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Abstract

Event-based communication is appropriate for many application domains,
ranging from small, centralised applications such as GUISs to large, distributed
applications such as telecommunications, network monitoring and virtual
world support systems. Consequently, many different event models have been
put forward, some designed for small-scale systems and others for large-scale
systems. One such model is the ECO model which was designed to support
virtual world applications in the Moonlight project. The ECO model was
designed to be scalable by including filtering capabilities that were intended
to decrease network traffic in a distributed implementation.

There have been two previous implementations of the ECO model, and
one characteristic of both was that all code was linked into the application
at compile time, regardless of whether it was used at runtime or not. This
resulted in executables which were larger than strictly necessary, and con-
sequently lower scalability for applications hosting many objects, most of
which were used only on a few nodes. A better approach could be to link
code on demand at runtime with the intention of decreasing the application
footprint.

This thesis describes the design and implementation of a distributed ver-
sion of the ECO model and the evaluation of filters and dynamic linking as
means to achieve increased scalability. The evaluation is empirical and real
data gathered from an actual event-based system is used. In addition to
the design and evaluation chapters, a detailed review of four event models,
including the ECO model, is provided, with particular emphasis on filtering
and dynamic linking.
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Chapter 1

Introduction

1.1 Motivation

As long as anyone can remember, people have been fascinated by the creation
and exploration of artificial worlds. Oral traditions, literature, painting,
sculpture, film—any of the arts, really—can be viewed as the human mind
reflecting the real world in an attempt to create artificial worlds of its own.
To human creativity (and vanity) the idea of designing an entire world is
compelling. It is therefore no wonder that virtual world software has quickly
become popular and that the technology (in the form of virtual reality) has
received much media attention, despite the fact that the applications are still
at an early stage.

The emergence of relatively inexpensive rendering hardware has improved
the graphical quality of single user worlds, and the increasing interconnectiv-
ity of computers has made it feasible to share virtual worlds between users.
Still, however, current state of the art virtual world systems are limited to
a relatively low number of users, in particular, in the light of the increas-
ing popularity of the Internet. The problem of scalability—building very
large virtual worlds with a very large number of users—is perhaps the great-
est problem to be faced by virtual world researchers within the immediate
future.!

Many different architectures for virtual world support have been put for-
ward, and many of them include features to increase scalability. One such
architecture is the voID shell, developed as part of the Moonlight [Tea95|
project. A central part of the vOID shell is an event-based programming
model called ECO which includes event filters, called notify constraints. The
purpose of notify constraints is to improve scalability by filtering events (dis-

In section 1.5, we will look closer at what exactly defines scalability.



carding those that will not be missed) before they are transmitted across
the network, and thereby decrease network traffic. Though the ECO model
and its notify constraints have been implemented and used in the Moon-
light project, no attempts have been made so far to actually evaluate notify
constraints as a means to improve scalability.

1.2 This Thesis

This thesis describes the implementation of a distributed version of the ECO
model and its notify constraints and attempts to evaluate them to see whether
they offer any significant advantage in terms of saved network traffic. Also,
the implementation includes another feature, dynamic linking, which is used
to improve scalability by reducing size of the application executable. In this
thesis, we generally use the term footprint to refer to the size of a program
executable.

The approach to evaluating the scalability techniques is empirical rather
than theoretical. A fully functional implementation of the event model is used
in conjunction with real data, collected from an actual event-based system.

1.3 The Event Paradigm

One general characteristic of virtual world applications is that their commu-
nication pattern is often different from that of traditional client /server-based
applications. When the client in a client/server system invokes a server pro-
cedure, communication is one-to-one.> Also, the client often (though not
always) expects a reply from the server in the form of a return value. For
these reasons, Remote Procedure Calls (RPCs) are typically implemented
in a synchronous fashion, meaning that the client waits for the server’s re-
sponse.? This is depicted in the left-hand side of figure 1.1 on page 10. In
the client/server model, only the client can initiate communication.

In virtual world applications, the client and server roles are replaced with
the concept of peers. A virtual world is populated by a number of objects
which can change state (e.g., move around) autonomously or as the result
of user input. When an object changes state, it informs its peers (i.e., the
other objects in the world) and in some models, such as ECO, this is done by

2If the server is in fact a cluster of servers acting as one, communication may really be
one-to-many, but conceptually it is still one client invoking one service.

31t is possible to implement asynchronous RPC with return values, but it drastically in-
creases the complexity of the programming model. Similar functionality without changing
the model can be achieved by using synchronous RPC in conjunction with multi-threading.

9
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Figure 1.1: Client/server and Event-based Communication

raising a so-called event. Most often, there will be more than one receiver of
such an event, and therefore communication is typically one-to-many. Also,
there is no return value associated with an event. This is depicted in the
right-hand side of figure 1.1. These characteristics mean that parties using
event-based communication are typically more decoupled than those using
an RPC model. Many (though not all) event models decouple parties even
further by making event delivery asynchronous and in some models (such as
ECO) the parties are also unaware of each others’ identities. In the event
paradigm, as opposed to the client/server model, all objects have the ability
to initiate communcation (i.e., raise events) as well as accept communication
requests (i.e., receive events). Propagating all events to all peers in the
manner described obviously scales very poorly. Therefore, most event models
allow objects to register interest in events. Registration lets an object specify
exactly what events it is interested in by giving a set of criteria, and only
events fulfilling these criteria are subsequently delivered to the object. Each
event model has its own way of specifying what events are interesting, but
most rely on event type and/or parameter matching.

The asynchronous one-to-many communications pattern is not specific
to virtual worlds. It occurs in other domains, such as telecommunications
systems and network monitoring and is also used on a smaller scale in graph-
ical user interfaces such as X-Windows and Microsoft Windows. The ECO
event model considered in this thesis was originally part of a virtual world
toolkit, the voID shell [Tea95|, but is generic and can easily be applied to
other application domains.

10



1.4 The ECO Event Model

As mentioned, the ECO model is a general-purpose event model. Applications
using ECO support will be able to communicate asynchronously in a one-to-
many fashion as outlined in section 1.3. The model specification falls in
two parts: a set of concept definitions and a set of operations. This section
provides a brief introduction by looking first at the former and then at the
latter. A more detailed treatment of the ECO model can be found in chapter 3.

1.4.1 Concepts

The name ECO is short for events, constraints, and objects which are the
three key concepts in the model. The objects are often referred to as entities
to avoid confusion with programming language objects. Figure 1.2 shows
the three ECO concepts in relation to each other. The basic idea is that
entities use events to communicate and constraints to restrict their incoming
communication. In the figure, Entity A on the left raises an event which
is sent to Entity B on the right. On its way, the event is matched against
the constraint which may or may not let the event through. The constraint
is imposed by Entity B, and Entity A is not aware of the existence of the
constraint.

Entity A Entity B
Q
o
> .
a ;
o |- . Event :
=1 L E .-
(@)
Event E, raised by Entity A, Certain event propagation is shown
may or may not reach Entity B with asolid arrow and possible event
because of Constraint C. propagation with a dotted arrow.

Figure 1.2: The Three ECO Concepts in Relation

An application using an ECO implementation typically has a number of
entities communicating in this manner. Each entity can raise events as it
pleases and create constraints to limit the number of events it receives. An
ECO implementation must allow an application to create entities, constraints,
and objects.

Additional Concepts

When discussing the ECO model in a virtual world context, we will use the
term user to mean a person controlling one or more entities in the virtual

11



world. When discussing ECO in the context of distribution, the term node
will be used to mean a physical machine hosting one or more entities. Nodes
are assumed to be connected to a network.

1.4.2 Operations

There are three ECO operations: subscribe, unsubscribe, and raise. The first
is used to register interest in events (as discussed briefly in section 1.3) and
optionally insert a constraint as shown in figure 1.2. The second is used to
cancel previously registered interest in events. The third is used to raise
events, causing them to be propagated to other entities that have registered
interest in them.

1.5 What is Scalability?

The term scalability has become something of a buzzword in the computer
industry. There is no generally accepted scientific definition of what exactly
scalability is, and people tend to rely on an intuitive understanding of the
concept instead. Textbooks generally provide rather vague definitions and
rely on examples to explain it. One of the more tangible definitions was made
in connection with distributed garbage collection,

Scale is a relative concept that is hard to characterize precisely;
rather we define scalability as a property related to an algorithm:
it is scalable if its cost increases much slower than the number of
spaces or of sites in the system. [SPFA94]

Though somewhat specific to distributed garbage collection, the above defini-
tion makes the important observation that scalability is an algorithmic issue.
To make the definition more general, spaces and sites should be interpreted
according to the underlying domain. With regards to a virtual world model
such as ECO, the parameters that can vary are,

e number of users
e number of entities (or objects)
e number of nodes (or machines)

e activity (communication)

12



Note that these parameters are in principle independent but in practice they
are likely to increase together. For example, it is perfectly possible to have a
very large and busy virtual world with many objects spread over many nodes
but only inhabited by a single user—but it is not very likely. Also note that
this list does not claim to be exhaustive for any virtual world model.

The implementation described in this thesis addresses the scalability is-
sues mentioned above in several ways. In order to scale to a large number of
users and entities, the system is distributed: As the numbers of users and en-
tities increase, new nodes can be added to hold them. However, when world
activity increases, communication between entities also increases and for en-
tities residing on different nodes, communication must be performed over the
network. Inter-node communication is more expensive than intra-node ditto,
and if a world with many busy entities is spread over a large number of nodes
the network can easily become a bottleneck. Hence, increasing the number
of nodes may improve scalability in one way (to allow for many users and en-
tities) but at the same time degrade it in another (for high levels of activity).
The implementation described in this thesis addresses this problem by using
distribution to scale the number of users and entities and notify constraints
to minimise the amount of communication generated when scaling activity.

Though no formal definition exists, there seems to be a general agreement,
in the research community as to what scalability is, and we will not attempt
to make a more precise definition than that presented above.

1.6 Project Objectives

As mentioned, the overall objective of this thesis is to evaluate two scala-
bility techniques—filtering and dynamic linking—in the ECO model. This
is a very abstract goal, and in order to make it more concrete, this section
divides it into three more tangible subgoals called Objectives A, B and C.
The three objectives were chosen such that each represents a logically coher-
ent task which can be evaluated separately. The fulfillment of Objective A
(a working implementation of the ECO model) is a prerequisite for the two
other objectives but there are no other dependencies.

1.6.1 Objective A: Distribution

The ECO model itself does not specify any particular implementation ap-
proach for propagating events. Different solutions are possible, ranging from
the strictly centralised (where one server is responsible for all event propa-
gation) to partially centralised (where a cluster of servers cooperate) to fully

13



distributed (where no centralised server exists but where nodes exchange
events directly). The original ECO implementation [Tea95] was centralised.

One objective of this project is to provide a fully distributed implementa-
tion of the ECO model. The objective is a proof of concept—a demonstration
that such an implementation is indeed possible and usable. We do not, how-
ever, have a sufficiently large number of nodes available to evaluate the im-
plementation in a large-scale configuration. Therefore, retaining maxiumum
efficiency with a very large number of nodes is not a major implementation
concern, but is discussed in the design and evaluation chapters.

1.6.2 Objective B: Dynamic Linking

In section 1.5 we mention that an application can be said to increase in
scale if the number of entities it hosts increases. A related situation is if the
number of entity types—or more generally, classes—increases. One problem
with previous ECO implementations [Tea95] [O’C97] is that all class code is
linked statically into the application at compile time. This means that the
footprint of the program running on each node increases in size with every
new type of event, constraint, or object. It also means that new code cannot
be introduced at runtime. For some applications, the static approach means
that code will be in memory* which may never be used. For such applications,
it would be attractive to have code linked into the application on demand.
For long-running applications, another benefit of dynamic linking would be
the ability to change incrementally by replacing existing class code with new
code during execution.

Our second objective is to provide support for dynamic linking of appli-
cation code in our implementation of the ECO model. We want to determine
how much extra complexity (in terms of code) is needed from the application
to use this facility and to measure how large the gain is in terms of de-
creased application footprint. In order to limit the amount of work involved,
the dynamic linking support will be limited to one type of code: notify con-
straints. However, a system design consideration will be that dynamic linking
(if worthwhile) may later be extended to other types of code, such as events
and objects.

1.6.3 Objective C: Measure Network Traffic Reduction

The last objective is one of investigation. As mentioned in section 1.1, the
ECO model has filtering capabilities based on the use of notify constraints.

40r on disk, if swapped out.
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The primary motivation for introducing notify constraints in the model was to
reduce network traffic by filtering events at their source. There is, however,
a certain overhead involved in using filters, in particular with regards to
subscriptions. One of our goals is to measure the number of network messages
saved by the use of such filtering for a test application, and to judge whether
notify constraints offer any significant reduction in network traffic.

1.7 Reaching the Objectives

The structure of this thesis—the choice of chapters and the order in which
they appear—is to a large extent determined by the three objectives from
section 1.6. This section motivates the choice of chapters based on the three
objectives.

In order to fulfill Objective A, the work described in this thesis includes
the construction of a distributed event service. This is a typical software
engineering task, and we therefore describe the system in the traditional way
by separating the description into analysis (or design) and implementation
parts.

Objectives B and C'require a series of experiments to be run on the system.
These experiments, the results and the discussion/evaluation of the results
are presented in the form of a single chapter.

The event paradigm is of extreme importance to this project, but the
paradigm is not quite as well-known as, for example, the RPC model men-
tioned in section 1.3. It is therefore necessary to give the reader a good
general understanding of the event concept, in particular with regards to fil-
tering and dynamic linking. We attempt to do this with a fairly extensive
state of the art review, which looks closely at three different event services,
giving special attention to filters and dynamic linking. After the review, the
ECO model itself—the event model used in this thesis—is described in detail
in a separate chapter. The purpose of this approach is not to directly ad-
dress any of the three objectives but to provide the reader with information
about event systems in general, and the ECO model in particular, in order to
thoroughly understand the subsequent treatment of the three objectives.

1.8 Document Structure

This section outlines the structure of this thesis. There are eight chapters in
total, the order and contents of which are listed below.
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Chapter 1: Introduction describes the motivation behind the project, in-
troduces the central concepts and lists the objectives.

Chapter 2: State of the Art looks at related work in the area of event
services and distributed virtual world support.

Chapter 3: The Eco Model looks at our event model from a theoretical
viewpoint and takes an abstract look at the algorithms in a distributed
ECO implementation. Also, we discuss the previous ECO implementa-
tions.

Chapter 4: Analysis analyses the problem domain by listing problems
and proposing and discussing different solutions to each. It also sums
up the design decisions and concludes with a system overview.

Chapter 5: Implementation describes the system implementation by giv-
ing an overview of the various components and the interaction between
them.

Chapter 6: The Active Badge System describes an event-based system,
a simulation of which is used to conduct experiments.

Chapter 7: Experiments and Evaluation describes and evaluates the
experiments performed on the system.

Chapter 8: Conclusion concludes the project.
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Chapter 2

State of the Art

Event and notification services are used in many different application do-
mains ranging from small-scale systems, such as Graphical User Interfaces
(GUIs), to telecommunications systems and network monitoring applications.
In this chapter, we review the state of the art in general-purpose event ser-
vices and describe three different approaches to expressing filters.! First, we
review three event models, two of which are commercial and one of which
is a research system. Section 2.1, discusses the event model included in
JavaBeans (Sun’s component architecture for Java), which is designed for
small-scale applications. Section 2.2 reviews the CORBA event and noti-
fication services, which are designed to be extremely general-purpose and
usable in virtually any domain. Section 2.3 dicusses the experimental event
model developed at the University of Cambridge, which features an advanced
concept called event composition. Section 2.4 then uses an example applica-
tion to describe three different approaches (chosen on the basis of the three
event models) to expressing filters. The discussion identifies and describes
advantages and disadvantages of each approach. Section 2.5 summarises the
chapter.

2.1 JavaBeans

Java is an object-oriented programming language, reminiscent of C++, which
has become increasingly popular since it was launched by Sun in the mid
1990s. JavaBeans is a component model for Java also developed by Sun, and
version 1.01 of the JavaBeans specification [Mic97] defines an event model.
The model is designed with small centralised systems (e.g., window toolkits)

'For a recent and detailed review of a number of virtual world systems with event
support see also [0’C97].
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in mind but can be used in a distributed fashion by using the Java Remote
Method Invocation (RMI) system. The JavaBeans event model was chosen
amongst many comparable models (e.g., those found in X-Windows and MS
Windows) as an example of a small-scale event model. This particular model
was chosen primarily because of the increasing popularity of the Java lan-
guage. The JavaBeans event model is based around two interfaces included
in Sun’s Java Development Kit (JDK) 1.1,

java.util.EventObject
java.util.EventListener

Also part of the model is a set of guidelines for method naming which ap-
plications should follow. By extending the two interfaces and implementing
classes that support them in the manner described in [Mic97|, Java applica-
tions can implement simple event-based communication.

2.1.1 Architecture

The model is based on the client-server paradigm. Event consumers (clients)
are called listeners and event suppliers (servers) are called sources. A source
announcing an event is said to fireit. In the simplest scenario, a listener regis-
ters interest in events fired by a particular source by invoking an AddListener
method on that source. Subsequent occurrences of events from the source
will cause a method to be invoked in the listener. The two parties are there-
fore very tightly coupled and there is no possibility for anonymity. Further-
more, events are always delivered to listeners synchronously, meaning that
the source thread actually executes the listener’s handler. Hence, a source
with multiple listeners must, when it fires an event, deliver it to the listeners
in sequence.?

The synchronous nature of JavaBeans event delivery means that the
model has inherent performance penalties if used in a distributed environ-
ment. The widely accepted way of efficiently implementing distributed event
delivery is to use network level multicast (such as IP multicast) to simulta-
neously deliver events to a number of receivers. Since the JavaBeans event
model explicitly specifies that events should be delivered as a sequence of
synchronous RMIs, each requiring a reply from the receiver,® network level
multicast will be of little use in an implementation.

2In JavaBeans terminology, a source with multiple listeners is called a multicast source
whereas one which only allows a single listener is called a unicast source. This is not to
be confused with network level multicast and unicast.

3Even though there is no return value, a reply is still required to return the thread of
control to the event source.
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Filtering

There is no general support for filters in the JavaBeans event model, but the
model includes a component—the event adaptor—where application-specific
filters can be placed. An event adaptor is an object that can be inserted
between the source and the listener to partially decouple communication be-
tween them as shown in figure 2.1. When using an event adaptor, a listener
registering interest in events still invokes a method on the source directly, but
instead of giving its own reference, it passes that of the event adaptor. When
an event is later fired, the source delivers it to the event adaptor which in turn
delivers it to the listener. This makes it possible to perform additional func-
tions in the adaptor, such as event queueing or filtering. As opposed to other
event models (e.g., the CORBA event service) the JavaBeans event adaptor
approach is asymmetric; it only hides the listener from the source, not vice
versa. Though the listener can retain some notion of anonymity using an
event adaptor, it is still impossible for the source to be anonymous. Another
consequence is that an event adaptor object must always be managed (i.e.,
created and destroyed) by the listener.

Listener Registration Source
Relay Eve:\ %el iver Event
The arrows denote Event
method invocations. Adaptor

Figure 2.1: JavaBeans Event Model with an Event Adaptor

Dynamic Linking

The Java language has inherent support for linking of class code at runtime.
This functionality is implemented by the java.lang.ClassLoader class de-
scribed in [GJS96, p.558]. Runtime discovery of class interfaces is possible
through the Java Core Reflection API. This means that new classes can be
added to an application at runtime.

2.1.2 Summary

It is clear that the JavaBeans event model is built for event communication
within a centralised or a small-scale distributed application. It has no in-
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herent filtering support, cannot benefit from network level multicast, and
because of the tight coupling between the source and listener requires that
each party maintain detailed knowledge about the other. In its current form,
it will not scale to be used in any virtual world, telecommunications, or
network monitoring environment of substantial size. Support for dynamic
linking is excellent, however.

2.2 CORBA Services

The Common Object Request Broker Architecture (CORBA) is a middleware
architecture specificied by the Object Management Group (OMG). The ar-
chitecture is based on the idea of using Object Request Brokers (ORBs) as a
common way for different systems to perform remote procedure calls (RPCs).
In addition to ORB functionality, the CORBA 2.0 specification [Gro95a] de-
scribes a number of general-purpose services, one of which is the CORBA
Event Service. Applications using this service can communicate with events
in addition to the normal RPCs provided by the bare ORB. Moreover, work is
currently ongoing within the OMG to define a Notification Service to extend
the event service with event filtering capabilities. The event models used in
both services can be characterised as extremely general and quite complex.
In the following two sections we review each of these models in turn.

2.2.1 Event Service Architecture

The CORBA Event Service [Gro95b| supports an event model where either
the event supplier or consumer (collectively referred to as clients) can play
the active part. In the former case, called the push model, the supplier raises
events by pushing them to the consumers. In the latter case, called the pull
model, the event consumer actively polls for events. Polling can be either
blocking or non-blocking. The CORBA Event Service’s push model corre-
sponds to the paradigm most often found in other event models, e.g., the
JavaBeans model described in section 2.1. In the simplest scenario, suppliers
and consumers invoke each others’ interface methods directly to obtain or de-
liver events. In this case, both parties require each others’ object references
and communication therefore cannot be anonymous. Anonymous communi-
cation, and other quality of service requirements, can be met by placing an
object called an event channel between the two parties and letting each party
interact with the channel instead.
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Event Channels

Event channels in the CORBA Event Service act as intermediaries between
suppliers and consumers. Since the channels are normal CORBA objects
they can include any features the application designer wants to implement.
Examples mentioned in [Gro95b| are quality of service features, such as event
caching, persistence, anonymity, and filtering.

As shown in figure 2.2, channels have two sides, one towards the supplier
and one towards the consumer. Each side has an Admin object associated
with it which manages (e.g., creates and destroys) a number of proxy objects.
There are two Admin interfaces, ConsumerAdmin and SupplierAdmin, each
corresponding to one side of the event channel. Each proxy object is visible
to one particular client on its side of the channel and acts as a stand-in for
a client on the other side.? For example, a consumer talking to a supplier
through an event channel communicates not with the actual supplier but
with a stand-in object implementing the ProxySupplier interface.

Consumer Side Supplier Side

Q Event Supplier
T~ -
S;PP“ef o Event Consumer
oxy ~ = >~{ Consumer Supplier Py T -
Event Consumers - - s y
i - Channel Admin
Supplier -
Q" T Proxy

Figure 2.2: CORBA Event Service Overview

As mentioned, an implementor may choose to build additional function-
ality, beyond that of relaying events, into event channels. An event channel
could for example save past events for purposes of error recovery or per-
sistence. Past events could be cached for a while and retransmitted to con-
sumers that have failed (or been unavailable for a period because of a network
failure) during a recovery phase. Also, important events could be saved on
persistent storage so they are still available and can be delivered to consumers
in case the event channel itself is subject to temporary failure. Another pos-
sibility is to implement a filtering mechanism in event channels, but [Gro95b|
sets no guidelines for this.?

4Hence, the same supplier can be represented by different supplier proxies on the con-
sumer side, as shown in figure 2.2.

5In fact, the absence of a filtering mechanism was the primary reason for proposing the
notification service described in section 2.2.2.

21



Dynamic Linking

In the CORBA event service, events can be declared as type any. This means
that any object or data structure can be treated as an event and that new
event types can be introduced into the application at runtime.® This is ob-
viously a highly flexible feature but in order to use it the consumer needs
to examine object type codes and learn about new event types at runtime.
Typically, this would involve using the CORBA Interface Repository (IR)
to examine the event interfaces. There is no support for dynamic linking in
CORBA, since this is a language issue and CORBA is language-independent.
Hence, whether dynamic linking is possible depends on the underlying oper-
ating system and implementation language.

2.2.2 Notification Service Architecture

In December 1996, the Object Management Group (OMG) issued a Request
For Proposal (RFP) for a Notification Service [Gro96]. The idea was to ex-
tend the event service described in section 2.2.1 with filtering capabilities. At
the time of writing, there are two such proposals: One [SDE*98] is submitted
by a group of fourteen companies (IBM, Oracle and IONA among others)
and the other [yDC98| by a group of two (one of them Hewlett-Packard).
The two proposals solve the problem in similar ways.

Filtering

Both proposals extend the CORBA Event Service by allowing multiple Admin
objects on each side of an event channel, as depicted in figure 2.3 on page 23.
Filtering is done hierachically on each side. In both proposals, filters take
the form of objects.” Each filter object holds a series of constraints which
are text strings (in [SDE*98] the strings are further encapsulated in objects)
containing filtering expressions. In addition, the filter object also holds an
identifier of a grammar specifying the filter expression language. In [yDC98],
filters can be assigned to Admin objects as well as to proxy objects, and in
[SDE'98] also to the event channel itself. In both proposals, all filters (in-
cluding those belonging to the channel and the admin objects) are evaluated

6Note that while both objects and data structures can be treated as events, only data
structures can be passed by value. CORBA objects cannot be passed by value, only by
reference. A distributed event-based application would probably pass events by value to
avoid expensive remote invocations when the consumer accesses events. Therefore, such
an application would typically implement events as data structures rather than objects.

"In [yDC98] filter objects implement the MappingDiscriminator interface, in [SDE+98§]
the Filter interface.
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at the proxy level when an event is received.® Both proposals include a speci-
fication of a simple filter expression language which is interpreted at runtime.
Other languages can be defined and coexist in the notification service. As
opposed to most other models, filtering can be performed on the supplier as
well as the consumer side, but each party is in control only of the filters on
its own side.

Consumer Side Supplier Side

) Supplier . Consumer .
‘ Prox Proxy ~-al
- m a h
Admin i
Supplier Consumer
T T [ adn e -
Event Consumers
- Admin Proxy __ Event Suppliers

~ - ~ -
S8 O
Prox -
_ Supplier B Channel ‘ = y - *Q
Q‘ o Proxy IR - Consumer
Consumef Supplier | < ---~"""_ Proxy
Supplier Admln Admin
Proxy I T ,O
Proxy

Figure 2.3: CORBA Notification Service Overview

As mentioned, a filter object holds a series of constraints which are string
objects subject to interpretation in the context of a particular grammar.
Constraints are also used for purposes other than filtering, namely to dy-
namically assign priorities to events and to set event lifetimes. To do this,
consumers express rules that cause the event channel to change the charac-
teristics of a particular event (such as lifetime and priority) if it satisfies the
constraint. Of course, only the event actually destined for that consumer is
changed; other instances of the same event destined for other consumers are
not. Events are cloned to make this possible.

2.2.3 Summary

The CORBA Event and Notification Services have been designed to be us-
able in virtually any setting where event-based communication is required.
The Notification Service, effectively a superset of the Event Service, con-
stitutes an extremely general event model and allows for great flexibility in
application design. The CORBA Interface Repository (IR) makes it possible
to introduce new events at runtime and the possibilities for dynamic linking
therefore depend only on the underlying implementation language. A good
choice for this purpose could be Java which, as mentioned in section 2.1 has
inherent support for dynamic linking. The filtering capabilities suggested
in both Notification Service proposals will be another powerful feature, and

8[yDC98, p.3-18] and [SDE*98, p.37].
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since filters are text strings which (as opposed to CORBA objects) can be
transmitted by value, they have no class code which would need to be linked
dynamically.® A feature supported neither by the Event Service nor the pro-
posed Notification Services is the ability to compose events. In section 2.3
we shall look at a model that supports this concept. Apart from the lack
of composition support, it is difficult to imagine a distributed event-based
application that could not fit into the CORBA event model. However, the
generality is paid for by an increase in complexity—understanding and using
the model is difficult, and a correspondingly high development cost can be
expected for applications using it.

2.3 Cambridge Event Model

The event model described in [BBHM95] and [Hay96] was developed at the
University of Cambridge Computer Laboratory. It is architecturally much
simpler than the CORBA model, but has a feature not present in the other,
namely that of event composition. As opposed to the models reviewed in the
previous sections, the Cambridge model is not a commercial product but the
product of a research project.

2.3.1 Architecture

The Cambridge event model is based on the client-server paradigm. An
event service in Cambridge terminology is a program which supplies events to
clients, corresponding to the push model in the CORBA event service. The
Cambridge model identifies three steps required for event communication:
event specification, registration and notification.

The model includes an interface definition language (IDL'®) which lets
a service implementor specify the interfaces of a service. IDL code includes
method definitions used for normal RPC but can also include event declara-
tions, if the service in question can raise events. A preprocessor is used to
translate the IDL code into client and server stub code and partial imple-
mentation of event classes. An example of an IDL definition for an active
badge system given in [BBHM95] is,

Badge : INTERFACE =
Seen: EVENTCLASS [ badge : Badgeld;

9The only code required to evaluate constraints is an interpreter for the standard con-
straint expression language. This interpreter is mandatory for any implementation of the
notification service.

10Different from IDL specified by the OMG but with similar functionality.
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sensor : SensorID ];
END.

This badge service raises an event of type Seen when it detects a badge.
Identifiers of the badge and the sensor that saw it are included in the event
as parameters.

Filtering

When a client registers interest in events, it can give a filter expression which
specifies what events the client is interested in. Filters are text strings that
take the form of event templates. In a template, the event parameters are
replaced with expressions in a language similar to regular expressions but
slightly extended. In order to match actual events against template strings,
an application programmer uses a preprocessor to generate extra code for
each event object. When invoked at runtime, this code produces a string
template very much like the filter template but with the real event parame-
ters instead of expressions. An event is matched against a filter by matching
this template against the filter template. As we will see in section 2.4.3, there
are certain limitations as to what can be expressed with event templates.
Therefore, the filter templates have been augmented with side expressions.
They are additional restrictions on the instantiated parameters and are ex-
pressed in a language reminiscent of C++ expressions. An example of a filter
template given in [BBHMO95] is,

Seen(P,42)

This template matches all events of type Seen originating from sensor 42.
The template is really a regular expression which is evaluated by a finite
state machine. The variable P acts as a wild card until it is instantiated by
the state machine.

To raise an event, the service creates an event object and invokes an
event service module. This module matches the event against registrations
and relays the event to the clients. The event service module also handles all
information related to client and server identities. Therefore neither party is
aware of the identity of the other and anonymity is retained. Exactly what
an event object looks like depends on the implementation language but as
mentioned above, events can be converted to template form by preprocessor-
generated code included in the event object. An example of such a template
is,

Seen(12,42)
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This event in string form means that badge 12 has been seen by sensor 42.
This type of string is easy to match against filter templates.

Dynamic Linking

As for the CORBA event service, dynamic linking is not related to the event
model itself but to the underlying platform. However, since filters are string
templates, they do not require code for evaluation beyond that of the inter-
preter, and are therefore inherently mobile.

Composition

While the Cambridge model’s way of expressing filters as event templates is
elegant, its principal strength lies in its ability to compose these templates.
Clients can specify that they are, for example, interested in the sequential
occurrence of two particular events (but not in any of the events alone), any
event from a set of events, or only in an event if another has not previously
occurred.!’ Templates can be combined and very complex registrations can
be performed. Finite state machines are used to process these registrations.
An example of a composite event template could be,

// sensor 42 is in the reactor room
Seen(P,42) ;Seen(P, *)

This template would trace any person who has been sighted by sensor 42,
reporting all subsequent sightings.

2.3.2 Summary

In many respects, the Cambridge event service is simple, elegant and easy
to understand. It is less flexible than the CORBA service but also a lot less
complex. As mentioned, its principal strength is that it has native support
for composite events. Composition, as will be shown in section 2.4.3, is a
powerful feature. It has yet to be discovered by industry, however, and so
far it is not even mentioned in the event documents published by the OMG.
Composition does not require dynamic linking facilities for filters, since filters
are interpreted. With regards to dynamic linking of other classes of code,
the possibilities depend on the application implementation language.

1 The exact operations and their forms are given in [Hay96, pp.65-67].
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2.4 Expressing Filters

The previous sections presented and discussed three different event models.
Two of these, the CORBA and Cambridge models, included support for
interpreted event filters and featured actual languages in which filters could
be expressed. The third model included, JavaBeans, did not include explicit
support for filters but an application could implement its own filters by using
event adaptors. A central difference between this approach and the two
others is that JavaBeans filters would have to be compiled (into Java byte
code) rather than interpreted at runtime.'?

In this section we take a closer look at how filters can be expressed. We
discuss three possible approaches, one relying on a C++ style interpreted
expression language similar to that of the two CORBA proposals, another
being the regular expression language found in the Cambridge model and the
last being a compiled approach, a variant of which could be used for example
in the JavaBeans model. The first two are examples of interpreted and the
latter of compiled filters. The purpose of the discussion is to present the
strengths and weaknesses of the different approaches and contrast them with
each other. To make the discussion easier to understand, we will first present
an example—a simple tank game—that uses a filter, and then for each of the
three approaches extend the example with actual filtering code. Section 2.4.1
describes the example, sections 2.4.2 to 2.4.4 the three approaches and sec-
tion 2.4.5 concludes this section.

When we talk about filters on an abstract level, we assume them to be
expressions that can be evaluated as a boolean value which indicates whether
a particular event should pass through the filter or not. One or more event
parameters typically occur in a filter expression. On a more concrete level,
filters can be represented in many ways, for example as objects, functions
or text strings. This section discusses filters at both the abstract and the
concrete level.

2.4.1 Tank Game Example

Consider a tank game where players guide tanks around a two-dimensional
world. Each tank entity receives input from the player controlling it and
repeatedly calculates and announces its new geographical position within
the world. This could be done with an event of a certain type, let us call it
NewPositionEvent, which has three parameters, namely the identifier of the
tank raising the event and the x and y coordinates of its new position.

12That the Java byte code itself is (almost always) subject to interpretation by a Java
virtual machine is a different matter and does not concern us here.
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Such a world could contain minefields with the property that any tank
located within a minefield would stand a certain chance of being blown up
each time it moved. This could be implemented with a minefield entitiy that
subscribed to events of the type NewPositionEvent with a certain notify
constraint. When a tank is blown up by a mine, the minefield would have to
tell this to its surroundings, for example by raising a collision type event, but
we will not go into details about that in this example. C++ code is given in
the example, but any object-oriented language would do. Also, we use the
ECO terminology defined in section 1.4 and assume that the following two
operations exist,?

subscribe(Event, Handler, Constraint) ;
raise(Event) ;

In addition, each entity in the world is assumed to have a unique identifier.

Event Class

The event used by the tanks to announce new positions would be defined by
the application (since it is specific to the tank game), likely in the form of a
class derived from a base event class. It could look something like,

class Event { ... }; // Base class
class NewPositionEvent : public Event {

NewPositionEvent(entity_id, int new_x, int new_y); // Constructor

};

Tank Entity

The tank entity itself could also be derived from a base entity class and look
something like,

class Entity { // Base class with entity identifier
entity_id my_id;
3
class Tank : public Entity {
int x, y; // Its current position
void loop(void) { // Tank main code
for (5;) {

13The operations do not constitute a full Eco API. First, a full API would also include
an unsubscribe operation. Second, the subscribe operation would also include pre and
post constraints. These have been left out, since they are not relevant for this thesis.
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// Receive input from player and calculate new position
// Announce new position
raise (new NewPositionEvent(my_id, x, y));
}
}
s

Minefield Entity

The minefield entity would subscribe to all events of the type NewPositionEvent
which featured positions within the borders of that particular minefield. As-
suming a minefield shaped as a square whose side is ten units long and whose
bottom left corner is at (90, 70), the code for the minefield could look some-
thing like,

class Minefield : public Entity {

Minefield();
void NewPositionHandler (entity_id, int, int);
s
Minefield: :Minefield() {
subscribe (NewPositionEvent, // The event type name
&NewPositionHandler, // Handler for this subscription
NC) ; // Notify constraint (see below)

}

void Minefield::NewPositionHandler(entity_id id, int x, int y) {
// The notify constraint assures x and y are within the minefield
if (random() < 0.1) { /* Boom! */ }

}

The notify constraint NC used in the above code can be expressed in many
different ways, but it should insure that the event refers to a position within
the minefield borders, i.e., evaluate,

(90 < z < 100) A (70 < y < 80)
In the following sections we will extend the above example by considering

different declarations of NC.

2.4.2 Approach 1: An Interpreted Language

The approach described in this section is based on notify constraints being
strings containing expressions in some predefined expression language. Both
of the CORBA Notification Service proposals described in section 2.2.2 use
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such an approach. This section will extend the tank game from section 2.4.1
with an interpreted notify constraint. Since the tank game example is written
in C++ we will assume the interpreted language uses C++ style expressions,
but any language with equivalent expressive power could be used, such as
either of the languages defined in the CORBA Notification Service proposals.

The following line of code extends the tank game from section 2.4.1 with
a notify constraint in the form of a stringified C++ expression,

#define NC "90<x && x<100 && 70<y && y<80"

At runtime, any event of type NewPositionEvent would have to be matched
against the above string. This is a problem, because events (as opposed to
notify constraints) are compiled rather than interpreted. Hence, even though
the NewPositionEvent class contains member variables named x and y, the
information about the names of these members will have been stripped by
the compiler during compilation.'* The same is the case for type information.
At runtime, there is no simple way to map the symbolic x in the above string
to the corresponding event member variable and there is no way to match
the type of the x in the string against that of the class member.

Specification and Evaluation Symmetry

The cause of the problem is that as part of an interpreted approach, we
expect the interpreter to evaluate constraints that are really specified by the
application. This is depicted in figure 2.4.

Node A Node B

Application Interpreter Interpreter Application

H | 1

Figure 2.4: Asymmetric Specification and Evaluation of Notify Constraints

We assume the interpreter and the application to be distinct components
and changes to the latter not to have any influence on the former. This is
required such that new event types can be defined by the application. The
consequence, however, is that the number and types of event parameters are

140Often compilers retain name information in the executable program to facilitate de-
bugging, but this data is not readily available to the program itself at runtime and its
format is highly compiler-specific.
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not readily available to the interpreter unless explicitly specified. Hence, if
we want the interpreter to match events against notify constraints, it needs to
obtain this event type information somehow. Furthermore, notify constraints
could likely (depending on their power of expression) require facilities for
referring to event parameters. To match such a notify constraint against an
actual event, the interpreter would need access to name information for event
parameters. The problem is that events are really application-specific which
means that evaluation of notify constraints (since notify constraints depend
on event types) is really in the domain of the application as well. If we want
to move evaluation away from the application and into the interpreter, we
need to move type and name information along with it.

Having realized this, an obvious solution is not to move evaluation to
the interpreter, but let it be part of the application instead. This is a more
symmetric approach, and is illustrated in figure 2.5. This solution, however,
requires the application to provide code for actually evaluating a notify con-
straint in addition to specifying the constraint itself. Also, this approach
requires the interpreter to make an upcall to the application code as shown
with the short arrow in the figure.

Node A Node B

Application Interpreter Interpreter Application
N T e o Gt

Figure 2.5: Symmetric Specification and Evaluation of Notify Constraints

Since name and type information for event member variables is specific
to each event type, it makes sense to place code for matching constraints
in event classes. In C+4++ this could be done by adding a virtual member
function to the event base class defined in section 2.4.1,

class Event {

virtual bool evaluateNotifyConstraint(string&) =0;

};

Events defined by the application would be derived from this class and would
implement the above method such that it returned true or false depending
on the result of the match. It thus becomes the application’s responsibility
to evaluate notify constraints whenever an event is raised. Effectively, this
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means that the interpreter depends on the application to supply name and
type information and evaluate the notify constraint instead of doing it di-
rectly. Moving the entire evaluation task to the application domain in this
manner has one obvious drawback: it completely forfeits the goal of having
an interpreter in the first place.

A more sensible combination could be to extend the approach such that
the notify constraint is merely passed through the application in order for type
and name information to be added and then evaluated by the interpreter.
Such an approach is shown in figure 2.6. Arrow 2 shows an upcall from the
interpreter to the application and arrow 3 shows the application invoking the
interpreter with the type and name information added.

Node A Node B

Application Interpreter Interpreter Application

ffffffff \
3 .
@ ‘ ‘ ‘ 1 W (\Evaluation :7**2* (\Evduation /

Figure 2.6: Passing Notify Constraints through the Application

The interface to the interpreter (whose invocation is shown with arrow 3
in the figure) need not be complicated. It could, for example, consist of a
single evaluation function, taking type and name information in a string in a
similar manner to the vprintf function known from C. It could for example

look like,
#include <stdarg.h>

class Interpreter {
public:

static bool evalNC(string& nc, string& format, entity_id id, ...);
};

The ellipsis dots (. ..) represent a variable number of arguments in common
C++ fashion. Their types and names are given in the format string, for
example as a sequence of tuples of (name, type) in the following format,

« . . LA,
ny - tl,nQ . tQ, ey TG L tz

Each n denotes a name and ¢ a type known to the interpreter. The values
are given as void pointers that the interpreter can cast according to the type
information in the format string.
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Tank Game Extension

Recall our example from section 2.4.1 where we had tanks raising NewPositionEvent
events as they moved around the world. Assuming that the previously de-

fined notify constraint and event base class are still in effect, such an event,
complete with wrapper method and constructor, could look like,

class NewPositionEvent : public Event {

NewPositionEvent (entity_id, int, int); // Event constructor
bool evaluateNotifyConstraint(string&); // NC evaluator function
entity_id raiser_id; // The moved entity’s ID
int new_x, new_y; // Its new position

};

NewPositionEvent: :NewPositionEvent (entity_id id, int x, int y)
: raiser_id(id), new_x(x), new_y(y);

bool NewPositionEvent::evalNotifyConstraint(string& nc) {
return(Interpreter::evalNC(nc, "id:entity_id,x:int,y:int",
4raiser_id, &x, &y));

Summary

This section has described how notify constraints can be expressed as strings
subject to runtime interpretation. The name and type problems inherent in
matching an interpreted constraint against a compiled event have been dis-
cussed, and we have shown how an application and an interpreter can work in
tandem to solve these problems. The idea of passing the evaluation through
the application to obtain type and name information may at first seem in-
elegant. However, since the wrapper method described above is indeed just
that, it is an obvious candidate for automatic generation by a preprocessor.
This means that applications could ignore the issue of evaluation altogether
and concentrate on specification of the constraints alone.

The choice of language is, of course, paramount. To accommodate ap-
plications, a suitable language for specifying notify constraints would have
to be designed. Such a language would need sufficient expressive power to
accommodate application requirements. In particular, the set of types and
operators would have to be chosen carefully, since it would not be extendable
by the application. In this section we used C++ expressions. The languages
described in the two CORBA Notification Service proposals are similar but
solve the name and type problems by using positional notation (indexing
members by their position) in conjunction with runtime type codes.
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One unavoidable drawback of representing notifify constraints as strings
subject to interpretation is decreased evaluation efficiency, because of inter-
pretation overhead. On the other hand, this approach improves the pos-
sibilities for secure evaluation in the case of untrusted event subscribers.
One could easily catch illegal operations (such as division by zero) and even
impose a time or processor cycle limit on the evaluation of a particular con-
straint or all constraints from a particular source.

2.4.3 Approach 2: Event Templates

An approach described by [HBBMO96] is to specify notify constraints (accep-
tance expressions in their terminology) in the form of event templates. When
an entity subscribes to an event, it specifies a template for raised events to
be matched against. As for the ECO model’s notify constraints, the matching
is done at the raising side and only if it is successful is the event propagated
to the subscriber. The template approach of [HBBM96] is augmented with
side expressions to increase the complexity of the constraints it is possible to
impose. In this section we look at the ‘pure’ template solution as well as the
one featuring side expressions. Both require the existence of an interpreter
outside the application to match templates against events.

Description

Since the template language, unlike the language used to express notify con-
straints in section 2.4.2 (C++ expressions), cannot be assumed to be familiar
to the reader, we present a description of it here before moving on to the
tank game example. Abstractly, the event template approach means that if
an event type has the form,

EventTypeName(arg:, args, ..., argy,)

where arg;...arg, are arguments given when an event is raised, then a notify
constraint has the form,

EventTypeName(expy, exps, -.., €xpy)

where exp;...exp, are expressions in some language, for example a modified
form of regular expressions like that described in [Hay96].

Event templates of this form are called base event templates in [HBBM96]
and can be used to form composite expressions, using the four composition
operators without, sequence, or, and whenever. In addition, base event tem-
plates can be augmented with side expressions to impose extra constraints
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on event arguments. A template with a side expression has the form,
EventTypeName(expr, exps, ..., exp,){sideexps}

where sideexps can contain expressions that have to be fulfilled in addition
to the successful match of the template itself.

An example given in [HBBM96] is a printing service that raises events of
a type Finished(n) where n is a job number in form of an integer. An entity
interested in the completion of print jobs can subscribe to this event using

for example the template,
Finished(27)

if that particular entity is only interested in the completion of job number
27, or
Finished(x)

if interested in the completion of any print job. An example of a composite
expression constructed from two base event templates could be,

Finished(27)|Finished(42)

which would cause propagation of either event when (or if) it occurred.'® An
example of an event template with a side expression given by [Hay96, p.67]
is,

Withdraw(z){z > 500}

where all withdrawal events (in a bank scenario) of more than £500 are
propagated to the subscriber.

Tank Game Extension

Using the event template approach, our notify constraint from the section 2.4.1
tank game example could look like,

#define NC "NewPositionEvent (*,x,y){x>90,x<100,y>70,y<80}"

We need four side expressions to express the constraint. The wildcard char-
acter ‘*’ matches the identifier of the moving entity, since the minefield is
interested in anything that moves within its borders. The two variables x
and y are bound by the interpreter during evaluation.

15 Actually, the system described by [Hay96] returns the set of occurrence times where
either event has occurred, and thus differs from the ECO model in this respect. For our
purposes, however, assuming the event is propagated will do.
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In addition, each event class would need code to transform the values of all
relevant event member variables to a template. As described in section 2.3,
this code can be generated by a preprocessor by reading an IDL'® definition
such as,

TankGame : INTERFACE =
NewPosition: EVENTCLASS [ id : entity_id;
x : int;
y : int 1;
END.

Discussion

The idea of notify constraints in the form of event templates is easy to grasp,
but in its purest form—without composition and side expressions—it is very
limited. Recall that events and templates have the form,

EventTypeName(arg,, args, ..., argm)
EventTypeName(expy, exps, ..., expy,)

An event will match a template only if,

1. The event type names are identical.
2. The number of event parameters are the same, i.e., n = m above.
3. The event parameter types match.

4. Each event parameter arg; matches the corresponding template expres-
sion exp;.

The last point is of particular importance. Since expressions are matched
one by one against actual event parameters, there is no way for parameters
to be compared against each other. For example, the constraint arg; > arg
cannot be expressed with pure templates, since a given exp; is only matched
against its corresponding arg;. Furthermore, the pure template approach
implies logical conjunction between the template expressions,

expr Nexps N\ ... \ expn

Effectively, all expressions given in the template have to match for the evalu-
ation to be true. It is not possible, for example, to specify constraints where
it is sufficient for one of any number of expressions to match, i.e., of the form,

exp; Vexrps V...V exp,

16Recall that Cambridge IDL is different from OMG IDL.
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Though not stated explicitly, the author of [Hay96| has realized these limi-
tations and augmented the template approach with side expressions to form
a more powerful language for expressing constraints. In addition, templates
can be used to create quite complex composite expressions.

Summary

We have described how notify constraints can be expressed as template
strings subject to runtime interpretation in the manner proposed by [Hay96].
This approach solves the name and type problems described in section 2.4.2
in a very elegant manner by transforming event occurrences to strings and
matching them against regular expressions style filters.

The actual expressive power is limited for pure templates, but can be
augmented with side expressions as done by [Hay96] at the cost of some
simplicity. The actual expressive power of the augmented templates is not
discussed by [Hay96], but it is likely to correspond to an interpreted expres-
sion language featuring integers and strings as the only types.!’

Evaluation efficiency was one of the design goals of the system designed
by [Hay96]. Matching of text strings against regular expressions can be
done in logarithmic time according to [BYG89] which means that the indi-
vidual fields of base templates can be processed efficiently. The method for
evaluating composite eventsis “designed to have an efficient implementation
[Hay96][p.70]” but no estimate of speed is given. However, the algorithms
could involve many operations that, depending on the rest of the design,
could be expensive. No cost estimate of evaluating side expressions is given
in [Hay96], but compared to native code this approach is bound to be more
expensive in terms of processing resources.

2.4.4 Approach 3: Notify Constraint Objects

In section 2.4.2, we saw how the part of the evaluation that is application-
specific, namely supplying type and name information, could be left to the
application. In that approach, the rest of the task, namely evaluating the
notify constraint was done by an interpreter for a language designed for that
particular purpose. One could argue, however, that the interpreted language
is superfluous since there is already a language available—the language in
which the application is written. This section takes a closer look at an ap-
proach where code for evaluating constraints is generated before compilation
of the application itself and compiled together with the rest of the application

1"This assumption is based on the rather brief description of side expressions in
[Hay96][p.67]; they are said to be “analogous to those found in formal methods.”
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code. It would be the kind of approach to use when implementing filters as
event adaptors in the JavaBeans event model.

A possible way of avoiding the type and name problems described in
sections 2.4.2 is to create code that evaluates the notify constraints and to
link it into the application at compile time. The idea is to use a preproces-
sor to extract the notify constraint from the application code’s subscribe
statements and generate C++ classes complete with methods to evaluate
the constraints. Code is also generated for creating a global table contain-
ing pointers to these objects. At runtime, this table is present on all nodes
running the application, and it is thus possible to globally identify a notify
constraint with an integer index into this table. The preprocessor also re-
places the notify constraints given in the application’s subscribe statements
with plain indexes into the global table. At runtime, all notify constraints
are present at all nodes in the form of a collection of objects linked into the
application. When subscriptions are performed, a simple integer is passed
rather than code for evaluating the constraint.

The Cambridge approach used the preprocessor to generate code that
translated the event to a string (subject to matching against a filter by an
interpreter). The approach described here uses the preprocessor to generate
code for actually performing the match instead of relying on an interpreter.

Tank Game Extension

Let us have a look at our minefield constructor from section 2.4.1. Before
being run through the preprocessor, the constructor would probably look
something like,

#define NC "90<x &% x<100 && 70<y && y<80"
Minefield: :Minefield() {

subscribe (NewPositionEvent, // The event type name
&NewPositionEventHandler, // Handler for this subscription
NC); // Modified notify constraint

}

The code produced by the preprocessor would look something like,

class nc {
virtual boolean eval(...) =0;

};

class nc_0 : public nc {
bool eval(int x, int y) {
return ((x>90 && x<100 & y>70 && y<80) 7 true : false);
}
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};
nc global_table[] = { &nc_0 };

void Minefield::Minefield() {

subscribe (NewPositionEvent, // The event type name
&NewPositionEventHandler, // Handler for this subscription
0); // Index into global_table[]
}
Discussion

One obvious advantage that this approach has, compared to the two others,
is speed. Since the code that evaluates notify constraints is compiled and not
interpreted, it can be expected to run much faster than equivalent code in
the other two solutions. Also, the ability to identify notify constraints with
integers is good, since it means that little information has to be transmitted
between nodes and this information (one single integer) is easy to marshal
and unmarshal. In addition, type checking of notify constraints is done in
the subsequent compilation of the generated code, completely eliminating
the need for runtime type checking.

There is one problem with this approach though, namely that code for
the constraints have to be generated at compile time. This means that unless
the preprocessor can do a very advanced code analysis, all information about
constraints has to be complete and available at event compile time. It is
not possible, for example, for an entity to calculate its preferred constraints
during its initialization phase and perform the subscriptions accordingly. A
likely modification of our minefield example from section 2.4.1 would be to
provide the constructor with the minefield coordinates, making the creation
of new minefields more elegant. Assuming the existence of a type string
with the concatenation operator ++, the improved minefield constructor could
look something like,

void Minefield::Minefield(int x1, int yl1, int x2, int y2) {
string NC = x1 ++ "<x<" ++ x2 ++ " && " ++ yl ++ "<y<" ++ y2;

subscribe (NewPositionEvent, // Event type
&NewPositionHandler, // Handler to process events
NC) ; // Notify constraint

}

This way of implementing the minefield is not possible with the compiled
approach, since the notify constraint string cannot be evaluated by the pre-
processor at compile time. Hence, the game could allow new minefields to
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be added in mid-game (for example if tanks were allowed to lay out mines)
but it would not be possible to implement with the preprocessor approach.

The existence of a global table makes it easy to pass notify constraints
between nodes as part of subscription statements, but it has some draw-
backs as well. Most important is the problem that the table is static and
generated at compilation time by the preprocessor. This means that all no-
tify constraints have to be known in advance and that new ones cannot be
generated on the fly, unless explicit support for discovering and dynamically
linking new constraints in provided. Also, it is not strictly necessary to store
all notify constraints on all nodes, but only those that are effectively in use.
The static approach is essentially eager propagation of notify constraint eval-
uation code, and for very large applications that use many different notify
constraints this approach may prove unscalable. In this case, a dynamic (and
lazy) propagation scheme is preferable.

Runtime Compilation and Runtime Type Information

A way of solving the problem with runtime-generated notify constraints could
be to use a runtime compiler instead of a preprocessor. Runtime compilation
lets a program, such as the minefield code shown above, compile and link
code at runtime. PS-Algol [CADAR8T] is a language with support for runtime
compilation in form of a library function that takes a source code (in form
of a string) and returns a procedure. In the context of notify constraints,
such a function could be used to map notify constraint strings generated at
runtime to executable code.

A different approach could be borrow from object technology, such as
CORBA. CORBA includes an Interface Repository (IR) which is essentially
a register with type information. This information is available to the appli-
cation at runtime and can be queried whenever the application encounters
unknown types. Even in a system using compiled constraints, this means
that new events and notify constraints could be introduced at runtime.

2.4.5 Summary

A central theme of this section has been the intepreted versus the compiled
approach. In general, the concept of interpretation as opposed to compilation
represents a dynamic instead of a static approach. This dynamism opens a
number of very interesting possibilities, but they come at a price.
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The Benefits of Dynamism

Composition If notify constraints can be generated on the fly, they can
be generated automatically. This has been shown by [Hay96] to be
sufficient to support composition of event templates; something that
is currently not used in the other models. Though another notion
of composition could perhaps be developed, the scheme described by
[Hay96] has not only been designed but also implemented.

Scalability If notify constraints can be transferred between nodes and be
cached as long as they are needed, it is not necessary for an application
to hold all notify constraints at all nodes at a given point in time. If the
application features a very large number of entities with a very varied
selection of notify constraints, the dynamic approach may be much
more scalable than the static. Our minefield entity from section 2.4.1
is a good example of this; no two minefields would share the same notify
constraint.

Security We have not explored the issue of security in detail, but it seems
obvious that interpreted languages offer better oppertunities for secu-
rity control than the execution of native code. Interpreted languages
can theoretically be made secure; Java is an example of such a language,
even though current interpreters do not implement it securely.

The Cost of Dynamism

The strengths mentioned above of course do not come for free. The cost falls
in two groups.

Expressive Power Interpretation relies on a statically defined set of types
and operators that can be used in expressing notify constraints. Though
this set can be made arbitrarily large, it cannot be extended by the ap-
plication on the fly. In particular, none of the interpreted languages
discussed in this chapter allow for the definition of new types and op-
erators, so in this sense, the interpreted approach is weaker than the
compiled. If the set of types and operators is chosen with care by the
language designer, it may prove sufficient for applications, even though
it is not as versatile as a real programming language.

Efficiency Interpreted evaluation of notify constraints is bound to be less
efficient than evaluating one that is compiled into native code. This is
perhaps the biggest drawback of the interpreted approach.
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Hybrid Approaches

Runtime compilation and runtime type information makes it possible to ben-
efit from some of the characteristics of ‘pure’ dynamism without being subject
to all of the costs. Both enable an application to introduce new constraints
at runtime and can therefore be used to support composition. Also, such
constraints can be loaded on demand and they therefore scale better (with
regards to size of the application executable) than a static approach. On the
other hand, constraints linked at runtime are indeed still compiled and there-
fore cannot be subject to the same runtime security checks as an interpreted
constraint. Expressive power would be equivalent to that of other compiled
constraints and therefore stronger than those of typical interpreted constraint
languages. Efficiency could be better or worse than a purely dynamic ap-
proach, depending on the speed of the runtime linker (and for constraints
compiled at runtime, also on the speed of the compiler) compared to the
number of times the constraint is used afterwards.

2.5 Summary

We have reviewed three event models which are different in many respects.
The CORBA and Cambridge models share some similarities. Both are de-
signed for large-scale systems and both have excellent filtering support. Since
filters take the form of strings containing expressions subject to interpreta-
tion, dynamic linking of filters is not an issue. Dynamic linking of other
types of code could be implemented, though, depending on whether it is pos-
sible in the implementation language. In comparison, the JavaBeans model
is well suited for centralised or small-scale distributed applications but has
no inherent support for filtering. As opposed to the two other models, the
fact that it is tied to the Java language guarantees that dynamic linking of
any type of code will be easy to implement.

This chapter also looked at different approaches to expressing filters. We
identified and explained the important problem of managing type and name
information for an interpreted language, and discussed the strenghts and
weaknesses of each of three approaches.

In the next chapter, we will look at a fourth event model, ECO, which
is comparable to the Cambridge model in terms of complexity. It is similar
to both the CORBA and the Cambridge models in two ways. First, it has
inherent filtering support but, as opposed to the other two, does not specify
a filter expression language. Second, it makes no assumptions about the
implementation language and whether dynamic linking is possible.
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Chapter 3

The ECO Model

In this chapter, we take a look at the ECO model from a theoretical perspec-
tive. The discussion will place particular emphasis on the aspects relevant
to notify constraints. In particular, we do not discuss the other types of
constraints (pre, post and synchronisation) and we do not discuss zones as
described by [O’C97]. The ECO model is described in detail in [SCT95] and
[ODC*96].

First, section 3.1 provides an overview and a discussion of the ECO model
as such. Then section 3.2 looks at a set of simple but pure (i.e., free from
implementation considerations) algorithms in an attempt to understand and
illustrate the data flow involved in each of the ECO operations. Section 3.3
looks at the two previous implementations of the ECO model, and section 3.4
sums up.

3.1 Overview of the ECO Model

The acronym ECO stands for events, constraints and objects which are the
three central concepts in the event model used in the Moonlight project.
In addition to these concepts, the model also defines an API with three
operations. The following sections explain the concepts and the API and
finally present a minimal scenario in order to relate the concepts and API to
each other. The ECO model was originally designed for virtual world support
and though the model is a general-purpose event model, the terminology still
reflects the original domain. Hence, when we refer to an ‘ECO world’ we mean
any domain where the model is used: virtual world, telecommunications, or
otherwise.
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3.1.1 Events, Constraints and Objects

The initial letters of the model’s three central concepts form the abbreviation
ECcO. We will look at them here in the order objects, events and constraints.

Objects (aka Entities)

Everything in an ECO world is an object. Objects have methods and at-
tributes, but cannot access each other’s attributes or directly invoke each
other’s methods, i.e., they are encapsulated. Instead they communicate by
sending and receiving events. Objects have identifiers that are unique within
an ECO world.

ECO objects are often referred to as entities to avoid confusion with the
objects known from object-oriented programming languages. In the rest
of this document we will support this tradition, in particular because our
implementation language is C++ where the term object is used differently.
In practice, an ECO entity would often be implemented as an object in some
programming language, for example C++, but using the same term would
cause too much confusion.

Events

FEvents are the means of communication between entities. In the event-based
programming paradigm, entities do not invoke each other’s methods. Instead,
they announce events that may, or may not, lead to invocation of other
entities’ methods. There are no other means of communication between
entities. Events are typed.

Constraints

Constraints form a means by which objects can impose restrictions upon
events they are interested in. As described in [SCT95] and [ODC*96], dif-
ferent types of constraints can be used for various purposes. Examples men-
tioned are to implement synchronization within the receiving object, to fulfill
real-time requirements, and to control the propagation of events. This project
deals only with the latter kind: constraints upon the propagation of events.
This type of constraint is used by entities to specify which events should be
propagated to them, i.e., which events the entities wish to be notified about.
For this reason, they are called notify constraints.
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3.1.2 ECO Operations

The event-based communications paradigm is different from RPC or message-
based communication in that there is no specific receiver. Events are concep-
tually broadcast by the supplier, and it is up to each individual consumer to
decide whether it is interested in a particular event. The ECO model specifies
three operations (constituting the ECO API) that entities use to communi-
cate.

Subscribe

The subscribe operation is used by an entity to register its interest in events.
It has the form,

subscribe(eventType, entityl D, handler, noti fyConstraint)

The event type is the type of events the entity is interested in, the entity
identifier globally identifies the subscribing entity, the handler is a callback
method to be invoked when events are received, and the notify constraint
is an optional filter which events are to be matched against. Any events
raised after the subscription has been performed will be matched against the
constraint (if any) and (subject to the result of the evaluation) delivered to
the entity by invocation of the handler method. Such a method is called an
event handler in ECO terminology.

Raise

The raise operation is used by an entity to generate an event. It has the
form,
raise(eventType, event Parameters)

The event is delivered to all receivers that have registered interest in events
of the particular type, subject to evaluation of their respective notify con-
straints.

Unsubscribe

The unsubscribe operation is used by an entity to cancel a subscription pre-
viously made with the subscribe operation. It has the form,

unsubscribe(eventType, entityl D, handler)
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3.1.3 Example of an ECO World

This section describes a scenario with a very small ECO world in order to
relate the ECO concepts and operations from the previous sections to each
other. Consider a virtual world with three entities A, B, and C' as shown in
figure 3.1. A subscribes to events generated by B and C, receives an event
and then unsubscribes.

Entity C Entity B

3 Entity A

1 \GHEEH'//‘\\i\\\Rg////z

Figure 3.1: A Sample ECO World

There are four phases in the example: one subscription, two raised events
and one unsubscription. The code using the ECO operations would look
something like the pseudo-code shown below. The numbers refer to the
arrows in figure 3.1.

entityA.subscribe(theEventType, entityA, myHandler, Constraint)
entityB.raise(theEventType, someParameters)
entityC.raise(theEventType, otherParameters)
entityA.unsubscribe(theEventType, entityA, myHandler)

D wWw N e

Note that the steps could be executed either by multiple threads or a single
thread. This is not important, as long as the steps are executed in sequence,
so for simplicity they are shown as a single piece of code. There is only one
event type involved, and two events of this type are raised. This happens
in steps 2 and 3 respectively, where the two events are distinguished from
each other by having different parameters. The code shown is pure ECO
code and is therefore not concerned with the propagation and evaluation
of the constraint. Behind the scenes, however, more complicated tasks are
performed. This is explained below.

1. During the subscription phase, A passes a notify constraint object to
entities B and C. This is depicted with the two arrows marked 1 in
figure 3.1.

2. B raises an event which is matched against A’s constraint. The eval-
uation returns true which means the event is delivered to A. This is
depicted with arrow 2 in the figure.
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3. C raises an event which is also matched against the constraint. This
evaluation returns false which means the event is not delivered to A.
This is depicted with arrow 3 in the figure.

4. A cancels the subscription. This removes the constraint from B and
C. This is not shown in the figure.

3.2 Abstract Algorithms for ECO Operations

This section describes a set of algorithms for managing notify constraints
and event subscriptions. Our approach will be to give simple and abstract
versions of the algorithms to illustrate the flow of information necessary to
manage subscription information. The algorithms are rather abstract and
can appear naive but they are not designed to be implemented in the form
given, but rather to illustrate what tasks are necessary to manage event sub-
scriptions and filtering. It is woth noting that application entities are not
supposed to know anything about these algorithms; they invoke them ex-
clusively via subscribe, unsubscribe and raise statements. The standard
ECO terminology is used, meaning that,

e There are two parties involved in these algorithms and the term side is
sometimes used to distinguish between them. The term raising side is
used for the entity raising an event, and receiving side and subscriber
side for the entity receiving it. It is not important whether the tasks
described in this section are actually performed by the entities them-
selves or by ‘somebody else’ as long as it takes place on the same side,
i.e., node in the network.

e An event type is defined by the name of the event class (assuming
the implementation language has classes) and the types of the event
parameters.

e The term event is used to refer to an event, including any parameters
it may have.

e The term handler is really an identifier of a handler rather than the
actual handler code itself.

3.2.1 Subscribing

The following algorithm is used when an entity subscribes to events of a par-
ticular type using the subscribe statement. It is executed on the subscriber
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side. The algorithm data structures and flow are illustrated with an example
scenario in figure 3.2. The close-up section of the figure takes place on the
raising side and is explained in section 3.2.3.
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of an entity capable of raising RE
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Figure 3.2: Subscription Data Flow

Algorithm 1 Subscribing to events.

1. Let T be the type of event being subscribed to, NC' the notify constraint,
SFE the subscribing entity and H the handler to be called when a match-
ing event occurs. The tuple (T, NC,SE, H) constitutes subscription
information.

2. Compute the set R of entities potentially capable of raising events of
type T

3. For each entity e € R, propagate the tuple (T, NC,SE,H) to e as a
subscription request.

Note that the handler H is part of the subscription request because the
raise operation described in section 3.2.3 requires access to it at a later stage.

3.2.2 Unsubscribing

This algorithm is used when an entity subscribes to events of a particular
type using the unsubscribe statement. It is executed on the subscriber side.
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Algorithm 2 Unsubscribing to events.

1.

Let T be the type of the event being unsubscribed, SE the subscribing
entity and H the handler to be invoked. The tuple (T,SE, H) consti-
tutes unsubscription information.

Compute the set R of entities potentially capable of raising events of
type T.

For each entity e € R, propagate the tuple (T, SE,H) to e as an un-
subscription request.

3.2.3 Raising an Event

This algorithm is used when an event is raised to determine to what entities
the event should be propagated. It is executed on the raising side.

Algorithm 3 Filtering events at the raising side.

1.

Let RE denote the entity raising the event and T the type of event
raised.

Let n be the number of different event types that can be raised by RE.

Let S;...S, be a sequence of (possibly empty) sets containing tuples of
the form (NC,;,,SE;;, H;;) where i € [1;n] and j; € [0;00[. Each
tuple represents subscription information for one entity subscribing to
events of a particular type where SE;, is a subscribing entity, NCy,
is the notify constraint associated with that subscription and Hy , is the
subscribing entity’s handler.

. Let ®(Y) be a one-to-one function mapping any given type Y to one of

the sets S1...5,.

Let @ be a set of tuples of the form (SE, H) identifying the receivers
of the raised event and their handlers. Initially, set Q = (.

For each tuple (NC,SE,H) € ®(T), evaluate NC' in the context of the
event raised. If the evaluation returns true, add (SE, H) to Q.

Propagate the raised event to all handlers h of entities e where (e, h) €

Q.
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3.2.4 Handling Subscribe Requests

The following algorithm is used when an entity subscribes to events of a
particular type using the subscribe statement. It is executed on the side
receiving the subscription.

Algorithm 4 Handling requests for subscription.

1. Assume the existence of the mapping function ® and the sets S;...S,
from algorithm 3.

2. Assume the incoming subscribe request has the form (T, NC,SE, H)
where T is the type of the event, NC' 1is the notify constraint, SE is the
subscribing entity and H is its handler.

3. Add the tuple (NC,SE, H) to the set ®(T).

3.2.5 Handling Unsubscribe Requests

The following algorithm is used when an entity cancels its subscription to
events of a particular type using the unsubscribe statement. It is executed
on the side receiving the request for unsubscription.

Algorithm 5 Handling requests for unsubscription.

1. Assume the existence of the mapping function ® and the sets S;...S,
from algorithm 3.

2. Assume the incoming unsubscribe request has the form (T, SE, H) where
T is the type of the event, SE is the unsubscribing entity and H 1its
handler.

3. Remove all tuples (x,SE,H) from ®(T) where x is any notify con-
straint.

It is worth noting that the approach given above removes all matching
subscriptions which uses the handler in question, regardless of which notify
constraint was involved. As we shall see in section 4.1.1, there are other ways
of doing this. This one is called the wholesale approach.

3.3 ECO Implementations

There have been two previous implementations of the ECO model. This
section briefly describes them and points out the ways in which they differ
from this one. Also, references to more detailed descriptions are given.
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3.3.1 The VOID Shell (1995)

The VOID Shell [Tea95] is a system for non-distributed virtual world support.
It includes several components, such as graphics support and an entity editor,
including ECOlib which implements a version of ECO with notify, pre and post
constraints. ECOIlib is centralised (i.e., runs only on one host) and does not
include facilities for dynamic linking of class code. The VOID Shell did not
attempt to estimate the value of notify constraints.

3.3.2 DECO (1997)

[ODC*96] implements DECO (Distributed ECO) which relies on the ISIS
framework for group communication. It features precompiled notify con-
straints which are not dynamically linkable and an extension to ECO called
zones. The concept of notify constraints goes hand in hand with the concept
of zones. In [ODCT96], zones are used to separate the virtual world into
manageable groups of objects. Notify constraints are used within zones to
limit the number of events communicated between objects in a particular
zone. Effectively, zones provide an outer level of scope, whereas notify con-
straints provide scope on an inner level. [ODC*96] estimated the value of
zones but not of notify constraints.

3.4 Summary

This chapter has described the ECO model thoroughly in an attempt to give
the reader sufficient background to understand the rest of the thesis. An
overview of the model was given before a set of simple algorithms to illus-
trate the way the model works. The most important concepts in the model
(events, constraints, objects) were explained, and ECO terminology sufficient
to understand the algorithms was given. Also, the chapter briefly described
the two previous ECO implementations, in particular in the context of notify
constraints.
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Chapter 4

Analysis and Design

Of the three objectives given in section 1.6, Objectives A and B deal with
the nature of the system we want to build. This chapter addresses these two
objectives by analysing the problem domain. Objective C regards evaluation
and will be addressed in chapter 7. To fulfill Objectives A and B, the system
should have the following properties,

1. It should implement the ECO model as described in section 3.1.
2. It should be distributed.

3. It should implement notify constraints which are dynamically linkable.

Thus, the problem domain separates nicely into three areas, corresponding
to each of the above properties. In the next three sections (4.1 to 4.3) we will
look at each area in turn and list the problems in it. For each problem, we will
discuss possible solutions and choose which one to use in the implementation.
Finally, in section 4.4, we sum up the decisions and give an overview of the
resulting system.

4.1 ECO Problems

Even though the ECO model as described in section 3.1 is fairly simple, there
are some issues that were not addressed by the designers of the model but
which an implementation still has to take into account. Three such ECO-
related issues are dealt with in this section.

4.1.1 Method Bindings

When an entity in the ECO model subscribes to an event, it effectively binds
the occurrence of a set of possible events to a particular method; all subse-
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quent occurrences of these events are reported to the method in question.
Multiple handlers can be bound to the occurrence of the same events; thus
a single event may cause invocation of multiple methods in a single entity.
This is depicted in figure 4.1. Bindings can be changed by subscribing to
and unsubscribing from events. The former creates a binding and the latter
removes it. The idea of notify constraints is closely linked to that of binding
certain event occurrences to entity methods. Notify constraints provide a
way of specifying the set of events that are reported to the entity.

Entity

Figure 4.1: One event causing invocations of two handlers.

Multiple Subscriptions Using One Handler

As mentioned, figure 4.1, shows the occurrence of a single event bound to
several handlers. With regards to the opposite, associating multiple sub-
scriptions with the same handler (depicted in figure 4.2) the semantics are

not as clear. The ECO model documents neither allow or disallow this use of
the APIL.

Entity

Figure 4.2: Two events causing two invocations of the same handler.

The problem stems from the fact that the tuple,
(eventType, entityl D, handler)

specified as part of an unsubscription contains less information than the one
specified at subscription time,

(eventType, entityI D, handler, noti fyConstraint)

The missing notify constraint means that an unsubscription cannot match a
particular subscription. Another aspect of the same problem is whether to
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allow multiple (identical) subscriptions to use the same handler and, if this is
allowed, how to handle unsubscriptions. For an ECO implementation, there
are four ways of dealing with this problem,

1. Enforce a one-to-one mapping implicity by requiring applications to im-
plement exactly one handler for each notify constraint and prohibiting
the use of the same handler for different subscription requests.

2. Allow the mapping of multiple (identical, or only with different no-
tify constraints) subscriptions to the same handler, but accept the fact
that once performed, an individual subscription cannot be cancelled.
Rather, the unsubscribe request works as a wholesale operation, can-
celling all that entity’s subscriptions of that particular event type as-
sociated with the handler in question.

3. Extend the unsubscribe operation to match the subscribe operation by
adding the missing notify constraint as a parameter. This also makes
it possible to solve the problem for completely identical subscriptions
in an elegant manner. Each unsubscription could simply cancel one
subscription—exactly which one does not matter since they are identi-
cal.

4. Extend the subscribe and/or unsubscribe operations such that an indi-
vidual subscription can be cancelled by letting the subscribe operation
return a subscription identifier that can be passed as a parameter to
unsubscribe.

All four approaches are plausible and perfectly possible to implement, and
the ECO model does not specify whether one is more correct than the other.
It is worth noting that even in the ECO documents there is some confusion
as to how many arguments unsubscribe takes. For example, some sources
(e.g., [Tea95, p.53]) do not use the handler parameter, whereas others (e.g.,
[0’C97]) do.

Decision

Of the four solutions listed, solution 1 seems unattractive because it imposes
an unnecessary restriction upon the application’s use of the EcCO API. So-
lution 2 is better but the wholesale semantics complicate the model slightly
and require more awareness from application programmers. Solution 3 is
perhaps the best from an overall viewpoint, since it retains flexibility as well
as simplicity, but it requires yet another change to the ECO API. Solution 4
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also solves the problem, but in a more complicated way because it introduces
a whole new concept, namely the subscription identifier, into the API.

In order not to change the standard ECO API, we decide upon solution 2,
even though it complicates the application’s view of the model slightly. We
have, however, identified and documented the problem, and can make this
peculiarity clear to application programmers.

4.1.2 Where to Evaluate Notify Constraints

One of the requirements of notify constraints in the ECO model is that it be
possible to evaluate them without access to the entity that specified the con-
straint. This requirement makes it possible to propagate notify constraints
to remote nodes and perform the filtering there. Effectively, the idea is to
avoid propagating ‘uninteresting’ events to the subscriber and thus save com-
munication resources.

However, the requirement of being able to evaluate notify constraints re-
motely means that only very limited data can be referenced, namely that
which is accessible where the filtering is done. In the ECO model, only the
actual parameters of any event raised are accessible, but one could also imag-
ine access to the identifier of the entity raising the event or the identity of
the physical node on which that entity resides. Of course, these are available
at the raising side and could therefore simply be given as event parameters
by the raising entity itself.

Delayed Filtering and Multicast

Even though the ECO model disallows access to the receiving entity’s at-
tributes to facilitate the remote evaluation of notify constraints, there is still
the possibility of evaluating those constraints at the receiving side—or possi-
bly both sides—meaning that events are allowed to be transmitted over the
network before the filtering is done. Consequently, events may be discarded
at the destination, after bandwidth has been spent transmitting them. At a
first glance, this approach may seem to forfeit the goal of the ECO model’s
notify constraint concept as such. This is particularly true, if the model is
not changed to allow access to the receiving entity’s attributes even though
they are now local to the evaluation. At a closer look, however, performing
filtering at the receiving side may still make sense. The primary reason is
the existence of multicast or group communication facilities present in some
network protocols (e.g., IP and ATM, the latter in the form of multipoint
calls).
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A central characteristic of group communication is that it is fairly ex-
pensive to change group memberships, whereas multicasting a message to
all members of an existing group is relatively cheap in comparison. If an
entity at a given node raises a series of events that go almost (but not quite)
to the same recipients, it may be more efficient to transmit the event to all
receivers, including some that are not interested, rather than to repeatedly
change group memberships.

Bundling

In the naive algorithms presented in section 3.2, all entities communicate
directly. An obvious improvement to these algorithms would be to bundle
events, such that even though a particular event is destined for two entities
on the same node, it would only be transmitted over the network once. This
poses a problem, however, since it requires the receiving node to determine
who are the local receivers of a particular event. Determining the set of local
receivers for such an event involves either evaluating notify constraints for
all potential receivers at the receiving side or including the identities of the
receiving entities in the message. The latter obviously scales poorly, since
the event may be multicast to a large number of nodes, each holding a large
number of receiving entities.

Strategies

There seems to be three strategies for evaluating notify constraints,

1. At the source only. This was the original intention in the ECO model.
As mentioned, the notify constraints do not have access to data at
the node where the subscriber resides, precisely because it should be
possible to evaluate them without access to the receiving entity.

2. At the destination only. This forfeits the overall goal of saving any
bandwidth, since events will be broadcast to everybody. There is little
to gain from this approach, except for a simplified programming model.

3. At the source and the destination. This imposes more processing over-
head than the two other solutions, but would make sense if a multicast
operation with a large group creation overhead is available. In this
case, a series of multicast groups could be maintained and the event
sent to the smallest group containing all receivers. This also makes it
possible to bundle events and thereby reduce network traffic.
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Decision

Solution 1 is the safe and traditional choice which falls within the ‘ECoO
spirit,” but it will make it infeasible to use multicast in conjunction with event
bundling. Solution 2 is uninteresting since it would make the system less scal-
able which is the exact opposite of what we are trying to achieve. Solution 3
may seem to forsake the original ECO design principles since it requires double
evaluation of constraints, and therefore more processing overhead, but the
evaluation takes place at different nodes and the load is therefore distributed.

The ability to benefit from multicast support is a very attractive charac-
teristic for a distributed event system, and one we would not give up lightly.
Since we will most certainly want to bundle events, the most sensible ap-
proach seems to settle for solution 3, even though it falls outside the original
ECO design ideas.

4.1.3 Latecoming Entities

When new entities join a world that already exists, there may be subscrip-
tions in place that the new entity does not know about. Such a scenario
is shown in figure 4.3 where entity C' enters a world where A and B have
already exchanged subscriptions. C' may be able to raise events that would
match A’s and B’s old subscriptions, and should therefore be delivered to
the two entities. However, having joined the world later than A and B, C'
has not received the original subscriptions and is not aware of its two peers’
interests. This is a problem, because old subscriptions should also apply to
new entities, according to ECO semantics.

World Border _.--"""""""

N Entity C joinsaworld
Entity A where subscriptions

Subscription
from Entity B

are already in effect.

Entity C

(no subscriptions)

Entity B

f - \; The solid arrows denote
\ Subscri pt_' on / subscriptions being
N from Entity A L exchanged and the dotted

denotes the movement
of Entity C into the world.

Figure 4.3: Entity C' is a Latecomer.
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The solution is that, somehow, C must obtain these subscriptions when
it enters the world. The ECO model does not specify how, but there are two
obvious approaches,

1. Keep all active subscriptions in a register (centralised or distributed)
where new entities can obtain them.

2. Let each entity retransmit any active subscriptions it has when it learns
about a new latecomer.

In conjunction with multicast groups, solution 2 could possibly be integrated
into the group management protocol. For example, a new entity could mul-
ticast a join group style message to all other entities, causing each of them
to send their active subscriptions to the new entity. This, however, still
means that a lot of bandwidth would be spent retransmitting subscriptions.
In addition, the new entity may easily be flooded if many subscriptions are
retransmitted simultaneously.

Decision

Solution 1 described above is unattractive because centralised information
services do not scale well and are subject to failures. A solution could be
a distributed service, but building such a service would be well beyond the
scope of this project. Also, there are obvious race conditions involved in
keeping a register up to date. Solution 2 is attractive because it is simple
to implement and does not suffer from race condition problems. However, it
does not scale very well because it may potentially involve communication
between many nodes. The best, and only really scalable, solution seems to
be a distributed information service maintaining subscriptions. However, to
limit the work involved, we settle for solution 2. Future versions of the system
should take this into account.

4.2 Distribution

In this section, we present and discuss the problems related to distribution.
The approach we are choosing is highly distributed, meaning that we have
as few centralised components as possible. Essentially, there are only two,
the Application Instance Register and a shared file system.
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4.2.1 Architecture

Our architecture is based around the concept of Application Instances, or Als.
An application instance is a program running on a node in the network. It
hosts a number of entities and relays events raised by them to other Als. An
Al also receives events from other Als and relays them to its own entities. A
scenario with six entities hosted by three Als running on two nodes is shown
in figure 4.4.

Node B

o

Entity

A
i
-Enti ty Al
L
The arrows denote

communication.

Figure 4.4: Scenarios with Nodes, Application Instances and Entities.

Implementation Strategy

The scenario shown in figure 4.4 is essentially a process group scenario. Group
communication is a well-known concept from distributed systems theory, and
therefore, an obvious solution is to use an existing package that implements
group services. One such system, ISIS, was used by [O’C97] but was found
to impose a fair amount of overhead, and not all of the ISIS features (such
as the ordering facilities) were necessary.

Another approach could be to implement a minimal set of group com-
munication facilities using a network level communications package. Such a
system is described in the rest of this section.

Application Instance Register

When an application instance is created, it needs to obtain information about
other Als in the world. To do this, it uses a centralised register called the
Application Instance Register, or AIR. This is a simple server program that
maintains the authoritative list of Als in the world. During its initialisation
phase, a new application instance first reads the address of the AIR from a
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file in a shared file system, then makes its presence known to the AIR (using
a record type operation) and obtains a list of all the other Als in the world
(using a list type operation). When shutting down, the application instance
notifies the AIR, using a remove type operation. This scheme requires a total
of three message types to be exchanged between an Al and the AIR.

A file in a shared file system is used to hold the address of the AIR. This
file is written by the AIR at initialisation time and subsequently read by each
Al started.

Inter-AI Communication

During an AT’s lifetime, it will need to communicate with peer Als. There
are three cases,

1. When a new Al enters a world, other Als will need to be notified of its
presence, so they can transmit future subscriptions and events to it.

2. When an ECO operation (subscribe, unsubscribe or raise) is performed

by one of its entities, an Al may need to relay this operation to other
Als.

3. When an Al wants to leave the world, it should notify other Als so
they no longer attempt to relay data to it.

Als need the ability to play both roles (sender and receiver) in each of the
above cases. Note that cases 1 and 3 involve communication will all other
Als, i.e., the group of all peers. Depending on the availability of multicast on
the underlying platform, this could be more or less expensive, and a scalable
solution should use a multicast approach. Case 2 involves communication
with a subset of this group and would also benefit from the availability of
multicast. Since there are a total of three ECO operations (subscribe, raise
and unsubscribe), the inter-Al communication will require a total of five types
of messages.

4.2.2 Consistency and Ordering

Section 4.2.1 described two groups of messages, required for AI+>AIR and
Al Al communication respectively. These messages are used to keep the
different components of the system (the Als and the AIR) up-to-date as to
the state of the world. The order in which these messages are exchanged
influences the different components’ world views. In this section, we describe
to what degree these views can be allowed to become inconsistent. The
problem falls into two groups, Al management and event ordering.
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AT Management

Managing the set of application instances currently in the world is the same
problem as managing process group memberships. Since we are using the
AIR to hold the authoritative copy of the list of application instances, we
are using a centralised solution. Recall that the initialisation phase for an
application instance is,

1. Register with the AIR.
2. Obtain complete list of Als from AIR.
3. Register with all other Als.

After this series of steps has been completed, the initialisation phase is over.
Depending on the implementation of step 3, there may be temporary incon-
sistencies between the world views of the ‘other Als,” as they are notified.
Consider the scenario where there are two Als A and B in the world. Two
new Als C' and D start executing the above steps simultaneously. If step 3
is implemented with unordered multicast or even as a sequence of unicasts,
A and B may receive the registration messages from C and D in a different
order, causing them to temporarily disagree on the set of Als in the world.
If events are raised on C' and D during this interval, they will be delivered
to different sets of entities.

If step 3 can be implemented with sync-ordered multicast [CDK94, p.339],
no temporary inconsistencies will occur.

Event Ordering

When an event is raised by an entity, it is relayed by the Al hosting the entity
to other Als who again will relay it to the entities they are hosting. The event
can be transmitted over the network from the source Al to the destination
Als in several ways, exactly like the registration request mentioned above. If
ordered multicast is used, all receivers will agree on the sequence of events,
but if unordered multicast or a sequence of unicasts is used, they may not.

Discussion

Whether strict ordering of events is important, depends on the application
using the ECO implementation. As pointed out by [O’C97, p.87], the require-
ment to support strict consistency may become very expensive as the system
scales. Also, implementing strict consistency without the use of an appropri-
ate package (such as ISIS) would be a considerable effort. In this project, we
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will therefore assume that the application does not require strict ordering of
events and can accept that events, may be delivered inconsistently, i.e., in
different order to different Als.

If required, events could be serialised by the application itself, by imple-
menting a sequencer entity. Such an entity would subscribe to all events, add
a serial number and and retransmit them. Subscribing entities would then
subscribe only to events raised by the sequencer entity. This is effectively a
centralised implementation of totally ordered multicast. Because it is cen-
tralised, it will be a bottleneck as well as a single point of failure and it will
not scale well. Algorithms for distributed sequencers exist; one is given in
[CDK94, pp.608-612].

4.2.3 Concurrency and Synchronisation

One of the advantages of distribution is concurrency. The software compo-
nents of a distributed systems run in parallel, independently of each other,
on several levels. In the context of SECO, we have two cases; there can be
several Als running concurrently and there can be several active threads run-
ning within an AI. We call these two cases inter- and intra-Al concurrency
and will look closer at them here.

Inter-AlI Issues

Each application instance runs independently of the others. Though multiple
application instances may be run on the same node, they will often reside on
different nodes and communicate over the network. There are no means for
application threads to be synchronised with threads hosted by other Als.

Intra- AT Issues

An application instance hosts a number of entities which are created by the
application while the Al is running. Some entities may be active and raise
events with certain intervals as well as receiving events. Such entities are
likely to require one or more threads to be running inside them. Other
entities may be passive, performing subscriptions when they are created and
thereafter waiting passively for events to occur. Such entities may not require
threads.!

!The distinguishing between active and passive entities here is somewhat academic.
There is no inherent difference between them, except for the presence of threads. An
active entity can easily choose to become passive or vice versa.
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Thread support is provided through the ROO library [ZC95] [Tay95] which
implements threads as well as intra-process synchronisation primitives, such
as semaphores.

4.2.4 Fault Tolerance

Distributed systems in general fail in much more interesting ways than cen-
tralised systems. When one or more components of a distributed system fails,
the remaining components need to become aware that parts have failed and
take some appropriate action. In this section we look at the four different
failure scenarios which apply to this system. In general, our disposition is not
go out of the way to make the system exceedingly fault tolerant, since this is
an experimental project and high fault tolerance is not one of the objectives,
as described in section 1.6.

Application Instance Failure

During execution, an application instance can fail because of bugs in the
application, the SECO implementation or one of the toolkits. This situation
is different from the node failure scenario below, because a node may host
several application instances.

When an application instance fails, all entities that it hosts disappear.
SECO entities are not persistent (unless the application implements some sort
of persistence) and therefore disappear permanently if their hosting Al fails.
Peer Als discover that an AT has failed if sending messages to it fails and can
then remove it from their records. The AIR does not initiate communication
with Als and will therefore not discover whether Als have failed. This could
be remedied by letting other Als notify the AIR, but in order to limit the
workload involved, we have chosen not to implement this functionality in the
current version of SECO. This means that if a SECO environment is running
over a period where application instances fail, the AIR will propagate obsolete
entries to new Als. However, these new Als will remove the dead entries
themselves, as they discover that they are no longer valid.

Node Failure

A node can fail for various reasons, for example hardware or operating system
failures. In this case, all application intances running on that particular node
fail as described above.
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Network Fragmentation

Network fragmentation is a particularly complicated failure scenario in dis-
tributed systems, since it means the failure not of an actual system compo-
nent but of the communications pathway between them. This means that
different parts of the system may remain intact but believe that other parts
have failed. Recovery of this situation is possible but fairly complex, and to
limit the project workload we will therefore assume that network fragmenta-
tion does not occur.

AIR and Shared File System Failure

The AIR and the shared file system are the only two centralised components
in the architecture and are therefore obvious single points of failures. An
active SECO environment is very dependent on the availability of these two
components and it would be attractive if they were highly resistant to failures.
This could be achieved by using replication, both in the case of the AIR
and the file system. Replicated file systems such as Ars [CDK94, pp.232-
242] are hosted by several servers and is more resistant against failures than
centralised file servers.

On the other hand, the AIR is a fairly simple program which relies on few
other components and it should be possible to provide a fairly stable imple-
mentation. Also, NFS, the shared file system that comes with all versions of
UNIX, is well-known technology and has been reasonably stable for a number
of years. However, no matter how well-known and stable the software is, a
centralised solution is always subject to hardware failures. In order to limit
the project workload, we will choose the implement these two components as
simple centralised components. If it is later shown to be necessary, replacing
them with replicated services will be possible but will require extra work.

4.2.5 Scalability

In section 1.5 we identified four directions of growth of an ECO virtual world
system: users, entities, nodes and activity. Since the SECO implementation is
highly distributed, except for the AIR and the shared file system, any number
of new nodes can be added. Also, new users and entities can be added, as
long as there are nodes enough to support them. The remaining issue activity
is the most critical and indeed the one the ECO model is designed to improve
by using notify constraints. In chapter 7 we will try to evaluate to what
degree this is true.
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4.3 Dynamic Linking

In this section, we present and discuss the problems related to dynamic
linking of class code.

4.3.1 What is a Dynamic Class?

A dynamically linkable class (called a dynamic class for short) is a class
whose code can be linked dynamically at runtime. This is done by splitting
the class code in two parts, stub code and real code. Each part implements
the interface of the dynamic class (the attributes and methods) identically
but instead of the real class implementation, the methods in the stub code
contain code which links the real code by loading it from stable storage.
Hence, the stub code is responsible for linking and invoking the real code in
case it is ever needed. Since little code is required to perform the linking
and relaying the invocation, the stub code will most often be substantially
smaller than the real code. In this case, the footprint of the application
containing the dynamic class will be reduced as long as the real code is not
linked. The stub code has another feature called versioning which allows
multiple implementations of the real code for a particular class to coexist.
When creating an object, an application can ask for a particular version of
the class code to be used. In this way, code can be incrementally added to
an application as long as it implements a class interface for which stub code
already exists in the application.

The Class Register

Support for dynamic classes is obtained by using a toolkit called the CLASS
REGISTER [Fur97] which implements the functionality described above. Us-
ing this toolkit is complicated and involves a fair amount of overhead. First,
each dynamic class must be registered with the CLASS REGISTER before it
can be used, which involves the creation of various identifier objects. Also,
in addition to the stub code and the real code described above, the CLASS
REGISTER requires the application to supply upcall code for each dynamic
class. This code is used by the CLASS REGISTER to access objects belonging
to the dynamic class.? This means that each dynamic class requires four files
with source code (header file, stub code, real code, and upcall code) whereas
an ordinary (non-dynamic) class only requires two (header file and real code).

Along with the CLASS REGISTER comes a preprocessor, called DCLASS,
which is supposed to transform non-dynamic classes into dynamic by gener-

2See [Fur97, p.38] for further details.
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ating stub code and upcall code from a header file and a file with real class
code. Unfortunately, the author of this thesis has found the preprocessor
rather unstable and close to unusable for any but the simplest programs.
There is no doubt, however, that it is possible to automate the process.

4.3.2 Making Class Code Available

The CLASS REGISTER requires the application to register each dynamic class
before any instantiations of it are created. In [Fur97| this is called class
installation. The parameters given to a class installation are all allocated
and managed by the application. They are,

Numeric Language Identifier identifying the implementation language,
such as C++.

Numeric Class Identifier identifying this particular class within the ap-
plication.

Class Version Number is optional, but if versioning is used it identifies
a particular version of the class. Multiple versions of the code for a
dynamic class can coexist in the application. If versioning is used, a
version number is specified when a class is instantiated.?

Symbolic Class Name is a text string containing the class name. There
is a one-to-one relation between this name and the numeric language
identifier mentioned above.

Size of Stub Code in bytes, as returned by the C++ sizeof () function.

Real Code Location is a text string containing the location (within a lo-
cally accessible file system) of a shared object file with the real class
code.

Upcall Code Location is analogous to the real code location mentioned
above but specifies the location of the upcall code.

In SECO, instantiations of dynamic classes (in the form of notify constraint
objects) can be passed between application instances as part of subscription
requests. Propagating such objects between application instances requires
special attention because the application instance receiving the object must
be able to install the dynamic class code locally.

3In practice, this is done by passing a versioning identifier to the C++ new operation
by using the placement syntax described in [Str91, pp.497-499].
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Remote Installation of Dynamic Classes

In order for an application instance to install a dynamic class, the following
requirements must be met,

1. The receiving application instance must be linked with stub code for
the class. This means that no new notify constraint classes can be
introduced at runtime unless they share stub code with an existing
dynamic class.

2. The seven parameters mentioned above must be available in order to
use the CLASS REGISTER’s install function.

3. The files containing real code and upcall code must be available so the
code can be linked in case it is invoked.

The two last requirements are to the availability of certain information to the
receiving application instance. An obvious way of making this data available
would be to transmit it over the network along with the object itself. For the
seven parameters mentioned in requirement 2, four integers and three text
strings, this would not involve unreasonable overhead but the two shared
object files from requirement 3 are different. They are potentially large files,
and since they may never be used, sending them over the network could be a
waste of bandwidth. A more attractive solution is to store them in a shared
file system from which the receiving application instance can get them if it
ever needs to.

Of the seven parameters listed above, the first four are sufficient to iden-
tify a class uniquely. This means that these four can be used to deduce
a unique place in the shared file system where the remaining three can be
stored. Whereas this does not decrease bandwidth usage (since the three
parameters will be read from the shared file system anyway) it does simplify
the format of the marshalled object transmitted over the network.

4.3.3 The Class Repository

As mentioned in section 4.3.1, using the CLASS REGISTER is fairly compli-
cated. Apart from the amount of extra code (in the form of upcall and stub
code) required, the installation of a dynamic class itself involves the creation
of four identifier objects followed by invocation of the CLASS REGISTER it-
self. This, together with the fact that the CLASS REGISTER itself does not
include a shared file system as described in section 4.3.2, provides incentive
for building a front-end to the CLASS REGISTER. This front-end is called the
Class Repository, or CREP.
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Simplified Interface

One of objective of CREP is to let dynamic classes be registered with a min-
imum of effort from the application programmer. Therefore, the CREP in-
terface is simpler than that of the CLASS REGISTER, consisting of a single
function which can be invoked without the creation of identifier objects.

Storing Class Information

CREP relies on a shared file system to store class code and extra parameters
in the manner described in section 4.3.2. The first four parameters are used
for naming a directory (unique for each dynamic class) where the remaining
parameters and the two shared object files are stored. Since we are already
using a shared file system to store the AIR address (see section 4.2.1), it
makes sense to extend that file system to also include the dynamic classes.
Since multiple application instances can install classes simultaneously, CREP
uses file locking to avoid race conditions.

4.4 Design Summary

Figure 4.5 on page 69 shows an overview of the system we have defined in this
chapter. Two applications are shown in the middle, communicating through
ECO libraries (SECO) and class repositories (CREP). The application instance
register (AIR), described in section 4.2.1, and the different instances of SECO
use a communications package to send and receive messages. The different
instances of CREP use a shared file system to exchange class code used by the
application. In addition, the AIR writes its address to the shared file system
from where it is subsequently read by the SEcoO libraries. This is not shown
in the figure in order to not complicate it further.

Below, we sum up the decisions in the previous sections. The implemen-
tation of the system is described in chapter 5.

ECO

We have identified and discussed three problems with regards to ECO imple-
mentation in general, and we have defined a version of ECO that solves these
problems within the ‘ECO spirit’ and without substantial tradeoffs. It should
therefore be easy to use this ECO implementation in conjunction with other
ECO-related work, such as the extended ECO described in [O’C97].
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Figure 4.5: System Overview with two Als and the AIR.

Distribution

We have designed a highly distributed architecture with only two centralised
components, and we have shown that these two could be replaced with equiv-
alent distributed components. We have discussed the problems inherent in
distributed systems and seen that strict consistency could be maintained
through message ordering, but in order to keep implementation workload
down, we chose to implement a lax approach where temporary inconsisten-
cies are allowed. Also, we looked at concurrency and synchronisation issues
in the architecture and described what features are available to application
threads. With regards to fault tolerance, we briefly discussed the three pos-
sible failure scenarios, even though the ability to deal with failures is not
a primary goal. At last, we looked briefly at scalability in the system and
concluded that with the architecture presented in this chapter, scaling ac-
tivity is the biggest remaining issue and one where notify constraints will be
important.

Dynamic Linking

We have described a way of using the CLASS REGISTER to build a class
repository CREP that, in conjunction with changes to the application code,
can be used to link classes dynamically. The class repository CREP uses the
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shared file system introduced in section 4.2.1 to store dynamic class code and
other class information. Though installation of dynamic classes is easier with
CREP than the CLASS REGISTER the class code changes required are fairly
complex and imposes a substantial overhead on the application programmer.
However, with the current CLASS REGISTER there is no way to decrease the
amount of changes required. Since the process of transforming conventional
class code to dynamic class code is subject to automation, one approach to
remedy the problem could be to repair the preprocessor [Fur97] or to extend
the existing ECO Entity Editor [Tea95] to produce code that is dynamically
linkable.
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Chapter 5

Implementation

This chapter describes the SECO implementation. Owing to the analysis in
chapter 4, the programming task was fairly straightforward and no serious
problems were encountered. Consequently, this chapter does not raise any
major issues not covered in the preceding chapter.

The system consists of nine components which can be grouped into three
conceptually distinct domains or layers. Figure 5.1 on page 72 shows an
overview of the implementation with the three layers marked and code usage
represented by arrows. Arrows pointing downwards represent normal invoca-
tions whereas those pointing upwards signify callback style invocations. The
upper layer contains only one component: the application using SECO. The
middle layer, SECO, contains five components: event manager, communica-
tions manager, constraint manager, class repository and application instance
register. The lower layer, the support layer, contains three components: ROO,
KANGA and the CLASS REGISTER.

All components in middle layer are the original work of the author, and
in addition, modifications to one of the components in the support layer
(namely the CLASS REGISTER) were made in order to adapt it to SECO use.
In the following sections, we look at each of the components in figure 5.1 from
the bottom-up. This order makes sense because the components towards the
bottom of the figure provide a foundation for those above them. Section 5.1
describes the support layer components, section 5.2 the SECO components.
The top layer is not described in this chapter but in section 6.2 in form of a
sample application. Section 5.3 concludes the chapter.

As can be seen from figure 5.1, the application layer uses three other
components (ROO, the event manager, and the class repository), and an
application programmer should therefore be familiar with the APIs of these
three components. They are described in section 5.1.2, 5.2.4, and 5.2.1,
respectively.
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Figure 5.1: Implementation Overview

5.1 Support Components

This section describes various support components which the implementation
relies on. Most of them were developed at Trinity College as part of the
TIGGER project.

5.1.1 Kanga for Communications

KANGA is part of the TIGGER framework and provides a convenient class-
oriented front-end to the transport layer (TCP/IP) based on connection end-
points rather than hostnames and ports. Unlike TCP, KANGA is message-
oriented: Data is pushed into messages, sent across the network and then
popped at the destination. Marshalling operations for all standard C+-+
types are included. Unfortunately, the current version of KANGA does not
have multicast capabilities, even though it is supported by the underlying
operating system. KANGA relies on ROO (see section 5.1.2) for multi-thread
capabilities.

The implementation uses the KANGA [Bur96]| library for network commu-
nications support and the KANGA name service for registration of the Appli-
cation Instance Register. Therefore the application must be linked with the
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libkanga.a, libtigger—-status.a and libtigger—trace.a libraries.

5.1.2 Roo for Multiple Threads

The ROO [Tay95] library implements multi-thread support within a single
Unix process. The library also includes thread synchronisation primitives,
such as semaphores. It uses the two other TIGGER libraries status and tracing
and these libraries must therefore be linked with the application.

The implementation uses ROO to support multiple threads in order to
receive and process requests received over the network. The application code
itself can use the ROO API (described in [Tay95]) if it requires multi-thread
support. In both cases the application must be linked with the 1ibroo.a
library.

5.1.3 Class Register for Dynamic Linking

The CLASS REGISTER [Fur97| provides support for dynamically linkable classes.
It consists of two components: the CLASS REGISTER itself and the DCLASS
preprocessor. The preprocessor takes as input a normal set of C+-+ source
files (a .h header and a .cc source file) with ordinary class code and outputs
class code modified to be dynamically linkable. The original class implemen-
tation is not linked into the application but compiled into a .so shared object
file. Replacement class code, generated by the preprocessor, is linked into
the application instead. When (or if) this code is invoked at runtime, the
replacement code dynamically links the real class code into the application
and relays the invocation. The CLASS REGISTER supports class versioning,
meaning that code can be linked incrementally. Unfortunately, the DCLASS
preprocessor is not entirely reliable and the author found it impossible to
make it work on the application code. Therefore, code was handwritten to
conform to the standards required by the CLASS REGISTER instead. The
DCLASS preprocessor was not used.

The implementation uses the CLASS REGISTER to implement the Class
Repository described in section 5.2.1. The latter extends the former to in-
clude a shared file system where shared object files are stored.

Modifications

The CLASS REGISTER included in [Fur97] was in form of a series of object files
which had to be linked with a sample application. The sample application
was to some extent hardwired into the CLASS REGISTER and some effort was
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spent by the author of this thesis separating the two and turning the CLASS
REGISTER into a library.

5.1.4 Other Support Classes

Two other support classes were created specifically for this project but are
of a general nature. One is a simple implementation of a boolean data type,
since the compiler we are using (GCC 2.6.3) does not include support for the
C++ bool type.

Smart Arrays

The other support class, which is used extensively in the SECO implemen-
tation, is an array template. It implements automatically expanding arrays
not unlike those found in the Emerald [BHJ*87] programming language. If
an array cell is referenced which is out of bounds, the array is expanded to
include the indexed cell. In this case, new objects are constructed and put
in the array. An array can be queried for its current bounds, so iteration can
be performed on the elements.

The current implementation of the smart array is not particularly effi-
cient, neither with regards to memory nor processing requirements. It is
used very frequently in the SECO implementation, however, and a worth-
while improvement would be to build a highly optimised version of the array
template, for example based on hashed lists.

5.2 SECO Components

As depicted in figure 5.1 on page 72, the SECO layer is composed of five com-
ponents. The components are used to build two libraries and one executable
which together constitute the SECO system.

libcrep.a is a library which provides dynamic linking support. It is built
from the class repository code covered in section 5.2.1 and has to be
linked with the application at compile time. This is a standalone library
which can be used indepently of SECO.

libseco.a isa library which contains all the code required for SECO support.
It is built from the communications, constraint and event managers
covered in sections 5.2.2 to 5.2.4. This library must also be linked with
the application at compile time.
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air is the Application Instance Register (AIR) server executable. It is cov-
ered in section 5.2.5 and must be running on one node in the system
before the application can be started.

The following sections describe the five SECO components, their APIs and
any important details as to their working. Further details are available in
the source code.

5.2.1 Class Repository

As mentioned, the class repository is essentially an extension of the CLASS
REGISTER described in section 5.1.3. All save two of the source files in the
directory were taken from [Fur97]. Changes were made to the original files in
order to separate the CLASS REGISTER from the sample application it came
with and turn it into a library. The new files are,

ClassRepository.hh
ClassRepository.cc

The remaining source files are documented in [Fur97| and will not be dis-
cussed in further detail in this thesis. When compiled, the files are used to
create the library libcrep.a which must be linked into the application.

API

During its initialisation phase, an application instance creates a class repos-
itory, using the C++ new operator. Subsequent API invocations are per-
formed on this object. The class repository contains two public methods,
both of which are designed to be invoked by the application during its ini-
tialisation phase.

int Install(int language_id, // implementation language
int class_number, // class number
char * class_name, // symbolic class name
size_t size, // sizeof() the class
int version, // class version number
char * class_code, // name of .so file
char * upcall_code); // name of .so file

The Install operation is used by the application to register any dynamic
classes it may have. The operation is invoked once for each such class. The
application is responsible for allocating and managing all of the above iden-
tifiers. The operation returns 0 if successful and -1 otherwise.
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int Register(char * class_name,
int version,
int language_id);

Using the Register operation is not strictly necessary, since it implements
a subset of the Install operation, but may be useful for some applications
to reduce initialisation overhead. It registers a class that is known already
to be in the shared file system. Since no copying of class code is done, it has
a much lower overhead than Install. Register returns O if successful and
-1 otherwise.

Shared File System

The code for dynamic classes is stored in a shared file system, the path of
which is defined in ClassRepository.hh as,

#define SECO_SHARED_FILESYSTEM "/home/haahrm/seco/src/shared"

The names of the files in the shared file system are constructed with the
private method make name. The current naming scheme uses the language
identifier, the class name and the class version to generate the class file
name. If another naming scheme is desired, this method can be rewritten
quite easily.

The class repository uses advisory locking, as described in flock(2), to
prevent files from being corrupted by different application instances attempt-
ing to register the same classes simultaneously. Unfortunately, the FreeBSD
2.0.5 implementation of advisory locks does not work across machine bound-
aries and it is therefore possible for a distributed application to corrupt files.
There is no immediate solution to this, except for an operating system up-
grade. Newer versions of Unix, such as Solaris 2.6, supports file locking across
machine boundaries.

Improvements

The class repository is subject to some improvements, especially with regards
to file locking. The code, though functionable in its current form, would also
need a cleanup, but due to time constraints this has not been done.

5.2.2 Communications Manager

The communications manager manages network connections to other appli-
cation instances. Each communications manager has a KANGA connection

76



endpoint on which it listens for messages from peers. Some of these messages
will be subscribe, unsubscribe and raise requests which the communications
manager forwards to its local event manager. Others will be control messages
internal to the communicating communications managers.

API

The communications manager is used only by one other SECO component,
namely the event manager. The constructor and destructor are defined as,

CommunicationsManager (EventManager* em, EventFactory* ef);
“CommunicationsManager() ;

When creating a communications manager object, the event manager passes
it a pointer to itself. This pointer is later used by the communications man-
ager to perform upcalls with requests received from the network. This is
depicted with an upwards arrow in figure 5.1 on page 72. The event manager
also passes the constructor a pointer to an event factory object which the
communications manager can use to create event objects from marshalled
event data received from the network. The communications manager’s con-
structor and destructor also perform initialisation and shutdown of network
connections. This will be described in more detail shortly.

There are three operations corresponding to the three ECO primitives.
Each is used by the event manager to propagate subscriptions, unsubscrip-
tions and raise requests to remote nodes.

void sendSubscription(EventType eventType,
EntityID entityID,
Handler handler,
NotifyConstraint* nc,
int receiverAID = -1);

void sendUnsubscription(EventType eventType,
EntityID entityID,
Handler handler);

void sendRaise(Event& event, Array<ApplID>& receivers);

The three methods marshal the relevant data and transmit it over the net-
work using KANGA.
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Multiple Threads

A communications manager object has two threads, a listen thread which
continually listens for requests from peers, and a worker thread which pro-
cesses these requests sequentially. The two threads exchange information
through a semaphore and an array controlled by a mutex. The semaphore is
used by the listen thread to signal the worker thread each time a new request
is ready for processing.

Interaction with Other Application Instances

When a communications manager object is created, it goes through an ini-
tialisation phase where it makes its presence known to the other application
instances. The constructor of a communications manager performs the fol-
lowing steps,

1. Obtain the address of the AIR by reading it
from the shared file system.
2. Register with the AIR.
3. Obtain a list of peer endpoints from the AIR.
4. Register with each of the other peers in any order.

Analogously, the communications manager destructor performs the following
steps,

1. Deregister with the AIR.
2. Deregister with the other peers in any order.

In figure 5.1 on page 72, communication with the AIR is depicted as a side-
ways dotted arrow. At any point between the constructor and destructor
invocations, a table of peers is maintained, containing the endpoints of all
other communications managers. This table is continually updated, by the
listen thread as well as the worker thread, to reflect the current state of the
world. Since both threads use the table, access to it is controlled by a mutex.

Message Formats

There are five types of messages sent by the communications manager to its
peers. Two of them are used to register and deregister as described above
and the remaining three correspond to the three ECO operations. The format
of the messages are shown in figure 5.2 on page 79.
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int type=
SECO_MSG_HOWDY

int sender_aid

KangaDestination
sender_endpoint

int type =
SECO_MSG_SUBSCRIBE

EventType event_type

int sender_aid

Entityl D subscriber_id

Handler subscriber_handler

int type =
SECO_MSG_BYE

int sender_aid

int type =
SECO_MSG_UNSUBSCRIBE

EventType event_type

int sender_aid

Entityl D subscriber_id

Handler subscriber_handler

inttag =
SECO_TAG_NCor
SECO_TAG_NO_NC

jintlanguageid

intclass number : int type =
_intverson_number : SECO_MSG_RAISE
NotifyConstraintTypetype EventType event_type
(constraint attribute 1) : (event attribute 1)
(constraint attribute n) ‘ (event attribute n)

Figure 5.2: SECO Requests

It should be noted, that even though these requests are constructed by the
communications manager, the marshalled attributes are added to the re-
quests by the application. The communications manager explicitly invokes
application code at the appropriate point when the request is constructed.
All requests result in a reply of the forms shown in figure 5.3.

int type = int type =
SECO_REPLY_OK SECO_REPLY_FAIL

Figure 5.3: SECO Replies

Unicast and Multicast

The communications manager class implements two network communications
primitives that are used internally (i.e., by the communications manager it-
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self), unicast and multicast. Both methods are implemented using the un-
derlying network programming package KANGA. Since multicast support in
KANGA is still incomplete, the communications manager’s multicast opera-
tion is implemented as a sequence of unicasts. When KANGA is extended to
support multicast, the communications manager’s multicast operation can
easily be rewritten to use this feature.

5.2.3 Constraint Manager

The constraint manager manages notify constraints. It keeps a two-dimensional
table of notify constraint information records, each containing information
about a particular constraint object. Constraint objects can be in one of
two states, either linked or unlinked. When the constraint manager evalu-
ates a constraint, it first checks the state of the constraint. If unlinked, the
constraint manager links the constraint before evaluation.

API

As shown on figure 5.1 on page 72, the constraint manager is only used by
one other component, the event manager. The API is as follows,

ConstraintManager (NotifyConstraintFactory* cf);
“ConstraintManager() ;

When creating a constraint manager object, the event manager passes a
notify constraint factory object to it. The constraint manager later uses this
object to create notify constraint objects from marshalled constraint data.
There are three operations for performing and cancelling subscriptions,

// for local subscriptions

virtual NotifyID RegisterNotifyConstraint(EventType et,
NotifyConstraint& nc);

// for remote subscriptions

virtual NotifyID RegisterNotifyConstraint(EventType et,
ClassIdentifier* ci,
MarshalledData* mattribs);

// for local and remote unsubscriptions alike
void virtual DeregisterNotifyConstraint(EventType et, NotifyID nid);

The two registration methods register a linked and an unlinked notify con-
straint respectively. Notify constraints registered by a local entity are always
linked, whereas notify constraints received over the network are assumed to
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be unlinked.! Notify constraint class code is linked lazily and the objects
are also unmarshalled lazily. This means that until an attempt to evaluate a
constraint object is made, the constraint is kept in unmarshalled form. The
two remaining methods are,

virtual Bool EvaluateNotifyConstraint(NotifyID&, Event&);

NotifyConstraint* LookupNotifyConstraint(EventType et, NotifyID nid);

The former is invoked by the event manager when it wants to match a par-
ticular event against a constraint. The latter when it needs access to a
constraint object.

5.2.4 Event Manager

The event manager class is the application’s API to the SECO library. It
is the most complex of the five SECO components and since it binds three
of the remaining four components together, it plays a central role in the
implementation. This section describes the event manager implementation.

API

During its initialisation phase the application creates an event manager ob-
ject. Subsequent ECO invocations (subscribe, unsubscribe and raise) are
made on this object. The constructor and destructor are defined as,

EventManager (EventFactory* ef, NotifyConstraintFactory* cf);
“EventManager () ;

As parameters to the event manager constructor, the application passes two
pointers to factory objects. These objects are needed by SECO to unmarshal
events and notify constraints and instantiate real objects from the marshalled
data in order to solve the type problem described in section 2.4.2. Examples
of factory objects are given in section 6.2.2. The event manager class also
contains three methods corresponding to the three ECO primitives that, after
initialisation, can be invoked by the application. The declarations are,

'When a constraint object in marshalled form is received via the network, its class code
can in reality be linked already if an instantiated object of the same class exists on that
node. The constraint manager does not keep track of which classes are currently linked
and always invokes the class repository. The class repository, however, knows what classes
are linked and only attempts to link unlinked classes.

81



virtual void Subscribe(EventType et, // event type
Entity* eptr, // entity pointer
Handler handler, // event handler pointer
NotifyConstraint* nc=NULL);

virtual void Unsubscribe(EventType et, // event type
Entity* eptr, // entity pointer
Handler handler); // event handler pointer

virtual void Raise(Event& ev);

The following four methods are invoked by the communications manager.
They are callback style methods and in figure 5.1 on page 72 they are depicted
as a single upwards arrow.

virtual void iSubscribe(EventType et, // event type
ApplID aid, // subscriber’s AI
EntityID eid, // entity id valid at that AI
Handler handler, // handler valid at that AI

MarshalledData *ma=NULL); // optional marshalled nc

virtual void iUnsubscribe(EventType et, // event type
ApplID aid, // subscriber’s AI
EntityID eid, // entity id valid at that AI
Handler handler); // handler valid at that AT
virtual void iRaise(Event& ev); // event
virtual void iResendSubscriptions(int aid); // newly joined AI

The first three methods are ECO operations used for requests received over
the network. The last method is used when the communications manager
has learned of a new peer and wants the event manager to retransmit any
active subscriptions it may have to this particular peer.

The Subscription Table

The event manager maintains a table of subscription records. Each record
contains information about that particular subscription, e.g., whether the
subscriber is local or remote, whether the subscription includes a notify con-
straint and which handler to invoke in case an event satisfying the constraint
is received. The table is indexed in four dimensions by event type, application
instance identifier, entity identifier, and a serial number. For a particular
subscription, the indices constitute a large portion of the subscription infor-
mation. The advantage of using a four-dimensional table (as opposed to,
e.g., a single linked list) is that information which for most operations is
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available anyway (such as the event type which is a parameter to all three
ECO operations) can be used to limit the search space in a manner similar
to hashed lists.

Multi-threading

As opposed to the communications manager, the event manager does not
have its own threads. When invoked by the application, the application
thread executes event manager code, meaning that SECO operations are syn-
chronous. However, since the communications manager can make upcalls to
the event manager, multiple threads can still be executing event manager
code simultaneously. Therefore, access to the subscription table is controlled
by a mutex.

Improvements

The event manager, the largest of the five SECO components, relies heavily
on the subscription table which is implemented as a four-dimensional Array
of the type described in section 5.1.4. A worthwhile improvement could
therefore be to optimise the Array type.

5.2.5 Application Instance Register

The application instance register (AIR) maintains authoritative information
about the application instances in the world at any time. It is a small stan-
dalone executable which must run on exactly one node in the system before
any application instances can be started. There are no requirements as to
which node. The AIR uses KANGA for communication with application in-
stances and maintains information about application instances in the form
of KANGA endpoints.

API

As described in section 5.2.2 new application instances use the AIR during
their initialisation phase to register their presence and to obtain a list of
their peers, and during their shutdown phase to deregister their presence.
The AR API used to perform these operations is different from the APIs
of other SECO components in that it is not invoked directly but through a
custom RPC mechanism. There are three AIR operations and for each there
is a request and a response message.
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Register is invoked by a new application instance during its initialisation
phase. The registering Al passes its endpoint which goes into the AIR
database. The AIR allocates a unique application instance identifier
(an integer) and returns it to the application instance.

List is also invoked by a new application instance during its initialisation
phase. After having registered, the new Al obtains a list of all Als
currently registered, including itself.

Remove is invoked by an application instance during its shutdown phase.
The AIR removes it from its records.

In order to invoke the AIR operations, a new application instance must obtain
the endpoint of the AIR. For this reason, the AIR writes the address of its
endpoint into a file in the shared file system during its initialisation phase.
New application instances know the name of the file (it is set at compile
time) and read it before attempting to invoke the AIR.

Message Formats

The three API operations are implemented as three request/response dia-
logues. They are shown in figure 5.4.

Requests Responses
int request_code = » | intstatus code=
SECO_AIR_REQUEST_RECORD SECO_AIR_REPLY_RECORD_OK or

KangaRedipient endpoint SECO_AIR REPLY _MALFORMED

int request_code = » | intstatus code=
SECO_AIR_REQUEST_REMOVE SECO_AIR_REPLY_REMOVE_OK or
SECO_AIR_REPLY_MALFORMED

int application_instance_id

int request_code = = | intstatus code=
SECO_AIR_REQUEST_LIST SECO_AIR_REPLY_LIST_OK or
SECO_AIR_REPLY_MALFORMED

. int n = (number of records following)

Figure 5.4: AIR Messages
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Consistency

During initialisation, an application instance receives authoritative informa-
tion from the AIR about the state of the world. After that the Al is solely
responsible for maintaining its own view, meaning that it does not query the
AIR again but only updates its records according to messages received from
other Als. Changes are propagated eagerly during normal circumstances
(e.g., a new Al sends a bye type message to all peers during shutdown) but
lazily in case of failures. Hence, when an application instance discovers that
a peer has failed, no attempt is made to notify other Als or the AIR. They
are assumed to discover failures on their own if they need to know about
them. This is a fairly lax consistency model that scales reasonably well.

Improvements

Since the AIR is not only vital to the operation of SECO but also centralised,
it is a single point of failure. Though it is a very simple program (consisting
of less than 300 lines of source code) and therefore less likely to contain bugs
than a complex program, it is still subject to hardware, operating system
and network failures. An improvement would be to implement a distributed
version of the AIR, making it less prone to such failures.

As mentioned, discovery of failures is not propagated from application in-
stances to the AIR. Since the AIR never initiates communication, this means
that it may never discover if an application instance has failed without dereg-
istering. In the current implementation, this is not a problem since KANGA
connections between the AIR and the application instances are kept open and
the AIR will therefore discover if an Al fails. However, keeping connections
open may not be a viable solution in the long run and an improvement could
be to devise a better scheme.

5.3 Summary

This chapter has described the distributed ECO implementation. We have
outlined the overall structure of the system by separating it into three con-
ceptually distinct levels, each holding a number of system components. Each
component has been described in detail and the relationship between them
has been explained. Since the application layer is not really part of SECO,
description of the sample application has been delayed until section 6.2.
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Chapter 6

The Active Badge System

This thesis relies to a great extent on an event-based system found at the
University of Cambridge. The system, called an active badge system, keeps
track of people in research laboratories by raising so-called sighting events.
The experiments presented in chapter 7, and the subsequent evaluation of
scalability in the ECO model, are based on event data obtained from the
Cambridge system.

This chapter describes the active badge system in detail. First, section 6.1
takes a look at the physical system found at the University of Cambridge and
the nature of the event data we have from it. Second, section 6.2 describes
the simulation used in chapter 7 in implementation-level detail, and finally,
section 6.3 sums up. The simulation also serves as an example of an appli-
cation using SECO support.

6.1 Badge System Description

The active badge system' consists of a collection of infrared sensors (called

stations) which pick up signals emitted by battery-driven badges worn by
personnel in some university laboratories. The stations are grouped into
networks, each being a segment of a particular laboratory. In addition, users
can also be detected when they log into the campus computer network, e.g.,
via an X-terminal. Each badge carries a unique badge identifier, a six byte
value which is picked up by the sensors. Certain kinds of equipment, such
as workstations, X-terminals and some network devices, also have a badge
identifier associated with them and can cause sighting events to be raised.

!Described in http://www.cl.cam.ac.uk/abadge/documentation/abinfo.html.
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The Data

The data used in these experiments consists of 1.8 megabytes of real data
sampled from the active badge system at the Olivetti/Oracle Research Lab at
Cambridge University. The data consists of 35,811 badge sightings collected
over a period of almost 21 hours by 118 stations distributed over 12 networks.
For each sighting, we have the following information,

Station Identifier identifying the network (by a symbolic name) and the
station (by an integer) within that network.

Badge Identifier identifying the sighted person or equipment (by a se-
quence of six eight-bit hexadecimal numbers separated by dashes).

Time stamp identifying the moment when the sighting was made in sec-
onds and microseconds, since 00:00:00 UTC, January 1, 1970.2

The experimental strategy is to replay these sightings in a simulation in form
of a series of programs using SECO support. We represent each station as
an ECO entity which raises the sighting events recorded in the Cambridge
data at the appropriate times, as measured by the local system clock. The
simulation is described in section 6.2 and the experimental configuration in
chapter 7.

6.2 Simulation Implementation

This section describes the implementation of the active badge system simula-
tion. The simulation serves two purposes. First, it is used in the experiments
in chapter 7. Second, it is used as a demonstration of how SECO is used by an
actual application. The simulation uses data gathered from the real badge
system to replay actual events which happened during a 21 hour period in
January 1998 at the University of Cambridge. The reader is expected to
be familiar with the CREP and SECO APIs given in section 5.2.1 and 5.2.4
respectively.

6.2.1 ECO Classes

This section describes the entities, events and constraints used in the badge
system. Each is implemented as a C++ class derived from a SECO abstract
base class. Notify constraint classes are more complex than entity and event
classes because they need support for dynamic linking.

2As returned by time(3).
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Entities

The entities used in the badge system can be grouped in two, raising and
receiving entities. Though it is perfectly possible for ECO entities to raise as
well as receive events, the nature of the badge system is such that its entities
do either but not both. Entities are derived from the Entity abstract base
class.

The entity source code is found in the files,

Entities.hh
Entities.cc

There are a total of five types of entities, each implemented as a C++
class. Each class uses a notify constraint object to filter events. The five
entity classes are,

StationEntity corresponds to an infrared sensor in the real badge system
and is the only type of entity that can raise events. Whenever it sights
a particular badge, it raises a Sighting event which includes the unique
badge identifier of the sighted badge. Like the physical sensors, each
station entity is identified by a network (e.g., ORL-Three#8) and a
station number (an integer) valid within that network. They are passed
as parameters to the constructor when the station entity is created.
Each station entity has a thread which reads through a log file from
the real badge system and raises events at the appropriate times.

GodEntity subscribes to all events generated by all stations. Hence, the God
entity sees all.

SecurityEntity emulates a closed circuit television (CCTV) security cam-
era. It records all events generated in a particular network. (A network
is usually covered by multiple sensors.)

PrivateEntity emulates a private detective shadowing a particular badge.
This entity receives all sighting events generated by the badge in ques-
tion, no matter where they originate from.

BrotherEntity emulates Big Brother from [Orw90]. Big Brother has three
modes and can survey either sightings generated by human users, elec-
tronic hardware,® or by unlisted badges. Three different big brother
entities see as much as one God entity.

3Badge identifiers can be given to certain kinds of hardware such as a printer or a
workstation.
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Events

Only one type of event is used in the badge system. It is the sighting event
which is raised by a sensor when a particular badge is sighted. Events are
derived from the Event abstract base class. The source code for the sighting
event can be found in the files,

Events.hh
Events.cc

A sighting event has the form,

SightingEvent (char *network, // name of the network
int station, // the station within that network
char *badge, // the unique id of the badge seen
long time_sec, // when it was seen (seconds)

long time_usec); // when it was seen (microseconds)

Constraints

There are four types of notify constraints, each corresponding to one of the
subscribing entities mentioned above. Notify constraint classes are derived
from the NotifyConstraint abstract base class. Since constraints are dy-
namically linkable, their source code is more complicated than that of entities
and events. For example, the big brother entity mentioned above uses a no-
tify constraint called BrotherNC, the source code of which is stored in the
following files,

BrotherNC.hh is a header file which defines the interface of the class.

BrotherNC.cc contains stub code that is linked with the application at com-
pile time.

BrotherNC.C contains the real class implementation which, if needed, is
linked dynamically with the application at runtime.

BrotherNC_Upcall.C contains upcall code required for dynamic linking.

Ideally, the DCLASS preprocessor should be used to generate the stub and
upcall code but, as mentioned in section 5.1.3, it is not stable enough.

6.2.2 Additional ECO Support

This section describes the additional support included in the badge system
application which is required to use the SECO library.
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Factory Objects

The application code must include two factory classes which can be used to
create event and constraint objects respectively. These factory objects are
used to solve the type problem described in section 2.4.2 by mapping type
identifiers to instantiated objects. An example of such a mapping function
is,

// from Events.cc
Event* BadgeSystemEventFactory: :Create(EventType et, MarshalledData& md) {
switch(et) {
case BADGE_EVENT_Sighting:
return(new SightingEvent(md));

}
}

If the application contains many types of events and constraints, this switch
statement can obviously grow rather big. However, the code is simple and
an obvious candidate for automatic generation.

Initialisation and Shutdown

The application must also include code to initialise the various parts of the
SECO system. Initialisation code for the badge system is,

// Initialise Roo
Roo::init();

// Create class repository and install dynamic classes

ClassRepository* grt = new ClassRepository();

grt->Install(CPP, BROTHER_NC, "BrotherNC", sizeof (BrotherNC), O,
"BrotherNC.so", "BrotherNC_Upcall.so"))

// (repeat Install for each dynamic class)

// Create factories and event manager

BadgeSystemEventFactory* ef = new BadgeSystemEventFactory();
BadgeSystemNotifyConstraintFactory* cf = new BadgeSystemNotifyConstraintFactory();
EventManager* em = new EventManager(ef, cf);

At this stage, the SECO system is ready and the application can start creating
entities and let them perform subscriptions. When the application wants to
shut down, it should execute the following code,

delete grt;

delete em;
Roo: :shutdown() ;
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Additional Support for Dynamic Linking

In addition to the four source files for each dynamically linkable class listed
in section 6.2.1, the application should allocate identifiers used to register
dynamically linkable classes. These identifiers are passed as parameters to
the class repository’s Install method. The declarations used in the badge
system are,

// from BadgeSystem/Dynamic.hh

enum LanguageIdentifier { CPP };

enum DynamicClasses { GOD_NC, SECURITY_NC, PRIVATE_NC, BROTHER_NC 1};
#include "crep/Dynamic.hh"

The first declaration enumerates the possible implementation languages. C++
is the only one currently used. The second enumerates all the dynamic classes
known to the system.

6.3 Summary

This chapter has described the active badge system and our simulation of it.
The simulation was used to show what an application using SECO support,
can look like, and will be used in the next chapter to evaluate scalability in
the ECO model.
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Chapter 7

Experiments and Evaluation

This chapter presents some experiments designed to evaluate whether the
implementation fulfills the three objectives listed in section 1.6. The appli-
cation used is the active badge system simulation described in chapter 6,
and real data, gathered from the Cambridge system, is used as input to it.
The simulation was one of several candidates for an experimental application
(another was the tank game mentioned in chapter 2) but the badge system
simulation was chosen primarily because of its physical counterpart being a
very ‘real’ system. First, the events used in the simulation were generated
by real users going about their daily tasks in the hallways of a real college.
Furthermore, the active badge system has no less than 118 stations which
means it is a rather big system. Size is a common characteristic of event-
based systems used in the industry, but one which is difficult to simulate in
a research environment. These characteristics made the active badge system
highly attractive as an experimental application, since any results obtained
with it would have a high degree of practical relevance.

The experiments presented in this chapter show filters to be highly effec-
tive and certainly worthwhile as a means to decrease network traffic. These
findings, documented in section 7.3, are extremely positive. On the other
hand, dynamic linking is shown to have only a minor effect on application
footprint and at a fairly high cost. These findings, described in section 7.4,
are less positive. The experiments also show that the SECO implementation
works well and is perfectly usable as a research environment.

To understand the experiments in sections 7.3 and 7.4, this chapter begins
with two other sections. The first makes a few clarifications to the three
objectives with regards to measurement technique. The second, section 7.2,
gives general background information used in the rest of the chapter. Most
importantly, it describes the configuration of the simulation and presents an
analysis of the administrative overhead inherent in it. The results of this
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analysis are used in the subsequent treatment of the experiments, and the
analysis is therefore presented before the experiments themselves.

7.1 Clarifying the Objectives

This section discusses and clarifies certain parts of the objectives presented
in section 1.6, in particular with respect to measuring the various application
characteristics.

7.1.1 Measuring Network Traffic
Objective C (section 1.6.3) said,

“One of our goals is to measure the number of network messages
saved by the use of [...] filtering [...]”

This phrasing specifies that gain due to filtering should be measured at the
level of network messages. Since the communications package we are using
(KANGA) is message oriented, this is fairly straightforward to implement.
Messages do vary in size, however, and another approach could be to mea-
sure the number of bytes transmitted across the network. Had there been a
sEco-induced per message overhead,! measuring the number of bytes would
certainly have been relevant, since there would then have been a relationship
between notify constraints and message sizes. However, in SECO message sizes
vary only according to the number of (application-defined) event parameters,
and we therefore uphold the decision to measure number of messages rather
than the exact amount of bandwidth used.

7.1.2 Measuring Code Complexity
Objective B (section 1.6.2) said,

“We want to determine how much extra complexity (in terms of
code) is needed from the application to use this facility [...]”

Measuring the complexity of a given line of source code is a very subjective
process and one that is hardly possible to perform generally in any mean-
ingful manner. In this chapter we therefore measure complexity in terms

1For example, if a raise message contained the identifiers of all receiving entities at the
receiving side. As explained in section 4.1.2, this would eliminate the need to evaluate
notify constraints at the receiving side.
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of additional number of lines or source code required to support dynamic
linking, regardless of whether the code is easy or difficult for an application
programmer to read or write.

7.1.3 Measuring Footprint
Objective B also said,

“[...] and to measure how large the gain is in terms of decreased
application footprint.”

Measuring footprint can be done simply by looking at the sizes of binary
(i.e., compiled) files and is therefore fairly trivial. However, footprint may
vary according to various factors, such as the underlying hardware platform,
operating system, compiler and debugging information included by the com-
piler. In this chapter, we measure footprint only for one combination of such
factors, as described in section 7.2.1.

7.2 Background

This section provides background information that is necessary for under-
standing sections 7.3 and 7.4, which describe the actual experiments per-
formed. Section 7.2.1 describes the platform on which the experiments are
performed. Section 7.2.2 describes general characteristics of the badge sys-
tem simulation and section 7.2.3 analyses these characteristics in the context
of network traffic overhead caused by SECO.

7.2.1 Hardware, OS, and Compiler Configuration

Our testbed consists of four 80486/DX2 (33/66 MHz) based PCs with 16
megabytes of memory, running FreeBSD 2.0.5. The machines are connected
with standard 10 Mbps ethernet. Since we are measuring bandwidth usage
on a per message basis (as opposed to, e.g., roundtrip times) we run the
experiments in multiuser mode. Also, the machines are on a network segment
with traffic not related to the experiments. The only available compiler, GCC
2.6.3, is used to compile the programs and standard debugging information
is generated with the -g flag. The binary code is not stripped.?

2As with the strip(1) command.
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7.2.2 Simulation Configuration

In our simulation, each of the twelve networks in the badge system is repre-
sented by one application instance as shown in figure 7.1 on page 96. Each
instance holds an entity for each station in that network as shown in the
figure. Three of the four nodes (janis, zoot and hoghtrob) are used to
hold these application instances. This configuration is the same for all the
experiments in this chapter. The last node (statler) holds the applica-
tion instance register (AIR) and a thirteenth application instance with the
entities that subscribes to events. The actual subscribers held by this ap-
plication instance varies between experiments. This configuration has three
characteristics,

1. All subscribing entities are held by a single application instance.
2. All event-generating entities are held by other application instances.

3. All application instances holding event-generating entities outlive those
with subscribing entities.

These characteristics are used in the discussion in section 7.2.3 where we
examine the administration overhead involved for an application with these
characteristics.

Entity Distribution

Though we know the distribution of stations within networks in the original
badge system, we do not have details as to their interconnection. For exam-
ple, figure 7.1 shows all stations within a network to be local to each other,
but whether this was also true for the original system is unknown. However,
the modelling of the system only has to be accurate enough to assure that
the results obtained are valid. Since the objective is to measure network
bandwidth, it is sufficient that events are sent (or would have been sent, but
are eliminated by a filter) over the network. In SECO, this means that the
raiser and the subscriber must reside in different application instances. In
case there are multiple raisers, like the 118 stations in figure 7.1, their exact
distribution is unimportant, as long as any subscribers are remote, i.e., do
not reside in the same application instances.

The simulation takes place in real time (taking 22 hours to raise all events)
and there are 178 subscribers in total. Therefore, it is not possible to run
all subscribers separately within a reasonable time frame. Instead, most of
the experiments features multiple subscribers running in parallel on the same
application instance. This has no influence on the measurements.
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Figure 7.1: Badge System Simulation Overview

Timing Considerations

The event data that we have available contains very precise timestamps (sec-
onds and microseconds) and an accurate simulation would have raised events
at these instants very precisely. However, with the system support available
on FreeBSD, it is not possible to raise events at such accurate moments.
Furthermore, each node has its own clock and since the entities raising the
events reside on different nodes, it would also be necessary to continually
resynchronise the system clocks on the different nodes. The lack of a global
clock is a well-known problem from distributed systems theory.

However, raising the events at exactly the moments they were measured
in the original badge system is not important. As discussed in section 4.2.2,
the events supported by SECO are not strictly ordered. Hence, even if the
simulation could raise them at the right moments, SECO could not guarantee
the delivery order. Instead, the original time stamps are given as parameters
to the sighting events, allowing subscribers interested in the order of the
events to compare these time stamps rather than examine the order in which
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the events are received.?

To avoid excessive clock drift, the four nodes are running the network time
protocol (ntp) which keeps the system clocks on the four nodes synchronised
to that of an external time server.

7.2.3 Administration Overhead

Like any distributed system, the SECO implementation introduces a certain
overhead, in terms of network traffic, which would not have applied in an
equivalent centralised solution. This section analyses the configuration de-
scribed in section 7.2.2 and provides details as to the size of this overhead.
The discussion is based on our knowledge of the implementation and the
results will be used later in section 7.3. The analysis applies to any scenario
subject to the three characteristics listed in section 7.2.2. The discussion
in this section does not apply for applications that do not fulfill the three
characteristics but of course apply for the four test scenarios presented in
section 7.3.

Administration overhead falls in two groups: overhead caused by distri-
bution and by filtering. The former consists of overhead caused by AIR inter-
action and by maintaining group memberships, whereas the latter is caused
by subscription and unsubscription messages. In the following, we compute
the overhead of each category as a function of the number of application
instances (rather than entities) and subscriptions. We define the number of
overhead messages sent due to distribution and filtering, respectively, as,

Ndistribution (n) = Nair (n) + Ng'roup (n)
Nfiltem'ng (m7 n) = mX Nsubscription (n)

where n is the number of application instances and m the number of sub-
scriptions performed during the application’s lifetime.

AIR Interaction Overhead

During its lifetime, an application instance sends three requests to the AIR:
register, list and deregister. Each request results in a reply. This makes a total
of six messages per application instance. For a scenario with n application
instances, AIR interaction therefore results in a total of 6n messages being
transmitted across the network during the application’s lifetime, thus,

Noir(n) = 6n

3Event order is not used in the simulation experiments but could, for example, be used
to implement event composition as known from the Cambridge event model described in
section 2.3.
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Group Administration

When an application instance joins and leaves a scenario, respectively, it mul-
ticasts howdy and bye messages to all the other application instances, a list
of which it received from the AIR. The howdy/bye messages are effectively
used to maintain membership of a process group including all application
instances. Howdy is used to join the group and bye to leave it. Since the
current SECO implementation does not use multicast to transmit these mes-
sages, they are sent as a sequence of unicasts. This is unfortunately highly
inefficient. An application instance which joins a scenario as the nth appli-
cation instance needs to send n — 1 howdy messages. This means that in a
scenario with n application instances (where none have left) the total number
of howdy messages sent will be,

Since each application instance will also have to send a corresponding bye
message, the total number of howdy/bye messages is,

n®>—n

=n’-n
2

2%

For each message, there will also be a reply,* meaning that the total number
of messages caused by group administration is,

Nyroup(n) = 2(n2 —n)

Note that these unicast messages could have been replaced by only 2x(n—1)
multicast messages, had multicast been available.

Subscription Overhead

In the scenarios used in this chapter, all subscribing entities are hosted by a
single application instance (assumptions 1 and 2 from section 7.2.2). Hence,
since subscriptions are broadcast to all other instances, the total number of
messages transmitted over the network for any particular subscription can be
computed easily. If n, is the number of application instances at subscription
time, the number of subscription messages (and replies) sent is,

2(ns — 1)

4KANGA requires that a reply be sent to a unicast message.
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At unsubscription time, the number of application instances may have changed.
Assuming it is called n, and that there is an unsubscription for each sub-
scription, the total number of subscribe/unsubscribe messages is,

2(ns — 1) +2(n, — 1)

In the scenario used in our experiments, the application instance with event-
generating entities always outlive the one with the subscriber (assumption 3
from section 7.2.2), so for this particular case we have n; = n,. Setting
n = ns = n, the total number of subscribe/unsubscribe messages is,

Nsubscription(n) = 2(77'5 - 1) + Q(nu - 1) = 4(77’ - 1)

Note that these unicast messages could be replaced by only 2 multicast mes-
sages, had multicast been available.

Total Overhead

The total overhead caused by distribution can now be computed as,

Ndistribution (77,) = Na’iT (n) + NgTﬂup(n)

= 6n+2(n*—n)
2n? + 4n
And for filtering as,
Nfiltering (m: ’I’L) = mXNsubscription (’I'L)
= mx4(n—1)
dm(n — 1)

7.3 Event Filtering Experiments

This section addresses Objectives A (to provide a distrbuted implementation)
and C (to measure filtering gain) by presenting and discussing results from
a series of experiments run on a distributed application using SECO support.
In particular, the results are used to determine the cost and benefit of us-
ing notify constraints to filter events. We used the configuration described
in section 7.2.2 (varying the subscribers between experiments) to measure
the number of messages transmitted, and the formulas from section 7.2.3 to
calculate administration overhead.
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Choosing Scenarios

In practice, the complete event flow through an active badge system is large
and difficult to comprehend. Subscribers with well-chosen notify constraints
can be used to provide meaningful views of this event flow by dynamically
extracting events according to certain patterns, and in this way make it
easier for humans to monitor the system at runtime. The four subscribing
entities presented in this chapter were designed to present such meaningful
views of the event flow and would be likely candidates for implementation
in a real (non-simulation) badge system. The test scenarios are covered in
sections 7.3.1 to 7.3.4. They involve entities subscribing to different sets of
events, in the manner described below,

Subscriber 1: God sees all and gets all events. In a real badge system,
this subscriber could be useful for logging purposes. In this chapter
it is also used to measure filtering overhead by implementing a filter
without effect. Covered in section 7.3.1.

Subscriber 2: Security Camera subscribes to all events generated in a
particular network. In a real system, it could be used to monitor a
specific (and therefore more manageable) area of the entire system.
This experiment was run with twelve subscribers in parallel, one for
each network. Covered in section 7.3.2.

Subscriber 3: Private Eye subscribes to all events generated by a partic-
ular badge. In a real system, this subscriber could be used to trace the
movement patterns of a particular badge owner. This experiment was
run with 162 subscribers in parallel, one for each badge present in the
event data. Covered in section 7.3.3.

Subscriber 4: Big Brother has three modes: it subscribes either to events
generated either by users, by equipment or by unlisted badges (badges
for which the owner’s type is unknown). In a real system, it could be
useful for logging purposes. This experiment was run with an entity of
each type in parallel. Covered in section 7.3.4.

Computing Filtering Overhead

Since the configuration used is the same for all experiments, the number
of overhead messages caused by administration does not vary and can be
computed in advance. However, we are measuring the costs and benefits of
filtering (as opposed to distribution) and are therefore only interested in the
filtering overhead.
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. Unfiltered Actual Overhead Total | Relative
Entity
event msgs | event msgs | msgs msgs | Decrease
[ God | 71,622 | 71,622 | 48 [ 71,670 [ —0.1% |

Table 7.1: Results from Experiment 1

In each experiment, there are thirteen application instances, as described
in section 7.2.2, so n = 13. In each experiment,® one subscription is made,
so m = 1. Inserting in one of the formulas from section 7.2.3 gives us,

Nfiltering(m: n) = 4m(n - 1)
Nf,-lte,mg(l,lii) = 4X1X(13 - 1)
48

This means that in each experiment, a total of 48 messages will be sent in
order to support filtering.

7.3.1 Experiment 1

The GodEntity used in this experiment subscribes to all events generated
in the badge system by implementing a notify constraint that returns true
regardless of which sighting event it is matched against. Though without
effect, the notify constraint is still propagated during subscription, causing a
slight overhead.

Table 7.1 shows the results from the experiment. As can be seen, the re-
duction in number of messages is negative, meaning that using the worthless
filter (not suprisingly) introduced some overhead. However, in the experi-
ment it was as low as 0.1%. It is important to look at the scenario in which
this result was obtained. Overhead in the form of extra network messages is
generated at subscription and unsubscription time but not while the subscrip-
tion is in effect. In experiment 1, there was only one subscription involved
and it was in effect for a very long time (time enough to raise 35,811 events).
Consequently, the relative cost decreased as more and more bandwidth was
used for other purposes. We conclude that long-lasting subscriptions have a
relatively low overhead.

7.3.2 Experiment 2

The subscriber used in this experiment is a simulation of a CCTV (closed
circuit television) camera which monitors a specific area. As described in

5In experiments 2 to 4 where multiple subscribers were run in parallel, we count each
subscriber as a separate experiment.

101



Security Unfiltered Actual Overhead Total | Relative
camera event msgs | event msgs | msgs msgs | Decrease
CL-ArupExtn#8 71,622 104 48 152 99.9%
CL-ArupMain#8 71,622 44 48 92 99.9%
ORL-Home#5 71,622 14 48 62 99.9%
ORL-Net#0 71,622 4,250 48 4,298 94.0%
ORL-Net#1 71,622 11,406 48 | 11,454 84.0%
ORL-Net#2 71,622 13,864 48 | 13,912 80.6%
ORL-Net#4 71,622 5,164 48 5,212 92.7%
ORL-Net#5 71,622 10,046 48 | 10,094 85.9%
ORL-Net#6 71,622 4,150 48 4,198 94.1%
ORL-Net#7 71,622 3,798 48 | 3,846 94.6%
ORL-Three#8 71,622 14,288 48 | 14,336 80.0%
ORL-Three#9 71,622 4,494 48 4,542 93.7%
| Average | | | | | 91.6% |

Table 7.2: Results from Experiment 2

section 7.2.2 there are twelve networks in the active badge system. In this
experiment, twelve security camera entities were run in parallel, each sub-
scribing to all events generated in a particular network. The result is shown
in table 7.2.

As can be seen, the reduction in number of transmitted messages is quite
high: above 90% on average. Had events simply been broadcast instead of
filtered, approximately ten times as many messages would have been trans-
mitted across the network. Even the most busy camera only received 20%
of the messages it would have received if filters had not been used. As in
experiment 1, these subscriptions were in effect for a long period of time, and
the fixed administration overhead of 48 messages gradually became less and
less significant as more events were raised.

7.3.3 Experiment 3

The subscriber used in this experiment is nicknamed private eye because of
its likeness to a private detective shadowing a particular person. In this ex-
periment, 162 private eye entities were run in parallel, one for each badge
present in the event data. Each entity used a notify constraint to subscribe
to events generated by one specific badge regardless of its whereabouts. Ta-
bles 7.3 to 7.5 (on page 103, 104 and 105 respectively) show the results from
the experiment.

The data in the three tables shows substantial savings for this scenario,
averaging at around 99.2% reduction in the number of messages transmitted
across the network. The private eye entities in this experiment collectively
get all sightings of registered badges. The busiest of the 162 badge-wearers
caused 1,316 sightings and still received only 2% of the messages it would
have received if filters had not been used.
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badge unfiltered actual overhead | total relative
watched event msgs | event msgs | msgs msgs | decrease

0-0-0-0-10-14 71,622 52 48 100 99.8%
0-0-0-0-10-1a 71,622 16 48 64 99.8%
0-0-0-0-10-1b 71,622 1,202 48 1,250 98.2%
0-0-0-0-10-1c 71,622 1,302 48 1,350 98.0%
0-0-0-0-10-1e 71,622 48 48 96 99.8%
0-0-0-0-10-27 71,622 16 48 64 99.8%
0-0-0-0-10-2a 71,622 74 48 122 99.7%
0-0-0-0-10-31 71,622 134 48 182 99.6%
0-0-0-0-10-34 71,622 78 48 126 99.7%
0-0-0-0-10-39 71,622 60 48 108 99.7%
0-0-0-0-10-4 71,622 784 48 832 98.7%
0-0-0-0-10-9 71,622 52 48 100 99.8%
0-0-0-0-12-11 71,622 82 48 130 99.7%
0-0-0-0-12-21 71,622 322 48 370 99.4%
0-0-0-0-12-26 71,622 66 48 114 99.7%
0-0-0-0-12-28 71,622 292 48 340 99.4%
0-0-0-0-12-2a 71,622 22 48 70 99.8%
0-0-0-0-12-34 71,622 36 48 84 99.8%
0-0-0-0-12-35 71,622 294 48 342 99.4%
0-0-0-0-12-36 71,622 90 48 138 99.7%
0-0-0-0-12-4 71,622 512 48 560 99.1%
0-0-0-0-12-67 71,622 8 48 56 99.8%
0-0-0-0-12-9 71,622 106 48 154 99.7%
0-0-0-0-12-d4 71,622 4 48 52 99.8%
0-0-0-0-13-64 71,622 18 48 66 99.8%
0-0-0-0-13-99 71,622 4 48 52 99.8%
0-0-0-0-13-9a 71,622 400 48 448 99.3%
0-0-0-0-13-e7 71,622 272 48 320 99.5%
0-0-0-0-13-e8 71,622 408 48 456 99.3%
0-0-0-0-13-e9 71,622 1,316 48 1,364 98.0%
0-0-0-0-13-ea 71,622 590 48 638 99.0%
0-0-0-0-14-0 71,622 748 48 796 98.8%
0-0-0-0-14-4 71,622 478 48 526 99.2%
0-0-0-0-14-5 71,622 4 48 52 99.8%
0-0-0-0-1b-d6 71,622 4 48 52 99.8%
0-0-0-0-4-0 71,622 62 48 110 99.7%
0-0-0-0-4-1 71,622 742 48 790 98.8%
0-0-0-0-4-11 71,622 640 48 688 98.9%
0-0-0-0-4-1f 71,622 70 48 118 99.7%
0-0-0-0-4-2b 71,622 24 48 72 99.8%
0-0-0-0-4-2f 71,622 732 48 780 98.8%
0-0-0-0-4-4 71,622 450 48 498 99.2%
0-0-0-0-4-44 71,622 402 48 450 99.3%
0-0-0-0-4-74 71,622 72 48 120 99.7%
0-0-0-0-4-8 71,622 508 48 556 99.1%
0-0-0-0-4-a2 71,622 632 48 680 99.0%
0-0-0-0-5-78 71,622 462 48 510 99.2%
0-0-0-0-6-bd 71,622 360 48 408 99.3%
0-0-0-0-7-10 71,622 240 48 288 99.5%
0-0-0-0-7-2 71,622 200 48 248 99.6%
0-0-0-0-7-8 71,622 318 48 366 99.4%
0-0-0-0-79-0 71,622 4 48 52 99.8%
0-0-0-0-80-29 71,622 710 48 758 98.8%
0-0-0-0-80-91 71,622 624 48 672 99.0%

Table 7.3: Results from Experiment 3, Part 1 of 3
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badge unfiltered actual overhead | total relative
watched event msgs | event msgs | msgs msgs | decrease

0-0-0-0-80-ad 71,622 666 48 714 98.9%
0-0-0-0-81-1e 71,622 640 48 688 98.9%
0-0-0-0-81-21 71,622 706 48 754 98.8%
0-0-0-0-81-4c 71,622 638 48 686 98.9%
0-0-0-0-81-51 71,622 388 48 436 99.3%
0-0-0-0-81-55 71,622 670 48 718 98.9%
0-0-0-0-81-5a 71,622 702 48 750 98.9%
0-0-0-0-81-5b 71,622 718 48 766 98.8%
0-0-0-0-81-64 71,622 640 48 688 98.9%
0-0-0-0-81-67 71,622 20 48 68 99.8%
0-0-0-0-81-6f 71,622 686 48 734 98.9%
0-0-0-0-81-7c 71,622 208 48 256 99.5%
0-0-0-0-81-7e 71,622 596 48 644 99.0%
0-0-0-0-81-83 71,622 220 48 268 99.5%
0-0-0-0-81-95 71,622 640 48 688 98.9%
0-0-0-0-81-98 71,622 686 48 734 98.9%
0-0-0-0-81-9d 71,622 290 48 338 99.4%
0-0-0-0-81-a2 71,622 692 48 740 98.9%
0-0-0-0-81-ab 71,622 668 48 716 98.9%
0-0-0-0-81-ad 71,622 588 48 636 99.0%
0-0-0-0-81-b4 71,622 626 48 674 99.0%
0-0-0-0-81-ba 71,622 672 48 720 98.9%
0-0-0-0-81-cd 71,622 676 48 724 98.9%
0-0-0-0-81-ce 71,622 644 48 692 98.9%
0-0-0-0-81-d3 71,622 600 48 648 99.0%
0-0-0-0-81-da 71,622 676 48 724 98.9%
0-0-0-0-81-dd 71,622 32 48 80 99.8%
0-0-0-0-81-e3 71,622 682 48 730 98.9%
0-0-0-0-81-e7 71,622 664 48 712 98.9%
0-0-0-0-81-ea 71,622 608 48 656 99.0%
0-0-0-0-81-f1 71,622 654 48 702 98.9%
0-0-0-0-81-f7 71,622 468 48 516 99.2%
0-0-0-0-82-14 71,622 16 48 64 99.8%
0-0-0-0-82-2f 71,622 582 48 630 99.0%
0-0-0-0-82-35 71,622 522 48 570 99.1%
0-0-0-0-82-5b 71,622 664 48 712 98.9%
0-0-0-0-82-5d 71,622 676 48 724 98.9%
0-0-0-0-82-6 71,622 692 48 740 98.9%
0-0-0-0-82-71 71,622 1,054 48 1,102 98.4%
0-0-0-0-82-77 71,622 944 48 992 98.5%
0-0-0-0-82-7d 71,622 422 48 470 99.2%
0-0-0-0-82-82 71,622 500 48 548 99.1%
0-0-0-0-82-8d 71,622 676 48 724 98.9%
0-0-0-0-82-8e 71,622 502 48 550 99.1%
0-0-0-0-82-91 71,622 622 48 670 99.0%
0-0-0-0-82-92 71,622 612 48 660 99.0%
0-0-0-0-82-95 71,622 638 48 686 98.9%
0-0-0-0-82-9b 71,622 564 48 612 99.0%
0-0-0-0-82-9d 71,622 592 48 640 99.0%
0-0-0-0-82-a3 71,622 622 48 670 99.0%
0-0-0-0-82-a4 71,622 678 48 726 98.9%
0-0-0-0-82-b 71,622 624 48 672 99.0%
0-0-0-0-82-b0 71,622 628 48 676 99.0%
0-0-0-0-82-c9 71,622 674 48 722 98.9%

Table 7.4: Results from Experiment 3, Part 2 of 3
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badge unfiltered actual overhead | total relative
watched event msgs | event msgs | msgs msgs | decrease
0-0-0-0-82-ca 71,622 486 48 534 99.2%
0-0-0-0-82-d 71,622 678 48 726 98.9%
0-0-0-0-82-ea 71,622 656 48 704 98.9%
0-0-0-0-82-ee 71,622 586 48 634 99.0%
0-0-0-0-82-f0 71,622 12 48 60 99.8%
0-0-0-0-83-11 71,622 726 48 774 98.8%
0-0-0-0-83-1d 71,622 534 48 582 99.1%
0-0-0-0-83-25 71,622 118 48 166 99.7%
0-0-0-0-83-27 71,622 682 48 730 98.9%
0-0-0-0-83-29 71,622 706 48 754 98.8%
0-0-0-0-83-2a 71,622 698 48 746 98.9%
0-0-0-0-83-31 71,622 68 48 116 99.7%
0-0-0-0-83-36 71,622 660 48 708 98.9%
0-0-0-0-83-38 71,622 516 48 564 99.1%
0-0-0-0-83-39 71,622 686 48 734 98.9%
0-0-0-0-83-3c 71,622 546 48 594 99.1%
0-0-0-0-83-3d 71,622 550 48 598 99.1%
0-0-0-0-83-40 71,622 684 48 732 98.9%
0-0-0-0-83-42 71,622 550 48 598 99.1%
0-0-0-0-83-48 71,622 4 48 52 99.8%
0-0-0-0-83-49 71,622 662 48 710 98.9%
0-0-0-0-83-4d 71,622 558 48 606 99.1%
0-0-0-0-83-4e 71,622 104 48 152 99.7%
0-0-0-0-83-5 71,622 558 48 606 99.1%
0-0-0-0-83-52 71,622 642 48 690 98.9%
0-0-0-0-83-58 71,622 648 48 696 98.9%
0-0-0-0-83-5d 71,622 664 48 712 98.9%
0-0-0-0-83-63 71,622 4 48 52 99.8%
0-0-0-0-83-80 71,622 436 48 484 99.2%
0-0-0-0-83-95 71,622 100 48 148 99.7%
0-0-0-0-83-c5 71,622 604 48 652 99.0%
0-0-0-0-83-d3 71,622 568 48 616 99.0%
0-0-0-0-83-dd 71,622 268 48 316 99.5%
0-0-0-0-83-e8 71,622 434 48 482 99.2%
0-0-0-0-83-€9 71,622 52 48 100 99.8%
0-0-0-0-83-f 71,622 684 48 732 98.9%
0-0-0-0-83-f7 71,622 338 48 386 99.4%
0-0-0-0-84-1a 71,622 188 48 236 99.6%
0-0-0-0-84-1f 71,622 444 48 492 99.2%
0-0-0-0-9-fd 71,622 446 48 494 99.2%
0-0-0-0-a-cd 71,622 4 48 52 99.8%
0-0-0-0-d-32 71,622 8 48 56 99.8%
0-0-0-0-d-3c 71,622 76 48 124 99.7%
0-0-0-0-e-93 71,622 388 48 436 99.3%
0-0-0-0-e-ae 71,622 16 48 64 99.8%
0-0-0-0-e-b2 71,622 384 48 432 99.3%
0-0-0-0-e-b9 71,622 402 48 450 99.3%
0-0-0-0-e-cc 71,622 814 48 862 98.7%
0-0-0-0-e-cf 71,622 24 48 72 99.8%
0-0-0-0-e-de 71,622 484 48 532 99.2%
0-0-0-0-e-€9 71,622 1,096 48 1,144 98.3%
0-0-0-0-e-ec 71,622 386 48 434 99.3%
0-0-0-1-30-ee 71,622 128 48 176 99.7%
0-0-0-1-38-a8 71,622 150 48 198 99.6%
| Average | | | | | 99.2%

Table 7.5: Results from Experiment 3, Part 3 of 3
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Badges Unfiltered Actual Overhead Total | Relative
watched event msgs | event msgs | msgs msgs | Decrease
Users 71,622 19,868 48 | 19,916 72.2%
Equipment 71,622 47,156 48 | 47,204 34.1%
Unlisted 71,622 4,598 48 4,646 93.5%

[ Average | | | | |  66.6% |

Table 7.6: Results from Experiment 4

7.3.4 Experiment 4

As described in section 6.1, the badges in the badge system can belong to
either people or equipment. The big brother entity used in this experiment
uses this characteristic to subscribe to sightings of one type of badge or the
other. The entity works by creating a notify constraint which reads informa-
tion from a list of badges stored in the shared file system. The list contains
information as to which badge identifiers belong to equipment and which to
personnel. In the experiment, three big brother entities were created, one
for each type of badge (user or equipment) and one for unlisted badges, i.e.,
badges without entries in the database. The results are shown in table 7.6.

As can be seen from the table, a big brother entity on average receives a
third (100% — 66.6%) of the messages which would have been sent if filters
had not been in use. This is a fair decrease in bandwidth usage. This num-
ber of messages (one third) is hardly surprising, considering that the three
big brother modes separate the events into three groups, the sum of which
constitute all the events raised. For practical purposes, the last big brother
mode may be particularly useful as a means to continuously monitor for un-
listed badges and thereby check whether the badge information database is
up to date. Assuming that the database is relatively up to date, this would
be a useful and cheap (in terms of overhead) use of filters.

7.4 Dynamic Linking Measurements

In objective B (section 1.6.2), we outlined a number of goals with respect to
dynamic linking support in the SECO implementation. They were,

1. to provide support for dynamic linking
2. to determine how much extra complexity (in terms of code) is needed

3. to measure how large the gain is in terms of decreased application
footprint
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In this section, we review each of these goals, present the relevant data, and
discuss to what degree the goal has been fulfilled. The approach is to present
and discuss measurements of code sizes from the experiments presented in
section 7.3.

7.4.1 Dynamic Linking Support

Each of the four experiments described in section 7.3 featured an entity
subscribing to events using a notify constraint object belonging to a dynamic
class. The application instance holding the subscriber registered the dynamic
class with its local class repository before performing the subscription. The
other application instances dynamically linked the notify constraint code as
events were raised and needed to be matched against the constraint. The
SECO implementation can therefore be said to include support for dynamic
linking. This fulfills the first part of Objective B, as defined in section 7.4.

Class Versioning

Class versioning can be used to change an application gradually by intro-
ducing new versions of classes at runtime. Since the constraints used in
the active badge system simulation did not change, that application did not
use this feature. Evaluating class versioning in particular was not part of
Objective B.

7.4.2 Source Code Complexity

By requiring the application to include code for dynamic linking support,
overhead is imposed on the application programmer. This overhead has the
form of extra lines of source code which mean that development time (and,
consequently, cost) is increased. In this section, we measure the overhead by
counting the number of lines of source code used for dynamic linking and
comparing it with the total amount of source code for each subscriber entity
used in the four experiments from section 7.3. The data is shown in table 7.7
on page 108.

As can be seen from the table, the code required for dynamic linking
on average constitute more than half of the code required in total for each
particular entity. Hence, for these four entities there is typically more code
for implementing dynamic linking support than there is for implementing
the constraint itself. Whether this is an important overhead depends on the
means by which the code is generated. If handwritten, there is obviously work
involved and dynamic linking is then fairly expensive. However, the code was
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Constraint Constraint Source | Lines Needed for Dynamic %
Code Size Dynamic Linking
God 203 lines 122 lines 60%
SecurityCam 227 lines 122 lines 54%
PrivateEye 227 lines 122 lines 54%
BigBrother 256 lines 128 lines 50%
| Average | 228 lines | 124 lines | 54% |

Table 7.7: Dynamic Linking’s Influence on Application Source Code Size

originally designed to be generated by a preprocessor (DCLASS, described in
section 5.1.3) and can be assumed to be automatically generatable by a tool
of the right kind. Such a tool could be an entity editor type program which
could, for example, include a graphic user interface. A tool of this kind would
ease application development tremendously and, if available, could probably
fairly easily be extended to generate code with support for dynamic linking.

We have determined that there is a substantial overhead involved in using
dynamic linking, amounting to more than half the lines of source code in the
four example programs.

7.4.3 Footprint Decrease

Another issue with regards to dynamic linking support is the influence it has
on the application footprint. Replacing real code with stub code during com-
pilation can decrease application footprint if the stub code is smaller than
the real code and the real code is never linked. However, dynamic linking
also comes at a price, since extra code (in form of stub code and the class
repository) is needed to perform the dynamic linking. This section presents
and discusses the costs and benefits of dynamic linking with regards to appli-
cation footprint by looking at the sizes of the compiled object files. (Details
of the compiler configuration can be found in section 7.2.1.) Support for dy-
namic linking falls into two parts: the class repository and the stub/upcall
code. In the following, we look at each in turn.

Class Repository Overhead

In order to use dynamic classes, the application must be linked with the class
repository library. The size of the object code in this library is 169,237 bytes
which forms a basic cost that can only be avoided if the application does
not use dynamic linking at all.® The first dynamic class is therefore quite

6In the current implementation of SECO this implies not using notify constraints, since
notify constraint classes have to be dynamic.
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| Constraint | n1 | n2 | n3 | Change (not linked) | Change (linked) ]

God 37,750 | 31,366 | 79,376 —-16.9% +110%
SecurityCam | 41,895 | 31,506 | 83,666 —24.8% +99.7%
PrivateEye | 41,880 | 31,476 | 83,620 —24.8% +99.7%
BigBrother | 42,278 | 33,170 | 85,712 —21.5% +103%

[ Average | | | | —22.0% | +103% |

Table 7.8: Influence of Dynamic Linking on Class Footprint

expensive, since it also includes the overhead of the entire class repository
library. Subsequent dynamic classes are less expensive. In the following, we
look at the cost of each class.

Stub and Upcall Overhead

We have seen that the class repository poses a basic overhead for any ap-
plication using dynamic classes. In addition, each actual dynamic class has
an influence on the application footprint. For a static class, this influence is
simply the size of the object code implementing it. We call the size of this
code the class footprint. For dynamic classes, the actual class footprint de-
pends on whether the class code is ever linked or not. If no object belonging
to the class is ever instantiated, the class code itself is never linked into the
application. In this case, the class footprint is fairly small, since only the
stub code required to link the class actually resides in the application. If,
on the other hand, an object is instantiated and the class code is linked, the
class footprint effectively increases. The extra code (in addition to the stub
code) is the upcall code and the real class implementation.

Table 7.8 shows class footprints for the four constraint classes used in the
simulation of the active badge system. Column nI shows the footprints for
the real class code, i.e., either the code dynamically linked on instantiation of
a dynamic class, or the entire class footprint had the class been implemented
statically. Column n2 shows the size of the stub code which is linked instead
of the real code in column nI. If the class code is never linked, this is the
entire class footprint. Column n& shows the entire footprint in case the
dynamic class is linked. It is the sum of columns n1 and n2 plus the size
of the upcall code (not shown in the table). The last two columns show the
relative change in class footprint, for a class that was not linked and linked,
respectively.

The table shows similar results for each of the four dynamic classes. There
is a moderate decrease (average 22%) in footprint for each in case the class
code is never linked. In case the class code is linked, the overhead is substan-
tial: on the order of a factor two for each class. The data shown in the table
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does not take the basic cost of the class repository library into account, so
these figures can be expected to hold for subsequent dynamic classes.

Discussion

There are some advantages to dynamic linking but they come at a cost.
In case the application uses only a few dynamic classes, the basic cost (in
terms of footprint increase) of including the class repository code will almost
certainly exceed anything gained from linking stub code instead of real code.
In this case, dynamic linking is unlikely to be worthwhile as a means of
decreasing application footprint, even if none of the class code is ever actually
linked. In the simulation of the active badge system, there was only one
(fairly small) dynamic class in each application and it was always linked,
so in this particular case, dynamic linking increased rather than decreased
application footprint. Other applications may implement a number of large
classes, few of which will be used by the same application instance. Such
applications may possibly benefit by a somewhat decreased footprint, but
the simulation of the active badge system is not such an application.

A possibly more valuable use for dynamic classes is that they enable
new code to be added during runtime. The simulation of the active badge
system did not use this feature, but certain applications may want the ability
to change incrementally. For such applications, the dynamic linking facility
may be worth the cost of increased footprint, especially if the dynamic linking
facility is extended to include other types of code than notify constraint code.

Though the experiments have shown dynamic linking to be perfectly pos-
sible, it seems that the benefit from using dynamic classes to decrease foot-
print is limited unless for fairly specialised applications. A more likely use
may be for applications to change incrementally by introducing new versions
of old classes. In the current version of SECO, notify constraint classes are
required to be dynamic. Since some applications (e.g., the active badge sys-
tem) will suffer from a substantial increase in footprint by using dynamic
classes, it would be attractive to make dynamic linking optional. Further
work on dynamic class support in SECO (e.g., to extend support to other
types of code) should take this into account.

We have measured the gain of dynamic linking in terms of decreased
application footprint. Though the gain itself was not impressive, this fulfills
part three of Objective B, as described in section 7.4.
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7.5 Conclusions

This chapter has presented the experiments performed with the SECO imple-
mentation. A distributed simulation of the Cambridge active badge system
was used for various purposes. First, it was used to show that the SECO im-
plementation is usable and that it fulfills the elementary goals of distribution
and dynamic linking. Second, it was used to measure the savings in terms
of reduced network overhead for a series of filters likely to be usable in a
real active badge system. Third, the simulation source and binary files were
examined in order to discover the price of dynamic linking.

We found that filtering was generally worthwhile in the example simu-
lation. Notify constraints caused a reduction of between 99.9% and 34.1%
for all entities used in the experiments, except the God entity where notify
constraints caused a slight increase. To what extent these findings can be
expected to hold for other applications of course depends on the applications
in question. The application in this scenario used subscriptions which were
in effect for a fairly long time. Applications with frequent subscriptions (and
cancelling of subscriptions) will benefit less from using notify constraints, but
for the active badge system constraints were extremely useful.

Dynamic linking was in general found to be very expensive, in terms
of increased source code complexity and application footprint alike. The
examination of footprints showed that it is doubtful (at best) whether this
feature can be used to increase the scalability of applications, perhaps with
the exception of very specialised ones. The vastly increased source code
requirements means that dynamic classes are likely to need to be generated
by an external tool, such as an entity editor, in order to be feasible.

The three objectives from section 1.6 were shown to have been fulfilled.
Section 7.3 fulfilled objectives A and C and section 7.4 fulfilled objective B.
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Chapter 8

Conclusion

This thesis has the described the design and implementation of a distributed
version of the ECO model and evaluated two techniques for increasing scal-
ability. In many ways, the work presented herein has relied heavily on the
discussions in chapter 1, especially with regards to the intangible concept of
scalability and the division of the overall goal into the three subgoals. In this
chapter, we attempt to place the results in a greater context by summing
up the conclusions made in chapter 7 and drawing a line back to the initial
discussions on scalability and event models. We then take a retrospective
look at the division of the overall goal in three before finally listing the most
interesting possibilities for future work.

8.1 Scalability in the ECO Model

The discussion about scalability in section 1.5 identified four parameters in
the ECO model which could in principle be scaled independently. We claimed
that despite the theoretical independence of the parameters, there is likely to
be a relationship between them in any real system. Two parameters (number
of users and entities) could be scaled by scaling the third (number of nodes)
at the cost of decreased scalability of the fourth (activity). In any large-scale
distributed event system, activity is probably the parameter which is most
difficult to scale. New nodes can be added practically ad inifinitum but they
all have to exchange events over the same network and as activity grows, the
network easily becomes a bottleneck. Reducing network traffic is therefore
an important way of scaling activity in any such system.

This thesis has shown filtering to be an extremely powerful means to
reduce network traffic in an event-based system, and consequently a feasible
way to dramatically increase scalability. This is the most important finding
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of this thesis. Furthermore, because the experiments were conducted with
data from a real event-based system, we claim the results to have practical
relevance and expect them to hold for similar event-based systems outside
the laboratory. Indeed, a sign that the industry is becoming aware of the
importance of event filtering is the OMG’s initiative to augment their event
service with filtering capabilities [Gro96].

The other scalability technique, dynamic linking, was found to be much
less valuable for the event-based system, and our conclusion is that dynamic
linking is hardly worthwhile as a means to scale such systems. Dynamic
linking may, or may not, have other virtues for ECO (such as increased dy-
namism), but we have found that scalability is not one of them.

As stated in section 1.6, the overall objective of this thesis has been to
evaluate two scalability techniques—filtering and dynamic linking—in the
ECO model. The overall conclusion is that ECO can be made to scale very
well by using notify constraints but not by using dynamic linking.

8.2 Conclusion Validity

In the introduction to this thesis, section 1.6 claimed that the overall ob-
jective was too abstract to be practical and therefore divided it into three
subgoals, Objective A, B, and C. Now, at the end of the project, it is worth
reviewing this division to see if it was successful and whether or not it makes
as much sense from a conclusive as from an introductory viewpoint.

Chapter 7 made three conclusions corresponding to the three objectives.
Briefly stated, they were,

Objective A: The ECO model can be implemented in a fully' distributed
fashion. That we were able to run the experiments using the SECO
system shows the implementation to be perfectly usable as a research
environment,.

Objective B: Dynamic linking is possible but as a means of increasing scal-
ability by decreasing application footprint it is hardly worthwhile. This
was shown by the fact that there was a large overhead in terms of extra
code required to support dynamic linking, and the resulting decrease
in footprint size was small.

Objective C: Filtering proved to be a very powerful way of increasing the

!The SECO implementation currently contains two centralised components which have
shown to be replacable with distributed counterparts.
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scalability of a system. For long-lasting subscriptions, massive reduc-
tions in network traffic were achieved at a small cost.

Section 1.6 identified Objective A to be a prerequisite for the two other
objectives. We could not have evaluated dynamic linking and filtering in
a convincing manner without access to a distributed implementation of the
event model, so this has shown to hold true. We also claimed Objectives
B and C to be independent, meaning that it be possible to evaluate them
separately. This has also held true and can be seen from the fact that we
independently reached vastly different conclusions for these two objectives.
All in all, the division of the overall goal into the three subgoals was beneficial.
It helped structure the task and made it more managable, and it also made
it easier to present the findings in a comprehensible manner.

8.3 Future Work

This section describes the possible future work on SECO and within scalable
event systems in general, based on the conclusions of this thesis.

SECO

SECO could be extended in many ways. The most vital improvement al-
ready mentioned would be to complete the work on multicast support in the
communications package KANGA and to modify SECO to use it. Another im-
provement mentioned before would be to implement distributed versions of
the two centralised components, the AIR and the shared file system.

The model’s scalability could possibly be increased further by extending
SECO to support zones, as described by [O’C97]. Also, if dynamic linking
is still desired, perhaps for its ability to incrementally add code to the ap-
plication rather than decrease application footprint, a future project could
be to automate the generation of code required to support dynamic linking.
This could either be done by repairing the DCLASS preprocessor [Fur97] or,
perhaps better, by modifying the ECO entity editor [McG96] to generate the
code automatically.

One of the three event models examined in chapter 2 was the Cambridge
model which included a new concept called composition. A really interesting
project would be to extend SECO to support composite filters. Different ap-
proaches to this problem could be taken, either solving it within the model,
possibly extending the ECO model as a result, or by implementing compo-
sition at the application level and retaining the event model in its current
form.
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Event Systems and Virtual Worlds

Viewed in a greater perspective—in particular in the context of event-based
virtual worlds—the success of filtering as a means to increase scalability is
the most important conclusion of this thesis. In section 1.1, we stated that
the problem of scalability was perhaps the greatest challenge to be faced by
virtual world researchers within the immediate future. This thesis has shown
event filtering to be extremely useful in dealing with this problem, and there
is no doubt that this also holds for other application domains. Filtering
should be a central part of future work within any scalable event system.

Though very effective, filtering on its own is unlikely to solve all scalability
problems for event systems. Another interesting idea is the concept of zones,
as described by [O’C97]. In the context of virtual worlds, zones were used
to partition a world into smaller and more manageable units. For entities,
belonging to one or more zones, the zones were used as ‘areas of interest.’
Zones were found useful by [O’C97] and future work could attempt to broaden
this idea and see if it is usable for event models outside the virtual world
domain.
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