catalog some
23 design patterns which were found to recur over and over again in well designed object
oriented application designs. A pattern consists of four major partsattieen name, the
problem, thesolution, and theconsequences.

The pattern name concisely describes the pattern in a word or at most a few words. It
provides designers with a vocabulary that can be used to communicate to others a
particular design. It also allows designers to describe designs at a higher level of
abstraction.

The problem describes a particular situation which may occur over and over again in
object oriented designs and which must be solved in some way.

Thesolution describes an arrangement of classes and objects that implement the pattern’s
solution to the stated problem. It is not a concrete solution to one particular instance of
the problem, but rather an abstract solution which can be used like a template in different
situations.

The consequences describe the implications of applying the solution to the problem.
Implications might be, for example, tradeoffs between subtly varying solutions given to
the problem. Consequences may also be used in evaluating different solutions to a

problem.

2.2.1 A Design Pattern Example: Facade
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As an example of a design pattern, the Facade pattern is briefly introduced here. This
pattern is taken from [Gam95)].

Often in the design of large applications, it is desirable to divide the overall design into a
number of subsystems. Reasons for this might be that different subsystems of the
application might be implemented by different programmers and to reduce the overall
complexity by allowing the designer to (recursively) think of the overall system as that of
a number of subsystems. The complexity is reduced by reducing the amount of
dependencies and communication between different subsystems. Idedly, this should be
minimal as otherwise small changes in one part of the application will ripple through the
entire application thereby preventing easy modification of a system.

To overcome this problem, the Facade pattern proposes that a unified interface be
implemented to a set of interfaces in a subsystem. In other words, Facade provides a
single higher level interface to a subsystem that might contain a number of interfaces.

The Facade patternisillustrated in Figure 1.

client classes \ —

L /\ / ———_Facade |———

—)

subsystem
classes

Figure 1 Facade Design Pattern

2.3 Frameworks

2.3.1 Introduction to Frameworks

Frameworks are an attempt to prevent the rediscovery and reinvention of concepts and

components in the software industry [Fay97]. Their objective is to facilitate the
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development of applications in particular domains (eg. Graphical User Interfaces) or
business units (eg. manufacturing). In essence, frameworks are one approach to software

reuse.

A framework can be defined as a set of cooperating classes that make up a reusable

design for a specific class of software. It provides architectural guidance by partitioning

the design into abstract classes and defining their responsibilities and collaborations. A
developer customises the framework to a particular application by subclassing and
composing instances of framework classes [Gam95]. A framework dictates the
architecture of an application developed with it. It defines the application’s overall
structure, its partitioning into classes and objects, the key responsibilities of those classes
and objects, how they collaborate, and the thread of control.

Since a framework is more abstract than a finished application, in order to use a
framework to develop a particular application, the developer will need to extend
framework classes to implement application specific behaviour.

The objective of developing frameworks is to achieve both design and code reuse, as well
as shorter development times for applications, thereby reducing the cost of developing an
application. Frameworks leverage the domain knowledge of the framework developers,
thereby leaving the application developer to focus on specific application design issues
and problems.

Advantages of using frameworks are the already mentioned code and design reuse,
portability, rapid prototyping, and possibly performance customisation [Cam92].
Portability can be achieved through the separation of machine dependent parts of the
framework from machine independent parts. Rapid prototyping is achievable because the
framework provides code and design reuse, thus making it possible to quickly test various
implementations of a particular application built with the framework. Performance
customisation can be achieved through the use of one or another framework component

depending on the particular application.

2.3.2 Characteristics of Frameworks

Frameworks possess the following characteristics [Fay97]:
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Modularity: Because a framework’s potentially unstable implementation details are
encapsulated by a stable interface, applications developed with the framework are not
exposed to changes in framework implementation and design, as long as the interface
remains stable.

Reusability: Since a framework encapsulates application domain specific knowledge and
prior effort of the framework developer, the application developer is able to reuse
common solutions to recurring application requirements, thereby saving development
time and improving the quality and reliability of the application.

Extensibility: Frameworks provide hook methods that allow the application developer to
extend the framework where needed.

Inversion of Control: Frameworks generally control the flow of control within an
application via event dispatching patterns. This is also known as the “Hollywood
Principle”, or “Don’t call us, we’ll call you”. When events occur, the framework’s
dispatcher reacts by invoking hook methods on pre-registered handler objects, which
perform application specific processing on the events.

2.3.3 Types of Framework

There are different ways of categorising frameworks. One classification is that of
whitebox versusblackbox frameworks [Joh88]. In a whitebox framework the application
developer adds methods to subclasses of one or more of the framework’s classes. These
methods implement application specific behaviour. Since these methods must be
designed and implemented as was intended by the designer of the superclasses, the
application developer needs to have an understanding of the framework’s
implementation.

In a blackbox framework, on the other hand, an application is created by composition
rather than inheritance, as in the whitebox framework. Various components may be
available as part of the framework and the application developer decides which
components are required to create a particular application. The application developer only
needs to know the public interface of the components, but not their implementations.
Blackbox frameworks have the advantage of being easier to learn, but have the

disadvantage of being less flexible, than whitebox frameworks. If there is a good
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selection of components, the amount of programming required to create an application
with the framework will be much less than to do the same with awhitebox framework.

Thus, whitebox frameworks rely on inheritance whereas blackbox frameworks rely on
object composition. Of course, there is a continuous range from whitebox to blackbox
frameworks with some frameworks using both inheritance and object composition to

achieve application creation.

2.3.4 Frameworks in relation to other approachesto reuse

Other approaches to software reuse are design patterns, class libraries, and components

[Fay97]. These are related to frameworks in the following ways:

Design Patterns. Both design patterns and frameworks are approaches to software reuse.
However, they differ in a number of ways [Gam95]. Firstly, patterns are more abstract

than frameworks. Patterns enable design reuse whereas frameworks allow design and

code reuse. Patterns have to be implemented in code every time they are used. Secondly,

design patterns are smaller architectural elements than frameworks. This implies that
frameworks can contain a number of patterns, but never the other way around. Thirdly,
frameworks are specialised to a particular application domain. Design patterns, on the

other hand, can be used in any type of application.

Class libraries. Class libraries also are an approach to software reuse. Frameworks

extend the benefits of class libraries in the following ways: Firstly, class libraries
generdly are less domain specific than frameworks. Generaly they are lower level than
frameworks and thus don't offer as high a level of reuse as frameworks. Frameworks, on
the other hand, can be viewed as semi-complete applications. Secondly, class libraries
don’t exhibit the inversion of control that frameworks do. Frameworks often make use of
class libraries. An example is the C++ Standard Template Library.

Components: Yet another approach to reuse, components are self-contained instances of
abstract data types [Fay97]. They can be plugged together to form complete applications.
Components are reused on the knowledge of their interfaces, not their implementations.
They can be reused without having to subclass from existing base classes. Thus they
represent blackbox reuse. Frameworks can be used to develop components, but

components can also be used to develop frameworks.
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2.3.5 Examples of Frameworks

Numerous examples of frameworks exist. Here is a brief description of some of them:

Choices is an object-oriented operating system framework implemented in C++. It was
developed at the University of lllinois a Urbana-Champaign [Cam92, Joh9l]. The
motivation behind the development of Choices was that different users of operating

systems have different needs. For example, some applications for operating systems

require large virtual address spaces, whereas others, such as real-time embedded systems

don’t require virtual memory at all. Theéhoices framework addresses this problem by
providing a family of operating systems that the user can tailor to specific requirements.
The Choices framework consists of a number of subframeworks, such as virtual memory,
process management, persistent storage, message passing, and device management.
These subframeworks are used to implement subsystems of the operating system. The
subframeworks provide abstract classes that are reused through inheritance, making
Choices a whitebox framework.

Smalltalk Model/View/Controller (MVC) is a framework for constructing Smalltalk-80

user interfaces [Gam95]. It consists of three types of object: the Model, the View, and the
Controller. The Model is the application object and the View is its screen representation.
Each Model can have multiple Views. If the Model's data changes, the Views are notified
to update themselves. The Controller defines how the user interface reacts to user input.
An important aspect of MVC is that it contains a number of design patterns, such as
Observer, Composite, and Strategy. Thus it demonstrates how design patterns can be
used in the development of frameworks. Observer is a pattern that allows a one-to-many
dependency between objects to be created so that when one object changes its state, all
the other objects are notified and updated automatically. Composite is a pattern that
allows a tree-like structure of objects to be created. It allows clients to treat individual
objects and compositions of objects in the same way. Strategy is a pattern that allows
algorithms to be encapsulated by objects. It allows clients to freely interchange these
objects if the algorithm is to be varied. These patterns are described in more detail in
[Gam95].

Microsoft’s Microsoft Foundation Classes (MFC) is a framework for the development of

GUIs for the Microsoft Windows operating system [She96]. Its name is slightly
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misleading, as it is in fact a framework, though parts of it can be used as a class library.
To create a Windows GUI application with MFC, the user needs to subclass from a
number of abstract classes. The relationships and constraints between these classes is
known as the document-view architecture, similar to the Model and View architecture in
MVC. To be able to create any but the most trivia applications, the user needs to have
some understanding of these relationships and constraints. Therefore, the MFC could aso

be classified as a whitebox framework.

2.3.6 Strategies for developing Frameworks

Various methods or strategies for developing frameworks have been proposed. [Bec94]
[Dem96] [Kos] [Rob97]. Of these, the method that seems most inclusive of all
framework application domains, and pertains to the entire life cycle of framework
development is Evolving Frameworks, a pattern language for framework development. It

is described in more detail below.

2.3.6.1 A Pattern Language for developing Frameworks

One strategy, proposed by Roberts and Johnson, for developing frameworks, applies
design patterns to the problem of framework development [Rob97]. More specifically, a
pattern language for developing object-oriented frameworks is proposed. It is called
Evolving Frameworks. A pattern language can be described as a set of patterns that are
used together to solve a problem. Evolving Frameworks comprises of the following
patterns. Three Examples, Whitebox Framework, Blackbox Framework, Component
Library, Hot Spots, Pluggable Objects, Fine-grained Objects, Visual Builder, Language
Tools. The above sequence is the sequence in which the patterns generally will be applied
asthe framework evolves, although thisis not totally rigid.

Three Examples is the first and fundamental pattern in this pattern language. It argues
that it is impossible to design, from scratch, a framework without first having built at
least three applications of the type that the framework is intended to build. The
framework abstractions can then be determined from these examples.

The Whitebox Framework pattern proposes that the initial framework design, arrived at
by generalising from the classes in the individual applications, should be based on
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inheritance. This framework subsequently could be changed into a Blackbox Framework,

but only when it is known which parts of the framework will consistently change across
applications and which parts remain constant.

Component Library proposes common classes that should be collected from the
application examples to form a component library.

Hot Spots proposes to separate code which changes between applications from code

which doesn’t. Ideally, the varying code is then encapsulated within objects. This
promotes reuse through composition of objects instead of subclassing from other classes.
The objective of théluggable Objects pattern is to avoid unnecessary subclassing when
the subclasses differ only in trivial ways. It achieves this by using parameters in the
instance creation protocol. In this way the subclass can be parameterised, in other words,
customised for its particular application.

Fine-Grained Objects proposes that objects be broken down into granularities as fine as
possible. The reason for this is that code duplication can be avoided in this way. If objects
are not broken down like this, some classes may end up encapsulating multiple
behaviours that could possibly vary independently. It is better to replace such a class with
a composition that recreates the behaviour of that class.

The creation oPluggable Objects andFine-Grained Objects leads to the ability to create
applications using composition. Therefore, the next step the design of the framework is to
reorganise the framework intoBhackbox Framework, which favours composition over
inheritance.

The Visual Builder pattern proposes a graphical program that lets the application
developer specify the objects of the application and how they are interconnected.

The last pattern in the languadg@nguage Tools, suggests that specialised inspecting and
debugging tools be created for the framework.

Figure 2 shows how the patterns Evolving Frameworks are related in time. It can be

seen that many patterns will be applied in parallel.
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Three Examples

White Box Framework Black Box Framework

Component Library

Hot Spots

Pluggable Objects

Fine-Grained Objects

Visua Builder

Language Tools

Time

Figure 2 Evolving Frameworks

2.3.7 Documenting Frameworks

An approach to documenting frameworks using patterns has been suggested by Johnson
[Joh92]. He proposes that the documentation of a framework has three purposes.
Specificaly, the framework documentation needs to 1) describe the purpose of the
framework, 2) describe how to use the framework, and 3) describe the detailed design of
the framework.

Thefirst pattern in the framework documentation describes the purpose of the framework
and its application domain. It gives examples of framework applications and introduces
the rest of the patterns describing the framework, and which of those patterns should be
studied next. This next set of patterns is used to describe how to use the framework.

Finally, the detailed design of the framework is described.

2.3.8 Problems regarding Framework Development

The following are some of the problems and challenges that are encountered and that

need to be overcome for effective framework development and utilisation [Fay97]:
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Development effort: The effort and domain knowledge required for successful framework
development is higher than that required for application development in a particular
domain.

Learning curve: The learning curve involved in learning to use a particular framework is
often quite high. If only a few applications are ever going to be built using a framework,
the value of creating such a framework needs to be questioned, since in this case it might
not be a cost effective solution. Also, the suitability of a framework to building a
particular application may only become apparent after an amount of time has been
invested in learning the framework.

Integratability: If applications are built using more than one framework, compatibility
and integration problems may result. Specifically, the inversion of control principle of
frameworks could cause problems, as event loops in the frameworks may not be designed
to alow interoperability.

Maintainability: As application requirements change frequently, the requirements of
frameworks may change with them. Modifying and adapting a framework may prove
difficult for application developers since a deep understanding of framework internals
and rel ationships between framework components is essential.

Validation and defect removal: Debugging applications created with a framework may be
difficult. For example, since the flow of control is controlled by the framework, it may be
difficult to step through the application specific code of the application.

Efficiency: The generality and flexibility of aframework may reduce its efficiency.

2.4 CORBA and Frameworks

2.4.1 Introduction to CORBA Object Request Brokers

The Common Object Request Broker Architecture (CORBA) is a standard model for
distributed object-oriented systems. The CORBA standard forms part of the Object
Management Group’s (OMG) Object Management Architecture (OMA). The current
standard is CORBA 2.0. The purpose of the CORBA standard is to abstract distributed
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object applications, which may run in a heterogeneous environment, away from
underlying networking protocols and transports. This facility is provided by Object
Request Brokers (ORBs), which lie at the heart of the OMA. An ORB allows a client to

deliver a request to a target object acting as a server, and it returns any responses to the

clients making the requests. The target object may reside in the same process, on the

same machine but in a different process, or on a different machine in a different process
somewhere on the network. The client-server relationship is only valid on arequest basis.

A client object for one request could be a server object for another [Vin97].

CORBA consists of the following main elements:

ORB Core: The ORB core lets client objects transparently make requests to server
objects, and receive responses from them, whether they are in-process out-of-process, or

remote servers.

Interface Definition Language (IDL): The IDL enables interfaces between client and

server objects to be defined in a declarative, language independent manner. An interface
specifies the operations and types that the server object supports.

IDL Client Stub: The client stub acts as a local proxy for a remote server object. It
provides static interfaces to server object’'s services. It is created by compiling the
interface definition using an IDL compiler.

IDL Server Skeleton: The server skeleton provides the static interface to each service
exported by the server. Like the client stubs, it is created by compiling the interface
definition using an IDL compiler.

Dynamic Invocation Interface (DIl): The DIl allows the client to discover at runtime the
server interface method to be invoked.

Dynamic Skeleton Invocation (DS): The DSI is the server equivalent of the DII. It
provides a run-time binding mechanism for servers to handle incoming method calls for
components that do not have IDL-based compiled skeletons.

Object Adapter: The Object Adapter serves as the glue between object implementations
and the ORB core.

Interface Repository: The Interface Repository is a database that contains machine

readable versions of the IDL-defined interfaces.

25



Implementation Repository: The Implementation Repository contains information about
the classes supported by a server, which objects are instantiated, and their IDs.

ORB Interface: The ORB Interface contains APIs to some ORB services that may be
useful to an application.

Inter ORB Protocols: Inter ORB Protocols, such as GIOP and I1OP, allow ORBs from

different vendors to communicate with one another.

2.4.2 Some CORBA Application Scenarios

The objective of developing an ORB framework is to facilitate the implementation of
customised ORBs. Customised ORBs are ORBs that are tailored towards one or more
particular application scenarios. The following are examples of some such scenarios and
the issues that need to be addressed when developing ORBs, and therefore ORB
frameworks, for such scenarios.

24.2.1 Reliable Distributed Systems

A distributed system can be considered reliable if its behaviour is predictable despite
partia failures, asynchrony, and runtime reconfiguration of the system. Building reliable
distributed systems using CORBA is a priority in areas such as electronic commerce,
flight reservation systems, and real-time data feeds. It is, however, difficult to achieve for
a number of reasons. For example, because of partial failures of the system, the mean
time to failure of components in the distributed system decreases as the number of nodes
and communication links increases. Complex execution states can lead to situations such
as race conditions, deadlocks, and communication failures [Maf97].

Some approaches to implementing reliable distributed systems are message queues,
transaction processing monitors, and virtual synchrony. [Maf97] describes how these
approaches can be combined into an extended CORBA architecture for reliable systems.

2.4.2.2 Performancein CORBA Distributed Systems
Some distributed applications have specific Quality of Service (QoS) demands. Real time

systems, such as avionics or motion control systems, and constrained latency systems,

such as teleconferencing or telecommunications systems, fal into this category. Until
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recently, the CORBA specification did not provide definitions for policies or mechanisms
for providing QoS guarantees in distributed applications. Recently A/V streams have
been added to the CORBA specification.

Existing ORBs exhibit significant runtime throughput and latency overheads. To be able
to construct real-time ORBSs that can exhibit end to end QoS guarantees, the factors that
affect performance of ORBs need to be addressed. Some of these factors are [Sch97]:
specification of end to end QoS requirements, operating system and network resource
scheduling, communication protocols performance, request demultiplexing and
dispatching optimisation, memory management optimisation, and presentation layer

conversions.

2.4.2.3 Mobile Distributed Systems

Mobile distributed systems entail some of the following aspects: the frequent movement
of users and hosts, the scarcity of network and local computing resources available to the
mobile host, the possibility of disconnections. These lead to the following problems with
which mobile distributed systems are faced: frequent disconnections from the network,
widely varying bandwidths among wired and wireless links, limited CPU power and
device capacity on a mobile hogt, transient servers due to frequent handoff.

These problems lead to the following design guidelines for mobile distributed systems
[Che9d7]:

Minimum host-network coupling: Applications should be designed with minimum
coupling between the mobile host and the server as connections generally are unreliable.
Connection transparency: An application should be able to continue operating
transparently even if there are changes in the connection between mobile host and server,
such as handoff and disconnections.

Indirect interaction: To minimise interaction over the wireless link, user input processing
should be performed as close to the mobile host as possible.

Adaptive communication protocols. Because of variable bandwidth and heterogeneous
networks, communication protocols need to be adaptable.

Application partitioning: Because of unreliable connections, applications need to be
designed so that parts of them can be migrated to and run on the mobile host.

27



24.2.4 Developing a Framework for Customisable ORBs

The previous sections have introduced a number of topics which are fundamental to the
project, the development of a framework for customisable ORBs. The content of these
sections is to serve only as an introduction to some of the issues and approaches which
arerelevant to this project.

The suggested approach to developing the framework is to apply the pattern language
Evolving Frameworks mentioned in the frameworks section. This pattern language begins

with the Three Examples pattern. Considering the limited amount of time allocated to this

project, it would obviously not be feasible to implement three separate ORBS, which may

cover various application scenarios, as is suggested by that pattern. On the other hand, a

deep, hands-on understanding of the application domain, customisable ORBS, is required

in order to attempt the design and implementation of an ORB framework. A possible
approach to overcome this problem would be to examine the implementations of a
number of different existing ORBs. ORBs exist for which the source code is publicly
available, and some of these are also well documented from a design point of view.

Some CORBA ORB implementations which focus on some of the different application
scenarios described above and for which source code is available are TAO, Electra, and
OmniORB.

OmniORB is a CORBA compliant ORB that has been developed by the Olivetti and
Oracle Research Laboratory. It is a plain, “vanilla” ORB, not geared towards any
particular application domain.

TAO is a CORBA compliant ORB that has been developed at the Department of
Computer Science, Washington University. It is an ORB aimed at applications with real-
time QoS requirements. It is designed to be extensible, maintainable, and dynamically
configurable. To achieve these objectives its design relies heavily on the use of design
patterns. Its design is well documented using these patterns in [Sch98].

Electra is a CORBA compliant ORB that is geared towards fault-tolerance and group
communication. It allows object groups, reliable multicast communication, and object
replication. It is designed to run on top of platforms such as Horus and Isis which are
low-level toolkits for the implementation of fault-tolerant distributed systems.
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The first step will be to study the implementations of these three ORBs. This would
involve the study of both any documentation and literature that is available about them,
and also the source code which is publicly available. For the latter, an object-oriented
browsing tool, such as Takefive Software’s Sniff+, might be useful. Some of these tools

provide the ability to ‘reverse engineer’ source code to object notation, such as UML.

2.5 Summary

This chapter provided an introduction to some of the issues regarding the development of
an ORB framework. Object oriented design patterns were defined and an example of a
design pattern was provided. Object oriented frameworks in general were introduced and
some of their characteristics explained. Finally, the CORBA standard was briefly

introduced along with some possible application areas for distributed object applications.
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Chapter 3

Analysis of existing Object Request
Brokers

3.1 Introduction

This chapter describes an analysis of three publicly available CORBA compliant
ORBs. The three ORBs are OmniORB, TAO, and Electra. OmniORB was devel oped
by the Olivetti and Oracle Research Laboratory. It is abasic ORB which is not geared
towards any particular application domain. TAO was developed at the Department of
Computer Science, Washington University. It is aimed at applications with real-time
Quality of Service requirements. Electra was developed by Silvano Maffeis while at
the University of Zurich. It isan ORB that is geared towards fault-tolerance and group
communication. It allows object groups, reliable multicast communication, and object

replication.

3.2 OmniORB

3.2.1 Introduction

The first ORB to be anaysed was OmniORB2. OmniORB2 is an ORB that
implements version 2.0 of the Object Management Group’s CORBA specification. It
was developed by the Olivetti & Oracle Research Laboratory
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(http://ww. orl.co. uk). This section documents the investigation into the

implementation of OmniORB2.

3.2.2 Purpose of the analysis

The purpose of the analysis of the implementation of OmniORB2 was to gain insight
into how the architecture of atypical ORB is structured. Specifically, the internals of
OmniORB2 were to be analysed, in other words, those parts of OmniORB2 that
implement the CORBA specification but that are left to be implemented by the
different ORB vendors. Especially interesting was to determine whether any design
patterns were used. The use of these would facilitate the understanding of the design
of OmniORB2 and would be helpful in the subsequent design of an ORB framework.
They would also make it easier to document the design of OmniORB2.

3.2.3 Main features of OmniORB2

3.23.1 CORBA 2 compliancy

As stated in the introduction, OmniORB2 is an ORB that implements version 2.0 of

the OMG’s CORBA specification. It implements the Internet Inter-ORB Protocol
(IIOP) and uses this to communicate with other ORBs, and also uses it as its own
native protocol, i.e. for the communication between its objects residing in different

address spaces.

3.2.3.2 Platform support

OmniORB2 supports the following platforms: Sun Solaris, Digital Unix, HPUX, IBM
AIX, Linux, Windows NT, Windows 95, OpenVMS, ATMos, NextStep. Extensive
use of preprocessor directives is made in the source code to allow compilation for
these numerous supported platforms. This can make the source code quite difficult to

understand at times.

3.2.3.3 Missing features
OmniORB2 is not a complete implementation of the CORBA specification. Some

features are still missing:
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« OmniORB2’'s Basic Object Adapter (BOA) does not support dynamic server
activation and deactivation policies. It only supports the persistent server
activation policy.

* The Dynamic Invocation Interface is not supported.

* The Dynamic Skeleton Interface is not supported.

«  OmniORB2 does not have its own Interface Repository.

3.2.4 Building and testing OmniORB2

The OmniORB2 distribution was downloaded from the Oracle & Olivetti Research
Laboratory’s web site. Although ready to run binaries are available to download,
OmniORB2 was downloaded in source code form and compiled and linked on site.
The download package comes as a zipped tar file which extracts into a directory tree.
The main parts of the package are:

3.2.4.1 Thedocumentation

This consists of four documents which address the OmniORB2 itself, the OmniNames
naming service, which is an OmniORB2 implementation of the OMG’s COS Naming
Service Specification, OmniThread, which is a portable thread abstraction library used
by OmniORB2, and OmniORB utilities.

Of these documents, the principal one is the OmniORB2 manual. It is addressed at the
application developer who wants to know how to get started using OmniORB2. Some
of the examples that are provided with OmniORB2 are explained. The OmniORB2
APl is explained as is the interface to the Basic Object Adapter (BOA). However, the
internal architecture of the ORB is not documented.

3.2.4.2 The source code

Source code is provided for OmniORB2 itself, the OmniThread library, the
OmnilDL2 compiler, which is the IDL compiler supplied with OmniORB2, a number
of examples, the OmniNames naming service, and the OmniORB2 utilities.

3.24.3 Makefiles

Makefiles are supplied to build the various binaries under the supported platforms. To
build the binaries under Unix requires GNUmake. To build the binaries under

Windows NT requires the gnu-win32 utilities from Cygnus Solutions.
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3.2.4.4 Toolsand methods used for analysing OmniORB

Initially OmniORB2 was built using the Sun C++ compiler and GNUmake under
Solaris 2.6. The three Echo examples, which are documented in Chapter 1 of the
OmniORB2 manual, were aso built and executed as indicated. Because of a lack of
suitable debugging, analysis, and browsing tools under Unix, the OmniORB2 binaries
were rebuilt under Windows NT using Microsoft Visual C++ 5.0 and the Cygnus
Solutions gnu-win32 utilities. The advantage of examining OmniORB2 under
Windows NT was that the debugger which is supplied with Visual C++ could be used
to step through the application and ORB source code as an application was being
executed.

Next, the OmniORB2 source code was analysed using SNIFF+, a cross-platform
programming environment by TakeFive Software. SNIFF+ provides a number of
features that aid the comprehension of existing source code. Numerous tools, such as
an inheritance hierarchy browser, a cross reference browser, and an include browser,
are part of this environment and were found to be useful in the understanding of the
implementation of OmniORB2. SNIFF+ includes its own source code parser which
parses the source code of a project and builds its own internal representation of it. A

project therefore does not need to be compiled before the SNIFF+ tools can be used.

3.2.45 Problems encountered

Some problems were encountered in trying to analyse the architecture of OmniORB2.
Initially Solaris 5.6 was used as a platform for building the ORB and sample
applications. It was found that because of a lack of suitable tools it would prove
difficult to easily study the implementation of the ORB. The ORB was rebuilt under
Windows NT and this was found to be advantageous, especialy in the area of
debugging.

A principa difficulty was the size of the source code. In the entire source code there
are over 360 classes and structures, not including nested classes. The source code is
very sparsely commented. There are no documents explaining the OmniORB2
architecture.

The large amount of preprocessor directives relating to macros and conditionally

compiled code, made the source code difficult to understand.
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A problem noted with SNIFF+ is that it ignores nested classes, ie. those classes that
are declared within other class declarations. This meant that nested classes could not

be browsed as easily as others, but it was found not to be a big problem.

3.2.5 Overadll architecture of the ORB

The following sections describe some of the principal components of the OmniORB2
ORB. C++ nanespace is not used. Instead, some classes are nested within other
classes, for example, the class ORB is nested within the CORBA class, thus becoming
CORBA: : ORB. The reason for this is that some of the supported compilers may not

have implemented the nanespace keyword.

3.25.1 TheORB

The class that represents the ORB is CORBA: : ORB. It provides the C++ mapping of

the CORBA::ORB interface. It adso provides some internal OmniORB2 specific
functionality. An instance of this class is created in the function
CORBA::ORB init(...) unless an instance of it already exists. This function is called
by both the object implementation and the client in order to obtain a pointer to the
ORB.

Another class,ommi ORB, provides the public APl of OmniORB2’s extension to
CORBA. This API is intended to be used in application code. All its members and
methods are declarext ati ¢ and no actual instance ofmi ORB is ever created.

The public API provides features such as run-time tracing and diagnostic messages,
limiting the GIOP message size, and trapping internal errors.

3.25.2 TheBOA

The class that represents the BOACERBA: : BOA. It provides the C++ mapping of

the CORBA: : BOA interface. Again, it also provides some internal OmniORB2
specific functionality. An instance of this class is created in the function
CORBA: : ORB: : BOA_ i nit unless an instance of it already exists. As with the
function creating the ORB, this function is called by both the object implementation
and client in order to obtain a pointer to the BOA. After a caB® i nit, the

BOA must be activated usingmwpl _i s_ready. This starts a thread listening on the

port on which IIOP requests are received. Objects can then be registered using the
function _obj i s_ready. This is a member function of the implementation
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skeleton class and is called after the object isfully initialised. In the example below, it

isamember function of theclass_sk_Echo.

3.2.5.3 Sample skeleton code generated by the IDL compiler

This section describes which classes are created by the IDL compiler when a sample
IDL fileis compiled.
If the following example IDL interface

i nterface Echo {
string echoString (in string nmesgqg);

is compiled using the OmniORB2 IDL compiler, a number of classes are created by
the IDL compiler. They are: Echo, _ni| _Echo, sk _Echo, _proxy_Echo,
Echo_proxyQbj ect Factory, and Echo_Hel per. Their relationships are
shown in Figure 3.

Echo: A pointer to this class is the object reference that corresponds to the Echo
interface.

_ni | _Echo: Thisclass provides anil object reference of the Echo interface.
_sk_Echo: This is the skeleton class used for implementing the Echo
implementation object. To implement an Echo object, a class is derived from
_sk_Echo.

omniObject CORBA::Object

K proxyObjectFactory

Echo_Helper Echo /\
T
nil_Echo sk _Echo proxy Echo Echo proxyObijectFactory

Figure 3 OmniORB Stub and Skeleton Classes
_proxy_Echo: Aninstance of _proxy_ Echo is created as a local representation

of the Echo implementation if thisresides in a different address space.
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Echo_proxyQoj ect Factory: An instance of this class creates the
_proxy_Echo object on the client side if the Echo implementation resides in a

different address space.

3.25.4 TheOmniThread library

The purpose of the Omni Thread library is to provide a common set of thread
operations for OmniORB2. Porting between different platforms with different thread
interfacesis facilitated through this layer.

omni_condition | | omni_mutex | | omni_semaphore | | omni_thread

Figure 4 OmniORB Omni Thread Library Classes

The interface to the Omni Thread library is designed to be similar to that of POSIX
threads. Essentially, the Omni Thread library consists of wrapper classes around
thread cals. There are four principal classes in the Omni Thread library:
ommi _condi ti on, omi _nut ex, omi _senmaphore, and ommi _t hr ead.
Depending on the platform, different implementations of these wrapper classes are
conditionally compiled. The Omni Thread library isillustrated in Figure 4.

3.25.5 Implementation of GIOP and IIOP
TheRope and Str and classes
OmniORB2’s underlying GIOP communications mechanism is built on the concept of

Rope andSt r and classes.

Rope

A N

////// \\\
///// T~

tcpATMosIncomingRope | | tcpATMosOutgoingRope | | tcpSocketincomingRope | | tcpSocketOutgoingRope

Figure5 OmniORB Rope Inheritance Hierarchy
TheRope class represents a bidirectional buffered stream that connects two address
spaces. The connection point of each address space is identified by an object of type

Endpoi nt. A Rope object is composed of one or more objects of tgpeand.
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Each Strand object represents a transport dependent connection. All Strand
objects of the same Rope object can be used interchangeably for the sending and
receiving of messages between the two connected address spaces identified by the
Endpoi nt objects. The Rope inheritance hierarchy is shown in Figure 5.

The Rope class is an abstract base class that defines the interface for the derived rope
classes. Depending on the transport implementation, Rope objects are instantiated as
tcpSocket ropes or tcpATMos ropes. They can be of the incoming or outgoing variety.
Incoming Rope objects are used by the BOA to receive requests and dispatch them to
the object. Outgoing Rope objects are used by the ORB to send requests. The
instantiation of Rope objects is performed by objects derived from the abstract base
classr opeFact ory. Its inheritance hierarchy is shown in Figure 6. These classes

represent an implementation of the Abstract Factory design pattern.

ropeFactory

incomingRopeFactory outgoingRopeFactory
N 4
\ /
\ /
\ /
tcpATMosMTincomingFactory tcpSocketMTincomingFactory tcpATMosMToutgoingFactory tcpSocketMToutgoingFactory

Figure 6 OmniORB Rope Factory Inheritance Hierarchy

An Abstract Factory can be used when related objects, in this case objects of type
Rope, need to be created without specifying their concrete classes, for example
t cpATMos| ncom ngRope ort cpSocket | nconi ngRope.

The Strand inheritance hierarchy is shown in Figure 7. For example, a
tcpSocket | ncom ngRope  object would contan a number  of
t cpSocket St r and objects.

Strand

A
/\

reliableStreamStrand
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Figure 7 OmniORB Strand Inheritance Hierarchy

The Endpoi nt inheritance hierarchy is shown in Figure 8.

Endpoint

tcpATMosEndpoint tcpSocketEndpoint

Figure 8 OmniORB Endpoint Inheritance Hierarchy

The GIOP driver classes

The G OP_Cand A OP_S classes are built on top of a strand. They implement the
Genera Inter-ORB Protocol (GIOP). The GIOP protocol is asymmetric. J OP_C
provides the functions to drive the client side protocol. G OP_S provides the server
side functions. The GIOP_C and GIOP_S inheritance hierarchy is shown in Figure 9.

Sync

A
%

MemBufferedStream NetBufferedStream GIOP_Basetypes




Figure 9 OmniORB GIOP Inheritance Hierarchy

An object of the Sync classis used to provide exclusive access to a St r and object.
A number of Sync objects can be associated with any particular St r and object.
Derived from Sync is the class Net Buf f er edSt r eam This class provides the
marshalling functionality for different CORBA data types. In other words, this class
provides the functionality to load and unload the buffer that is used for transmitting
and receiving using the St rand object associated with the Sync object. The
marshalling is totally independent of the transport layer that is used.. The Sync class
only refers to Strand and Rope types, but not their concrete subclasses. The
MenBuf feredStream class has  similar functionality to  the
Net Buf f er edSt r eamclass except that it is used when the client and server reside
in the same address space and the transport layer and layers below it can be bypassed.
The d OP_Baset ypes class defines some types, such as message header types, that
are common to both G OP_C and G OP_S. Calling the constructor of G OP_C or
G OP_S automatically aquiresa St r and object.

A GIOP_C object can be in a number of states, such as Idle
Request | nProgress, WitingForReply, ReplylsBeingProcessed,
and Zombie. Similarly, a G OP_S object can be in the states Idle,
Request | sBei ngPr ocessed, Wi ti ngFor Repl vy,
Repl yl sBei ngConposed, and Zonhi e.

Threading modelsused in OmniORB2

The threading model used to process outgoing requests is determined by the
implementation of the G OP_C class. Only one request per St r and object can be
outstanding, in other words, each thread has exclusive access to a St r and object

when it has a request outstanding.
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The threading model used to dispatch incoming requests is determined by the classes
derived fromr opeFact ory. It isdescribed in the section below.

Threading model to service incoming requests

A number of thread classes inherit from ommi _t hr ead. Two types of class that
inherit from ommi _t hr ead are the tcpRendezvouser and the tcpWorker variety of
class. These come in Socket and ATMos varieties. A worker class, for example

t cpSocket Wor ker, is associated with each incoming Rope object’s St r and
object. When an incoming object derived frétope is created, a tcpRendezvouser
thread is created and started. This thread is associated with that pafRep&r
object. For example, acpSocket Rendezvouser is created and started when a
t cpSocket | ncom ngRope is created. ThécpSocket Rendezvouser thread
will wait for incoming connection requests using #txept system call. If a request
Is received, a new8t r and, in this case acpSocket St r and, will be created and
a tcpWorker, in this casetacpSocket Wor ker , will be created and started. The
worker will be associated with the particutrr and object. For as long as there are
incoming requests on a particuldt r and, for each request & OP_S object is
instantiated by the worker. Thid OP_S object will gain exclusive access to the
St r and object and will unmarshal and dispatch the request. When the request has
been dispatched or otherwise handled, @éP_S object will be deleted. The
process is repeated for the next request orSthaand object.

omni_thread

tcpATMosRendezwvouser | | tcpATMosWorker | | tcpSocketRendezvouser | | tcpSocketWorker

Figure 10 OmniORB Worker And Rendezvouser Inheritance Hierarchy

A scavenger thread periodically scans all 8te and objects. If it detects that a

St r and object has been idle for a certain period it may shut it down, i.e. delete the
St r and object and stop the associated worker thread. The Worker and Rendezvouser
inheritance hierarchy is illustratedkingur e 10.
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3.2.6 Conclusion

With some initial delays in setting up OmniORB2 and the relatively brief period
alocated to its study, it was found that only an overal view of the internals of
OmniORB2 could be obtained and that most areas could not be studied in great detail.
However, the study has been useful in that it has provided a general insight into the
workings of an ORB and that it offers areas of interest, for example, the
implementation of certain classes, to be revisited and studied in greater detail at a

later stage of the project, if necessary.

3.3 TAO

3.3.1 Introduction

In the study of the implementation of a number of CORBA compliant public domain
ORBs, TAO (The ACE ORB) was chosen to be the second ORB to be examined.
TAO is a CORBA 2.0 compliant ORB, aimed at high-performance, real-time
applications. It extends the OMG CORBA specification by allowing applications to
specify Quality of Service (QoS) requirements. It was developed by the Distributed
Object Computing Group a Washington University
(wwmw. cs. wust | . edu/ ~schm dt/ TAO. ht m ). This report documents the
investigation into the implementation of TAO.

3.3.2 Purpose of the analysis

The purpose of the analysis of the implementation of TAO was similar to that of
OmniORB2. In addition, an objective of the study was to gain insight into how an
ORB aimed at the high-performance, reatime application domain might be

implemented, and how it would differ from a standard ORB.

3.3.3 Main featuresof TAO
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3.3.3.1 Reatime ORB core

TAO’s realtime ORB core is based on the Adaptive Communication Environment
(ACE) framework. It is designed to provide a number of threading models, such as
thread-per-connection, or reactor-per-thread-priority. The TAO ORB core uses the
Realtime Inter ORB Protocol (RIOP), which is based on IIOP, for interORB

communication.

3.3.3.2 Optimised Object Adapter
The TAO Object Adapter is responsible for demultiplexing and dispatching client

requests to servant operations. In conventional ORB systems, demultiplexing takes
place on a number of layers. TAO's Object Adapter uses demultiplexing keys

assigned by the ORB to clients to achieve delayered demultiplexing.

3.3.3.3 RedtimelDL (RIDL) QoS specification

TAO provides an IDL interface for applicatins to specify their realtime resource
requirements. This information is passed to TAO’s Realtime Scheduling Service. The
TAO Realtime Scheduling Service performs offline feasability scheduling analysis to
determine whether there are enough CPU resources to perform all requested tasks
which the application has registered with the Realtime Scheduling Service repository.
The Scheduling Services also perform thread priority assignment during this offline
analysis. This information is used by the ORB core at runtime to assign thread

priorities. At runtime, requests are queued according to their priorities.

3.3.3.4 IDL compiler optimisations

Because the conversion of typed operation parameters from higher-level to lower-
level representations (marshaling) and vice versa (demarshaling) can be a bottleneck,
the TAO IDL compiler provides a number of optimising features. For example, either
interpreted or compiled IDL stubs and skeletons can be linked into the application.
Interpreted code is slower, but smaller in size, whereas compiled code is faster, but
bigger in size.

3.3.35 Memory Management Optimisations
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For efficiency reasons, TAO tries to keep dynamic memory management to a
minimum. For example, it uses a “zero-copy” buffer management system when

sending and receiving client requests to and from the network.

3.3.3.6 Platform support
Platforms supported by TAO are Windows NT, Solaris, VXxWorks, and Linux.

3.3.4 Building and testing TAO

The TAO distribution kit was downloaded from the TAO website. It includes the
ACE framework distribution. Uncompressed, the package is about 40MB in size.
Both ACE and TAO were built from the source code using GNUmake and the Sun

C++ compiler under Solaris 2.6.

3.3.4.1 Thedocumentation

The design of both ACE and TAO is very well documented. A number of papers
exist, outlining the design of ACE and TAO, patterns used in their design, and
performance measurements and comparisons with a number of other ORBs. Most of
the information about the design of TAO was obtained from these papers. They can

be downloaded from the TAO website.

3.3.5 Overall Architecture of the TAO ORB

TAO is a CORBA compliant Object Request Broker that is aimed at real time
distributed applications. It is designed to deliver end-to-end Quality of Service (QoS)
guarantees. QoS guarantees allow applications to meet certain timing constraints,
which, if they weren’t met, would render useless the application built on top of the
ORB.

3.35.1 The ACE Framework

TAO is built using the ACE (Adaptive Communication Environment) framework.

ACE is an object oriented toolkit for the development of network and communication
applications. It is written in C++ and is targeted for applications on Unix and Win32
platforms. It facilitates the development of object oriented applications that use

interprocess communication, event demultiplexing, explicit dynamic linking, and
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concurrency. The ACE framework also provides instances of a number of design
patterns, such as Reactor and Acceptor-Connector, which recur in object oriented
network and communication applications. These patterns will be described in a later
section.

Layersin the ACE Framework

The ACE framework consists of a number of layers as depicted in Figure 11.

ACE Network Service Components

ACE Framework

ACE OO Wrappers

ACE OS Adaptation Layer

Figure 11 ACE Framework Layers

The ACE OS Adaptation Layer
The ACE OS Adaptation Layer forms an interface to the upper ACE layers for the
following platform specific OS mechanisms:
* multithreading and synchronisation
* interprocess communication
* event demultiplexing
» explicit dynamic linking
* memory mapped files and shared memory
The ACE OO WrappersLayer
The ACE OO Wrappers Layer provides C++ classes that encapsulate the various OS
mechanisms in the Adaptation Layer. The wrapper class categories include:
I PC mechanisms
IPC mechanisms such as sockets, TLI, Named Pipes, and STREAM pipes. The
wrapper classesin this category al inherit from the abstract base class IPC_SAP
(Interprocess Communication Service Access Point) as depicted in

Figure 12.

IPC_SAP

/ 4 4\\%\7\
/’/ \\




Figure 12 ACE IPC Class Hierarchy

Service I nitialisation

Related to the IPC mechanisms are the Accptor-Connector classes which implement
the design pattern of the same name. This pattern is used for the implementation of
service initialisation in communication software. It decouples the initiaisation of a
communication service from the tasks the service performs once it is up and running
and initialisation has been completed.

Concurrency Mechanisms

Concurrency mechanisms such as mutexes, threads, and semaphores are abstracted
through C++ classes. These are illustrated in Figure 13. Thread mechanisms include
Solaris threads, POSIX Pthreads and Win32 threads.

ACE_Condition ACE_Thread ACE_Mutex ACE_Semaphore

Figure 13 ACE Classes For Concurrency

Memory Management M echanisms

These provide an abstraction for the dynamic management, ie. alocation and
deallocation, of shared and local memory.

Event Multiplexing
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This category of wrapper classes provides an encapsulation of OS event
demultiplexing cadls such as select, poll, and (Win32's)

Wai t For Mul ti pl eQbj ect s.

The ACE Framework Layer

This layer builds on the lower two layers, described above, by instantiating a number
of design patterns that can be used in the development of network applications. These
patterns includ®eactor andService Configurator. They are described below.

The ACE Network Service Components L ayer

This layer provides a number of network service components that are constructed
using the components of the lower layers. Examples of the network services provided
by this layer are logging, naming, locking, and time synchronisation services. The
components of this layer also illustrate how to construct services and applications

using the classes provided by the lower layers.

3.35.2 Design Patternsin ACE
The Acceptor-Connector Design Pattern
The Accept or performs passive connection establishment, whileCthenect or

performs active connection establishment. The participants of this pattern are shown

in Figure 14.
SeniceHandler
{peer_stream
n
- <— A r
Connector |~ 7 *open() n ceepto
1| ¢peer_acceptor_
*connect()
*accept()
%
| ®complete() C%cpen)
Dispatcher notifies Dispatcher Dispatcher notifies
Connect.or when Acceptor when
connection connection arrives
completes

Figure 14 Acceptor Connector Design Pattern
Each Ser vi ceHandl er contains a transport endpoint. This endpoint might, for
example, be a socket descriptorSar vi ceHandl er on the client side is used to
exchange data with its corresponding service handler on the server side, and vice

versa. AnAccept or is a factory that createsSer vi ceHandl er and initialises it.
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It is used for passively establishing a connection. It will listen on its

peer _accept or endpoint. When a connection request is received, it will invoke its
accept method which will create a new Servi ceHandl er to handle that
connection. The Accept or will then again wait for new connection requests on its

peer _acceptor endpoint. The Connector is used to actively set up a
connection. The Connect or’s connect method will establish a connection with a
remoteAccept or. It also initialises &er vi ceHandl er which will handle the

new connection.

The Di spat cher demultiplexes connection requests that may be received for
different Accept or s. It will pass the requests to the appropriateept or . This

allows a number of differenfAccept ors to wait for connection establishment
requests. Thé&i spat cher can be implemented using tiReactor design pattern
which is described below. Th& spat cher is also used on théonnect or side to
complete the establishment of connections that were initiated asynchronously, using
connect. It is not needed if connections were initiated synchronously by the
Connect or since the thread of control that calksonnect will also call

conpl et e, which completes connection establishment.

The Reactor Design Pattern

The Reactor (also known asDispatcher) design pattern is used to demultiplex
requests that are sent to an application by any number of clients. Each request may be
for a particular service. Different services are represented by different
Event Handl er s. Each of thesBvent Handl er s is responsible for dispatching its
service requests, ie passing the request to the actual service. The structure of this

pattern is given ifrigure 15.

InitiationDispatcher select(handlers);

foreach h in handlers loop
*handle_events() h.handle_event(type)
*register_handler() end loop
*remowve_handler()

1
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Figure 15 Reactor Design Pattern

A Handl e represents an OS resource, such as a network connection. The
Synchr onousEvent Denul ti pl exer waits for events to occur on a set of
handles. When an event can be handled without blocking, it returns. This class is
essentially a wrapper for an event demultiplexing function, such as sel ect under
Unix. Thel ni ti ati onD spat cher isthe centra class in this pattern. It alows
Event Handl ers to be registered with it and removed from it. When the
Synchr onousEvent Denul ti pl exer detects a new event occuring, it triggers
the I niti ati onDi spat cher to cal the relevant application specific concrete
Event Handl er.

The Service Configurator Design Pattern

The Service Configurator design pattern is used to implement explicit dynamic
linking. Dynamic linking allows the addition and deletion of object files into the
address space of a process either at program startup or during program run-time.
Dynamic linking is supported by various operating systems, such as SunOS 4.x, 5.x,
and Windows NT.

The Ser vi ceCbj ect represents the interface to a dynamically linkable service. Its

inheritance hierarchy is shown in Figure 16.

ConcreteSeniceObject

|

\/
ServiceObject

VAN




Figure 16 Service Object Inheritance Hierarchy

The Shar edObj ect abstract base class provides an interface for dynamically
linking service handler objects. The Shar edObj ect abstract base class is kept
separate from the Event Handl er abstract base class since certain services may
require dynamic linking, event demultiplexing, or both. Concrete subclasses of
ServiceObject are used to implement application specific functionality of the service
that can be configured by the Service Configurator.

Servi ceObj ect s are managed by the Ser vi ceReposi t ory class. Thisclassis
an object manager that handles queries for particular services. It links service names
(as ASCII strings) to instances of Ser vi ceQbj ect s. The Ser vi ceRepository

class structure is shown in Figure 17.

SeniceRepository

ConcreteSeniceObject

1 = 1

1 ~_ \/
ServiceObject

SeniceRepositorylterator

Figure 17 Service Repository Class Composition

The Ser vi ceConfi g class uses the above classes to enable dynamic linking of
Servi ceObj ects, and thereby the dynamic configuration of communication
software built using ACE. The class structure is shown in Figure 18.

ConcreteSeniceObject
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Figure 18 Service Configurator Design Pattern

3.353 TheTAOORB
The TAO ORB is built using the ACE framework. The principal components of TAO

are shown in Figure 19.

Operation
Client P 0 Servant

RIDL
Skeleton

RIDL ORB QoS
Stubs Interface [ Real-Time Object Adapter

Real-Time ORB Core

4 OS Kernel ) 4 OS Kernel )
Real-Time 1/O Real-Time 1/O
Subsvstem Subsvstem
High-Speed High-Speed
Network Adapters Network Adapters
| | o

Network
Figure 19 TAO Components

TAO’s ORB core
TAQO’s ORB core makes use of a number of components of the ACE framework, such
asAcceptor-Connector andReactor. The TAO ORB core is shown Figure 20. The

Acceptor-Connector pattern is used to establish connections between client and
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server, with the Reactor taking the role of dispatcher on the Acceptor (server) side. On
the client side, the St r at egy _Connect or caches connections to the server while
on the server side the Reactor detects new incoming connections and notifies the
Strategy_ Acceptor, which associates the new connection with a
Connect i on_Handl er . The acceptors and connectors in the ORB core are called
Strategy_ Acceptor and Strat egy _Connect or since they make use of the
Srategy design pattern. This allows them to use different strategies for connection
management and handler concurrency. For example, the Strategy Connector can use
thread-specific cached connections or process-wide cached connections.

operation() dispatch()

ORB Core

/
(" o N

ConnectionHandler

A

~
N

ConnectionHandler ‘
ConnectionHandler

ConnectionHandler - >

+0-n Request/ f

DArA~An~ |

Create &

CachedConnectStrategy |-+ | StrategyAcceptor | | StrategyAcceptor

Strategy Connector

k / K Reactor Reactor /
\ Client /

Figure 20 TAO ORB Core

connect( accept(

TAQO'’s Real-Time Object Adapter

TAOQO's real-time Object Adapter associates a servant with the ORB and demultiplexes
incoming client requests to the servant. It can be configured, usin§trétegy
pattern, to dispatch client requests according to one of a number of real-time
scheduling policies. The currently available strategies are Real-Time Upcall (RTU)
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dispatching and Real-Time Thread dispatching. In RTU dispatching, one rea-time

thread is responsible for queuing and dispatching all requests. In real-time thread
dispatching, areal-time thread is allocated to each priority queue of client requests.

For demultiplexing client requests to the appropriate servant operation, TAO’s Object
Adapter offers two mechanisms.

Perfect Hashing: In the perfect hashing strategy, an automatically generated perfect
hashing function is used to locate the servant. A second hashing function is used to
locate the operation. For this method to work, the keys to be hashed need to be known
in advance. This method can be used when servants and operations can be configured
statically.

Active Demultiplexing: The second strategy for demultiplexing client requests to the
appropriate servant operation is active demultiplexing. Here, the client passes a
handle that identifies the servant and operation directly. The client can obtain this
handle when the servant’s object reference is being registered with a naming service
or a trading service.

The above two demultiplexing mechanisms can be configured in TAO using the
Srategy pattern.

3.4 Electra

3.4.1 Introduction

In the study of the implementation of a number of CORBA compliant public domain
ORBs, Electra was chosen to be the third ORB to be examined. Electra is a CORBA
2.0 compliant ORB, aimed at fault-tolerant applications and at applications that make
use of object groups and group communication. It allows applications to create object
groups and make use of reliable multicast communication. Electra was developed by
Silvano Maffeis while at the University of Zurich. The Electra homepage is currently

atww. sof t wi red. ch/ peopl e/ maffei s/electra. htnl .

3.4.2 Purpose of the analysis
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The purpose of the analysis of Electrawas similar to that of OmniORB2. In addition,
an objective of the study was to gain insight into how an ORB aimed at fault tolerant,
and object group based applications might be implemented, and how it would differ
from a standard ORB.

3.4.3 Main features of Electra

34.3.1 CORBA compliancy

Electra is based on the CORBA 2.0 specification. The current version of Electrais

2.0b. It includes:

* A CORBA IDL compiler

* A binding for the C++ programming language

* A Basic Object Adapter (BOA) that supports object groups and object replication

e An ORB, a $tatic Invocation Interface (SllI), and a Dynamic Invocation
Interface(DIl)

» A fault tolerant COSS Name Server

* Piranha, the Electraremote activation and network management utility

* A Td/Tk interface to the DIl (experimental)

* Anlinternet ORB gateway (experimental)

It does not include

* AnInterface or Implementation Repository

3.4.3.2 Platform support
Electra can be built and configured on Solaris, SunOS, and HPUX. It requires that a

toolkit for reliable distributed systems is installed and running on the same machine.

Toolkits currently supported are Horus, Isis, and Ensemble.

3.4.3.3 Facility for object groups

Electra provides the facility to create object groups, to perform object replication, and
to perform reliable multicast communication. To achieve this, Electra is based on
toolkits for the implementation of reliable distributed systems. Examples of these are
Horus, Isis, and Ensemble. An object group is simply the combination of a number of

53



network objects. They are treated as a unit. Reliable multicast communication ensures
that invocations aimed a an object group will be received by each object
implementation which is part of that object group. The provision for object groups
allows Electra to be used for a number of application scenarios including fault-
tolerance, load sharing, caching, and mobility.

To alow applications to create object groups and to join and remove objects from
object groups, a number of operations were added to the BOA interface. These are
create_group, join, leave, destroy_group, get_state, set_state, view_change.

A detailed description of the use of object groups in Electra can be found in [Maf95a]
and [Maf95b].

3.4.4 Overdll architecture of the Electra ORB

The Electra ORB is based on the Electra Object Model (EOM) [Maf95b]. The EOM
enhances CORBA by alowing objects to be grouped into object-groups. Object

groups can be named as a single unit. Applications can bind object references to both
individual objects and object groups, using the same expressions. Communication to

object groups is by reliable multicast, which ensures that an operation is received by

al members of a group. Communication can take place in transparent or
nontransparent mode. In transparent mode only one response is received after an
invocation on an object group. In nontransparent mode, each object group member’'s
response can be accessed by clients. Object invocations can be performed
asynchronously, synchronously, or deferred-synchronously.

To implement reliable multicast and group communication, Electra can make use of
existing distributed programming libraries such as Horus and Isis. Their use avoids
having to reimplement much functionality specifically for Electra. Some possible
Electra configurations for a number of different distributed programming libraries or
operating systems (Horus, Isis, and Chorus) are sho®gime 21.

Electra Abstractions:
Object Groups, Remote Method Calls, Class Libraries, etc.

Virtual Machine Interface:
Threads, Reliable Multicast, Ordering of Events, etc.

Horus Adapter Isis Adapter Chorus Unix Adapter
Adapter

Reliable Mcast, Reliable
Horus Toolkit | | Isis Toolkit Ordering, Mcast,




Figure 21 Some Possible Electra Configurations

The above is an example of possible configurations of Electra. Currently adapters
exist for Horus, Isis, and Ensemble. As can be seen from the diagram, a distributed
toolkit library is not necessary, as in the case of the Unix Adapter, which sits directly
on top of the OS. However, the implementation of such an adapter would be a
nontrivial task.

An important element of this layered model is the Virtual Machine Interface (VMI).
This provides an interface of common abstractions, such as reliable multicast, which
are implemented by lower layers of Electra. The Adapter layers enable the VMI to
always be the same, while providing the connection to the various distributed
programming toolkits (or operating systems).

Adaptors are derived from a common abstract base class, Vi rt ual Machi ne. This
class defines the interface of the virtual machine, which al adapters must implement.
Figure 22 shows the inheritance hierarchy for the adapter classes derived from the

virtual machine interface.
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Consul_Adp MUTS_Adp Isis_Adp Transis_Adp

A
%

Horus_Adp

Figure 22 Electra Adapter Classes

Vi rt ual Machi ne contains functions for entity creation and destruction, message
passing, group management, thread management, failure suspection, and
synchronisation.

The class Adapt or Dat a is the base class of those Electra classes which keep
information that is specific to the Real Machine. The classes derived from
Adapt or Dat a are used in the function signatures of the Vi rtual Machi ne
interface. They areillustrated in Figure 23.

AdaptorData
Entity Thread Sema Monitor

Figure 23 Electra AdaptorData Classes

The class Enti ty is the class that identifies a communication endpoint. Thr ead
identifies a thread and is used in their creation and destruction of threads through the
Vi rtual Machi ne interface. Sena identifies a semaphore and is used by the
Vi rt ual Machi ne functions dealing with the creation, destruction, incrementing,
and decrementing of semaphores. Moni t or is used by the Vi rt ual Machi ne
interface to monitor individual objects and object groups for possible failure.

The Electra ORB is layered as shown in Figure 24. Above the Virtua
Machine layer is the Multicast RPC Module, represented by the class RpcLayer .
The purpose of this layer is to enable asynchronous RPC to both single and group

destinations. RPC is at alower level of abstraction than remote object invocation. The
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RPC layer is solely concerned with the transmission of messages, ie. unstructured data
buffers, between communication endpoints. Synchronous and deferred synchronous
RPC are implemented by the layer above, the Dynamic Invocation Interface (DII).
Changes in group membership are handled by the RPC module. This is done
independently of the underlying Real Machine (eg. Horus or Isis). The RPC moduleis
based solely on the Vi rt ual Machi ne interface. The class Entity is used to
represent an RPC communication endpoint. A connection between Entiti es is
represented by an RpcHandl e object.

The DII layer is represented by the class Request , which represents a request to be
sent to a CORBA object. Its send function performs an asynchronous invocation on
the destination object, and its i nvoke function performs a synchronous invocation,
during which the caller will be suspended until completion of the invocation.

The Virtual Operating System (VOS) module provides a portable interface to
operations of the particular underlying operating system that need to be accessed by

the upper Electralayers.

DIl Sl ORB BOA VOS

Multicast RPC Module

Virtua Machine

Adaptor Object

Real Machine (Horus, Isis, etc.)

IPC Threads

Device

Driver
s —I ’—I Operating System

Figure 24 Electra ORB Layering

3.5 Conclusion
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This chapter described the analysis of three publicly available ORB implementations,
OmniORB, TAO, and Electra. This analysis led to some insights into the internals of

ORB implementations. These insights influenced the design of the ORB framework,
which is described in the following chapter.
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Chapter 4

Design of the Object Request Broker
Framework

4.1 Introduction

The objective of this chapter is to document the requirements specification and the
actual design of the ORB framework. The first part of the chapter documents the
requirements specification for the framework. The specification is influenced by a
number of factors.

Firstly, the Evolving Frameworks pattern language defines the overall context for
developing the framework. Its Three Examples pattern inspired the study of the three
publicly available ORBs described in Chapter 2. From this study, the functionality
and components that are common to al ORBs are factored out. At the same time,
functionality that is specific to particular application domains is noted for possible
inclusion in the framework. The other important source of information for the
framework requirements analysis is the Object Management Group (OMG) CORBA
specification. Whereas the three example ORBs provide an insight into how different
ORBs might be implemented, the CORBA specification lays down the exact
definition of public interfaces that the ORB must provide. It also provides detailed
information on communication between CORBA compliant ORBs.

The second part of this chapter documents the design of the ORB framework. The
context here is set by the second pattern in the Evolving Frameworks pattern
language, White-box framework. It proposes how to go about an initial design of a
framework after having applied the Three Examples pattern. The framework that was
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designed for thisthesisis essentially an instance of this pattern, i.e. it is an instance of

awhite-box framework.

4.2 Framework Requirements

The requirements which the proposed ORB framework must fulfil stem from a
number of sources. Firstly, the genera type of framework design aimed for is based
on the Whitebox Framework pattern in the Evolving Frameworks pattern language.
This pattern defines the general form that the framework should take. Next, the OMG
CORBA specification defines the interfaces that a CORBA compliant ORB should
support along with a standard protocol for inter-ORB communication. It also defines
various language mappings for these interfaces. Any instantiation of the ORB
framework needs to be compliant with this specification. Finaly, the surveys of the
three ORB implementations, documented in Chapter 2, motivate requirements of the
ORB framework regarding both common and domain specific functionality. These
latter requirements are particularly relevant to the design of the framework as it is
important that the framework can be instantiated with such functionality.

4.2.1 Whitebox Framework

The first requirement of the ORB framework is for it to be a whitebox framework. In
the context of the Evolving Frameworks pattern language for framework devel opment
it is the second pattern. It follows Three Examples, which was emulated by the survey
of the three ORBs in the previous chapter.

The principal problem that is addressed by this pattern is whether to base an initial
framework design on inheritance or composition. The Whitebox Framework approach
IS to favour inheritance over composition. The main motivation for favouring
inheritance is that initialy the framework designer does not know which parts of the
framework change and which parts remain constant. Inheritance allows the
application developer, ie. the person that instantiates the framework, to override or
change functionality that the framework designer never envisaged would change.

For a framework to be based on composition, on the other hand, the framework
designer needs to know exactly what is going to change and what is going to remain

the same. He has to envisage all application scenarios at framework design time.
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Basing a framework on inheritance results in a number of consegquences. First
of al, inheritance requires programming on the part of the application developer. If a
subclass needs to be created, the application developer needs to write this class. This
means that the application programmer needs an understanding of the workings of the
framework. Hence the name of the pattern Whitebox Framework. Inheritance can
break encapsulation by overriding members and methods of the base class, so extra
care must be taken by the application programmer in the implementation of a
subclass.

A second consequence of basing a framework on inheritance is that the design
patterns Factory Method and Template Method probably will feature prominently in
the framework design. They are briefly explained below.

The Factory Method design pattern can be used when an interface for creating an
object needs to be defined, but the actual decision as to which class is instantiated is
deferred to a subclass. This design pattern is a'so known as Virtual Constructor and it

isfound in many framework implementations. The pattern isillustrated in Figure 25.

Creator

Product

*FactoryMethod() N
A "'AnOpe\ratlonO product = FactoryMethod();
ConcreteCreator
Concrete Product ; C teProduct
return new ConcreteProduct;
*#FactoryMethod() ﬁ

Figure 25 Factory Method Design Pattern

In a framework, abstract classes are often used to define and maintain relationships
between objects. Consider the two framework-defined abstract classes Pr oduct and
Creator. At some point in the execution of the application Creat or must
instantiate a concrete subclass of Product. Creat or cannot, however, predict
which concrete subclass of Product to create, as Concr et ePr oduct is only
defined by the user of the framework.

In order to be able to let Cr eat or specify when a product needs to be instantiated, it
provides the virtual function Fact or yMet hod. This method can be called by other
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methods of Creator or by other classes if the method is declared public.
Fact oryMet hod is overridden in a concrete subclass of Creator,
Concr et eCr eat or in the diagram. This class is also created by the user of the
framework. The implications of this pattern are that the flow of control can be defined
by the framework, ie. a what stage does the product get created, but the instantiation
details of which subclass gets created are left to user defined subclasses. It is also
possible for Cr eat or to provide a default implementation for Fact or yMet hod in
which case a concrete product known at framework design time would be instantiated.
In this case it is optional for the framework user to override the method, which in this
case is virtual but not pure virtual (ie. it doesn’t need to be overridden in subclasses).
The Factory Method design pattern is so called because it is responsible for
“manufacturing” an object.

The Template Method design pattern allows the skeleton of an operation to be
defined in the operation while some steps are left for subclasses to override in order to

provide concrete behaviour.

AbstractClass
PrimitiveOperation1()
*TemplateMethod()
*primitiveOperation1(, PrimitiveOperation2()
PrimitiveOperation2(,

/\

I

ConcreteClass

"PrimitiveOperationl(
‘PrimitiveOperationZ(

Figure 26 Template Method Design Pattern

Template Method can thus be used to provide the invariant parts of an algorithm once
and leave subclasses implement the variable behaviour. It is similar Eadtoey

Method design pattern in that it lets users subclass existing classes to customise an
application or framework. The difference between the two ishhetory Method lets

users override creation of objects wherdasplate Method lets users override

behavior of objects, thus makirfgactory Method a creational design pattern and
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Template Method a behavioral design pattern. Of course, behavior of objects often
involves the creation of other objects, thus Template Method often uses the Factory
Method design pattern. The structure of Template Method is shown in Figure 26.

Tenpl at eMet hod implements a particular algorithm, leaving certain behavior to be
defined in PrimtiveQperationl and PrimtiveQperation2. These
functions are overridden in Concr et eSubcl ass which isimplemented by the user

that customises the application or framework.

4.2.2 CORBA specified components

The ORB framework is to be used for the building of customised CORBA ORBs.
This means that while ORBs with emphasis on different application scenarios might
be instantiated using the framework, they al must adhere to the OMG CORBA
specification, currently at version 2.2.

The CORBA specification has already been introduced in section 2.4. It is
important to note that the CORBA specification centres around the specification of
interfaces, not implementations. Thus, interfaces for all components of an ORB, such
as the ORB core , the Dynamic Invocation Interface (DIl), the Dynamic Skeleton
Interface (DSI), and the Portable Object Adapter (POA), are provided. The
implementation of these principa components, however, is left to the ORB
implementor. No attempt is made in the CORBA specification in prescribing how
these components should be implemented.

Instances of ORBs created using the proposed framework should provide
implementations for these CORBA specific interfaces. In the framework model,
which is presented in this thess, the principal CORBA specified interfaces should be
included. It is, however, beyond the scope of the model to include al CORBA
specified interfaces. The principa interfaces of the CORBA specification are the
ORB, Object, and POA interfaces. These should be included in the ORB framework
model.

The CORBA specification specifies a number of components which will not
be part of the ORB framework model. These are: an IDL compiler for the generation
of stub and skeleton code from OMG IDL code, an interface repository, and an
implementation repository. These could be added to the model at alater stage.
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4.3 Framework Design

4.3.1 Overall Design

The proposed ORB framework consists of around 40 classes. A class hierarchy for the
framework is shown in Figure 27.

<<Interface>> <<Interface>> <<Interface>> <<Interface>>
TypeCode Object ORB POA
(from COR

(trom CORBA)

CORBA)
(o CORBA)
L A T
A\ /\ ‘% Z}
CalData TypeCodelmpl Objectimpl ObjectRef ORBImpI ‘ POAImpI‘ ‘ ‘ActiveObjectTable ‘

TypeCodelnterpreter ORBComponentFactory
A
T \

Encoder ‘ ‘ ‘ [ \ |
‘ GIOPMarshaler ‘ ‘ DCE_CSIOPMarshaler ‘ ‘ ESIOPMarshaler ‘ MobileO y MobileGroupCommoO| y H OtherORBFactory

‘ CDRENcoder ‘ ‘ llOPMarshaler ‘ Message

M Sba VSR EndpointCreator ‘ EventHandler ‘ ‘ Receiver ‘

EndpointTable [& ‘ ‘ L ‘ C intCreator ‘ ServiceHandler ‘ ‘ Acceptor ‘ ‘ ReceiverThreadingStrategy ‘
Endpoint TransportWrapper
‘ SocketsEndpoint ‘ ‘ TLEndpoint ‘ ‘ FIFOEmbnml‘ ‘ EndpointDecorator ‘ ‘ SocketsWrapper ‘ ‘TLIWrapper‘ ‘ FIFOWrapper‘

‘ MobileTransp Decorator H GroupC Decorator

Figure 27 ORB Framework Hierarchy

Some of the classes are abstract with the remainder concrete. A class can be defined
as abstract if its primary purpose is to define an interface. It defers some or al of its
implementation to subclasses. An abstract class cannot be instantiated. The design
focused specifically on the discovery of abstract base classes for the framework. The
intention here is that abstract base classes can be used to define an interface for
groups of classes. The implementation of concrete classes derived from these abstract

base classes is |eft to application developers using the framework. As can be seen in

64



the diagram, many concrete subclasses have been provided. Thisis mainly to illustrate
which concrete subclasses might be derived from certain abstract base classes.

The framework can be broken down into two genera sets of classes. On the
one hand are the classes that directly implement CORBA specified interfaces. The
interfaces implemented in the model are TypeCode, Obj ect, ORB, and POA. The
classes that implement these interfaces are TypeCodel npl, Obj ect | npl,
ORBI npl , and PQAI npl respectively.

On the other hand are the classes that provide the core functionality of the
ORB framework. These arethe Mar shal er, | nvoker , and Recei ver classesand
their respective concrete subclasses. These can again be broken down into three
groups of classes. The classes relating to Marshal er, Endpoint, and
Transport W apper concern the core functionality of implementing ORBs based
on the framework. They are used in the implementation of both client and server
functionality. The classes relating to | nvoker concern client functionality in the
ORB. The classes relating to Recei ver concern server functionaity in the ORB.

The following sections explain the design in detail.

4.3.2 Core Components

This section lists those framework classes that are part of the core ORB functionality.
They include the classes ORBI npl, Marshal er, Transport W apper, and

Endpoi nt and other classes associated with each of these classes, respectively.

4.3.21 ORBImpl

ORBI npl is the core class of the ORB framework. ORBI npl inherits from the
CORBA specified ORB interface. Its purpose is to implement the CORBA ORB
interface and to create instances of the core ORB framework classes, i.e.
Mar shal er, | nvoker, Recei ver, and POAI npl . These classes are described in
the following sections. ORBI npl isan instance of the Sngleton design pattern, which
is described in section 4.3.5.5.

4.3.2.2 ORBComponentFactory
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In order to create instances of the core ORB framework classes, Mar shal er,
I nvoker, and Recei ver, a concrete subclass of ORBConponent Factory is

used. The ORBConponent Fact or y inheritance hierarchy is shown in Figure 28.

ORBImpl!

@em_plnvoker : Invoker*
@em_pMarshaler : Marshaler

ORBComponentFactory #:m_pORBClientComponentFactory : ORBClientComponentFactory*
.~ ®m_pReceiver : Receiver*

*®Createlnvoker() : Invoker* 11

*®CreateMarshaler() : Marshaler* ®GetlInvoker()

*®CreateReceiver(argname) : Receiver* ®GetMarshaler()

4 ®GetReceiver()
MobileORBFactory MobileGroupCommORBFactory OtherORBFactory

®Createlnvoker() : Invoker* *®Createlnvoker() : Invoker* *®Createlnvoker() : Invoker*
*CreateMarshaler() : Marshaler*| | *CreateMarshaler() : Marshaler* *CreateMarshaler() : Marshaler*
*CreateRecei\er() : Receiver* *CreateReceiver() : Receiver* *CreateReceiver() : Receiver*

/I creation of Invoker that uses ConcreteEndpointCreator and caches Endpoints:

EndpointCreator *pEndpointCreator = new ConcreteEndpointCreator;

EndpointManager *pEndpointManager = new CachedEndpointManager(pEndpointCreator);
Invoker *pinvoker = new Invoker(pEndpointManager);

return pinvoker;

Figure 28 ORB Component Factory

As can be seen in the diagram, any number of concrete subclasses of
ORBConponent Fact ory can be supplied by the user of the ORB framework.
These classes provide a mechanism for the customisation of ORBs created with the
framework. This is achieved by customising the creation of the core ORB
components, | nvoker, Marshaler, Receiver in the functions
Cr eat el nvoker, Creat eMar shal er, and Cr eat eRecei ver. This processis
described in more detail in section 5.2.1. ORBConponent Fact or y isan instance of
the AbstractFactory design pattern, which is described in section 4.3.5.1.

Mar shal er, I nvoker, and Recei ver, like ORBI npl , are instances of

the Singleton design pattern. This pattern is described in section 4.3.5.5.

4.3.2.3 Marshder

The Mar shal er class is central to the design of the ORB framework. It is used to

create both client and server functionality in an ORB created with the framework. As
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the name indicates, Mar shal er is responsible for marshaling and unmarshaling
invocation data into and out of messages. Messages are represented by the class
Message, and are used to communicate between clients and servers. What defines
invocation data depends on the protocol used, but usually it includes function

parameter values and any required headers.

Marshaler

&»m_pEncoder : Encoder*
&»m_pTCinterpreter : TypeCodelnterpreter*

*MarshallnvocationRequest(objref : ObjectRef*, calldata : CallData*, : ...) : Message*
*UnmarshallnvocationReply(pMessage : Message?*) : void

T*MarshalHeaders() : void

T* UnmarshalHeaders ()

*UnmarshallnvocationRequest(pMessage : Message*) : void
*MarshallnvocationReply(objref : ObjectRef*, calldata : CallData*, : ...) : Message*
*GetObjectRef(pMessage : Message*) : ObjectRef*

A
/\

+ :

GIOPMarshaler ESIOPMarshaler DCE_CSIOPMarshaler

A
%

lIOPMarshaler

Figure 29 Marshaer Inheritance Hierarchy

Any headers that have to be marshaled are specific to the particular inter-ORB
communication protocol used. Different concrete subclasses of Mar shal er can be
used to implement various protocols for inter-ORB communication. The Mar shal er
classinheritance hierarchy is shown in Figure 29.

The four principa Marshal er member functions are for marshaling and
unmarshaling  of invocation requests  and replies. They  are
Mar shal | nvocat i onRequest , Mar shal | nvocat i onRepl vy,
Unmar shal I nvocati onRequest, and Unmarshal | nvocati onReply
respectively. Mar shal er is essentially an instance of the Builder design pattern.

This design pattern is described in section 4.3.5.3.
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Marshaler inheritance hierarchy

As can be seen in the hierarchy, there are a number of concrete subclasses of
Mar shal er.

G OPMar shal er represents a marshaler that implements the CORBA specified
Genera Inter-ORB Protocol (GIOP). GIOP is a protocol that can be mapped onto any
connection oriented transport protocol.

| 1 OPMar shal er represents a marshaler that implements the CORBA specified
Internet Inter-ORB Protocol (I1OP). I1OP is a specific mapping of GIOP which runs
over TCP/IP connections. All CORBA 2.2 compliant ORBs need to support 110P,
regardless of what other protocols they might aso implement.

ESI OPMar shal er is a generic concrete class representing any number of different
marshalers that implement various Environment Specific Inter-ORB Protocols
(ESIOPs). ESIOPs are protocols that are optimised for particular environments. They
might be used where particular networking or distributed computing infrastructures
are already in place.

An example of an ESIOP is the DCE Common Inter-ORB Protocol (DCE-CSIOP),
which is designed for the OSF DCE environment. The class that represents this
protocol in the Marshal er inheritance hierarchy is the concrete class
DCE_CSI OPMar shal er.

M essage class

As dready stated, the purpose of the Mar shal er classes is to build a Message
object, or, when Mar shal er is used to unmarsha messages, to take a Message
object and to deconstruct it. Message is the class that holds marshaled invocation data
in the form in which it will be transmitted between client and server ORBs. Message
isillustrated in Figure 30

Message

Es»m_pBuffer
&»m_Length

Figure 30 Message Class
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Essentially, Message only contains an unformatted buffer, m pBuf f er of length
m _Lengt h. It contains the invocation data as it is intended to be received by the
receiving ORB.

CallData

In order to understand how invocation data is passed to the Mar shal er class and
subsequently marshaled into a Message object, it is necessary to look at how method
invocation data is passed to Mar shal er. All information about a method and its
parameters is stored in the Cal | Dat a class. The composition of this class is
illustrated in Figure 31.

<<Interface>>
TypeCode
(from CORBA)

*kind() : TCKind
*#member_count() : ULong
*member_type(index : ULong) : TypeCode_ptr

CallData T

ParamData
£#m_Parameters : ParamData* TypeCodelmpl

£#m_MethodName : char* N "fm—;ﬁ?sﬁﬁf d:e-l_—ygzg?ga—opg;% Ssm_Kind : TCKind
£#m_NoOfParameters : int 1 0. (R | 1 1

Figure 31 CallData Class Composition

An instance of Cal | Dat a for each method that has been declared in a CORBA
application’s IDL code needs to be declared in that interface’s client stub and server
skeleton code. This could be achieved through the use of an IDL compiler, or by
manually inserting the required cod€al | Dat a contains the method name
(m_Met hodNane), the number of method parametars loCOf Par anet er s), and

an array ofPar anDat a instances i Par anet ers). There is an instance of

Par anDat a for each parameter in the meth®ar anDat a contains two members,

a pointer to theTypeCode of the parametern{ TypeCode) and the parameter
mode (n_Par anVbde). The mode of the parameter can take the vall@E | N,
MODE_OUT, MODE_| NOUT, or MODE_ RETURN.

A TypeCode is a value that represents invocation argument types. In the framework,
TypeCodes are implemented by fhgpeCodel npl class, which inherits from the
CORBA specifiedTypeCode interface.TypeCodes can be used in the Dynamic
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Invocation Interface (DII) to indicate the types of the actual arguments. In the
framework they are also used by the Static Invocation Interface (Sl1), in other words,
the stub and skeleton code, to represent the types of the arguments. The advantage of
thisis that marshalers can be used for both static and dynamic invocation marshaling,
asthe required interfaces of the marshaler require invocation parameter information to
be specified using Ty peCodes.
The CORBA gspecification also defines an enumeration, named TC_Ki nd, which
identifies the type that is represented by the particular TypeCode instance. Included
are al primitive types such as short (t k_short), | ong (t k_| ong), and so on.
Also included are complex types such as struct (tk_struct) and uni on
(t k_uni on). Complex types can be made up recursively, for example, a st r uct
could have another struct as a member. In order for the marshaler to handle
complex types, instances of TypeCodel npl representing those complex types need
to be defined in the stub and skeleton code of the CORBA application. Instances of
TypeCodel npl for all primitive types are declared in the framework.
The CORBA TypeCode interface specifies a number of methods, three of which are
ki nd, menber count and menber _t ype. The ki nd operation can be invoked
on any TypeCode and it returns the TCKi nd for that TypeCode. For TypeCodes
representing complex types, such as structures, unions, and enumerations,
menber _count returns the number of members congtituting the type. The
menber _t ype operation can be invoked on structure and union TypeCodes. It
returns the TypeCode describing the type of the member identified by i ndex. Thus,
TypeCodes can be used to recursively describe even complex object invocation
method parameter types.
TypeCodel nterpreter and Encoder

In order to marshal and unmarsha object invocation data into and out of
messages, Mar shal er uses two other classes, TypeCodel nterpreter and
Encoder.

The purpose of the Encoder based classesis to convert OMG IDL data types
into whichever low-level representation a particular inter-ORB protocol requires for
“on-the-wire transfer” between ORBs. For example, GIOP requires IDL data types to

be encoded using Common Data Representation (CDR) encoding. CDR addresses
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such issues as byte-ordering, aigning of primitive data types, and mapping of OMG

datatypes. The Encoder class hierarchy is shownin Figure 32.

Encoder

*Encode(pTypeCode : TypeCode ptr, stream : void*&, data : void*&) : void
*Decode(pTypeCode : TypeCode ptr, stream : void*&, data : void*&) : void

A
/\

-

CDREnNcoder

*Encode(pTypeCode : TypeCode_ptr, stream : wid*&, data : wid*&) : void
*Decode(pTypeCode : TypeCode_ptr, stream : wid*&, data : wid*&) : void

Figure 32 Encoder Inheritance Hierarchy

An abstract base class, Encoder, is defined, from which CDREncoder inherits.
CDRENncoder implements the CDR encoding scheme used by GIOP. Other encoding
schemes could be represented by new classes derived from Encoder .

TypeCodel nt er pr et er isused to recursively break down each parameter
into its constituent primitive types if its type is complex. Primitive types are then
encoded or decoded, depending on whether the marshaler is performing marshaling or
unmarshaling. TypeCodel nt er pr et er isaconcrete class since it is used only for
interpreting TypeCodes. In this framework design, the use of TypeCodes is
common to al marshaling and unmarshaling, no matter which inter-ORB protocol,
and hence, which concrete marshaler classis used.
Mar shaling and unmar shaling of invocation data
The interaction of Marshal er, TypeCodel nterpreter, and Encoder is
illustrated in Figure 33. If, for example, a client wants to marshal object invocation
data, its stub code «cals the Marshaler member  function
Mar shal | nvocat i onRequest . Its parameters are a pointer to the server object’s
object referenceopj r ef ), a pointer to theCal | Dat a object €al | dat a), and
finally, the actual method parameters. For each parameter to be marshaled, the
TypeCodel nt er preter’s Traver se function is called. This function takes as
its arguments

* pTypeCode, theTypeCode_pt r, taken fromPar anDat a
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* stream the stream into which the data is to be marshaled, ie. m pBuf f er in
Message

e dat a, the parameter value, taken from the variable length argument list of
Mar shal | nvocat i onRequest

depending on whether data is being marshaled or unmarshaled

encoder f unc, apointer to the relevant encoder function, Encode or Decode,

<<Interface>>
ORB
(from CORBA)
Marshaler
8m_pEncoder : Encoder*
ORBImpl 8-m_pTClinterpreter : TypeCodelnterpreter
Bm_pinvoker : Invoker*

Bm_pMarshaler : Marshaler

STraverse(pTypeCode : TypeCode_ptr, stream : wid*&, data : wid*&, encoderfunc : woid(*)(TypeCode_ptr, void*&, wid*&)) : void

1 ®MarshallnvocationRequest(objref : ObjectRef*, calldata : CallData*, : ...) : Message?
3m_pORBClientComponentFactory : ORBClientC -actory”| 1] &y i ) ° ) : void
2m_pReceiver : Receiver T*MarshalHeaders() : void
T*UnmarshalHeaders()
®Getlnvoker() : Invoker* &y i g ) - void
%GetMarshaler() : Marshaler ®MarshallnvocationReply(objref : ObjectRef*, calldata : CallData*, : ...) : Message*
®GetObjectR: : *) : ObjectRef*
! 1
1
TypeCe

1
CORBA::ULong count; AN Encoder
switch(pTypeCode->kind()) {
case tk_octet: nE, i o ey
encoderfunc(pTypeCode, stream, data); h{ ncode(pTypeCode : TypeCode_ptr, stream : vo{d &, data : VOI‘d &) : void
break; ‘Decode(pTypeCode : TypeCode_ptr, stream : void*&, data : void*&) : void|
11 other primitive TCKind cases here

case tk_struct:
count = pTypeCode->member_count();

for(CORBA::ULong i=0; i<count; i++) { SW"Ch(PTYf;CEUiE-ZSSSO) {
traverse(pTypeCode->member_type(i), stream, data, encoderfunc); = pul.char(stream data);
i)reak' break;
/I other nonprimitive TCKind cases here ] /1 other primitive TCKind cases here
}

N

Figure 33 Marshaer Class Composition

The Tr aver se function can beillustrated by the following code fragment:

CORBA: : ULong count;
swi t ch(pTypeCode- >ki nd()) {
case tk_octet:

encoder func(pTypeCode, stream data);
br eak;

/'l other primtive TCKind cases here
case tk _struct:
count = pTypeCode->nmenber count ();
for(CORBA: : ULong i =0; i<count; i++) {
Traver se( pTypeCode- >nenber _type(i),
stream data, encoderfunc);
}

br eak;
/'l other nonprimtive TCKi nd cases here
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As can be seen from the code, if the type of the parameter to be encoded is primitive,
the appropriate Encoder function is caled. If the type is complex, then the Traverse
function is recursively called for each of that type’s constituent members.

The appropriat&Encoder function might look like this:

swi t ch(pTypeCode->ki nd()) {
case tk_octet:
put _char(stream data);
br eak;
/'l other primtive TCKind cases here

}
here, theput _char function is responsible for the encoding of the data into

st r eam and advancing the stream and data pointer references by the correct amount.

4.3.2.4 TransportWrapper

The Tr ansport W apper inheritance hierachy is shown kigure 34. The
main purpose of th&r ansport W apper classes is to provide an object oriented
interface to a number of transport layer APIs. In any CORBA based ORB, the
transport layer ultimately is responsible for the sending and receiving of unstructured
data between clients and servers. Many of the available transport layer APIs are
written in the C programming language, which is non-object oriented. The provision
of wrapper classes for transport layer APIs ensures a consistent object oriented

interface which can be used by other classes.

TransportWrapper
*Read|()
®Write()
/\
ﬁg
SocketsWrapper TLIWrapper FIFOWrapper
*Read() *Read() *Read()
*Write() *Write() *Write()

Figure 34 Transport Wrapper Inheritance Hierarchy
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The Tr anspor t W apper classes represent instances of the Adapter design pattern,
which is described in section 4.3.5.2.

A number of concrete Tr ansport W apper classes are provided in the
framework model. These are provided as possible concrete examples and do not
constitute an exhaustive set. They are Socket sW apper, TLI W apper, and
FI FOW apper . Socket sW apper represents a concrete wrapper class for the
Berkeley sockets API. Sockets are a form of Inter Process Communication (IPC) that
provide communication between processes on a single system and between processes
on different systems. TLI W apper represents a concrete wrapper class for Transport
Layer Interface (TLI), which isaform of IPC provided with UNIX System V Release
3.0. Like sockets, it provides an APl for interprocess communication between
processes on a single system and between processes on different systems.
FI FOW apper represents a concrete wrapper class for UNIX FIFOs, also known as
named pipes. FIFO stands for First In, First Out. A FIFO is similar to a UNIX pipe.
Data written into the FIFO is read out of the FIFO in the same order, i.e. the first byte
written is the first byte read. Since it has a name associated with it, a FIFO can be
used by unrelated processes on the same system. It can thus be used to implement the
transport layer for ORBs residing on the same system.

The only functions specified in the Transport W apper interface are
Read and Wite. These are used to read and write unstructured data. Any
initialisation to be performed when instantiating a concrete Tr ansport W apper
can be done in constructors and initialisation functions which are dependent on the

actual transport used. Hence, they are not included in the model.

4.3.2.5 Endpoint

The Endpoi nt class represents a communication endpoint for ORB
communication. An instance of a concrete Endpoi nt derived class represents one
half of a connection between a client and a server ORB. An ORB can have any
number of Endpoi nt instances at any one time, representing connections to one or
more ORBs. Endpoi nt instances are used by ORBs in the implementation of both
client and server functionality. The Endpoi nt inheritance hierarchy is shown in
Figure 35.
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Endpoint 1..%
-ﬁ.-m_ TransportWrapper

®Send(pMessage : Message*) : Message*
®Send(pMessage : Message*) : void
®Receive() : Message*

%\ ccept(argname) : Endpoint*

&
| | |

SocketsEndpoint TLIEndpoint FIFOEndpoint
#Send(pMessage : Message*) : Message* %Send(pMessage : Message*) : Message*| | #Send(pM ge : M ge*): M ge*

SocketsWi <f

ocre sy Tapper TLIWrapper FIFOWrapper

%Read() R

ead() #Read
Brite - ead(
0 BWrite() #rite() L

EndpointDecorator
&wm_pEndpoint : Endpoint*
&em_NoOfEndpoints : short

%Send(pMessage : Message*) : Message*|

\ i

MobileTransparency EndpointDecorator GroupCommEndpointDecorator

#Send(pMessage : Message*) : Message* #Send(pMessage : Message*) : Message*

Figure 35 Endpoint Inheritance Hierarchy

As can be seen in the diagram, there are a number of concrete subclasses of
Endpoint. They ae  SocketsEndpoint, TLIEndpoint, and
FI FOEndpoi nt . Since a concrete endpoint uses an instance of one of the concrete
Transport W apper classes to implement communication between the ORBSs, a
concrete endpoint is provided for each concrete Tr anspor t W apper class.

Endpoints have one basic purpose. They are used to send and receive
messages between client and server ORBs. For this pupose, Endpoi nt provides two
basic functions, Send and Receive. Send comes in two forms, one for
synchronous and one for asynchronous transmission. It takes as its argument a
Message pointer. The synchronous version returns a reply Message pointer, while
the asynchronous version doesRécei ve returns avessage pointer.

The instantiation of concrete endpoints requires information about the peer
ORB process to which the endpoint represents a connection. If, for example, an ORB
wants to act as client to an ORB acting as server, 8wt ket sEndpoi nt is to be
the type of endpoint used, then, to create the endpoint, the Internet Protocol (IP)

address of the server ORB’s host and the port number on which the server ORB is
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listening are required. This information may be contained in the object reference for
the server object, and will be provided by the instantiator of the endpoint. Because the
different types of concrete endpoint require different information for connection
initialisation, thisis not provided at this point in the framework model.

As can be seen in Figure 35, in addition to the concrete endpoint classes, an
abstract class, Endpoi nt Decor at or is derived from Endpoi nt . It, in turn, has
two concrete subclasses, Mbbi | eTr anspar encyEndpoi nt Decor at or and
G oupConmEndpoi nt Decor at or . Endpoi nt Decor at or isan instance of the
Decorator design pattern. This design pattern is described in section 4.3.5.4. The
purpose of concrete subclasses of Endpoi nt Decor at or is to provide additional
functionality for an endpoint if required. An endpoint can be wrapped with an
endpoint decorator class while retaining the Endpoi nt interface, thus appearing the
same to other classes. An Endpoi nt Decor at or itself contains a concrete
Endpoi nt, so, in a way, the Endpoi nt Decor at or class can be seen to be
dynamically adding an extra layer of functionality to the framework.

The purpose of Mbbil eTranspar encyEndpoi nt Decorat or is to
provide endpoints with additional functionality for mobile applications. Such
functionality could, for example, provide automatic reconnection and retransmission
of lost messages in case of a mobile connection breaking down.

The purpose of G oupComrEndpoi nt Decor at or isto provide endpoints
with additional functionality for object group communication. It could be
implemented to provide reliable multicast to groups of objects represented by one
endpoint to other objects. In other words, a G- oupComrEndpoi nt Decor at or
appears as a single endpoint to other objects in the ORB, but it itself could contain a
number of concrete endpoints representing the objects in that group.

EndpointCreator

The Endpoi nt Cr eat or inheritance hierarchy is shown in Figure 36. In this
hierarchy, one generic concrete class, Concr et eEndpoi nt Cr eat or, represents
any number of classes inherited from Endpoi nt Cr eat or that might be provided
by the user of the ORB framework. Endpoi nt Cr eat or provides an interface for
the creation of concrete Endpoi nt objects. A concrete Endpoi nt Cr eat or class
Is one of the classes that must be provided by the user of the ORB framework,
although default implementations could also be be provided. Concrete subclasses of
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Endpoi nt Creator  instantiate Endpoi nt  objects in the function
Cr eat eEndpoi nt. An example implementation of this function in a concrete
Endpoi nt Cr eat or class might look as follows:

Endpoi nt * Creat eEndpoi nt (Obj ect Ref * pQbj ect Ref)

{
Endpoi nt * pEndpoi nt = new Socket sEndpoi nt;

/1l set Endpoint paraneters from pCbjectRef here.
/'l This depends on format of object reference and
/'l concrete transport endpoint used
Endpoi nt* pW apper Endpoi nt = new

Mobi | eTr anspar encyEndpoi nt ( pEndpoi nt) ;
return pWapper Endpoi nt;

This function creates an endpoint that uses the sockets transport wrapper class and has
mobile transparency.

To create an Endpoint in CreateEndpoint, an object reference is required. This
Is represented by the class ObjectRef, and its concrete form depends on the inter-ORB
protocol used. For example, if the inter-ORB protocol used is [1OP, then the object
reference will contain the object host’s IP address and the port number on which the
server ORB is listening. In this case, in the function CreateEndpoint this information
IS used to initialise a sockets endpoint.

Endpoi nt Cr eat or is an instance of th&rategy design pattern, which is

described in section 4.3.5.6.

4.3.3 Components for client functionality

This section lists those framework classes that are used to create client functionality in
the ORB. They include the classesvoker andEndpoi nt Manager, and other

classes associated with each of these classes, respectively.

4.3.3.1 Invoker

The class diagram illustrating the compositionl afzoker is illustrated inFigure

36. I nvoker, as its name suggests, is responsible for performing invocations of
remote objects. Basically, this consistd ofvoker sending and receiving messages
that contain marshaled invocation datavoker is not responsible for marshaling or

unmarshaling of invocation data. It is purely concerned with managing any number of
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connections with server ORBs. For this purpose, it has an instance of the
Endpoi nt Manager class.

<<Interface>>

wom cong
|
ORBInpI
B¢m_pinvoker : Invoker Endpoint *pEndpoint = new SocketsEndpoint;
B pMarshaler : Marshaler* I set Endpoint ters from pObjectRef here. This depends on format of
i BT ToRey e e T e R i) [ WD s e
Re - Re . &m_pEndpointManager : EndpointManager* 4
M pReceiver : Receiver e 1 I ref erence and transport used
®Getinvoker( : Invoker* #nvoke(msg : Message, pObjectRef : ObjectRef*) : Message* Endpoint SCEETAL )
FGetMarshaler() : Marshaler* 1 etum
*GetReceiver() : Receiver*

1
EndpointManager
@m _pEndpointCreator : EndpointCreator*

EndpointCreator

#CreateEndpoint(pObjectRef : ObjectRef*) : Endpoint*
*®CreateEndpoint() : Endpoint*

-

*GetEndpoint(pObjectRef : ObjectRef*) : Endpoint* 1
*CreateEndpoint(pObjectRef : ObjectRef*) : Endpoint*
\

ConcreteEndpointCreator

#CreateEndpoint(pObjectRef : ObjectRef*) : Endpoint*

EndpointTable

N CachedEndpointManager
&@m_EndpointTable : EndpointTable UncachedEndpointManager

#GetEndpoint(pObjectRef : ObjectRef*) : Endpoint*
#nsertEndpoint(pObjectRef : ObjectRef*, pEndpoint : Endpoint*) : void

#GetEndpoint(pObjectRef : ObjectRef*) : Endpoint* #GetEndpoint(pObjectRef : ObjectRef) : Endpoint*

if (pEndpoint) {
pEndpoint = CreateEndpoint(pObjectRef);

return CreateEndpoint(pObjectRef);

m_Endpoint Table. AddEndpoint(pEndpoint, pObjectRef);

Endpoint* pEndpoint = m_EndpointTable.GetEndpoint(pObjectRef);
}
return pEndpoint;

Figure 36 Invoker Class Composition

As can be seen in Figure 36, Endpoi nt Manager has two concrete subclasses,
CachedEndpoi nt Manager and UncachedEndpoi nt Manager .
UncachedEndpoi nt Manager creates a new Endpoi nt for each invocation.
CachedEndpoi nt Manager is used to cache Endpoi nt s between invocations. If
an invocation is made using the same object reference, then the cached Endpoi nt is
retrieved from the Endpoi nt Tabl e. If no Endpoi nt exists for the particular
object reference, then a new Endpoint s created using a concrete
Endpoi nt Creat or. This is illustrated using the following code fragment for
CachedEndpoi nt Manager’s Get Endpoi nt function:

Endpoi nt * Get Endpoi nt (Obj ect Ref * pCbj ect Ref)
{
Endpoi nt* pEndpoi nt =
m_Endpoi nt Tabl e. Get Endpoi nt ( pObj ect Ref) ;
I f(!pEndpoint) {

pEndpoi nt = Creat eEndpoi nt (pQbj ect Ref) ;
m_Endpoi nt Tabl e. AddEndpoi nt ( pEndpoi nt,
pCbj ect Ref ) ;
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}

return pEndpoi nt;

In this example, Endpoi nt Tabl e: : Get Endpoi nt returns a null pointer if no
match for pQbj ect Ref exists in the table, in other words, no cached Endpoi nt
exists that matches the supplied object reference.

Endpoi nt Manager isaninstance of the Srategy design pattern, which is described
In section 4.3.5.6.

4.3.4 Components for server functionality

This section lists those framework classes that are used to create server functionality
in the ORB. They include the classes Recei ver and POAI npl , and other classes

associated with each of these classes, respectively.

4.34.1 Recever

The purpose of the Recei ver class and its associated classes is to provide
the ability to establish connections for providing server functionality in the ORB.
Recei ver and its associated classes are shown in Figure 37. The principa purpose
of the Recei ver class is to act as demultiplexer of incoming messages for any
instances of Event Handl er registered with it. As can be seen in the
Event Handl er inheritance hierarchy, Event Handl er has two concrete
subclasses, Acceptor and ServiceHandl er. Both Acceptor and
Ser vi ceHandl er use an instance of Endpoi nt to implement the server end of a
connection between client and server ORBs. Accept or is responsible for the
establishment of a connection, while Ser vi ceHandl er isresponsible for handling
any subsequent requests incoming on that connection. Event Handl er s register
with Recei ver by caling its Regi st er Handl er function. Recei ver then
demultiplexes any incoming messages for Event Handl er s registered with it. It
achieves this by utilising a system call for event demultiplexing, for example select if
using sockets. One Accept or can create one or more Ser vi ceHandl er s as it
accepts new connections. For example, if using sockets, the Acceptor’s

Socket sEndpoi nt can use the system caltcept to create a new endpoint for
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the Ser vi ceHandl er that will now handle the new connection. This mechanism
allows an Accept or to listen for new client connections on well known ports and
creating Ser vi ceHandl er s to handle subsequent requests on a new connection in
order to keep the Accept or freeto listen for new connection requests on the same
well known port. The Accept or and its associated classes form an instance of
Accept or in the Acceptor-Connector design pattern. This design pattern is
described in section 3.3.5.2.

ORBInpl

ﬁrn_plnvakel : Invoker*

-hrn_pMalshaler : Marshaler*

-i.m_pORBCIientCunponen[Fac[uly : ORBClientConponentFactory*
-ﬁ,mﬁpReceiver . Receiver*

%Getinvoker() : Invoker
%GetMarshaler() : Marshaler*
%GetReceiver() : Receiver*

1

Receiver

%RegisterHandler(pEventHandler : EventHandler*) : void ReceivenlihieadingSateoy,
%HandleEvents() : void
#Select(pHandlers : EventHandler*, NoOfHandlers : short) : EventHandler*

1

EventHandler

&

Acceptor ServiceHandler
1 #Acceptor(pEndpoint : Endpoint*) %#0pen() : void
EndpointCreator %0Open() : void ¢ 1.* "HandleEvent() : void

#HandleEvent() : void ‘ #SendReply(pMessage : Message*)

%CreateEndpoint(pObjectRef : ObjectRef*) : Endpoint*

%CreateEndpoint() : Endpoint* 1 1

ZF 1 1
ConcreteEndpointCreator Endpoint

&wm_TranspontWrapper

%CreateEndpoint(pObjectRef : ObjectRef*) : Endpoint*

®SendoM 1 9 : M

%Send(pMessage : Message*) : void
®Receive() : Message*
®Accept(argname) : Endpoint*

Figure 37 Receiver Class Composition

In order to create concrete endpoints for instances of Acceptor and
Servi ceHandl er, Receiver has an instance of Endpoi ntCreator. A
Concr et eEndpoi nt Cr eat or can be created in the same way as it is for the
Endpoi nt Manager class.

An instance of Recei ver has associated with it a

Recei ver Thr eadi ngSt r at egy. As its name suggests, the concrete subclass of
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Recei ver Threadi ngStr at egy associated with Recei ver determines the
threading model which the Recei ver uses. Possible concrete subclasses include

* ThreadPer Connecti onRecei ver St r at egy

 ThreadPer Request Recei ver St r at egy

* Singl eThreadedRecei ver Str at egy

Recei ver Threadi ngStr at egy is an instance of the Srategy design pattern,
described in section 4.3.5.6.

4.3.4.2 POAImMpl

The purpose of PQAI npl is to implement the CORBA specified POA
interface. POA is the interface of the Portable Object Adapter. PQAI npl isillustrated
in Figure 38. The purpose of the POA is to alow object implementations to access
services provided by the ORB. Examples of these services are the generation and
interpretation of object references, method invocation, and registration of object

Implementations.

<<Interface>>
POA

(from PortableServer)

A
/\

POAImpl
ActiveObjectTable
*Dispatch(pMessage : Message*) : Message* 1 1
*|ocateSenant(pObjectRef : ObjectRef*) : Object* 1
1 0..*
0..*
Objectimpl

Figure 38 POAImpl Class Composition
As can be seen in the diagram, POAI npl can recursively contain instances of itself.

The parent of all POAI npl objects represents the root POA as described in the
CORBA specification. Each instance of PQAInpl has an instance of
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Acti veObj ect Tabl e. This is used to store object implementations, represented
by the class Cbj ect | npl .

If aSer vi ceHandl er needs to invoke an object because it has received an
incoming client request, it calls POAI npl ’s Di spat ch function with a pointer to
Message as its argumentPQAI npl  will extract the object reference from the
message and use #st i veObj ect Tabl e to locate the server object. It then calls
the object'sRequest function. The object will proceed to unmarshal the request
data, call the appropriate method and marshal the reply message, which is then

returned byPOAI npl . This process is illustrated in more detail in section 5.3.2.

4.3.5 Principal design patterns used in the framework

As has already been mentioned throughout this chapter, instances of a number of
design patterns appear in the framework model. Those patterns which have not

already been explained previously are briefly explained here.

4.35.1 Abstract Factory
The Abstract Factory design pattern provides an interface for creating families of

related or dependent objects without specifying their concrete classes.

AbstractFactory Client
*CreateProductA()
*CreateProductB()

AbstractProductA
A

/\ A
/\

A

ConcreteFactoryl ConcreteFactory2

[ |
ProductA2 ProductAl

*CreateProductA() *CreateProductA()
*CreateProductB() *CreateProductB()

AbstractProductB

[ T \

ProductB2 ProductB1

Figure 39 Abstract Factory Design Pattern
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The Abstract Factory design pattern is illustrated in Figure 39. The abstract class
Abstract Factory provides an interface for the creation of two products,
Pr oduct A and Pr oduct B. Which concrete product gets instantiated depends on
which concrete factory is used.

In the ORB framework, ORBConponent Fact ory is an instance of the
Abstract  Factory  pattern. The  functions Creat eProductA and
Cr eat ePr oduct B are represented by Cr eat el nvoker, Cr eat eMar shal er,
and CreateReceiver. AbstractProductA could, for example, be
Mar shal er. Product A1 might represent | | OPMar shal er while Pr oduct A2
might represent DCE_CSI OPMarshal er. The Createlnvoker and
Cr eat eRecei ver functions work somewhat differently, asin their case the created
classes are not customised by inheritance but by composition. For example, a concrete
ORBConponent Factory might instantiate an [ nvoker with an
Endpoi nt Manager that caches Socket sEndpoi nts. A similar mechanism
might be used for the creation of Recei ver. Thus, Createl nvoker and
Cr eat eRecei ver are themselves instances of the Factory Method design pattern,
which has already been described.

4.3.5.2 Adapter

The Adapter design pattern converts an interface of a class or a set of
functions into an interface that clients expect. The Adapter design pattern is also
known as Wrapper. It isillustrated in Figur e 40.

Target Adaptee
Client g P
*Request() *SpecificRequest()
%
Adapter

*Request()

adaptee->SpecificRequest(); ﬁ

Figure 40 Adapter Design Pattern
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Tar get is an abstract class that provides the required interface. Adapt er is a
concrete subclass which adapts the interface of Adapt ee to the Tar get interface.

In the ORB framework, the Transport W apper classes represent an
instance of the Adapter pattern. Tr ansport W apper is equivalent to Tar get ,
while each concrete Tr ansport W apper subclass represents an Adapt er . The

Adapt ee isrepresented by the various inter process communication APIs.

4.3.5.3 Builder

The Builder design pattern separates the construction of a complex object
from its representation, thereby alowing the same construction process to creste
different representations. Builder isillustrated in Figure 41.
Bui | der is used to create a product, represented by Pr oduct . Different concrete

Bui | der sallow the product to be assembled in different ways.

Director Builder

*Construct() *BuildPart()

A
/\

ConcreteBuilder

for all objects in structure { Product
builder->BuildPart(); *BuildPart()

}

#*GetResult()

Figure 41 Builder Design Pattern

In the ORB framework, Mar shal er is an instance of the Builder design
pattern. Different concrete Mar shal er s represent different concrete Bui | der s.
Pr oduct is represented by Message. The concrete Message that is assembled
depends on the concrete Bui | der used, while the assembly process remains
essentially the same. Di r ect or is represented by the client stub or server skeleton
code. The primary difference between Builder and Abstract Factory is that Builder
constructs a product step by step. Abstract Factory’s emphasis is on creating families

of product objects in one step.

4354 Decorator
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The Decorator design pattern is used to dynamicaly attach additional

responsibilities to an object. Decorator isillustrated in Figure 42.

Component
* Operation()
A
\ \
ConcreteComponent Decorator
*Operation() *Operation() component->Operation(); ﬁ
ConcreteDecoratorA ConcreteDecoratorB
addedState -
= - ] Decorator::Operation();
Operation() AddedBehavi )
*QOperation() *AddedBehaviour() edBehaviour();

Figure 42 Decorator Design Pattern

Conponent defines a common interface to the objects which can have
responsibilities added to them dynamically. Concr et eConponent is an example
of such an object. Decor at or conforms to the Conponent interface. At the same
time, it maintains a reference to a Conponent object to which it attaches additional
responsibilities. A Concr et eDecorator is used to attach these additional
responsibilities.

In the ORB framework, Endpoi nt and its related classes form an instance of
the Decor at or design pattern. Endpoi nt represents the Conponent interface.
Concr et eConponent s are represented by Socket sEndpoi nt
TLI Endpoi nt, and FI FOEndpoi nt. Endpoi nt Decorat or represents
Decorator. Finadly, ConcreteDecorators ae represented by
Mobi | eTr anspar encyEndpoi nt Decor at or and
G oupConmEndpoi nt Decor at or . These two classes add extra functionality to

the other concrete Endpoi nt classes.

4.35.5 Singleton
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The Sngleton design pattern is used to ensure that a class has only one
instance and to provide a global point of accessto it. Sngleton isillustrated in Figure
43.

Singleton

E:uniquelnstance
EhsingletonData

#Instance()
*SingletonOperation()
#GetSingletonData()

return uniquelnstance ﬁ

Figure 43 Singleton Design Pattern

uni quel nst ance represents the one and only instance of Si ngl eton. It is
created by the | nst ance operation which is a class method and lets clients access
Si ngl et on’s unique instance.

In the ORB frameworkORBI npl , Mar shal er, | nvoker, andRecei ver

form instances of th&ingleton design pattern.

43.5.6 Strategy
The Strategy design pattern is used to define an interface to an algorithm while

letting the algorithm varyStrategy is illustrated inFigure 44.

Context Strategy
*ContextInterface() * Algorithminterface()
/\
LA
ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC

#*Algorithminterface()| | *Algorithminterface() | *#Algorithminterface()

Figure 44 Strategy Design Pattern
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St r at egy declares an interface that is common to all the algorithms. The different
concrete algorithms are represented by Concr et eSt r at egy objects. Cont ext is
the client of a particular strategy and thus maintains a reference to a concrete
St r at egy object.

In the ORB framework, St r at egy is used in numerous places. Examples of
instances of the Srategy pattern are Endpoi nt Cr eat or, Endpoi nt Manager ,

and Recei ver Thr eadi ngSt r at egy.

4.4 Summary

This chapter presented the formulation of requirements for the ORB
framework and its actual design. The requirements were presented within the contexts
of whitebox frameworks, CORBA based ORBs, genera requirements of an ORB
framework, and domain specific requirements of an ORB framework.

The framework design focused on the proposed principal ORB framework
components, ie. ORBI npl , Mar shal er, | nvoker, Recei ver, and POAI npl .
The principal design patterns that were used in the design were aso explained.
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Chapter 5

Evaluation of the Object Request
Broker Framework

5.1 Introduction

The objective of this chapter is to illustrate how the framework can be used to create
customised ORBs. It aso demonstrates how an ORB created using the framework
would execute a simple object invocation. This is visualised using Unified Modeling

Language (UML) sequence diagrams.

5.2 Creating customised Object Request Brokers

The ORB framework can be used in a number of ways to provide various degrees of
ORB customisation. Customisation of the principal components of the ORB can be
achieved by implementing a concrete subclass of ORBConponent Factory. A
concrete Endpoi nt Cr eat or must also be provided in order to allow it create the
required concrete Endpoi nt s from the object references used by the ORB. To
provide even more customised behaviour, any of the abstract classes in the framework
can be inherited from to provide behaviour that was unforeseen at framework design

time.

5.2.1 Creating a concrete ORBComponentFactory
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The most basic way in which to customise an ORB using the framework is to provide
a concrete subclass of ORBConponent Fact ory. As described in the previous
chapter, this class is responsible for creating the main components of the ORB, i.e.
Mar shal er, | nvoker, and Recei ver. By providing a concrete subclass of
ORBConponent Fact or y, these principa components can be customised.

ORBConponent Fact ory’s function Creat eMarshal er is used to
instantiate a concrete subclass d¥arshal er. If, for example, an
I 1 OPMar shal er is to be createdCr eat eMar shal er should be written as
follows:

Mar shal | er* CreateMarshal er ()
{

}

return new | | OPMar shal er;

Similarly, Createlnvoker is used to create an instance of Invoker. Since
Invoker is a concrete class itself, and does not form part of an inheritance hierarchy,
no subclass of Invoker needs to be created by the application programmer. Rather,
Invoker is customised by configuring it with a concrete EndpointManager, which, in
turn, is customised with a concrete EndpointCreator. This process can be illustrated
by the following sample code for ORBComponentFactory::Createlnvoker():

| nvoker* Createl nvoker ()
{
/1 creation of Invoker that uses
/'l Concr et eEndpoi nt Cr eat or
/1 and caches Endpoints
Endpoi nt Creat or* pEndpoi nt Cr eat or
new Concr et eEndpoi nt Cr eat or;
Endpoi nt Manager * pEndpoi nt Manager =
new CachedEndpoi nt Manager ( pEndpoi nt Cr eat or) ;
I nvoker* plnvoker = new I nvoker ( pEndpoi nt Manager) ;
return plnvoker;

Thus, it can be seen that the customisatiohrofoker relies somewhat on object
composition as well as inheritance. In a purely black-box framework customisation
would only require object composition since all concrete classes would already be
provided as components in the framework.

Finally, Cr eat eRecei ver is used to create instancesR&cei ver . This

function needs to be implemented in a similar wayCt@at el nvoker, since it
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needs to create an Endpoi nt Cr eat or that will be used by Recei ver. In the
same function, Receiver needs to be configured with a concrete
Recei ver Thr eadi ngStr at egy:
Recei ver* CreateReceiver ()

{
Endpoi nt Creat or* pEndpoi nt Creat or =

new Concr et eEndpoi nt Cr eat or;
Recei ver Threadi ngStrat egy* pThreadi ngStrat =

new Thr eadPer Request Recei ver Thr eadi ngSt r at egy;
Recei ver* pRecei ver = new Recei ver (

Concr et eEndpoi nt Cr eat or,

Thr eadPer Request Recei ver Thr eadi ngSt r at egy) ;
return pRecei ver;

5.2.2 Creating a concrete EndpointCreator

The class Endpoi nt Cr eat or is responsible for creating instances of concrete
Endpoi nt s. A concrete Endpoi nt Cr eat or needs to be supplied by the user of
the framework in order to map an object reference to the required
Transport W apper’s parameters needed to initialise d&ndpoint. The
Endpoi nt Cr eat or function in which a concret€endpoi nt is created is
Cr eat eEndpoi nt. Sample code for this function was given in the previous

chapter.

5.2.3 Inheriting from other abstract framework classes

In addition to inheriting from the abstract classes mentioned above, the framework
permits the creation of customised ORBs by inheriting from other abstract classes in
the framework. If, for example, a new inter-ORB protocol is to be created, a new
concrete class could be inherited fravlar shal er in order to implement this
protocol. This might also require the creation of a remcoder class, as the
required low level data encoding method may vary from those used for existing
protocols.

Likewise, other classes could be added to the framework as the need arises. For
example, other concrefér ansport W apper classes could be added, and with

them the associatdthdpoi nt classes.
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5.3 A sample object invocation

This section illustrates how an ORB created with the framework would
perform a simple object invocation. Sequence diagrams for object interaction are
provided in the Unified Modeling Language (UML). As an example, consider the
following IDL code:

| nterface Cal cul at or

{
struct G oup
{
octet o;
long I|;
short s;
}; .
Group CubeStruct(in G oup val ues);
3

This interface defines a method that takes as its argument an instance of a smple
structure. It returns an instance of the same structure. The purpose of the method is to
simply cube each element in the structure and return the structure.

In order to use this interface in order to perform CORBA object invocation a
stub and a skeleton class are required. These are illustrated in Figure 45. As can be
seen in the diagram, Objectimpl is the framework class that implements the CORBA
Object interface. Objectimpl contains a reference to an instance of the ObjectRef
class. This class represents an object reference. The contents of ObjectRef depend on
the inter-ORB protocol used in the implementation of the ORB. Inherited from
Objectimpl is the class Calculator. This class specifies the Calculator interface based
on the IDL definition. Calculator_Stub and Calculator_Skeleton both inherit from
Caculator. They provide the stub and skeleton classes respectively. The classes
Calculator, Calculator_Stub, and Calculator_Skeleton could be created manually or
by a suitable IDL compiler. Finally, Calculator_Impl needs to be provided by the
application programmer. It provides the implementation of the Calculator interface.
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<<Interface>>
Object
(from CORBA)

/\

[

Objectimpl ObjectRef
(from Framework)|<_>——————— (from Framework)

/\
T

Calculator

&

Calculator_Stub Calculator_Skeleton

*#CubeStruct(group : Group*) : Group* *#Request(pMessage : Message*) : Message*
/\

Calculator_Impl

*#CubeStruct(group : Group*) : Group*

Figure 45 Calculator Stub And Skeleton Classes

5.3.1 Sample Object Invocation: Client Side

The sample object invocation based on the above interface can be split into
client and server sequence diagrams. Figure 46 illustrates the overal client side
sequence diagram. As can be seen in the diagram, the Client calls the Calculator_Stub
function CubeStruct. What happens next can be broken down into three parts. First,
the invocation data is marshaled into a request Message. This is shown in Figure 47.
To do this, the Marshaller needs to calculate the required size of the request message.
This allows the correct amount of space to be allocated for Message’'s m_pBuffer.
Next, the Message object is created. Then, the required headers are marshaled into
m_pBuffer. This depends on the inter-ORB protocol and thus on the concrete
Marshaler used. After the headers, the invocation parameters are marshaled into the
Message using the TypeCodelnterpreter and Encoder. This process was described in

detail in Chapter 4. The MarshallnvocationRequest function returns with a Message
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that is passed to the Invoker using the Invoke function. This is the second part of the

client side object invocation sequence. It isillustrated in Figure 48. Invoker obtains a

suitable Endpoint based on the ObjectRef that has been passed to it. Invoker passes

this object reference on to Endpoint Manager which uses it to either retrieve an

existing Endpoint or to create a new Endpoint using EndpointCreator. Finally,
Invoker calls Endpopint’'s Send function with Message as its argument. Endpoint uses
a TransportWrapper to write the data contained in Message object. It subsequently
uses Read to read the data that will form the server's reply Message, which is
subsequently returned by Invoker. The third part of the client side object invocation
sequence is the unmarshaling of the return Message. This is similar to the marshaling

of the outgoing Message, and is illustrateéiigur e 49.

. Client . Calculator . ORBImpl . Marshaler . Invoker
Stub

[ \
CubeStruct(Group*
Cobestruei(Grop)

GetMarshaler( )

MarshallnvocationRequest(ObjectRef*, CallData*, ...)

7]

Getlnvoker( )

Invoke(Message*, ObjectRef*)

UnmarshallnvocationReply (Message*)

Figure 46 Cube Invocation: Client Side Overall View
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. Calculator : Marshaler . Message : TypeCode . Encoder
Stub Interpreter

[ [
MarshallnvocationRequest(ObjectRef*, CallData*, ...)

calculate message size

1

create message

1

MarshalHeaders( )

P

Traverse(TypeCode_ptr, wid*&, wid*&, wid(*)(TypeCode_ptr, wid*&, wid*&))

Traverse(TypeCode_ptr, wid*&, wid*&, void(*)(TypeCode_ptr, void*&, void*&))

<

Encode(TypeCode_ptr, wid*&, void*&)

Figure 47 Cube Invocation: Client Side Marshaling

: Calculator. . Invoker : Endpoint : Endpoint : Endpoint : Transport
Stub Manager Creator Wrapper

| |
InvokE(Message*, ObjectRef*)

GetEndpoint(ObjectRef*)

CreateEndpoint(ObjectRef*)

Send(Message®)

Write( )

Read()

Figure 48 Cube Invocation: Client Side Invocation
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. Calculator . Marshaler . TypeCode . Encoder
Stub Interpreter

[ [
UnmarshjllInvocationRepIy(Message*)

UnmarshalHeaders( )

P

Traverse(TypeCode_ptr, wid*&, void*&, void(*)(Tﬁ/peCode_ptr, void*&, wid*&))

Traverse(TypeCode_ptr, wid*&, void*&, wid(*)(TypeCode_ptr, wid*&, void*&))

<

Decode(TypeCode_ptr, void*&, wid*&)

Figure 49 Cube Invocation: Client Side Unmarshaling

5.3.2 Sample Object Invocation: Server Side

The overall server side sequence for the sample object invocation is shown in Figure

50. As can be seen in the diagram, an Acceptor is created and registered with the
Receiver. The Receiver's HandleEvents function is called subsequently. This starts
the Receivers demultiplexing function, Select. When an event occurs, i.e. an incoming
message has arrived, the Acceptor's HandleEvent function is called. The Acceptor
proceeds to create a ServiceHandler to handle the message. The ServiceHandler needs
to be requistered with Receiver next. If the threading strategy employed is single
threaded, this allows the Receiver to demultiplex further incoming events on both the
Acceptor and any already existing ServiceHandlers. When an event occurs, the
ServiceHandler calls the POAImpl Dispatch function. This is illustrated in more detail
in Figure 51. POAImpl now uses the Marshaler to obtain the object reference from
the Message. Based on the object reference, it obtains the server object from the
POAImpl's ActiveObjectTable. It then calls the object's Request function which

proceeds to unmarshal the Message in the usual way. The correct function of the
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server object is then called, based on information that was contained in the Message.
A reply Message is marshaled and returned by the POAImpl's Dispatch function.

Finally, the ServiceHandler returns this Message using its Endpoint.

: ORBImpl : Acceptor : Service . Receiver : POAImpl
Handler

icceptor(Endpoint*

RegisterHandler(EventHandler*)

I

HandleEvents( )

Select(EventHandler*, short

HandleEvent( ) ;

Open()

RegisterHandler(EventHandler*)

T ] HandleEvent()

Dispatch(Message*)

Send

P

Figure 50 Cube Invocation: Server Side Overall View
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: Service : POAImpl : Marshaler : Calculator : Calculator : TypeCode : Encoder
Handler Skeleton Impl Interpreter
*Dispatch(Message*)
GetObjectRef(Message*)

LocateServant(ObjectRef*)

P

UnmarshalHeaders( )

P

Request(Message*)

5.4 Summary

This chapter illustrated how the ORB framework can be used to create
customised ORBs.
ORBConponent Fact ory class. It was also shown how a simple object invocation
Is implemented using a framework based ORB. The following chapter concludes with
some comments on the framework approach and the framework itself, as well as

UnmarshallnvocationReqL

(N ge*)

Traverse(TypeCode_ptr, void*

&,|void*&, void(*)(TypeCode_ptr, void*&,

0id*&))

MarshallnvocationReply(ObjectRef*,

[© ubeStruct(Grou&*)

g

CallData*, ...)

Traverse(TypeCode_ptr, void*

Decode(TyypeCode_ptr, void*&

&,|void*&, void(*)(TypeCode_ptr, void*&,

void*&)

1

0id*&))

comments on implementing the framework.

97

Encode(T)

eCode_ptr, void*&,

]

void*&)

]

Figure 51 Cube Invocation: Server Side Dispatching View

It was shown how ORB customisation focuses on the




Chapter 6

Conclusion

6.1 Introduction

The objective of this chapter is to provide some concluding remarks about the design
of the ORB framework. First, some problems regarding the framework approach in
genera are described, and how they relate to the ORB framework specifically. Next,
some specific problems encountered with the design of the framework are detailed.
Finally, a possible approach to implementing and extending the framework is
described.

6.2 Problems with the framework approach

Problems typically encountered when using the framework approach have
aready been introduced in Chapter 3. This section reiterates some of these, and
relates them to the ORB framework design.
Because a framework is developed with a “one fits all” philosophy, the development
effort required is much larger than that for an ordinary application in the same
domain. The knowledge required from the developers essentially needs to cover the
entire application domain. In the case of the ORB framework, this is especially true.
Developing a framework for building customisable ORBs that really covers the entire
domain of CORBA based middleware is a nontrivial task, since many different
application scenarios can be encountered. To create an ORB specifically aimed at a

particular scenario, in itself, requires a large effort. An example of this is TAO, the
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ACE ORB, described in Chapter 3, the design and implementation of which has
required a large effort. Yet TAO is aimed at one specific scenario, that of real time
applications. The development of an ORB framework hoping to provide real time
functionality corresponding to that of TAO would require at least the amount of effort

that went into TAO’s development, but much more if it were to cater for other
scenarios as well.

Another problem associated with frameworks relates to their use. The learning curve
required by application programmers who want to use the framework to build
applications based on it is quite large. It is larger for a whitebox framework than for a
blackbox framework. The ORB framework described in this project is a whitebox
framework and certainly would require the user’s insight if he or she were to build
ORBs with it. The principal reason for this is that the framework is mainly based on
inheritance, which requires familiarity with the classes from which one inherits.

As a consequence of this problem frameworks require a large amount of
documentation about their design, inner workings, and use. Again, this contributes to
the overall development effort, though it might be argued that any software project
should be well documented, be it a simple application or a complex framework.

Since frameworks generally control the flow of execution of applications built using
them, problems can occur when attempts are made to combine two or more
framework into an application. This problem is also known as architectural mismatch.
With an implementation of the ORB framework, this might occur when, for example,
an attempt is made to provide a graphical user interface (GUI) using a framework
designed for this purpose. For example, the Microsoft Foundation Classes (MFC)
provide an application framework for the creation of Microsoft Windows based GUIs.
This framework provides its own architectural model, the Document-View
architecture, and could thus create problems in combination with the ORB
framework.

Related to the fact that a framework generally determines the flow of control within
an application built with it, is that debugging is made more difficult in such
applications. In an implementation of the ORB framework this would be compounded
by the fact that an application built using a framework based ORB would be
distributed between client and server ORBs.

Because all applications built using a framework follow one architectural model, an

application built using a framework might not be as efficient as a similar application
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that was purpose built. In other words, the performance of an application from an
execution speed point of view may not be as good as that of a purpose built
application. This is due to the fact that because of the required generality and
flexibility, a framework may use a lot of indirection. An example of such indirection
in the ORB framework is the creation of concrete Endpoints. Instead of using the
Invoker to create Endpoints directly, it delegates this task to the EndpointManager,
which, in turn, delegates this task to the EndpointCreator. Were it known at
framework design time that all Endpoints should be SocketsEndpoints with no
caching functionality, then all Endpoints could be instantiated in Invoker directly.
Thereisadirect relationship between increased indirection and increased flexibility.

Finaly, the maintainability and extensibility of frameworks affects the applications
built with them. If aframework needs to be extended or modified, these modifications
should remain compatible with previous applications built with the framework. In the
case of the ORB framework, if ORBs are created using an implementation of the
framework, then future versions of the framework should allow those existing ORBs
to be recompiled and work correctly. This is especially important when a number of
new concrete classes, concrete Endpoints, for example, have been implemented in
order to provide additional behaviour. A new version of the ORB framework should
ensure that any such classes that were written for previous versions of the framework

will still work.

6.3 Implementing the framework

It was beyond the scope of this project to provide an actua implementation of
the ORB framework. A number of issues need to be considered before embarking on
an implementation project for the framework.

The implementation language should be an object oriented language such as
Java or C++. For performance reasons C++ might be preferred over Java. Since Java
uses a Virtual Machine (VM), effectively trandlating Java byte code at runtime, the
performance of aframework implemented in Java may be inferior to one implemented
in C++. At the same time, recent increases in hardware performance have made
application development in Java more favourable, therefore it could be chosen as a
suitable implementation language for the framework.
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Included in the Java language is the provision for concurrent programming. In
C++, native operating system calls would need to be used to implement multithreaded
programming. Thisisin addition to the fact that Java is operating system independent,
whereas C++ effectively is OS dependent and needs to be recompiled for each
specific platform.

As regards operating systems and platforms, it is really up to the implementor
of the framework to decide which is suitable. This depends on the available
development tools, compilers, and programming experience. Obviously, the nature of
the framework suggests that the more operating systems and platforms are supported
by a particular development effort, the better.

Finally, thereis the question of what is needed for a minimum implementation
of the framework. The answer to this is that essentially one concrete class is required
for each abstract class that has been defined in the framework. An exception to this
are any of the EndpointDecorator classes, as they are needed only for the provision of
extra functionality to an Endpoint.

A point to note when implementing the framework is that it is not set in stone,
and modifications might be required in order to produce an actual implementation. It
is possible that the implementor discovers aternative designs for parts of the
framework which would facilitate an implementation. These should, by al means, be

explored.

6.4 Summary

This chapter provided some concluding remarks about the design of the ORB
framework. Problems regarding framework design in general were discussed, as well
as problems in relation to the design of the ORB framework. Finally, some points

were made about a possible implementation of the ORB framework
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