EFFIGI
An Efficient Framework For Implementing Global
Illumination

Williamm Leeson
Carol O’Sullivan Steven Collins

Image Synthesis Group
Trinity College Dublin
Republic of Ireland

ABSTRACT

This paper presents a rendering framework called EFFIGI (Efficient Framework For
Implementing Global Illumination) that uses interfaces which express both geomet-
ric concepts and mathematical ones, using object-oriented and component object
methods. EFFIGI facilitates the development of new techniques and the imple-
mentation of existing ones, by providing a flexible but comprehensive geometric
and mathematical architecture. The framework eliminates the need for users to im-
plement an entire system, enabling them to focus only on those areas of particular
interest.

Keywords: Rendering Framework, Object-Oriented Design, Global Illumination

Introduction greater ease.

Global illumination deals with the propa-
gation of light through an environment,
and is described or modeled in mathe-
matical form by a number of equations.
Many rendering architectures have been
proposed to support this. These frame-
works tend to encapsulate mathematical
concepts within physical ones. However it
is sometimes desirable to separate these.
Firstly the increased visibility of math-
ematical components make it easier to
solve specific problems. Secondly separat-
ing the description from the solution con-
tributes to smaller, reusable components,
which can be combined and tested with

This paper presents a rendering frame-
work called EFFIGI that uses interfaces
which express both geometric concepts
and mathematical ones, using object-
oriented and component object methods.
It also handles other concerns that poten-
tial users might have, such as object de-
scription and scene acceleration.

In Section 2 some background information
is provided, and Section 3 discusses the de-
sign of our architecture. The implementa-
tion of the framework is covered in Sec-
tion 4 which also demonstrates the con-
struction of various rendering algorithms.
Conclusions and future work are presented
in Section 5.

2 Previous Work

Many mathematical models are used
in image synthesis, the rendering equa-
tion [Kajiy86] being one example. These
mathematical models are solved by a
variety of techniques. By simplifying
these, easier and faster methods of solu-
tion may be found. For instance the ra-
diosity equation [Cohen88]| is a simplified
form of the rendering equation that can
be solved using finite element methods
such as Galerkin [Zatz93] or point colo-
cation [Cohen93| methods. However, this
simplification limits the types of environ-
ment that can be described. More general
descriptions like the rendering equation
(see Figure 1) need more general meth-
ods of solution such as Monte Carlo inte-
gration. Some of the methods come di-
rectly from numerical techniques such as
Metropolis [Veach97] or Galerkin meth-
ods. Others such as bi-directional path
tracing [Veach94, Lafor93] are derived
from the nature of ray paths. Most meth-
ods, however have the common property
that they are described using mathemat-
ics.

Various architectures have been devised to
handle this situation. Some have been tied
to a specific technique [Cook87, Kirk8s,
Shirl91, Ward88, Walte97]. Others have
been general enough to allow a wvari-
ety of rendering techniques. The Cornel
“testbed for image synthesis” [Trumb9l]
is a toolbox that can be used to construct
a rendering package but is not object-
oriented. Glassners “Spectrum” architec-
ture [Glass91] is an object-oriented frame-
work based on signal processing. The Vi-
sion system [Slusa95] is capable of most
rendering methods as is the RenderPark
system [Bekae]. In Section 5.1 of this pa-
per we compare the last two frameworks
with ours.

3 Design

The design of the EFFIGI framework is
motivated by several key factors. It is fully
object-oriented, thus enabling increased
flexibility and code re-use. The abstrac-
tions are based not just on physical con-
cepts such as radiance and radiosity but
also on their mathematical foundations.
In order to make development easy there
is a means of testing components. The
time taken to generate a picture is very
important, so speed has been taken into
consideration throughout all phases of the
design process.

3.1 Object Oriented Design

Object oriented techniques are used to de-
compose the rendering process into sim-
ple manageable parts. The interfaces that
arise from this fit into four main groups:

e mathematical for sample generation,
function evaluation and integration.

e scene and object management for ray
queries, meshing and path genera-
tion.

e data storage to support data struc-
tures such as linked lists, k-d
trees [Bentl75] and vectors.

e setup for object initialisation and
setup.

Within each of these groups, various sets
of interfaces are provided. For a full list
of interfaces see Table 1.

| Math | Scene [Setup [Data |
ISampler IIntersect IRenderer IContainer
IFunction IShape IInterface IVector
IIntegrator IMesh IInitialise ITree
IGenerator IRay IList
IRootFinder IlluminationMap
IWarp IPathGenerator
IEvent
IEventStore

Table 1: Interfaces in Framework

L(wi,z) = Le(w,z) +
——

IFunction
IFun)gtion

-~

rIFunction
——
/ (@, 7, 0,) L(&, 7) cos 0 d3
Q

~ >

IIntegrator and IFunction

Figure 1: The Rendering Equation

3.2 Mathematical Foundation

The abstraction of mathematical concepts
provides generic access to various algo-
rithms, allowing a ”pick-and-mix” ap-
proach to choosing a suitable technique.
This abstraction is important in im-
age synthesis, because many models use
mathematically-based methods. For ex-
ample, the light propagation model used
in rendering utilises sampling and integra-
tion. EFFIGI provides explicit support
for these ideas, by translating concepts
such as functions, integration and sam-
pling into interfaces. The learning curve
for the users of such a framework will not
be steep, since such people are typically
well-aware of the mathematical ideas in-
volved.

The most common interfaces used are
the Ilntegrator and IFunction interfaces.
These are usually used to represent the
various parts of our image synthesis
model. The IFunction interface can be
used to represent surface reflection models
or to evaluate ray paths. When used by an
IIntegrator the total light reaching a point
can be estimated. Figure 1 shows how
this can be encapsulated within another
function interface to represent the render-
ing equation. The parameters of the in-
ner most function represent the direction
(0,) that the ray goes when it strikes a
surface as in the case shown. They are
equally likely to represent a surface and
coordinates on it (s, u,v), if a surface form

of the rendering equation is used. This
configuration represents a distributed ray
tracer since the function is recursive. A
more efficient implementation would ex-
pand the inner function and use it to rep-
resent n bounces, where n is the first pa-
rameter, thus creating a path tracer. To
allow this the function interface provides
methods which disclose this information.

3.3 Testing Facilities

An important feature of the framework
is its facility to test components for
compliance with a given specification.
For instance, a Bi-directional Scattering
Distribution Function(BSDF) should be
physically plausible; a scene acceleration
scheme should support all the required
features, and provide the same intersec-
tion information as another scheme given
the same data; an interface should pro-
duce valid responses to a specified set of
inputs. Previously, it was necessary to run
components with a complete setup, and
then attempt to identify artefacts in the
output. Now users can run the testing
components with default setups, allowing
rapid identification and location of errors.
This speeds up the development process
significantly. It is also possible for users
to quickly ensure that the interfaces pro-
vided can support any new components
they may wish to add to the framework.

4 Implementation

The Component Object Model [Krugl97,
Roger97] was used in EFFIGI to provide
a consistent interface for creation and de-
struction of components, and to provide
Run Time Type Information (RTTI). It
allows the use of shared libraries or DLLs?

In UNIX they are called shared libraries in
Windows dynamic link libraries or DLL’s. These
enable the sharing of compiled code by allowing
libraries to be dynamically loaded at runtime.

IIntersect

Creates image Direct Lighting

IRenderer IFunction
Sceneray queries

IPath Generator

Evaluates ray path Generates ray path

lintegrator IFunction
Creates pixels

lllumination Map

Figure 2: Path Tracer Configuration

lintersect
Manages scene
ray queries

IPathGenerator
Generates path

Photon Tracer
Records photons

|IEvent Store
Stores photons

lllumination Map

Figure 3: Photon Tracer Configuration

which gives our framework the ability to
have a “plug-in” style component archi-
tecture without any extra work by the pro-
grammer.

To date, EFFIGI has been used to imple-
ment many of the major rendering meth-
ods in use today. We now have a package,
which can be configured to use a multitude
of different techniques with ease. What
follows are some examples that illustrate
some typical uses of the framework.

4.1 Path Tracer

The path tracer [Kajiy86, Dutre94] is con-
structed from a few basic components
as shown in Figure 2. Direct Lighting
is achieved using an IFunction interface
which evaluates rays from the light to the
point in question. This is then called from
inside the path evaluator. Each box rep-
resents a component which can be substi-
tuted at run time, and thus a variety of
configurations are possible. The picture
shown in Figure 4 was rendered using a
VEGAS [Lepag80] style integrator with a

Figure 4: Path Tracer

directional path generator and a surface
to surface direct lighting function.

4.2 Photon Map

A Photon Map [Jense96] is a prepro-
cess which is used to create illumination
maps (see Figure 3). These can be used
with the path tracer configuration just de-
scribed by using a modified path evalu-
ator. These path evaluators query the
illumination maps at a given point, ob-
taining an estimate of the incoming ra-
diance at that point. The photon gener-
ator can use all the samplers and warp-
ing schemes just like a path tracer, stor-
ing photons using an IFEventStore inter-
face. The component used to store the
photons can use a k-d tree, quad tree or
any other suitable structure, and might
also directly support an IllluminationMap
interface. Alternatively, it can provide
some facility to convert it to a suitable
structure for some other component which
would provide the illumination map dur-
ing the rendering phase. Figure 5 shows
a Photon Map used in conjunction with
a path tracer, which in turn uses a Mean
Sample Monte Carlo integrator [Kalos86]
with a random sampler. The photons

Figure 5: Photon Tracer

were generated from the light source us-
ing a Metropolis sampler which sampled
the emission function Le(u, v, A, @) of the
light source to generate a sample set.

4.3 Irradiance Map

An Trradiance Map [Ward88] is a modi-
fied path evaluator which caches radiance
information in an illumination map, also
using an IEventStore interface. Unlike the
photon map it is not a preprocess but a
modified path evaluator (see Figure 7).
Shown in Figure 6 is a picture generated
using an Irradiance Map style path evalua-
tor and a Mean Sample Monte Carlo inte-
grator using a Hammersly [Press96] quasi-
random sample set.

4.4 Radiosity

Radiosity [Cohen93] is implemented as a
preprocess, as in the Photon Map method.
Similarly radiosity is stored in a compo-
nent, this time using the IMesh inter-
face. This interface supports the ideas of
patches from which form factors can be
calculated and radiosity stored. The com-
ponent may support an [lluminationMap

Figure 6: Irradiance Map

IRenderer

Creates image Direct Lighting Scene ray queries

IFunction lintersect

IPath Generator
Generates ray path

IFunction
Evaluates ray path

llumination Map |Event Store

Figure 7: Irradiance Map Configuration

lintegrator
Creates pixels

interface, or it may provide the ability to
output a texture, or something that can
be used by an illumination map compo-
nent. The form factor is calculated us-
ing a component that supports an [Func-
tion interface that takes two surfaces as
properties, the parameters of which are
the (u,v) surface coordinates on each sur-
face. This enables the use of various inte-
gration schemes (see Figure 8 for the con-
figuration used). Figure 9 is a radiosity
illumination map rendered using a Mean
Sample integrator with random sampling.
The radiosity structure used a Metropolis
sampler to integrate the form factor func-
tion using the visibility function as a basis
for the probability density function(pdf).

Radiosity Scheme IMesh
Mesh and patch Illumination Map
information

IFunction

Form Factor .
Calculation Scene ray queries

IIntersect

Figure 8: Radiosity Configuration

5 Conclusions and Future Work

EFFIGI has been successfully used in the
implementation of many of the latest tech-
niques in image synthesis. It is extremely
flexible and provides a means of easy aug-
mentation using both source code and bi-
nary DLL’s. The use of interfaces in
the framework allows easy extension of
many older methods without having to re-
implement them. Since all the modules
can be provided as a DLL, only the mod-
ules actually referenced are loaded thus
reducing the memory footprint of the sys-
tem.

Implementers are also allowed to exper-
iment with various ideas (for example
sampling schemes) without having to al-
ter any code. If the code is written in a
generic way it can be used with many of
the other components, thus extending the
entire system. This encourages the user
to break up any objects they create into
many reusable parts so that they can be
used with the other elements of the sys-
tem. This has resulted in greater flexibil-
ity, more code reuse and a powerful ren-
dering environment.

5.1 Comparisons

Although comparing frameworks is diffu-
cult, the following attempts to highlight
some of the differences between our frame-
work and two others introduced in Sec-
tion 2 which share similar objectives.

Figure 9: Radiosity

RenderPark is an object oriented ren-
dering framework which is freely available
to the public. Both it and EFFIGI divide
the set of rendering techniques into view
dependent or view independent, and this
dictates how they are implemented. The
strength of RenderPark is its extensive
suite of Radiosity algorithms. However, it
lacks the mathematical basis of EFFIGI,
meaning that integration and other math-
ematical methods cannot be changed eas-
ily. In addition, scene acceleration has
been implemented using utility functions
that do not support any common form of
interface.

Vision is another object-oriented render-
ing framework which, like EFFIGI, de-
rives its geometry subsystem from the Ray
Tracing Kernel [Kirk88]. Vision uses a
physically based object-oriented abstrac-
tion of the rendering process, and can
render physically correct as well as non-
physical systems. However, it specifies
fixed mathematical models for some inter-
faces that cannot be changed by the pro-
grammer. In addition, the sampling inter-
faces have been fragmented for use with
different techniques.

Table 2 presents a summary of the features
in the frameworks: Effigi(E), Visoin(V)
and RenderPark(RP).

[features | E |V | RP |
Physically based yes yes yes
Radiosity PR many many
Object Oriented yes yes mostly
Plug-ins yes no no
Mathematical yes no no
basis
Object Model COM CORBA no

Table 2: Framework Features

5.2 Future Work

To date the framework supports an exten-
sive set of ray-based techniques, but only
one Radiosity method. In the future this
will be extended to many of the other ra-
diosity methods. This will probably add
more interfaces as more common ground
between each technique is exposed. An-
other extension is the support of parallel
implementations such as data- distributed
methods for large data sets. Hopefully
this can be hidden in scene type compo-
nents. As yet we are not sure if the par-
allel nature of various algorithms needs
to be made explicit, or if it can be hid-
den behind the current set of interfaces.
If this is the case all the current meth-
ods would work seamlessly with parallel
methods. Finally, it is proposed to pro-
vide support for more numerical methods,
especially for the common tasks of inte-
gration and sampling which are useful in
all areas of rendering.

6 Acknowledgements

I would like to thank Dave Gargan,
Gareth Bradshaw, Leo Talbot and Hugh
McCabe for their help. This project
has been supported by Enterprise Ireland
strategic research grants ST/96/104 and
ST/98/001 and Hitachi Dublin Labora-
tory.

REFERENCES

[Bekae] Philippe Bekaert.
http://www.cs.kuleuven.ac.be/cwis/
research /graphics/renderpark/.

[Bentl75] Jon Louis Bentley. Multidimen-
sional binary search trees used for
associative searching. In Communi-
cations of ACM, volume 18, pages
509-517, 1975.

[Cohen88|

Michael F. Cohen, Shenchang Eric
Chen, John R. Wallace, and Don-
ald P. Greenberg. A progressive re-
finement approach to fast radiosity
image generation. Computer Graph-
ics (SIGGRAPH 88 Proceedings),
22(4):75-84, August 1988. Held in
Atlanta, Georgia.

[Cohen93] Michael F. Cohen and John R.
Wallace. Radiosity and realistic im-
age synthesis. 1993. Held in San
Diego, CA.

[Cook87] Robert L. Cook, Loren Carpen-
ter, and Edwin Catmull. The reyes
image rendering architecture. Com-
puter Graphics (SIGGRAPH ’87
Proceedings), pages 95-102, July
1987. Held in Anaheim, California.

[Dutre94] Philip Dutre and Yves D.
Willems. Importance-driven monte
carlo light tracing. Fifth Eurograph-
ics Workshop on Rendering, pages
185194, June 1994. Held in Darm-
stadt, Germany.

[Glass91] Andrew Glassner. Spectrum: a
proposed image synthesis architec-
ture. SIGGRAPH ’91 Frontiers in
Rendering course notes, July 1991.

[Jense96] Henrik Wann Jensen. Global
illumination using photon maps.
FEurographics Rendering Workshop
1996, pages 21-30, June 1996. ISBN

3-211-82883-4. Held in New York
City, NY.

[Kajiy86] James T. Kajiya. The ren-
dering equation. Computer Graph-
ics (SIGGRAPH ’86 Proceedings),
20(4):143-150, August 1986. Held
in Dallas, Texas.

[Kalos86] Malvin H. Kalos and Paula A.
Whitlock. Basics, volume 1 of
Monte Carlo Methods. John Wi-
ley and Sons, New York, Chichester,
Brisbane, Toronto and Singapore,
1986.

[Kirk88] David Kirk and James Arvo.
The ray tracing kernel. Proceedings
of Ausgraph ’88, pages 75-82, 1988.

[Krugl97] David J. Kruglinski. Inside Vi-
sual C++. Microsoft Press, Red-
mond, Washington, fourth edition,
1997.

[Lafor93] Eric P. Lafortune and Yves D.
Willems. Bi-directional path trac-
ing. In CompuGraphics, pages 145—
153, 1993.

[Lepag80] G. P. Lepage. Vegas:an adap-
tive multidimensional integration
program. In CLNS-80/447, vol-
ume 4, pages 190-195, 1980.

[Press96] William H. Press, Saul A.
Teukolsky, William T.Vetterling,
and Brain P. Flannery. Numerical
Recipes in C The Art of Scientific
Computing. Cambridge University
Press, The Pitt Building, Trump-
ington Street, Cambridge CB2 1RP,
second edition, 1996.

[Roger97] Dale Rogerson. Inside COM.
Microsfot Press, New York, 1997.

[Shirl91] Peter Shirley, Kelvin Sung, and
William Brown. A ray tracing
framework for global illumination
systems. Graphics Interface ’91,
pages 117-128, June 1991.

[Slusa95] P. Slusallek and Hans-Peter
Siedel. Vision - an architecture
for global illumination calculations.
IEEFE Transactions on Visualization
and Computer Graphics, 1(1):77-96,
March 1995. ISSN 1077-2626.

[Trumb91] B. Trumbore, W. Lytle, and
D. P. Greenberg. A testbed for
image synthesis. FEurographics 91,
pages 467—480, September 1991.

[Veach94] Eric Veach
and Leonidas Guibas. Bidirectional
estimators for light transport. Fifth
Eurographics Workshop on Render-
ing, pages 147-162, June 1994. Held
in Darmstadt, Germany.

[Veach97| Eric Veach and Leonidas J.
Guibas. Metropolis light trans-
port. Proceedings of SIGGRAPH 97,
pages 65—76, August 1997. ISBN
0-89791-896-7. Held in Los Angeles,
California.

[Walte97] Bruce Walter, Philip M. Hub-
bard, Peter Shirley, and Donald F.
Greenberg. Global illumination
using local linear density estima-
tion. ACM Transactions on Graph-
ics, 16(3):217-259, July 1997. ISSN
0730-0301.

[Ward88| Gregory J. Ward, Francis M.
Rubinstein, and Robert D. Clear.
A ray tracing solution for diffuse
interreflection. Computer Graph-
ics (SIGGRAPH ’88 Proceedings),
22(4):85-92, August 1988. Held in
Atlanta, Georgia.

[Zatz93] Harold R. Zatz. Galerkin radios-
ity: A higher order solution method
for global illumination. Proceedings
of SIGGRAPH 93, pages 213220,
August 1993. ISBN 0-201-58889-7.
Held in Anaheim, California.

