
Delivering QoS in Open Distributed Systems

Frank Siqueira and Vinny Cahill
Distributed Systems Group, Department of Computer Science, Trinity College Dublin, Ireland

Frank.Siqueira@cs.tcd.ie, Vinny.Cahill@cs.tcd.ie

Abstract

This paper describes an architecture that provides
support for quality of service (QoS) in open systems. The
Quartz QoS architecture aims to avoid the dependency on
specific platforms that limits the application of most
existing QoS architectures in open, heterogeneous and
distributed systems. Quartz adopts a flexible and
extensible platform-independent design that allows its
internal components to be rearranged dynamically,
adapting the architecture to the surrounding environment
in order to accommodate the differences among diverse
computing platforms. Further significant problems found
in other QoS architectures, such as the lack of transpa-
rency, flexibility and expressiveness in the specification of
QoS requirements and limited support for resource
adaptation, are also addressed by Quartz. This paper
compares Quartz to other QoS architectures found in the
literature, presents a prototype implementation of Quartz,
and shows how Quartz is integrated with CORBA to form a
framework for control and transfer of streaming media.

1. Introduction

In general, access to the resources provided by
computational systems, such as network bandwidth,
processing time and memory, follows a best-effort policy.
The adoption of such policy results in unpredictable
behaviour in the distribution of resources. However, there
is an important category of applications that cannot
tolerate uncertainty in relation to access to computational
resources, demanding that the availability of the resources
used by them be predictable. Such applications are said to
have quality of service (QoS) requirements, and include
application areas such as real-time systems and
distributed multimedia.

Mechanisms for resource reservation are being added
to computational systems in order to make access to
computational resources behave in a predictable fashion.
Nevertheless, most applications rely on distributed
computing middleware, which is still being adapted to
make use of resource reservation mechanisms.

Many different types of hardware, operating system
and network infrastructures coexist in open systems, and
multiple resource reservation protocols populate this
environment. Consequently, allowing applications to
reserve resources via a middleware layer implies that the
differences between resource reservation protocols have
to be handled by the middleware.

The term ‘QoS architecture’ is used to describe
middleware that provides applications with mechanisms
for QoS specification and enforcement. These
architectures organise the resources provided by the
system with the intent of fulfilling the QoS requirements
imposed by the application. Substantial work on QoS
architectures can be found in the literature (see [1] for a
survey). However, the QoS architectures proposed so far
consider only part of the overall problem of delivering
QoS in open systems [2].

Our focus in the study of QoS architectures is on the
provision of QoS-constrained services in open distributed
systems. The QoS architectures proposed so far typically
have a strong dependency on a particular computing
platform and suit a specific application area. This
approach prevents their use in open environments, where
heterogeneity is always present, and limits the spectrum
of applications that can make use of these architectures.

Other important problems can be identified in the QoS
architectures presented in the literature. Some
architectures constrain the expressiveness of the user in
the specification of QoS requirements and lack
transparency from the lower level, forcing the user to deal
with a notion of QoS that is not familiar for him.
Furthermore, in most architectures support for resource
adaptation is very limited, if not completely absent.

This paper presents Quartz [3][4], a generic QoS
architecture that addresses the limitations of previous
proposals in this area. This is achieved by adopting a
highly flexible, extensible, component-based platform-
independent design, which allows user transparency from
the underlying system and at the same time is suitable for
open distributed systems. Since Quartz handles the QoS-
related issues on behalf of the application, it allows the
programmer to concentrate on the functional aspects of
the application. In addition, Quartz increases the



portability of applications due to its capacity to handle the
differences between multiple reservation protocols.

The remainder of this paper is organised as follows.
Section 2 explains in detail the proposed QoS
architecture, analyses its characteristics and compares
Quartz to other QoS architectures proposed in the
literature. Section 3 presents a prototype implementation
of Quartz and explains how it is integrated into a CORBA-
based environment for the provision of QoS-aware
streaming media services. Finally, section 4 summarises
our contribution and presents some conclusions.

2. The Quartz architecture

We have designed and implemented a prototype of a
QoS architecture with the intent of solving the limitations
of previous proposals in the area. The Quartz architecture
is based on a highly flexible, extensible, and platform-
independent design that allows it to be used in different
application areas and in conjunction with a wide range of
resource reservation protocols.

2.1. Requirements

The main goal considered in the development of
Quartz was to provide support for heterogeneous
environments. This implies that the architecture is
required to be able to handle the different protocols and
hardware that may coexist in an open, distributed and
heterogeneous platform. Figure 1 illustrates the use of the
Quartz QoS architecture in a heterogeneous environment.

Applications requiring QoS enforcement use the
mechanisms provided by Quartz to specify their
requirements. In order to provide the required QoS,
Quartz employs the resource reservation protocols
available in the target network and operating system.

In order to handle the heterogeneity present in open
systems, the architecture is not only required to be able to
be ported to different platforms, but it has also to able to
handle QoS for an application when the lower-level
reservation system changes without requiring a
recompilation. For example, if the application is able to
transfer data using both ATM and TCP/IP, the QoS
architecture has to be able to perform QoS reservations
for both protocols by adapting itself internally instead of
requiring a new port of the architecture to be linked to the
application. This level of flexibility is achieved by using
an architectural design based on interchangeable
components, in which components able to handle QoS for
different reservation mechanisms can be plugged into the
architecture dynamically. In addition, support for new
reservation protocols can be added to the architecture
without the necessity of porting the whole infrastructure.
Instead, a new component that interacts with the new
reservation protocol can be written by a programmer.

Video
Application

CSCW
Application

Real-Time
Application

Data Transfer
Application

Quartz QoS Architecture

Desktop
O.S.

Internet
Link

Real-Time
O.S.

ATM
Link

Figure 1. Quartz in a heterogeneous environment

Other problems arise from the necessity of providing a
QoS architecture with such characteristics. These
requirements can be subdivided in three areas: QoS
specification, user transparency, and QoS adaptation.

QoS requirements must be specified according to the
notion of QoS understood by the user at the higher level.
Furthermore, since different notions of QoS might be
present at the higher level because of the multiplicity of
application areas that are targeted by Quartz, the
architecture must be able to interpret a potentially infinite
set of QoS parameters. The parameters specified by the
user must be interpreted appropriately by the architecture
in order to perform the reservation of resources at the
lower level. This implies translating the parameters from
their original format into parameters that are understood
internally by Quartz. The architecture has also to map
these parameters into resources available at the lower
level and then interface with a suitable reservation
protocol in order to allocate the corresponding resources
for the application. This mapping process might not
always be one-to-one (i.e. one QoS parameter resulting in
a single resource being reserved) but it can be one-to-
many, many-to-one or many-to-many. This implies that
resources might be interchangeable, and that balancing
requirements and resources is another task that has to be
performed by the architecture.

In order to simplify the work of the application, the
Quartz architecture must provide transparency of QoS and
reservation mechanisms from the user’s point of view.
This implies that the interaction with the lower-level
system, which is necessary to guarantee the level of QoS
required by the application, must be performed by the
architecture. Quartz must interpret the QoS requirements
specified by the application and then use the available
resource reservation protocols to guarantee the level of
QoS requested by the application.  By adopting this
strategy, we hide from the application the differences
between the way different underlying systems allow
resources to be reserved in order to fulfil QoS
requirements. This has the important effect of increasing
the portability of applications across different platforms.

Quartz is also required to allow dynamic changes in
the distribution of resources to be performed by the
system. This must occur without causing loss of service
consistency at application level. The reservation of
resources might change dynamically because of dynamic



changes in the structure of the system, resource failure or
the usage of priority-based policies for the distribution of
resources. Any change in the reservation of resources at
lower-level must be informed to the application using
QoS parameters that are understood at high level. This
implies that Quartz has to perform a reverse translation of
parameters before informing the application that resource
availability has changed. Since in some cases resources
are interchangeable, dynamic changes may be overcome
at the lower level by requesting additional resources from
a different source. In this case, all the adaptation is
performed at the architectural level, and the QoS seen by
the application remains the same.

2.2. QoS specification and translation

A translation mechanism based on generic parameters
is adopted by Quartz to address the problem of
specification of QoS requirements in an environment
composed of multiple application areas and different
underlying reservation protocols.

In order avoid having a translator for each combination
of application field and reservation protocol, we have
adopted a three-step translation process.

Users specify their application-specific QoS
parameters, which are first translated into a set of generic
application-level QoS parameters defined by Quartz.
These parameters are further translated into a set of
generic system-level QoS parameters and balanced
between the network and the operating system. Finally,
generic system-level parameters are translated into the
system-specific QoS parameters understood by each of
the reservation protocols used by the application.

Since the application deals only with QoS parameters
understood at his abstraction level and meaningful for his
application field, his power of expression is not affected.

Table 1. Example of parameter translation

Parameter Set Parameter Values
Application-specific
Parameters

Audio::Quality = AUDIO_CD
(i.e. 44KHz, 16 bits per sample)

Generic Application-
level Parameters

App::DataUnitSize = 2 bytes;
App::DataUnitRate = 44K units/s

Generic System-level
Parameters

Net::Bandwidth = 88Kb/s

System-specific
Parameters

RSVP::BucketSize = 88Kb/s;
RSVP::TokenRate = 88Kb/s; …

Table 2. Example of parameter balancing

Parameter Set Parameter Values
Generic Application-
level Parameters

App::EndToEndDelay = 50 ms (X)

Generic System-level
Parameters

Net::Delay = 30 ms (Y);
OS::Delay = 20 ms (Z)

Note:
X = Y + Z

Table 1 illustrates the transformation suffered by a
parameter – in this case, the audio quality – at the
different levels of the translation process until it reaches a
format understood by the RSVP protocol [5]. Table 2
shows a parameter – in this example, the overall delay –
which is balanced between the network and the operating
system.

2.3. Architectural components

Each component defined by Quartz encapsulates a
particular task in the overall problem of QoS specification
and enforcement in an open, heterogeneous environment.
These components can be easily replaced by new ones in
order to adapt the architecture to the target environment.

The QoS agent, the major component of the Quartz
architecture, is responsible for implementing the QoS
mechanisms necessary for the provision of services with
the quality requested by the user. This involves two main
tasks: the translation of QoS parameters between different
levels of abstraction, and the interaction with the resource
reservation protocols present in the underlying system.

The QoS agent, as illustrated by Figure 2, is composed
of a translation unit and multiple system agents.

The translation unit contains QoS filters and a QoS
interpreter. QoS filters can be subdivided into application
and system filters, and are responsible for translating
between their respective set of specific QoS parameters
and the generic set of parameters at the same abstraction
level.

 Quartz QoS Agent

 Network O.S.

Quartz Application

 Translation Unit
Application Filter

QoS Interpreter

Application-Specific QoS Parameters

Generic Application-Level QoS Parameters

System Filter System Filter

Generic System-Level QoS Parameters

System Agent System Agent

Reservation
Protocol

Reservation
Protocol

System-Specific QoS Parameters

Figure 2. Detailed structure of the QoS agent



The QoS interpreter establishes the mapping between
the two sets of generic parameters defined by Quartz.
During this process, it also balances the usage of
resources between the network and the operating system
making use of a balancing algorithm.

Finally, the system agents, which are associated with
the reservation protocols responsible for administering the
use of the resources provided by the underlying system,
get the values of QoS parameters provided by the
translation unit and perform the necessary reservation of
resources using the corresponding reservation protocol.

2.4. Achievements of the Quartz architecture

The Quartz architecture supports heterogeneity by
encapsulating the QoS mechanisms necessary for
interacting with a specific resource reservation protocol or
application area into a replaceable component with a
standardised interface. These components are plugged
into the architecture whenever the associated protocol or
application area is in use. As a result, the core of the
architecture is highly portable, reusable and extensible
because the particularities of application fields and
resource reservation protocols are encapsulated by
application and system filters, and system agents
respectively. Changes at application level can be
accommodated by replacing the application filter.
Similarly, changes at system level imply the replacement
of system filters and system agents. Filters and system
agents may be selected from a component library
provided by Quartz, or may be implemented by the
application programmer.

In addition, the characteristics of the translation
mechanism result in a compromise between the needs of
different application fields regarding the manner in which
QoS requirements are expressed and the generalisation
necessary for the architecture to be deployed over
heterogeneous platforms. In fact, the QoS interpreter, like
the other components, can be extended to recognise new
parameters and implement new balancing policies, or it
can be even entirely replaced by a programmer in order to
implement a whole new QoS specification mechanism.

Support for dynamic resource adaptation is also
provided by Quartz. The QoS agent reports dynamic
changes in QoS to the application as application-level
QoS parameters by using the reverse translation path that
is provided by the translation unit. During this process, a
set of system-level QoS parameters passes through the
translation unit and is translated into application-level
QoS parameters. However, in some cases the resource
adaptation can be accommodated at a low level without
interfering with the QoS seen by the application. In the
Quartz architecture, some QoS requirements such as cost
and delay are fulfilled by the sum of resources provided
by both the operating system and the network. The

component responsible for dividing QoS requirements
between the operating system and the network is the
balancing agent, which is basically a resource trader that
is encapsulated by the interpreter. When one of the
operating system or the network reduces the amount of
resources allocated for the application, the balancing
agent execute a process called ‘rebalancing of resources’.
This process tries to compensate for the loss of resources
on one side by requesting more resources from the other.
When this is possible, the resource adaptation occurs only
at the lower level, and the quality seen by the application
is not affected. In this case, the adaptation is completely
transparent from the application’s point of view. If
rebalancing at the lower level fails, Quartz tells the
application to adapt its requirements in order to decrease
the consumption of resources. This can be done for
example by reducing the quality of a video stream or by
changing the compression method used for data transfer.

2.5. Analysis of Quartz

The Quartz architecture is targeted at a wide range of
network protocols and operating systems. In addition,
Quartz provides support for QoS specification and
enforcement for different applications areas. These
characteristics distinguish Quartz from other QoS
architectures.

Most of the QoS architectures found in the literature
are concerned only with network protocols. In addition,
he tight integration of architectures such as QoS-A [6]
with the network  (in this case, ATM) constrains the
flexibility and limits the extensibility of the architecture.
Quartz is able to cover a wider range of QoS requirements
than QoS-A, and QoS can be specified at a higher level of
abstraction.

Quanta [7] and ERDoS [8] adopt translation
mechanisms similar to the one used by Quartz. However,
Quartz allows QoS filters to be written by the application
programmer, while Quanta translators, equivalent to our
filters, are not accessible to the user. ERDoS incorporates
the translation mechanisms to the resource and
application agents, which can be written by the
programmer as in Quartz. Nevertheless, due to the
adoption of an approach to the provision of QoS based on
monitoring and adaptation, QoS enforcement through
resource reservation is not provided by ERDoS.

Proposals such as the QoS Broker in the Omega
architecture [9] ‘require a huge amount of mapping and
management knowledge to support large-scale distributed
applications, and that service management through a
single entity is too centralised and severely inflexible’
[10]. Quartz does not incur this problem, because QoS
agents encapsulate only the support necessary for
specification of QoS for the corresponding application
field and for interaction with the reservation protocols



supported by the end-system, making the architecture
lightweight and increasing scalability. Flexibility and
extensibility are guaranteed by the use of replaceable
components, instead of a monolithic structure such as the
one adopted by the QoS Broker.

QuO [11] and Arcade [12] are examples of
architectures that provide QoS languages for QoS
specification. We could simulate the same functionality
by implementing application filters that interpret the QoS
languages used by QuO and Arcade and translate the QoS
requirements expressed with these languages into the
generic application-level QoS parameters used by Quartz.

The QuO architecture adds mechanisms for QoS
specification to the client-server interaction model
adopted by CORBA [13]. Based on this approach, QoS
requirements are specified in relation to method
invocations issued between CORBA objects. However, the
client-server interaction model is known to be
inappropriate for applications that use continuous media
[14]. We believe that this approach is likely to impose
limitations to the use of the QuO architecture.

Arcade is an example of a purely system-level QoS
architecture based on a specific platform, in this case the
Chorus kernel. Quartz could be easily made able to
interact with this operating system by writing a system
agent and a filter that interface with Chorus. In addition,
Quartz allows the user to define network QoS constraints.

3. Validation, evaluation and application

We have developed a functional prototype of the
Quartz architecture in order to analyse its behaviour while
supporting applications with QoS requirements in a
heterogeneous environment. In addition, we have
integrated Quartz into a framework that provides QoS-
aware transfer of streaming media over the network.

The prototype developed by us has system agents and
filters for the RSVP protocol, for ATM networks, and for
the real-time mechanisms provided by Windows NT©.

3.1. Validation and evaluation

We have implemented a few applications on top of
Quartz in order to evaluate its behaviour [4]. One of these
applications is a simple program that transfers data
packets over the network. This application is able to use
either TCP, UDP (including multicast) or ATM for
transferring data. Quartz was used as a means for
reserving resources for both network supports without
adding complexity to the application. According to the
network reservation protocol being used, a suitable pair of
system agent and filter is plugged into the QoS agent. The
RSVP agent and filter are used for TCP and UDP, while
ATM requires a different filter and agent. At application
level, we have implemented an application filter, the data

packet filter, which interprets the QoS requirements used
by applications performing data transfers.

The data transfer application allows the user to specify
QoS requirements by providing values for packet size and
packet rate as well as the service guarantee (i.e. best-
effort, deterministic or unloaded) through a graphical
interface. These values are passed to the QoS agent and
then processed by the data packet filter, by the QoS
interpreter, which translates and balances requirements,
and by the corresponding system filters. Finally, the
system agents reserve the necessary resources by
interacting with the corresponding reservation protocols.

Independently from the reservation protocol used at
the network level – i.e. RSVP or ATM – equivalent
behaviour was observed from the application’s point of
view in regard to the provision of QoS. This shows that,
by using Quartz, the reservation mechanism became
transparent for the application despite the different
characteristics of the lower-level reservation protocols.

3.2. The Quartz/CORBA framework

Quartz has also been integrated with a series of
mechanisms provided by the CORBA architecture [13] in
order to provide a complete framework for the
deployment of applications with QoS constraints.

The Quartz/CORBA framework relies on the audio and
video streaming mechanism recently standardised by the
OMG [15] as the basis for media transfer between objects
distributed over the network. The components defined by
this standard are illustrated by Figure 3.

Virtual device objects abstract multimedia devices (i.e.
cameras, speakers, etc) used by multimedia applications.
A stream control object allows the user to control the
media flow (i.e., start and stop it) and to add/remove
parties to/from a multi-party connection. A stream
endpoint transfers stream data through the network,
getting data from and delivering data to virtual devices.
Each stream endpoint has one or more media flows,
which are abstracted as flow endpoint objects (flow
producers and consumers) located at each end of the flow.

The data delivery is subject to QoS constraints
described during the creation of the stream. The QoS
parameters associated with a stream can be modified
through the stream control object.

The entire process of QoS specification, translation
and provision of QoS is delegated to the QoS agent. The
QoS agent performs the reservation of resources available
in the underlying system required to fulfil the QoS
requirements specified by the application. In addition, the
QoS agent keeps track of resource adaptation, starting
QoS adaptation whenever needed. The use of Quartz in
the framework makes applications more portable and
simplifies significantly the job of the application
programmer.



Flow

 

Stream
Control

Stream
Endpoint

Flow
Endpoint

Virtual
Device

Stream
Endpoint

Flow
Endpoint

Virtual
Device

Object Request Broker

QoS
Agent

QoS
Agent

Notification
Service

sync. events

Figure 3. The Quartz/CORBA framework

For synchronisation of media we adopt the notification
service [16], an extension to the CORBA event service that
allows the specification of constraints on the latency of
events propagated between objects.

Figure 3 shows an application scenario in which a
video streaming application is built using the
Quartz/CORBA framework. The application specifies the
characteristics of the media stream, i.e. the number of
flows of audio and video and their expected quality,
obtained either from a user profile or through interaction
with the user. The CORBA streaming mechanism handles
the transmission of media between the source and the
destination, and controls the flow of media and the
membership of the connection. The QoS agent is
informed of the QoS requirements associated to the media
flows and handles them accordingly.

4. Conclusions

In this paper we have introduced a QoS architecture,
called Quartz, that deals with QoS constraints present in
distributed applications. Quartz makes the lower-level
aspects of resource reservation transparent from the user’s
point of view, although allowing the necessary control
through notification in the case of resource adaptation.

Quartz was designed to allow its use in heterogeneous
platforms, enabling its integration into frameworks for the
development of distributed computing applications with
QoS requirements. The design of the Quartz architecture
allows its easy extension to support new classes of
applications, operating systems and network protocols by
selecting components from a library or by adding new
components written by the application programmer.

We have developed a prototype of Quartz that provides
mechanisms for specification and enforcement of QoS to
applications with QoS requirements. This prototype has
been integrated into a complete framework for the
deployment of applications with QoS constraints in
CORBA-based systems.

We have also performed a complete validation and
evaluation study of Quartz, which was described briefly
in this paper. We have implemented a few applications

with QoS requirements and used Quartz to enforce these
requirements. This study showed that Quartz is able to
fulfil the QoS requirements of diverse applications built
in open, heterogeneous systems.

Acknowledgements

The authors would like to thank Iona Technologies
(http://www.iona.com) and the Capes foundation
(http://www.capes.gov.br) for supporting this project.

References

[1] C. Aurrecoechea, A. Campbell and L. Hauw “A Survey of
Quality of Service Architectures”, MPG Group, University
of Lancaster, Tech. Report MPG-95-18, 1995.

[2] R. Steinmetz and L.C. Wolf “Quality of Service: Where are
We?”, IWQoS’97 Proceedings, May 1997.

[3] F. Siqueira and V. Cahill “Quartz: Supporting QoS-
Constrained Services in Heterogeneous Environments”,
RTSS’98 Proceedings (work in progress), November 1998.

[4] F. Siqueira “Quartz: A QoS Architecture for Open
Systems”, Ph.D. Thesis (submitted), Trinity College,
University of Dublin, October 1999.

[5] R. Braden et al., “Resource Reservation Protocol (RSVP)”.
IETF RFC 2205, September 1997.

[6] A. Campbell, G. Coulson and D. Hutchison, “A Quality of
Service Architecture”, ACM Computer Communications
Review, Vol. 24(2), April 1994.

[7] S. Dharanikota and K. Maly, “Quanta: Quality of Service
Architecture for Native TCP/IP over ATM Networks”,
HPDC'96 Proceedings, February 1996.

[8] S. Chateerjee, B. Sabata and J. Sydir “ERDoS QoS
Architecture”, SRI International, Tech. Report, May 1998.

[9] K. Nahrstedt, and J. M. Smith, “The QoS Broker”, IEEE
Multimedia, Vol. 2(1), Spring 1995.

[10] D. Waddington, C. Edwards and D. Hutchison, “Resource
Management for Distributed Multimedia Applications”,
ECMAST’97 Proceedings, May 1997.

[11] J. Zinky, D. Bakken and R. Schantz “Architectural Support
for Quality of Service for CORBA Objects”, Theory and
Practice of Object Systems, Vol. 3(1), January 1997.

[12] I. Demeure, J. Farhat and F. Gasperoni, “A Scheduling
Framework for the Automatic Support of Temporal QoS
Constraints”, IWQoS’96 Proceedings, March 1996.

[13] Object Management Group, “The Common Object Request
Broker: Architecture and Specification (Revision 2.0)”,
OMG Document  PTC/96–03–04, March 1996.

[14] G. Coulson and D. Waddington “A CORBA Compliant
Real-Time Multimedia Platform for Broadband Networks”,
TreDS’96 Proceedings. Lecture Notes in Computer
Science, Vol. 1161, Aachen, Germany, October 1996.

[15] Iona Technologies, Lucent Technologies and Siemens-
Nixdorf, “Control and Management of Audio/Video
Streams”, OMG Document Telecom/97–05–07, July 1997.

[16] BEA Systems et al. “Notification Service”, OMG
Document Telecom/98-01-01, January 1998.


