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ABSTRACT

In this paper we describe new metrics for the evaluation of collision detection techniques.  Through careful study
of common applications of these techniques we have developed a series of comparative tests that should be
conducted when evaluating a collision detection algorithm.  We present a comprehensive overview of the two
most commonly used collision detection algorithms, Enhanced GJK and V-Clip, and analyse them using the new
metrics.

Keywords: collision detection, computer graphics, computer animation, performance metrics.

1. INTRODUCTION

Physically realistic animation has long been a Holy
Grail in the field of computer graphics.  Recently, as
well as facilitating the production of more realistic
animations, attention has turned to producing
interactive graphics.  Collision detection is a vital
component of such a system, which often accounts
for over 95% of total computation time [Mirti96a].

Many of the collision detection algorithms
in use today have been developed for robot motion
planning, and subsequently adopted for use in
applications such as Virtual Reality (VR) systems
and physical simulators.  Consequently, it is difficult
to gauge how such an algorithm will perform in a
real-time environment without implementing and
testing it.  In an effort to reduce the time wasted with
this trial and error approach, we have developed
metrics for evaluating collision detection algorithms
that produce easily interpreted comparative results.
We demonstrate the application of our metrics with
the comparison of the two most commonly used
algorithms.

There have been several surveys which
compare and contrast available collision detection
schemes [Lin98a], [Held95a], [Held95b].
Unfortunately, these surveys are either very general,
with no rigorous analysis performed, such as
comparison of performance, or too specific and

tailored to a particular application domain.  In an
attempt to remediate this situation, a cost function
based on previous work from the area of Ray
Tracing was developed [Gotts96a].  Minimisation of
the cost function, Eq. 1, became the chief design
criterion for their collision detection scheme.

T = Nv * Cv + Np * Cp (1)

Nv is the number of pairs of bounding volumes tested
for overlap, Cv is the cost of testing a pair of
bounding volumes for overlap, Np is the number of
pairs of primitives tested for contact, and Cp is the
cost of testing a pair of primitives for contact.  This
cost function was subsequently enhanced and used as
a performance metric in comparing the k-dop
algorithm [Kloso97a] with OBB Tree [Gotts96a],
Eq. 2.

T = Nv * Cv + Np * Cp + Nu * Cu (2)

Nu is the number of updates necessary on the
bounding volume nodes, and Cu is the cost of
updating each node.  It should be noted that these
cost functions relate to schemes using bounding
volumes, rather than being generic collision
detection cost functions.  To date there are no well-
specified metrics for evaluation and comparison of
collision detection algorithms.



2. PROPOSED METRICS

In our attempts to choose the most appropriate
algorithm for a physical simulator, we were faced
with a variety of algorithms each making quite
different claims than the others.  Comparison of such
a huge range of ‘features’ was nearly impossible and
it was only through implementation of the various
schemes that we began to understand how the
algorithms behaved relative to one another.
As a result of this experience we now classify all
collision detection algorithms using these standard
criteria:

• Performance
• Scalability
• Robustness
• Ease of implementation

The criteria are split into two distinct categories.
Performance, scalability and robustness are
measured with standard tests outlined below, and the
numerical results are directly comparable across
algorithms.  Ease of implementation is a softer
metric as it relies on a subjective interpretation of an
algorithm.

Performance

When measuring the performance of a collision
detection algorithm it is important to consider both
static and dynamic situations, and time necessary for
pre-processing (as required).  Many, currently
available, algorithms exploit temporal coherence;
they find the solution at the current time based on the
solution at end of the last discrete time step.  For this
reason we must measure both the static and dynamic
characteristic of the algorithm.

Static analysis is quite straightforward.  A
virtual environment of fixed dimensions is created, it
is then randomly populated with primitives of
varying volume up to a specified percentage
occupancy (generally 10%).  As with every
experiment, the test is run repeatedly and the results
averaged.  Dynamic analysis is significantly more
complex as factors such as primitive velocity (both
angular and linear), and forces in the environment
become relevant.  Primitive velocity is a factor
because it affects the exploitation of temporal
coherence – as it increases there is less coherence
between the discrete time steps.  When gravity (or
other attractive forces) are introduced into the
environment, the primitives eventually come to rest
in contact.  This constant close proximity can cause
problems for many algorithms, while others perform
particularly well in such a scenario.

Thus, we perform several distinct dynamic
tests ranging from low angular velocity up to 2π rad
in a discrete time step, and ranging from low linear
velocity up to 50% of the primitive’s smallest

dimension (measured in the x, y and z directions
only) in a single time step.  A separate test is
performed for the case of continuous close proximity
– primitives are positioned in close proximity with
no linear velocity and very low angular velocity (of
the order of ¼ rad/s).

Scalability

As the number of primitives in the environment
increases the performance of most algorithms will
begin to degrade.  Therefore the performance test
(with random angular and linear velocities) is
executed with a range of primitive numbers in order
to ascertain the relationship between time complexity
and number of primitives.  It should be noted that as
this number increases we must maintain a constant
occupancy.  This is achieved by either reducing the
average primitive volume, or by increasing the
volume of the virtual environment.  Adjusting the
volume of the entire environment is the preferred
choice, as reducing the volume of a primitive will
alter the effect of the high rotational velocity.

Another aspect of scalability that needs
investigation is that of primitive complexity.  In
general, the simpler the model the easier it is to
determine disjointness.  Most tests use the simplest
available primitive (generally a cuboid or a
tetrahedron) to give an indication of the peak
performance.  By running the performance test
several times with increasing primitive complexity
we can see how an algorithm scales with complexity,
both in terms of performance and memory usage.

Robustness

Detecting failure of a collision detection algorithm
is, in general, not an easy task.  Frequently, rather
than complete failure (primitives pass through one
another), incorrect contact points or normals are
reported with the result that the collision is resolved
incorrectly.  Our robustness metric employs a control
algorithm with which each of the tested algorithms
should agree (contact/no contact).  If the tests do not
agree we consider it a failure.  Our control algorithm
is the Moore-Wilhelms algorithm [Wilhe88a].
Robustness is quantified as the percentage of failures
in a given number of tests.

Ease of implementation

This factor is more difficult to quantify.  It is
intended to provide an idea of implementation
difficulty, and of limitations of the algorithm (for
example inability to deal with concave primitives).
For several of the collision detection algorithms we
have studied, there are variables (such as numerical
tolerances and subdivision techniques) that require
adjustment for different applications – this impacts



upon the usability of the algorithm.  Information
such as this is included as a descriptive measure for
future users of the algorithm.

3. OVERVIEW OF ALGORITHMS

In this section we present a general overview of the
V-Clip (Voronoi Clip) and Enhanced GJK (Gilbert,
Johnson and Keerthi) algorithms.  By describing the
algorithms clearly, and highlighting their complete
lack of similarity we hope to show the generality of
our approach to collision detection algorithm
analysis.

V-Clip

All feature-based schemes are broadly based on the
Lin-Canny [Lin93a] closest features algorithm.  The
fastest available scheme is V-Clip [Mirti98a] –
which has claimed an almost constant running time.
It is interesting to note that, to our knowledge V-Clip
is the only algorithm that was specifically developed
for use in a physical simulation.  Feature based
algorithms are based on the following ideas.  Given
two polytopes, P and Q (the convex hulls of finite
sets of points in R3), we partition them into features.
A feature is categorized as a vertex, an edge (defined
by its two endpoints) or a face (defined by its edges
and, consequently their endpoints).

Given two fixed points, a and b, and a third
moving point, p, it is possible to quickly determine if
p is closer to a or b by use of Voronoi regions.  If a
plane is constructed half way between a and b,
perpendicular to the line connecting them, then it is a
simple matter of deciding if p lies in the same half-
space as a or b.  This can be extended to any number
of fixed points, and is known as constructing the
Voronoi diagram of the point set.  The generalized
Voronoi diagram extends this to higher dimensional
features.  Again, it uses bounding planes associated
with a particular feature (rather than a point) to
determine if an arbitrary point is closer to one
feature than to another.  Fig. 1 illustrates the Voronoi
cells associated with a vertex, an edge and a face.
The construction of the Voronoi cells is a
preprocessing task.

It is clear that if a point lies inside the cell
associated with a feature, then the point is closer to
that feature than to any other.  Similarly, if two
features lie inside each other’s voronoi regions then
they are the closest features between the polytopes.
Testing for the inclusion of a vertex in a region is a
trivial; the vertex is checked for sidedness against
the voronoi planes.  If is outside the voronoi region
the vertex it is said to violate the voronoi plane.
Distinguishing between inclusion and exclusion of an
edge or face relies on a clipping algorithm.

Voronoi Regions: (a) Face, (b) Edge, (c) Vertex
Figure 1

When a feature lies outside a voronoi region, the
region is stepped to a neighbour and the check is
repeated.  The new region is chosen based upon the
results of the exclusion test, it will be the neighbour
bordering the most violated voronoi plane.  Stepping
continues in this fashion until the closest features are
found.

Enhanced GJK

This is an iterative method for computing the
distance between polytopes.  An important
difference between the GJK algorithm and the V-
Clip algorithm is that Enhanced GJK has been
generalized to deal with all convex objects
[Gilbe90a], including implicit surfaces and the
VRML (Virtual Reality Mark-up Language)
primitives.

Hp(s) = max { p• s | p∈P }, s∈Rn

Z = Q + P = { q + p | q∈Q, p∈P }
M = Q - P = { q -  p | q∈Q, p∈P }

(3)
(4)
(5)

The supporting function, H(p), of a polytope P in
direction s is defined in Eq. 3.  Since there may be
more than one supporting point, we define the
contact function as one solution to the above
equation.  A graphical illustration of a contact
function is given in Fig. 2.



When polytopes Q and P collide we can see that they
have a common point, q - p = 0 for some p∈P and
q∈Q.  Thus the Minkowski difference, M, is defined
as in Eq. 5 (this is based on the Minkowski sum, Eq.
4, also shown in Fig. 3).  When Q and P collide we
are sure that 0∈M.  The problem of collision
detection is now reduced to determining if the origin
is contained in M, and the closest pair of points
between Q and P is the point on M closest to the
origin.  It is important to note that the ideas of a
supporting function and a contact function are still
valid in the context of a Minkowski difference.

Subdistance Algorithm (Johnson’s Algorithm)

Given a polytope, P = {V1,...,Vm}, P∈Rn,1 < m ≤ ( n
+ 1), Johnson’s algorithm computes the point, V(p),
on P that is closest to the origin.  The algorithm is
specifically designed to be efficient when the point
set is small (at most 4 points in 3-space).  The result
of the algorithm is expressed in Eq. 7 and Eq. 8
where V(p) is the point closest to the origin and IS is
the set of vertices describing the convex hull
containing that point.  This convex hull will be a
simplex (which corresponds to a vertex, and edge or
a face) and must be affinely independent or else the
algorithm fails.

V(p)=∑λiVi  (λi∈R) (7)
 λI > 0, ∑λi = 1, i∈ Is ⊂ {1,..,m} (8)

The algorithm operates by considering every
possible IS.  The closest point between the origin and
this subset is calculated, and if a termination
condition is met then the solution is found.  If the
termination condition is not met then we proceed to
the next possible IS.  Two points are worth noting:

1. Computation is not wasted when a possible
solution is rejected as the figures computed
will be used in a subsequent IS that contain
the rejected IS.

2. When testing the subsets we proceed in
order of ascending cardinality, thus enabling
early acceptance.

Contact function with one supporting vertex
Figure 2

Minkowski Sum
Figure 3

Gilbert’s Algorithm

The purpose of this algorithm is to find the simplex
subset of each polytope that contains the point
closest to the other polytope.  If the algorithm is
initialized with two arbitrary simplices, one from
each polytope, then a call to Johnson’s algorithm will
give us the closest points between these simplices,
and possibly a lower dimensional simplex on which
each point was found.  Taking the direction of the
point from the origin in Minkowski space, we can
search for new points on the polytopes that may be
supporting vertices in these directions.  If the new
supporting vertices are already known then the
algorithm terminates, otherwise we call Johnson’s
algorithm again, and repeat the process.  Upon
termination of the algorithm we have two simplices
(each representing a feature on a polytope) and a
point on each polytope that is the closest point to the
other polytope.

There are several implementations of
Enhanced GJK algorithm available [Camer97a]
[Chung96a] [Berge99a].  The former implementation
is described as "the fastest descendent of GJK"
[Mirti98a].  The primary performance gain is
achieved through intelligent, rather than brute force,
selection of supporting vertices (smart evaluation of
the contact function).

In a simple implementation, finding a
supporting vertex in direction s would take O(n) time
- the supporting function would be evaluated for
each of the n vertices of the polytope.  By taking into
account the convex nature of the polyhedron (the
fact that it is a polytope), a hill climbing approach
can be employed.  Starting with an arbitrary vertex,
V, its support function is evaluated, followed by that
of its neighbours.  If none of the neighbours has a
greater support function than V, the algorithm
terminates with V as the supporting vertex, otherwise
it steps to the greatest neighbour and repeats the
process.  Implementing a hill climbing scheme
reduces the complexity to O(log n).

Also, owing to the temporal and spatial
coherence of time steps in a simulation, it is often the
case that the support vertices of the two polytopes
will not have changed, or will have changed to near
neighbours of the previous solution.  Thus the
supporting vertices are cached between time frames.

p
P

s



4. RESULTS AND ANALYSIS

Test timings were averaged over 30,000 iterations at
each sample point in order to smooth experimental
errors.  From the results it is clear that the V-Clip
algorithm runs slightly faster than Enhanced GJK,
but the time complexities are comparable.

Performance

In the static tests V-Clip took an average of
3.98×10-5s for each detection compared to
3.43×10-5s with Enhanced GJK.  This results seems
to contradict the dynamic test results, Fig. 4, where
V-Clip is clearly faster.  This anomaly can be
explained by the caching system employed by each
algorithm, and thus suggests that the caching policy
used with V-Clip is significantly more beneficial that
that of Enhanced GJK.

Linear Velocity vs. Time
Figure 4.

In the dynamic tests V-Clip is shown to perform
slightly faster, but the algorithms are of comparable
time complexity.  Thus, the performance metric
shows that V-Clip is a better choice where lowest
detection times are the most important factor.

Scalability

Scalability in the number of primitives is shown to
be linear (Fig. 5), a direct consequence of employing
a sweep and prune broad phase to reduce the
complexity from O(n2) (pairwise detection) to O(n).
When considering primitive complexity both
algorithms scaled as expected, with V-Clip
consistently out-performing Enhanced GJK, these
results are shown in Fig. 6, Fig. 7, and Fig. 8.  The
most surprising result is shown in Fig. 8 where a
model of 386 vertices was used.  Enhanced GJK
performs as it did with both 8 and 38 vertices,
whereas V-Clip behaves erratically.

Upon further investigation we discovered
that the V-Clip voronoi regions were consuming vast
amounts of memory for such a complex primitive,
and in our test environment of hundreds of such
primitives we were consuming all available memory.

With a large foot-print, and poor locality of
reference characteristics the resulted in large
amounts of memory swapping – or thrashing.

Number of primitives vs. Number of tests
Figure 5.

Angular Velocity vs. Time (8 vertices)
Figure 6.

Angular Velocity vs. Time (38 vertices)
Figure 7.

The significant memory overhead of the V-Clip data
structures is highlighted as a notable short
coming of the algorithm.  Using double precision
floating point number, each additional edge requires
168 bytes of feature space information (using single
precision halves the overhead).  These data
structures also have the disadvantage of having to be
pre-computed, adding not insignificant complexity to
a system with deformable or fracturing models.
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Angular Velocity vs. Time (386 vertices)
Figure 8.

Robustness

In our complete suite of tests we did not encounter
one single case of algorithm failure.  This result may
suggest that a robustness metric is superfluous in a
comparative study, even though it was invaluable in
proving our implementations.  In spite of this result,
we still believe this to be a vital measure of an
algorithm’s stability in the face of degenerate
situations – it is a valid result to report zero failures
rather than take no measurement at all.

Ease of implementation

Both of the algorithms considered use a tolerance
parameter to decide the lowest allowable separating
distance before a collision is reported.  Even keeping
these parameters ~10-5 presented us with no
difficulties.  Numerical problems do arise once the
tolerance factor falls closer to the numerical
precision limits on the chosen processor.

The V-Clip algorithm requires substantial
pre-processing to build the voronoi region associated
with each feature.  Aside from the time taken (which
is frequently discounted in comparisons), the pre-
built regions require substantial amounts of memory,
168 bytes for every edge in the model.  A further
disadvantage of pre-processing is the restriction
imposed on dynamically deforming the models –
every deformation will require the regions to be
modified or re-built.  Enhanced GJK suffers none of
these drawbacks and proves to be a better choice for
deforming primitives.

5. CONCLUSIONS AND FUTURE WORK

The metrics employed show some clear differences
between Enhanced GJK and V-Clip, but in most
areas performance is very similar.  This is
unsurprising, as Enhanced GJK is a numerical analog
of the feature stepping algorithm.  The considerable
differences in performance as the primitive
complexity increases is caused by the data structures
employed by V-Clip.  Each additional edge requires

168 bytes of storage, thus with large models the
feature stepping algorithm is constantly trashing the
fast access on-board cache of most modern
processors.

We believe that these results demonstrate the
usefulness of the metrics we have developed; they
clearly show the differences between two algorithms
with very similar performance characteristics, but
very different low-level (implementation) properties.
Without our new metrics it would not have been
possible to explicitly state these differences.

Currently our research is focussing on the
application of our metrics to methods that use
bounding volume hierarchies, such as OBB Trees
[Kloso97a] and k-DOPs [Gotts22a].  Through testing
these algorithms we would like to show the
universality of our approach to the problem of
evaluating collision detection schemes.
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