
A Distributed Event System for Use in Mobile Environments

Peter Barron BAI, BA

Department of Computer Science,

Trinity College, Dublin.

A dissertation submitted to the University of Dublin,

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science

September 1999

Peter Barron i September 99

Declaration

I, the undersigned, declare that the work described in this dissertation is, except where otherwise stated,

entirely my own work and has not been submitted as an exercise for a degree at this or any other

university.

Signed: ___________________

Peter Barron

September 1999

Permission to lend and/or copy

I, the undersigned, agree that Trinity College Library may lend and/or copy this dissertation upon

request.

Signed: ___________________

Peter Barron

September 1999

Peter Barron ii September 99

Abstract

Recent research into the automation of certain tasks within buildings has been shown to provide a

better working environment and also has the potential to make buildings more responsive to the needs

of the community at large. The name "smart building" is usually applied to such settings. Such an

experimental environment is planned for the O’Reilly Institute, Trinity College Dublin. Examples of

services that could be provided, include forwarding of calls and e-mail, automatic door opening for

people who have been given access permission, management of heating/lighting and tailoring

information delivery to the users current context/location.

It is envisioned that people within the building will carry a hand held device, which will be their point

of access to the building. Using the hand held device, users would be able to access the different

services around the O’Reilly building. The services that the users can access will depend on where they

are located, and what rights they have to that service. Examples may include printer and terminal

access rights.

This project proposes the development of a system that will act as the glue between the different

services and devices within the smart building. The glue in this case is a distributed event service that

has the ability to support mobile devices. The creation of a filtering system whose primary purpose is

to reduce the volume of traffic will also be necessary. For example discriminating between the types of

e-mail downloaded. The other aspiration of this project is develop it in a manner that can be scalable.

Peter Barron iii September 99

Acknowledgements

First and foremost, I wish to thank my supervisor Dr. Paddy Nixon for his invaluable advice and

assistance in completing this dissertation. Also, many thanks to Dr. Simon Dobson for the advice and

comments that I received. Thanks to Mads Haahr for allowing me use the Cambridge event data during

testing of this event service. Finally, many thanks to my family and friends for their support and

patience in completing this dissertation.

Peter Barron iv September 99

Contents

1. INTRODUCTION.. 1

1.1 MOTIVATION .. 1

1.2 OBJECTIVES .. 1

1.3 ROADMAP... 2

2. EVENT SERVICES... 3

2.1 INTRODUCTION ... 3

2.2 CORBA’S EVENT SERVICE .. 3

2.2.1 CORBA EVENT MODEL ... 3

2.2.2 SUMMARY .. 4

2.3 ECO ... 4

2.3.1 OVERVIEW OF THE ECO MODEL ... 5

2.3.2 ECO API .. 5

2.3.3 SUMMARY .. 6

2.4 JEDI ... 6

2.4.1 OVERVIEW OF JEDI ARCHITECTURE .. 6

2.4.2 EVENT DISPATCHER ... 7

2.4.3 MOBILITY ... 8

2.4.4 SUMMARY .. 8

2.5 SIENA.. 8

2.5.1 OVERVIEW OF SIENA EVENT SERVICE .. 8

2.5.2 FILTERS AND PATTERNS ... 9

2.5.3 MOBILITY ...10

2.5.4 OPERATION BEHAVIOUR... 10

2.5.5 SERVER TOPOLOGIES .. 10

2.5.6 SUMMARY .. 11

2.6 CAMBRIDGE EVENT MODEL ... 11

2.6.1 OVERVIEW OF MODEL .. 12

2.6.2 FILTERS .. 12

2.6.3 COMPOSITE EVENTS ... 12

2.6.4 SUMMARY .. 13

2.7 JAVABEANS .. 13

2.7.1 ARCHITECTURE... 13

2.7.2 SUMMARY .. 14

2.8 SUMMARY OF EVENT SERVICES.. 14

3. WORKING ENVIRONMENT ... 16

3.1 INTRODUCTION ... 16

Peter Barron v September 99

3.2 SMART BUILDING ... 16

3.3 MOBILE ENVIRONMENT.. 16

3.4 POLICY SERVER .. 16

3.4 SUMMARY .. 17

4. DESIGN .. 18

4.1 INTRODUCTION ... 18

4.2 EVENT SERVICE REQUIREMENTS .. 18

4.3 OVERVIEW OF DESIGN .. 19

4.4 DESIGN OF EVENT SERVICE .. 19

4.4.1 MAIN COMPONENTS OF SERVICE .. 19

4.4.2 EVENTS... 20

4.4.3 EVENT SERVICE OPERATIONS... 20

4.4.4 CONTROL EVENTS .. 24

4.4.5 FILTERS 25

4.4.6 MOBILITY ... 25

4.4.7 EVENT NAMING SERVICE.. 27

4.5 SUMMARY .. 29

5. IMPLEMENATION.. 30

5.1 INTRODUCTION ... 30

5.2 EVENT BUS... 31

5.3 SINK.. 34

5.4 SOURCE .. 35

5.5 FILTERS 36

5.6 EVENTS... 36

5.7 EVENT NAMING SERVICE.. 37

5.8 SUMMARY .. 38

6. EXPERIMENTS AND EVALUATION... 39

6.1 INTRODUCTION ... 39

6.2 EFFECTIVENESS OF FILTERS.. 39

6.2.1 ACTIVE BADGE SYSTEM ... 39

6.2.2 EXPERIMENT SET-UP... 39

6.2.3 RESULTS ... 41

6.3 PERFORMANCE ... 42

6.3.1 SUBSCRIBING.. 42

6.3.2 UNSUBSCRIBING... 42

6.3.3 ADVERTISING ... 43

6.3.4 UNADVERTISING .. 43

6.3.5 NOTIFICATION OF EVENTS .. 43

Peter Barron vi September 99

6.4 EVALUATION OF EVENT SERVICE ... 44

7. CONCLUSION .. 45

7.1 DISSERTATION REVIEW .. 45

7.2 ACHIEVEMENTS .. 45

7.3 FUTURE DEVELOPMENTS .. 46

7.4 CONCLUDING REMARKS ... 46

BIBLIOGRAPHY.. 47

APPENDIX A – EVENT SERVICE IDL FILE .. 49

APPENDIX B – EXAMPLE CLASSES FOR A TYPE EVENT ... 51

B.1 PETEREVENTSINKLISTENER ... 51

B.2 PETEREVENTSINK... 51

B.3 PETEREVENTSOURCE.. 52

B.4 PETEREVENTFILTER ... 52

Peter Barron vii September 99

List of Figures

FIGURE 1 EVENT CHANNEL .. 4

FIGURE 2 A LOGICAL VIEW OF JEDI ARCHITECTURE.. 6

FIGURE 3 STRUCTURE OF DISTRIBUTED EVENT DISPATCHER (DS). ... 7

FIGURE 4 HIGH LEVEL VIEW OF THE SIENA ARCHITECTURE.. 9

FIGURE 5 EXAMPLE OF AN EVENT FILTER .. 9

FIGURE 6 EXAMPLE OF A PATTERN OF EVENTS ... 10

FIGURE 7 SIENA SERVER TOPOLOGIES. ... 11

FIGURE 8 OVERVIEW OF JAVABEANS EVENT MODEL... 13

FIGURE 9 MAIN COMPONENTS.. 20

FIGURE 10 ADVERTISING AN EVENT.. 21

FIGURE 11CLIENT SUBSCRIBING TO AN EVENT ... 22

FIGURE 12 NOTIFICATION OF AN EVENT TO INTEREST PARTIES... 23

FIGURE 13 UNSUBSCRIBING FROM AN EVENT ... 24

FIGURE 14 MOBILITY OF SINKS .. 26

FIGURE 15 MOBILITY OF SOURCES... 27

FIGURE 16 EVENT NAMING SERVICE STRUCTURE .. 28

FIGURE 17 BASIC COMPONENTS AND INTERACTIONS BETWEEN COMPONENTS.. 30

FIGURE 18 EVENT DATA STRUCTURE... 32

FIGURE 19 OVERVIEW OF SINK WITHIN THE USER DOMAIN ... 34

FIGURE 20 OVERVIEW OF ACTIVE BADGE SIMULATION... 40

FIGURE 21 SUBSCRIBING RESULTS.. 42

 FIGURE 22 UNSUSCRIBING RESULTS.. 43

FIGURE 23 AVERAGE TIMES FOR SINK TO RECEIVE AN EVENT... 44

Peter Barron viii September 99

List of Tables

TABLE 1 RESULTS FROM GOD EXPERIMENT ... 41

TABLE 2 RESULTS FROM BIG BROTHER EXPERIMENT .. 41

TABLE 3 RESULT FROM THE CCTV EXPERIMENT... 41

TABLE 4 SUBSCRIBING RESULTS .. 42

TABLE 5 UNSUBSCRIBING RESULTS.. 43

TABLE 6 ADVERTISING AN EVENT RESULTS.. 43

TABLE 7 UNADVERTISING AN EVENT RESULTS... 43

TABLE 8 NOTIFICATION OF AN EVENT USING A FILTER ... 43

Peter Barron 1 September 99

1. INTRODUCTION

1.1 Motivation

Increasing interest has been shown in the automation of certain tasks within a building, whether it is in

the home or at the office. The potential to make the building more responsive to the wants and needs of

the community make it an attractive and potentially useful concept. The name “smart building” or

“intelligent building” is usually applied to such settings. The Intelligent Interfaces and Building (IIB)

group plans such an experimental environment for the O’Reilly Institute in Trinity College Dublin. The

services that an intelligent building could provide are endless, some examples could include phone

messages and email being forwarded to your current location, the automatic opening of doors for

people with the appropriate access permission and the setting of heating and lighting to users

requirements. The list of services that could be provided by an intelligent building is unbounded, all

that is needed is an imaginative mind.

People within the building will carry small hand held devices that will act as their point of access to the

smart building. Such a device could be Personal Digital Assistant (PDA), which are readily available in

the market place. It envisioned that people using the hand held devices would be able to access the

different services around the smart building. Although this depends on the location of the person within

the smart building and what permission they have to use a service. Such services can include access to

certain printers and terminals.

Much work has already been developed for the infrastructure of a smart building. A Policy Service

[Kunetz1999] has been developed to control the rights or permissions of users to access the different

services within a smart building. A framework [GD1999] has been built to allow sensors or motors that

are located on a LonWorks network access from an Ethernet network. Also, described in [WND1999]

is the architecture for the mobility of objects within a mobile environment.

The purpose of this dissertation is to provide an infrastructure that will allow the different components

within a smart building communicate with each other. To this aim a distributed event service will be

used. The goal of this dissertation is to design and implement this distributed event service, to ensure

that it will be able to cope within a smart building environment and capable of controlling the flow of

events from producer to consumers.

1.2 Objectives

The overall objective of this work is to develop a distributed event service that will be able to cope with

the environment outlined in the previous section and detailed in Chapter 3. This is broken down into

four main sections.

• Review other event services that have been developed in the research domain or have

been implemented within the commercial sector and identify the different features that

they use to create the event services.

Peter Barron 2 September 99

• Ensure that event service that is developed within this dissertation can be integrated into

the software model of the smart building and in particular support the use of the Policy

Server within the service.

• Develop an event service that uses typed events and has the ability to ensure that event

storming 1 does not occur.

• The last objective is to show that additional features such as filters help in the scalability

of the event service.

1.3 Roadmap

Chapter 2 reviews the current event services that have developed with the research and commercial

sectors. It pays particular attention to the event services that have influenced the design and

implementation of the event service developed within this dissertation.

Chapter 3 explores the environment in which the event service is required to operate in.

Chapter 4 presents the design for a distributed event service that may be used within the environment

introduced in Chapter 3.

The implementation of the proposed architecture is discussed in Chapter 5. Its evaluation is considered

in Chapter 6.

Finally, Chapter 7 summarises the achievements of this work and possibilities for future research.

1 Event Storming is the uncontrolled notification of events to clients, who may or may not wish to receive the notification of

events.

Peter Barron 3 September 99

2. EVENT SERVICES

2.1 Introduction

In recent years event and notification services have come to the forefront as a means of increasing the

potential of some user applications. These services come in many different shapes and sizes, from

Graphical User Interfaces to bigger more distributed services such as the one employed by Corba’s

[CORs1998] event service. This is an area of research which is ever expanding and which is now

covering a cross section of computer industry. This chapter reviews the different approaches that have

been used to develop these event and notification services. Two of these services have come from the

commercial sector and remainder has been gathered from the research domain.

2.2 CORBA’s Event Service

The Common Object Request Broker Architecture (CORBA) event service is part of an additional

group of services that have been defined by the Object Management Group (OMG) under the

[CORs1998] specification. This service adds an extra dimension to the CORBA standard by adding

another means for CORBA objects to communicate with each other. Instead of the normal direct

invocation methods from object to object, the CORBA Event Service defines two roles for the objects:

the supplier role 2 and the consumer role 3. This allows the decoupling of communication between the

objects. The following sections will define the architecture for this service.

2.2.1 CORBA Event Model

Under the specification for the Event Service [CORs1998] there are two different ways of initiating

event communication between suppliers and consumers. The first approach requires the supplier of the

events to start the transfer of the event data to the consumers. This is known as the push model. The

other method allows the consumers to request the event data from the suppliers and is known as the

pull model. In the pull model the consumer has the choice of either using a blocking or non-blocking

method for obtaining the event data. If the blocking method is used the consumer’s execution thread

will be blocked until an event has been received. Alternatively, the consumer can poll the channel for

events.

For the consumer to receive event data it first has to set up the connection with the supplier. The

simplest method is for the consumer to swap object references with the supplier. However, to make the

connection more anonymous an event channel can be used. The event channel is a CORBA service that

allows multiple suppliers and consumer to communicate asynchronously with each other. The channel

is a standard CORBA object and the communication is accomplished by using the normal CORBA

request.

2 The supplier is responsible for the production of event data.
3 The consumer is responsible for processing the event data produced by the supplier.

Peter Barron 4 September 99

For suppliers and consumers to attach to the event channel a two step registration process has to be

completed. The supplier or consumer must obtain a proxy from the administrator interfaces,

ConsumerAdmin and SupplierAdmin, which are located on either side of the event channel. On

receiving a proxy the consumer or supplier can then connect to the channel through the proxy (see

fig1).

Figure 1 Event Channel

The reason for this two step approach is to allow support for composing event channels by an external

agent. Such an agent could obtain the proxy supplier from one event and the proxy consumer from

another and by passing the reference to the other as part of their connect operation it is possible to

compose the two channels.

Communication of events can either be generic or typed. In the generic case, all the event data is

passed as a single parameter through the event channel. While in the typed case, a mutually agreed

interface has to be defined in the OMG IDL. Once agreed upon, the typed interfaces of the proxy and

admin objects can be defined. The typed version of the pull consumer and push supplier proxy will

only allow event requests of that particular type to be passed through to the consumer. This therefore

acts as an event filter based on type.

2.2.2 Summary

The CORBA Event Service standard has defined a very generic event service that could be used in

almost any type of application. There are however some drawbacks to the current specification. The

major one is the limitations of filtering in the specification. Although at this point a RFP has been

issued and a number of submissions 4 have been submitted to OMG.

2.3 ECO

The event model described in [SCT1995] was developed at the computer department at Trinity College

Dublin. This event model was initially developed to address the distributed virtual reality that might be

associated with next generation video games. The environment it was expected to work in, was one

where a single source may disseminate information to a number of destinations. The model was also

expected to support real-time applications as well as more large-scale applications with thousands of

objects.

4 [TIHP1998] and [BDEF+1998]

Event ChannelConsumerAdmin SupplierAdmin

Consumers

Supplier Proxy

Supplier Proxy

Consumer Proxy

Consumer Proxy

Suppliers

Peter Barron 5 September 99

2.3.1 Overview of the ECO model

The abbreviation ECO stands for the three main central concepts of this model: Events, Constraints and

Objects. Within the ECO environment everything is described as an object. Each object is an instance

of a class, which has instance variables and a number of methods that act on these variables. These

objects communicate by announcing events and by processing these events. An ECO object is able to

announce or receive any number of different events. The event is the means by which the ECO objects

can communicate. In [SCT1995] the event is defined as a typed event.

Constraints are a mechanism by which the ECO model can control the propagation of events. It

accomplishes this by specifying a condition that must be fulfilled before the event can be passed on.

Within this model there are three different types of constraints Notify, Pre and Post.

Notify Constraints

The notify constraint is an option provided by the destination object to help in control the propagation

of events. When an ECO object subscribes to an event it can specify the conditions (constraints) to be

fulfilled before the event is forwarded to the subscribing object. The only data that the conditions may

use are those that are contained in the parameters of the event.

Pre and Post Constrains

The Pre and Post constraints are attached to the method/event bindings of the ECO object. These

constraints are executed locally as they require access to object instance variables. They are used to

implement synchronisation within the objects, as well as controlling the concurrency level and timing

control.

2.3.2 ECO API

The API for the ECO is based on three operations that allow the ECO objects to receive and send

events. The subscribe operation is used by the ECO object to show its interest in a particular event. It is

of the form,

Subscribe MethodName(EventName,NotifyName,PreName,PostName);

The MethodName is local to the object that invokes the subscription and the EventName is the name of

the event that the object wishes to subscribe to. The last three parameters are constraints, which are an

optional extra. For the ECO object to subscribe to the event, it first must be declare in its inevent list.

For an ECO object to raise an event it uses the announce operation to notify the ECO objects that are

interested in the event. It is of the form,

Announce EventName(parameters);

The EventName must be located in the outevent list for the ECO object to raise the event. The operation

is asynchronous, so it is not necessary for the ECO object to wait for the event to be sent.

The unsubscribe operation is used by the ECO objects to unregister there interest in a particular event.

It is of the form,

Unsubscribe MethodName EventName;

Peter Barron 6 September 99

As in the subscribe operation the MethodName is the local object which invokes the unsubscribe

operation. The EventName is the event that the ECO object wishes to unregister from.

2.3.3 Summary

In summary the ECO model is based around it’s three main concepts of events, constraints and objects.

The events are the glue between the objects and provide a means for communication, while the

constraints ensure that the propagated events only get to the ECO objects that wish to receive then. In

many ways notification constraint acts as an event filter for the model. As far as it is known this model

has been implemented three times 5 with varying degrees of completion.

2.4 JEDI

The JEDI (Java Event-based Distributed Infrastructure) is an event-based, object-orientated

infrastructure that been developed by CEFRIEL – Politecnico di Milano in Italy. The JEDI architecture

has been used in implementing a network-wide Process Support System called OPSS 6. The JEDI

model is described in [CNF1998a] and [CNF1998b].

2.4.1 Overview of JEDI Architecture

The JEDI infrastructure is based on active objects (AO) and event dispatchers (ED), which in

conjunction provide the framework for the production and delivery of events (see fig2). Within this

model AO’s are defined as autonomous entities that perform application-specific tasks. Each AO

communicates with other AO’s by producing and consuming events. The delivery of events is the

responsibly of the event dispatcher, which only delivers to AO’s that have shown an interest in the

event. AO’s declare interest in an event by the event subscription operation and can also stop-accepting

events by calling the event unsubscribe operation. The JEDI architecture ensures the notification of

events is accomplished in an asynchronous way.

Figure 2 A logical view of JEDI architecture.

5 The VOID Shell [Tea1995], DECO [ODC+1196] and [MH1998]
6 ORCHESTRA Process Support System, which is describe in [CNF1998a] and [CNF1998b].

= Event

Event Dispatcher

AO
AO

AO AO AO

Peter Barron 7 September 99

The JEDI architecture defines an event as a set of ordered strings. The first being the name of the event

and remaining strings as the parameters of the event. An example of a JEDI event might be open(foo.c,

read), where open is the name of the event while foo.c and read are the parameters of the event. An AO

subscribing to an event has the choice of specifying a particular event, or it can specify an event

pattern. The event pattern allows the AO to subscribe to events that match that particular pattern

defined in the subscription operation.

2.4.2 Event Dispatcher

The central concept of the JEDI model is the Event Dispatcher. It is responsible for the delivery of

events in the right order and to support the mobility of AOs through the system. In [CNF1998b] the

Event Dispatcher is described logically as being a centralised component, since the dispatcher must

have global knowledge of the generation of events and the AO’s that have subscribed to events.

However, the realisation of the drawbacks of a centralised component has prompted [CNF1998a] and

[CNF1998b] to provide a second implementation for their model i.e. a distributed version.

The distributed version of the Event Dispatcher creates a set of Dispatcher Servers (DS) which are

interconnected in a tree like structure. Each DS is located on a different node and is connected to one

parent DS, unless it is the root, and to zero or more descendants. The AO’s are connected to the

structure via the DS’s (see fig3).

Figure 3 Structure of distributed event dispatcher (DS).

The Dispatcher Server employs a hierarchical strategy for the distribution of events, subscribing and

unsubscription messages. In this strategy, all subscription request are propagated upwards in the tree.

Each DS that receives a subscribe or unsubscription request, accepts it and makes an entry for the AO.

On an AO producing an event it is passed to the local DS where it is forwarded up the tree. On receipt

of an event the DS checks it descendants and passes the event onto any descendant that has requested

the event. It then forwards the event to its parent DS. This strategy ensures that events and

subscriptions get to all the relevant nodes.

DS

DSDS

DSDSDS

Event

Subscribe/unsubscription

AOAO AO

Peter Barron 8 September 99

2.4.3 Mobility

Under the JEDI architecture mobility of active objects are supported through the use of reactive

objects. A reactive object defines an abstract method called processMessage that has to be specified by

the programmer and is automatically invoked each time the reactive object receives an event. This

object can autonomously decide to move to a different host. On doing so, it invokes the move method

and causes the following series of events to occur:

• The reactive object disconnects from the ED and the thread of execution controlling the

reactive object is stopped.

• The reactive object is serialised using the Java facilities.

• The reactive object is them moved to it new destination, where it reconnects to the ED.

• The ED on request from the reactive object stores the events until the object has moved

location successfully when it then forwards the stored events to the reactive object.

2.4.4 Summary

The JEDI model provides a very useful infrastructure for the distribution of events and the mobility of

objects through a network. However this model does not supply any methods for the filtering of events.

Also the defining of events as a set of strings limits the parameters that can be defined for an event. It

might be more appropriate if the events where defined as Java objects instead of strings. While the

approach of a hierarchical topology has been proven to be quite a successful method for many

distributed applications, in the case of the distributed version of the JEDI model it could prove to be its

weak spot. Due the fact that all messages are being forwarded to the root of the DS tree, which might

cause the overloading of the higher-level servers.

2.5 Siena

Siena (Scalable Internet Event Notification Architectures) is a wide-area event notification service that

has been developed as a PhD thesis [Car1998] in Politecnico Milano. This thesis is an extensive study

into the support of event-based application on wide-area networks, in the process it describes in detail

the event service Siena.

2.5.1 Overview of Siena Event Service

Within the Siena infrastructure there are two types of parties/objects defined: object of interest and

interested party. Objects of interest are producers of events that can specify events they intend to

publish by means of advertisements, while interest parties show their interest by subscription to these

events. Objects of interest can publish new events as they happen and the event service will ensure the

delivery of the event to the interest parties. A high level view of the Siena architecture can be seen in

figure 4. Siena event service is a distributed set of servers, each of which acts as an access point to the

event service. This will be dealt in a later section.

Peter Barron 9 September 99

Figure 4 High level view of the Siena architecture.

The Siena event service specifies five different operations that it exports from the event service. The

first three: publish, subscribe and unsubscribe are quite common to most event services. The last two:

advertise and unadvertise are quite new in the event or notification service scene. The advertise

operation is invoked by an object of interest to indicate that it intends to produce events of a certain

type. Unadvertise operation has the opposite effect to the advertise operation, it indicates to the event

service that the object of interest no longer wishes to produce such an event. The advertise operation is

used to introduce more information into the event service so that it can help route subscriptions and

notifications more efficiently.

To identify the different parties/objects within the infrastructure, Siena uses a generic URI naming

scheme. This shows the location of the object and what protocol is needed for the event service to

communicate with that object. Any notification of this event is done through the naming scheme.

2.5.2 Filters and Patterns

Siena describes an event as a set of attributes, each of which is uniquely identified by its name. The

attributes of an event can only be defined as char, integer, boolean, float, string, byte-array, and date.

This is quite a limited set of types compared to other event services. The Event filters in this service are

made from a set of attribute filters. Each attribute filter specifies a name, a type, a boolean binary

operator and the value for the attribute. In the example show in figure 5, the filter will only select the

set of events that come from NYSE exchange and where the change is negative.

Figure 5 Example of an Event Filter

The Siena infrastructure extends the idea of event filters by using combinators 7 to create patterns.

While event filters will select one class of events at a time, a pattern can select several events that

together match an algebraic combination of filters. An example of a pattern can be seen in figure 6.

7 Combinators are algebraic expressions that combine event filters together to create patterns.

Event Service

Object of interest Interest party

Advertise

Publish

Subscribe

Notify

String event >* finance/exchanges

String exchange = NYSE

String symbol = DIS

Float change < 0

Peter Barron 10 September 99

Figure 6 Example of a pattern of events

2.5.3 Mobility

While Siena does not support code mobility directly, it does define two ways in which mobility might

be possible with the Siena framework. The first approach, which the Siena architecture calls

transparent, uses network-level mechanisms to manage the mobility of objects through the system. The

second approach relies on adding an extended layer between the event service and the mobile object to

manage the movement of objects. The Siena infrastructure calls this approach external.

2.5.4 Operation Behaviour

In [Car1998] two different behaviours for the event have been described: subscription-based and

advertisement-based. The reasons for [Car1998] defining the two implementations is to find the most

appropriate solution for a flexible, more scalable event service.

In the subscription-based event service only subscriptions determine the semantics of the service.

Advertisements can be used to optimise the routing of subscriptions, but are not necessary. The event

service will guarantee delivery of events only if the interested party has subscribed to that event. This

implies that, unless an event has been notified before the interested party has subscribed, it does not

receive the event notification.

While in the advertise-based event service both subscription and advertisement are used. The semantics

of this service will only guarantee the delivery of event notifications if objects of interest have

advertised an event and that interested parties have subscribed to the event after the event has been

advertised. This implies that, if an object of interest receives a subscription before it advertises the

event, it can not guarantee the notification of an event.

2.5.5 Server Topologies

[Car1998] defines four different server topologies: centralised, hierarchical, acyclic peer-to-peer and

generic peer-to-peer (see figure 7). The Siena event service was implemented using each of topologies

and was tested for the flexibility and scalability of the service. [Car1998] found that the distributed

topologies outperformed the centralised approach, when the number of objects of interest and

String event >* finance/exchanges

String exchange = MSFT

Float change < 0

String event >* finance/exchanges

String exchange = NYSE

Float change < 0

And then

Peter Barron 11 September 99

interested parties increased. Of the distributed topologies the acyclic peer-to-peer did a better job in

distributing the load over all the event servers.

Figure 7 Siena server topologies.

2.5.6 Summary

[Car1998] has provided extensive research into providing a scalable wide-area event notification

service. It has studied in detail the best approaches for distributing Event Servers and has found that the

acyclic topology provides the best results. The Siena event service also aids clients to control the

receiving of event notifications by the use of filters and patterns. There are some disadvantages to the

Siena event service, the main one being that there are a limited number of parameter types that it allows

the event notification to pass. The Siena infrastructure does not directly support the mobility of objects.

2.6 Cambridge Event Model

The Cambridge Event Model was developed in the computer laboratory of the University of

Cambridge and is described in [BBHM1995]. This model, as in other event services discussed above,

relies on clients subscribing to the events. What makes this service different is the ability of the

infrastructure to compress the events by using a composite event server.

Centralised

Hierarchical

Generic peer-to-peer

Acyclic peer-to-peer

Client-server protocol

Server-server protocol

Servers

Clients

Peter Barron 12 September 99

2.6.1 Overview of Model

Through the extension of Interface Definition Language (IDL) the Cambridge event model has been

able to create a strongly typed event service. This enables servers to be more specific in the parameters

it wishes to declare in an event. It also allows clients to see the server’s specification of the event and

enables the client to be selective in the events it wishes to receive notification of. An example from

[BBHM1995] shows an IDL declaration of a seen event object.

Badge : INTERFACE =

Seen: EVENTCLASS [badge : BadgeId;

 sensor: SensorId];

END.

The above event declaration is part of the Active Badge System that was developed by the University

of Cambridge. The system monitors the location of badge wears throughout the complex. A Seen event

is raised by the Badge System every time a badge wearer passes by a badge sensor.

The communication between servers and clients is based on three generic operations: registration,

signalling and notification. For client to register an interest in the event it is required to invoke the

registration operation and supply an event template. The event template is used pass the parameters that

specify the events of interest. The signal operation enables the services to detect occurrences as event

instances. Notifications of events are instigated by the notification operation and as with other event

services the clients will receive notification of events if they have registered an interest.

2.6.2 Filters

Filters in the Cambridge model are specified at the time the client registers an interest in an event. At

this stage the client defines a filter expression which indicates to the event service what events it wants

notification on. The filter is defined through event template, where specific values are given to the

parameters. These values must match the event before notification of a client can proceed. Wild cards

are also used to indicate that any value is acceptable for this parameter. [BBHM1995] uses the Seen

event to supply an example of a filter expression.

Seen (13,R)

The above example will only allow the client to be notified when any badge sensor in the complex has

seen badge 13. This particular filter would allow the Active Badge System to track a badge through the

building. In the following example the client will be notified of every badge that has been seen at

sensor 23. In the Active Badge System this could be useful in tracking badges that have entered a

particular zone.

Seen (P, 23)

2.6.3 Composite Events

The Cambridge Event Model has developed their service to allow the composing of events, so that a

complex series of events could trigger a single event. This allows clients, who are not interested in two

Peter Barron 13 September 99

or more particular events on there own but are when they occur in a certain way, to receive a single

event. The infrastructure for composition of the events is based on the finite machine, which has been

enhanced to allow multiple tokens to be active within the machine at any one time.

2.6.4 Summary

The Cambridge Model in many respects is similar to event services described above, except for the

additional feature for the composition of events. This is a powerful tool in controlling the flow of

events to clients. The Cambridge Event model has been used to implement a number of event services

such as the Active Badge System discussed above and in [BBHM1995].

2.7 JavaBeans

JavaBeans [Sun1997] is a component architecture developed by Sun. It is part of suits of packages that

have been developed for use in programming in Java. As part of JavaBeans architecture there is a

specification for an event model. This model was designed for more centralised systems, thought it is

possible to extend service into a more distributed service.

2.7.1 Architecture

The JavaBeans infrastructure defines two roles for the participants in the model, consumers of events

whom are know as listeners and suppliers of events that are called sources. Their roles are defined in

two java interfaces included in Sun’s Java Development Kit.

java.util.EventObject

java.util.EventListener

Listener objects that wish to receive notification of events most first implement the event listener

interface. They then have to identify themselves to the source by invoking the add<ListenerType>

method on the event object. Once the listener has registered, the source is able to notify the listener of

new events by invoking the associated method on the listener object (see figure 8).

Figure 8 Overview of JavaBeans Event Model

The delivery of the events to the listener object is synchronous, which implies that some performance

penalties are associated with this implementation.

public synchorized

FooListner addFooListner(FooListner fel)

class Fooey implements FooListener{

 void fooBarHappened(FooEvent fe){}

void fooBazOccurred(FooEvent fe){}

}

eListener

Event Source

Event Listener

FooEventFire Event

Interface reference

Register listener

Peter Barron 14 September 99

The JavaBeans event model has defined an event adaptor class. This class is an intermediary between

the source and the listener objects and acts to decouple the two parties. The purpose of this class is to

allow additional behaviour to be added to the JavaBeans Event Model. Examples of the uses of such

adapters includes filters, buffering of events, demultiplexing multiple event sources onto a single event

listener or acting as a generic-wiring manager.

2.7.2 Summary

The inability for the JavaBeans Event model to support asynchronous delivery of events or a direct

implementation for the distribution of events outside a single process lead to the conclusion that this

service was principally designed as a centralised event service. Also the inability of the service to

support event filtering directly helps form the opinion that this event model only supplies the bare

minimum for an event service to work. However it might be possible to extend the functionally of this

service through the use of the event adapter class.

2.8 Summary of Event Services

In this chapter we have reviewed several event services and have covered some of the main

fundamentals that are in use in event services at present. There are other event services such as

COBEA [MB1998], Jini’s distributed event service [Sun1999a] or Java Spaces [Sun1999b] that have

not been covered in this chapter but do offer other methods in developing event services. In the event

services that are discussed in this chapter there are many different approaches: to notification of events,

how events are defined and how events are subscribed to.

The definition of events fall into two main categories, those of which have typed parameters and those

event services that prefer having a more generic parameter. In a general a typed event service is

preferred for ease of programming and correctness. Of the event services reviewed at in this chapter the

Cambridge Event Model [BBHM1995] and Seine [Car1998] uses typed events while JEDI

[CNF1998b] uses a more generic event in the use of strings to define events.

In most of event services the client is required to show an interested in an event(s). For the event

services discussed in this chapter, such as Seine [Car1998] or ECO [SCT1995], they use a subscribe

operation. The operation indicates what events they wish to receive and other such information as

filters. However in the CORBA Event Service instead of subscribing to an event(s) the client attaches

itself to a channel on which events are broadcast.

Once a client has indicated to the event service that it wishes to receive events there are two approaches

that can be used to delivery events: a push model and a pull model. The push model requires the

supplier to forward events to the client or consumer. In the pull model the client is require to take the

events from the event service. The preferred model used by event services is to push new events onto

clients. This requires the client to be available to receive events and able to cope with the speed at

which the event service is pushing new events onto the client. The pull model is able to buffer the

events until the client is ready to receive them. The client will need to poll the event service to look for

events. Both the pull and push models have been implemented in the CORBA Event Service

[CORs1998].

Peter Barron 15 September 99

In the search to try and reduce the number of notifications to clients and hence help increase the

scalability, event services have developed filters. These filters allow clients to specify in more detail

the events that they wish to be notified about and therefore reduce the number of notifications that the

event service needs to make to clients. ECO [SCT1995], Siene [Car1998] and the Cambridge Event

Model [BBHM1995] all have developed filters in various degrees of efficiently. Siene has also

extended the filters to form patterns, these patterns are a combination of filters combined together. To

increase the scalability, both Siene and JEDI have developed methods for routing messages through

their servers. JEDI has structured its servers in a hierarchical topology. Siene has tested a number of

server topologies and routing of messages. It has found that Acyclic peer-to-peer server structure gives

the best load balance through the servers.

In distributed systems the mobility of objects through a system has become more desirable. It therefore

makes sense that event services are able to support mobility and ensure that when objects move

location that no events are lost and events are forwarded to the new location. The JEDI architecture is

the only event service discussed in this chapter that supports mobility directly.

This chapter has covered a number of different event services each trying to obtain a balance between

the need for scalability and the functionally of the service. Some have been more successful than

others. In the coming chapters it is hoped to develop an event service that will achieve this balance.

Peter Barron 16 September 99

3. WORKING ENVIRONMENT

3.1 Introduction

Recent research into the automation of certain tasks within a typical building has shown to provide a

better working environment. The name “smart building” is usually associated to such a setting. The

Intelligent interfaces and Buildings group from Trinity College Dublin has been developing such a

building. It is envisioned that the event service developed by this project will provided the glue to

being the different parts of this smart building together. The rest of this chapter will develop in more

depth the type of environment and other services the event service is expected to interact with.

3.2 Smart Building

It is envisioned that people within the smart building will carry a hand held device, which will act as

their point of access to the building. Using the hand held device users would be able to gain access to

different services around such a building. Permission to use the services depends on the location of the

user and what rights the user has to the service. The Policy Server handles these user rights and will be

dealt with later in this chapter. Such services could include: the automatic opening of doors to

authorised users, setting your office environment such as lights and air conditioning, receiving mail and

printing of documents on the nearest available printers. The event service, discussed later in Chapter 4,

will be used as the means of communication between the users of the building and services that it

provides.

At present the Intelligent Interfaces and Buildings group from Trinity College Dublin has developed a

framework for which devices such as controllers to open door or sensors to detect users, connect into

the smart building. The infrastructure uses a LonWorks network to connect the devices together and

has developed a protocol bridge that connects the LonWorks network to an Ethernet network. The

above infrastructure is discussed in [GD1999].

3.3 Mobile Environment

It is envisioned that the environment the event service is expected to work in will have a high instance

of mobility within the system from mobile devices such as Personal Digital Assistant (PDA). The smart

building project has adopted the architecture described in [WND1999]. It is therefor necessary to

ensure the design of the event service be able to cope with mobility.

3.4 Policy Server

With the different services located around the smart building there must be some way of controlling

user access to these services. As has been discussed in section 3.2 of this chapter, access to services

depends on the location of the user within the building and also what rights the user has to that service.

It is the responsibility of the Policy Server to ensure access to the services is not violated. In doing so it

must know the location of the user in building and also what polices are associated with the user for

that service in that location .

Peter Barron 17 September 99

The Event Service will be an integral part in providing the communication between the users and

services within the building. It necessary that the event service can gains access to the information that

the Policy Server holds. This ensures that the event service dose not give access to a service that the

users do not have permission for.

3.4 Summary

The design event service will need to be able to integrate the software that has already been developed

for the smart building. It needs also to support the mobility of objects throughout the environment. The

service must support the use of the policy server in controlling user access to services within the smart

building

Peter Barron 18 September 99

4. DESIGN

4.1 Introduction

It is the aim of this chapter to present a design for a distributed event service that will complement the

inherent mobility of objects through a smart building and also to engage the support of the Policy

Server to control access of users to the services within the building. All of which have been set out in

Chapter 3. Although the event service is designed with the environment discussed above in mind, the

sections below will attempt to implement a design that can be used it other situations other than a smart

building environment. In Chapter 2 several event services were reviewed in detail. It is hoped that

some of the features that were discussed, such as filters may integrate into the design of this event

service

4.2 Event Service Requirements

As this event service will be part of the environment discussed in Chapter 3 it will be necessary that the

event service described later in this chapter be able to cope with any situation that may occur within

that environment. To be more specific the event service will need to be able to cope with the following:

• Mobility of objects from one location to another.

• Integrating the use of Policy Server into the event service to control access to the different

services located in the smart building.

The event service is also required to support the use of filters, which will generally reduce the number

of events and help with the scalability of the service. It will also help control the user access to the

different service by blocking any communication with the user and as such is an important part to

implementing the polices held by the Policy Server. Other requirements for the event service are as

follows:

• A strongly typed Event Service that will allow a large range of parameters types to be

passed through the event service.

• The event service is also required to ensure the event notifications are delivered at least

once to each object that has subscribed to the event.

• The ability of the event service to scale at a reasonable rate. One of the problems, which

the event service will have to overcome, is event storming8.

• Also the event service needs to delivery the events in the order that they occurred at the

node which the event originated from.

• Asynchronous communication of events.

8 Event Storming is the uncontrolled notification of events to clients, who may or may not wish to receive the notification of

events.

Peter Barron 19 September 99

4.3 Overview of Design

Before entering into the details of the design, it will be helpful to clarify some of the terms that will

used to explain the design. A device is considered to be any object that is able to execute pieces of code

and has access to the network, whether it is connected to a wireless network or a more conventional

LAN. Such a device could be a PC, laptop or even PalmPilot. Mobile objects are equivalent to the

Active Objects (AO) in the JEDI [CNF1998a] [CNF1998b] event model. These are defined as

autonomous computational units performing application-specific tasks. Sources are objects that

produce events while sinks are objects within the event service that consume events produced by

sources.

The event service that will be developed later is modelled on an advertised subscription based event

service. It is somewhat similar to a mode Siene [Car1998] uses in its event service. As discussed in

Chapter 2, there are two basic models for the delivery of events by event services to clients. The first

model requires the producer of events to distribute events to interested parties. This is known as the

push model. The second model requires interested parties to poll the producer of events and is known

as the pull model. For the design of this event service a push model will be used to notify interested

parties. To enable controlled notification of events, filters will be used to narrow the scope of the

notifications to interest parties. The decision whether to send the event is obtained by the filter

executing some code on the parameters of the event, the username of the client and the type of device

the client is using. Due to the environment that the event service will be operating in, it will be

necessary that the event service will be able to cope with the mobility of source and sinks through the

system. The approach taken is quite similar to that of JEDI [CNF1998a] [CNF1998b].

4.4 Design of Event Service

4.4.1 Main Components of Service

The main components of this architecture are the devices and mobile objects that occupy it. These

devices support mobility of mobile objects from one device to another. The architecture for the

mobility of these objects is covered under [WND1999]. These devices will need to support mobile

objects in the producing and the consuming of the events. The event bus will support this. The event

bus is not unlike the Event Dispatcher described in the JEDI [CNF1998a] [CNF1998b] event model.

However, in this model an event bus will be located on each device. Its role is to support mobile objects

in the location of events, subscription to events, notification of events and the delivery of the events.

Also, its role will be to support mobile objects in moving location and insuring that the mobile objects

still receive the notifications of the events that they have subscribed to.

To enable the event buses to locate the source of an event, a naming service is used to query the

whereabouts of the event bus that is supporting that event. This allows the separation of the actual

name of the event and the location to where the event source is. This is a benefit when the actual

location of the source of the event might change due to the movement of the event source (mobile

object) from one device to another. It is also possible to conceive that there would be more than one

Peter Barron 20 September 99

location for a particular event. To support this the event naming service would need to keep multiple

entries for each event and on request to supply the whereabouts of all the source of that event.

The purpose of the Policy service is to hold the rights and the wishes for each mobile object within the

smart building environment. The event service uses this service to create filters for the notification of

events to the mobile objects. The design of the Policy service is covered under [Kunetz1999]. The Web

Server is used as a storage place or library for the event buses to find class definitions of specific

filters.

Figure 9 Main Components

4.4.2 Events

As part of the requirements set out in section 4.2 events are required to have a typed interface. To this

aim, any object may be a parameter of an event and can be passed through the event service once it can

be serialized and saved using the standard Java facilities. Care must be taken as to the size of the

objects being passed as parameters as this can effect the performance of the service.

In order for interested parties to find and show interest in the different events that occur within the

system, a naming system must be adopted whereby the events can be uniquely identified throughout

the system. For this a domain name type-naming scheme will be used for the naming of the events. An

example of unique name for an event is as follows:

ie.tcd.cs.ActiveBadge

The above example will give enough information for the event bus to located the Event Naming Server

and query it for the location of the sources of the event and therefor show its interest in the event.

4.4.3 Event Service Operations

The operation of the event service is managed by five separate operations, excluding those for mobility.

In the following section these operations will be explained in more detail.

Event Bus

Device A

Event Bus

Device B

Event Naming Service Policy Service

Mobile Objects

Web Server

Peter Barron 21 September 99

Advertisement of Events

In Siena [Car1998] sources of events have first of all to advertise their intention to publish events to the

event service. The same approach will be used in this event service to indicate the readiness of the

event source to produce events and also to show the location of the source.

Figure 10 advertising an event

The first step in the advertising an event is for the event source to use the Advertise(name) operation to

indicate to the event bus its readiness to produce events. Advertise operation passes to the event bus the

name of the event. The next step is for the local event bus to forward this information, along with

location of the event source, onto the Event Naming Service specified in the name of the event. After

the Naming Service receives this information for the new event, it inserts the information into its

database or adds the event source to the list of other sources that are creating that particular event. Once

this is completed the event source is considered to have advertised its event and the event bus is ready

to receive notifications of events.

Subscribing to Event

As with most event services, they require the clients in some way to subscribe to events that they are

interested in. This narrows the scope of the events on the overall system. It also prevents event

storming by only sending the notification of the event to the parties that have shown an interest in that

event. Clients in this event service are required to subscribe to an event using the full name of the

event, as described in section 4.4.2. It is also possible for the client to attach a filter when subscribing

to an event, but this is not necessary on all occasions as the event bus in conjunction with the policy

server can obtain one.

There are four distinct stages to subscribing; the client making the request, finding the location of the

event bus(es) that are supporting the event source, subscribing to the event bus(es) and the installation

of the filter. All of which can be seen in Figure 11. In the first stage (figure 11 step 1) the sink requests

its local event bus to subscribe the sink to a certain event by calling subscribe(name, sink location,

filter) operation. The sink passes the name of the event, the filter if there is one and also the location of

Event Naming ServiceEvent Bus

Device A

Event Source

(1)

(2)

Peter Barron 22 September 99

the sink to the event bus. Once the sink’s event bus has received the request information, it must then

locate where the sources of the event are. This is accomplished with the help of the Event Naming

Service (figure 11 steps 2,3). On receiving the locations of the sources, the event bus subscribes to each

one, passing on information about the sink making the request, the name of the event and the user

defined filter if specified (figure 11 step 4).

Figure 11Client subscribing to an event

When the event bus supporting the event source receives a subscribe request, it must first install the

filter associated with the sink and add it to list of parties that are interested in that particular event.

There are two ways in which a filter can be obtained. Either by using the filter that was defined by the

sink or by requesting information from the policy server (figure 11 steps 5,6) to enable the construction

of the filter. If there are two filter definitions, one from Policy Server and the other from sink, the

Policy Server filter will be chosen. As will be explained later in this chapter the filter is a serialized

object. If for some reason the class definition for the filter is not available on the event bus’s local host

it is possible that it can obtain it from the Web Server. On completion the sink is notified of the success

or failure of the operation (figure 11 step 8,9).

(5)

Device A Device B

Event Naming ServicePolicy Service

Event BusEvent Bus

Event Source Client

(1)

(3)
(2)

(4)

(6)

(8)
(7)

Filter

(9)

Web Server

Peter Barron 23 September 99

Notification of Events

Once an event has been triggered asynchronously by a source it is necessary that the interested parties

be notified of the event. It is the aim of this architecture that the interested parties receive this

notification at lease once and receive the events in the order that they occurred at the source. To

overcome these problems each event will be numbered in the order that they have occured at the

source. When the client’s event bus receives notification of the event, it places them in the right order

as they occurred. The above will only guarantee that the events from a particular source are in the right

order. If there were multiple locations of the event them this architecture could not guarantee the order

in which they would arrived in.

Figure 12 Notification of an event to interest parties

In normal scheme of things a typical notification might possibly look like that shown in figure 12. The

event source notifies it local event bus of a new event and passes the parameters associated with this

instance of the event. The job of the event bus is to then to notify the interested parties of the event. It

however only notifies the mobile objects that have subscribed to the event and have passed the filter

supplied by the sink or created from the policy server. The client’s event bus at appropriate time,

delivery’s the event to the sink.

UnSubscribing from Events

Unsubscribing operation is the opposite of subscribing, which was defined above It is executed when

sinks no longer wish to receive notification of an event. To ensure that the event bus has the right

location of the event sources when unsubscribing from an event, it obtains the location of the event

source from the Event Naming Service (figure 13 steps 2,3). This may not be necessary in most cases

as the event sources would not have changed since subscribing to the event, but to support the mobility

Event Bus

Client

Devices B, C, D

(3)

Device A

 Event Bus

Event Source

(1)

(2)

Filters

Event Bus

Client

Event Bus

Client

Peter Barron 24 September 99

of the event source and also the creation of new source a lookup is necessary to ensure the right

location is obtained.

Figure 13 Unsubscribing from an event

Unadvertising of Events

Unadvertising operation is the opposite from a source advertising an event. This operation is called by

the source to indicate to the event service that the source not longer wishes to produce events of that

type. When the event bus receives the Unadvertise operation it informs the Event Naming Service that

the source is no longer producing events. At this stage the source is unadvertised.

4.4.4 Control Events

Control events are events used by the event service to manage the service. In general these events are

only listen to by the event buses. In the present architecture the event service defines one control event.

It is produced by the Event Naming Service to indicate that there is new source of an event. Event

buses are sinks to this event and they use the information provided in the event to subscribe to the new

source. This occurs if they have an active sink looking for that particular event. As with other events

filters can be assigned when subscribing to the event

Device A Device B

Event Naming Service

Event BusEvent Bus

Event Source Client

(1)

(3)
(2)

(4)

(5)

Filter

(7)

Peter Barron 25 September 99

4.4.5 Filters

Filters are a concept used by many event services to control the flow of events to consumers. From

Chapter 2, both Siena [Car1998] and Cambridge Event Model [BBHM1995] use filters to control flow

of events. Within this architecture filters will control the flow of events to sinks, they will also be used

as a means to implement the policies held by the Policy Server.

A filter is a computational piece of code that uses the parameters of the event, along with owners sink’s

username and the type of device that the sink is running on to decided whether notification of the event

should take place. The piece of code is predefined by the programmer and is initialised by the sink or

the Policy Server. The filter can therefore transfer state to the source’s event bus, depending on how the

filter is programmed to work. From the sections above it can be seen the client has the ability to specify

the filter, but the event bus will use the filter from the Policy Server in preference. This is to ensure the

security of the services that the client wishes to use. The filter is installed on the event bus that the

source is located on. While this may well be an overhead when subscribing to an event, it means less

event notifications and hence less networks traffic.

4.4.6 Mobility

As the event service is going to be located within a mobile environment it is necessary that the service

is able to support mobile objects in their movement through the environment. This requires that when a

sink wishes to move devices, the events that the sink has subscribed to be changed, so that the

notification of events are received at the new location. If however the mobile object is a source of

events, all the information associated with mobile object must be passed onto the new location of the

source. The only event service from Chapter 2 that comes close to supporting mobile objects is JEDI

[CNF1998a] [CNF1998b]. It defines a particular type active object that is called a reactive object. This

object has the ability to support mobility. When this object decides to migrate to another device, the

following occurs:

• The state of the reactive object is serialised and saved using standard Java facilities.

• The reactive object moves to the new location and informs the Event Dispatcher that it is

ready to receive events.

• The Event Dispatcher keeps the events that should be received by the migration reactive

object until it is ready to receive them.

It is proposed to do something similar in supporting mobility of objects within this event service. This

service most able to support mobile objects that produce events and those that consume events.

Therefore two separate approaches have to be taken in dealing with each case.

Mobility of Sinks

In the case where the mobile object is a sink, it necessary that the following procedure is used (see

figure 14). The sink indicates it intentions to event bus to move hosts by calling move operation. On

receipt of request the event bus queries the Event Naming Service for the location of the source for the

event (figure 14 steps 1-2). The event bus notifies all the source’s event buses that its sink wishes to

move. They in turn buffer all new events until the sink has moved. Once all transient events have been

Peter Barron 26 September 99

received the sink is free to move location (figure 14 steps 3-4). On arriving at its new location the sink

signals to the local event bus that it is a mobile object wishing to redirect event notification to this

location. The local event bus queries the Event Naming Service for the location of the sources for that

event. It then requests each of the event buses supporting a source to update their records for the

location of sink and forward any events that may have been buffered (figure 14 steps 5-8).

Figure 14 Mobility of Sinks

Device A Device B

Event Bus Event Bus

Event Source Sink A

(1)

(3)

Filters

Event Bus

Sink A

(5)

Device C

(2)

(8)

Event Naming Service

(7)
(6)

(4)

Peter Barron 27 September 99

Mobility of Sources

In situation where a source is moving location, it again has to call the move operation. When the event

bus receives the request from the source it notifies the Event Naming Service of the intending move

(figure 15 steps 1-2). The local event bus will not accept any more events from the source and is only

responsible of the notification of the events that the event bus has receive prior to the move operation.

The source can then move location to a new device, it does not have to wait for the event bus to send

the backlog of events (figure 15 step 3). When the source has relocated to the new device it reattaches

itself to the local event bus. The event bus requests from the source’s previous event bus a list of

subscribing sinks and their associated filters and installs the sink information onto the local event bus

(figure 15 steps 4-6). This step may not need to be initiated if there is an active source already

producing the same event. The event bus then notifies the Event Naming Service of the new location of

the source (figure 15 steps 7). Once the above steps has been completed the source can start generating

new events.

Figure 15 Mobility of Sources

4.4.7 Event Naming Service

The Event Naming Service is an integral part of the event service. It provides the service with a means

of tracking sources through the system. The tracking is achieve through event buses notifying the Event

Naming Service of all sources that have advertised an event, moved location or have unadvertised an

(5)

(3)

Device A Device B

 Event Bus

Event Source

(6)
(1)

Filters

Event Naming Service

(2)

Event Source

 Event BusFilters

(4)

(7)

Peter Barron 28 September 99

event. Sinks, via the event bus, are then able to query the Event Naming Service to obtain the locations

of the sources when subscribing to an event. The Event Naming Service is also responsible for the

production of a control event that notifies event buses of the location of new sources.

The Event Naming Service is structured in a hierarchical topology based on the name of the event. This

is to ensure that there is no one point of failure and also to help increase the scalability of the Event

Naming Service. The event names are resolved using the same approach as the Domain Name Service

(DNS). Static links are used by the Event Naming Service to increase performance of the service. This

enables the server to bypass the normal lookup procedure and take a short cut in resolving the event

name. Event buses can attach to any severs to obtain the locations of sources for an event or to update

information on sources. (See figure16)

Figure 16 Event Naming Service Structure

Event Bus

Device

Oxford

newmail

uk

 root

newsource

ie

Cambridge

Activebadge

dooropen

tcd

newmail

cs

Peterevnet

dooropen

Static link

Event Bus

Device

Event Bus

Device

Peter Barron 29 September 99

4.5 Summary

The architecture outlined in the previous sections has developed a general event service that can be

used in almost any situation and in particular the environment identified in Chapter 3. The

requirements set out in section 4.2 of this chapter have also been fulfilled in full. Implementation of

this architecture will depend on a number of factors and in particular the type of technology used to

implement the communication between the devices.

Peter Barron 30 September 99

5. IMPLEMENATION

5.1 Introduction

A prototype of the event service architecture, introduced in Chapter 4, was implemented in the Java

programming language and uses OrbixWeb as the basis for communication between nodes. Due to time

constrains the mobility part of this service was not completed. The implementation takes full advantage

the facilities that the Java programming language provides, such as exception handling, the ability of

Java to serialize objects, and the strong type checking. In the implementations of the Policy Server and

of other services within the smart building CORBA is used as a basis for communication. To keep the

uniformity between other modules of the smart building project CORBA will also be used, which in

this case is Iona’s implementation OrbixWeb.

The event service is broken down into seven components and can be grouped into three layers (See

figure 17). Two of the components, Policy Server and Class Repository, are not implemented within

this project. The Class Repository will use a Web Server to dispatch class definitions. The Policy

Server has already been developed under [Kunetz1999].

Figure 17 Basic components and interactions between components

The prototype of the event service is broken down into five packages. The package EventService.Bus

holds the class definitions for the event bus, which includes a class, called EventBus that is used to

launch the event bus. Package EventService.EventNamingService defines the classes for the Event

Naming Service while the EventService.Source, EventService.Sink and EventService.Filter holds the

class definitions of the super classes for the sink, source and filter. The following sections of this

chapter will cover in more detail the implementation of the different components of the event service

and the interaction between them.

Application

Source

Application

Sink

Event Bus

Policy Server
Event Naming

Service
Class Repository

(Web Server)

Peter Barron 31 September 99

5.2 Event Bus

The event bus is the most complex of all the components within the event service. It manages all the

interactions between the sources, sinks and other components within the event service (see figure 17).

It is responsible for the safe delivery of events to any sink that has subscribed to an event and is

therefor an integral part of the event service. The implementation of the event bus has been taken in

three sections: firstly the interaction with the sink, secondly the interactions with the source and lastly

interaction with other event buses. This can easily be seen in the IDL definition for the event bus.

IDL Interface

The IDL definition for the event bus has defined three interfaces for communications with sources,

sinks and other event buses. The interface defined below is used to allow sinks to subscribe and

unsubscribe from events; they are equivalent operations defined in Chapter4. The autoCleanUpReg and

autoCleanUpUnReg methods enable the event bus to catch sinks that crash. This will be discussed in a

later section.

interface EventBusSink{
long subscribe(in string event_name,
 in Sink::EventSinkCB CallBackSink,

 in filter_obj filter)
 raises(SubscriptionException);

void unsubscribe(in string event_name,
 in long eventsinkid)

 raises(UnsubscribeException);
 boolean autoCleanUpReg();
 boolean autoCleanUpUnReg();

 };

The EventBusSource interface defines the advertise, unadvertise and notify operations that where

introduce in Chapter 4. This interface is used by sources to show their intention to produce events and

to notify sinks of new events.

 interface EventBusSource{
long advertise(in string event_name)

 raises(AdvertiseException);
void unadvertise(in string event_name,
 in long eventsourceid)
 raises(UnAdvertiseException);
void notify(in string eventname,in event_obj event)
 raises(NotiftyException);

 boolean autoCleanUpReg();
 boolean autoCleanUpUnReg();

 };

Other event buses invoke the methods within this interface when subscribing or unsubscribing from a

particular event. Event buses use the EBNotify method in the notification of new events. The event bus

optimises the notification of events by sending the event once to a event buses, even thought there

might be several sinks on the event bus that have subscribed to the event. This is achieved through the

source’s event bus identifying all the sinks that should receive the event on that particular event bus.

For a full definition of the event buses IDL see Appendix A.

Peter Barron 32 September 99

interface EventsRemote{
 void EBSubscribe(in string event_name,
 in EventsRemote remoteeventbus,

 in long eventsinkid,
 in filter_obj filter,
 in string username,
 in string Device)

 raises(EventUnknowException);
void EBUnsubscribe(in string event_name,

 in EventsRemote remoteeventbus,
 in long eventsinkid)

 raises(EventUnknowException);
void EBNotify(in string event_name,

 in DestSinksIDs forwho,
 in event_obj event)

 raises(SinkUnknowException,EBNotifyException);
};

Data Structure

A central part to the event bus is the storing and the retrieving of information about sinks and sources

in an efficient manner. The information for each event is broken down into number of constituents.

Each event has the EventService.Bus.eventdata class associated with the event. The class holds

information about the sources and sinks ID’s and also the sequence number for the generation of

events. Data on each source is kept within an EventService.Bus.sourcedata class. Sinks are broken

down into two distinct groups, sinks that are local to the event bus and sinks that are remote to the

event bus i.e. sinks that have subscribed to events. The information for local sinks is stored in

EventService.Bus.localsinkdata class. It holds information about the callback object, username and

filter that the sink is using. The EventService.Bus.remotesinkdata class holds the data relating to the

remote sink such as filters, events sent to sink and the event bus supporting the sink.

All the information associated with an event is stored in a hierarchical structure to allow easy access

and maintenance by other parts of the event bus (see figure 18). The EventService.tree.Tree class is

used to present the event information in a hierarchical structure.

Figure 18 Event Data Structure

ie.cs.tcd.peter another.event another.event

root

localsinks remotesinks

eventdata

Sources

ID ID

ID ID

ID ID

ID

ID

= EventService.Bus.localsinkdata

= EventService.Bus.remotesinkdata

ID

eventdata

= EventService.Bus.sourcedata

= EventService.Bus.eventdata

Event Bus 1 Event Bus N

Peter Barron 33 September 99

Notifications of Events

When a source produces a new event it uses the notify method on the EventBusSource interface, which

is defined in the EventService.Bus.EventBusSourceImpl class, to notify the event bus of the new event.

The method places the event into a buffer9 where it can be distributed at a later time. This allows the

source to produce events asynchronously as per the requirements set out in Chapter 4.

 EventService.Bus.EventSenderThread class dispatches the events from the buffer to the appropriate

event buses. It obtains the location for each of the sinks through the data structure discussed in the

previous section. This class also runs the filter associated with each of the sinks and decides whether

the sink receives the event. If for some reason the event cannot be sent to a particular sink it is placed

back onto the buffer for the EventService.Bus.EventSenderThread object to try at another time. The

EventService.Bus.EventSenderThread object is also responsible for updating the information on the

sinks, such as the events that have been sent or purging any sinks that no longer exist.

Depending on the backlog of events in the buffer the number of EventService.Bus.EventSenderThread

threads in operation can vary. This is regulated by a monitor thread, which will be discussed in a later

section.

Receiving Notification of an Event

Notifications of new events are received through the EBNotify method of the EventsRemote interface

where a check is carried out to ensure that the sinks are still located on the event bus. Once completed

successfully the event is placed into a buffer10 ready to be forward onto the sink(s). The

EventService.Bus.SinkNotifyThread object can then dispatch the event from the buffer to the sink’s

callback11 object. Depending on the backlog of events held in the buffer the number

EventService.Bus.SinkNotifyThread objects can vary. The monitor thread regulates the number of

threads needed to handle notification of events.

Monitor Thread

The EventService.Bus.EventBusMonitor is a thread that runs every 10 seconds or whenever it’s called.

Its purpose is to monitor different aspects of the event bus. The first monitoring task is to ensure that

there are enough EventService.Bus.EventSenderThread threads to dispatch event notifications to sinks.

The monitor thread uses a High Water Mark (HWM) and Low Water Mark (LWM) system to figure

how many threads are needed. Which means that if the number of events in the buffer is over the

HWM the number of threads in the thread pool is increased up to a maximum number of threads. But if

the backlog of events is below the LWM the number of threads handle the notifications are decreased

down to a minimum number of threads.

The second monitoring task is to make sure that there is right numbers of

EventService.Bus.SinkNotifyThread threads to handle the forwarding of events to sinks. The same

approach is used as in monitoring the number of EventService.Bus.EventSenderThread threads.

9 EventService.Bus.eventbuffer is the class that defines this buffer.
10 EventService.Bus.SinkEventBuffer is the class that defines this buffer.
11 The reference to the callback object is held in the data structure discussed in section 5.1

Peter Barron 34 September 99

To increase the performance of the event bus a variable pool of threads is used to process CORBA

requests. The monitor thread ensures that the thread pool has the right number of thread to cope with

the influx of CORBA requests. The same approach is used as discussed above for the

EventService.Bus.SinkNotifyThread and EventService.Bus.EventSenderThread thread pools. The

monitor thread is also responsible for catching sources and sinks that disconnect from the event bus

unexpectedly. It cleans up the information associated with the source and sink on the local and remote

event buses.

5.3 Sink

Figure 19 Overview of Sink within the User Domain

The sink object is incorporated into the user application. When the Sink receives notification of an

event it distributes the event in the same manner as the Java Beans Event Service. This ensures that the

event notifications can be obtain by any object within the user application without having to create

numerous sink objects. Figure 19 shows an overview of how events are distributed within the user

application; it uses the Peter event as an example. The full code excerpt for the Peter event can be seen

in Appendix B.

The infrastructure for sinks receiving type events is based on a Java interface and an abstract class,

which are both included in the EventService.Sink package.

EventService.Sink.EventSink

EventService.Sink.EventSinkListener

public PeterEventSinkListener PeterAddSinkListener (PeterEventSinkListener Elistener)

class MyObject implements PeterEventSinkListener {

public void NewPeterEvent(String Peter){}

}

eListener

PeterEventSink
PeterEventSinkListen

PeterEvent

Fire Event

Interface reference

Register listener

Peter Barron 35 September 99

A typed event sink must inherit the EventService.Sink.EventSink class and define the DispatchEvent

method within the class. The method is used to unmarshal the event and distribute event notifications

through the user application. The example below is the DispatchEvent method from the Peter event, of

which there is only one String parameter (see Appendix B for full definition of class).

public void DispatchEvent(Object[] parms,EventSinkListener EListner){

String Peter = (String)parms[0];

((PeterEventSinkListener)EListner).NewPeterEvent(Peter);

}

For objects within the user application to receive events they must implement the EventSinkListener

interface associated with the typed event. This enforces a typed event on the object wishing to receive

the notification of a particular event. Below is an example from the Peter event of a

PeterEventSinkListener.

package PeterEvent;

import EventService.Sink.EventSinkListener;

public interface PeterEventSinkListener extends EventSinkListener{

public void NewPeterEvent(String Peter);

}

Once the object has implemented the associated interface it is then required to register an interest in

receiving event notifications from the sink. It dose so by invoking the <even name>AddSinkListener

method on the sink object. Which in turn adds the event listener to its list of objects to receive

notification of events (see figure 19).

5.4 Source

The source is incorporated into the user application. The infrastructure for user applications to send

type events is based on the Java class called:

EventService.Source.EventSource

To create a typed event source the class definition must inherit the EventService.Source.EventSource

class. The class is also required to define a method that will be used to marshal the event and call the

notify method in the EventService.Source.EventSource object. Below is an example from the

PeterEventSource class of such a method (see Appendix B for full definition of class).

public void NotifyPeterEvent(String Peter) throws SourceNotifyException{

Object[] parms = new Object[1];

parms[0] = Peter;

super.notify(parms);

}

Peter Barron 36 September 99

5.5 Filters

The filter is one of the fundamental parts of this event service. It allows user applications control what

events they wish to receive and it also enables the smart building in conjunction with the Policy Server

control access to the different services within the building. All type event filters inherit an abstract class

called EventService.Filter.EventFilter, which defines a template for event filters within the event

service. Filter classes are required to implement the Filter method with the specific event filter class.

The event bus calls this method when deciding to send an event notification to a sink.

 The programmer defining the filter method has a free hand in deciding the content of this method, but

must take care to ensure the efficiency of the filter. All the parameters of the event, the username of the

owner of the sink and the device that the sink is running are available to the programmer when defining

the filter method. Example from the PeterEventFilter of the filter method can be seen below (see

Appendix for full definition of the PeterEventFilter).

public boolean Filter(Object[] parms){

String Peter = (String)parms[0];

String TestName;

if(Peter.equals(testString)){

return true;

}else{

return false;

}

}

An instance of the type event filter can be created by either the sink or by the Policy Server depending

on which mode the event service is working in. In either case it possible to place state within the filter,

however this is dependent on how the programmer defines the type event filter class. Filters are

installed onto the event bus at the time the sink subscribes to the event. As mention before, the filter

can be obtained from the Policy Server or the sink and in both cases the filter is passed as a serialized

object. The event bus obtains the class definition from class path or cache within the classloader

object. If not located locally it can get the class definition from the Class Repository, which in this case

is a Web Server.

5.6 Events

One of the requirements set out in Chapter 4 was to have a strongly typed event service that would

accept a wide range of parameters. In the implementation of this event service any Java object that is

serializible may be passed through the event service. Programmers must take care when defining

parameters for events to ensure that they are not excessively heavy.

All event parameters are marshalled into a holder class called EventService.Bus.untypeEvent. This

class is used to pass event parameters from the source to all the sinks that have subscribed to the event.

The class is also used to enforce ordering events from a particular event bus. As CORBA does not

Peter Barron 37 September 99

support passing objects by value it is necessary to serialize the EventService.Bus.untypeEvent object

and pass the serialized object using a byte array that is support by the CORBA standard.

5.7 Event Naming Service

Event Buses uses the Event Naming Service in locating sources of a particular event. The Event

Naming Service is also responsible for producing control events to indicate the advertisement of a new

source. As defined in Chapter 4 the service uses a hierarchical topology of servers based on the name

of the event.

The Event Naming Service classes are defined in the EventService.EventNamingService package that

includes the NamingService program, which is used to start the Event Naming Service. The service is

initialised with the event domain that the service will maintain, the location of parent event domain if

not the root server, location of lower domains and static links to other domains. These initialising

parameters are held within a file, an example of which is given below.

#STATIC LINK FILE

#Tue Aug 17 21:18:43 GMT+00:00 1999

THIS_DOMAIN_IS=ie.tcd.

ie.=sun28.cs.tcd.ie

ie.tcd.cs.=sun29.cs.tcd.ie

ie.tcd.dsg.=woodward.cs.tcd.ie

IDL interface

Event buses and other Event Naming Services use the same IDL interface when looking up, adding or

removing sources. It was not necessary to define two IDL interfaces for the two components. The full

definition of the IDL interface for the Event Naming Service can be seen in Appendix A. The

AddName method allows events buses to insert a new source of an event. The information the event

bus provides is added to the Event Naming Service data structure, which use the EventService.tree.Tree

class to maintain the information on location of sources. At this stage the Event Naming Service also

produces a control event to notify event buses of the advertisement of a new source. The RemoveName

method is the opposite to that of the AddName method. It removes the source from the list of active

sources. Event buses use the lookup method to locate the sources of a particular event.

interface EventNamingService{
void AddName(in string EventName,

 in Bus::EventsRemote RemoteBus)
 raises(AddNameException);

void RemoveName(in string EventName,
 in Bus::EventsRemote RemoteBus)
 raises(RemoveNameException);

RemoteBusList lookup(in string EventName)
 raises(UnknowEventException);

};

Peter Barron 38 September 99

5.8 Summary

This chapter has described the implementation of the event service architecture introduced in the

previous chapter. However due to time constraints the mobility part of the event service was not

completed. Testing on the implementation was successfully completed on the Sun Solaris platform.

The evaluation of the performance of the implementation is discussed in Chapter 6.

Peter Barron 39 September 99

6. EXPERIMENTS AND EVALUATION

6.1 Introduction

This chapter presents some experiments used to evaluate the performance of the implementation of the

event service discussed in the previous chapter. The experiments evaluated generally the performance

of the implementation of the event service when subscribing, advertising and notify sinks of new

events. Also an evaluation of the effectiveness of filters within an event service was cared out in

fulfilment of an objective stated in section 1.2. The experiment used event data from a real event

service to evaluate the usefulness of filters.

6.2 Effectiveness of Filters

To evaluate the effectiveness of filters, real life event data from Cambridge Active Badge System was

used. The system tracks people through the Cambridge laboratories by creating a sighting event every

time a person passes an infrared sensor. [MH1998] uses the same event data to evaluate the SECO

event model, which is a variation of the ECO event model discussed in chapter 2. [MH1998] describes

four experiments used to evaluate filters: God, CCTV, Big Brother and Private. The first three of these

experiments will be repeated to test the effectiveness and accuracy of the filters within the

implementation of this event service.

• God experiment: The God sink requires that is subscribes to all sources of the sighting

events and that it receives the entire notification of events from the stations.

• CCTV experiment: As described in [MH1998] CCTV sink emulates the closed circuit

television security camera and records all events that are emerge from a particular

network of sensors (stations).

• Big Brother experiment: The Big Brother sink has three mode of operation, it can either

receive event sighting from generated from sighting of humans, electronic equipment or

unlisted badges.

6.2.1 Active Badge System

The Active Badge System uses infrared sensors to detect signals coming from battery-driven badges

that worn by equipment and personnel of the building. The sensors or stations are grouped into

networks, which located across the university campus. A six-byte value tag that can be detected by the

sensors identifies each badge. On a sensor detecting a badge it raises a sighting event, which identifies

the station that it came from and the unique badge identifier. The data obtain from Active Badge

System contain 35,811 events collected over a 21 hour period and covers 118 stations over 12

networks.

6.2.2 Experiment Set-up

The exact distribution of stations in the original network is unknown so the distribution of the stations

is as shown figure 20. However, this will not taint the results of the experiment as the number of events

Peter Barron 40 September 99

are counted and not the actual time taken to filter the sighting events. Each network of stations is

located on one event bus. Any sinks interested in receiving the sighting event are located on event

buses other than those of the stations. A starter event will used to signal the start of the processing of

the event data.

Figure 20 Overview of Active Badge Simulation

4843

Event bus

CL-ArupExtn#8

81 82 83 106

108 109 111 114

116

Event bus Event busEvent bus Event bus

Event bus

CL-ArupMain#8

70 72 73 74

75 76

Event bus

ORL-HOMES#5

1

Event bus

ORL-Net#2

Event bus

ORL-Net#1

Event bus

ORL-Net#0

11 12 22 23

24 25 56 60

61 62 63

9 45 51 52

53 54 55 58

 2 10 14 15

16 17 18 19

30

20 21 22 23

Event bus

ORL-Net#5

Event bus

ORL-Net#4

27 33 34 35

36 37 38 57

24 25 26 29

30 31 39 49

5950

Event bus

ORL-Net#6

40 41 42 8

Event bus

ORL-Net#7

14 15 17 20

2 4 6 11

Event bus

ORL-Three#9

18 25 26 32

14 15 16 17

8 11 12 13

4 5 6 7

Event bus

ORL-Three#8

19 20 21 22

9 10 11 16

5 6 7 8

1 2 3 4

25 27 28 29

3130

ENS

Starter

S S

S

S

S

S

S S

S
ENS

Starter

 n

= God, Big Brother and CCTV sinks

= Device

= Event Naming Service

= Application used to start stations

= Stations

Peter Barron 41 September 99

6.2.3 Results

The following results were obtained from running the above experiment on Sun Solaris Ultra5 SPARC

boxes using the default configuration for OrbixWeb3.0. The results from the experiments are as

follows:

Sink Unfiltered events Filtered events % Decrease

GOD Sink 35811 35811 0.00%

Table 1 Results from God Experiment

Big Brother Sink Unfiltered events Filtered events % Decrease

BBSEquip 35811 23578 34.16%

BBSUnlist 35811 2299 93.58%

BBSUser 35811 9934 72.26%

Table 2 Results from Big Brother Experiment

CCTV Network Unfiltered events Filtered events % Decrease

CCTV-CL-ArupExtn#8 35811 52 99.85%

CCTV-CL-ArupMain#8 35811 22 99.94%

CCTV-ORL-Home#5 35811 7 99.98%

CCTV-ORL-Net#0 35811 2125 94.07%

CCTV-ORL-Net#1 35811 5703 84.07%

CCTV-ORL-Net#2 35811 6932 80.64%

CCTV-ORL-Net#4 35811 2582 92.79%

CCTV-ORL-Net#5 35811 5023 85.97%

CCTV-ORL-Net#6 35811 2075 94.21%

CCTV-ORL-Net#7 35811 1899 94.70%

CCTV-ORL-Three#8 35811 7144 80.05%

CCTV-ORL-Three#9 35811 2247 93.73%

Table 3 Result from the CCTV Experiment

It’s quite clear that filters have significant effect on this event service. Looking at the results there is

quite a big reduction in the number of events that individual sinks receive. In general the finer the filter,

the bigger the reduction of the number of events that are received by the sink. This can clearly be seen

in the differences of the results from the Big Brother experiment that uses a quite a course filter and

CCTV experiment that uses a finer filter. It is apparent that there are two advantages to the use of

Peter Barron 42 September 99

filters. The first being that sinks only receives the type of event that they to wish to be notified of.

Secondly, the smaller number of notification help in the reduction of the bandwidth used by the event

service.

6.3 Performance

The performance of the implementation of the event service is evaluated within this section. Each the

operations in the event service was timed to obtain an overall view of the performance of the service.

All processes ran on Sun Solaris Ultra1 and Ultra5 SPARC boxes using the default OrbixWeb

configuration. The network used as the test bed was not closed network and therefor there might be

some variations in the results.

6.3.1 Subscribing

Number of Sources 0 1 5 10

Subscribing with no filter (ms) 5350 5517 5996 7552

Subscribing with a filter (ms) 6896 6855 7410 8771

Subscribing using the Policy Server (ms) 6016 6282 8438 10286

Table 4 Subscribing Results

Figure 21 Subscribing results

6.3.2 UnSubscribing

Number of Sources 0 1 5 10

Unsubscribing with no filter (ms) 1275 1303 1413 1629

Usubscribing with a filter(ms) 1282 1301 1401 1534

Usubscribing using the Policy Server (ms) 1279 1302 1384 1514

Times For Subscribing To An Event

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7 8 9 10

Number of Sources

T
im

e(
m

s)

Subscribing with no
filter (ms)

Subscribing with a
filter (ms)

Subscribing using the
Policy Server (ms)

Peter Barron 43 September 99

Table 5 UnSubscribing results

 Figure 22 UnSuscribing results

6.3.3 Advertising

Time taken to Advertise an Event 100 times (ms) 362806

Average time to Advertise an Event (ms) 3628.06

Table 6 Advertising an event results

6.3.4 UnAdvertising

Time taken to UnAdvertise an Event 100 times (ms) 14214

Average time to UnAdvertise an Event (ms) 142.14

Table 7 UnAdvertising an event results

6.3.5 Notification of Events

Number of EventBuses 1 5 10

Number of Sinks on each EventBus 1 1 1

Total number of Sinks 1 5 10

Average time(ms) for sink to receive an events with a filter 29 86.2 151.3

Average time(ms) for sink to receive an events without a filter 29 82.8 147.4

Table 8 Notification of an event using a filter

Times For Unsubscribing From An Event

0
200
400
600
800

1000
1200
1400
1600
1800

0 1 2 3 4 5 6 7 8 9 10

Number of Sources

T
im

e(
m

s)

Unsubscribing with
no filter (ms)

Usubscribing with a
filter(ms)

Usubscribing using
the Policy Server
(ms)

Peter Barron 44 September 99

Figure 23 Average times for sink to receive an event

6.4 Evaluation of Event Service

The results from the filter experiments show quite encouraging result. Filters within this event service

significantly cut down amount event notifications made to individual sinks. The number of method

invocations required for an event bus to make an event notification depends on the number event buses

that have one or more sinks receiving the notifications and the number of sinks on each event bus to be

notified. Using the following equation the number of method invocations can be found:

Number of Invocations = 1+ Number of event buses being notified of the event

+ Number of sinks being notified of the event on each event bus

The main overhead in sending event notifications is the method invocations to remote event buses. It is

quite welcoming that filters help in the reduction of the number of invocations made. There is a penalty

in the use of filters, the cost of installing a sink’s filter onto the source’s event buses requires extra

bandwidth and time to complete (see figure 21) compared to not using filters. Also the execution of the

filter is an extra overhead for when event buses are notifying sinks. This can be seen in figure 23 and

table 8. Although, there is an overhead in event buses using filters the potential reductions in the

amount of event notifications far out weight the overhead of filters.

Average Time For a Sink to Receive An Event Notication
using a Filter

0
20
40
60
80

100
120
140
160

1 2 3 4 5 6 7 8 9 10

Number Of EventBuses

T
im

e(
m

s)

Average time(ms) for
sink to receive an events
with a filter

Average time(ms) for
sink to receive an events
without a filter

Peter Barron 45 September 99

7. CONCLUSION

7.1 Dissertation Review

The main goal of this dissertation was to design and implement distributed event service that would

operate within the smart building environment that is being developed by the Intelligent Interfaces and

Buildings group from Trinity College Dublin. The event service is to provide the communication layer

for the users of a smart building to communicate with services located within the smart building. The

work was structured as follows:

We began by reviewing different event services from the commercial and research domain. Some of

the services included ECO (Events, Constraints and Objects), JEDI Java Event-based Distributed

Infrastructure, CORBA events services. It was found that many of the event services reviewed used a

subscription base service, which used filters to control the flow of events through the service. Of the

services look at, JEDI was the only one that supported mobility of objects directly. It implemented the

mobility with the use of its reactive objects. This is documented in Chapter 2.

Chapter 3 evaluated the type of environment that the design of the event service would need to cope

with. The main issues taken from the chapter was the need for the event service to support the

interactions with the Policy Server and also the ability of the event service to support the mobility of

objects from host to host.

The event service is modelled on an advertised subscription based event service, using a push model in

the delivery of event notifications. Filters are used to control the flow of event notifications to sinks

and to implement the user policies held on the Policy Server. The semantics of the service guarantees

the notification of events if the source has advertised the event and sink has subscribed to the source.

This is documented in Chapter 4. The prototype implementation of the event service is presented in

Chapter 5. The service was implement using Java and OrbixWeb. A full implementation of the

architecture introduced in Chapter 5 was implement except for the mobility part of the event service.

A number of experiments were cared to test the performance of the event service and the impact that

filters have on the event service implemented in Chapter 5. It was found that filters have a significant

on the event service.

7.2 Achievements

As stated in the objectives in section 1.2 a review of current event services was complete and results of

which can be seen in Chapter 2. Many of the features that were introduced in Chapter 2 were used in

the design and implementation of the event service, such as filters. An architecture for a distributed

event service was developed to allow the service to fit into the smart building infrastructure. The event

service also integrates into the Policy Server, which helps in the controlling the access of users to

services within the building. The design also supports the mobility of objects through the event service.

The implementation of the event service does not implement mobility; this due to the lack time in

implementing this section of the architecture. The event service implemented supports the use of the

Peter Barron 46 September 99

Policy Server and presents an infrastructure for the development of applications or services within the

smart building environment. While the service was primarily developed for use within smart building it

could easily be adapted to be used in other application domains. The implementation of the filter within

the event service has provided the programmer with a very powerful tool in developing event driven

applications.

As stated in 1.2, one of the objectives was to show that filters could help improve the performance of

the event service. In Chapter 6 tests care out using real data from the Cambridge Active Badge System.

The results show significant reductions in the number of event notifications sent to sinks when using a

filter. The size of the reduction depends on how fine the filter definition is.

7.3 Future Developments

As with all projects, there remains ample room for the research within event services and improvement

of the suggest architecture:

Mobility of Objects

Complete the implementation of the architecture set out in Chapter 5. This would ensure that the event

service would be able to guarantee delivery of event notifications to mobile objects and would allow

the support of mobile sources.

Routing of Messages

Both Seine and JEDI have arranged their servers in such a way that they can route notification and

subscriptions more efficiently between sources and sinks. To increase the scalability of the event

service it might be an option do some research into this area and develop the event service using more

efficient routing techniques.

 Pass-by-Value

At present CORBA dose not support the passing objects by value. If this were to change it could have

an impact on the implementation of the event service. Instead of serializing the event and filter object,

CORBA could pass them by value and therefor might increase the performance of the service.

7.4 Concluding Remarks

This dissertation has presents the research, design and implementation of distributed event service for

use within a smart building environment. In conclusion, the architecture supports the development of

event based applications.

Peter Barron 47 September 99

BIBLIOGRAPHY

[WND1999] T.Walsh, P.A Nixon, S.A Dobson, “A Managed Architecture Mobile Distributed

Applications”, TCD-CS-1999-03, http://www.cs.tcd.ie/publications/tech-reports/tr-index.99.html

[CNF1998a] G.Cugola, E. Di Nitto, A. Fuggetta, "Exploiting an Event-based Infrastructure to Develop

Complex Distributed Systems", In the Proceedings of the 20th International Conference on Software

Engineering (ICSE 98), Kyoto, Japan, Apr. 1998.

[CNF1998b] G.Cugola, E. Di Nitto, A. Fuggetta, "The JEDI event-based infrastructure and its

application to the development of the OPSS WFMS". Technical report, CEFRIEL, Milano, Italy, Sept.

1998.

[BBHM1995] Jean Bacon, John Bates, Richard Hayton, and Ken Moody, “Using Events to Build

Distributed Applications”, In the Proceedings of the 1995 Secoud International Workshop on Services

in Distributed and Networked Environments (SDNE95). University of Cambridge Computer

Laboratory, 1995.

[Car1998] Antonio Caraniga, "Architecture for an Event Notication Service Scalable to Wide-area

Networks", PhD Thesis Politecnico Di Milano, December 1998

[MB1998] Chaoying Ma and Jean Bacon, “COBEA: A Corba-Based Event Architecture”, In the

Proceedings of the 4th USENIX Conference on Object-Oriented Technologies and Systems, Santa Fe,

New Mexico, April 1998

[CORs1998] Object Management Group, CORBAservices: Common Object Service Specification,

1998, http://www.omg.org/library/csindx.html

[TIHP1998] Telefonica Investigacion y Desarrollo and Hewlett-Packard Company. Joint submission to

notification service rfp. OMG, February 1998, ftp://ftp.omg.org/pub/docs/telecom/98-01-01.pdf

[BDEF+1998] BEA Systems, DSTC, Expersoft, Fujitsu, GMD Fokus, IBM, ICL, IONA, NEC, Nortel,

Oracle, TIBCO Software, and Visigenic Software. Notication service, joint revised sudmission. OMG,

January 1998, ftp://ftp.omg.org/pub/docs/telecom/98-02-02.pdf

[SCT1995] Gradimir Starovic, Vinny Cahill and Brendan Tangney. An Event Based Object Model for

Distributed Programming. In John Murphy and Brian Stone, editors, Proceedings of the 1995

International Conference on Object Oriented Information Systems,pages 72-86,London, December

1995. Dublin City University, Ireland, Springer-Verlag.

Peter Barron 48 September 99

[MH1998] Mads Haahr, Implementatiom and Evaluation of Scalability Techniques in the ECO Model,

Masters Thesis, August 1998, Computer Science Department Trinty College Dublin.

[Tea1995] TCD Moonlight Team. Void shell specification. Project Deliverable Moonlight Del-1.5.1,

Distributed Systems Group, Department of Computer Science, Trinity College Dublin, March 1995.

Also technical report TCD-CS-95-??, Dept. of Computer Science, Trinity College Dublin.

[ODC+1996] Karl O’Connell, Tom Dinneen, Steven Collins, Brendan Tangney, Neville Harris and

Vinny Cahill, In the Proceeding of the Seventh ACM SIGOPS European Workshop, pages 17-24.

Association for Computing Machinery, September 1996.

[Sun1997] Sun MicroSystems. Javabeans API specification, version 1.01, July 1997,

http://java.sun.com/beans/docs/beans.101.pdf

[Sun1999a] Sun MicroSystems. Jini™ Distributed Event Specification, version 1.0, January 1999,

http://www.sun.com/jini/specs/index.html

[Sun1999b] Sun MicroSystems. JavaSpaces™ Specification, version 1.0, January 1999,

http://www.sun.com/jini/specs/index.html

[GD1999] Richard Greenane and Simom Dobson, Integrating LonWorks into an open systems control

environment, Department of Computer Science, Trinity College Dublin, September 1999,

http://www.cs.tcd.ie/Richard.Greenane/Publications/LonWorld99.pdf

[Kunetz1999] Thomas Kunetz, Policy Management for Mobility, Master Thesis, Department of

Computer Science, Trinity College Dublin, September 1999.

Peter Barron 49 September 99

APPENDIX A – Event Service IDL File

/*IDL FILE FOR Event Service
 FILE NAME:- EventService.idl
*/

//Callback interface for Sink object
module Sink{
 typedef sequence<octet> event_obj;
 interface EventSinkCB{

void notify(in event_obj event);
 };
};

// module for event bus
module Bus{
 //byte array for event object
 typedef sequence<octet> event_obj;

 // byte array for filter object
 typedef sequence<octet> filter_obj;

 //event bus interface to sink
 interface EventBusSink{

 exception SubscriptionException{
 string reason;

 long error_num;
};
exception UnsubscribeException{

 string reason;
 long error_num;
};
long subscribe(in string event_name,
 in Sink::EventSinkCB CallBackSink,

 in filter_obj filter)
 raises(SubscriptionException);

void unsubscribe(in string event_name,
 in long eventsinkid)

 raises(UnsubscribeException);
 boolean autoCleanUpReg();
 boolean autoCleanUpUnReg();

 };

 //event bus interface to source
 interface EventBusSource{

exception AdvertiseException{};
exception UnAdvertiseException{};
exception NotiftyException{};
long advertise(in string event_name)

 raises(AdvertiseException);
void unadvertise(in string event_name,
 in long eventsourceid)
 raises(UnAdvertiseException);
void notify(in string eventname,in event_obj event)
 raises(NotiftyException);

 boolean autoCleanUpReg();
 boolean autoCleanUpUnReg();

 };

 //used by Ebnotify to indicated what sinks should receive this

Peter Barron 50 September 99

 //event
 typedef sequence<long> DestSinksIDs;

 //event bus external interface to other event buses
 interface EventsRemote{

exception EventUnknowException{};
exception SinkUnknowException{

 DestSinksIDs sinkids;
 };

exception EBNotifyException{};

 void EBSubscribe(in string event_name,
 in EventsRemote remoteeventbus,

 in long eventsinkid,
 in filter_obj filter,
 in string username,
 in string Device)

 raises(EventUnknowException);
void EBUnsubscribe(in string event_name,

 in EventsRemote remoteeventbus,
 in long eventsinkid)

 raises(EventUnknowException);
void EBNotify(in string event_name,

 in DestSinksIDs forwho,
 in event_obj event)

 raises(SinkUnknowException,EBNotifyException);
 };
};

//Event Naming Service module
module EventNamingService{

typedef sequence<Bus::EventsRemote> RemoteBusList;
exception UnknowEventException{};
exception AddNameException{};
exception RemoveNameException{};
interface EventNamingService{

void AddName(in string EventName,
 in Bus::EventsRemote RemoteBus)
 raises(AddNameException);

void RemoveName(in string EventName,
 in Bus::EventsRemote RemoteBus)
 raises(RemoveNameException);

RemoteBusList lookup(in string EventName)
 raises(UnknowEventException);

};
};

Peter Barron 51 September 99

APPENDIX B – Example Classes for a Type Event

B.1 PeterEventSinkListener
/**
* PeterEvent listener interface
*/

package PeterEvent;
import EventService.Sink.EventSinkListener;

public interface PeterEventSinkListener extends EventSinkListener{
public void NewPeterEvent(String Peter);

}

B.2 PeterEventSink
/**
* PeterEvent Sink
*/

package PeterEvent;
import EventService.Sink.*;
import java.lang.ArrayIndexOutOfBoundsException;
import java.lang.ClassCastException;

public class PeterEventSink extends EventSink{

static final String EventName = "ie.tcd.Peter";
public PeterEventSink() throws SinkSubscriptionException{

super(EventName);
}
public PeterEventSink(PeterEventFilter Filter) throws SinkSubscriptionException{

super(EventName,Filter);
}

 public PeterEventSink(String Bus) throws SinkSubscriptionException {
super(EventName,Bus);

}
public PeterEventSink(PeterEventFilter Filter, String Bus) throws SinkSubscriptionException
{

super(EventName,Filter,Bus);
}
public void DispatchEvent(Object[] parms,EventSinkListener EListner){

String Peter = (String)parms[0];
((PeterEventSinkListener)EListner).NewPeterEvent(Peter);

}
public void PeterStopSink() throws SinkStopException{

super.Finished();
}
public void PeterAddSinkListener(PeterEventSinkListener EListener){

super.AddSinkListener(EListener);
}
public void PeterRemoveSinkListener(PeterEventSinkListener EListener){

super.RemoveSinkListener(EListener);
}

}

Peter Barron 52 September 99

B.3 PeterEventSource

/**
* PeterEvent Source
*/
package PeterEvent;
import EventService.Source.*;
public class PeterEventSource extends EventSource{

static final String EventName = "ie.tcd.Peter";
public PeterEventSource() throws SourceAdvertiseException{

super(EventName);
}
public PeterEventSource(String Bus) throws SourceAdvertiseException {

super(EventName,Bus);
}
public void StopPeterEvent() throws SourceStopException{

super.Finished();
}
public void NotifyPeterEvent(String Peter) throws SourceNotifyException{

Object[] parms = new Object[1];
parms[0] = Peter;
super.notify(parms);

}

}

B.4 PeterEventFilter

/*
Peter Event Filter

*/
package PeterEvent;

import EventService.Filter.EventFilter;

public class PeterEventFilter extends EventFilter{
static final String EventName = "ie.tcd.Peter";
private String testString;
public PeterEventFilter(String test){

super(EventName);
testString = test;

}
public boolean Filter(Object[] parms){

String Peter = (String)parms[0];
String TestName;

if(Peter.equals(testString)){
return true;

}else{
return false;

}
}

}

