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Abstract

Appearance based methods turned traditional computer vision approaches to

object recognition upside down. Instead of going from image to 3D model and

matching that model to models of know objects, appearance based methods stay

in the 2D image domain. Objects are modelled based on how they can appear in

images, and this is learned directly from images; it is not necessary to have any

explicit knowledge of the shape or re
ectance properties of the object.

This technical report presents an overview of appearance based methods in

computer vision.



1.1 Appearance Space

In 1991 the question 'What are the fundamental substances of vision?' was asked

by Adelson and Berger [AB91]. In answering it, they developed the plenoptic

function, P . This function describes everything that can be seen. The plenoptic

function returns the intensity level of the re
ected light at each point in the

picture plane x; y as a function of the wavelength of the light �, the time, t, and

the viewing position, Vx; Vy; Vz:

P (x; y; �; t; Vx; Vy; Vz) (1.1)

If the plenoptic function of an object is known then every possible image of that

object can be constructed. The signi�cance of the plenoptic function is described

by Adelson and Berger as follows [AB91]:

The world is made of three dimensional objects, but these objects do

not communicate their properties directly to an observer. Rather, the

objects �ll the space around them with the pattern of light rays that

constitutes the plenoptic function, and the observer takes samples

form this function. The plenoptic function serves as the sole commu-

nication link between physical objects and their corresponding retinal

images. It is the intermediary between the world and the eye.

The problem is in �nding the plenoptic function for an object. Exactly how to

do this is not evident. What has been the approach of much research is to model

the subspace of image space in which the images generated by plenoptic function

for an object have their range. Images are considered as high dimensional vectors

and the set of all the possible images of an object form a subspace in the space

of all possible images. The subspace of an object is called it's appearance space.
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Belhumeur and Kriegman [BK98] examined what the appearance space of

an object would look like from one viewing position under all possible lighting

conditions. They found that if the object has a convex shape and a Lambertian

surface re
ectance function that the set of n-pixel images produced by all possible

lighting conditions is a convex polyhedral cone in <n. They show that the the

dimension of the cone is equal to the number of distinct surface normals of the

viewed object visible from that viewing position and this implies that the cone

lies in a very low dimensional linear subspace of image space. This is because the

image space has a very high dimensionality, the number of pixels in an image.

They also show that the cone can be calculated using just three di�erent images

of the object.

The work of Belhumeur and Kriegman has shown that although the appear-

ance space of an object lies in the very high dimensional image space it only

actually occupies a much lower dimensional subspace of image space. One way

of reducing the dimensionality of the appearance space of an object is to apply

the Karhunen-Lo�eve expansion to the set of possible images of an object (or a

representative sample of them). The Karhunen-Lo�eve expansion has been proven

to be a powerful tool in information compression and has been shown to have two

very important properties; error-minimisation and entropy-minimising [Wat65].

What the Karhunen-Lo�eve expansion does is transform the appearance space into

a new coordinate system, in which the variance in the images is pushed as much

as possible in to the smallest number of dimensions. It is not the only way to

reduce the dimensionality of the appearance space but one of the most commonly

used.
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1.2 The Karhunen-Lo�eve Expansion

The Karhunen-Lo�eve expansion, abbreviated the K-L expansion, is a well es-

tablished method for the compression of the information in a set of continuous

functions into fewer and more important variables. When a set of functions is

to be expressed as a series in terms of orthogonal and normalised base functions,

the K-L expansion minimises the average error induced by taking only a �nite

number of these functions. In the discrete case the functions are replaced by vec-

tors and the K-L expansion minimises the average error induced by using only

a subset of the total set of orthonormal vectors needed to reconstruct a set of

vectors. It can also be shown in both the discrete and continuous cases that the

K-L expansion minimises the entropy of the average squared coe�cients of an

expansion. Here average means the average value that the coe�cient will take

when it reconstructs all the di�erent members of the set. The square of the co-

e�cient is used since it is equivalent to minimising the entropy of the average

of the coe�cients and makes the proof a little easier. Entropy is the measure

of information in the knowledge of the occurrence of an event, or in this case

the amount of information in that dimension. As a reminder, Shannon de�ned

entropy as follows [Sha48]:

De�nition 1 Given a set of possible events, p1; p2; : : : ; pn, where
Pn

i=1 pi = 1 the

entropy is de�ned as

H = �
nX

i=1

pi log pi (1.2)

Notice that the entropy of a distribution is maximised if all the events are equally

probable, the amount of information in the knowledge that a particular event has

happened is maximised if all the events were of equal probability. In that case

knowing Alternatively the entropy is minimised if all the probability is in one

event, that is if for a particular event k, pk = 1 meaning all other events have
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a zero probability. In that case the occurrence of event k does not contains any

information. The entropy minimisation property of the K-L expansion means that

the K-L transform forces the average squared value of the coe�cients to be as

'bunched up' as possible. These two properties, error and entropy minimisation,

imply that the K-L expansion is the optimal way to compress information. For

complete proofs of both these statements see [Wat65].

1.3 Applying the Karhunen-Lo�eve Expansion to

Sets of Images

The K-L expansion was �rst applied to sets of images by Murakami and Kumar

[MK82]. Interpreting images as samples from a stochastic process they used the

K-L expansion to extract a set of basis images. The basis vectors, or as in this

case basis images, can also be called the principal components and applying the

K-L expansion is often referred to as principal components analysis, PCA.

1.4 Calculating the Eigenimages

The �rst step when applying the K-L expansion to set of images is to calculate

the average image of the set and subtracted this average image from each image.

The covariance matrix of the images is calculated and then the eigenvectors of

the covariance matrix are found. The eigenvalues are equal to the variation in

the images that each eigenvector accounts for. Each image can then be exactly

reconstructed by a linear combination of the eigenvectors and thereby represented

by the coe�cients of the linear combination. Using a subset of the eigenvectors,

those which have the largest eigenvalues, the best approximate image, in the least

squares sense, using that particular number of dimensions can be reconstructed.
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Given a set ofM images ~�1; ~�2; : : : ; ~�M , of sizeN =m by n, the average image,

~�avg, is calculated then each image is normalised by subtracting the average

image. Subtracting the average image ensures that the eigenvector with the

largest eigenvalue corresponds to the dimension in eigenspace with the maximum

variance of the images in the correlation sense [MN93]. Let ~�i = ~�i� ~�avg. Then

a matrix A can be de�ned as follows:

A = [~�1
~�2 : : : ~�M ] (1.3)

A is a N by M matrix. The covariance matrix, C, is equal to 1

M
AAT . Even if

the images in the set are small this covariance matrix will be very large. The

covariance matrix will be of size N by N (remember that N is the number of

pixels in an image). As an example consider using a set of images, where the

images are sized 64 by 64, which in practice are quite small. The covariance

matrix will be of size 4096 by 4096 (16,777,216). Very quickly the computational

expense makes calculating the eigenvectors of this matrix infeasible. The rank of

this matrix is however bounded by the number of images in the training set. In

most situations, there will be many less images than pixels in an image. To avoid

the wasted computation of calculating zero eigenvectors Murakami proposed two

reduced computation techniques, details of which can be found in [MK82]. The

�rst technique is able to extract only the non zero eigenvectors and the second

technique extracts the eigenvectors in order of the value of the eigenvalue. This

means it can be halted when the required number of eigenvectors have been

extracted.

Another approach to cut to the computation time was proposed by Turk

[TP91, Tur91]. The eigenvectors, ~ui, and their corresponding eigenvalues, �i, of

the covariance matrix are de�ned as follows:

1

M
AAT~ui = �i~ui (1.4)
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Turk noticed that instead of solving the above, the following could be solved:

1

M
ATA~vi = �i~vi (1.5)

ATA is a M by M matrix, where M is the number of images. Then if both sides

are pre-multiplied by A this becomes the following:

1

M
AATA~vi = �iA~vi (1.6)

This means that the eigenvector A~vi is equal to ~ui.

Calculating the eigenvectors in this way replaces the computation costs, from

the order of the number of pixels in the image to the number of images in the

training set, often a huge computational saving.

1.5 From Principal Components Analysis to Ap-

pearance Space

1.5.1 Face Image Reconstruction

The power of principal components analysis for images was �rst demonstrated

when it was applied to human faces by Sirovich and Kirby [SK87, KS90]. They

used PCA analysis for image compression. First a set of eigenimages is learned

and then face images, including ones not represented in the training set, were

compressed by projecting them into the 'face space' and storing the weights. If

k eigenvectors are used, the image, ~I, can be projected into that space to give a

vector of weights, ~w.

~w = [~u1; ~u2; : : : ; ~uk]
T � (~I � ~�avg) (1.7)
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Using the eigenimages and the weights, face images could then be reconstructed.

~Ir = [~u1; ~u2; : : : ; ~uk] � ~w + ~�avg (1.8)

Here the reconstructed image, ~Ir, may be an exact copy of ~I if all the eigenvectors

are used. If however only a smaller set of those with the largest eigenvalues are

used, ~Ir will be the best approximation to ~I for any basis with that number

of dimensions. Sirovich and Kirby studied the error e�ects of using di�erent

numbers of the eigenvalues on the reconstructed faces. The faces images used

where of size 91 � 51 and they found that using the �rst 40 eigenvectors resulted

in reconstructed images which humans felt had a reasonable likeness, and this

included faces not in the original set. They report a RMS pixel-to-pixel error of

approximately 2%, which represents compression ratio of 1:100.

1.5.2 Face Recognition

In 91 Matthew Turk used PCA for face recognition [TP91, Tur91]. The system

is initialised in the following manner; a set of face images is acquired, the face

images are normalised and aligned, the eigenvectors of this set are calculated and

a certain number of those with the highest eigenvalues retained. The weights

for each individual are calculated by projecting back onto this space. The weight

vectors, ~
k, actually stored for an individual, k, are the average weights calculated

for that individual over several images with slight changes in facial expression,

pose and lighting. In Turk's experiments 1 to 4 face images for each individual

were used.

New images are recognised by projecting in to the face space. The distance

to face space is �rst calculated and a threshold is applied to check to see if the

presented image is a face. This distance, �, is calculated by using the distance

from the input image, ~I and the image that can be reconstructed of this image
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using the face space, ~Ir.

�2 =k ~I � ~Ir k (1.9)

If this test is passed, that is if �2 is below a predetermined threshold level, the

distance to the nearest known face is calculated. First the vector of the weights

of the input image, ~
I , are calculated. Then the k class that minimises the

Euclidean distance �k is found.

�k =k ~
k � ~
I k (1.10)

If this is above a threshold value the face is classi�ed as an unknown face, other-

wise it is classi�ed as the kth individual.

One of the questions that Turk posed was how to quantify the number of

eigenvectors needed to give accurate recognition rates. He supposed that if the

number of individuals to be recognised was small then a relatively small number

of eigenvectors would su�ce. As the number of individuals grows then so also the

number of eigenvectors. Experiments where done using a set of 16 individuals

and an eigenspace with seven eigenvectors.

1.5.3 Generalised Object Recognition

The next step toward appearance space was suggested by Murase and Nayar

[MN93, MN95]. They developed a continuous compact representation of an ob-

ject's appearance which they referred to as the parametric eigenspace. This

method goes a step beyond the face compression and recognition methods pre-

sented above, which lie in the domain of pattern recognition by building a com-

plete parametrised model of the object. This means that not only the dimen-

sions of an appearance space are learned but also the surface (coe�cients) that

all possible appearances of an object occupies. In [MN95] they also prove that
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an eigenspace representation of an image is optimal in the correlation sense, that

is that two distance between two images in the eigenspace corresponds to their

similarity under the l2 norm. The proof of this can be read in [MN95].

A set of images, varying in pose and illumination, was taken for each object

to be recognised. The images were normalised by segmenting out the background

and reassigning it a zero intensity, and also adjusting the size of the object, so

that the objects' largest dimension was always equal. The principal components

of all these images were calculated. A hyper-surface in this eigenspace for each

object was created using all the images of that particular object and projecting

them onto the eigenspace. Using a hyper-space, which was parametrised by pose

and illumination, the weights give a selection of discrete points. These discrete

points can be interpolated to give a hyper-surface. New objects can be recognised

by projecting them onto the eigenspace to get weights and then matching to the

hyper-surface that the weights lie on or are closest too. If they are more than a

certain distance away from any of the learned hyper-surfaces they are assumed to

not be recognisable images. Using a hyper-surface approach is more reliable than

using the points as clusters due to the fact that the hyper-surfaces of objects can

be intertwined and even intersect each other. The pose of the object can also be

determined by it's closest position on the hyper-space of an object.

Experiments done using this method showed that an eigenspace with ten

dimensions performed well. With less than four dimension the system was not

able to distinguish between the objects but using more than ten did not improve

the performance signi�cantly. Again the authors speculated that the number of

eigenvectors needed is related to the complexity and total number of objects to

be recognised.

A working example of this method is given by Martin and Crowley in the

recognition of hand gestures [MC97]. The appearance manifolds for six di�er-
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ent hand gestures were constructed and the system was able to recognise these

gestures.

The work of Murase and Nayar [MN93] was ground breaking for the following

reason. Their algorithm was able to automatically learn to recognise objects of

interest. Several problems remained; �rst is a way to automate the selection

of the number of eigenvectors to use. Experiments have shown that the more

complicated the objects or the greater the number of objects to be di�erentiated

the higher the number of eigenvectors needed, but this hasn't been quanti�ed.

A di�culty in the approach is also that of learning new objects. Calculating the

eigenspace is very expensive. If a system is to be expected to learn new objects it

will either have to re-calculate the eigenspace each time a new object is learned, or

just use the now non optimal existing eigenspace. Another limitation is that the

object needs to be segmented, which although easy in the case of the controlled

environment images dealt with in the paper, not always so easy in more general

cases. The method also is not able to recognise objects that have occlusions.

If the basis vectors are used to reconstruct an object that is partly occluded

the vectors will also try to reconstruct whatever it is that is actually occluding the

true object. This makes the reconstruction of the part of the actual object not as

accurate as it could be if the occlusion was ignored. This is exactly what Black

and Jepson suggest doing [BJ96]. They reformulate the reconstruction problem

as one of robust estimation, by noting that the least-squares image reconstruction

of the eigenspace method in the case of occlusion has some problems. Instead of

minimising the following, traditional least squares error:

E(~c) =
n�mX

j=1

(Ij �
tX

i=1

ciUi;j)
2 (1.11)

where ~c is the vector of weights calculated by projecting the image, ~I, on to the
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t eigenvectors, ~U , the following is minimised

E(~c) =
n�mX

j=1

�((Ij �
tX

i=1

ciUi;j); �) (1.12)

where � is a scale parameter and � is de�ned as follows:

�(x; �) =
x2

�2 + x2
(1.13)

This error function de-emphasises large residual errors. At what size errors are

ignored is controlled by �. Given a reconstructed image ~I� residuals where

jIj � I�

j j >
�p
3

(1.14)

are ignored. By grouping pixels that were rejected in the error calculation and

repeating the procedure on these pixels this method was successfully able to

reconstruct images made up of one third of one learned object and two thirds of

another learned object. Using the traditional technique a strange image that was

a ghostly mix of the two was constructed. This work certainly o�ers one approach

to deal with occlusion in images. Local appearance space methods o�er another

way of dealing with occlusion.

1.6 Towards Local Appearance Space

Using whole images to build the appearance space is sensitive to occlusion and

works well only if objects in images are of the same size, aligned, and segmented

from the background. These criteria pose a huge limitation in applying ap-

pearance space methods to real world problems. One solution is to learn the

appearance of local areas in images instead of appearances of whole images.
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1.6.1 Eigenfeatures

In 1996 John Krumm developed a system for measuring the pose of objects on

a plane, such as a conveyor belt [Kru96]. The system is an extension of the

parametric eigenspace method of Murase and Nayar discussed above, but does

not require segmentation of the object in the image, because local patches are

used. Objects are viewed from above and rotated while images are captured every

2 or 4 degrees. A feature detector is then run over the image, examining image

patches of size 15 by 15 pixels. Instead of applying PCA to the whole images, the

image patches which scored highly with the feature detector, are used to create

a low dimensional appearance space. Every pixel in the image is used as the

centre of a patch and back projecting the patch into the appearance space. The

pixel values are replaced with the weights vectors. The image is then scanned

and features in recognisable con�gurations are sought. Using the patches enables

this system to be tolerant to partial occlusion.

1.6.2 Eigen-Windows

Another approach in the same spirit is given by Ohba and Ikeuchi [OI96]. They

refer to it as the Eigen-Window method. They examine all the possible windows

for an image and as in the method of Krumm they select windows that pass a

feature detector but then they also remove similar windows. Removing similar

windows not only makes the training set smaller and thereby reducing memory

and computational costs but it also makes the matching process more robust

since the set only contains unique windows.
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1.6.3 Local Appearance Space

The method proposed Colin de Verdi�ere and Crowley [dVC98b, dVC98a] uses

all the possible small neighbourhood windows (or imagettes) to construct an

appearance manifold. If the imagettes are m � m then the dimensionality of

the local appearance space will be m2. An image is projected into this space by

taking all of the possible m by m imagettes. Since there will be a large overlap

in neighbouring imagettes they will be highly correlated and therefore lie very

close to each other in local appearance space. This means that the projection of

an image into local appearance space gives a discrete sampling of the surface of

appearance of an object. Di�erent views of an object give a family of surfaces.

An interesting observation made by Colin de Verdi�ere was that the set of

images used to create the local appearance space had surprisingly little e�ect

on the eigenvectors resulting in PCA. In fact the eigenvectors look very similar

to Gaussian derivate �lters, which would suggest that a set of universal �lters,

approximately optimal for any image set, exists, see �gure 1.1, which shows �lters

that were actually calculated in the experiments. Although local appearance

space methods were motivated by the desire to be tolerant to occlusion and

non-segmentation, it resulted in a suggestion for the solution to the problem of

eigenspace updating, since the optimal eigenvectors do not change signi�cantly.

Training

Training was done by using images from the Columbia Image Database [NNM96],

which contains 7,200 images of 100 objects. There are 72 images of each object

taken against a black background every 5 degrees, under constant illumination.

The training images were chosen by selecting images taken set every 20 degrees,

leaving the remaining images available for testing. Taking training images every
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20 degrees may not be optimal for some of the objects, those which change rapidly

under rotation, but this level of sampling proved to be reasonable over the whole

data set.

The imagette size used was 9 � 9, giving a maximumdimensional appearance

space of 81. The size of 9 � 9 was chosen since it was the smallest size for which

the local spatial frequency is not perturbed by the sinc function which is inherent

in neighbourhood selection [dVC98b].

0.053850 0.021970 0.013188 0.011055 0.008178

0.006028 0.004222 0.003373 0.003333 0.002421

Figure 1.1: Eigenvectors and their corresponding Eigenvalues [dVC98b]. Note

that these images have 
oat and negative pixel values and have been self-

normalised to the range [0; 255] to be printed.

Recognition

Recognition is achieved by taking a window from an unknown image, projecting

it into the local appearance space and associating it with the object whose surface

it lies closest to. As con�dence factor can be calculated by combining the distance

to the chosen surface and the number of nearby surfaces. Using just one 9 � 9
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window good recognition rates where achieved but excellent results were achieved

using 2 windows and also requiring that the spatial correspondence between the

two windows corresponded to the learned spatial correspondence.

Extending Local Appearance Space Methods to Colour

The images in the Columbia Image database are in colour. In order to include

the colour information of the image Colin de Verdi�ere used imagettes that were

3 dimensional instead of 2 dimensional. That is instead of imagettes of m by m

they were m by m by 3. In terms of the calculations these imagettes are treated

like m by 3m. Extending this approach to use colour in this way gave even more

robust recognition results than gray-scale local appearance based matching.

1.7 Conclusion

Appearance based methods represent a fundamental change in computer vision

approaches. The learning phase is computationally expensive and updating the

�lters as new objects are learned is expensive. The work of Colin de Verdi�ere

and Crowley has suggested this if local appearance spaces are used, then a set

of universally optimal �lters could make it unnecessary to calculate the �lters

instead learning would only consist of constructing the hyper-surface of each

object. These techniques are still quite new and a more through exploration

to the full extent of their possibilities and limitations is needed. In the next

chapter several methods to detect the burn marks in the �lter casings using local

appearance space methods are presented and the experimental results given.
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