Mobile Proxies

Benjamin Aziz, B.Sc.

A dissertation submitted to the University of Dublin, in partia fulfillment of
the requirements for the degree of Master of Science in Computer Science.

1999

Declaration

| declare that the work described in this dissertation is, except where otherwise stated,
entirely my own work and has not been submitted as an exercise for a degree at this or
any other university.

Signed:

Benjamin Aziz
17 September 1999

Permission to lend and/or copy

| agree that Trinity College Library may lend or copy this dissertation upon request.

Signed:

Benjamin Aziz
17 September 1999

Mobile Proxies |

Acknowledgements

| would like to thank my supervisor, Mr. Christian Jensen, for his support and advice
without which this work would not have been possible. | would aso like to thank the
teaching staff for al the knowledge they imparted to me throughout year.

Finaly, | would like to thank my loving dad and mom for their support and

encouragement.

Mobile Proxies 1

Summary

One of the important issues that are quite often a challenge in modern distributed systems
Isthe issue of adaptability.

The need for adaptability rises from the fact that these systems are very much open,
heterogeneous environments encompassing a wide range of hardware/software products
from an ever-increasing number of vendors. Therefore, mechanisms are needed that
allow these products to live and interact dynamically in a way that satisfies the different
performance and functionality requirements of their heterogeneous environments.

The Mobile Proxies (MP) project provides one such mechanism for client/server systems
that are integrated using the Common Object Request Broker Architecture (CORBA)
technology. The system achieves adaptability by exposing the low-level data traffic,
exchanged between clients and servers, to different functionality-manipulating programs,
each capable of modifying the data traffic in such a way that adaptability is achieved

between client and server environments.

The system design relies on two maor principles: The first is the well-known proxy
principle, defined by Shapiro in 1986, and implemented in a number of middleware
technologies including CORBA. The other is the concept of interceptors defined by the
Object Management Group (OMG) as part of the CORBA v2.3 specification. These
Interceptors allow the above-mentioned exposure of the low-level data.

The system combines these two principles such that a client is alowed to specialize the
proxy it has by downloading from the server, another proxy that performs some extra
functionality. The MP system then informs the server of the downloaded proxy, allowing
It in turn to specidize itself with the same type of functionality.

Two aspects of adaptability were taken into consideration when developing the system
and the functionality extensions it offers. The first is performance, which aims at
minimizing the communication overhead using performance-enhancement techniques
like compression. The second is security, where the issues of confidentiality, message
integrity, and trust of downloaded code were all taken into consideration using digital

signatures and encryption (both symmetric and asymmetric).

Mobile Proxies 11

Table of Contents

Chapter One: Introduction

1.1 The Adaptability Problem
1.1.1 What is Adaptability?
1.1.2 How Important is Adaptability?
1.1.3 An Example

1.2 The Aim of the MP Project

Chapter Two: Survey

2.1 The Proxy Principle

2.1.1 Overview

2.2 The Common Object Request
Broker Architecture (CORBA)

2.2.1 Overview

2.3 The Jini™ Technology
2.3.1 Overview
2.3.2 Jini™ Goals
2.3.3 Why Java?
2.3.4 Jini™ System Structure
2.3.5 Jini and Mobile Proxies

2.4 Reliable Multicast proXy (RMX)
2.4.1 Overview
2.4.2 RMX Architecture
2.4.3 Related Concepts

Mobile Proxies v

w N - P

10

10

13
13
14
15
16
17

19
19
20

21

2.5 SPIN Operating System
2.5.1 Overview
2.5.2 SPIN System Design
2.5.3 Related Concepts

2.6 Spring Operating System
2.6.1 Overview
2.6.2 Spring System Structure
2.6.3 Related Concepts

Chapter Three: System Design

3.1 Overview of the Genera Scene
3.1.1 The Application
3.1.2 The ORB
3.1.3 The Environmental Repository

3.2 Five Stepsto Adaptability
3.2.1 Step One
3.2.2 Steps Two and Three
3.2.3 Step Four
3.2.4 Step Five
3.2.5 The Problem of Concurrency

3.3 The MP System Design
3.3.1 The Client Adapter
3.3.2 The ORB Adapter
3.3.3 The Proxy Loader
3.3.4 The Class Loaders
3.3.5 The Server Adapter

3.4 The Functionality Design
3.4.1 The Functionality Tree
3.4.2 The Four Levels

Mobile Proxies \%

22
22
23
24

24
24
25
27

28

28
29
29
29

30
30
31
32
33

36
36
37
37
37
38

38
40
40

Chapter Four: System Implementation

4.1 Overview of the Implementation

4.2 The MobileProxies Package

4.2.1 Class MobileProxies.ClientEnvAdapter
4.2.2 Class MobileProxies.MobileProxyFactory
4.2.3 Class MobileProxies.ProxyL oader

4.2.4 Class MobileProxies.ServerEnvAdapter
4.2.5 Class MobileProxies.Serverl OCallback
4.2.6 Class MobileProxies.DummyTransformer
4.2.7 Class MobileProxies.MultiClassL oader
4.2.8 Class MobileProxies.FileClassL oader
4.2.9 Class MobileProxies.URL ClassL oader
4.2.10 Class MobileProxies.PrivateK eys

4.2.11 Interface MobileProxies.Adaptable

4.3 The Functionality Tree Implementation

4.3.1 The Interceptors Level
4.3.2 The Functionality Level

4.4 The Environmental Repository and

The Decision Objects
4.4.1 The Decision Object

4.4.2 The Environmental Repository

4.5 The Runtime Interaction

Chapter Five: System Evaluation

5.1 The Application
5.1.1 Overview
5.1.2 The Application Package

Mobile Proxies

VI

43

R

46
46
47
47
47
48
48
49
49

49

50
51

52

52
52

53

58

58
58
59

5.2 Results of the Compression Functionality

5.2.1 Overview
5.2.2 The Results

5.3 Results of the Security Functionality
5.4 Concluding Points

Chapter Six: Conclusion

6.1 Review of the Adaptability Problem

6.2 Review of the MP System

6.3 Review of the Evaluation Results

6.4 Future Work

Appendix: Performance Results

A.1 Compression Performance Results
A.1.1 The PDF Files
A.1.2 The Repetitive-Number Files

A.2 Security Performance Results

Refer ences

WWW Resour ces

Mobile Proxies VIl

62
62

69
71

72

72

73

74

75

76

76

76
78

79

81

84

List of Figures

Figure 1.1: An example of adaptability

Figure 2.1: The Proxy in aDistributed System 9
Figure 2.2: The Object Management Group 10
Object Management Architecture

Figure 2.3: The CORBA model 11
Figure 2.4: The Request- and Message- level Interceptors 12
Figure 2.5: An entity discovering a Jini federation 17
Figure 2.6: The RMX model 21
Figure2.7: Aninvocation in Spring Operating System 26
Figure 3.1: The Mobile Proxies System and other entities 30
Figure 3.2: 31

1. TheClient MPS sending an Environmental object
2. The decision-making process in the Environmental Repository
3. The Client MPS receiving a Decision object
Figure3.3: 32
4. The Client MPS downloads the adaptable proxy, then
5. It sends the Decision object to the Server MPS

Figure 3.4: Theinteraction between the client 33
and the server using the MP system

Figure 3.5: Concurrency in the MP system 35

Figure 3.6: The different modules of the MP system 36

Figure 3.7: The MP system functionality tree 40

Figure 3.8: Adaptable proxies, interceptors 41
and functionality objectsin action

Figure 4.1: Runtime Interaction 1 53

Figure4.2: Runtime Interaction 2 54

Figure 4.3: Runtime Interaction 3 56

Figure 4.4: Runtime Interaction 4 57

Mobile Proxies VI

Figure5.1: The file-sending application
Figure 5.2: Different time delays suffered by the data
Figure5.3: The FileTransfer.sendData time with and
without the MP system for the PDF files
Figure 5.4: The DataTransfer.DataClient application time with
and without the MP system for the PDF files
Figure5.5: The compression time versus the transmission time
for the FileTransfer.sendData method using
the MP system for the PDF files
Figure 5.6: The Breakeven point v. Network Speed
Figure5.7: The FileTransfer.sendData time with and without
the MP system for the repetitive-number files
Figure 5.8: The DataTransfer.DataClient application time
with and without the MP system for
the repetitive-number files
Figure 5.9: The compression time versus the transmission time
for the FileTransfer.sendData method using
the MP system for the repetitive-number files

Mobile Proxies IX

60
63

65

65

67

68

68

69

Chapter One
Introduction

The rapid advances in modern computer science have facilitated the development of a
wide range of distributed technologies ranging from office-wide local area networks
(LANS) to the worldwide Internet. These technologies form a sophisticated environment
that encompasses every type of products (hardware and software) from an ever-
increasing number of vendors.

Being such an open environment means that changes take place so rapidly. New
products being added, old ones removed or upgraded, new standards, protocols and data
formats emerging all the time. It is in fact a very dynamic and heterogeneous
environment, and unless some mechanisms are devised to respond to these changes, the
integrity of the whole system isin question.

One of the technical answersto this problem is adaptability.

The Mobile Proxies (MP) project is one of many attempts that aimed at achieving
adaptability in distributed systems.

In this chapter, a genera introduction will be made to the problem of adaptability,
explaining it with a simple example, and then clarifying the goal that is sought from this

project.

1.1 The Adaptability Problem

1.1.1 What is adaptability?

At the most basic level, adaptability may be defined as being the ability to alter a course
of action when new information becomes available [www1]. It might also be defined as
the ability of some entity to adjust (or adapt) itself to the requirements and capabilities of
other entities.

Mobile Proxies 1

In computer terms, a software entity, such as a client, a server, or a peer may have to
change its state and/or behavior whenever it interacts with another new entity. This
change may be necessary to make the interaction possible on one hand, and then carried
out in the best possible way (or at least to some acceptable level of satisfaction) on the
other hand.

The issue of adaptability rises from the fact that modern computer systems are
heterogeneous environments comprising a wide range of hardware/software products
from different vendors. This variety of products is driven by the openness of these
systems and it eventually raises the question of how adaptable entities living in such a
changing environment are, and at which level(s) of detail. Such a question can only be
answered once it is determined how satisfying a certain entity is performing in its

environment.

1.1.2 How Important is Adaptability?

To answer this question, it is necessary to realize what is really required of our entity.

This can be seen as either a matter of survival, where unless the entity adapts itself to the

rapidly changing environment, it won’t be able to continue in service and will have to be
changed by another more “adapting” entity. On the other hand, adaptability could only
be a matter of reaching some level of satisfaction in its performance, or in other words a
Quality of Service (QoS) level. Or even going one step further and trying to achieve a
best effort level of service. In either case, adaptability is desirable since it lengthens the
service lifetime, saves effort, time, and money.

Another important result of adaptability is to offer more flexibility and more freedom,
and hence facilitating mobility. It allows mobile systems to configure themselves
dynamically depending on the environment they are living in at the time and react
quickly to any changes in that environment. [Katz 1994] looks at the issue of adaptation
and mobility in wireless information systems where the awareness of the location and

situation are taken as forms of adaptability.

Mobile Proxies 2

1.1.3 An Example

Let's take one example of how adaptability can be used to optimize the interaction
between two entities. In our case, assume a client-server application where the server is
running on a host on a fixed network, and its client is running on a slow mobile network.
With the server being aware of the two environments, it might for example use some
performance enhancement techniques, like compression, to minimize the amount of data
being exchanged with the client and hence optimizing the use of the slow mobile network

the client is running on.

A Clienton a Compression A Server on afixed
slow mobile network
network
(@)
A Clienton a Compression The same server asin
fast backbone @
network

\

(b)

Figure 1.1: An example of adaptability.

Mobile Proxies 3

Now another situation can occur with another client trying to interact with the same

server. This client is running on a fast backbone network for which compression would

be an overhead rather than performance raising. The server in this scenario, equipped

with knowledge of the client’s environment would have to adjust itself automatically to
the new situation and switch, for example, to another mode of operation. In this new
mode no compression is employed and data is exchanged directly knowing that this will
yield a better performance than if that data were compressed.

With this ability of the server to switch its modes according to the different clients it's
interacting with means that the server is an adaptable one, and it’s trying to achieve the
optimal interaction with its clients. Figure 1.1 illustrates this example, where the server
in (a) is using compression in its communication with the client. In (b), the same server

has “adapted” to the new client and its new environment.

1.2 The Aim of the MP Project

Many of the middleware distributed paradigms today that are used to integrate
applications across a wide range of languages, operating systems, and network
architectures offer a good level of transparency that hides the underlying details and helps
ease the programmers task.

An application, for example, would not normally be aware of the data traffic that is going
in and out of the application, and therefore cannot control it. However, it is this cross-
level accessibility that would help some sort of intelligent adaptability that is at a high
level (i.e.; the applications level) and yet it controls the low level details (i.e.; the byte

level).

OMG’'s Common Object Request Broker Architecture (CORBA), which will be
overviewed quickly in next chapter, defines the principlantaf ceptors, which expose to

the high level of applications, the low level bytes that are moving around between the
client and the server. These bytes once controlled and adjusted can enhance the
performance of the application or they may be securely shielded against external attacks

Mobile Proxies 4

if the application is running on two networks separated widely by untrusted foreign
networks.

Another feature that is used by CORBA and is quite popular among other technologies as

well, like Remote Procedure Calls (RPC) and Java Remote Method Invocation (RMI) is

the proxy feature introduced by [Shapiro 1986] and also overviewed in next chapter.

A proxy represents the server locally at the client. It offers taking care of the low-level

details of requests and replies including the marshalling and unmarshalling of the data

sent. What it doesn’t offer is the access to those details, something that is possible with
interceptors.

The idea of this project is to implement a mechanism that combines the proxy principle
with interceptors and so it can be used to achieve adaptability between CORBA client
and server environments.

Any number of interceptors can be built each encapsulating a certain performance- or
security-enhancement functionality, like compression or encryption, that will be used in
modifying the traffic going out of and coming in to the client or server processes. A
number of functionality extensions can even be combined into one interceptor.

Once these interceptors have been built, they can be used to specialize any other piece of
code, including proxies. Therefore a number of proxies will come up to represent some
service and each will be rightly equipped to adapt a different client environment.

As we mentioned earlier, the project aims at building a system that offers a mechanism
by which a CORBA proxy, written in Java, will be specialized dynamically at runtime by
downloading different interceptors from the server depending on a previous decision.
This decision could have been reached through some interaction between the client and
either the server or a third entity that acts for example, as a repository containing
knowledge about the server’'s environment. This entity should be able to reach a
decision, after examining the client’'s environment, as to what functionality best suits the
client. Once the client is aware of this decision it can use the MP system to adapt to the

server’s environment.

Mobile Proxies 5

Two aspects of adaptability will be tackled. The first is performance, where the delay
incurred in sending and receiving data is cut by employing compression. The other
aspect is security, where a client may be running on a foreign network and hence all the
data sent and received would be susceptible to attacks from outside. Therefore,
encryption and digital signatures would be necessary to ensure the integrity and

authenticity of the all the messages exchanged with the server.

lona’s OrbixWeb was chosen as the framework for this project because of the many
features it offers including its implementation of the principle of interceptors in the form

of filters and transformers.

On the other hand, Java 1.1 was used as then programming environment, because of the

many features it offers including code mobility and security.

Mobile Proxies 6

Chapter Two
Survey

In this chapter, a number of concepts and technologies will be overviewed that have a

direct relationship to the project.

The first is the proxy principle introduced by Shapiro in a paper in 1986 [Shapiro 1986]

that appeared earlier in Nelson’s Remote Procedure Calls (RPC) [Nelson 1981]. The
paper defines the meaning of a proxy and its functionality as well as its properties in a
distributed system.

The proxy principle reappears in a number of modern middleware technologies of which
CORBA (Common Object Request Broker Architecture) is one of them and that provides
the general framework under which this project is built. CORBA will be overviewed
with a particular emphasis on the concept of interceptors, which, along with the concept
of proxies, constitute the two most important tools used in building the MP system and

reaching the goals behind it.

Also a number of other technologies are included to help make the overall picture clearer
and complete as to where the project started from, and what were the options available
before any real implementation took place. The chapter also shows where the system
stands in terms of what it tries to achieve and how those goals were tackled by other
technologies.

The first of these is the Jini™ technology put forward by Sun as a new approach to
distributed computing that, as we feel, has a number of common features with our
system, including mobility although, it is used in a different context.

Then there is the RMX (Reliable Multicast proXy) architecture, which aims at achieving
adaptability among client/server environments but at the level of IP multicast.

Two operating systems will also be overviewed, the first of these is Spin operating

system implemented by Computer Science Department, University of Washington

Mobile Proxies 7

[www3]. The system can be dynamically specialized to offer a different interface to meet

the requirements and performance of different applications and hence can be considered

an adaptable system.

The final system that is included in this chapter is Sun’s Spring system, which uses the
concept of proxies in network communication between a client and a server. These
proxies use different communication protocols and a host can have any number of them,
using the one that suits the other host with which communication session is established.
This could be envisioned as a form of adaptability, although in a completely different

context than the one with which the MP system is concerned.

2.1 TheProxy Principle

2.1.1 Overview

The first piece of work that directly relates to this project is the proxy principle as
introduced by Shapiro. The principle is widely used in modern distributed systems since
it reconciles flexibility with the capability of encapsulating a structured object behind a
black-box boundary.

The principle states thatin order for a client to avail of some service, it must first
acquire a proxy for that service; the proxy being the only visible interface to the service.”
Which means that the principle is built on an object oriented model of computation,
which well adapts to distributed systems, since it allows to abstract processes, processors,
services, resources, and virtually everything into one concept, namely that of the object.

When an object is represented by a proxy, it's called the prgriisipal, and together,

they form a single distributed object calledraup, as shown in figure 2.1.

Several properties for the proxy were mentioned in the paper, includingpdiéty
property, which states that the proxy is always local to its client, and so the network
becomes transparent and all accesses are local from the client view. Also the proxy
encapsulates the service and hence becomes the only way to avail of that service, and it
also deals with all the marshalling of the data into a network-compatible format that is

ready for transmission, making istub.

Mobile Proxies 8

Other properties were mentioned like the access protocol property, where a proxy
enforces a certain order on the client calls, the capability property, where it tests the
validity of calls before being dispatched to the server. Also the trusted communication
property, since both the proxy and its server had originated from the same source, and
finally the protocol encapsulation property, where the protocol between the server and
the proxy is hidden from the client.

An important consequence of the principle is whether it allows for the implementation of
open distributed systems, which are characterized by their ability for interprocess
communication, which facilitates resource sharing and makes them extensible and
independent from specific vendors. The encapsulation property touches on this matter
although it does not state explicitly its appropriateness for the heterogeneous
environments, which are a characteristic of open, distributed systems.

Concluding, the main idea behind the proxy principle is for the client to delegate the
responsibility of accessing a service (delivering the request and obtaining the result) to a
local proxy. This frees the client from many worries that rise from remote service
invocations, and it alows the implementation of the service to be changed without

informing its clients.

Client Host Server Host

The Client
Process

Process

|
|
|
|
i
The Server | |
|
|
|
|
|
|
|
|

Distributed Group

Figure2.1: TheProxy in a Distributed System.

Mobile Proxies 9

2.2 The Common Object Request Broker Architecture (CORBA)

2.2.1 Overview

CORBA is a standard devised by the Object Management Group (OMG) [www4]
representing an influential implementation of the Object Request Broker (ORB)
middleware. It is part of awider architecture the OMG has dubbed, which is the Object
Management Architecture (OMA). The two architectures are shown in figures 2.2 and

2.3.

The OMA provides a reference model within which standards are developed. It uses
OMG'’s object model, which provides the object semantics for specifying the visible

characteristics of objects in a standard and implementation independent way.

Application Objects

Common Facilities

™S v

The Object Request Broker (ORB)

T~ =

Obiect Services

Figure 2.2: The Object Management Group Object Management Architecture

The ORB as shown from figure 2.2 lies at the heart of the OMA: It is the communication
mechanism enabling objects to send and receive messages in a distributed, heterogeneous
environment. Around the ORB are various services, all provided by classes and objects,
which are invoked via well-defined interfaces. The language used to write these

interfaces is another standard OMG has devised, callddtdnéace Definition Language

Mobile Proxies 10

(IDL). Thislanguage achieves both location transparency (representing objects by object
references) and programming language transparency, hence allowing the implementation

behind the interface to be in one of several programming languages.

CORBA on the other hand portrays how the OMA can be implemented, and especially

the ORB part of it. It gives an abstract definition of the ORB’s functionality as a bus that
conveys requests from CORBA clients to CORBA object implementations (which is the
term used to describe an object that implements some service) leaving the actual

implementation of the ORB to different vendors.

The
Client The Server
Object
Dynamic IDL Stub ORB IDL Dynamic . Object .-
I nvocation (Default Interface Skeleton Skeleton -Adapter .
Interface Proxy) Interface(DSI) | [-7-7-7-.0
on | 0 e

LI T - - - - - - - - - - - - - - - A T T - - - 4
LA B B - B D B B B B D D B I - B B B B - - - - B -

The ORB Core

Figure 2.3: The CORBA model

The ORB is seen as composed of a number of components:

« ThelDL Sub, which is the code generated for a specific IDL interface to allow static
invocations to operations in that interface. It basically acts as a proxy to the
implementation object.

* The Dynamic Invocation Interface (DIl) which is a way for making dynamic
invocations at runtime without any prior knowledge of the IDL interface. The
Interface Repository (IR) may then be queried to obtain information about the
operations and their parameters.

Mobile Proxies 11

* The ORB Interface which offers an interface to miscellaneous services from the to
clients and servers.

* The IDL skeleton, which is the code, generated for a specific IDL interface that
invokes object implementations of that type.

* The Dynamic Skeleton Interface (DSI) which is a generic interface allowing
interpretation of incoming requests to a server for IDL types that were unknown at
compiletime.

* And finaly, the Object Adapter, which defines standard interfaces to servers because
the ORB Core is free to be implemented in a variety of ways (depending on the
vendor). Recently the Portable Object Adapter (POA) replaced the old standard
known as the Basic Object Adapter (BOA).

In addition to the above components, which are basically part of the ORB Core, there
exists another major part known as the ORB Services. These services are built on top of
the core part and they provide additional level of transparency and functionality to the

application making the ORB look as if it's a higher level entity.

The Client The Target

| |
‘L Request level I nterceptors Request level I nterceptors

I | I |

1 1
M essage level Inter ceptors M essage level I nterceptors
LI L]

Figure 2.4: The Request- and Message- level I nterceptors.

Mobile Proxies 12

One of these services is the Security Service, which defines, under the Replaceable
Security option, the concept of Interceptors. The specification of interceptors as well as
their uses is described in [CORBA/IIOP v2.3 Spec. 1999] and figure 2.4 shows the two
types of interceptors. The Request level, and the Message level interceptors. The Request
level interceptor acts at a higher level (on the Request object) than the Message level
interceptor does. However, the latter is the one of direct interest to the MP project since
it alows access to the specific details of a message and hence permits certain
performance and/or security measures to act upon it just before it is sent over the
network.

2.3 The Jini™ Technology

2.3.1 Overview

Jini™ technology brought with it a new approach to distributed computing which, as
claimed, will change the traditional view of what computers are and how software should
be written for them.

The new technology is based on an extremely simple-to-use computing power distributed
across a diverse collection of devices all connected by a network and each able to share
with others’ resources. This view replaces the old notion of peripherals and applications
with that of network-available services and clients that use those services, all forming a
flexible distributed system that can change easily over time.

Many factors played a major role in developing this view. The fact that networks are an
expensive resource that live long and that are the central connecting tissues of all the
modern computing systems, had to be taken into consideration by the developers of
Jini™ Technology. Components, both hardware and software, are constantly added and
removed making it increasingly difficult to update these networks as a single entity.
Therefore, support for changing and updating network components, and the way these
components interact, without having to shut down the whole network each time (which is
an expensive and a difficult process) had to be provided.

A direct result of the above situation, and the fact that the new technology builds around

the network, is that the data and code running on any particular device in the network

Mobile Proxies 13

cannot be assumed by the users or the developers to have been designed especially for

that device. In fact, that code and data are often constructed and gathered well before the

device is designed or built.

Jini™ arose from a Sun research and development project that started in 1994 and that
was committed to dramatically simplifying the interaction among networked components.
The project was the inspiration of Sun cofounder and vice president Bill Joy who, with a
small team of engineers, worked for four years to develop the new paradigm for
distributed computing. And the result was small, very efficient, well-designed, and

powerful Java-based software that does not exceed 48K of Java software binaries.

2.3.2 Jini™ Goals

On top of the list of goals that Joy’s team maintained was to make adding an electronic
device to a network as easy as plugging in the base unit of a new cordless phone. Jim
Waldo, the chief architect, puts it in his own word [Byous 1989e of the keys behind

the Jini system is that we have tried to erase the distinction between hardware and
software.” This implies that basically anything with a processor, some memory, and a
network connection, is allowed to offer services to other entities in the network or to use

the services that are so offered. This class of devices includes not only computers, but

also most of the things people usually think of as peripherals, like printers, storage
devices, and specialized hardware. The potentia is also there to include other classes of

devices, such as cell phones, personal digital assistants, and microprocessor-controlled
devices, like televisions, stereo systems, and even, modern thermostats.

The other goal that was as well important was to facilitate distributed computing by
creating federationsor communitieof shared data, storage, and computing power, hence
allowing users to easily access the needed power and features of any device on the
network no matter what their individual capabilities are. Mike Clary, director of the

Jini™ project describes itWith Jini technology, computing power could become a
service where computers on a network rent their ‘brains’ or processors out to other
computers.” This concept promotes the idea of spontaneous networking, where any

number of entities can combine spontaneously together for a period of time to avail of

some service or to offer one.

Mobile Proxies 14

The size of today’s networks and their rapid growth impose a final goal, or consequence
of the above goals. If every device (including embedded ones) is given the chance to be
part of the Jini structure, this will introduce the problem of scalability, probably, to levels
previously never thought of. In other words, a Jini network has to be able to scale and
adapt the increasing number of components that might be connected to it.

In short words, the Jini system aims at enabling users to share services and resources over
a network, regardless of the location, the nature (being hardware or software), or the
capabilities of those services and resources. Therefore simplifying the task of building,

maintaining, and altering a network of devices, software, and users.

2.3.3Why Java?

To know why Java was chosen as the language of the system comes as no surprise. Java
offers a number of attractive features that help in achieving what Jini is aiming at. These
include for example, code mobility where a program can be executed anywhere after
being compiled into byte codes. This has promoted Java’'s slbgate-once-run-
everywhere”. This alows code to be moved from somewhere else and |loaded
dynamically into a running program, hence allowing a new state and behavior to be

added. Nonetheless, it also introduces serious security risk regarding the trust of the

mobile code, but this issue has been solved to a certain degree by Java’s security model
and its extensions.

The other feature of Java is the homogeneous environment it provides to its applications
by turning an otherwise heterogeneous network of computing entities into a
homogeneous collection of Java Virtual Machines (JVM). This will ensure a consistent
environment in which the Jini system can exist, allowing services to be able to run in
their clients’ environments.

As indicated above, the security model of Java would be another attractive features that
enables the Jini technology maintain safety through referential integrity, array-bounds
checking, and type safety. In addition to allowing fine-grain control of the operations
that can be performed by any program.

In general terms, the combination of code mobility, homogeneity, and security, allows
clients and services to join and leave a network federation at any time, hence representing

Mobile Proxies 15

a spontaneous form of networking and allowing for the introduction of new services that

will extend the functionality of the federation.

2.3.4 Jini™ System Structure

The Jini system can be seen as composed of three high level components. The
infrastructure, the programming model, and the services. Each of these components is
regarded as alogical extension of the Javalanguage to a fully distributed case.

The infrastructure defines the minimal core technology required to build a Jini federation.

It consists of three parts: A distributed security system, which builds on the Java Remote

Method Invocation (RMI) and extends the basic Java Virtual Machine security model.
Discovery and join protocols that allow different entities to discover and join a Jini
federation. Finally, alookup service, which acts as a repository that contains information

about other services that are part of the federation, and allows clients to avail of those
Services.

The programming model is a set of interfaces that enable the construction of reliable
services including those that are part of the infrastructure and those that join it later. Itis
implemented as three sets of interfaces that are meant to extend Java in a way that will

permit connecting objects to the model in a robust and flexible way. The first of these

sets defines a distributed event model that is an extension of the standard Java event

model in JavaBeans™ and that enables event-based communication between Jini
services. The second set is a two-phase-commit protocol, which is a simplified
distributed version of the Java transaction service that allows Jini applications to
coordinate state changes. Finally, the last set of interfaces defines the notion of leasing,
which was developed especially for problems in resource allocation and reclamation in
distributed systems that might arise from entities leaving the federation. The leasing
model is a duration-based, renewable model.

The final component that defines a Jini system is the services component which is
enabled by the first two components. A service appears as an object with a well defined
set of operations that constitute its interface and that is determined by the type of the
service itself. A service may be used by other services or by clients interacting with the

Jini federation. Examples of services would be a printing service, a communication

Mobile Proxies 16

service (like the JavaSpaces™), and a transaction manager, which enables entities to
participate in a Jini transaction protocol.
Sun’s Jini™ Architecture Specification [Jini™ Architecture Spec. 1999] provides a good

description of the Jini structure including its relationship with the Java language.

2.3.5 Jini and M obile Proxies

The notion of proxies is a central one to the Jini technology enabling the idea of
spontaneous formation of entities into a federation and for other entities to join that
federation and use the services advertised in it.

An entity that wants to join a Jini federation sends out a discovery request as a multicast
packet to some network asking for any lookup services in it. Upon receipt of that request,
a lookup service responds by sending back a proxy that represents that lookup service to
the requesting entity. This happens by downloading the proxy dynamically from the
lookup service to the requester with enough information that allows the latter to proceed.
This process is clarified in figure 2.5. The entity then proceeds to the next stage in which
it either decides to join the federation as a service, whereby it'll be required to place a
proxy object representing it in the lookup service, or avails itself of some service(s) in the

federation, in which case it behaves as a mere client.

Multicast Discovery Packet

Discovery Response

Entity
(Hardware/
Softwar e)

The Lookup Service

A Proxy representing the
Lookup Service

Figure 2.5: An entity discovering a Jini federation

Mobile Proxies 17

This ability to download code at runtime is what distinguishes Jini proxies from proxies

used in other distributed technologies such as CORBA. A CORBA client for example,

has to know beforehand what the interface of the service it wants to use looks like. In

other words, it is linked statically to the proxy of that service, and the communication
knowledge between the proxy and the service is built into the client, despite the fact that

this knowledge is hidden from the client (the protocol encapsulation property, section

2.1). This implies that any changes made to this communication protocol have to be
coordinated in both the client and the service.

The mobility aspect of Jini’'s proxies allows such changes to be private to the service and
the code sent to the client by that service. Effectively, these changes are only propagated
as needed without the client being aware of them.

Unlike Jini, which is a complete standalone distributed paradigm; the MP system is only
part of the CORBA middleware. However, the one important common feature between
the two is the mobility feature that allows information to be sent to the client depending
on some previous requirement. This requirement in the case of Jini is merely the need to
use some service. In the case of the MP system, it is the need to adapt the client and
service environments. Therefore, the nature of the downloaded code is different in the
two cases. In the MP system, unlike Jini, the client has to have beforehand a proxy to the
service it wants to use (called the default proxy). The downloaded proxies then are only
used to specialize the original, default proxy, in a way that will meet certain
environmental needs regarding performance or security, between the client and the
service. Jini proxies on the other hand are not used in the context of adaptability,
although the potential is very much there, and the technology as well.

Jini's lookup service could also play a role in the MP system, although in a different way,
acting this time as an environmental repository that holds information about the clients
and services environments. Then it would respond to queries by sending a

“specialization” proxy to adapt the requester’s environment.

Mobile Proxies 18

2.4 Reliable Multicast proXy (RM X)

2.4.1 Overview

RMX is a generic model, presented by a number of researchers at Computer Science
department, UC Berkley [Chawathe et a 1998] as a solution to the adaptability problem
In heterogeneous environments during reliable multicast sessions.

The solution tackles the heterogeneity problem with a hybrid model that relies both on
end-to-end loss recovery mechanisms and an intelligent and application-aware adaptation
carried out within the network.

In multicast communication, the data sent by some source will be delivered to a number
of interested receivers according to a multicast routing tree. And although multicasting
offers enormous savings in bandwidth (especialy for large-scale communication), it is
challenged by the fact that the environments for those receivers as well as the connecting
network are very much disparate. Consequently, a communication source is potentially
confronted with a wide range of path characteristics to each receiver, for example,
different delays, link rates, and packet losses. In addition to that, the source cannot
simply modify its stream transmission to satisfy the conflicting requirements of different
paths and the heterogeneous end-users.

So, the proxy model is adopted to actively transform the transmission to each receiver in
away that will bridge the gap between the end environments and any route requirements.
Moreover, this will even allow communication, in the first place, among otherwise
incompatible receivers.

The model suggests a twofold solution. First, it relaxes the semantics of reliability,
lifting the constraint that all receivers advance uniformly with the sender’s data stream,
and alowing each receiver to define its own level of reliability. The second is
decoupling the members of the reliable multicast session through a proxy-based
communication model.

The end receivers will interact with the proxy to customize their transport decisions and
reliability semantics in a fine-grained, application-specific fashion, using proxy-
embedded computational and protocol bridging elements.

Mobile Proxies 19

2.4.2 RMX Architecture

A number of features characterize the RMX design. These include the exposure of
application-specific information to optimize the receiver/network adaptation process and
to tune the transport protocol, otherwise known as the cross-level optimization or
information accessibility (as mentioned in 1.2) and the leveraging of the data semantics

when creating data adaptation algorithms

The model basically splits the communication session into two sub-sessions. the RM
session (or the main multicast session) and the proxied session. The RM agent interfaces
with the RM session whereas the Protocol agent interfaces with the proxied session. The
model also has a Protocol Adapter that uses transformation engines in transforming the
data store between the formats of the two sessions. This architecture is shown in figure
2.6.

The RM agent participates in the RM session on behalf of the RMX client (the receiver)
handling all the details of the communication protocol. At the same time, it builds a data
store of all the data that is part of the reliable session. Both the main and the proxied
sessions update the data store, with the RM agent adding the main session data and
propagating the proxied session data. The RM agent uses loss recovery mechanisms in
the event that the store is lost due to a system crash, recovering the data from other agents
that have participated in the reliable multicast session.

The Protocol Adapter and the Protocol Agent provide the interface to the proxied session.
The Protocol agent implementing the actual communication protocol used with the
clients. It could be atotally different protocol than the one used in the RM session. The
Protocol Agent is designed based on Application level Framing (ALF) principles and the
characteristics of the proxied clients and the network separating them. On the other hand,
the RM Agent may only apply simple congestion control techniques to limit the
transmission rate.

The Protocol Adapter is the most sophisticated element in the RMX model. It not only
provides the required functionality for heterogeneous environments, but aso relies
heavily on ALF information to achieve reasonable performance.

Mobile Proxies 20

| |
| |
I Data Store :
| |

|

The \/

The
Alzlc\a/lnt The Protocol Protocol
Adapter Agent

Transformation Engines

Figure 2.6: The RMX model

The Protocol Adapter also maintains a connection object for every client connected to the
proxy, which encapsulates the state of that client at the proxy. This up-to-date
information is used to assist the Protocol Adapter in the adaptation process. This process
mainly appears in three forms of dynamic adaptation: rate adaptation which reduces the
data flow rate, data transformation which transforms the format of the data, and protocol
conversion which switches between different reliable multicast protocols depending on
application-level information.

In addition to the above architecture, the model aso describes how an RMX client locates
an RMX point of contact inside a network using the Scalable Network Service (SNS)
architecture also developed in UC Berkeley [Chawathe, Brewer 1998].

2.4.3 Related Concepts

The RMX model is an attempt to achieve adaptability at the network level for reliable
multicast sessions, which is related to the overall adaptability problem that the MP
system tries to solve but in adifferent context, i.e. that of the CORBA environments.

The model brings forward a number of related concepts and features apart from the

common adaptability goal. It uses a proxy-based design that adjusts the data flow

Mobile Proxies 21

between the sender and the receivers depending on the different environments, the state
of the network, and application-level characteristics.

However, the term proxy is used to convey the simple meaning of an intermediary
between the client and the server, which is somehow different than the view adopted in
middleware systems that a proxy as a representative of a service having the exact
interface and being local to the client.

In the context of CORBA, RMX would fall in the same classification as an interceptor
that has access to the low level data bytes of the application. Nonetheless, RMX also has
access to application level information, which adds more complexity to it than a mere
interceptor.

The model also touches on performance-enhancement techniques like compression, and
transport-layer-specific techniques like protocol conversion and data flow rate control.
Compression in particular was used in the MP project as an example of controlling the
output from the client to the server and vice versa. The security aspect was left out of the
RMX model.

2.5 SPIN Operating System

2.5.1 Overview

SPIN operating system was developed by a group of researchers [Bershad et al 1995]
from UC Berkley as a project sponsored by the Advanced Research Projects Agency
(ARPA), the National Science Foundation (NSF) in 1995.

The project was aimed at designing an operating system that could be dynamically
specialized and extended so that it could (safely) meet performance and functionality
requirements of the applications using it.

Such requirements are often poorly matched by operating systems and therefore result in
either the application not working well, or not working at all. For example, modern
operating systems employ disk buffering and paging algorithms that could pose potential
performance degradation for certain types of applications like database applications.

Also general-purpose network protocols are quite so often incapable of supporting the

Mobile Proxies 22

high-throughput parallel applications. Other applications have their own special needs
that are not always met by operating systems, like multimedia clients and servers, fault
tolerant systems, and real-time-data applications.

SPIN is described as an extensible operating system that can provide an extension
infrastructure, represented by a set of interfaces, to its applicationsin such away that will

best meet the demands of those applications. These extensions allow the application to
“specialize” the underlying operating system and to grant fine-grained access to system
resources in a safe and low-cost way. This access has to be controlled to ensure safety,
whereas good performance is only achieved by low communication overhead between
the extensions and the operating system kernel.

2.5.2 SPIN System Design

The design of SPIN relies basically on four techniques implemented at the level of the
language in which it was written, or it runtime. These techniqueSalecation, which
enables communication between the system and the set of extensions to have a low
overhead. Alscenforced modularity, through which modules are isolated from one
another by boundaries that are well defined by their interfaces. Extensions were written
in Modula-3, a modular programming language. The other technique used was the
logical protected domains®, which ensured that extensions were executed in separate
namespaces protecting their effects from other programs. And finally, extensions were
only allowed to execute in response to system events, which described potential actions
in the system, like a virtual memory page fault or the scheduling of a thread. This is
termed as thdynamic call binding.

However, it should be noted that these techniques do not guarantee extensibility. It is
only guaranteed by the infrastructure functionality provided by the set of extensions and
accessed through the exported interfaces.

! v-Promelaisarecent Visual Object-Oriented language proposed for SPIN, see [Leue et a 1999].
2 A good example of logical protected domains is the sandbox security model in Java.

Mobile Proxies 23

In general, SPIN system design encompasses two models, the protection model and the
extension model. The protection model controls the set of operations that can be applied
to resources. It ensures that a process can only access the memory within a particular set
of virtual addresses. It makes use of the notion of capabilities, which are unforgeable
references to aresource. As mentioned above, the protected domains are used in defining
the set of accessible names available to an execution context.

The extension model provides a controlled communication facility between the
extensions and the core system operating system alowing for a variety of interaction
styles.

These two models provide the framework for managing interfaces between services
within the system.

2.5.3 Related Concepts

The SPIN operating system is an adaptable, dynamic, flexible system providing different
functionality extensions to the applications using it. In other words, it ams at adapting
the needs of those applications although this adaptability is more at the high level of
applications rather than the low level environment adaptation that represents the goal of
the MP project. However, the extensibility represented by the set of interfaces, each
providing a different functionality appears in the form of the mobile proxies, each of
which carries with it a different form of specialization when sent to the client. The
difference should be noted though in the two systems, since SPIN is an operating system,
whereas MP is part of an integrating middleware, i.e. CORBA.

2.6 Spring Operating System

2.6.1 Overview

Spring is a highly modular, distributed, multi-threaded operating system that not only
supports object-oriented applications but also is object-oriented in itself.

The system was developed in Sun Microsystems Laboratories by a group of researchers
[Mitchell et al 1993] who were working on a clean sheet design for a new operating
system that would have the potential of replacing Unix. The new system would keep as

Mobile Proxies 24

many of the good features of Unix as possible, like good performance, memory
protection, and network interoperability. However, it would improve in areas that
suffered from problems, like the cost of maintenance, the inflexible security aspect, and
the difficulty of supporting time-critical media.

Because the design was a fresh one, the opportunity was there to make full use of the best
available technology to come out with an open and flexible system, that is able to evolve
and be extended by different vendors. Such a system would have to pay attention to the
different components that construct it and the interfaces between them. This requirement
immediately dictated a system structured around the notion of objects that are defined by
strong interfaces specifying what these objects do and leaving the actual implementation
open. These interfaces alowed operation invocations to be type safe, secure, and
uniform, whether the client invoking a method is in the same address space, in another
address space, or on a different machine altogether.

Further, in order that these interfaces are defined without tying them to a particular
programming language (and hence undermining the openness of the system), an Interface
Definition Language (IDL) was used. This language is basically the same as the one
adopted by OMG.

2.6.2 Spring System Structure

Spring is designed using the microkernel approach. The kernel supports basic cross
domain invocations and threads, low-level machine-dependent handling, as well as basic
virtual memory support for memory mapping and physical memory management.

A typical Spring node runs several system serversin addition to the kernel. Two of these
run in the kernel mode: The nucleus and the virtual memory manager.

The nucleus manages process and inter-process communication, and it supports three
basic abstractions: domains, which are analogous to Unix processes, threads, which
execute within domains, and doors which support object-oriented calls and provide entry
points between domains.

The virtual memory manger controls the memory management hardware. The rest of the
system services, including naming, paging, network 10, file systems, keyboard

management, etc., are implemented as user-level servers.

Mobile Proxies 25

These services are available on al the nodes in a distributed system and basically provide
access to the system resources they manage through their interfaces alowing clients to
use those resources in a safe way by invoking operations on these interfaces.

Also appearing in the Spring structure are network proxies that support invocations
among objects across the network. However, they are normal user-mode server domains
that receive no special support from the nucleus. A Spring machine might have any
number of them, that speak different network protocols.

Spring proxies transparently forward door invocations between domains on different
machines with neither the client nor the server being aware of their existence. Network
addresses and handles are used in identifying these proxies and the doors using them.
Figure 2.7 shows how an invocation is routed from the client to the server through doors

and network proxies.

Client Proxy Proxy Server
Domain B | A Domain
= = = =
Door Y Door X
NucleusB Nucleus A

Figure2.7: Aninvocation in Spring Operating System [Mitchell et al 1993]

[Nelson et al 1993] provides a further outlook into the structure of the Spring file system
and the Spring virtual memory system respectively.

Mobile Proxies 26

2.6.3 Related Concepts

The Spring operating system is another example of how proxies can be used as
intermediaries between client/server communication. Although Spring proxies have a
limited functionality regarding adaptability at the low level of data bytes, yet it could be
argued that they are working at the protocol level smply by having the system use the
suitable proxy depending on what protocol the server speaks. This however is the only
common concept that would fall into the same set of concepts that the MP system relies

on.

Mobile Proxies 27

Chapter Three
System Design

In this chapter, a high level description of the MP system design is given with al its
major parts and the way these parts combine to make up the system.

Also described are the performance and security techniques employed in providing
distributed applications that use the system, with the extra functionality needed by those
applications to enhance the interaction between different components of the application.
The chapter begins with an overview of the general scene in which the MP system works
and the other entities with which it interacts.

One of these entities is the Environmental Repository, which aongside the
Environmental and Decision objects, will also be overviewed but only in general without
going into further details, as it does not form a part of the project, but is rather a separate

system that deserves its own research.

3.1 Overview of the General Scene

The MP system basically provides a mechanism by which applications using the CORBA
middleware can adapt to different environments and meet the different requirements of
the applications. However, in order for the MP system to meet its expected goals and
become fully functional, other parties are assumed to exist.

The overall scene is depicted in figure 3.1 with basically three major entities that the MP
system has to interact with. These are:

* TheApplication

* The Object Request Broker (ORB)

* The Environmental Repository

Mobile Proxies 28

3.1.1 The Application

Thisis just an ordinary CORBA-integrated application, comprising a client process that
uses a server object reachable through the ORB. The client makes al the method
invocations through the local proxy that represents the server object’.

The server process will aso be the provider of a number of adaptable proxies’. These
proxies carry the same exact interface of the server process but also implement a certain
interface that will make them adaptable.

The current version of the MP system only supports applications using OrbixWeb from

lona

3.1.2The ORB
The ORB was briefly discussed in section 2.2 being the integrating bus that carries the

reguests sent from clients to different server objects living in the CORBA environment.

3.1.3 The Environmental Repository

Finally, there is the Environmental Repository, a new concept suggested throughout this
project that is meant to fill two roles. The first is being a holder for the description of
different services and the environments in which these services live. The second is to
compare this description with that of the clients willing to avail of these services in a
decision-making process.

The description of the services and their environments could be some form of Meta data
that must be standardized in order for the description to be valid across different
repositories and the clients interacting with them.

The Environmental objects will be used to represent the description of different
environments. This description could be a set of parameters or variables that control the
state of these objects and that reflect the state of the environment they represent. They
will aso contain Application Level Data (ALD) necessary for the decision-making

process. The outcome of the latter process would then be embedded in a Decision object.

'In CORBA jargon, thisisthe stub. In this project, we will refer to it as the default proxy.
*These are al'so termed the mobile proxies, because of their mobility.

Mobile Proxies 29

The Environmental Repository might use any techniques in reaching its decision, ranging
from simple if-then rules, to high-level intelligent methods like Case Base Reasoning
(CBR).

It is important to note that the MP system will be part of both the client and the server
processes. These two parts will be referred to as the Client MPS and the Server MPS
respectively. They basically provide a set of APIs that the client and the server processes
will haveto call in order to initiate and end the adaptation process.

A Client
Process

Figure 3.1: The Mobile Proxies System and other entities

The Environmental
Repository

The Client The Server
Mobile Proxies Mobile Proxies
System (MPS) System (MPS)

The ORB

3.2 Five Stepsto Adaptability

3.2.1 Step One

The first step in the interaction process between different entities starts with the Client

MPS contacting the Environmental Repository on behalf of the client process and
supplying it with an Environmental Object. This object will describe the client’s
environment as well as any other parameters that would be useful in deciding the
necessary functionality that will control the flow of data between the client and server.

This point marks the beginning of the adaptation process.

Mobile Proxies 30

3.2.2 StepsTwo and Three

The repository then undergoes a decision-making process that ends with a decision made
as to what functionality should be used. This decision will then be passed to the Client
MPS in the form of a Decision object. Thisisshown in figure 3.2.

The Decision object will normally hold the decision as a URL pointing to the location of
the adaptable proxy at the server site. Along with the URL will also be its digital
signature, which will be used in verifying the source of that URL. The object may aso
hold other information related to the server, such as any digital keys or certificates that
would be necessary for security purposes, such as authentication or message
confidentiality, specialy that code mobility isinvolved.

Again the emphasis here is on the fact that these objects, as well as the Environmental
ones, have to have a standard format that will be compatible everywhere, regardless of

the application or the environment it’s built in.

The
Environmental
Repository

Environmental

The Client Process
2

Decision Object

A Client The Mobile Decision-making
Process Proxies (MP) process
System

Figure 3.2:
4. TheClient MPS sending an Environmental obj ect
5. Thedecision-making processin the Environmental Repository

6. The Client MPSreceiving a Decision object

Mobile Proxies 31

3.2.3 Step Four

The next step involves the Client MPS downloading the adaptable proxy aong with any
code referenced by it from the server process and then installing it in the client process.
This step is depicted in figure 3.3.

The code mobility aspect was preferred to the other choice, i.e. the client having all the
necessary adaptable proxies locally stored (just as it has the default proxy) and loaded at
runtime into the JVM. Being mobile meant that the same advantages mentioned in

section 2.3.3 would be retained, as well as, adding an extra advantage, i.e. that of

extensibility.

TheClientProcess TheServer Process
| Jhe The Mobile The Mobile The |
| len i i ver
i Object Proxies (MP) Proxies (MP) Object :
| System System :
L |

___________________________ 4
0= |
The ORB —‘
5 Decision Object
Figure 3.3

6. The Client MPS downloads the adaptable proxy, then
7. It sendsthe Decision object to the Server MPS

Extensibility here refers to the fact that the server is free to implement as many of the
adaptable proxies as it wishes without having to notify the client. New proxies can be
added and older ones removed depending on the necessity. This aso alows for a
lightweight client that does not have, at compilation time, more than the default proxy
generated by the CORBA IDL compiler.

Mobile Proxies 32

3.2.4 Step Five

After downloading the necessary code, the Client MPS will send the Decision object
across to the Server MPS through the ORB. This will distribute the knowledge of the
outcome of the decision-making process between the client and the server processes and
so an agreement will have been reached as to what functionality should both sides use to
best match their needs.

The Client MPS will then call a method in the adaptable proxy to install the necessary
interceptor in the client process. The same thing takes place on the server side, with the
Server MPS installing another interceptor that complements the client-side interceptor.
These interceptors are only used to expose the low-level data bytes running between the
two processes. A number of objects each implementing a different functionality is then
used to modify and control these bytes. The functionality of these objects is defined

through a set of interfaces.

The Client Process The Server Process
== T T ces T T T T [
//// \\\ : //// \\\ :
/ The The Mobile ' | TheMobile / The |
‘\ g:)'_e”t | Proxies (MP) | | Proxies (MP) | Sever |
\ ject I System . Object |
N 7 : N S :
| |

Ve
N

|
|
|
i
System |
i
|
|
|
|
|

- Functionality Objects

Default Proxy QQ Functionality Objects
(F— — ¥V

| nterceptor The ORB | nter ceptor

Figure 3.4: Theinteraction between the client
and the server using the MP system

It is important to keep in mind that all these objects are downloaded as necessary from

the server site at runtime.

Mobile Proxies 33

This step denotes the end of the adaptation process and invocations can now take place

and data can be exchanged between the client and server as depicted in figure 3.4.

3.2.5 The Problem of Concurrency

One important issue that the Server MPS has to deal with is the concurrency issue. It is
possible that more than one client at atime opens a connection to the server process. The
Server MPS should be able then to deal with these clients allowing each to implement a
different functionality and at the same time reversing the effects of that functionality
when the modified datais received at the server side.

One way of achieving this is for the Server MPS to spawn a different child thread for
every new client that connects to the server process. This will free the Server MPS to
deal with new clients coming up. It will also alow the child thread to be specialized for
only one client.

The child thread will encompass all the objects used to treat the incoming data as well as
modifying the outgoing ones. It will also have a reference to the server object to which
method invocations are made. This however implies that the server object should in itself
be able to deal with multiple requests, something that must be taken care of at
development stage.

Another way of dealing with multiple clients would be for those clients to transmit some
knowledge with the data, which would inform the Server MPS of the way that data was
modified. This knowledge will be inserted by the Client MPS at each client process and
would indicate the source of the data. This should be sufficient in determining how the
modified data can be restored to its normal state taking into consideration the fact that
that the Server MPS already has an idea about the different clients connected and the
different decisions reached for each client (represented by the Decision objects.)

The Server MPS will still have to know how the outgoing data would be modified
according to its client.

These two solutions to the concurrency problem are illustrated in figure 3.5 where in (a),
the Server MPS spawns a different thread to deal with each client, whereas in (b), the

Server MPS has the necessary knowledge as to the source of the data received.

Mobile Proxies 34

After the client finishes invoking the server, the connection is closed between the two
processes and the Server MPS will have to remove any objects that were installed during

the adaptation process.

However, the situation is different in the case of multiple clients. In the first situation the

Server MPS will have to kill the child thread that was dealing with that client. In the
second situation, the Server MPS will only remove the client’s entry containing, at least,
the id and the functionality used in modifying the data.

Clients Server Threads

0oL
|

/77N é
_/ % (a

The parent Server MPS
/F\\
\ |
.

(b)

/_P

i
~__"
IHII IHII IIII
LN
\v/

Figure 3.5: Concurrency in the MP system

Mobile Proxies 35

3.3The MP System Design

The MP system is generaly divided into five modules that combine together to provide a
set APIsfor the application devel oper and help achieve the goal of adaptability.

These modules are:

* TheClient Adapter

* The Server Adapter

The ORB Adapter

The Proxy L oader

The Class L oaders

Which are displayed below in figure 3.6 and further described in the following sections.

It is worth noting that the Client Adapter, the ORB Adapter, and the Proxy Loader form
the Client MPS, whereas the Server Adapter represents the Server MPS. The Class
Loaders are part of both the client and Server MPS.

The MP System

, - T 77777 \\

|
The Client The Server I The

i Adapter Adapter
The Client The Proxy I Server
Process — L oader | Process

The ORB Class |

Adapter Loaders |

—_

The ORB

Figure 3.6: Thedifferent modules of the MP system

3.3.1 The Client Adapter
This module is nothing more than a front-end to the client process. It isitself part of the
client process and it provides to the client a set of APIs that will start and end the

adaptation process.

Mobile Proxies 36

However, this module is also responsible for contacting the Environmental Repository
and supplying it with the Environmental object and receiving the Decision object.

It will also carry out a number of other tasks, including sending the Decision object to the
Server MPS using the Proxy Loader module, calling the appropriate method(s) on the
adaptable proxies that will cause them to adapt the environment. And finally, making
sure that the adaptation process was successful while informing the client of any

exceptions.

3.3.2 The ORB Adapter

The ORB adapter deals with the ORB and provides some means for it to synchronize the
adaptation process, especially at the point where an adaptable proxy is downloaded from
the server.

It allows the ORB to inform the Client MPS of the point in time when a proxy is needed
either because a reference to the server object has entered the client process or the client
has decide to bind to that object. The Proxy Loader will act at this point and download
an adaptable proxy that will override the default proxy at the client.

This module is only part of the client process and the Client MPS.

3.3.3 The Proxy L oader

The Proxy Loader has a major task of downloading the adaptable proxies from the server.
It also provides the means for the Client Adapter to send the Decision object to the Server
MPS. Inturn, it usesthe Class Loadersin its downloading procedure.
Thismoduleisonly part of the client process and the Client MPS.

3.34TheClassLoaders

This module is only a proprietary class loader that overrides the default class loader,
which is usually provided with the VM.

Being part of both the client and server processes, it has to be able to load Java classes
across the network as well as locally. This ability is needed because of the fact that the

client does not have the class files for the adaptable proxies. And athough the server

Mobile Proxies 37

does have them, the proxy used remains anonymous to the latter until the point when the
Client Adapter sends the Decision object to the Server MPS.
This module also has to deal with the security issue rising from code mobility. Thisis

worked out by using digital signatures to authenticate the mobile code.

3.3.5 The Server Adapter

The Server Adapter is the equivalent of the Client Adapter, but at the server process. It
performs all the necessary tasks, including receiving the Decision object, calling the
necessary method(s) on the adaptable proxies causing them to adapt the environment.
Also keeping track of al the connected clients and spawning different threads to deal
with each, or monitoring the incoming and the outgoing data, depending on the solution
adopted for the concurrency problem mentioned in the previous section.

This module constitutes the Server MPS.

The previous classification of the different modules of the system does not imply that
these are separate Java classes, but rather is based on the different roles performed by
each of the modules.

The system design was meant to be as flexible and lightweight as possible so that its
performance cost would be kept to the minimum and at the same time alowing for the

different modules to be replaced and upgraded as necessary.

3.4 The Functionality Design

Basically, the MP system is targeted at achieving adaptability in two contexts, i.e.
communication performance and security.

The performance of any application can be improved by in a number of ways. One of
these ways is to reduce the delay incurred when data is transmitted from one machine to
another across the network.

This delay varies among different networks and is a function of a number of factors,
including the network bandwidth and the amount of traffic flowing at a certain point in

time.

Mobile Proxies 38

One of the factors linearly affecting the transmission delay is the size of datathat is being
sent over the network. Size reduction could lead to considerable gains in performance
since the transmission time would be reduced. This reduction however represents extra
processing time, hence the trade off in this situation would be the transmission time
versus the processing time. More discussion of thisissueis provided in chapter five.

The security side of the system works in the three areas often termed CIA. These are:
Confidentiality, Integrity, and Authenticity.

Confidentiaity refers to the ability of the application to hide or protect its data from
unauthorized access, otherwise known as Eavesdropping. Protecting against
eavesdropping becomes even more difficult when that data is exposed to the outside
world while transmitted over the network.

Encryption is normally the solution to securing confidentiality. Encryption usually falls
into three broad categories that are populated by different algorithms. Symmetric,
Asymmetric, and Hybrid encryption. Examples of these include the Data Encryption
Standard (DES) and the International Data Encryption Algorithm (IDEA) which are
symmetric algorithms. The Rivest-Shamir-Adleman (RSA) is an example of an
asymmetric algorithm. On the other hand, Pretty Good Privacy (PGP) and Secure
Sockets Layer (SSL) use a combination of the previous two and so they are often termed
hybrid al gorithms.

Integrity means that the data sent has not been tampered with or altered. Message
Digests are one good and efficient way of achieving this through providing digital
fingerprints. Examples of message digest algorithms are the Secure Hashing Algorithm
(SHA) and MD5.

Finaly, Authenticity is to verify the source of the data received, and prove its red
identity. Digital Signatures are used in proving the authenticity of messages and DSA is
one algorithm that achievesthis.

Two good references on the different security concerns and solutions are [Knudsen 1998]
and [Oaks 199§].

Mobile Proxies 39

3.4.1 The Functionality Tree

The design of the system functionality was made as open as possible in order for any
enhancements or new functions to be added in subsequent versions of the system and till
remain compatible with the previous ones.

The design takes the form of a hierarchical tree that can be expanded horizontally and
vertically alowing for new elements to be added at each level. This tree is shown in
figure 3.7.

Default Proxy level

Adaptable Proxies level

(7 Q) Y e (5 ()0

OO OO OO Fudnaiyes (OO OO OO

Figure 3.7: The MP system functionality tree

3.4.2 TheFour Levels

Thefirst level is the default proxy level. Thislevel contains the normal default CORBA
proxy generated by the IDL compiler and statically linked to the client. It mirrors the
service interface.

The next level represents the adaptable proxies, which are extra proxies for the same
service but that have the ability to adapt to the requirements of the client and the needs of
its environment. This ability is defined by a certain interface that has to be implemented

by any proxy willing to become adaptable.

Mobile Proxies 40

These proxies will be stored at the server site and will be downloaded at runtime by the
client, overriding the default proxy of the first level. There can be any number of them
depending on the different adaptability semantics needed.

The third level defines the interceptors used in intercepting the data bytes going out and
coming in of each process. These are the Message-level interceptors defined in CORBA
v2.3 specification and discussed in section (2.2).

In the design of the MP system, these interceptors are only used to expose the low-level
data bytes without imposing any modification on them. This again is meant to keep the
system as open as possible, and to allow for different types of modifications to be

pipelined and therefore increase the flexibility of the adaptation process.

The fourth and the last level encompass the different functionality-implementing objects.
These objects are defined by a set of interfaces each reflecting a particular technique like,
compression, encryption, digital signatures and others.

These interfaces can be implemented in a variety of ways and for any number of

algorithms.
The Application @ @
Compression M essage Digest
A
d Compress Digest
a
Proxy | Adapt I nter ceptor
a
b
|
e
Request Transform Return
Data Bytes U Modified Data Bytes
Vool e Vm:u:&
The ORB

Figure 3.8: Adaptable proxies, interceptor s and functionality objectsin action

Mobile Proxies 41

Figure 3.8 illustrates one example in which the different elements of the functionality tree
are seen in action. An adaptable proxy carries certain semantics like compression and
message integrity. The proxy will then install an interceptor that exposes the data to be
compressed and digested. This interceptor will in turn call methods in specific objects
that actually perform compression and message digesting.

In the next chapter, the implementation of the parts of the system and its functionality is
discussed in detail.

Mobile Proxies 42

Chapter Four
System Implementation

In this chapter, a complete description of the implementation of the MP system is given.
The system design discussed in the previous chapter is revisited from a different angle
with each module and the classesit evolved to.

Provided also is a stub implementation of the Environmental Repository and Decision
object, leaving the implementation of the Environmental object for further research as
this object was not crucial to get things up and running.

Finally, the interaction between the different classes is outlined so that a clear picture will

be drawn as to how the system achieved its goals.

Java 1.1 was chosen as the language of implementation for al the features it provides and

that were described in section 2.3.3. The export restrictions imposed on the Java
Cryptography Extension (JCE) from Sun however meant that an extra package had to be

used to implement the encryption functionality of the system. The JCE package from the
Australian Business Access Pty Ltd was chosen for many reasons not least of being the

clean room implementation it provides of Sun’s JCE. All about the package can be found
in this page [wwwb5].

OrbixWeb v3.1c from lona Technologies was adopted as a product of CORBA that

combines most if not all of the concepts and features that the MP system was based on.

4.1 Overview of the Implementation

A number of packages were developed as an implementation of most of the entities
involved in the project. These combine together to form the MP v1.0 system. However,
not all of the design features and requirements were satisfied in this version. These

limitations will be referred to as appropriate in the description of the packages.

Mobile Proxies 43

The first of these packages is the M obileProxies package, which encompasses al the
five modules that form the basic structure of the system as described in section 3.3. This
package gives an implementation of the core MP system classes.

The next three packages include the MobileProxies.interceptors package that defines
the interceptor classes, the MobileProxies.interfaces package, which contains the
interfaces defining the functionality objects, and the M obileProxies.functionality, which
has all the functionality objects.

These packages implement the two low levels of the functionality tree (figure 3.7).

The last package is not really part of the MP system but rather is employed by the system.
The MobileProxiesrepository package gives a stub implementation of the
Environmental Repository and the Decision object, leaving out the Environmental object.

In the following sections, a description of each package is provided and the role its

classes satisfy in the overall system design as well as the interaction between them.

4.2 The M obileProxies Package

The package consists of ten classes and one interface. Four of the classes are used by the
Client MPS, another four by the Server MPS, and the remaining two by both of them.
The interface defines couple of methods that have to be implemented by any adaptable
proxy.

These classes will be overviewed in the following sections, where each class isfitted into
the system module it belongs to, and so a complete picture of the core MP system

structure is portrayed.

4.2.1 Class M obileProxies.ClientEnvAdapter

This class represents the Client Adapter module. It basically provides a couple of
methods for the client application to invoke in order to start and end the adaptation
process. These are the startAdapting and the endAdapting methods.

In the v1.0 of the MP system this class has a Constructor that reads the Decision object

from a file called Client_Decision.object which will have been generated by the

Mobile Proxies 44

Environmental Repository. The file contains a serialized Decision object with the
decision as what functionality should be used to best adapt the client and the server
processes. This object is then passed to the adaptable proxy that will be downloaded
using the Proxy Loader.

The startAdapting method will create the ORB Adapter module represented by the
MobileProxies.ProxyLoader class passing it the identifier of the IDL interface which can
be obtained by calling the id method of the Helper class generated by the IDL compiler.

The creation of this class and the calling of the startAdapting method have to be done

prior to any reference to the server object entering the client’s address space.

The second method that interfaces to the client application is the endAdapting method.
This method will effectively end the establishing of all the required objects and hence the
adaptation process and will open the door for the client application to start using the
server object (in an adaptive way).

4.2.2 Class MobileProxies.M obilePr oxyFactory

This class is used to provide a front end to the ORB. It constitutes the ORB Adapter
module that is part of the Client MPS and provides the ORB with means to synchronize
the whole adaptation process by signaling the point in time when a reference to the server
object enters the client address space. At this point, the ORB will effectively request a
proxy object to be created, leaving the decision as to how to do that to the
iImplementation of this class.

This was made possible by allowing this class to inherit from
IE.lona.OrbixWeb.Features.ProxyFactory class, which provides a certain method called
New that is called by the ORB whenever a proxy object is needed. It is then all left to the
particular implementation of the method. A description of the
IE.lona.OrbixWeb.Features.ProxyFactory can be found in [ORG 1998].

Currently, this method uses the Proxy Loader module to download an adaptable proxy

that is practically a subclass of the default proxy provided by the IDL compiler.

Mobile Proxies 45

4.2.3 Class MobileProxies.ProxyL oader

This class implements the Proxy Loader module in the Client MPS. It is mainly used by
the previous two classes, where it provides a method for each. The first method is called
sendURL and is used to by the ClientEnvAdapter to send the Decision object to the server
side. The second is called the downloadProxy and is used by the MobileProxyFactory to
download an adaptable proxy.

The sendURL method uses the ORB. It constructs an org.omg.CORBA .Request object
and populates it with the necessary information, including the URL of the adaptable
proxy represented as a string.

The downloadProxy method uses the Class Loaders module in downloading the
adaptable proxy over a URL connection.

It is important to note that unless the string representing the URL of the adaptable proxy
is set before hand (this is normally achieved by calling this method before the sendURL
method), an exception will be thrown.

4.2.4 Class MobileProxies.Server EnvAdapter

This classis asubclass of the |E.lona.OrbixWeb.Features.Filter class [ORG 1998], which
Is the parent class of al the Request level interceptors, or otherwise known as Filtersin
the OrbixWeb terminology. More about Filters can be found in [OPG 1998].

The class is part of the Server Adapter module. The server does not have to call any
methods on this object, in fact all what the server hasto do is to create an instance of this
class.

Being a Filter, this class can intercept all the requests arriving at this server process. It
does that for the purpose of trapping the sendURL method that would have been called
by the ProxyLoader at the client side. As soon as this request arrives, the sendURL
method of this class is called and the string representing the URL of the adaptable proxy
Is made available. This informs the server process of the name of the adaptable proxy

used in the client process.

Mobile Proxies 46

4.2.5 Class M obileProxies.Server | OCallback

This class implements the IE.Ilona.OrbixWeb.Features.ioCallback [ORG 1998] interface
that gives it the ability to monitor any connections that are established or closed by
clients.

This ability is provided by two methods, the CloseCallBack and the OpenCallBack that
are defined in theioCallBack interface.

The current implementation provided by MP v10 ingal a
MobileProxies.DummyTransformer (which will be described next) whenever a client
closes its connection with the server process.

The classis also part of the Server Adapter module.

4.2.6 Class M obileProxies.DummyT ransfor mer

This class is a Message level interceptor that simply does nothing to the incoming or the
outgoing data. In OrbixWeb, Message level interceptors are called Transformers and
they are subclasses of the IE.lona.OrbixWeb.Features.IT_Transformer class [ORG 1998].
These Transformers are called by the ORB just prior to the transmission of the byte array
representing the marshaled request and just at the arrival of that array at the other side.
This provides for the accessibility that is required to control the data traffic in a way that
achieves adaptability (section (1.2).)

However, there can only be one Transformer installed in a process at any moment in time
limiting the prospect of multithreading. This will limit the first solution to the
concurrency problem as mentioned in section (3.2.5) to the creation of different process
each to deal with asingle client as opposed to the spawning of threads.

This problem was left unsolved in MP v1.0, and therefore this class was built to remove
any specialization caused by the previous client and so alowing for different clients to

gueue at the server process.

4.2.7 Class M obileProxies.M ultiClassL oader

This is an abstract class that inherits from the javalang.ClassLoader class and so
allowing the definition of a new way for loading classes into the VM. The class was
defined as abstract to give the sub classes a free implementation of how the actual class

Mobile Proxies 47

bytes will be provided and from which resources. Apart from overriding the loadClass
method of the javalang.ClassLoader class, it provides one abstract method that is
implemented by its subclasses, that is the |oadClassBytes method.

When attempting to load a class, a subclass will look first in a locally stored pool of
classes using a Hashtable. This technique was employed to speed up the loading process.
If the required class was not found, or in other words, if it was not loaded previoudly, it
looks in the list of system classes in case it is a part of the standard JDK. Finally, if
everything fails, it will use the loadClassBytes method.

The class also provides a couple of other methods that are used in putting the class names
Into an understandable format for this class.

Finally, this class is part of the Class Loaders module. Both the client and the Server
MPS requireit.

4.2.8 Class M obileProxies.FileClassL oader

Thisis asubclass of the MultiClassLoader that allows classes to be loaded into the VM

directly from the local file system. It is needed mainly by the Server Adapter, and
particularly, by the ServerEnvAdapter class since the URL of the adaptable proxy
employed remains anonymous until the Server MPS receives it from the Client MPS.

It defines the abstract method |oadClassBytes inherited from its superclass such that the

bytes are read from a java.io.FilelnputStream object. This gives the class a local
dimension.

The class falls naturally into the Class Loaders module but it's only part of the Server
MPS.

4.2.9 Class MobileProxies.URL ClassL oader

This is the opposite of the previous class allowing class bytes to be downloaded across
the network. It provides the mechanism with which all the classes needed by the Client
MPS can be downloaded. It is also an instance of the MultiClassLoader with a URL-
connection-based implementation of the loadClassBytes method.

The URLClassLoader has to consider one important issue, i.e. security. This is necessary
due to the code mobility and the threats associated with it. Therefore, digital signatures

Mobile Proxies 438

were used in authenticating all the downloaded classes having got the public key of the
server process in advance.

The classis the last entity in the Class Loaders module. However, it is only part of the
Client MPS.

The nine classes just described do not provide any functionality that will achieve
adaptability. In fact they only provide the basic tools used in instaling the different
functionality choices employed in modifying the data bytes.

The size of the nine classes does not exceed 19 KB of executable class files that are

distributed between the client and the server processes.

4.2.10 Class M obileProxies.PrivateK eys

The PrivateKeys class contains the private and secret keys necessary for signing and
decrypting any data sent to other process.

It is part of the Client and the Server MPS and it is used directly by the ClientEnvAdapter
and the ServerEnvAdapter.

4.2.11 Interface M obileProxies.Adaptable

All the adaptable proxies that are part of the application package implement this
interface. It defines couple of methods called adaptClient and adaptServer that will be
invoked by the Client MPS and the Serve MPS respectively.

The methods when implemented will carry the adaptability semantics at an abstract level
allowing for the functionality objects to accomplish the low-level details.

4.3 The Functionality Tree Implementation

The functionality tree designed and described in section (3.4.1) was implemented at
different levelsin away that allowed for new classesto be added in the future.

The top two levels, by definition, are part of the application package that uses the MP
system. Therefore, these will not be considered as part of the MP system, athough they

Mobile Proxies 49

still remain part of the functionality tree. The description of these two top levels will
follow in the next chapter, where an example application was used to evaluate the system.
Meanwhile, emphasis will be on the two low levels, i.e. the Interceptors and the

Functionality levels.

4.3.1 Thelnterceptors Leve

The Interceptors level was implemented in the MobileProxies.interceptors package.

The interceptors are subclasses of the |E.lona.OrbixWeb.Features.IT_Transformer

class [ORG 1998]. In other words, they are the Transformers of OrbixWeb described in

[OPG 1998], but each with a specialized transform method that overrides the superclass

method.

The current version of the MP system provides five Transformers in this package. These

are;

1. The MobileCompressionTransformer, which compresses and decompresses the
data bytes.

2. The MobileSignatureTransformer, which signs and verifies the data bytes.

3. The MobileSymmEncryptionTransformer, which encrypts and decrypts the data
bytes symmetrically.

4. The MobileAsymmEncryptionTransformer, which encrypts and decrypts the data
bytes asymmetrically.

5. The MobileMessageDigestTransformer, which adds and removes the message
digest of the data bytes.

These Transformers will be installed as required by the adaptable proxies and they will
apply the functionality they represents to the data traffic flowing to and from the process.
Because the number of these Transformers that can be installed in a process is limited to
only one, the actual modification of the data bytes will not take place herein thislevel.

Rather these Transformers will own and use another set of objects, namely that described

in the next level, and known as the functionality objects.

Mobile Proxies 50

4.3.2 The Functionality L evel
This level was implemented as a set of interfaces, each of which defined certain

functionality. The choice of interfaces was made to facilitate populating this level with

as many objects implementing the interfaces as possible. It aso leaves these

implementations open.

These interfaces are part of the M obileProxies.interfaces package. The current version

of the MP system supports five interfaces. These are:

1
2.
3.

Thel _CompressionTransformer, which defines the compression functionality.
Thel_SignatureTransformer, which defines the digital signatures functionality.
The |_SymmEncryptionTransformer, which defines the symmetric encryption
functionality.

The | _AsymmEncryptionTransformer, which defines the asymmetric encryption
functionality.

Thel _MessageDigestTransfor mer, which defines the message digests functionality.

Each of these functionality interfaces defines certain methods that have to be

implemented by any objects willing to provide that functionality.

For this purpose, five implementation classes were developed. These were:

1

The MobileDel nflater class, which implements the |_CompressionTransformer and
uses the java.util.zip.Deflater and the java.util.zip.Inflater classes.

The MobileDSA class, which implements the |_SignatureTransformer and uses the
Secure Hashing Algorithm (SHA) and the Digital Sgnature Algorithm (DSA).

The MobileDES class, which implements the |_SymmEncryptionTransformer and
uses the Data Encryption Sandard (DES) with Electronic Code Book (ECB) mode of
cipher and the PKCS#5 padding scheme.

The MobileRSA class, which implements the |_AsymmEncryptionTransformer and
Rivest-Shamir-Adleman (RSA) algorithm with ECB mode of cipher and PKCS#5
padding.

The MobileCRC32 class, which implements the | _MessageDigestTransformer and
uses the java.util.zip.CRC32 class that computes the CRC-32 checksum.

These classes are part of the MobileProxies.functionality package.

Mobile Proxies 51

4.4 The Environmental Repository and The Decision Objects

Five classes were developed as stub implementation of these two entities. The

Environmental object was left out as this is only useful in the first step explained in

section 3.2.1 as part of the client-repository negotiation process, which is not considered

to be part of the mechanism the MP system provides.

The classes were defined in the MobileProxies.repository package.

4.4.1 The Decision Object

This object is represented by three classes. These are:

1
2.

The SignedURL class, which represents a signed URL object.

The Otherldentity class, which holds necessary information about the other process
that this particular process is interacting with. In MP v1.0, this class holds the public
keys of the other party that are necessary for encrypting and verifying any data
received from there.

The DecisionObject class, which contains an array of SignedURL objects
representing the code that will be downloaded from the server process to the Client
MPS. It also contains an Otherldentity object representing the server object.

It is worth noting that this same class was used aso by the ServerEnvAdapter to
obtain the necessary information about the client reflected in the Otherldentity object.

The SignedURL array however was taken as null.

4.4.2 The Environmental Repository

Thisrepository is represented by the remaining two class:

4.

The KeyGenerator class, which generates any necessary keys, embedded in the
DecisionObject and that represents a process.

The DecisionObjectGenerator class, which is the main decision-generating entity.
It generates the DecisionObject and seriadlizes it to a file to be read by the
ClientEnvAdapter.

Mobile Proxies 52

4.5 The Runtime I nteraction

The Client application starts running the MP system by creating an instance of the
MobileProxies.ClientEnvAdapter class and calling the startAdapting method. This
creation of the ClientEnvAdapter causes it aso to read the
MobileProxies.repository.DecisionObject object from a file caled the

Client_Decision.object.

The Client Application : ClientEnvAdapter : MobileProxyFactory

1 1: new

‘ |
L 2: startAdapting W—H
|

3: new

e

Figure4.1: RuntimeInteraction 1

This is just a stub implementation of the actual negotiation process that will occur
between the ClientEnvAdapter and the Environmental Repository.

The ClientEnvAdapter will aso read the MobileProxies.PrivateKeys object to
determine the private and secret keys belonging to the client application. It will then
create a M obileProxies.M obileProxyFactory object as soon as the startAdapting
method is invoked, supplying it with the PrivateK eys and the DecisionObject objects.
This point in time is shown in figure 4.1 below. The MP system now is ready to adapt the
client application as soon as a proxy to the server object is required. This requirement
may be initiated by invoking the bind method of the Helper class belonging to the IDL

interface of the server object. Alternatively, a reference to that object may enter the

Mobile Proxies 53

address space of the client application through whatever means (like for example, the

return result of calling a method on another interface).

The next step follows with the client application binding to the server object. This causes
the ORB to call a specia method in the MobileProxyFactory object which will requires
the creation of a proxy object (called stubs in the CORBA terminology.) The
MobileProxyFactory object will act by creating a MobileProxies.ProxyL oader object
and invoking a special method that will download an adaptable proxy from the server site
using a M obileProxies.URL ClassL oader object.

As soon as the proxy is downloaded and created, a reference will be available and both
the ClientEnvAdapter object and the ORB will be informed of it. Figure 4.2 depicts the
last step.

The Client | |The IDL Helpe‘r The ORB : Client ‘ : Mobile : Provaoade‘r : URLClass
Application class ‘ ‘ EnvAdapter | ProxyFactory ‘ Loader
1: bind

| |
1
|

‘3: downloadPro>;<y

U /I—H 4: loadClass
|

\

U U

‘ 5: loadClassBytg
|

|

|

|

|
\
|
6: setProxyLoader

+ =

N

Figure4.2: RuntimeInteraction 2

Mobile Proxies 54

After the proxy object has been created in the client process, the client application will
call the last API, which will completely establish the adaptability requirements between
the client and the server processes. Invoking the endAdapting method of the
ClientEnvAdapter object will initiate a number of invocations as follows. The
ClientEnvAdapter will invoke the sendURL method of the ProxyLoader object, which
will in turn use the ORB in sending a request to the server process with the same method
name. This will be intercepted at the Request level by the ServerEnvAdapter object,
which is created as soon as the ORB starts the server process. The request will also carry

astring representing the URL of the adaptable proxy that has been decided for the client.

This achieves the purpose of section (3.2.4), where the importance of distributing the
knowledge of the outcome of the decision-making process in the Environmental
Repository was emphasi zed.

The above sequence of invocationsisillustrated in figure 4.3.

The ClientEnvAdapter and the ServerEnvAdapter then will invoke the corresponding
adapt methods in the Adaptable proxy, therefore initiating the creation and installation
of all the necessary interceptors and functionality objects.

The above description highlighted the major steps that the MP system follows up to the
point where the adaptable proxy is used.

Mobile Proxies 55

The Client. _: Client : Proxy : Server . FileClass : Adaptable
Application EnvAdapter Loader EnvAdapter Loader

Hl endAdapting ‘ ‘ ‘
2 sendURL ‘ ‘

| |

\

‘ 4: loadClass ‘
| |

I

5: loadClassBytes

-

I

6: adaptServer

| g

7: adapltCIient T ‘
|
|
|

|
|

u /u3:sendURL
11
”
| |
| |
| |
| |
H
| |

Figure 4.3: Runtime Interaction 3

The next step will be completely determined by that specific proxy and how it converts
the abstract adaptability semantics into areality implementation.
The next set of invocations is viewed in figure 4.4 with an example, where the

compression functionality is used in realizing adaptability.

Mobile Proxies 56

: Adaptable The ORB : MobiIeCompressionTransformér MobileDelnflater : | CompressionTransform

| 4: transform

|

| |
U /I—H 2: new
‘ 3: transform ‘

| |
| |
i
I L |
k
| |

Figure 4.4: Runtime Interaction 4

Assuming that the adaptable proxy carries the compression functionality, the adapt
methods will cause it to create and install one of the classes belonging to the
MobileProxies.interceptor package that compresses and decompresses the data bytes.
Whenever data enters and |eaves the process, the ORB will call the transform method of
that Transformer.

The Transformer then will use another object defined by a MobileProxies.interfaces
interface and implemented in any package, including the current
MobileProxies.functionality package, to apply the compression functionality.

At this point, al the data flowing between the two processes will be compressed when
sent from one process and decompressed at the other. This means that the interaction
between the two processes has been specialized to apply certain techniques that will, in
the case of compression, increase the performance of the application by minimizing the

amount of traffic exchanged over the network.

In the next chapter, an application will be used to evaluate the MP system and the

different functionality extensionsit currently provides.

Mobile Proxies 57

Chapter Five
System Evaluation

The evaluation of the MP system was carried out to determine the level at which the
system has reached in achieving its intended goals.

As we mentioned in section 1.2, the system was meant to tackle the adaptability issue
from the performance and security points of view.

The performance side of the evaluation is meant to show how feasible the system is
regarding the overhead incurred in sending the data over the network. Whereas the
security goal aims at achieving the three goals of security: Confidentiality, integrity, and
authentication.

An application has to be chosen so as the evaluation process would rightly assess the
system. Such an application has to test the different functionality extensions that are
provided by the system taking into consideration the goals that are sought from every
extension.

In the following sections, a brief description of the application package will be provided
along with the different proxies it includes. Samples of the results obtained while using
different proxies will then be assessed and conclusions drawn as well as determining how
successful the system was in a particular functionality. The cascading of different
functionality objects was left out, as the number of combinations that could be
constructed from these objects would be big enough to make the evaluation process a

time-consuming one.

5.1 The Application

5.1.1 Overview
One of the factors that control the adaptability between the different applications is the
nature of the application itself and the data it is manipulating. Therefore, it becomes

Mobile Proxies 58

difficult to decide on a specific application and the way it is distributed between the client
and the server environments.

The performance goas are quantity measurements, which dictate that performance
evaluation should be carried over a wide range of data sizes ranging from zero-byte data
to the excess of Megabytes to determine the gain profile. Yet, experience revealed that
the nature of the datais also an issue when it comes to performance. Thiswill be further
discussed when performance measurements are given in the next section.

The security demands are also determined by the nature of the data and its sensitivity, but
also by the nature of the different media that data traverses. This however is a matter of
deciding how important that data is and the appropriate functionality that should be
applied to best protect it against attacks from the network that separates the client and the
server. This requirement does not impose any performance goals, although it is always
nice to have a high performance system. So the only requirements remaining are those
determined by the level of security needed.

From the above perspectives as to the different performance and security demands, afile
transfer application was chosen. This application is a simple example yet it has the
ability to deal with files of different sizes and nature.

The design of the application allows for the client to read afile from the local file system,
send it to the server on another host, receive an acknowledgement from that server, and
meanwhile, perform all the necessary measurements. The server will just write the file to
theitslocal file system. Thisisshowninfigure5.1.

5.1.2 The Application Package

The DataTransfer package was developed as an implementation of the above outlined
application design. The package contained eight classes, five of which were proxies that
implemented the MobileProxies. Adaptable interface. Also part of the package was the
IDL interface that defines the server object.

Mobile Proxies 59

Briefly, the three application classes are:

» The DataTransfer.DataClient class, which isthe CORBA client application.

« The DataTransfer.DataServer class, which

application.

is the CORBA server

» The DataTransfer.Datal mpl class, which is the implementation class of the

IDL interface.

The IDL interface was defined by the DataTransfer.FileTransfer interface. Also the

inheritance method of interface implementation was used with the Datalmpl class

extending the DataTransferlmplBase compiler-generated class. The delegation
method could equally be used.

1R

ead

File

On the other hand, the five adaptable proxies are:

The Client
s
2. Send

TheClient MPS

14

The Server Object

3. Writ

4, Acknowled%e

The Server MPS

)

The ORB

Figure5.1: Thefile-sending application.

File

* The DataTransfer.MobileCompressionProxy class, which provides compression

semantics.

* The DataTransfer.MobileSignatureProxy class, which provides digital signatures

semantics.

* The DataTransfer .M obileSymmEncryptionProxy class, which provides symmetric

encryption semantics.

« The DataTransfer.MobileAsymmEncryptionProxy

asymmetric encryption semantics.

Mobile Proxies

60

class, which provides

* The DataTransfer.MobileM essageDigestProxy class, which provides message
digesting semantics.

All these proxies are subclasses of the default proxy generated by the IDL compiler, i.e.

the DataT ransfer .FileTransfer Stub.

The number of these proxies however should not be considered as a limitation to the total
number of proxies that can be developed. Any combination of functionality extensions
can be formed as we mentioned earlier. Moreover, with the current version of the MP
system, a suitable compiler can be built to generate these proxies automatically from the
default one. Although this will make the adaptability process less flexible as the choices
of functionality will be limited by the output of that compiler.

The proxies are stored in the file system of the server process and are downloaded, along
with the Transformers and the functionality objects, at runtime by the client process using
some protocol, like HTTP or FTP, depending on the nature of the server.

In the project, an HTTP server different from the application server was used to provide
the mobile code for the client process. The HTTP server was however chosen to be on
the same host as the application server.

The system requires from .77 t01.55 Milliseconds to be completely set up with all the
Transforms installed and ready for the client to make its invocations. This numbers were
calculated by measuring the times required for the startAdapting, the endAdapting, as
well asthe call to the Constructor of the ClientEnvAdapter class.

For the purpose of measurements, the java.lang.System.currentTimeMillis method, which

returns the system time in Milliseconds.

The application used three types of files. The first type was a text file with a repetitive

nature that was generated “artificially” using a program. These files contained numbers
that counted from 0 to 255 and then repeated the format up to the specified size.

The second type of files was a PDF file, which was more natural than the first type.

Different files were chopped from one large file according to the required size.

Mobile Proxies 61

The last type was an image file, with a combination of JPG, GIF, and bitmap-formatted
files.

30 files of each type were used with sizes ranging from 0 to 2M bytes. These files helped
satisfying the evaluation requirements as they provided a wide range of data sizes as well

asavariety of natures.

5.2 Results of the Compression Functionality

5.2.1 Overview

The compression functionality was used to improve the performance level of the
application by minimizing the delay while transferring data from one process to another
over the network. This delay depends on two components: The processing time, and the

transmission time.

The processing time includes any time spent prior to the transmission of the data over the
wire, whereas the transmission time is the time spent by the data while travelling over the
network. The latter though depends on two factors: The size of the data to be transmitted,
and the network speed.

The size is an obvious factor affecting the transmission time linearly. The network speed
is a less obvious one, depending on a number of other factors, like the physical
bandwidth and the amount of traffic already flowing over the network.

To reduce the transmission time, either the size of data has to be reduced, or the network
has to be faster up. Unlike the network speed, which cannot be controlled directly from
the application, the data size can be controlled and reduced to an optimum level. To do

S0, compression techniques between the client and server processes have to be employed.

Ideally, If these compression techniques did not take any time, the minimum transmission
time would be achieved at the smallest size for the compressed data. However, in redlity,
compression does take time. This time will add up to the processing time therefore
increasing the overall delay and possibly affecting the total performance gain negatively.

Mobile Proxies 62

Figure 5.2 illustrates the different times spent during the transfer process, including the
processing time at both ends, of which the compression time is one factor, and the

transmission time suffered over the wire.

At this point atrade off beginsto form as to whether use the compression or just send the
data directly. This will depend on all the above-mentioned factors as well as on the
nature of the data. This nature will determine how well the datais compressed and hence

whether or not the compression process was justifiable.

Overs Delay
~ —
. Processing Transmission Time Processing
Client : : Server
Time A Time
Process —— N Process

Figure5.2: Different time delays suffered by the data.

All these factors that are part of the overall delay formula can be described by the
Environmental objects. These objects (and hence the factors) will then be compared for
different client-server applications and environments and a decision will be reached as
whether or not compression techniques should be used.

To evaluate the feasibility of the MP system from the compression point of view, the
different files mentioned in the previous section were transmitted from the client running
on a Windows NT platform, to the server object running on a Sun Solaris workstation.
These however were part of a department-wide local area network, which is considered to
be a relatively fast medium. In other words, the transmission time will be small
compared to other networks.

The following section will present some of the results that were obtained in chart form.
The raw numbers can be found in the Appendix titled Performance Resullts.

Mobile Proxies 63

5.2.2 The Results

The first set of measurements was carried out for the PDF-type files. The following chart
in figure 5.3 shows a comparison of the time taken by the sendData method of the
FileTransfer interface when invoked by the client, with and without using the
compression functionality of the MP system. The chart shows a gain at the point where
the size of the file reaches 187.5 KB forward. The gain then is not that high due to the
nature of the files which had a compression ratio ranging from 23 to 65 %.

The FileTransfer.sendData method time v. File size

6
5 /ll
—
- 7
3 —
g 4 /I?
Y 4
£ -
= — .
g’ ﬁa/
=] Point of
g intersectioL
@ 4 at 187.5 K
g2 I,.;ll“”
1
0
0 500 1000 1500 2000 2500

The file size (KB)

The sendData method time using the compression functionality of the MP System

The sendData method time without the MP System

Linear (ThesendData method time without the MP System)

Linear (ThesendData method time using the compression functionality of the MP System)

*
|

Figure5.3: TheFileTransfer.sendData time with and without the M P system for the
PDF files.

The next chart in figure 5.4 shows the profile of the whole DataTransfer.DataClient
application time and for the same set of files. It is clear that due to the MP system setup
overhead, the gain is occurring at alater point of approximately 1M bytefile size.

In addition to these two sets of measurements, a theoretical calculation was made to
compare the processing time spent in the compressing/decompressing part, and the
transmission time spent over the network. These two elements are compared in figure
5.5. The dark-colour component being the transmission time.

Mobile Proxies 64

The DataTransfer.DataClient Process time v. File size
10
9 ’///ﬂ
0|

8 -gg%
—g /—f
= - T—|Point of
E ajﬁjﬁ intersection
£ 6 ;Mro/‘ﬁ at1.021 MB
o I"J
g
¢ 5
g
[
Tt 4
£
3 3]
£
-

2

11

0

0 500 1000 1500 2000 2500
The file size (KB)
¢ The DataTransfer.DataClient process time using the MP System (with compression functionality)
" The DataTransfer.DataClient process time without the MP System
Linear (The DataTransfer.DataClient process time using the MP System (with compression functionality))
Linear (The DataTransfer.DataClient process time without the MP System)

Figure 5.4: The DataTransfer.DataClient application time with and without the MP
system for the PDF files.

Compression v. Transmission Times for the MP system
5
45
4 I
35 I
- 3
©
@
E) I
< 25
@
i
o, I
0.5 7
ol I I_I-I-I-IlIlIlIlIIIIIIIIIIIlIlIlIlIIIIIIII I
S N I B T I O I B S B~ B~ BT ~ B B SR S B% ~ B BT S B ST TP T SR S SS B SR S BN
PECLLELL LT T PL TS LS F S
File Size (KB)
O Compression/Decompression Time B Transmission Time

Figure5.5: The compression time versusthe transmission timefor the
FileTransfer .sendData method using the MP system for the PDF files.

Mobile Proxies 65

The point to be drawn here is that for slower networks, the transmission time will
increase while the compression time will remain the same. So if the data were sent
without any compression, the delay would be higher since the time consumed is only
composed of the transmission component. In other words, the effect of the slow network
will be more on times that are composed of one component (the transmission time) than

those composed of two components (the transmission and processing times).
The following table predicts the breakeven point at which the gain occurs for a number of

networks, whereas figure 5.6 illustrates the results on a chart. It is worth noting that the

measurements were taken on a 10 Mbps network.

Network Speeds v. Breakeven Point for the PDF files using compression

Network Mbps Breakeven Point (KB)
Slow modem 0.0024 0
Basic fax/modem 0.0096 0
Fast modem 0.0144 0
Nokia’ HSCSD network 0.0576 0
ISDN 0.128 0
Cable modem 0.5 0
T1 1544 0
Wireless Bridges 2 0
3 25
10Base2 4 15
6 47
75 82
10BaseT, and Ethernet 10 187.5
11 388
115 393
Telesat satellite 12 398
125 403
13 not feasibile
T3 45 not feasibile
SONET 52 not feasibile
Fast Ethernet, 100BaseT, 100BaseT4, 100BaseTX, FDDI 100 not feasibile
ATM, STM-1 155 not feasibile
0OC-12 622 not feasibile
Gigabit Ethernet 1000 not feasibile
0OC-48 2400 not feasibile
0C-192 9600 not feasibile

Mobile Proxies 66

Breakeven Point v. Network Speed for the PDF files and using compression

; 7

- /
/

250 After this
point the MP
200 . system
becomes
/ unfeasible

? /
100

File size at which Breakeven Point occurs (KB)

0 2 4 6 8 10 12
Network Speed (Mbps)

‘ ¢ Breakeven Point =2 per. Mov. Avg. (Breakeven Point) ‘

Figure 5.6: The Breakeven point v. Network Speed

The second type of files used was the repetitive-number file. These, owing to their
nature, had a higher compression ratio than the previous type with most of the ratios
above 90 %. This meant that the transmission time would be more constant because the
actual size transmitted is very close across the range of files. Therefore the small files
will get the same benefit as the large files. Thisisin contrast to the previous case, where
the transmission time was irregular across the size range, with small files transmitted
quicker than the large ones.

Figures 5.7 to 5.9 illustrate the same charts but for the repetitive-number files.

Mobile Proxies 67

14

FileTransfer.sendData method time v. File size

35 -

At file
size =
92.7KB
15 |

The method time
(mSec)
N

0 t t t
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100

Size (KB)
¢ Measureme nts taken for the MP System
B Measurements taken wi thout the MP System
Linear (Measurements taken for the MP System)
Linear (Me asurements taken without the MP System)

Figure5.7: TheFileTransfer.sendData time with and without the M P system for the
repetitive-number files.

The DataTransfer.DataClient Process Time v. File size

8

7

6 =
-~ 5 =
o
]
£
~ 4
]
£
=

3

2

11

0

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100
Size (KB)
¢ Measurements taken for the MP System
B Measurements taken without the MP System
Linear (Measurements taken for the MP System)
Linear (Measurements taken without the MP System)

Figure 5.8: The DataTransfer.DataClient application time with and without the MP
system for the repetitive-number files.

Mobile Proxies 68

Compression Time v. Transmission Time

25

=
o

Time (msec)

i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
File Size (KB)

B The Compression/Decompression time B The Transmission Time ‘

Figure 5.9: The compression time ver susthetransmission timefor the

FileTransfer .sendData method using the MP system for therepetitive-number files.

The nature of the image files did not allow them to be compress more than 5 %, which
meant that the compression functionality is not suitable for that type of files. Hence

adaptability would be achieved by not applying the compression functionality.

5.3 Results of the Security Functionality

The security aspect of the system was implemented to cater for application that are
separated by untrusted networks as well as protecting any host that is downloading code
from hostile actions performed by that code.

All the mobile code downloaded from the server to the client, including the adaptable
proxies, the Transformers, and the functionality objects were signed and verified at the

Mobile Proxies 69

Client MPS before any instances of them were created. These signatures were applied at
all times even in the case compression was used.

However, the adaptability goal regarding security was achieved by applying, in addition
to digital signatures, encryption (symmetric and asymmetric) and message digests to the

file sent from client to the server object.

The digital signatures made sure that the source of the data arriving is authenticated as
being the client. Such an authentication would protect against masquerading.

The encryption would be necessary if the data sent is sensitive enough so that no
eavesdropping is alowed and the confidentiality of datais preserved.

Finally, message digests are a way of insuring that the data have not been tampered with

during the time it's travelling over the network. Thus the integrity of the data is insured.

The performance of these security extensions was measured, except for the message
digests, although it is not a goal. However this was done to get some feeling of how
expensive these functions are in terms of processing time.

The most expensive one was the asymmetric encryption to the degree that files larger
than 450 KB caused the JVM to run out of memory. Less expensive was the symmetric
encryption then the digital signatures. The table below gives an idea about the cost of

these functions for a sample PDF file of size 500 KB. A complete table can be found in

Appendix B.
Security Functionality The FileTransfer.sendDatdhe DataTransfer.DataClient
method time (Millisec.) process time (Millisec.)
Digital Signatures 10.091 16.53033
Symmetric Encryption 10.809 17.42833
Asymmetric Encryption 55.001 62.586

Mobile Proxies 70

5.4 Concluding Points

All the measurements were recorded at times when the network is most stable and the
amount of traffic isat aminimum. In addition, a number of measurements were taken for
each file, with the average being adopted as a representative of that measurement.

It should also be noted that the times were recorded for a dead server process, in which
case there is extra time spent by the ORB in starting the process. This choice was
preferred to calling the same process each time before it exits so that the worst possible

case would be always considered.

It can be claimed that if the appropriate knowledge about the environment, including the
state of the network, and the application was made available to the MP system that it can
achieve performance gainsin the case they are needed.

The system also satisfies security demands depending on the level of security required
and the sensitivity of the data sent as well as the nature of the network on which that data

travelling. Code mobility however is adways made secure.

Mobile Proxies 71

Chapter Six
Conclusion

The previous chapters demonstrated the different aspects of the adaptability problem in
client server environments and a proposal was suggested that provided a solution to this
problem in the performance and security contexts.

A survey was then carried out that included a number of technologies related to the goal
of the project but that fell short somewhere of achieving that goal.

Therefore a design was laid down for a system that would offer a mechanism for adding
extra functionality extensions to the runtime interaction between clients and servers so
that the security and communication performance requirements of that interaction would
be met.

The design was then implemented and evaluated for a number of functions including,
compression, digital signatures, and encryption (Ssymmetric and asymmetric).

In this chapter, a general review of the whole work and the lessons learnt will be

presented as well as a perspective to where future work may be directed.

6.1 Review of The Adaptability Problem

The fact that modern distributed systems are composed of a wide range of products and
network types meant that these systems should also offer mechanisms to alow for the
different products to interact in a way that will satisfy certain application- and
environment-level needs.

These needs are often expressed in terms of performance, security, fault tolerance,
processing power and other issues that can shape the way applications interact and the

outcome of that interaction.

Mobile Proxies 72

Adaptability is therefore the term that describes how well applications are matched
according to some level of acceptance. This level could be determined by certain
standards, like the Quality of Service (QoS) standard, or by some user-defined criteria.

Among the different aspects of adaptability, security and communication performance

where chosen as the two goals towards which this project was directed.

6.2 Review of the MP System

The MP system was designed as a mechanism that provides secure and performance-
enhanced interaction among applications integrated with the Common Object Request
Broker Architecture (CORBA) technology.

The system relied on two main concepts: The Proxy principle [Shapiro 1986], and the
concept of Interceptors [CORBA/IIOP v2.3 Spec 1999], both of which are used in the
CORBA technology.

These two concepts when combined provide a means by which the low level data bytes
exchanged by clients and servers may be exposed to the higher levels of applications and
hence allowing for some “intelligent” control to be applied. The control means that
different requirements of applications from the performance and security points of view

are met.

The system consists mainly of five modules distributed between the client and the server.
These modules provide the necessary mechanism for a proxy that carries some
adaptability semantics to be downloaded from the server’'s site and installed in the
client’s process.

This proxy will then install an interceptor that exposes the data exchanged between the
client and the server, and at the same time, feeding it to one or more functionality objects
that are capable of applying certain security- and/or performance-enhancement

techniques to the data.

Mobile Proxies 73

The adaptable proxy is chosen based on a decision taken by a third party, which could be
some form of an environmental repository which would hold different environment and
application level information for clients and servers.

The security implications rising from the code mobility were taken care of by using

digital signatures.

The system was implemented as MP v1.0 and represented by a number of packages, of
which the MobileProxies package holds the core system classes.
Java was the language of implementation and OrbixWeb from lona Technologies was

chosen as the integration framework for the system.

6.3 Review of the Evaluation Results

To alow for the MP system to be evaluated and assessed, an application was devel oped
that allowed a CORBA client to send afile as a byte array across the ORB to an IDL-
defined server object.

This application was used then to measure the performance of the different functionality
extensions provided under the two maor goals of the project, i.e. communication

performance and security.

The communication performance results revealed a gain that was achieved at a certain
file size, although this gain was very much dependent, among other things, on the nature
of files transmitted which determined their ability to be compressed.

A comparison was then carried out to determine the gaining point, or otherwise known as
the breakeven point, for a number of data transmission speeds varying from the slow
2400 bps modem, to the 9600 Mbps OC-192 network (figure 5.6 and the table preceding
it.)

This comparison revealed the fact that the MP system offered breakpoints as low as 0
byte files for the slow networks, but then it became unfeasible for the highly fast ones.

Mobile Proxies 74

These results emphasize the need for clients and servers to negotiate their environment
requirements and the nature of the data that is being exchanged which is application-
dependent.

The security measurements were solely meant to give an idea of how expensive (in terms
of time delay) these functions are.
The results were according to the expected profile that states that digital signature are the

least expensive whereas the asymmetrical encryption costs were the highest.

6.4 Future Work

The MP system is one step towards the achievement of adaptability among client-server
applications by improving the communication performance and enhancing security
measures.

However, further research can be carried out both horizontally and vertically.
Horizontally would be to look at other aspects of adaptability like fault tolerance, where a

server may or may not use a replicated process depending on the client’s fault tolerance
needs.

On the other hand, extra vertical research may be carried out, by looking at other entities
interacting with the MP system. Of these is the Environmental Repository and the
Environmental Objects (as suggested in section 3.1.3) both of which play a major role in
the decision-making process that will eventually determine the adaptability semantics

used in a particular interaction between the client and the server.
Further research would also include the cascading of different functionality-manipulating

objects allowing for a variety of extensions to be available and hence offer extra

adaptability semantics.

Mobile Proxies 75

A.1 Compression Performance Results

Appendix
Performance Results

The following tables show the performance results that were obtained for the

compression functionality of the MP v1.0 system.

A.1.1 The PDF Files

File (.pdf) Normal Size
1

© 0o ~NOO U WN

WRNNNNRNNNNNRNR R B R R
SODXDVNODTRONRPROOONOTOD®NRO

Notes:

(KB)
0
1

5

10
25
50
75
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1250
1500
1750
2000

The Mobile Proxies System Measurements for the Compression Functionality
(Using java.util.zip.Deflater. BEST_SPEED and java.util.zip.Deflater. DEFAULT_STRATEGY variables)

Request buffer (Bytes)
116
1140
5236
10356
25716
51316
76916
102516
153716
204916
256116
307316
358516
409716
460916
512116
563316
614516
665716
716916
768116
819316
870516
921716
972917
1024116
1280116
1536116
1792116
2048116

1- All times in msec unless otherwise mentioned
2- Measurements taken at 2.25 AM, 10 Aug.1999

Mobile Proxies

Compressed buffer (Bytes) Compression ratio %

89

769
2603
5187
10521
19116
27506
36132
62946
105180
153462
184980
214450
244971
292243
343458
386485
415477
450626
485563
520428
548024
578667
609023
636052
664396
817492
978322
1158857
1318920

76

2328
3254
50.29
49.91
59.09
62.75
64.24
64.75
59.05
48.67
40.08
39.81
40.18
40.21
36.60
32.93
3139
32.39
3231
32.27
3225
3311
33.53
33.93
34.62
3512
36.14
36.31

35.60

FileTransfer.sendData method time

Tx1
0.912
0.912
0.992
1.012
1.142
1.082
1.213
1.232
1.292
1.312
1512
1.502
1.603
1.873
1.863
1.883
1.964
2.154
2.204
2.224
2223
2.384
2515
2.605
2.764
2.654
3.105

4216
4877

™2
0.902
0.972
0.961
0.982
1.032
1.222
1.202
1.242
1.202
1.362
1412
1.463
1.563
1.652
1.933
1.893
2.014
1.993
2.074
2163
2.274
2.394
2404
2.605
2.744
2.664
3.065
3.655
4.287
4.868

Tx3
0.932
0.912
0.982
1.002
1.082
1172
1172
1152
1.262
1312
1413
1.583
1.613
1.853
1.843
1.853
1.973
2123
2.083
2.153
2.294
2.323
2.444
2514
2.594
3.045
3.005
3.635
4.256
4.798

Txav
0.915333
0.932
0.978333
0.998667
1.085333
1.158667
1.195667
1.208667
1.252
1.328667
1.445667
1.516
1.593
1.792667
1.879667
1.876333
1.983667
2.09
2.120333
218
2.263667
2.367
2454333
2574667
2.700667
2.787667
3.058333
3.632
4.253
4.847667

The DataTransfer.DataClient

T1
5.369
5.619

5.58
5.76
5.78
5.539
5.69
5.789
5.86
5.009
6
6.221
6.22
6.171
6.481
6.451
6.531
6.681
6.881
7.001
6.781
7.102
7.052
7.061
7.242
7.191
7.633
8.163
8.574
9.095

T2
5.519
5.529
5.619
5.449
5.799
5.779

5.73
5.719
5.679

6.02

6.13

6.24

6.12
6.461

6.47
6.741
6.601
6.631
6.611
6.772
6.952
7.101
7.001
7172
7.201
7.242
7722
8.063
8574
9.164

T3
5.49
5.58
5.519

5.98
5.533

5.73
5.629

5.64

5.94
5.719
5.956

6.16
6.271

6.32
6.681

6.32
6.791
6.701
6.742
6.701
6.852
6.861
7.172
7.162
7.121
7272
7.892
8113
8.594
9.004

Measurements taken without the Mobile Proxies System

File (.pdf) I Size (KB)

1 0
2 1
3 5
4 10
5 25
6 50
7 75
8 100
9 150
10 200
11 250
12 300
13 350
14 400
15 450
16 500
17 550
18 600
19 650
20 700
21 750
22 800
23 850
24 900
25 950
26 1000
27 1250
28 1500
29 1750
30 2000
Notes:

The FileTransfer.sendData method time

Tx1
781
802
831
821
832
942
982
051
201
513
502
532
763
793
953
113
973
043
243
314
554
474
574
814
764
854
335
.865
4.446
4.797

WNNNNMNNMNNNNMNNENRPRPRPRPRPRPRPRPRPRPRPPOOOOOCOO

w

Tx2
791
801
861
871
851
901
971
542
763
251
462
803
813
853
773
1.942
2.073
2.103
2.423
2.274
2.363
2.423
2.653
2.613
2.834
2.854
3.335
3.826
4.377
4.967

PRPRRPRPPPPOOOOOOO

[

1- Alltimes in msec unless otherwise mentioned
2- Measurements taken at 4.30 AM, 10 Aug.1999

File NpdMf) al Size (KB)

1 0

2

3

4 10

5 25

6 50

7 75

8 100

9 150
10 200
11 250
12 300
13 350
14 400
15 450
16 500
17 550
18 600
19 650
20 700
21 750
22 800
23 850
24 900
25 950
26 1000
27 1250
28 1500
29 1750
30 2000

Tesm1
T xav

T compiass

Mobile Proxies

Tx3
791
802
821
822
871
921
991
623
.312
613
582
583
693
753
1.792
1.893
2.012
2.093
2.254
2.433
2.323
2.394
2.593
2.694
2.694
2.874
3.414
3.846
4.447
4.857

PRPRRPRPPPPOOOOOOO

Txav
0.787667
0.801667
0.837667

0.838
0.851333
0.921333
0.981333
1.405333
1.425333

1.459
1.515333
1.639333
1.756333
1.799667
1.839333
1.982667
2.019333
2.079667
2.306667
2.340333
2.413333
2.430333
2.606667

2.707

2.764
2.860667
3.361333
3.845667
4.423333
4.873667

E stim ated Com pression/Decompression tim e

Compressed buffer (KB)

0.0
0.7
2.5
5.0
10.
18.
26.
35.
61.

86914063
50976563
41992188
65429688
27441406
66796875
86132813
28515625
47070313

102.7148438
149.8652344
180.6445313
209.4238281
239.2294922
285.3935547
335.4082031
377.4267578
405.7392578
440.0644531
474.1826172
508.2304688
535.1796875
565.1044922
594.7490234
621.1445313
648.8242188
798.3320313
955.3925781
1131.696289
1288.007813

Tesmu1

0.936074
937402
940984
946031
956449
.973236
989623
1.00647
1.058841
1.14133
1.23563
1.297189
1.354748
1.414359
1.506687
1.606716
1.690754
1.747379
1.816029
1.884265
1.952361
2
2
2
2
2
2
2
3
3

cococoooo

.006259
.066109
125398
178189
.233548
.532564
.846685
199293
511916

The DataTransfer.DataClient process time

T xav

ARWWNNNNNNNNNRRRPRRPRERRERRPRPRPROOOO

T1
5.117
5.078
5.087
5.267
5.558
5.268
5.308
5.348
5.468
5.989
5.969
5.789
6.188
6.139
6.629
6.449

6.57
6.599
6.529

6.63

6.75

6.87

6.92

7.16

7.13

7.14
7.721
8.332
8.913
9.424

.9734
L9752
.9824
L9914
.0184
.0634
1084
.1534
2434
.3334
4234
5134
.6034
.6934
.7834
.8734
.9634
.0534
1434
.2334
.3234
4134
.5034
.5934
.6834
7734
2234
6734
1234
5734

T2
117
.208
267
.238
127
.188
.287
5.288
5.418
5.467
5.929
6.059
5.999
5.929
6.099
6.269
6.169
6.369
6.789

6.82
6.649

o oo oo oaa

6.93
7.07
7.25
7.25
7.701
8.092
8.82
9.293

T compiaBS

0
0
0
0
0
0
0

0

POOOOOOOO0OO0OO0OOOOO0OOOO

.037326
.037798
.041416
.045369
.061951
.090164
.118777
0.14693
.184559
0.19207
0.18777
216211
.248652
279041
276713
.266684
272646
.306021
327371
.349135
.371039
407141
.437291
.468002
505211
.539852
.690836
.826715
.924107
.061484

T3
037
007
207
207
177
218
348
338
477
538
528
889
798
.159
5.838
6.118

o000 oo

(2]

6.369
6.66
6.51

6.569
6.94
7.27

7.241
7.15
7.23

7.792

8.262

8.803

9.394

5.
5.

5.
5.
5.
5.
5.
5.
5
5
5

o O O

(2N le]

~~

© 0

Estimated time for FileTransfer.sendD ata method withoutthe MP System forthe compressed buffer size.
Estim ated time for FileTransfer.sendD ata method using the MP System and for the norm al file size.
Estimated compression/decompression time (T

77

esm1

ST xav).

Tav
090333
097667

5.187
237333
287333
224667
314333
324667
454333

.664667
.808667
.912333

5.995
075667

.188667
.278667

6.413

445667
.659333
.653333

6.656

.836667

7.04
7.157

.176667
.206667

7.738

.228667
.845333
.370333

A.1.2 The Repetitive-Number Files

Measurements taken for the Mobile Proxies System at 4.00 PM (Saturday) All times in mSecs unless otherwise mentioned
The FileTransfer.sendData method The DataTransfer. DataClient application
File Size (KB) Request buffer (Bytes) Compressed buffer (Bytes) Compression ratio % TxXI Tx2 Tx3 Txav TIT T2 T3 Tav
1 0 116 104 1034 1111 1112 1.072 1.098333333 5.678 5528 5318 5.508
2 1 1140 386 66.14 1.072 1.091 1.072 1.078333333 5.608 5368 5.298 5.424666667
3 5 5236 424 9190 1.072 1.192 1102 1122 5.388 5448 5.458 5.431333333
4 10 10356 471 9545 1.092 1.212 1121 1.141666667 5368 5237 5.377 5.327333333
5 25 25716 543 97.89 1121 1102 1.072 1.098333333 5508 5.518 5.408 5478
6 50 51316 655 9872 1122 1322 1.121 1.188333333 5.368 5.668 5.448 5.494666667
7 75 76916 776 9899 1322 1162 1.122 1.202 5679 5698 5478 5.618333333
8 100 102516 869 99.15 1212 1202 1.192 1.202 5528 5458 5.698 5.561333333
9 150 153716 1076 9930 1222 1.332 1.141 1.231666667 5488 5598 5367 5.484333333
10 200 204916 1267 99.38 1.231 1.302 1.332 1.288333333 5.718 5538 5709 5.655
11 250 256116 1467 9943 1.392 1.362 1.281 1.345 5.648 5537 5.638 5.607666667
12 300 307316 1670 99.46 1.442 1472 1.402 1.438666667 6.339 5518 5.678 5.845
13 350 358516 1862 9948 1452 1462 1412 1.442 5.889 5.859 5.688 5.812
14 400 409716 2062 9950 1502 1492 1.492 1.495333333 6.119 5738 5.748 5.868333333
15 450 460916 2266 9951 1532 1593 1.522 1549 5.808 5668 5.808 5.761333333
16 500 512116 2459 9952 1573 1562 1.572 1569 5999 5859 6.018 5.958666667
17 550 563316 2659 9953 1572 1612 1.593 1.592333333 5978 5.918 5979 5.958333333
18 600 614516 2854 9954 1713 1.743 1.622 1.692666667 6.009 6.059 5.989 6.019
19 650 665716 3052 9954 1.652 1.812 1.683 1.715666667 6.399 5999 6.069 6.155666667
20 700 716916 3252 9955 1.692 1.662 1.672 1.675333333 6.309 6.088 6.109 6.168666667
21 750 768116 3454 9955 1.663 1.692 1.612 1.655666667 6.129 6.008 6.36 6.165666667
22 800 819316 3649 9955 1.702 1.752 1.632 1.695333333 6.249 6.45 5979 6.226
23 850 870516 3849 9956 1.812 1.643 1.713 1.722666667 6.108 6.399 6.179 6.228666667
24 900 921716 4051 9956 1.723 1.732 1.742 1.732333333 6.059 6.189 6.028 6.092
25 950 972917 4245 9956 1.753 1.732 1.702 1729 6.71 6.049 6.089 6.282666667
26 1000 1024116 4446 9957 1.722 1.783 1.702 1.735666667 6.099 6169 6.339 6.202333333
27 1250 1280116 5436 9958 1.822 1.793 1.742 1.785666667 6.149 6.139 6.089 6.125666667
28 1500 1536116 6426 9958 1712 1702 1.723 1.712333333 6.199 6.149 6.219 6.189
29 1750 1792116 7420 9959 1.793 1.752 1.722 1.755666667 6.119 5978 6.35 6.149
30 2000 2048116 8413 9959 1.793 1.773 1.682 1.749333333 6.119 6509 6.489 6.372333333
Measurements taken without the Mobile Proxies System at 8.00 PM (Saturday) All times in mSecs unless otherwise mentioned
The FileTransfer.sendData method The DataTransfer.DataClient application
File Size (KB) Tx1 Tx2 Tx3 Txav T1 T2 T3 Tav
1 0 0.891 0.791 0.891 0.857667 4.637 5.057 5.187 4.960333333
2 1 0.801 1.022 0.891 0.904667 5.277 4.777 4.937 4.997
3 5 0.911 1.022 1.081 1.004667 4.827 4.957 4.596 4.793333333
4 10 1.282 0.921 0.932 1.045 4.927 4.586 4.857 4.79
5 25 0.941 0.951 0.962 0.951333 4.787 4.887 4.957 4.877
6 50 1.132 1.012 1.362 1.168667 4.847 4.777 5.007 4.877
7 75 1.062 1.062 1.132 1.085333 4.847 5.058 5.108 5.004333333
8 100 1.212 1.102 1.372 1.228667 4.897 5.117 5.067 5.027
9 150 1.192 1.281 1.202 1.225 5.177 5.317 5.498 5.330666667
10 200 1.332 1.361 1.342 1.345 5.508 5.372 5.168 5.349333333
11 250 1.462 1.382 1.402 1.415333 5.298 5.538 5.407 5.414333333
12 300 1.642 1.512 1.582 1.578667 5.719 5.368 5.658 5.581666667
13 350 1.693 1.592 1.673 1.652667 5.678 5.798 5.468 5.648
14 400 1.752 1.792 1.783 1.775667 5.678 5.628 5.498 5.601333333
15 450 1.893 1.793 1.863 1.849667 5.728 5.668 5.779 5.725
16 500 1.963 1.852 1.923 1.912667 6.089 6.139 5.6681 5.965366667
17 550 2.093 2.013 2.083 2.063 6.108 5.938 6.139 6.061666667
18 600 2.053 2.003 2.073 2.043 6.099 6.5 5.918 6.172333333
19 650 2.223 2.083 2.073 2.126333 6.269 6.068 6.289 6.208666667
20 700 2.123 2.293 2.043 2.153 6.088 6.579 5.949 6.205333333
21 750 2.213 2.273 2.224 2.236667 6.079 6.179 6.079 6.112333333
22 800 2.224 2.514 2.083 2.273667 6.55 6.429 6.219 6.399333333
23 850 2.553 2.263 2.363 2.393 6.499 6.459 6.559 6.505666667
24 900 2.354 2.404 2.503 2.420333 6.51 6.299 6.239 6.349333333
25 950 2.353 2.424 2.423 2.4 6.44 6.87 6.189 6.499666667
26 1000 2.924 2.464 2.724 2.704 6.729 6.139 6.62 6.496
27 1250 2.454 2.825 2.553 2.610667 6.52 6.6 6.689 6.603
28 1500 2.734 2.644 2.483 2.620333 6.91 7.19 6.499 6.866333333
29 1750 2.674 2.684 2.704 2.687333 6.84 6.79 7.37 7
30 2000 2.934 2.934 3.014 2.960667 6.98 7.03 7.08 7.03

Mobile Proxies 78

n
o
»

CODPDNNUBEWNROOONODNRWNRLOO®O~NDWAWNR

WNNRNNNNNNNNRRRBRRRBRRRR

NR R e

Tesma
T xav

ize (K B)

CUOUOUOUOUOUOUOUOUOUOUONUN R
C0O0000O00000O0O00O0O0O00O0O0OO0O0OUO WO Uk o

ONUINOOO®WON~NODNUOEREWWOWNNR R

Tcompraes

A.2 Security Performance Results

E stim ated C om pression/D e

Comopressed Size

E stim ated tim e for FileTransfer.se
Estim ated time for FileTransfer.se
Estimated com pression/decom pre

0.

ONOUDADRWWWWWONNNNNNRRREPPRPPOOOOOOO

NNNWWRONUTWRONOANOOOREANO®N®UNLDLWER
NOORPRAUTODODDIDNRDOOORRPNWWARUTNUONWODER ®O

(K Bytes)

com pres

Tesmu

PR e

© 0 0O M MMO®OMO®OW®O®®®®® i
© GO 0 0 0 0O GO 0 GO G MMM MMO®MO®®®®OE K

PRRPRRREPPRPRPRRERRRERRERRRERRRERRPRRRRERRRRER
PRRPRRREPPRPRPRRRRERRERRRERRRERRPRRERRRERRRRER

ndD ata m e
ndD ata m e
ssion tim e

© (© ©©© ©©©®©W©®©©OWOWOWOOOOOOOOOOOO©WO®D®®

th
th
(T

C00OO00O00000000O000O00000O0OO0O0OO®®®®
©CONOUBAABRARWWWWWNNNNNRRERREREROOO®

tim e v F

T xav

NRRPrRRRPRRPRPRPRRPPRRERRRERPRPRERRRERERRERRERERR
COPNDOODUNNUNNNBEEAREEROWRWWWNNNNNNNN
U ORWRONTWREONU®WEREONUWERO®N®AOaa
WWWwwWwwwwwowwowowwowwowouwowwoewowwwww-osw

od without the

od using the M P System

esm 1

- T oxav).

ile

© GO 0 0 0 0O GO 0 O GO GO O O 000G M W®®OM® O N ®

M P

size

Tecom

C0O0O0O0O000O0O0O0O0O0O0OO00O0OO0O0O0OO0O0O0O0OO
PNOUBBREABROWWWWWNNNNNRRERRRERROOO

o ooo

ODODODERNOPDIBRNOPRDIENOD®ODANOO©®

pLA

AAMAAADDADAARADNDARARADNDRARADNDNDNARADNDNDNOOOO

System

a

for the

nd

© © © © © © © © © © © © © © ©©©© ©©©®O©®O©®©OWOwodu N

PNWRUOODDO NN~ ~®O®O®O®POOO©O©O©OOO©WwO

for the

compressed

norm al file

The security performance results were taken for three of the security. These results are

only meant to show how much security costs in terms of performance.

File (.pdf) I Size
1

©~NO OGN ®N

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Notes

(KB)
0

1

5

10
25
50
75
100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950
1000
1250
1500
1750
2000

The Mobile Proxies System Measurements for the Digital Signatures Functionality

(Using DS A algorithm)

The sendData method time

Tx1
.257
.139
441
.536
6.96
6.85
6.189
8.552
7.832
9.624

8.923
10.184
10.495
10.815
11.276
10.745
10.765
11.106
11.306
12.378
13.309
12.719
13.409
15.032

13.99

14
16.103
18.606

20.84

22.513

5
6
7
5

Tx2
.249
.288
619
499
6.47
7.842
8.002
8.562
8.191
9.153
9
0
9

oo uo

263

.095

644
9.694
10.315
10.215
11.046
11.336
12.048
12.238
12.377

13.73
13.569
14.661
15.623
14.681
17.685
18.787

20.67
23.354

1- Alltimes in msec unless otherwise mentioned
2-Measurements taken at 12.15 AM, 26.8.1999

Mobile Proxies

4.

Tx3
346

6.45

o
©CooOom®UOADO G

-
o w©

10.
10
10
11
12
13
12
13.
13
14

.538
.299
469
.606
267
.652
.873
.375
.956
.043
.624
.764
.305

926

.465
.785
707
769
379
628

119

.239
.831

14.25

16.
18.

093
377

20.33

24.

104

79

Txav
5.284
5.959

6.532667
6.111333
6.633
6.432667
6.486
8.588667
8.298667
9.717333
9.714
9.774
9.921
10.091
10.632
10.62867
10.75867
11.07567
11.687
12.46167
13.02167
13.02567
13.36567
14.31067
14.81467
14.31033
16.627
18.59
20.61333
23.32367

The DataClient process time

12.
12.
14.
12.

T1
417
678
361
006

14.13

13.
12.
15.
14.
16.
15.
17.
17.
17.
17.
17.
17.
17.
18.
19.
19.
19.

359
578
081
641
444
963
124
085
505
645
625
515
144
407
388
949
969

20.86

21.

711

20.71

20.
23.
26.
27.
30.

569
373
879
509
694

13.
12.
13.

T2
229
098
269

13.71
13.43

14.
14.
15.
15.
16.
15.
17.
16.
16.
17.
17.
17.
17.
18.
19.
19.
20.
19.
21.
21.
21.
24.
26.
27.
30.

341
551
692
161
133
713
045
073
063
565
526
485
465
647
258
588
399
969
881
962
961
555
759
549
584

T3
11.357
13.48
12.198
12.708
12.878
11.736
12.618
15.552
15.712
16.894
17.285
15.863
16.314
16.023
17.185
17.906
18.808
16.774
18.677
19.188
19.628
19.708
19.939
19.589
23.043
20.85
23.073
25.306
27.49
29.323

Tav
12.33433
12.752
13.276
12.808
13.47933
13.14533
13.249
15.44167
15.17133
16.49033
16.32033
16.67733
16.49067
16.53033
17.465
17.68567
17.936
17.12767
18.577
19.278
19.72167
20.02533
20.256
21.06033
21.905
21.12667
23.667
26.31467
27.516
30.20033

file size.

size .

File (.pdf) | Size (KB)

1 0
2 1
3 5
4 10
5 25
6 50
7 75
8 100
9 150
10 200
11 250
12 300
13 350
14 400
15 450
16 500
17 550
18 600
19 650
20 700
21 750
22 800
23 850
24 900
25 950
26 1000
27 1250
28 1500
29 1750
30 2000
Notes:

The Mobile Proxies System Measurements forthe Asymmetric Encryption Functionality

(Using RSA algorithm with PKCS1 padding)

The sendimage method time

Tx1
6.9
6.52
7.231
7.661
8.863
10.866
14.521
17.305
23.904
30.714
38.756
43.011
49.221
55.42

Tx2
5.799
5.087

6.94
6.449
8.602

11.486
15.463
17.956
23.814
30.925
36.352
42.641
49.601
55.029

36.222
42.471
49.121
54.554

Txav
5.875333
6.349333
7.247333
6.746333

8.896
11.10267
15.04867
17.90267

24.041
30.52433

37.11
42.70767
49.31433

55.001

At this file size, the Request buffer becomes

too large that a java.lang.OutofMemoryError error is rased.

1- Alltimes in msec unless otherwise mentioned
2- Measurements taken at 6.10 AM, 26.8.1999

File (.pdf) | Size (KB)

1 0
2 1
3 5
4 10
5 25
6 50
7 75
8 100
9 150
10 200
11 250
12 300
13 350
14 400
15 450
16 500
17 550
18 600
19 650
20 700
21 750
22 800
23 850
24 900
25 950
26 1000
27 1250
28 1500
29 1750
30 2000
Notes:

T1
14.271
12.959

13.92
15.001
15.743
17.786
21.381
24.976
30.884
37.303
45.315
50.632
56.421
63.121

T2
12.108
12.107

13.99
13.329
15.612
18.076
21.762
25.026
30.133
37.504
43.602
49.501

55.66
61.639

The ImageClient process time

T3
12.718
14.27
13.8
12.768
15.793
17.095
22.072
25.457
30.804
37.244
42.822
48.941
56.201
62.998

Tav
13.03233
13.112
13.90333
13.69933
15.716
17.65233
21.73833
25.153
30.607
37.35033
43.913
49.69133
56.094
62.586

The Mobile Proxies System Measurements for the Symmetric Encryption Functionality

(Using DES algorithm with PKCS5 padding)

The sendlmage method time

Tx1
958
427
198
.138
6.95
6.95
6.249
7.841
6.509
9.273

8.843
10.085
11.467
10.856
11.997
12.208
15.232
14.811
15.272
15.823
15.162
17.625
16.845
18.537
19.007
19.918
23.313

27.63
30.574
33.968

o v o a

Tx2
4.617
5.898

7.01
6.64
5.267
6.71
7.08
6.128
8.813
9.814
10.352
9.936
10.726
10.465
11.306
13.639
13.98

1- Alltimes in msec unless otherwise mentioned
2- Measurements taken at 4.00 AM, 26.8.1999

Mobile Proxies

Tx3
389
698
779
988
631

~ oo o

6.019
7.33
7.591
9.193
8.743
10.215
10.385
11.106
11.667
13.209
12.838
14.861
15.762
15.913
16.314
16.623
18.176
18.016
18.607
20.199
24.315
27.089
31.485
36.142

80

Txav
654667
.674333
995667
.255333

6.616
6.74
449333
.099667
637667
426667
9.312667
10.07867
10.85933

10.809
11.65667
13.01867
14.01667
14.68733
15.24833
15.86967
15.75267

17.091

17.739
17.95267

18.748

19.975

23.417
27.33633

31.495
34.62967

o v o a

© N~

The ImageClient process time

T1
12.447
11.727
11.537
12.548

14.05

13.93
14.441

14.08
13.149
16.563
15.793
18.416
18.407
17.695
18.026
19.078
21.731
21.461
22.141
22.843
21.722
24.825
23.254
25.096
25.486
26.418
29.583
33.728
37.284

41.26

T2
11.176
12.187
13.349
13.369
12.227
12.949

14.23
13.039
15.362
16.784
16.754
17.836
17.195
17.355
17.385

20.42

20.78
22.532
21.871
22.983
22.743
24.185
25.036
24.606

25.78
26.448
29.803

34.3
39.146
40.058

T3
12.879
12.589
12.799
12.618

14.19

13.71
12.308
13.669

14.51
16.053
15.753
17.365
17.335
17.235
18.186
20.079
19.478
21.791
22.492
22.402
23.013
22.933
24.645
24.845
25.177
26.879
31.525
33.117
38.385
43.432

Tav
12.16733
12.16767
12.56167

12.845
13.489
13.52967
13.65967
13.596
14.34033
16.46667
16.1
17.87233
17.64567
17.42833
17.86567
19.859
20.663
21.928
22.168
22.74267
22.49267
23.981
24.31167
24.849
25.481
26.58167
30.30367
33.715
38.27167
41.58333

[Bershad et al 1995]

[Byous 1999]

[Chawathe, Brewer 1998]

[Chawathe et al 1998]

[CORBA/IIOP v2.3 Spec. 1999]

[Jini™ Architecture Spec. 1999]

[Katz 1994]

Mobile Proxies

References

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. E. Fiuczynski, D. Becker, C. Chambers, and S.
Eggers. Extensibility, Safety and Performance in
the SPIN Operating System. ACM, 1995.

J. Byous. Jini™ Technology Grants the Ultimate
Wish.Jini™ Technology Homepage, 1999.

Y. Chawathe, and E. BrevBystem Support for
Scalable and Fault Tolerant Internet Services.
Proceedings of Middleware, 1998.

Y. Chawathe, S. McCanne, S. Fink, and E. A.
Brewer. A Proxy Architecture for Reliable
Multicast in Heterogeneous Environments. ACM
Multimedia, 1998.

CORBA/IIOP v2.3 Specification. The OMG,
1999, Chapter 21.

Jini™ Architecture Specificatiorsun, 1999.

R. H. Katz. Implementing Communication
through “Situation Awareness” Adaptation and
Mobility in Wireless Information System$EEE
Personal Communications Magazine, First
Quarter 1994, Volume 1, Number 1.

81

[Knudsen 1998]

[Leue, Holzmann 1999]

[Mitchell et al 1993]

[Nelson 1981]

[Nelson, Khalidi 1993]

[Nelson, Khalidi 1993]

[Oaks 1998]

[OPG 1998]

Mobile Proxies

J. Knudsen. Java Cryptography. O'Reilly &
Associates, Inc., 1998.

S. Leue, and G. HolzmawRromela: A Visual,
Object-Oriented Language for SPIN.
Proceedings of the Second IEEE International
Symposium on Object-oriented Real-time
Distributed Computing ISORC '99, Saint Malo,
France, 1999.

J. G. Mitchell, J. J. Gibbons, G. Hamilton, P. B.
Kessler, Y. A. Khalidi, P. Kougiouris, P. W.
Madany, M. N. Nelson, M. L. Powell, and S. R.
Radia. An Overview of the Spring System. Sun
Microsystems Inc., 1993.

B. J. NelsonRemote Procedure Call. Carnegie-
Mellon University report CMV-CS-81-119, 1981.

M. N. Nelson, and Y. A. KhalidiThe Soring
Virtual Memory System. Sun Microsystems
Laboratories Inc., 1993.

M. N. Nelson, Y. A. Khalidi, and P. W. Madany.
The Soring File System. Sun Microsystems
Laboratories Inc., 1993.

S. OaksJava Security. O'Reilly & Associates,
Inc., 1998.

OrbixWeb Programming Guide. lona
Technologies PLC, 1998.

82

[ORG 1998] OrbixWeb Reference Guide. lona Technologies

PLC, 1998.

[Shapiro 1986] M. Shapiro. Sructure and Encapsulation in
Distributed Systems: the Proxy Principle. 1EEE,
1986.

Mobile Proxies 83

WWW Resources

http://www.act.navy.mil/Adaptability Flexibility.htm

http://www.sun.com/jini/overview/

http://www.cs.washington.edu/research/proj ects/ spin/'www/

http://www.omg.org

o > WD P

http://www.aba.net.au/sol utions/crypto/jce.html

Mobile Proxies 84

