
Data Exchange in a Component Based
Workflow Environment

Paul Fahey

A dissertation submitted to the University of Dublin,
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

September 1999

Declaration

I declare that the work described in this dissertation is,
except where otherwise stated, entirely my own work and
has not been submitted as an exercise for a degree at this or
any other university.

Signed: ___________________
Paul Fahey
September 1999

Permission to lend and/or copy

I agree that Trinity College Library may lend or copy this
dissertation upon request.

Signed: ___________________
Paul Fahey
September 1999

Summary

There is a need to revise existing (successful) software subsystems. One can’t afford

to develop a bespoke system, as done previously, so therefore ‘shrink wrapped

solution sets’ have to be realised. The problem is how to integrate heterogeneous

components to support specific, sometimes unique, enterprise business processes.

One approach is the use of Workflow Engine to co-ordinate and enact distributed

components based on explicitly represented business processes. An important element

of any Workflow Engine is the exchange of input parameters and output results

between components. Traditionally components invoke each other and pass data

directly into each other. However, in Workflow Engines component invocation is

performed by the engine and not performed directly between components.

Performance would deteriorate if all data flow needed to pass through the Workflow

Engine itself. A more efficient approach is to provide a shared component data

exchange, responsible for the storage, management and retrieval of data, which is

passed between components.

Acknowledgements

I would like to thank my supervisor Vinny Wade, for the advice and help that he has

given me during the dissertation. I would also like to thank Brian Cullen , John Fuller,

Sinead Muldowney, Andrew Nolan, and Cliff Redmond for the help and very useful

support during the dissertation.

Also a thanks is due to the classmates of the MSc Networks and Distributed Systems

for all their help during a tough year.

 Contents

1. INTRODUCTION ……………………………………………… 1

1.1 INTRODUCTION ………………………………………………………… 3

1.2 OBJECTIVES …………………………………………………………………. 3

1.3 TECHNICAL APPROACH ……………………………………………… 3

2. WORKFLOW OVERVIEW ……………………………………… 5

2.1 WORKFLOW OVERVIEW ……………………………………………… 5

2.2 TYPES OF WORKFLOW SYSTEMS …………………………………….. 6

2.3 WORKFLOW MODEL ……………………………………………… 9

2.3.1 WfMC Reference Model …………………………………….. 9

2.4 PROCESS MODELLING ……………………………………………… 11

 2.5 SURVEY OF DATA EXCHANGE APPROACHES IN WFMS PROTOTYPES 11

2.5.1 ORBWork ………………………………………………………… 11

2.5.2 The Mentor Projects ………………………………………………. 13

2.5.2.1 Mentor ………………………………………………. 13

2.5.2.2 Mentor-Lite …………………………………….. 14

2.5.3 Panta Rhei ………………………………………………………… 16

2.5.4 Exotica/FMQM with Lotus Notes …………………………… 17

2.6 SERENE WORKFLOW ENGINE …………………………………….. 19

2.6.1 Knowledge Server ………………………………………………. 21

2.6.2 Scheduling Management Activities …………………………… 21

2.6.3 Workflow Information Server …………………………………….. 21

2.6.4 Workflow Dispatcher …………………………………….. 22

2.6.5 Component Adaptors …………………………………….. 22

2.6.6 Shared Component Data Server/SDE …………………………… 22

2.7 DATA INTEGRATION ……………………………………………… 23

2.7.1 Data Integration of Prototypes …………………………… 23

2.7.2 Data Integration Options …………………………………….. 25

2.7.2.1 Centralised Database, Distributed Access ………… 25

2.7.2.2 Partitioned Databases …………………………… 26

2.7.2.3 Distributed Databases …………………………… 26

2.8 ENABLING DISTRIBUTED OBJECT TECHNOLOGY …………………. 27

2.8.1 The Component Model …………………………………….. 27

2.8.2 Workflow and the Component Model …………………………… 28

2.8.3 The CORBA Component Model …………………………… 29

2.8.4 Enterprise JavaBeans …………………………………….. 30

3. REQUIREMENTS ……………………………………………… 32

3.1 GENERAL REQUIREMENTS FOR INTEGRATION OF DATA ………… 32

3.2 DATA INTEGRATION IN THE SERENE ARCHITECTURE ………… 34

3.3 DIFFERENT APPROACHES TO DATA INTEGRATION ………… 36

3.3.1 File Based Storage Approach …………………………………….. 36

3.3.2 DBMS Storage Approach …………………………………….. 37

3.3.3 Memory Cache Approach …………………………………….. 38

3.3.4 Cache & DBMS Approach …………………………………….. 38

4. DESIGN ……………………………………………………………… 39

4.1 OVERVIEW …………………………………………………………………. 39

4.2 COMPARISON TO RELATED RESEARCH …………………………… 41

4.3 ACCOUNTING BUSINESS PROCESS …………………………… 42

4.4 DATA FLOW MODEL ……………………………………………… 44

4.5 DESIGN OF THE SHARED DATA EXCHANGE (SDE) …………………. 47

4.6 DATABASE DESIGN ……………………………………………… 50

4.7 SUMMARY …………………………………………………………………. 52

5. IMPLEMENTATION ……………………………………………… 53

5.1 TECHNOLOGIES USED IN THE PROJECT …………………………… 53

5.2 SDE IMPLEMENTATION ……………………………………………… 55

5.2.1 CORBA Process ……………………………………………… 55

5.2.2 IDL Interface ……………………………………………… 55

5.2.3 CORBA ‘Any’ ……………………………………………… 57

5.2.4 Data Description ……………………………………………… 57

5.2.5 Description of Classes …………………………………….. 59

5.2.6 Database Implementation …………………………………….. 66

6. EVALUATION ……………………………………………………… 69

6.1 SDE AND DATA EXCHANGE IN A COMPONENT BASED

WORKFLOW ENVIRONMENT …………………………………….. 69

6.2 DATA STORAGE & RETRIEVAL …………………………………….. 71

6.3 APPLICATION EVALUATION …………………………………….. 73

6.4 ACCOUNTING BUSINESS PROCESS EVALUATION …………………. 74

6.5 TESTING EVALUATION ……………………………………………… 75

7. CONCLUSIONS ……………………………………………………… 76

7.1 ACHIEVEMENTS ………………………………………………………… 76

7.2 PERSONAL ACHIEVEMENTS …………………………………….. 77

7.3 REMAINING WORK ………………………………………………………… 78

7.4 RECOMMENDATIONS ……………………………………………… 78

APPENDIX A IDLs …………………………………………………….… 80

A.1 m_SdxTypes.idl ………………………………………………………… 80

A.2 RETSubM.idl ………………………………………………………… 83

A.3 m_ChargeContol.idl ………………………………………………………… 86

A.4 m_TariffControl.idl ………………………………………………………… 88

A.5 m_BillControl.idl ………………………………………………………… 90

APPENDIX B Database Schema ……………………………………… 92

ABBREVIATIONS ……………………………………………………… 93

BIBLIOGRAPHY ……………………………………………………… 94

List of Illustrated Materials and Tables

Figures:

Figure 1: Sample Business Process for an Expense Request 5

 Figure 2: A Rough Characterisation of Workflow ……………………… 8

 Figure 3: The Workflow Management Coalition Workflow Reference Model 9

 Figure 4: The METEOR2 Architecture ……………………………… 12

 Figure 5: Client/Server Architecture of Mentor ……………………… 14

Figure 6: The Mentor-Lite Architecture ……………………………… 15

Figure 7: The Panta-Rhei Architecture ……………………………… 16

Figure 9: Co-ordination of distributed workflow and data management 18

Figure 10: The Serene Architecture ……………………………………… 20

Figure 11: Basic design of the SDE …………………………………….... 39

Figure 12:Data flow of the Store Method .. 40

Figure 13:Data flow of the Retrieve Methods ……………………… 40

Figure 14: The Accounting Business Process (Flowthru) ……………… 43

Figure 15: Data Flow Analysis of the Accounting Business Process ……… 45

Figure 16: Design of the SDE ……………………………………… 47

Figure 17: Design of the SDE including the Accounting Business Process

Bridge ……………………………………………………… 48

Figure 18: Graphical Representation of database design solutions ……… 51

Figure 19: SDE Implementation – all classes ……………………………… 60

Figure 20: Hashtable of Hashtables that represents the memory cache

of the SDE ……………………………………………… 66

Tables:

 Table 1: Summary of the WfMC Reference Model ……………………… 12

Table 2: Variables that make up the input parameter for activity 17 ……… 46

Table 3: Tbl_Datastore that is implemented in the SDE

Database ……………………………………………… 67

Table 4: Tbl_IterIndex that is implemented in the SDE

Database ……………………………………………… 67

Table 5: Tbl_IterMap that is implemented in the SDE

Database ……………………………………………… 68

Data Exchange in a Component Based Workflow Environment

1

1. Introduction

1.1 Introduction

There is a trend in software engineering towards distributed componentisation of

software elements and the use of workflow to co-ordinate distributed component

execution. A Workflow Management System (WFMS) as defined by the Workflow

Management Coalition (WfMC), is a system that defines, creates, and manages the

execution of workflows through the use of software, running on one or more

workflow engines, which is able to interpret the process definition, interact with

workflow participants and, where required, invoke applications (or components)

[WfMC]. Componentisation allows developers to take advantage of software reuse,

and enables organisations to build on existing applications therefore avoiding the need

to develop systems from scratch.

Within the WFMS there are various components that tackle activities that need to be

completed as described above. These components need access to some sort of

repository to be able to use input parameters and then store the output parameters.

Another view of this issue is that each process, and therefore each component needs to

be able to invoke data to either test conditions on the state of each task, or to use data

to complete the activity. The results of the process, the output data, must be stored

somewhere, as they may need to be revisited at some stage in the future. It would be

unwise to discard the data produced from the process. The workflow engine is

responsible for the scheduling of the processes that must be completed in the WFMS.

The difficulty in this storage of data is obviously how and where to store the data, and

also how the components invoke the data contained in it. The goal is to have an

efficient data storage system that will allow the WFMS to execute more efficiently.

This entails taking the data storage function away from the workflow engine itself. In

removing this functionality from the workflow engine one is augmenting its capacity

as a co-ordination tool, and therefore improving its efficiency, and speed in

completing activities. To enable this data to be stored and invoked effectively, a Data

Data Exchange in a Component Based Workflow Environment

2

Manager must be implemented. A data manager of course could allow additional

functionality to be added [on the data manager side], which would be difficult to build

into the workflow engine [Alon97a].

A business process can be separated into a number of predefined activities. Each

activity is viewed as separate to the other activities in the business process, The

business process, is added to a work list. The work list gives the state of all business

process’, in the WFMS. A business process is executed by a WFMS as each activity is

completed. The business process is completed when all its activities have been

completed, only then is it signed off, and removed from the work list. An example that

is regularly used is the process of an expense form that passes through the different

departments of an organisation, so that it can be authorised by the different

departments. The business process is the complete authorisation of the expense form.

An example of an activity can be considered the authorisation by one department.

There is a distinction to be made with regards to the data that is used in a WFMS.

There are control data and production data. Control data relates to controlling the flow

of a process through a WFMS, whether an activity should be initiated, or whether it

should wait until the completion of another activity. Control data is considered

persistent data and therefore a method of retaining this data is important. Production

data relates to the input parameters and the output data of an activity or business

process, and can therefore be classed also as persistent data. This is where the data

manger in this project is needed, to store the production data. Building this separately

to the workflow engine eases the load on the workflow engine. Also, invocation of the

data by components, or different applications would be better served by a data

manager rather than the workflow engine itself, as the engine should deal more with

the scheduling and co-ordinating of the activities in a business process. Most WFMS

have a central repository that contains control data, i.e. application data employed to

evaluate the transition conditions governing the control flow, and this suggests that

the past work done on WFMS neglected the production data flow aspects and focused

on implementing control flow.

Data Exchange in a Component Based Workflow Environment

3

What is being investigated here is the role of database technology and research in the

area of WFMS in relation to the exchange of production data. It is hoped that it will be

possible to identify the role that database technology can take in improving the

WFMS, and to identify the database technology that would be best suited to the

Serene Workflow Engine, the WFMS under development in the Computer Science

department of Trinity College Dublin. The data manager must be a shared component

data server (SCDS), as there will be different components, invoking the data

contained in the SCDS, and storing output data that may be used by other components

for other activities. It is seen that the SCDS should be as intelligent as possible,

therefore easing the load on the workflow engine, and on the components.

1.2 Objectives

The objective of this thesis is: to investigate the issues and propose a solution(s), to

support information flow between components in an engine based workflow

environment.

This will be carried out as follows:

• Research into how other Workflow Engines exchange component data.

• Design of the integration of a Workflow application data exchange

• Implementation of the design

• Evaluation of the implementation

1.3 Technical Approach

The first phase of this project is to investigate WFMS prototypes that have been

developed and how they approach the area of production data exchange. The

investigation will include an analysis of their modes of exchanging data, and the

mechanisms for storing data. The focus will be on distributed WFMS. An

Data Exchange in a Component Based Workflow Environment

4

examination of Component Models is also necessary to identify their methods in

addressing persistent storage.

Phase two of the project is to design a data exchange for the Serene WFMS and

integrate this with version 2 of the Serene workflow engine which is being developed.

Interfaces are to be designed so as to allow the integration of the design of the data

exchange with the Serene workflow engine.

Phase three involves the implementation of the data exchange, once an adequate

design has been proposed.

Phase four of the project is the evaluation of both the design and the implementation.

The evaluation will consist of a comparison with the research carried out in the first

phase, an evaluation of the objectives and the achievements of the project, and finally

an evaluation of the prototype developed for the project.

Data Exchange in a Component Based Workflow Environment

5

2. Workflow Overview and Systems

2.1 Workflow Overview

Workflow is defined as a collection of tasks organised to accomplish some business

process (e.g. processing purchase orders over the phone, processing insurance claims)

[Geog95]. A business process can be completed automatically by a software system,

manually by human intervention, or both of these. It is seen as the automation of a

business process.

A business process is broken down into a number of steps or activities, which can be

drawn as an annotated directed graph, which defines the process in a step by step

fashion. Each step is completed in a structured manner. The business process is

represented as a workflow, i.e. computerised models of the business process, which

specify all the parameters involved in the completion of the process. Figure 1 is an

example of a business process, and the example used is an expense from passing

through an authorisation process.

Figure 1: Sample Business Process for an Expense Request

Expense request made

Expense processed

Authorised by accounts
department

Authorised by manager

Start

End

Data Exchange in a Component Based Workflow Environment

6

Workflow is seen in many areas as a complement to Business Process Re-Engineering

(BPR), which is a term that has crept into the corporate world and is dominating most

system development projects today. A WFMS is used to co-ordinate, and streamline

the business process. The parameters that are involved in the completion of a process

range from defining the individual steps (entering customer information, consulting a

database, getting a signature), to establishing the order and conditions in which the

steps must be executed including aspects such as data flow between steps, who is

responsible for each step, and the applications (databases, editors, spreadsheets) to use

with each activity [Alon97b].

Each sub-task, or activity, is passed from one participant to another and it is

automatically, or manually, completed once the start condition for the activity has

been passed. The WFMS provides the ability to specify, execute, report on, and

dynamically control workflow [Geog95]. This is one form of a WFMS. The other

occurs by the activity being initiated in a controlled sequence by the WFMS, that is,

once an activity is completed the WFMS is notified and it initiates the next activity in

the sequence.

2.2 Types of Workflow Systems

Workflow systems fall into two broad categories:

• Forms and messages based workflow systems which perform electronic

routing of forms to user’s e-mail in-boxes

• Engine based workflow systems, which communicate with humans or

components via specialised client software [Wade99]

 Workflow systems can be viewed in another fashion, as will be discussed in the rest of

this section. There are four main categories of WFMS [Alon97b], although some

sources suggest that there are only three. The four categories that are specified are as

follows:

• Administrative

Data Exchange in a Component Based Workflow Environment

7

• Ad hoc

• Collaborative

• Production

 The differences that these categories are based on are: a) repetitiveness and

predictability of workflows and business processes; b) how the workflow is initiated

and then controlled; and c) requirements for WFMS functionality.

 Administrative workflows have steps that are well established, and the set of rules

governing the process is known by everybody involved. They are simple repetitive

predictable processes that have simple co-ordination rules. An example of this would

be the routing of an expense report through an authorisation process, or the

registration of a student in university. There is little complexity to the workflow

process here, and the WFMS in this category would be classed as non-mission critical

[Geog95]. In this category it is the users that are actively prompted to perform their

tasks.

 Ad Hoc workflows are similar to administrative except for the fact that they tend to be

created to deal with exceptions, or where there is no set pattern for moving

information among people. Therefore the ordering, and co-ordinating of the activities

is controlled by human participants. They are intended to support short-term activities.

An important point of this category of WFMS is that activity ordering, and co-

ordination decisions are made during the performance of the workflow. An example

of this is that when an activity has been completed the WFMS will then see who is

available to perform the next activity, and the activity will be placed in the worklist of

that participant.

 Collaborative workflows, can be classed in the Ad Hoc category, but can also be

viewed as a category on its own. This is the extra category that is not mentioned in

most literature. Unlike the other categories, which are based on forward-directed

tasks, the collaborative category includes those tasks that are iterative over the same

step until some form of agreement has been made. An example of this would be the

writing of a paper by more than one author, where the final paper must be agreed upon

Data Exchange in a Component Based Workflow Environment

8

by all parties and, there might have been several toing-and-froing by the authors in the

process of reaching agreement. It would be very difficult to model such a process

using tools that are not geared for collaboration since it is impossible to predefine the

steps to follow [Alon97b]. Most of the co-ordination is done by the human participant,

so it can be argued that these types of processes don’t count as being defined as

WFMSs.

 Production workflows involve repetitive and predictable business processes. They can

be classed as the implementation of critical business processes. This means that they

are directly related to the function of an organisation. An example of this would be the

processing of insurance claims or loan applications. Co-ordination and ordering of

activities can be automated, but the automation of a production workflow is

complicated due to the fact of, a) information process complexity, and b) accesses to

multiple information systems to perform and retrieve data for making decisions. These

WFMS tend to be large scale, and have to deal with heterogeneous environments.

 Figure 2: A Rough Characterisation of Workflow

 Figure 2, above [Alon97b], shows the four categorisations in relation to each other,

based on task structure and task complexity. As can be seen a production workflow is

the most complex and the most highly structured. This is due, as stated above, to the

 Administrative

 Ad Hoc

 Collaborative

 Production

 Task Structure

 Task Complexity

 Complex

 Simple

 Low High

Data Exchange in a Component Based Workflow Environment

9

information process involved in the workflow, and the fact that the activities are

mostly automated.

 2.3 Workflow Model

 At the centre of any WFMS is the business process, and a workflow is a computerised

model of the business process. There therefore needs to exist a set of rules

implemented by a WFMS so that it can execute workflows by use of software that is

driven by the computerised workflow model.

 2.3.1 WfMC Reference Model

 Figure 3 is a graphical representation of the workflow model as given by the

Workflow Management Coalition (WfMC) [WfRe94]. This is the standard that the

WfMC has set down so that WFMSs can at least have a common understanding, and

to prevent the growth of completely unrelated WFMS. Figure 2 illustrates the major

components and interfaces within the workflow architecture.

 Figure 3: The Workflow Management Coalition Workflow Reference Model

 Working Groups Objectives

 Reference Model & Glossary Specify a framework for workflow

Data Exchange in a Component Based Workflow Environment

10

systems, identifying their characteristics,

functions and interfaces. Development of

standard terminology for workflow

systems.

 Process Definition

 Tools Interface (1)

 Definition of a standard interface between

 process definition and modelling tools

and the workflow engine(s).

 Workflow Client

 Application Interface (2)

 Definition of APIs for client applications

to request services from the workflow

engine to control the progression of

processes, activities and work-items.

 Invoked Application

 Interface (3)

 A standard interface definition of APIs to

allow the workflow engine to invoke a

variety of applications, through common

agent software.

 Workflow Interoperability

 Interface (4)

 Definition of workflow interoperability

models and the corresponding standards

to support interworking.

 Administration & Monitoring Tools

 Interface (5)

 The definition of monitoring and control

functions.

 Conformance To develop the Coalition’s policy on

product conformance against its

specifications and agree an approach to

vendor certification.

 Table 1: Summary of the WfMC Reference Model

 Table 1 [WfRe94] gives a summary of the different parts of the reference model, as

shown in Figure 3, that the WfMC have set as standards. An important point to note in

this model is that interfaces 2 and 3 are same, although originally they were specified

as two different interfaces. Over time they have been recognised as having the same

interface.

Data Exchange in a Component Based Workflow Environment

11

 2.4 Process Modelling

 Modelling a process involves capturing the business process. Usually this would

involve interviews with experts that have domain knowledge about the process. Once

enough knowledge has been gathered about the process the workflow specification is

performed to capture the process which requires a workflow model [Geog95]. This

workflow model consists of a set of concepts that describe the process, the activities

and the dependencies among the activities.

 2.5 Survey of Data Exchange Approaches in WFMS Prototypes

 This section introduces the prototype WFMS that were investigated, and their

methods of data exchange.

 2.5.1. ORBWork

 ORBWork is a reliable and fully distributed CORBA based enactment system for the

METEOR2 WFMS. ORBWork supports scalable software architecture, multi-

database access, as well as error detection and a recovery framework that uses

transactional concepts. The workflow specification created in the designer is stored in

an intermediate format called the Workflow Intermediate Language (WIL) which is

similar in structure and semantics to the Workflow Process Definition Language

(WPDL) of the WfMC. The WIL specification contains all the dependencies between

activities and the data objects that are passed among the different activities. The

runtime system of the METEOR2 system is divided into two types of components:

task manager (controller/scheduler), and task (executable). [Das97]

Data Exchange in a Component Based Workflow Environment

12

 Figure 4: The METEOR2 Architecture

 A task manager is started usually by its predecessor by a method called Activate. This

method starts the task manager, and it also passes it the necessary parameters for the

task manager to begin. One of the parameters that it passes is a list of all the data

objects that the task manager will need [Das97]. The input parameters are ’unpacked’,

and once the task/activity has completed, a Save method is called to save the output

parameters. The save method is provided by the data object, or by using the persistent

object services of CORBA. It is the workflow code generator, the designer, that

creates an appropriate IDL interface for each data object, as it processes the WIL

specification. This WFMS is considered to be a production workflow.

 2.5.2. The Mentor Projects

 There are two projects that have been developed under the Mentor project. There is

the original Mentor project, and arising from that the Mentor-Lite project was

developed. The Mentor-Lite project has approached the development and integration

of a WFMS from a different aspect to the original Mentor project.

Data Exchange in a Component Based Workflow Environment

13

 2.5.2.1 Mentor

 The Mentor architecture, as shown in Figure 5, is generally designed as an open

modular architecture where further components can be added, and components can

easily be replaced by alternative implementations. The invoked applications of

activities are run at the client sites. An Object Request Broker (ORB), which is part of

the CORBA architecture, is integrated to cope with the potential heterogeneity of the

invoked applications that belong to the workflow [Muth98]. Orbix is used as the

CORBA compliant ORB.

 The workflow specification is based on state and activity charts. Activity charts

specifies the data flow between activities, in the form of a directed graph with the

items as arc annotations. State Charts reflect the behaviour of a system in that they

specify the control flow between activities [Muth98]. The workflow specification is

partitioned based on the assumption that for each activity of the activity chart there is

a corresponding department or business unit that carries out the activity. Therefore

each activity can be assigned to a workflow server of the corresponding department or

business unit. States are then assigned to activities. The state chart is then

orthogonalised and then the partitions are assigned to workflow servers.

Data Exchange in a Component Based Workflow Environment

14

 Figure 5: Client/Server Architecture of Mentor

 2.5.2.2 Mentor-Lite

 The Mentor-Lite project is a lightweight WFMS based on the Mentor WFMS. The

view taken is that a WFMS is integrated within environments that already have

solutions for implementing control flow. Other WFMS typically involve

implementing the application’s control flow exclusively by the WFMS; the control

flow in this type of WFMS would be specified and implemented from scratch. In most

cases it is rare that a business process will be computerised from scratch. There are

two architectural requirements of the Mentor-Lite project:

• A stepwise integration of workflow management functionality into existing

environments must be supported. This requires the integration and

stepwise substitution of the existing control flow implementations.

Data Exchange in a Component Based Workflow Environment

15

• A workflow management system must facilitate the implementation and

seamless integration of system extensions. Applications must not suffer

from runtime overhead or large system footprints caused by system

extensions unless their functionality is actually exploited [Muth99].

As shown in figure 6 the basic building block is an interpreter for workflow

specifications based on state charts. The communication manager (ComMgr) and the

log manager (LogMgr) are closely integrated with the workflow interpreter. These

three components make up the workflow engine. The TP-Monitor, Tuxedo, is used to

deliver synchronisation messages, but it is hypothesised that CORBA will replace this.

Applications are connected to the workflow engine by specific wrappers, and these are

basic communication interfaces using CORBA.

Figure 6: The Mentor-Lite Architecture

It is viewed that data flow is not within the scope of research of this project. The data

flow between workflow activities is an orthogonal issue to the control flow handling.

Data Exchange in a Component Based Workflow Environment

16

Only data that is relevant to the control flow behaviour is caught. The assumption is

that computerised business processes usually exist when the WFMS is introduced. So,

there is also a kind of data flow implementation, e.g. via pipes or temporary database

tables. Mentor-Lite proposes to use this existing data flow solution [Gill99]. This

WFMS is a production workflow WFMS

2.5.3 Panta Rhei

Panta Rhei’s architecture is based on Web technologies. It is a web-enabled system, as

opposed to a web-based system. A web-based system is a system where it is entirely

Figure 7: The Panta-Rhei Architecture

run over HTTP. As can be seen from figure 7 there is an HTTP server in the Panta

Rhei architecture between the client web browser and the WFMS, and subsequently

no other communication occurs over HTTP. The interface of a user to Panta Rhei is

integrated in a web browser, therefore allowing any user with a web browser to

interact with the Panta Rhei WFMS, and thus participate in a workflow. The Panta-

Rhei comes under the administrative workflow category.

Data Exchange in a Component Based Workflow Environment

17

This WFMS is a forms based system. The architecture differs from the WfMC

reference model (Section 2.3.1), and the workflow engine is a relatively small

component containing the process interpreter [Eder98]. As can be seen from figure 7

all the other components in the WFMS are connected directly to the database

management system (DBMS). The WFMS is implemented in Java, and connects to

the database using Java Database Connection (JDBC).

2.5.4 Exotica/FMQM with Lotus Notes

Another research project that has been carried out does not involve the development

of a prototype, rather it pulls together the functionality of two commercial products:

FlowMark as the workflow engine, and the replication capabilities of Lotus Notes as

the support system for distributed data management. Exotica/FMQM (FlowMark on

Message Queue Manager) is the distributed version of FlowMark based on a generic

queuing system with recoverable queues [Alon97a].

It was viewed in this research that the managing of data flow has been partially

ignored by most commercial products, and the objective was to have a system that

took the management of the data flow away from the workflow engine. This enables

the workflow engine to concentrate on the scheduling of activities. Added

functionality can be embodied in the data manager, which the workflow engine would

not be envisioned containing. A definition that must be noted in this sub-section is the

use of the term node. This is used to represent a physical machine.

The workflow model is enacted by Exotica/FMQM and this is where the business

processes are instantiated, and subsequently the activities that make up the business

processes are also instantiated. The Exotica/FMQM is a combination of a production

and administrative workflow.

Within this system there is a distinction made between the control node and the data

node. The control node is where the activity is carried out, and the data node supplies

the data inputs that the control node may need. A data node can supply to more than

Data Exchange in a Component Based Workflow Environment

18

one control node. The approach taken in modelling the business process1 in this

research project is that the activities are either manually or automatically completed.

This entails there being two manners to carry out the activity and the management of

the data needed for the activity.

Figure 9: Co-ordination of distributed workflow and data management [Alon97a]

For an automatic activity when it has been instantiated, or put in the context of this

project, when a control passes the control forward to another control node the data is

also forwarded to this node. This is where Lotus Notes uses it functionality of

replication, and the data is forwarded to the next data node through replication. In the

case of a manual activity if the data needed for the activity is not automatically

forwarded then the user can manually activate the data transfer. Figure 9 gives a

1 The business process that has been modelled in this project is that of patent claims

D’

D

C

A

5

4

32

1

Control
Node

USER
WORKLIST

Control
Node

Data
Node

DATA

AUTOMATIC
ACTIVITY

Data
Node

USER
WORKLIST

MANUAL
ACTIVITY

DATA
REQUEST

B

Automatic Activity
A- Activity terminates
B- Control node

performs operation
C- Control node

triggers replication
D- Data is forwarded

Manual Activity
1- User arrives
2- User sees activity
3- User selects activity
4- Control node triggers
 replication
5- Data node requests data

Data Exchange in a Component Based Workflow Environment

19

graphical representation of these modes of activity completion. Also included in

figure 9 is a step-by-step flow of operations that both the automatic handling of an

activity, and the manual handling of an activity must follow.

In current commercial workflow systems, data flow is either done externally, with

poor co-ordination and little flexibility, or embedded in the control flow, which has a

serious impact on performance. The impact of this research project minimises the

effect on the control flow, i.e. in the workflow engine, while allowing very

sophisticated co-ordination between the activities and the data flow. [Alon97a]

2.6 Serene Workflow Engine

Serene is a workflow driven telecommunications management system based on

CORBA middleware. It supports the automation of telecommunication management

processes and the integration of service management components [Wade99]. The

approach taken in this project is to implement an engine based workflow system. This

project is being developed in the Knowledge and Data Engineering Group (KDEG) in

the Computer Science department of Trinity College Dublin. Figure 10 shows a

schema of the Serene WFMS architecture.

The engine consists of a scheduler that accepts management requests and initiates

instances of these requests and quizzes a knowledge base to know which activity

should be started. Once the activity to be started has been decided upon then the

information that it has been started is stored in the Workflow Information Server

(WIS). Then the scheduler passes the information to the dispatcher, i.e. the

information that the activity has been started. The dispatcher then invokes the

management component that will complete the activity.

Data Exchange in a Component Based Workflow Environment

20

Figure 10: The Serene Architecture

The management component adaptors interface the workflow engine to the

components [Wade99]. Between the adaptor and the workflow engine only workflow

data is transferred. The data that is needed for an activity to be completed is stored in

the Shared Component Data Server (SCDS), which has been renamed the Shared Data

Exchange (SDE). It is the job of the adaptor to retrieve this information from the SDE.

It is also up-to the adaptor to store any resulting output parameters from an activity in

the SDE. The SDE is the focus of research that was carried out for this project. The

SDE comes under the problem statement as described in section 1.2. It is the adaptor

that lets the workflow engine know that the activity has finished by notifying the WIS.

The scheduler, dispatcher and adaptors were all implemented in Java running on

Windows NT. The WIS and Management Rulebase use commercial database and

Knowledge based systems. CORBA (OrbixWeb) was used as the distributed platform

for the workflow engine [Wade99]. The workflow engine is event driven and also

multithreaded.

2.6.1 Knowledge Server

Scheduler

Dispatcher

Management
Component

Adaptor

Management
Component

Management
Component

Shared
(Component)
Data Server

Workflow
Information

Server

Adaptor

Adaptor

Knowledge
Server

Management
Process

RuleBase

Management
Request

One-way invocation
Two-way invocation
Event
Info. Retrieval
Invocation

Legend:

Data Exchange in a Component Based Workflow Environment

21

The Knowledge Server supports the representation of management business processes

via a rules base, known as the Management Process Rulebase [Wade99]. A unique ID

is assigned to every business process instance and then an activity instance is assigned

its own ID as well. The rulebase that is used is the Java Expert System Shell (JESS).

A business process object is created, and it is the scheduler that interacts with this

object.

2.6.2 Scheduling Management Activities

The scheduler ensures the flow of information and controlled interaction between the

management activities, in order to accomplish the desired management process. There

are three operations that the scheduler supports: start, query, and abort a management

process. As this component is multithreaded it can allow multiple management

processes to run concurrently.

2.6.3 Workflow Information Server

This server is used by the dispatcher, and scheduler. It is possible to view which

management processes are currently running, and the state of the management

activities. The data that the WIS uses is stored in a Process Warehouse that the WIS

can query. All queries are done using SQL. The data that is stored in the process

warehouse is shared and therefore there exists locking methods to prevent

inconsistency in the data. Four states exist for a management activity: inactive, active,

complete, and abort.

2.6.4 Workflow Dispatcher

Data Exchange in a Component Based Workflow Environment

22

The dispatcher is invoked by the scheduler. The dispatcher’s objective is to invoke the

component application that can complete a management activity. This invocation of a

component application is done by creating an adaptor. The dispatcher knows which

adaptors have been created. In allowing the dispatcher to create an adaptor rather than

allowing it directly to invoke an application, the dispatcher has less load on it. This

results in the dispatcher being able to take on more requests from the scheduler.

2.6.5 Component Adaptors

The adaptor is responsible for invoking the component application so that an activity

can be carried out. This is as discussed in section 2.4 above, i.e. to take some of the

load away from the dispatcher. It is the responsibility of the adaptor to access the SDE

so that it can pass any of the input parameters to the component application. It is also

one of the functions of the adaptor to store the output parameters of a completed

activity in the SDE. The adpator starts a thread, which then binds to a wrapper. Each

component application is started using a specific thread that has bound to a wrapper,

i.e. each thread is specific to each component application. Input parameters, and

output parameters are retrieved and stored respectively by the wrapper.

2.6.6. Shared Component Data Server/SDE

In version 1 the components wrote to files, which were then read by the components.

This data relates to the data that is needed for an activity rather than the control data

than is needed to allow effective flow control of a management process, or processes.

Therefore there was limited functionality.

As stated in section 1.2 the objective is to investigate the issues and propose a

solution(s) to support information flow between components in an engine based

workflow environment. This means that the SDE must be developed to prove the

hypothesis of this project. The functionality of the SDE must be extended with respect

to the method of storing and retrieving of data in this second version of the Serene

workflow engine.

Data Exchange in a Component Based Workflow Environment

23

2.7 Data Integration

The core of this dissertation is to make available a data store in which the components

involved in the WFMS can store and retrieve their outputs and inputs respectively.

The details will be discussed in the Design section (Chapter 4). Data integration

entails supplying the workflow engine with access to a Database Management System

that allows persistent storage of the outputs of activities in a business process. An

investigation into data exchange resulted in the analysis of the prototypes and their

methods of sharing data. These prototypes are those that were discussed in section 2.5.

It is necessary now to look at the various ways data is stored in general in a distributed

environment, not just specifically in relation to WFMS.

2.7.1 Data Integration of Prototypes

In the analysis of the WFMS prototypes, the consideration of the data flow and the

methods of storing and retrieving the data is an issue that is left separate to the

development of these WFMSs. In the prototypes investigated the data that was

focused on was the control data, i.e. the data that is used to decide whether an activity

in a business process has completed, and that the next that activity should be

activated. Production data, otherwise know as activity inputs, is not directly addressed

in all of the prototypes, and it is viewed as an orthogonal issue to the development of

WFMS.

To summarise the issues of data integration in the prototypes researched:

• ORBWork: The nature of the underlying persistence media is orthogonal

to the functionality of ORBWork [Das97]. The data that is needed for an

activity is passed from it’s preceding activity and then unpacked. The

output is then stored and this is done by a method called ‘Save’, and this is

implemented using an external persistency storage mechanism (such as an

Object Oriented Database [Das97]), or the persistent object services of

CORBA are used.

Data Exchange in a Component Based Workflow Environment

24

• Mentor: The data flow is examined using activity charts which are

directed graphs, where the data items are shown as the arc annotations. The

invoked applications query the databases that store the data that an activity

needs to complete its task. Therefore the storage mechanisms are already

set up. There are also separate databases that can be accessed depending on

the activity.

• Mentor-Lite: The data flow in this project is seen as orthogonal to the

control flow handling. The system has been built with a view to stepwise

integration with already existing applications, and so the data flow

solutions that already exist are used. The invoked applications already have

a mechanism to store and retrieve data, so it is these methods that are used

to carry out the data exchange.

• Panta Rhei: The WFMS is connected to a database, and the API JDBC is

used to connect to the database. The data that is needed to carry out a

business process is stored in the database, along with all other data that is

necessary for the WFMS to render a business process complete.

• Serene Version 1: There exists a Shared (Component) Data Server which

makes use of serialising the objects that an activity needs for completion.

These objects that contain the input data for an activity are serialised to a

file. This was seen to be a temporary procedure for version 1 development,

and functioned well, but it was viewed that the SDE could be developed

with more functionality and intelligence.

• Exotica/FMQM with Lotus Notes: As described IN detail in section 2.5.4

the management of the data flow is done using Lotus Notes. The data flow

is separated from the control flow, i.e. the workflow engine, and so the

data flow is better managed, leaving the workflow engine to focus more on

the scheduling of activities. The data is passed from one activity to the next

by replication. This is why Lotus Notes had been used because of its

replication capabilities.

Overall there is less importance given to production data flow. The Serene Workflow

engine is, among the above prototypes, the only one that specifically states the need

for a component that provides the means for persistent storage of outputs of a business

Data Exchange in a Component Based Workflow Environment

25

process’ activities, and their related inputs. The Exotica/FMQM is the only research

project that set out to focus on how data flow should be managed in a distributed

workflow environment, and its conclusion was that two products should be used, one

for the workflow engine, and another to handle the data flow.

2.7.2 Data Integration Options

There are three main ways to integrating data in a distributed environment:

• One central computer that collects and processes all data

• Independent computer systems in each office/region that do not share data

with the other offices/regions

• A distributed database system

2.7.2.1 Centralised Database, Distributed Access

A centralised database is one that is located on one machine or server and is accessed

by clients across a distributed system. This improves data integrity, but there are

problems associated with a centralised database. The database can become a bottle-

neck if there is a high amount of traffic to and from the centralised database. If

however the centralised database can handle the traffic then it can be considered an

appropriate solution vis-à-vis the other two solutions detailed below. Data integrity is

improved due to the fact that the data is stored in only one place and only once. There

is no replication, or partitioning of the data. This allows for easier management of the

data on the database side.

Data Exchange in a Component Based Workflow Environment

26

2.7.2.2 Partitioned Databases

The second option is partitioning the database, but this implementation is only

possible when there is no sharing of data across the partitions that have been set up.

These partitions are generally based on office locations, or regions. It is common to

still see this approach in organisations around the world. Any sharing of data is

usually transferred by e-mail, or faxes. This is an ineffective procedure if there are no

well-defined boundaries in the data, and if there is need to share data across

boundaries

2.7.2.3 Distributed Databases

A distributed database is the third option available and this has significant advantages

over the other two approaches. One of the major advantages, which is one of the

objectives of distributed systems, is that a distributed database system is extensible. A

distributed database system is one where most updates and queries are accomplished

locally, but anyone in the organisation can access the information stored in any of the

distributed databases if they have authority to retrieve and integrate the data. Control

over the data is retained locally. One of the major strategies of designing and

controlling distributed databases, is to replicate data. This form of database uses an

approach that is better suited to the layout of a company, given that most large

organisations have different departments, offices, or can be in different regions.

Backup and recovery plans are substantially more important when designing a

distributed database system. A well-designed distributed database should give the

users of the system location transparency.

One approach to distributed databases applications is the use of the Three-Tier

Client/Server Model. The three-tier approach adds a layer between the clients and the

servers. The three-tier approach is particularly useful for systems having several

database servers with many different applications [Pos99]. This use of middleware

allows an application to make use of legacy applications. Another advantage of the

use of middleware is that an application server can be moved, or changed and the user

Data Exchange in a Component Based Workflow Environment

27

need not know. This approach is well suited to object oriented development. Much of

this object oriented approach is discussed in the next section.

2.8 Enabling Distributed Object Technology

As described in the introduction (Section 1.1) there is a move in the software world

towards componentisation which allows software reuse, and enables organisations

build on to existing applications, therefore avoiding the need to develop systems from

scratch. There are various standards that have been developed to enable distributed

computing such as Distributed Transaction Processing (DTP) defined by X/Open, the

Distributed Computing Environment (DCE) defined by the OSF, CORBA defined by

the OMG, and DCOM defined by Microsoft.

Component based reuse is seen as an increasingly important software development

aid. This allows for the building of systems using components that can interact

through well defined interfaces, and can offer a route to reusing software across

projects. Two component emergent technologies are addressing component design

and development, OMG’s CORBA Component Model, and Enterprise JavaBeans.

These will be outlined later in this section. It is envisioned that these technologies will

not be used in the development of the SDE, but their evaluation is important so as to

be able to make recommendations with respect to the Serene workflow engine.

2.8.1 The Component Model

A definition of the Component Model is as follows:

• A component model defines the basic architecture of a component, specifying the

structure of its interfaces and the mechanisms by which it interacts with its

container and with other components. The component model provides guidelines

to create and implement components that can work together to form a larger

application. Application builders can combine components from different

developers or different vendors to construct an application [EJB98].

Data Exchange in a Component Based Workflow Environment

28

The component model is aimed to have a multitier distributed application architecture.

A multitier application is one that has been split into multiple application components.

This results in having significant advantages over the traditional client/server

architectures including improvements in scalability, performance, reliability,

manageability, reusability, and flexibility.

In designing components one is allowing the use of reusable software, which is the

primary objective of componentisation. A component has it’s own interface which is

published and so is available to any other component or client in the system. This

interface once defined should not be changed, allowing the clients or other

components in a system to know what the functions of the component are and the

results that they return. This gives them the added advantage of not needing to know

or understand how the component carries out any of its functions. It also sets a

standard, so that if it is necessary to use a component the developer will know what

the component is, and how to reuse it, that is if the developer is familiar with this

particular component. Otherwise there would be additional information on what the

component is, and what it does. An organisation involved in component technology

would have some form of repository, a kind of reference, that would hold details on

all the components that it has. This repository would be invaluable for software reuse.

Development of applications would be able to reuse previously developed

components, therefore saving valuable hours in development time, as it would be

simply a task of putting the necessary components that already exist, together.

2.8.2 Workflow and the Component Model

There is a development in workflow that workflow tools could provide a vital element

in the co-ordination of distributed components within different domains. In a WFMS

new components can be added to provide the necessary functions of new business

processes and their related activities. Component integration is therefore an area of

importance for WFMS. This integration of components has some key requirements:

• Ability to integrate with legacy systems in a cost effective way

Data Exchange in a Component Based Workflow Environment

29

• Ability for components to interoperate even if they have been implemented

using different programming techniques.

• Ability for components to interoperate even when they offer interfaces that

have been defined in different languages, e.g. IDL, ODL, GDMO or SMI.

• An integration mechanism that minimises the knowledge needed of other

potential interoperating components when a new component is developed.

• The need for an integration mechanism that clearly supports the needs of

specific business processes in a clearly observable manner.

• The need for an integration mechanism that is robust to changes in

technology.

• The need for an integration mechanism that minimises the obstacles to

adapting a component to a new application.

2.8.3 The CORBA Component Model

The CORBA Component model is part of the CORBA 3.0 specification. This has got

much media coverage within the IT world which has yet to be released. The main

extension to the CORBA 3.0 specification is the addition of the CORBA Component

Model. This component model specifies a framework for the creation of plug-and-play

CORBA objects. The integration of Enterprise JavaBeans is also an integral part of

the component model, and the model will also help in the further integration of other

object-based technologies. Enterprise JavaBeans (EJBs) will be discussed further in

section 2.8.4.

The model is based on EJBs, but it extends the power of CORBA, in that this

component model is intended to work with the other major programming languages

such as C++, COBOL, Smalltalk, and ADA. This gives increased power to an

organisation that has legacy systems developed that are still extremely useful to the

organisation, and therefore avoids the need to redevelop these systems, saving time

and money, which is of great importance to an organisation. These legacy systems can

now be exposed to the developers within an organisation, thereby creating one of the

objectives of the component model, which is software reuse.

Data Exchange in a Component Based Workflow Environment

30

The Component Model expresses the component as a type in CORBA IDL. The type

definition provides both compile-time and run-time information on its external

interfaces. This includes new IDL syntax to provide:

• Unique component identification

• Identification of interfaces that the components both provides and uses

• Details on the events that a component both emits and consumes

• Navigation interfaces that allow the above to examined

• Interfaces that allow runtime attribute and property configuration

• Interfaces for managing multiple component instances

2.8.4 Enterprise JavaBeans

The Enterprise JavaBeans (EJB) component model logically extends the JavaBeans

component model to support server components. Server components are reusable, pre-

packaged pieces of application functionality that are designed to run in an application

server [EJB98].

The main advantage that EJB has over the other component models is that it manages

the middleware services for the components themselves, and as a result removes some

of the development from the application developer. There is no need for the developer

to be concerned with services such as lifecycle, state management, security,

transactions, and persistence. The EJB model manages these services. Application

development is therefore speeded up, as the developer does not have to waste time on

the complex middleware. The EJB model is very versatile and is able to integrate and

interoperate with environments that are compliant with the EJB model. This

reinforces the ‘Write Once, Run Anywhere’ objective of the Java language.

Data Exchange in a Component Based Workflow Environment

31

A container is where the components execute and this container manages the

components. In practical terms a container provides an operating system process or

thread in which to execute the component [EJB98].

Data Exchange in a Component Based Workflow Environment

32

3. Requirements

The development of a prototype for this dissertation was implemented in conjunction

with the development of the Serene Workflow Engine Version 2. The architecture of

this version is as described in section 2.6. The requirements that were stated at the

outset of the project were therefore requirements that were essential for the integration

of the Shared Data Exchange (SDE) with the Serene Workflow Engine. Initially the

investigation into data exchange in a componentised workflow environment focused

on the prototypes that have already been developed, and then a prototype data

exchange server was developed.

3.1 General Requirements for Integration of Data

Analysis of Data Flow

For any integration of a data store the initial step is the analysis of the actual data

flow. This entails identifying activities, and then the input data they use and the output

data that the activity produces. There are various methods for accomplishing this, and

the best form of analysis is a diagrammatic representation of the data flow which the

experts, that are familiar with the activities and flow of data in a system, can render

comprehensible to the developer. A data flow diagram shows how activities depend

on one another for their information. From the data flow a data model can then be

designed. The objective is that the data store should always be consistent with the data

model. It is essential that this be done correctly as an incorrect data model will make it

more difficult to rectify later on during the development of an application.

Integrating the Application

The limitations of a data store must also be acknowledged. The objective of a data

store is to supply applications with a mode of storing data and retrieving data. There is

only a certain amount of intelligence that can be built into the data store, and this so-

called ‘intelligence’ must be derived from the data model. It is possible that if

Data Exchange in a Component Based Workflow Environment

33

middleware is being used to develop an application to allow for the retrieval and

storage of data, then there can be intelligence built into the application code that

separates the middleware from the Database Management System (DBMS). The

DBMS itself is limited in its functionality in providing intelligence. Intelligence can

be defined as the manipulation of the data so that it can be returned to the requestor in

the format, or type, that the requestor might need it in, and also the storage

requirement might mean that the data would need to be manipulated in some way so

as to make storage possible. One of the reasons for the necessity of such requirements

is brought about by the use of object-oriented languages, and the DBMS that are also

used in the integration. They might not be interoperable and some manipulation might

be essential to make the applications work together.

Need to be Able to Store Outputs, Retrieve Inputs and Retrieve Outputs

The major and defining requirement of Data Integration is to be able to store data and

then retrieve then data when necessary.

Provide SDE with Application Code for Storing and Retrieving Data

One of the requirements is to provide a server that implements the above requirements

of storing and retrieving data. This is to act as a bridge between the chosen DBMS and

the components that invoke the methods to store and retrieve data. This

implementation should be opaque to the components that call it, that is to say there is

no necessity that the components see the implementation code, or understand how it

carries out the storing and retrieving of data. All they require is that the

implementation works.

Provide Interface to the SDE

This follows on from the above requirement. The components will only see an

interface that will allow it to call methods for storing and retrieving. The requirements

for the interface will be discussed further in section 3.2.

Provide a Means of Preventing Concurrency Problems

In a distributed environment occasions arise when two users might try and update the

same record at the same time in the database. This can cause problems in relation to

Data Exchange in a Component Based Workflow Environment

34

the data integrity. This must be avoided so that any updates, or storage, or retrieval of

the data must include a blocking function so that only one update occurs at a time.

Avoiding Deadlock in a Distributed Database

Deadlock must be avoided at all cost. Deadlock occurs when a user could hold a lock

on a table on one computer, and be waiting for a resource on a different computer.

Another user could be waiting for the resource that the first user has locked, and they

themselves have locked the resource that the first user is waiting for. The second user

is unable to release until the first releases. The deadlock problems have to be

identified so that they can be avoided.

Hardware Requirements

The platform that the data integration is going to be carried out on must be taken into

account. The DBMS should be chosen depending on the platform used.

3.2 Data Integration in the Serene Architecture

The Serene architecture has already been described in section 2.6. At the outset of the

project there were specific requirements that were given to allow the integration of a

Shared Data Exchange (SDE), which were important to adhere to, as the integration of

the SDE would have been all the more difficult if these requirements had not been

followed.

Hardware Requirements

The application is to be built on the Windows NT platform, as the Serene workflow

engine has been developed and implemented on NT.

Data Exchange in a Component Based Workflow Environment

35

IDL to Provide the Interface to the Server

The first step in the development is to design an IDL interface so that the other

components would know the interface to use in order that they could implement the

storing and retrieving functions of the SDE. This interface allows the implementation

of the SDE to remain opaque to the components of the workflow engine

Store the Output of an Activity

When an activity is completed in a business process there are generally outputs, and

these outputs should be stored in some form of data store. This is one of the major

requirements, as the project is based on data exchange, so a mode of storing was

important to achieve the goal of data exchange.

Retrieve the Input of an Activity

An activity in general needs some parameters so as to complete, so there was a

prerequisite that there be some method in the interface to be able to retrieve the inputs

of an activity.

Retrieve the Output of an Activity

On occasion it is necessary to retrieve the output of an activity that has previously

been stored and it was requested that there be an interface that reflected this.

Data Flow Model

In order to gain a better understanding of the data in the business process under

examination, a data flow model would have to be extracted. This involves sitting with

the people who understand the data and can then provide expertise on the data in the

system that will be stored, and retrieved. The data flow model is therefore to be

implemented in the chosen DBMS. This data flow model should reflect the data store

limitations, and aid in the storage and retrieval of data.

Develop the Interface Using Orbixweb

As the middleware used in the Serene workflow engine is OrbixWeb, which is based

on the CORBA standard, the IDL’s produced must be compiled using OrbixWeb, and

any communication across networks, or between the components is to be based on the

Data Exchange in a Component Based Workflow Environment

36

CORBA standard. The CORBA specification used in this project is 2.3. All coding on

the server side has to take into account that OrbixWeb is the middleware.

Provide DBMS

The DBMS that is to be used is Microsoft Access 97. This requirement was specified

at the outset of the project.

Provide SDE that Implements Store and Retrieve Methods

The server that is to be developed must provide the implementation of the methods

described in the interface. These methods are the three that are described above, i.e.

store output, retrieve inputs, and retrieve outputs. The implementation of these

functions should not concern the components that invoke them.

Need to be able to Return the Inputs as Required by an Activity

The inputs of an activity may have to be built on the server side so that they are

compatible with the required input of an activity. This may require hand-coding the

retrieved inputs of an activity. This should also be opaque to the components that

invoke the methods defined in the interface.

3.3 Different Approaches to Data Integration

3.3.1 File Based Storage Approach

The SCDS of version 1 of the Serene workflow engine allowed components to invoke

methods on a server implementation class that stored and retrieved data. This server

was called the Shared Application Data (SAD) Server. The function of this was

limited to storing only objects that were serialisable. The objects that were stored and

retrieved were CORBA objects of type ‘Any’, which is a class defined in CORBA and

also in the API’s of Java. These objects of type ‘Any’ allow any other type of object to

be packed into them. This allows for a generic mode of transferral from a component

to the data store. The objects themselves were serialised to a file by the SAD server,

where they were stored.

Data Exchange in a Component Based Workflow Environment

37

The retrieval method that was invoked would read the serialised object from the file

where they were stored, and then the SAD server implementation class would

unserialise them, and pack them into the container type CORBA ‘Any’. The object of

type ‘Any’ would then be passed back to the component that invoked the method. The

component could then unpack the object and use the input to complete an activity.

The details of the type ‘Any’ will be examined in greater detail in the implementation

section.

One major requirement for this approach to data storage is that all objects that were to

be stored had to be serialisable. This meant that all the objects needed to implement

the serializable class defined in Java. This meant editing all the classes that defined

these objects. Another requirement for the SAD server to work meant that the objects

passed to the SAD server were to be of the type CORBA ‘Any’. The server had to

have the ability to accept CORBA objects, and also know what types were packed in

the ‘Any’.

3.3.2 DBMS Storage Approach

Once an activity in a business process has completed the data that it generates is

considered to be the output of the activity. There must exist some mechanism to allow

for this output to be stored persistently. Persistency storage, in this project, entailed

using a DBMS to provide this functionality. By providing persistent storage the

Serene workflow engine would be enabled with a data store that can be used in the

future for further querying and investigation. The obvious prerequisite of persistency

storage is that each output of an activity must be stored.

A component must be able to pass in an object to the server that is implementing the

storage function. This object will be a CORBA object of type ‘Any’. On storage of an

output the method that is invoked on the server side must avoid concurrency

problems, so that when one component is storing an output, no other component can

store an output of an activity to the DBMS. The DBMS that is used for persistent

storage must be able to store the CORBA objects with an index, or key that is unique

for each object. This requires there to be some mode of creating keys or indexes for

Data Exchange in a Component Based Workflow Environment

38

each CORBA object. The CORBA objects that should be assigned the key are the

CORBA objects that contain the output of an activity.

3.3.3 Memory Cache Approach

A memory cache approach is an intermediate solution, between a transient data

solution and a persistent solution. The main requirements are similar to the

requirements in the above section, for the persistent DBMS storage approach. When a

call is made to the server that implements the storage functionality then the output of

an activity should be stored in the memory cache.

The memory cache must be able to store objects of type CORBA ‘Any’. These are the

types that are passed in from the components that wish to store the output of an

activity. The output of an activity is contained within the CORBA ‘Any’. These

objects must have an index, or key, that is unique for each activity.

3.3.4 Cache & DBMS Approach

The combination of the persistent storage approach, and the memory cache approach

is seen as beneficial to the development of data storage. It can increase the speed up

retrieval and have persistent storage of the data. If there are any problems with the

memory cache then the DBMS will always contain the data that is being searched for.

The DBMS is almost a backup to the memory cache. The storage of data occurs in

both the memory cache and the DBMS. If data is being retrieved and it is located in

the memory cache then the DBMS is not searched, thereby saving valuable time.

Data Exchange in a Component Based Workflow Environment

39

4. Design

4.1 Overview

The overriding requirements for this project is that for each activity in a business

process it is possible to store the output of a completed activity, and an activity is also

able to retrieve its input so that it can complete its activity. An extra requirement that

developed during the project was that a component should be able to invoke a method

that would return the output of a completed activity that is stored in the data store.

The basic design is as shown in figure 11. As can be seen from the diagram a

component invokes the store interface on the server. The server then implements this

method and stores data to the database. Then for the retrieve method the component

invokes this method on the server. The server, as was done for the store method

implements this method and retrieves data from the database.

Figure 11: Basic design of the SDE

In figure 12 a diagram of the data flow is shown. This data flow represents the flow of

data for the store function. It is the output of an activity that is being stored to the

database.

Retrieve

Store

Retrieve

Store

DataBase

Component SERVER

Data Exchange in a Component Based Workflow Environment

40

Figure 12:Data flow of the Store Method

In figure 13 the data flow is shown for the retrieve method. There are two forms of the

retrieve method: 1) retrieve the input for an activity that a component is carrying out,

and 2) retrieve the output of an activity that has already been completed. It is

important here to distinguish between the two because the first retrieval function

returns the inputs for an activity, whereas the second retrieval method is distinct in

that it retrieves the output of an activity that has already completed and stored its

output. Accordingly the input of an activity is not generally the output of a preceding

activity. The input for an activity may take some of its variables, not all, from the

output of the preceding activity, and/or other activities.

Figure 13:Data flow of the Retrieve Methods

A summary of these three functions is as follows:

• store

• retrieve

• getActivityOutput

Output

Output

DataBase

Component SERVER

Output

Input

Output

Input

DataBase

Component SERVER

Data Exchange in a Component Based Workflow Environment

41

It was also an objective to build intelligence into the SDE rather than the Adaptors in

the Serene WFMS. See section 2.6.5 for an explanation of the Adaptors. These invoke

the component applications and call the SDE to request the data that a component will

need for an activity. The more intelligence that was built into the SDE the less the

Serene workflow engine would have to do, and this was one of the requirements of the

SDE. So the design had to attain this objective.

4.2 Comparison to Related Research

The research that was carried out into data exchange in workflow engine prototypes

turned up very little information on the design of the DBMSs that support the

workflow engines or the handling of production data. The weight given to the

production data, i.e. the data that an activity needs to complete is small in comparison

to the emphasis given to control data in a workflow engine. Indeed the prototypes

Mentor, Mentor-Lite, and OrbWork view the area of production data as orthogonal to

issues that they believe to be important in the design of the workflow engine. Mentor-

Lite was developed as an integrable system, so that any of the invoked applications

that would carry out an activity already had their own forms of data stores set up.

There was no discussion on what these data stored were, but one would assume that

they were standard DBMS.

OrbWork uses the persistent object services of CORBA, and again there was no

discussion on what type of data store there was. Panta-Rhei has a backend DBMS that

passes the production data along with all the other data that an activity might need, but

the method of data exchange was never discussed in the research papers available.

The only prototype that was relevant to the area that this project undertook to

investigate was the Exotica/FMQM prototype that is discussed in section 2.5.4. Lotus

Notes is used as the data store and the production data is separated from the control

data that activities use. The production data is distributed to suit the Exotica workflow

engine, which operates in a distributed environment. The Serene workflow engine also

operates in a distributed environment. The Serene project also views that the

production data the WFMS needs should be a separate component to the other

Data Exchange in a Component Based Workflow Environment

42

components in the WFMS. This has resulted in the SDE being designed as a separate

component to the workflow engine, which itself is a componentised application. As

each new activity in the Exotica/FMQM project is initiated then the data that is

required for the activity is replicated and passed to the next node of the WFMS. This

is not the view of the design that covers the SDE for the Serene workflow engine. The

data is centralised in a DBMS so there is no method of replication, but it works within

a distributed environment, in that the data can be called from any other component

that needs the input to an activity in a distributed environment. The design of the

DBMS for the SDE does not exclude the fact that it can be developed as a distributed

database. The SDE has been designed with the basis for extensibility, and it can be

viewed that the extensible function would be resolved by using a distributed database,

or a replicated database. The replication of the data would involve looking at each

component to analyse the data that each component would use and replicating only the

data that the component would need to use. However the design for the SDE in this

project though was a centralised database, with distributed access.

So overall there are very few benchmarks that this project can be evaluated against.

The Exotica/FMQM prototype was the only one specifically developed to investigate

distributed data management in a workflow environment. The data though was based

on Lotus Notes, which used forms to pass data.

4.3 Accounting Business Process

The SDE has been designed with the Accounting Business Process as the basis for

development; therefore it is important that one has a better understanding of this

business process. The Accounting Business Process is a business process that was

developed to support the billing of multimedia telecommunications services. It was

specified in an EU research project and called Flowthru. It is a business process that

contains six different activities. Figure 14 is a graphical representation of the

Accounting Business Process.

Data Exchange in a Component Based Workflow Environment

43

Figure 14: The Accounting Business Process (Flowthru)

Following is a description of each of the activities:

• listSubscribedServices(): List of subscribed services for a particular

subscriber (company).

• getAllUsersTariffIdList(): A tariff ID list is returned for each user in this

subscriber list for a particular service.

• getSubscriberCharges(): The tariff is input to get the charges for a

subscriber.

• getSubscriberTariffIdList(): Get the tariff list for a particular subscriber for

this service

listSubscribedServices()

Activity type = 15

getSubscriberTariffIdList()

Activity type = 18

getAllUsersTariffIdList()

Activity type = 16

getSubscriberTariff()

Activity type = 19

getSubscriberCharges()

Activity type = 17

requestInvoice()

Activity type = 20

No. of
iterations

END

Data Exchange in a Component Based Workflow Environment

44

• getSubscriberTariff(): Get the tariff information

• requestInvoice(): Generate full invoice

4.4 Data Flow Model

Figure 15 represents the data flow in the Accounting Business Process, and it is

important for this data flow diagram to be understood so that the complexity of the

data flow in the business process is perceived and also the complexity of the data

itself. One bonus at the outset of the project is that there was no requirement to

propose a indexing for the data. Previous to any development there was an indexing

method set up. This was a simple, and easily understood model. When a business

process is instantiated by the Serene workflow engine, it is assigned a unique ID, the

Process Instance ID (PIid). This is a numerical code and is unique for every instance

of a business process. Also when an activity is instantiated it is assigned a unique ID,

called the Activity Instance ID (AIid) which is also a numerical value.

Data Exchange in a Component Based Workflow Environment

45

Figure 15: Data Flow Analysis of the Accounting Business Process

Output
Parameter

Input
Parameter

Activity 15

Activity 18Activity 16

Activity 19Activity 17

Activity 20

Account No.

serviceIdList

serviceId serviceId

Account No. Account No.

t PerUserServiceLevelTariffIdList

t_GetSubscriberChargesInput
Parameter

t ServiceLevelTariffIdList

t_getSubscriberChargesOutput
Parameter

t_GetSubscriberTariffInput
Parameter

 t_SubscriberTariff

t_InvoiceInputParameter

 t_Invoice

Data Exchange in a Component Based Workflow Environment

46

As can be seen from figure 15 for each activity there exists an input, and an output.

These input and output parameters are user defined user defined types. These types

can be viewed in Appendix A. They are defined in IDLs, and were not part of this

project but were developed separately with a view to be used by the SDE. An example

of one of the input parameters is t_GetSubscriberChargesInputParameter, which is the

input for activity type 17. This is made up of the variables as shown in table 2.

Variable Type

SubscriberId String

TidList output of activity 16

ServiceId iteration (integer)

FromTo Complex date/time type

structure

CurrencyUnit String

Table 2: Variables that make up the input parameter for activity 17

So the input for activity 17 is not a simple string or integer, but a complex data

structure. As can be seen from the table 2, the variable tidList is the output of the

preceding activity, which is activity 16. The variables subscriberId, fromTo, and

currencyUnit are three inputs that must be input by the user at the beginning of the

business process. They are called the Business Process Inputs, and are those inputs

that are not contained in any of the outputs, of any of the activities in the business

process. They are not generated by any activity and must therefore be generated by a

user of the system. The variable serviceId represents the iteration that the activity is

on, and is another parameter that is not generated by any activity. This variable will be

gathered from the SDE database, and the design of this will be discussed later.

These data types that have been predefined in IDLs are called CORBA structs, and

they allow for nesting of types. CORBA structs are defined in the IDL interfaces so

that a developer of an application can create their own types. They are user-defined

types and can have deep nesting structures if desired. A struct allows one to form an

aggregate structure of variables, which may be of the same or different types [Iona98].

Data Exchange in a Component Based Workflow Environment

47

This allows for more complex variables, and a bit more flexibility for the application

developer. More details of the complexity of the data types that have been defined for

the accounting business process will be discussed, and demonstrated in the

implementation section (Chapter 5).

4.5 Design of the Shared Data Exchange (SDE)

The overview of this chapter gave a brief description of the design of the SDE. Figure

16 gives a more detailed design. The major difference is that there is a memory cache

included in the design.

Figure 16: Design of the SDE

The introduction of the memory cache allows for a speed-up in performance. When

the server is passed the data that it has been requested to store, this data is stored in

the database and the memory cache. So, when the server is invoked by a component to

retrieve data, the memory cache is searched first for the data. If the data that is being

requested resides within the cache, then this data is returned to the component and the

database is not searched. If for some reason, e.g. the server goes down resulting in the

Retrieve Store

Retrieve

Store

Retrieve

Store

DataBase

Component
SERVER

Cache

Data Exchange in a Component Based Workflow Environment

48

memory cache being deleted, the retrieval method can now fall back on the database.

The cache should always be checked first, and if there is no data matching the index

that is being used to search the cache, then calls should be made to the database, and if

the data is there, it is returned to the component. Calls to the database take more time

than calls to a memory cache, so it is viewed that the cache will improve performance

rates in the system.

As discussed in section 4.3 the introduction of a business process that has activities

involving iterations introduces complexity into the data flow model. Also as discussed

in section 4.4 the data flow model is further complicated by the fact that the original

view of data flow from one activity to the next is an incorrect picture of the actual data

flow. The data for the input of an activity can come from various activities, indeed

some of the data needed must be manually inserted into the database, so that an

activity can use that data to proceed. There exists as a result two more design

requirements, which are to have (1) some functionality that can keep a track of the

iteration that the loop in the business process is on, and (2) a bridge between the

Figure 17: Design of the SDE including the Accounting Business Process

Bridge

server and the persistent storage so that the inputs for an activity can be built up. This

new design is shown in figure 17.

Retrieve

Retrieve Store

Retrieve

Store

Retrieve

Store

DataBase

Component
SERVER

Cache

Accounting
BP Bridge

Store

Retrieve
Storage

Store

Data Exchange in a Component Based Workflow Environment

49

In order to keep track of the iteration that the Accounting business process is on, there

were two options that were available on storing this data. The first was to store the

iteration number in a memory cache. The second was to store the information in the

database. The second option was decided upon. It was seen as an advantageous choice

over the memory cache. Choosing the second design over the first was due to the fact

that if the server crashed, or any failure occurred in the application, at least in the

database there would be a permanent record of what iteration the Accounting business

process was on. Therefore it would be possible to recover from a point of failure. If

this information remained in the memory cache there could be the possibility of losing

it, and this might result in the whole business process being restarted, which would

waste time and require a clean-up of the data that had already been stored in the

database. This clean-up would be as a result of the fact the data is stored under a

unique index, which is the Process Instance ID (PIid) and the Activity Instance ID

(AIid). If data already stored had not been deleted then the indexes, that were already

used to identify the data, could not be used again. At least with the second option the

business process can be rolled back to the last activity completed, with the metadata

remaining in the database. There would be an obvious reduction in performance time

due to DBMS access rates but this is a necessary handicap in gaining extra

functionality.

The Accounting BP bridge in figure 17 must be able to take in various outputs that

have been stored in the database, and extract from them the data needed for each

activity. This is only necessary for the retrieval of inputs for an activity. So for each

activity as shown in figure 15 the data input needs to follow this process:

• retrieve the outputs of activities that contain the essential data;

• extract the data from these outputs;

• insert the data into the predefined input types for each activity.

This is where the generic store and retrieval methods in the original design fall down.

Originally it was hoped that there would be no need for the SDE to know what was

been stored in the data store. Data was to be passed in and stored, and then retrieved.

The design involves storing the data in a generic fashion, therefore adhering to the

Data Exchange in a Component Based Workflow Environment

50

original generic view. Unfortunately a generic retrieval method was then found

unattainable, as the data flow model didn’t allow it, and so as stated above the inputs

for an activity have to built up for each activity.

It is important to point out that the persistent storage mechanism and the memory

storage mechanism have been designed separately. The database can be considered as

a separate component itself, leaving the possibility that it can be replaced with some

other persistent storage service. This allows for further development of the storage

mechanism.

4.6 Database Design

In section 2.7.4 the different types of data integration were discussed. It would appear

from this analysis that the preferred objective would be a distributed database.

However for the development of a prototype a centralised database with distributed

access was chosen to be the grounding for investigating the data exchange between

components. There is distributed access to the database over the network from the

different components that make up the Accounting Business Process. Having a

centralised database is not the ideal solution. A distributed database would have been

preferable, but for the sake of prototype development the design of a centralised

database was chosen. As the traffic to the centralised database is low then the

centralised database solution can handle the traffic involved in the Accounting

Business Process. Another factor in having a centralised database is the fact that the

testing of the SDE was going to be in conjunction with the Accounting Business

Process. So there was only one business process that was going to be tested. If there

were more business processes then the complexity of the database design would have

to be increased, and a distributed database should then be taken into account in the

design. The database design itself is not very complex, as there are two functions that

it really has to serve. The first, just to reiterate, is a store function and the second is a

retrieve function. As the DBMS is a relational DBMS (RDBMS) the tables that would

hold the data and the metadata had to be carefully designed.

Data Exchange in a Component Based Workflow Environment

51

Figure 18: Graphical Representation of Database Design Solutions

Figure 18 is a graphical representation of the solutions available in the database

design. The SDE is placed on this graph, and it can be described as a Component

General, Centralised Database with Distributed Access. Component General relates to

the fact that the SDE is designed to store an output to the database and can remain

ignorant of the component that is invoking it, i.e. it is not component specific. As

discussed before it was decided to use a centralised database, with distributed access.

The data model section discloses the fact that there is already an indexing system in

place. This is a combination of the Process Instance ID (PIid), and the Activity

Instance ID (AIid). So one table should contain these two indexes as the key, and

therefore the combination of the PIid and the AIid is considered unique. This is all

that is needed to satisfy the requirements of the store function. Remember that the

function will store the output of an activity along with its PIid and AIid. A single table

represents this.

The retrieve function is somewhat more complex, and the added fact of having

iterations in the business process complicates the retrieval function even further. The

iteration factor, which is the number that represents the number of iterations that have

been completed in the business process, must be brought into the design of the

database, as this is where the metadata is going to be stored. For the SDE to be able to

Component
Specific SDE

Component
General

Centralised
Database Fully Distributed

Database

SDE

Data Exchange in a Component Based Workflow Environment

52

query the iteration factor, is one table to represent this factor. Another table is

necessary though, and this table will hold metadata that will allow the SDE to know

what activity instance belongs to which iteration. These tables and their

implementation will be described fully in the next chapter. The goal was to try and

build as little complexity into the database so that the minimum number of calls

would be made to it, and build the intelligence into the application code. This should

improve performance of the SDE.

4.7 Summary

The persistency storage component of the SDE has been designed in such a way to

allow for its replacement in any future versions of the SDE. Having both a memory

cache and a DBMS improves the functionality and the design of the SDE. The data

that is stored in the data store, be it the memory cache or the DBMS is complex, and

consists of nested data structures, so the SDE needs to be able to interpret these data

structures. The business process that was chosen to be used as the test-bed for testing

the Serene workflow engine and the SDE proved to be a complex business process

because of the iterative loop in the process itself. Therefore this complexity must be

taken into account in the design of the SDE.

Data Exchange in a Component Based Workflow Environment

53

5. Implementation

This section will bring the design and requirements together, outlining the choices that

have been taken in order to develop the prototype the way that it has been developed

for this project.

5.1 Technologies Used in the project

In section 1, the Introduction, the technologies that are used in this project were

outlined. All the technologies chosen for the project are given below and the reasons

for choosing them are also given.

JavaTM

All application code is developed in the Java programming language that was

developed by Sun Microsystems. This was specified as a requirement of the project,

as the Serene workflow engine has been developed in Java. Java allows the workflow

engine therefore to be written once, and can run anywhere. This is one of the major

advantages of Java, and results in it being a very useful language in enabling

distributed object technology.

JDBC

Java Database Connectivity (JDBC) is an API of the Java programming language that

allows a Java developer execute queries and update tables in a variety of DBMSs. It is

a new API developed for Java and the only database connectivity API that allows

communication of the application code with a database. Therefore it was compulsory

to use this technology. JDBC is a ‘‘low-level’’ interface, which means that it is used to

invoke (or ‘‘call’’) SQL commands directly. It works very well in this capacity and is

easier to use than other database connectivity APIs, but it was designed also to be a

base upon which to build higher-level interfaces and tools. A higher-level interface is

‘‘user-friendly,’’ using a more understandable or more convenient API that is

translated behind the scenes into a low-level interface such as JDBC [JDBC99].

Data Exchange in a Component Based Workflow Environment

54

Microsoft Access 97

This DBMS was chosen to act as the data store for the SDE. One of the reasons that it

was chosen was because of its portability, and also it is not necessary to buy in a new

DBMS. Also most organisations would have Access installed on their networks, so

again this would generally add no extra cost in using this DBMS. As the SDE is to be

developed on Windows NT, Access therefore has a very good management interface

on this platform.

JDBC-ODBC Driver

The JDBC-ODBC Bridge is a JDBC driver that implements JDBC operations by

translating them into ODBC operations. To ODBC it appears as a normal application

program. The Bridge implements JDBC for any database for which an ODBC driver is

available. The Bridge is implemented as the sun.jdbc.odbc Java package and contains

a native library used to access ODBC. [JDBC99] This Bridge allows JDBC to connect

to an Access database, and therefore can query the database and store to it. The JDBC-

ODBC driver must be installed on the server side to allow the SDE to access the

database.

SQL

Structured Query Language (also known as SQL) allows users to access data in

RDBMS, such as Oracle, Sybase, Informix, Microsoft SQL Server, Access, and

others, by allowing users to describe the data the user wishes to see. SQL also allows

users to define the data in a database, and manipulate that data. SQL is used in the

prototype in conjunction with JDBC. JDBC allows a developer to create an SQL

statement, which is then sent to the DBMS, in this case Microsoft Access, over the

JDBC-ODBC driver. The DBMS then executes the SQL statement and returns the

result as an object to the application code that called it. JDBC interprets this object.

Orbixweb

OrbixWeb is the middleware that was specified as a requirement at the outset of the

project. In order to keep the development of the Serene WFMS homogeneous it was

preferable to use this application. OrbixWeb allows clients to connect to servers, and

Data Exchange in a Component Based Workflow Environment

55

communicate with the server. It allows connectivity across networks, and the power to

access applications written in different languages.

OrbixWeb is based on the CORBA standard. CORBA can be thought of as a

communication bus for client-server objects. It is a three-tier distributed mechanism,

and the terminology applies to a specific request. That is, if object A invokes a method

on object B, A is the client and B is the server. If B then calls A, the roles are

reversed. Exported server interfaces must be specified in the CORBA standard

Interface Definition Language (IDL). An IDL interface description is then mapped

using an IDL compiler to the native language bindings, which in this case is Java. The

ORB is the mediator, responsible for brokering interactions between objects. Its job is

to provide object location and access transparency by facilitating client invocations of

methods on server objects. A client can connect – or bind – to a server.

5.2 SDE Implementation

5.2.1 CORBA Process

There are several steps that must be followed so that a CORBA server and client can

be created.

1. Specify the server interface in IDL.

2. Run the IDL description through the IDL compiler which generates a native

language interface, server stub, and client stub.

3. Implement the server.

4. Compile the server program and link in the server stub that was generated by

the IDL compiler. The result is an executable server program that can accept

method invocations via CORBA.

5. Register the server in the implementation repository. The server is now ready

for activation.

6. Implement the client.

7. Compile the client and link in the client stub that was generated by the IDL

Data Exchange in a Component Based Workflow Environment

56

compiler.

8. When the client is executing, it uses the ORB to bind to the server object and

obtain an object reference.

9. Using the object reference, the client invokes server object methods.[Segu98]

In this project it was necessary to develop clients that would bind to the SDE server.

These clients were the components that had already been developed by the other

members of the Serene team.

5.2.2 IDL Interface

The interface that is presented to the components that will use the Shared Data

Exchange (SDE) is defined in CORBA IDL. This hides the implementation of the

SDE itself from the components. There are three interfaces, defined in the IDL,

matching the requirements of the storage and retrieval functions:

• short store(in long PIid, in long AIid, in any o);

• short retrieve(in long PIid, in long AIid, out any

i);

• short getActivityOutput(in long PIid, in long AIid,

out any o);

Each interface takes in as parameters the Process Instance ID (PIid), and the Activity

Instance ID (AIid), so this is what the component that is calling any of the interfaces

must pass in. The store function also takes in the data that the component wants to

store. This is passed in as a CORBA ‘Any’. The two retrieval functions, retrieve and

getActivityOutput also have an extra parameter in their parameter lists. These are

defined as out parameters. This is a CORBA standard of passing back a result to the

component/client from the server. They are passed back as a CORBA ‘Any’ in an

‘AnyHolder’. The ‘Any’ and ‘AnyHolder’ will be explained in more detail in the next

section.

These interfaces should not be changed, and were not changed during the

development of the prototype, and that is an important element of the IDL. Any other

Data Exchange in a Component Based Workflow Environment

57

developer that use the interfaces is required to add in the calls to the interface only

once in a client and then the method calls that they used need never have changed.

The IDL, called SDEServer.idl is compiled using the OrbixWeb IDL compiler, which

generates the stubs in the Java programming language. These stubs allow for the

communication between the client and the server.

5.2.3 CORBA ‘Any’

There has been mention throughout this document of the CORBA type ‘Any’. It is

used to indicate that a value of an arbitrary type can be passed as a parameter or a

return value. A client can construct an ‘Any’ to contain any type that can be specified

in IDL. The client can then pass the ‘Any’ in a call to an interface defined in the IDL.

Conceptually this class contains the following two instance variables:

• type

• value [Iona98]

An Any object must always be constructed using the ORB class, e.g.

Any a = ORB.init().create_any();

The AnyHolder is used in the retrieve function and the getActivityOutput function.

Remember that these functions have an out parameter in their parameter lists, so that

the data that a component has requested based on the PIid and the AIid can be sent

back. The AnyHolder class is used in the server application code to pack an Any

object into it and then send it back to the client. To use this method of returning a

result in the parameter list the AnyHolder class must be used on the server side. This

is a compulsory requirement of using the Any class, and the out parameter in IDL.

5.2.4 Data Description

It is worthwhile to describe the type of data that is being passed to the SDE and stored

in the DBMS and the cache, which should result in a better understanding of the next

section. When the SDE has to save the output, which is a CORBA ‘Any’, the

component that wants to store it passes it to the SDE. It is stored in the cache as a

CORBA ‘Any’, and the SDE converts this CORBA ‘Any’ to a string and saves this to

Data Exchange in a Component Based Workflow Environment

58

the DBMS. It is the stringified value of the object within the ‘Any’ that is saved and

not an Interoperable Object Reference (IOR) to the ‘Any’. If the ‘Any’ contains a base

type or a CORBA struct the string will contain the values stored in the base

type/struct. However if the ‘Any’ contains an object then the string will not contain

the value of the object but rather its IOR, that is the IOR for the object stored in the

‘Any’, not the IOR of the ‘Any’ itself. A struct allows one to form an aggregate

structure of variables, which may be of the same or different types [Iona98]. The

structs that were used to describe the data structures that the activities needed as

inputs and the outputs for the Accounting Business Process are defined in the

m_SdxTypes.idl as shown in Appendix A.1.

An example of the data that was stored is given is section 4.4. The data input is for

activity type 17, and it is a struct of type t_GetSubscriberChargesInputParameter.

When this is inserted into a CORBA ‘Any’ and then converted to a string to be stored

in the DBMS it looks like this:

R~m_SdxTypes::t_GetSubscriberChargesOutputParameter~charges{S{R~m_Charge
Types::t_Charge~chargeId{0},userId{0},amountDue{f},currencyUnit{0},descriptive
Text{0}},0},currentSubscriberSLAId{0}CDR:000000030000001073616d706c65436
861726765496431000000000e73616d706c65557365724964310000004188cccd0000
000765736375646f00000000001264657363726974706976652074657874310000000
000001073616d706c65436861726765496432000000000e73616d706c655573657249
64320000004189999a000000066672616e63000000000000126465736372697470697
6652074657874320000000000001073616d706c65436861726765496433000000000e
73616d706c6555736572496433000000418a66660000000570756e740000000000000
01264657363726974706976652074657874330000000000000f736572764c6576656c
416772656500

As can be seen it is a nested data structure. Starting at the top of the tree of this data

structure there is the type t_GetSubscriberChargesOutputParameter, which contains

the type ChargeTypes, and then other types, which are strings and integers. Then there

is also another variable currentSubscriberSLAId, which is a string and represents the

subscriber – company – to the service.

Data Exchange in a Component Based Workflow Environment

59

5.2.5 Description of Classes

Figure 19 shows the classes that have been implemented for the SDE. A client or

component binds to the server, and the server then carries out the component

invocation. Following is a description of each class, and its function.

SDEserver1.java

This is the server program that instantiates the implementation class SDEMgt.java.

SDEMgt.java

This is the implementation class, which contains the three methods that have been

defined in the IDL, i.e. store, retrieve, and getActivityOutput. This object is

instantiated by the SDEserver object. The SDEMgt object instantiates the AcingBP

object, and binds to the Workflow Manager server. The Workflow Manager is a server

that allows access to a database that holds metadata for the Accounting Business

Process.

The store method invokes a method on the Workflow Manager server, and the

interface for this method is:

Get_Instances(in short AIid, in string client_info,

out short Pinst, out short ActType);

This method returns the type of the activity (ActType) that matches the AIid passed to

the interface. Then a method on the AcingBP object is invoked and it passed the PIid,

AIid, ProcType, ActType, and the output of a completed activity. The ProcType is a

dummy value but has been left in for possible extensions of the SDE and additional

business processes. It represents the Process Type of the business process represented

by the PIid.

Data Exchange in a Component Based Workflow Environment

60

Figure 19: SDE Implementation – all classes

The retrieve method is passed in the PIid, the AIid, from the component that invokes

the method, and this method sends backs to the component the input that it requested.

An invocation on the Workflow Manager also occurs here. The ActType is again

being requested for a particular AIid, as in the store method described above. The

retrieve method on the AcingBP object is invoked and passed in the PIid, AIid,

ProcType, and ActType. The returned result from this method is returned as a

CORBA ‘Any’. This is the input that has been requested by the component, and the

SDEMgt inserts the CORBA ‘Any’ into an AnyHolder, which is returned to the

component.

Component

Server
(SDEMgt)

Acing BP
Object

IterIndex
Object

ActIterMap
Object

Access Database

Storage
Object

SDECache
Object

SDEserver1

WorkFlow
Mgr

bind

Data Exchange in a Component Based Workflow Environment

61

The getActivityOutput is the only method that doesn’t invoke any methods on the

Workflow Manager. It receives the PIid, and the AIid from the component invoking it.

It then invokes its equivalent method on the AcingBP object (getActivityOutput), and

passes in the AIid, and the PIid. The returned result is the output of a completed

activity that has already been stored, and it is returned as a CORBA ‘Any’. This result

is then inserted into an AnyHolder, and this is sent back to the component that

invoked the method.

AcingBP.java

This class instantiates three objects: IterIndex, ActIterMap, and Storage. It also has

three methods: store, retrieve, and getActivityOutput.

The store method is passed in the parameters PIid, AIid, ProcType, and ActType. The

ProcType is the type of the business process that is represented by the PIid (at the

moment this is a dummy value, but it has been retained for further extension of the

application). The ActType is the type of the activity that is represented by the AIid. A

method is called on the IterIndex object to find out what iteration that the activity is

on. This search for the iteration number is only made for the activities of type 16, 17,

18, and 19, as these are the only activities that are iterative. For a refresh of the

business process refer to section 4.3. The equivalently named store method on the

Storage object is then called.

The retrieve method is somewhat more complicated. This is where the inputs for an

activity have to be “built”. First off though a method on the IterIndex method is

called, so as to increase the iteration number by one. This is only done for the

activities of type 16, 17, 18, and 19, as these are the only activities that are part of the

loop in the accounting business process. Then another method is invoked on the

IterIndex object to find out the new iteration number, i.e. what iteration of the loop the

activity is on. This iteration number is called the servcieId in the Accounting Business

Process. Then there is a switch statement that has six different cases, one for each of

the six different activities. Each case has one thing in common, namely the Business

Process inputs that are retrieved from the database. Note that the Business Process

Data Exchange in a Component Based Workflow Environment

62

inputs are input into the database before the actual business process has begun. They

are contained within a struct defined in CORBA IDL. The AIid that was chosen for

the Business Process Inputs was zero, so as to distinguish it from the other AIids that

are generated by the Serene workflow engine. The Business Process inputs have the

same PIid for the business process that they are intended for, e.g. 1001. The PIid and

AIid key is therefore 1001 and 0 - in this example - which uniquely identifies the

business process inputs. The Serene development team agreed upon this ID.

For each of the activities, they then have their own data that needs to be retrieved from

the DBMS, or from the cache if it exists in the cache. Basically the output of another

activity is sometimes needed so there is a method that is used to find out the AIid of

this output. If the activity is part of the loop in the business process then the AIid must

be found using the map that exists in the database, and is accessed by the ActIterMap

object. This mapping will be detailed further on. So once the AIid of the output is

found, then the AcingBP object makes a call to the Storage object by invoking the

getActivityOutput method on the Storage object. The output is retrieved as a CORBA

‘Any’, and then the necessary data is extracted from it. Once all the data that is

required to build up the input for the activity has been retrieved it is then inserted into

the input type that has been created for each activity. This input is then inserted into a

CORBA ‘Any’, and then passed back to the SDEMgt object.

The getActivityOutput method is passed in two parameters, the PIid and the AIid. It

then makes a call to the getActivityOutput method on the Storage object. It receives a

CORBA ‘Any’ from this object, which is the output of an activity that has already

been stored, and has the index of the combined PIid and the AIid. Then the output is

passed back to the SDEMgt object, which then sends it back to the component.

IterIndex.java

This object is instantiated by the AcingBP object. It makes a connection using the

JDBC API to the database, called SDE, which contains the tables that need to

accessed by this class. It has two methods, setIndex and getIndex. These methods are

used to keep a track of the number of iterations that have passed for an activity of type

16, 17, 18, and 19. It also stores an index for the two activities of type 15 and 20, but

Data Exchange in a Component Based Workflow Environment

63

as they are only completed once for each instance of a business process their iteration

index will be stored as zero. The setIndex method updates the database table

Tbl_IterIndex, which contains the iteration index. It checks the database by using the

getIndex method and then adds one to the index. The index in the database table is

then updated to this new value. Again this increase is only done for activities of type

16, 17, 18, and 19. The getIndex method retrieves the iteration index for an activity. It

queries the database table Tbl_IterIndex also and using the PIid and the activity type

retrieves the iteration index and passes this back. Both methods pass SQL statements

to the database, which are used to query the database. This is where JDBC comes into

play. The API java.sql has methods, which are used to send these SQL statements to

the database, and methods that can extract from the results of the query sent back from

the database.

ActIterMap.java

This object is instantiated by the AcingBP object and it makes a connection to the

SDE database using the JDBC API, java.sql, across the JDBC-ODBC driver. There

are two methods, setActId and getActId, and they update and query the database table

Tbl_IterMap respectively. This is the class that is used to keep a map that contains the

PIid , the activity type, the iteration that the activity is on, and the AIid. The setActId

method inserts these parameters into the table Tbl_IterMap. The getActId method is

passed in the parameters PIid, the activity type, and the iteration that the activity is on.

It then queries the table Tbl_IterMap, using JDBC to send an SQL statement to the

database, and retrieves the result from this query, the result being the AIid. It sends

this AIid back as a result to the Acing BP object. This AIid is used in the AcingBP to

find the output that has been stored with this AIid.

So the ActIterMap object is used to keep a store of a mapping that contains the

iteration that an instance of an activity is on and its type, so that the AcingBP can find

out the AIid of the activity that it is searching for.

Storage.java

This object is instantiated by the AcingBP object. This object carries out the storage to

the DBMS and the memory cache. It also handles the retrieval of activity outputs that

Data Exchange in a Component Based Workflow Environment

64

have already been stored to the cache or DBMS. The constructor creates a connection

to the SDE database (using JDBC to make a connection across a JDBC-ODBC

driver), and creates the SDECache object. There are four methods in this class: store,

store_p, getActivityOutput, and getActivityOutput_p.

The store method is passed in the PIid, the AIid, and the output that is to be stored.

The output is received as a CORBA ‘Any’. Then these three parameters are passed to

the SDECache object, by using a method called addOutput on the SDECache object.

Then store_p method is then called, and it is also passed the same three parameters. It

is within this method, store_p, that the conversion of the CORBA ‘Any’ to a string

occurs. Then the PIid, the AIid and the stringified value of the object within the

CORBA ‘Any’ are stored in the database table called Tbl_Datastore. This storage to

the database is done using a JDBC method call, so as to send a SQL INSERT

statement to the table Tbl_Datastore. The output is received as type

org.omg.CORBA.Any, but to convert to a string this output has to be cast to

IE.Iona.OrbixWeb.CORBA.Any type, as the method toString() is defined within the

IE.Iona.OrbixWeb.CORBA.Any package, and not in the org.omg.CORBA.Any

package.

When the AcingBP object calls the getActivityOutput method, it is passed the PIid

and the AIid. It first makes a call to the SDECache object to check the memory cache

to see if there is an output that has been stored in the cache that has an index that

matches the combined index of PIid and AIid passed in. If the output has been

detected it is returned as a CORBA ‘Any’. There is no need for this method to do any

conversions as the output has been stored in the memory cache as a CORBA ‘Any’. If

however the output is not stored in the cache then the method getActivityOutput_p is

called. It is passed the PIid and the AIid and uses these parameters to query the table

Tbl_Datastore in the SDE database. Again JDBC methods are used to send SQL

statements across the JDBC-ODBC driver to the database. The returned result is

extracted from the result set that is retrieved from the database using methods defined

in the JDBC package java.sql. The result is a string, which as stated above is the

stringified value of the object within the CORBA ‘Any’. The ‘Any’ is reconstructed in

the following manner:

Data Exchange in a Component Based Workflow Environment

65

output.fromString (anyRef);

corOutput = (org.omg.CORBA.Any)output;

The anyRef is the string for conversion. The resulting ‘Any’ that has been

reconstructed is of type IE.Iona.OrbixWeb.CORBA.Any, and so needs to be cast to an

‘Any’ of type org.omg.CORBA.Any. This is necessary as it was agreed that the

CORBA ‘Any’ that was to passed should be of type org.omg.CORBA.Any, as this is

what the component originally passes in to the SDE. The output whether it has been

retrieved from the SDECache object or the database is then returned to the AcingBP

object as a CORBA ‘Any’.

SDECache.java

The SDECache object is instantiated by the Storage class. The SDECache class

extends the java.util.Hashtable package. The cache is a hashtable of hashtables. The

first hashtable contains the PIid as the index and the other field contains another

hashtable. This second hastable has the AIid as the index, and the other field in this

second hashtable contains the output of an activity that matches this combined index

of the PIid and the AIid. This is demonstrated in figure 20.

The method addOutput stores the output and its associated PIid and AIid in the

hashtables. The method findOutput is passed in the AIid and it searches the hashtables

to find the output that has an index with the same AIid. If the output is found then it is

returned as a CORBA ‘Any’, but if it doesn’t exist then a value of null is returned to

the Storage object.

Data Exchange in a Component Based Workflow Environment

66

Figure 20: Hashtable of Hashtables that represents the memory cache

of the SDE

5.2.6 Database Implementation

The database is called the SDE.mdb and has been implemented in Microsoft Access97

on the Windows NT platform. It was chosen for its portability.

There are three tables that are used by the application code. The objects, as shown in

figure 19, IterIndex, ActIterMap, and Storage all make calls to the database using

JDBC to send SQL statements across the JDBC-ODBC driver. These tables that are

used by the SDE are Tbl_Datastore, Tbl_IterIndex, and Tbl_IterMap. Refer to

Appendix B for the database schema.

Tbl_Datastore:

The Tbl_Datastore is shown in table 3. Each record contains the PIid, the AIid, and

the Data. The Data field - the output of an activity - is the stringified value of the

output. The PIid field, and the AIid are both defined as Long Integers. The Data field

is defined as the data type Memo. As the string that is saved to this field is of

indeterminate size, and can be a very long string, it was decided to use the Memo data

type as this can contain up to 65,535 characters, and only text and numbers will be

stored in it, not binary data. The Storage object inserts data and queries this table.

PIid

AIid Output

PIidPIid

Data Exchange in a Component Based Workflow Environment

67

PIid AIid Data
1001 0 R~m_SdxTypes::t_Invoi
1002 0 R~m_SdxTypes::t_Invoi
1003 0 R~m_SdxTypes::t_Invoi
1001 5101 S{ul},0
1001 5201 S{R~m_TariffIdTypes::t_
1001 5202 S{R~m_TariffIdTypes::t_
1001 5203 S{R~m_TariffIdTypes::t_
1001 5301 R~m_SdxTypes::t_GetS
1001 5302 R~m_SdxTypes::t_GetS
1001 5303 R~m_SdxTypes::t_GetS
1001 5401 S{R~m_TariffIdTypes::t_
1001 5402 S{R~m_TariffIdTypes::t_
1001 5403 S{R~m_TariffIdTypes::t_
1001 5501 R~m_TariffTypes::t_Sub
1001 5502 R~m_TariffTypes::t_Sub
1001 5503 R~m_TariffTypes::t_Sub

Table 3: Tbl_Datastore that is implemented in the SDE

Database

Tbl_IterIndex

This is where the iteration index for the Accounting Business Process is stored, e.g.

for business process 1001, and Activity Type (ActType) 16 it is on its 3rd iteration, as

shown in

PIid ActType Iteration
1001 15 0
1001 16 3
1001 18 3

Table 4: Tbl_IterIndex that is implemented in the SDE

Database

table 4. For ActType 16 or 17 the iteration that either activity is on is determined by

the record for ActType 16. For ActType 18 or 19 the iteration that either activity is on

is determined by the record for ActType 18. The IterIndex object inserts data and

Data Exchange in a Component Based Workflow Environment

68

queries this table. The three fields in the table, PIid, ActType, and Iteration are defined

as Long Integers.

Tbl_IterMap

PIid ActType Iteration AIid
1001 15 0 5101
1001 16 3 5203
1001 16 2 5202
1001 16 1 5201
1001 17 3 5303
1001 17 2 5302
1001 17 1 5301
1001 18 3 5403
1001 18 2 5402
1001 18 1 5401
1001 19 3 5503
1001 19 2 5502
1001 19 1 5501

Table 5: Tbl_IterMap that is implemented in the SDE

Database

For each Process Instance ID (PIid), activity type (ActType), and iteration, the

associated Activity Instance ID (AIid) is entered in this table by the ActIterMap

object.

This mapping is used so that, if during a retrieval method the output of an activity is

needed then this table can be referred to, and the AIid can then be found. An example

of this could be: an activity instance of type 17 with PIid 1001, on its third iteration

needs the AIid of activity type 16 also on its third iteration, which from the above

table is 5203. This method of querying is used in the AcingBP object when the input

for ActType 17 is being built, as it needs the output of the preceding activity in the

same iteration of the loop that activity 17 is in.

Data Exchange in a Component Based Workflow Environment

69

6. Evaluation

This chapter involves the evaluation of the SDE in relation to the research that was

carried out during the project. The tool itself is then evaluated and the benefits and

weaknesses of the application will be detailed.

6.1 SDE and Data Exchange in a Component Based Workflow

 Environment

The SDE proves that it is possible to provide a design to allow for the exchange of

data between components in a workflow environment. It is difficult to find a

benchmark to evaluate the SDE against, as there is very little literature available on

this area of data exchange, in relation to workflow environments. This is due to the

fact that the data flow is usually considered an orthogonal issue in the projects as

discussed in section 2.5.

Further investigation was carried out into two component models that are being

specified, or that are already in use, those being the CORBA Component Model and

Enterprise JavaBeans respectively. These models carry out their own storage functions

so that a developer doesn’t get too involved on how to store the data. The SDE would

be greatly helped with the use of the CORBA Component model but as yet the

specification of CORBA that contains the CORBA Component Model has not yet

been released. The CORBA Component Model would be preferable to Enterprise

JavaBeans as the data is being passed as CORBA Objects. The CORBA Component

model is based on Enterprise JavaBeans. This leads to the reasoning that the

technologies chosen for the SDE were adequate to provide the function of data

storage, and data exchange for components, but that a component model would greatly

improve the functionality of the SDE.

The DBMS that was chosen to store the data was Microsoft Access. One of the main

challenges in using this application was the difficulty of storing a CORBA object to

the database. It simply was not possible to store the object itself, so a string

Data Exchange in a Component Based Workflow Environment

70

representation was used instead, and this was stored to the database. Access is a

Relational DBMS (RDBMS). The investigation into the DBMS that are on the market

should have entailed the investigation into the use of Object Oriented DBMS

(OODBMS). These DBMS have been designed to store objects, and therefore using

an OODBMS would have removed the investigation into how to store objects to

Access. This would have saved the time spent on researching a method of storing a

CORBA object to an Access database.

The objective of developing a prototype to demonstrate effective component data

sharing within the confines of the existing workflow engine Serene has been achieved.

This is what in theory and in practice the SDE accomplishes. There are areas of

improvement that have been pointed out above, and the relevant conclusions that can

be drawn from the above evaluation will be given in the next chapter.

The database was implemented as a centralised database with distributed access, and

is considered to be component general as described in section 4.6. It could have been

developed component specific but this would have reduced the functionality of the

SDE. A component general approach meant that the SDE would not be concerned

about which component that was making invocations to it. If it was component

specific then the opposite would have been the case. This advantageous feature of the

SDE can allow for extension of the business process. The SDE has no need to

understand the components. All it needs is a data model for the business process.

Intelligence has been built in the SDE rather that the adaptors (section 2.6.5) that are

used to invoke the component application. This was one of the objectives of the

project, and was successfully accomplished. The intelligence has been taken away

from the adaptors that invoke the components. The adaptors request the data and pass

it to the component. The intelligence that resides on the SDE is its ability to store the

data, and retrieve the data so that it can be passed back in a generic way, instead of

having this function built into the adaptors.

Data Exchange in a Component Based Workflow Environment

71

6.2 Data Storage & Retrieval

One of the major advantages to the design of the SDE is the fact that the persistency

storage mechanism can be replaced. The SDE has been designed this way so as to

allow for the replacement of the persistency storage mechanism. The componentised

development of the SDE is shown in figure 17. If it is removed the memory cache will

remain in place, and therefore be unaffected. The memory cache is implemented so as

to allow a speedier response in data retrieval, and if it had to be removed when the

persistency storage mechanism was removed, this would have downgraded the

functionality of the SDE considerably. It is the intention that data is exchanged

between components in a distributed workflow environment, and one of the major

objectives is to do this in an efficient manner. The cache is a major tool in improving

retrieval rates of the components requesting data. Retrieval rates are improved with

the cache as calls made to DBMS are slower than that of the calls made to the cache.

The actual data to be stored is stored in the database as a string. Saving the string

version of an object to a database saves space in the database, as it is easier to save the

string. Unfortunately if the string was an Interoperable Object Reference (IOR) this

would prove to be a more useful method but it isn’t. Then the objects that a

component is looking for may be passed by reference to the database, and then

retrieved by reference. This would be a great improvement, rather than passing the

object itself around or the values that the object contains. As described in the

implementation section, the data that is used for the activities are of CORBA type

struct, which complicates the mode of storing to the database. The data is received as

a CORBA ‘Any’, and converted to a string so that it can be saved in the database. This

string is the stringified value of the object within the ‘Any’, not an IOR to the ‘Any’.

If the ‘Any’ contains a base type or CORBA struct the string will contain the values

stored in the base type/struct. Only if the ‘Any’ contains an object then the string will

contain the IOR of the object stored in this ‘Any’. All outputs of the activities in the

Accounting Business Process are structs so there are no IORs represented by the

strings stored in the database.

Data Exchange in a Component Based Workflow Environment

72

One result of the above discussion is that the CORBA ‘Any’ that is used to pass the

output of an activity into the database should only contain objects rather than structs.

If there has been a greater understanding of the data that the components needed then

these objects could have been created at the outset of the project. A much more

detailed analysis is needed on the data that is flowing through the Workflow

Management System (WFMS). In other words the data flow needs to be better

understood. This data flow is a separate analysis to the control flow in the WFMS. An

aid to this would be to use a Computer Aided Software Engineering (CASE) tool to

analyse the data flow in the WFMS. A notation for data modelling is contained in the

Unified Modelling Language (UML). UML CASE tools are individual tools that aid a

software developer in any phase of a project. The data analysis for this project

occurred in parallel with the development of the SDE, and some of the data was not

fully detailed at the beginning of the project. The data flow of the Accounting

Business Process turned out to be quite detailed and complicated. Section 5.2.3

describes the complexity of the data structures that are stored to the database. This is

where a deeper analysis of the data flow would improve the understanding of the data

flow in a business process. It would also help to investigate if the data analysis for

each different business process should be done separately, i.e. if there are greater

differences between different business processes than might be expected.

As the complexity of the business process developed during the project so too did the

data structures, and the need for the SDE to understand them. The complexity resulted

in the AcingBP Bridge being developed as shown in the design section in figure 17.

The object that was developed, as described in the implementation section, needed to

build the inputs for each activity in the Accounting Business Process. This meant

taking the outputs already stored in the database, extracting all the values from them

and then reassembling them into the predefined CORBA structs and then inserting

these resulting inputs into a CORBA ‘Any’. This therefore means that the SDE needs

to understand the data that is contained in the ‘Any’. One of the objectives of the

project was to be able to store a CORBA ‘Any’ and retrieve the ‘Any’ from the

database without the SDE needing to know what was contained within the ‘Any’. For

the store function this objective has been retained, but the objective for the retrieve

interface was impossible to attain in this project. The AcingBP object represents this

Data Exchange in a Component Based Workflow Environment

73

inability to maintain this objective for the retrieve interface. In other words the

knowledge of the data is contained within the retrieve method of the AcingBP object.

An improvement in the method of storing and retrieving could have been made if it

was possible to serialise the CORBA object to the database and store it in this manner.

Then the retrieval would have consisted of unserialising the object from the database.

To have all the objects capable of being serialised to the database would involve

editing all the stubs that are generated from the CORBA IDLs by the idl compiler. The

stubs that represent the objects that are to be stored. So each time that the IDLs that

define these objects are recompiled then the stubs generated would have to be

manually edited so that they implement the Java serializable class, and this would be

a very time consuming process, and inadvisable to carry out. Reasons for avoiding this

is that the large quantity of stubs that are generated, and would then need to be edited,

would have to be done each time an IDL is compiled, or recompiled.

Blocking is implicit in the database connectivity JDBC package that Java uses. A

requirement of the SDE was that once one component was storing to or retrieving

from the SDE there would be no conflicts, and that no two components would be

making invocations to the data store. When JDBC executes an update or query by

sending an SQL statement across the JDBC-ODBC driver there is an auto-commit

function in JDBC that will not allow any other update to the table that is being

accessed until with that table.

6.3 Application Evaluation

There is no error handling built into the application code that has been developed in

Java, and this is seen as a weakness of the system. Exceptions are caught in the

application but they are not handled appropriately. If there are any problems with the

application and it catches an exception, in most cases the program will crash and the

server must then be restarted, and the component must invoke again the interface that

it attempted to invoke. This is viewed as a major disadvantage to the application.

Other business processes can be added to the application but it would be necessary to

create another object that will need to build the inputs for the activities in the business

Data Exchange in a Component Based Workflow Environment

74

process. This object would be similar to the AcingBP bridge, as shown in figure 17 in

the design section. This would be necessary for any new business process introduced.

The generic quality of the SDE is lost in this case, as it was envisioned that to add a

new business process would involve adding the data model for the business process to

the DBMS, and that any storing or retrieving would also be generic. It wasn’t

envisioned that a bridge would be needed to be created for each new business process.

Only if the activities in the business process use the output of the preceding activity as

their input and nothing else, would it be possible to have generic storage and retrieval

methods. This was what the starting point of the project had been, but as stated before

the complexity of the data flow model changed and so therefore the method of storing

and retrieving the data.

6.4 Accounting Business Process Evaluation

The Accounting Business Process as a business process is complex. This complexity

introduced more challenges in the development of the prototype. As these

complexities arose in the project the design of the SDE had to be changed. As

discussed in the above section the inputs to activities had to be built in the SDE.

Another challenge that arose was the fact that there was an iterative loop in the

business process. This created the requirement that it was necessary to keep an index

of the number of iterations that had been carried out. The SDE didn’t decide on the

number of iterations itself rather it just needed to keep track of the iteration number.

This was handled well by the SDE as it had it persistently stored in the DBMS. A

memory cache would have sufficed, but having the iteration information stored

persistently was a superior requirement, as the persistency function allows for

recovery. The recovery is possible because there is a table in the DBMS that contains

the AIid and the iteration that the activity is on. There is therefore no need to return to

the beginning of the business process and restart the whole business process. The

business process can restart from the point before it failed, i.e. the last activity that

was completed and the data regarding the iteration index is still stored in the DBMS,

and the business process can resume. This may slow the application but the reduced

speed of the application outweighs the fact that there will be a persistent data store

with this information. Also for any ad hoc queries that need to be carried out on the

Data Exchange in a Component Based Workflow Environment

75

metadata in relation to the number of iterations that have been carried out it is simply

a matter of referring to the DBMS, and creating the necessary management interfaces.

6.5 Testing Evaluation

The SDE has been tested by two means. The first entailed creating clients for the SDE

to create dummy outputs of activities, and then clients to retrieve inputs from the SDE

for the activities in the Accounting Business Process. The outputs of the types defined

for use by the activities in this business process were the actual types defined. It is the

values that the data structures contain that are dummy values. These tests were

completed for the activities 15, 16, 17, 18, and 19. There were no problems

encountered. The data was stored to the database with the relevant PIids and AIids.

The iteration indexing and the mapping of iteration index to AIid performed well and

encountered no problems. The clients that were created in order to retrieve the data

completed and functioned correctly, retrieving the dummy values that were stored to

the database. The other method was the testing that the SDE underwent in parallel

with the Serene workflow engine. This was undertaken by the Serene team. The

engine was only tested with the activities 15, 16, 17 and 18. The SDE functioned and

complied with the tests. Further testing with the SDE is to be carried out so that the

other activities can be tested fully. Also the number of business processes that the

Serene workflow engine is scheduling is to be increased so as to load test the SDE and

the Serene workflow engine itself.

Data Exchange in a Component Based Workflow Environment

76

7. Conclusions

7.1 Achievements

The objectives of the project were

• Research into how other Workflow Engines exchange component data.

• Design of the integration of a Workflow application data exchange

• Implementation of the design

• Evaluation of the implementation

The first objective was accomplished, but it was evident from the information that

was investigated that there was very little focus on production data in the workflow

environment. Only one project detailed the approach to the data exchange in a WFMS.

The second objective was also accomplished and a good design was found as is

detailed in the design section – chapter 4. The third objective, the implementation was

also accomplished, and this implementation proved that data can be exchanged

between the components of a distributed workflow environment. The fourth objective,

to evaluate the implementation of the SDE was accomplished, but given more time

the evaluation could be much stronger.

The work that was completed, and the prototype that was developed is the best

solution that was available given the choice of technologies, and the development

stages of the project.

The most difficult area of the project was investigating a method of storing a CORBA

object to the database. Eventually it was necessary to store a string to the database.

The string was a representation of a CORBA object, and this string can be regenerated

back into a CORBA object. The focus of difficulty was trying to store a CORBA

object to Microsoft Access. Using Access with the technologies, Java, JDBC and

OrbixWeb, did not allow for the storage of the actual object to the Access database.

This was the reason for storing the string. To store an object to the database Microsoft

Data Exchange in a Component Based Workflow Environment

77

Access is not a suitable DBMS, but if it is acceptable that the string representation of

the object is stored then Access is a suitable application.

The design of the SDE is considered a success, because it worked, and the persistency

storage mechanism is removable and replaceable. This is a useful aid if it is intended

that the prototype will be re-used and the persistency storage mechanism is replaced.

This gives the SDE almost a component-based design, which is advantageous for

further development of the prototype. This leads to a conclusion that there should be

an investigation into other persistency storage mechanisms that could replace the

Access DBMS used in this project.

The memory cache that was developed was a beneficial addition to the method of

retrieval in the SDE. The memory cache allows for fast retrieval rates, because if the

data that is being searched for is in the cache, then the actual persistency storage, the

Access database, does not need to be searched. On failure of the application the

memory cache will be deleted but this will always be backed up by the persistent

storage. The memory cache should remain in use and should be retained in the design

of the SDE.

The functionality of the SDE is an improvement on the SAD server that was

developed for the first version of the Serene workflow engine. This stored objects to a

file, and had to have knowledge of the data when it was storing it. The SDE has a

generic method of storage and there is no need for knowledge of the data for the store

interface. In addition there was no memory cache in the SAD server, as it was a

simple design only to be an intermediary solution to data storage.

7.2 Personal Achievements

It is viewed that the personal learning curve for this project was high. The knowledge

gained of CORBA, OrbixWeb, Java, and JDBC was immense. Starting from a basic

knowledge there is now a deep understanding of these technologies and issues relating

to software development.

Data Exchange in a Component Based Workflow Environment

78

7.3 Remaining Work

The analysis of the data was not carried out as it should have been. The data model

that was designed developed in line with the development of the prototype, and while

there was a deeper understanding of the Accounting Business Process at the end of the

project, this caused changes in the design of the SDE during the project. There needs

to be a return to the data flow and a much deeper analysis completed. The analysis of

the production data in the Accounting Business Process should be considered separate

to any other data flow, i.e. control data flow.

Exception handling in the SDE is as yet undeveloped. The ability of the SDE to be

able to adequately deal with exceptions and errors is important. This was not

completed in the project.

Other persistent storage mechanisms can be tested with the SDE. The design of the

SDE allows for the replacement of the persistency storage mechanism, and so it leaves

it open for testing with other mechanisms. There would be very little changes

necessary to the application code, if any, if the DBMS presently used is replaced by a

different storage mechanism.

7.4 Recommendations

It would be very worthwhile to test the SDE with additional business processes, to

observe if the problems that arose from the use of the Accounting Business Process

would occur with different business processes in relation to the data model. The

complexity of the Accounting Business Process tested the SDE but it is only an

example of one business process.

An area that is recommended to investigate further is the use of OODBMS. These

OODBMS appear more appropriate in the storing and retrieving of objects. OODBMS

Data Exchange in a Component Based Workflow Environment

79

have been developed for the storage and retrieval of objects. Two products that would

be worthwhile investigating are Versant and ObjectStore.

Distributed databases with good replication qualities should also be investigated. This

would help in distributing the data to the components that need the data. Also the

workflow engine is operating in a distributed environment, and a distributed database

would work well in the distributed environment. It could also be an alternative to an

OODBMS if the software is not available.

The CORBA Component Model is due for release this year as part of the new

CORBA specification. The CORBA Component Model is based on Enterprise

JavaBeans, and deals with persistent storage. The CORBA Component Model will

take care of the persistent storage and the detail that is involved in trying to store data

to a database, rather than the developer having to undertake the coding of this. It is

recommended that the CORBA Component Model is investigated further.

A proper study of the data is required. The data to be analysed is the production data

involved in the Accounting Business Process. The study of the data should be carried

out using a CASE Tool. There exists a deeper understanding of the data in the

Accounting Business Process now, but the production data flow has not yet been

formalised. An analysis of the data flow using a CASE tool would allow for a more

generic SDE, and the SDE should be as generic as possible.

Data Exchange in a Component Based Workflow Environment

80

Appendix A IDLs

This section contains the IDLs that contain the CORBA structs that were defined for

use by the SDE. They are the inputs and output structs that are used for the

Accounting Business Process. The activities in the Accounting Business Process are

also defined in IDL.

A.1 m_SdxTypes.idl

#ifndef __m_SdxTypes__

#define __m_SdxTypes__

#include <TINASubCommonTypes.idl> // t_AccountNumber

#include <TINAScsAmcCommon.idl> // t_fromTo

#include <TINAUserInitial.idl> // t_ProviderId

#include <m_ChargeListener.idl>

#include <m_ChargeTypes.idl> // t_ChargeList, t_CurrencyUnit

#include <m_TariffIdTypes.idl>

#include <m_TariffTypes.idl>

module m_SdxTypes {

 struct getAllTIdListInputParameter {

 TINASubCommonTypes::t_AccountNumber subscriberId;

 TINAAccessCommonTypes::t_ServiceId serviceId;

 };

struct t_InvoiceInputParameter {

 TINASubCommonTypes::t_AccountNumber subscriberId;

 m_ChargeTypes::t_CurrencyUnit currencyUnit;

 TINAScsAmcCommon::t_fromTo fromTo;

 };

 typedef unsigned long t_Second;

 struct t_RegisterUserListenerInputParameter {

 m_ChargeListener::i_UserChargeListener objRef;

Data Exchange in a Component Based Workflow Environment

81

 TINACommonTypes::t_UserId userId;

 TINAAccessCommonTypes::t_ServiceId serviceId;

 TINACommonTypes::t_SessionId serviceSessionId;

 m_ChargeTypes::t_CurrencyUnit currencyUnit;

 t_Second updateInterval;

 };

 struct t_RegisterSessionListenerInputParameter {

 m_ChargeListener::i_SessionChargeListener objRef;

 TINAAccessCommonTypes::t_ServiceId serviceId;

 TINACommonTypes::t_SessionId serviceSessionId;

 m_ChargeTypes::t_CurrencyUnit currencyUnit;

 t_Second updateInterval;

 };

 struct t_GetSubscriberChargesInputParameter {

 TINASubCommonTypes::t_AccountNumber subscriberId;

 m_TariffIdTypes::t_PerUserServiceLevelTariffIdList tidList;

 TINAAccessCommonTypes::t_ServiceId serviceId;

 TINAScsAmcCommon::t_fromTo fromTo;

 m_ChargeTypes::t_CurrencyUnit currencyUnit;

 };

 struct t_GetSubscriberChargesOutputParameter {

 m_ChargeTypes::t_ChargeList charges;

 m_TariffIdTypes::t_ServiceLevelAgreementId currentSubscriberSLAId;

 };

 struct t_StoreUserTariffInputParameter {

 TINAUserInitial::t_ProviderId providerId;

 m_TariffTypes::t_UserTariff userTariff;

 };

 struct t_StoreSubscriberTariffInputParameter {

 TINAUserInitial::t_ProviderId providerId;

 m_TariffTypes::t_SubscriberTariff subscriberTariff;

 };

 struct t_RemoveTariffInputParameter {

Data Exchange in a Component Based Workflow Environment

82

 TINAUserInitial::t_ProviderId providerId;

 TINAScsAmcCommon::t_TariffId tariffId;

 };

 struct t_GetUserTariffInputParameter {

 TINAUserInitial::t_ProviderId providerId;

 m_TariffIdTypes::t_UserTariffId userTariffId;

 };

 struct t_GetUserTariffListInputParameter {

 TINAUserInitial::t_ProviderId providerId;

 m_TariffIdTypes::t_UserTariffIdList userTariffIdList;

 };

 struct t_GetSubscriberTariffInputParameter {

 TINAUserInitial::t_ProviderId providerId;

 m_TariffIdTypes::t_SubscriberTariffId subscriberTariffId;

 };

 struct t_ListTariffIdsOutputParameter {

 m_TariffIdTypes::t_UserTariffIdList userTariffIdList;

 m_TariffIdTypes::t_SubscriberTariffIdList subscriberTariffIdList;

 };

struct t_AllTariffIds {

 m_TariffIdTypes::t_UserTariffIdList userTariffIdList;

 m_TariffIdTypes::t_SubscriberTariffIdList subscriberTariffIdList;

 };

 // these are the ones that are actually used by the WFE and SDx

struct t_PerServiceChargeListSLA {

 m_ChargeTypes::t_ChargeList charges;

 m_TariffIdTypes::t_ServiceLevelAgreementId currentSubscriberSLAId;

 };

struct t_PerServiceChargeListSLASubscriberTariff {

 m_TariffTypes::t_SubscriberTariff subscriberTariff;

 t_PerServiceChargeListSLA perServiceChargeList;

 };

Data Exchange in a Component Based Workflow Environment

83

typedef sequence<t_PerServiceChargeListSLASubscriberTariff>

t_PerServiceChargeListSLASubscriberTariffList;

struct t_SubscriberInvoiceDetailsandPerServiceCharges {

 TINASubCommonTypes::t_AccountNumber subscriberId;

 m_ChargeTypes::t_CurrencyUnit currencyUnit;

 TINAScsAmcCommon::t_fromTo fromTo;

 t_PerServiceChargeListSLASubscriberTariffList perServiceChargeListSLASubscriberTariffList;

 };

};

#endif

A.2 RETSubM.idl

This idl contains the activities listSubscribedServices(), getAllUsersTariffIdList (),

getSubscriberTariffIdList (), which are activity types 15, 16, and 18 respectively .

// Copyright (c) 1999

// Alcatel Bell

// All Rights Reserved

//

// LICENSED MATERIAL - PROPERTY OF VITAL PROJECT PARTNERS

// Possession and/or use of this material is subject to the provisions

// of a written license agreement with the VITAL concortium

//

// ACCESS AUTHORIZED TO FlowThru PROJECT PARTNERS

//

// ____________________________ IDL definitions __________________________

//

// FILE: RET_SubM.idl

//

// AUTHOR: Koen Daenen (Koen.Daenen@alcatel.be)

//

//

// VERSION: 5

// DATE: 14/04/1999

// DESCRIPTION:

// IDL definition of SubM (Subscriber Manager) for FlowThru.

//

Data Exchange in a Component Based Workflow Environment

84

// COMMENTS:

//

// MODIFICATIONS:

//

// Cliff Redmond (Cliff.Redmond@cs.tcd.ie) 13/7/1999

// - made #includes relative not absolute

// - imported t_UserIdList from m_AccCommonTypes - also used by SM

// - changed names of tariffId return parameters to refect fact that they are

// tariff identiiers and not tariffs; used m_TariffIdTypes.idl

//

// IDL INTERFACES

// Supported:

// Name: RET_SubM::i_SubscriptionTariffInfo

//

// Required:

//

// RELATED DOCUMENTS:

//

// _________________________ END DESCRIPTION HEADER ______________________

#include <TINACommonTypes.idl>

#include <TINASubCommonTypes.idl>

#include <TINAScsAmcCommon.idl>

#include <m_AccCommonTypes.idl> // t_UserIdList

#include <m_TariffIdTypes.idl> // t_ServiceLevelTariffIdList, t_PerUserServiceLevelTariffIdList

module RET_SubM {

 interface i_SubscriptionTariffInfo {

 exception e_OperationFailed {

 string reason;

 };

 // all structs previously here an shared with the ChargeControl are now

 // contained in m_TariffIdTypes.idl

 // operations

 // ----------

Data Exchange in a Component Based Workflow Environment

85

 void getUserIdList(in TINASubCommonTypes::t_AccountNumber accountNumber,

 out m_AccCommonTypes::t_UserIdList userIdList)

 raises (e_OperationFailed);

 /**

 * Lists all usersId’s of an given accountNumber.

 **/

 void listSubscribedServices(in TINASubCommonTypes::t_AccountNumber accountNumber,

 out TINASubCommonTypes::t_ServiceIdList serviceList)

 raises(e_OperationFailed);

 /**

 * Lists all serviceId’s to which a subscriber is subscribed, based on a given accountNumber.

 **/

 void getUsersAccountNumber(in TINACommonTypes::t_UserId userId,

 out TINASubCommonTypes::t_AccountNumber accountNumber)

 raises (e_OperationFailed);

 /**

 * Returns the accountMumber of a given userId.

 **/

 void getSubscriberTariffIdList(in TINASubCommonTypes::t_AccountNumber

accountNumber,

 in TINAAccessCommonTypes::t_ServiceId serviceId,

 out m_TariffIdTypes::t_ServiceLevelTariffIdList

serviceLevelSubscriberTariffIdList)

 raises (e_OperationFailed);

 /**

 * Returns all tariffIds for a given accountNumber and a given serviceId.

 **/

 // out parameter changed to t_ServiceLevelTariffIdList

 void getUserTariffIdList(in TINACommonTypes::t_UserId userId,

 in TINAAccessCommonTypes::t_ServiceId serviceId,

 out m_TariffIdTypes::t_ServiceLevelTariffIdList serviceLevelUserTariffIdList)

 raises (e_OperationFailed);

 /**

Data Exchange in a Component Based Workflow Environment

86

 * Returns all tariffIds for a given userId and a given serviceId.

 * Note: The userId is unique in the context of a retailer.

 **/

 // out parameter changed to t_ServiceLevelTariffIdList

 void getAllUsersTariffIdList(in TINASubCommonTypes::t_AccountNumber

accountNumber,

 in TINAAccessCommonTypes::t_ServiceId serviceId,

 out m_TariffIdTypes::t_PerUserServiceLevelTariffIdList

perUserServiceLevelTariffIdList)

 raises (e_OperationFailed);

 /**

 * Returns a list per userId of all tariffIds for a given serviceId;

 * and this for off userIds of a given accountNumber.

 **/

 // out parameter changed to t_PerUserServiceLevelTariffIdList

 };

};

A.3 m_ChargeContol.idl

This idl contains the activity getSubscriberCharges(), which is activity type 17.

#ifndef __m_ChargeControl__

#define __m_ChargeControl__

#include <TINACommonTypes.idl> // t_UserId, t_SessionId

#include <m_ChargeTypes.idl> // t_ChargeList, t_CurrencyUnit

#include <m_TariffTypes.idl> // t_UserTariffIdList

#include <m_ChargeListener.idl> // i_UserChargeListener, i_SessionChargeListener

module m_ChargeControl {

 enum t_ChargeControlOperation {

 invalidObjectReference,

 invalidServiceSessionId,

 invalidUserId,

 invalidCurrencyUnit,

 invalidUpdateInterval,

Data Exchange in a Component Based Workflow Environment

87

 invalidAccountNumber

 };

 exception e_ChargeControlOperation {

 t_ChargeControlOperation error;

 string reason;

 };

 interface i_ChargeControlInit {

 void initialise (in TINAUserInitial::t_ProviderId providerId);

 };

 interface i_registerChargeListener {

 typedef unsigned long t_Second;

 enum t_ChargeListenerType {user, session};

 // I split this operation and added t_UserId and t_SessionId;

 // I need to know what session I’m producing the charges for!

 void registerUserListener(in m_ChargeListener::i_UserChargeListener objRef,

 in TINACommonTypes::t_UserId userId,

 in TINAAccessCommonTypes::t_ServiceId serviceId,

 in TINACommonTypes::t_SessionId serviceSessionId,

 in m_ChargeTypes::t_CurrencyUnit currencyUnit,

 in t_Second updateInterval)

 raises (e_ChargeControlOperation);

 void registerSessionListener(in m_ChargeListener::i_SessionChargeListener objRef,

 in TINAAccessCommonTypes::t_ServiceId serviceId,

 in TINACommonTypes::t_SessionId serviceSessionId,

 in m_ChargeTypes::t_CurrencyUnit currencyUnit,

 in t_Second updateInterval)

 raises (e_ChargeControlOperation);

 void deRegisterListener(in m_ChargeListener::i_ChargeListener objRef)

 raises (e_ChargeControlOperation);

Data Exchange in a Component Based Workflow Environment

88

 };

 interface i_ChargeControlQuery {

 void getSubscriberCharges (in TINASubCommonTypes::t_AccountNumber subscriberId,

 in m_TariffIdTypes::t_PerUserServiceLevelTariffIdList tidList,

 in TINAAccessCommonTypes::t_ServiceId serviceId,

 in TINAScsAmcCommon::t_DateTime upTo,

 in m_ChargeTypes::t_CurrencyUnit currencyUnit,

 out m_ChargeTypes::t_ChargeList charges,

 out m_TariffIdTypes::t_ServiceLevelAgreementId currentSubscriberSLAId)

 raises (e_ChargeControlOperation);

 };

};

#endif

A.4 m_TariffControl.idl

This idl contains the activity getSubscriberTariff(), which is activity type 19.

#ifndef __m_TariffCtrl__IDL__

#define __m_TariffCtrl__IDL__

#include <m_TariffTypes.idl>

#include <m_TariffIdTypes.idl>

#include <TINAUserInitial.idl> // t_ProviderId

module m_TariffControl {

 enum t_TariffControlOperation {

 tariffControlAlreadyInitialised,

 tariffAlreadyExists,

 tariffDoesNotExist

 };

 exception e_TariffControlOperation {

 t_TariffControlOperation error;

 string reason;

Data Exchange in a Component Based Workflow Environment

89

 };

 interface i_TariffControlInit {

 void initialise (in TINAUserInitial::t_ProviderId providerId)

 raises(e_TariffControlOperation);

 };

 interface i_TariffControlManagement {

 void storeUserTariff(in m_TariffTypes::t_UserTariff userTariff,

 out m_TariffIdTypes::t_UserTariffId userTariffId) // dummy id in

 raises (e_TariffControlOperation);

 void storeSubscriberTariff(in m_TariffTypes::t_SubscriberTariff subscriberTariff,

 out m_TariffIdTypes::t_SubscriberTariffId subscriberTariffId)// dummy id in

 raises (e_TariffControlOperation);

 void removeTariff(in TINAScsAmcCommon::t_TariffId tariffId) // goes to show, typedef is a type

of semantic inheritance!

 raises (e_TariffControlOperation);

 };

 interface i_TariffControlQuery {

 void getUserTariff(in m_TariffIdTypes::t_UserTariffId userTariffId,

 out m_TariffTypes::t_UserTariff userTariff)

 raises (e_TariffControlOperation);

 void getUserTariffList(in m_TariffIdTypes::t_UserTariffIdList userTariffIdList,

 out m_TariffTypes::t_UserTariffList userTariffList)

 raises (e_TariffControlOperation);

 void getSubscriberTariff(in m_TariffIdTypes::t_SubscriberTariffId subscriberTariffId ,

 out m_TariffTypes::t_SubscriberTariff subscriberTariff)

 raises (e_TariffControlOperation);

 // if no tariffs are stored then two empty lists are returned

 void listTariffIds (out m_TariffIdTypes::t_UserTariffIdList userTariffIdList,

 out m_TariffIdTypes::t_SubscriberTariffIdList subscriberTariffIdList)

Data Exchange in a Component Based Workflow Environment

90

 raises (e_TariffControlOperation);

 };

};

#endif

A.5 m_BillControl.idl

This idl contains the activity requestInvoice(), which is activity type 20.

#ifndef __m_BillControl__

#define __m_BillControl__

#include <TINASubCommonTypes.idl> // t_AccountNumber

#include <TINAScsAmcCommon.idl> // t_fromTO

#include <TINACommonTypes.idl> // t_UserId

#include <m_ChargeTypes.idl> // t_ChargeList, t_CurrencyUnit

#include <TINAUserInitial.idl> // t_ProviderId

#include <m_BillTypes.idl> // t_Invoice, t_InvoiceId

module m_BillControl {

 enum t_InvoiceManagementOperation {

 invalidAccountNumber,

 invalidTimePeriod,

 subscriptionAccessDenied,

 subscriptionAccessError,

 invalidInvoiceId,

 incorrectAmount

 };

 exception e_InvoiceManagementOperation {

 t_InvoiceManagementOperation error;

 string reason;

 };

 interface i_InvoiceManagement {

 void previewInvoice(in TINASubCommonTypes::t_AccountNumber subscriberId,

 in m_ChargeTypes::t_CurrencyUnit currencyUnit,

Data Exchange in a Component Based Workflow Environment

91

 in TINAScsAmcCommon::t_DateTime upTo,

 out m_BillTypes::t_Invoice invoice)

 raises(e_InvoiceManagementOperation);

 // The invoice number will be blank here

 void requestInvoice(in TINASubCommonTypes::t_AccountNumber subscriberId,

 in m_ChargeTypes::t_CurrencyUnit currencyUnit,

 in TINAScsAmcCommon::t_DateTime upTo,

 out m_BillTypes::t_Invoice invoice)

 raises(e_InvoiceManagementOperation);

 void payInvoice (in m_BillTypes::t_InvoiceId invoiceId, in m_ChargeTypes::t_Amount amountDue

)

 raises(e_InvoiceManagementOperation);

 };

};

#endif

Data Exchange in a Component Based Workflow Environment

92

Appendix B Database Schema

This appendix details the schema of the SDE database that was used to store the data,

and hold the metadata.

Tbl_Datastore

Tbl_IterIndex

Tbl_IterMap

Piid: Process Instance ID

Aiid: Activity Instance ID

ActType: Activity Type

Data: Output of an Activity

Iteration: Iteration of loop

Field

PIid
AIid
Data

Type

Integer
Integer
Memo

Field

PIid
ActType
Iteration

Type

Integer
Integer
Integer

Field

PIid
ActType
Iteration
AIid

Type

Integer
Integer
Integer
Integer

Data Exchange in a Component Based Workflow Environment

93

Abbreviations

AIid Activity Instance ID

ActType Activity Type

BPR Business Process Re-Engineering

CASE Computer Aided Software Engineering

DBMS Database Management System

EJB Enterprise JavaBeans

IDL Interface Definition Language

IOR Interoperable Object Reference

OODBMS Object Oriented Database Management System

PIid Process Instance ID

RDBMS Relational Database Management System

SDE Shared Data Exchange

SCDS Shared Component Data Exchange

WfMC Workflow Management Coalition

WFMS Workflow Management System

WIS Workflow Information Server

Data Exchange in a Component Based Workflow Environment

94

Bibliography

[Alon97a] "Distributed Data Management in Workflow Environments"

Gustavo Alonso, Bethold Reinwald, C. Mohan

[Alon97b] "Functionality and Limitations of Current Workflow Management

Systems"

G. Alonso, D. Agrawal, A. El Abbadi, C. Mohan

IEEE Expert, Vol12, No. 5, Sept/Oct 1997

[Alon97c] "Workflow Management Systems: The next Generation of Distributed

Processing Tools"

G. Alonso, C. Mohan

[COR99] CORBA Components (final submission - orbos/99-02-05)

March 2, 1999

http://www.omg.org/techprocess/meetings/schedule/CORBA_Component_Model_R

FP.html

[Das97] "ORBWork: A Reliable Distributed CORBA-based Workflow

Enactment System for METER2"

S. Das, K. Kochut, J. Miller, A. Sheth, D. Worah

Technical Report #UGA-CS-TR-97-001, Department of Computer

Science, University of Georgia, February 1997

[Eder98] “The Workflow Management System Panta Rhei”

Johann Eder, Herbert Groiss, Walter Liebhart

In: Workflow Management Systems and Interoperability,

Springer-Verlag, 1998

[EJB98] Enterprise JavaBeans Technology, Server Component Model for the

Java Platform (White Paper)

Anne Thomas

Revised December 1998, Prepared for Sun Microsystems, Inc.

[Full99] "Survey of Workflow Management Technologies for Integrating Fine-

grained Services into the Virtual Enterprise"

John Fuller

Department of Computer Science, Trinity College, March 1999

Data Exchange in a Component Based Workflow Environment

95

[Geog95] "An Overview of Workflow Management: From Process Modelling to

Workflow Automation"

Diimtrios Geogakopoulos, Mark Hornick, Amit Sheth

Distributed and Parallel Databases, 3, 119-153 (1995)

[Gill99] "Workflow query" - e-mail

Michael Gillmann

University of the Saarland

[Iona98] OrbixWeb Programmers Guide

Iona Technologies PLC

September 1998

[Jabl96] "Workflow Management: Modelling Concepts, Architecture and

Implementation"

Stefan Jablonski, Christoph Bussler

ISBN: 1850322228, International Thompson Computer Press, 1996

[JDBC99] JDBC Data Access API

http://java.sun.com/products/jdk/1.3/docs/guide/jdbc/index.html

[Muth98] "From Centralised Workflow Specification to Distributed Workflow

Execution"

Peter Muth, Dirk Wodtke, Jeanine Weissenfels, Angelica Kotz

Dittrich, Gerhard Weikum

March 1998

In: JIIS - Special Issue on Workflow Management, Volume 10,

Number 2, March 1998, Kluwer Academic Publishers

http://www-dbs.cs.uni-sb.de/public_html/papers/JIIS97.ps.Z

[Muth99] "Integrating Light-Weight Workflow Management Systems within

Existing Business Environments"

Peter Muth, Jeanine Weissenfels, Michael Gillmann, Gerhard Weikum

Proc of 15th International Conference on Data Engineering, Sydney,

Australia, March 1999

http://www-dbs.cs.uni-sb.de/public_html/papers/ICDE99_WF.ps

[Post99] Database Management Systems: Designing and Building Business

Applications

Gerald V. Post

Data Exchange in a Component Based Workflow Environment

96

ISBN 0-07-289893-3, Irwin/McGraw-Hill, 1999

[Segu98] A CORBA Primer – Technical Overview – White Paper

Segue Software

http://www.segue.com/html/s_solutions/pdf/wp_corba_primer.pdf

[Wade99] "Flexible Automated Enactment of Process Driven

Telecommunications Management"

Vincent Wade, Sinead Muldowney, John Fuller

[Weis96] "The Mentor Architecture for Enterprise-wide Workflow Management"

Jeanine Weissenfels, Dirk Wodtke, Gerhard Weikum, Angelika Kotz

Dittrich

NSF Workshop on Workflow and Process Automation in Information

Systems, Athens, Greece, May 1996

http://paris.cs.uni-sb.de/public_html/papers/mentor.html

[WfMC] Workflow Management Coalition Homepage

http://www.wfmc.org

[WfRe94] "Workflow Management Reference Model"

Workflow Management Coalition (Nov 94)

