Identification and Retrieval of

WWW-based Courseware
A Meta-data Approach

Dissertation submitted to the University of Dublin, Trinity College, in partial
fulfillment of the requirements for the degree of Master of Science
(Computer Science)

Sarah Anne Kenny BA Mod CSLL

September 1999

Declaration

I hereby declare that this thesis is entirely my own work and that it has not been
submitted as an exercise for a degree at any other university. I agree that Trinity

College Library may lend or copy this dissertation upon request.

Sarah Kenny B.A. (mod) CSLL
September 17, 1999

Acknowledgements

There are a number of people I would like to thank for the special part they
played in the sucessful completion of this project. Many thanks to my supervisor
Mr. Vincent Wade for all his help, encouragement and guidence throughout the
course of this project. I would like to thank my parents for all of their support
and encouragement throughout my years in college. Thanks to Kevin, Tarlach

and my fellow classmates, for friendship, help and support.

i

Abstract

Information retrieval is often a tedious and time consuming task on the Inter-
net, as information is stored in an unstructured manner. There is no guarantee
that what you find is relevant to your needs, on the correct topics, up to date
or written by a reliable source. In the educational domain, the focus has shifted
towards an ongoing training process, where a lifelong education is required. The
Web provides an ideal medium for the delivery of distance education and online
courses if the resources could be found. There is a need for an agency or broker
to provide a search and retrieval service for educational information.

This dissertation concerns itself with educational resources and the problems
of identification and retrieval of educational resources on the World Wide Web.
It intends to investigate the approaches and technologies used for the description
of educational resources and to develop a suitable architecture. It will examine
how information is currently represented on the World Wide Web with reference
to the emerging educational standards. It will investigate the technologies used
to represent educational resources with an in-depth look at the use of XML. The
technology of search engines and intelligent agents will be analysed to evaluate

their information retrieval methods.

Contents

Contents i
List of Figures iv
List of Tables v
1 Introduction 1
1.1 Imtroductiono 2
1.2 Motivation L 3
1.3 Objectives 4
1.4 Approach 4
1.5 Structure of the Report L. 5

2 Educational Metadata and WWW based Retrieval 6
2.1 Imtroduction Lo 7
2.2 Motivationo L Lo e 7
23 Models 8
231 DC ... 8

232 IMS 9

233 IEEEo 11

2.4 Projects using the Models 12
241 ARIADNE. o 12

24.2 GESTALT o 14

2.5 Projects implementing Educational Retrieval Systems 14
2.6 Technology o 15
26.1 XMLo 15

26.2 DOM. 16

2.7 Search Technologies 17
2.7.1 Search Engines 17

2.7.2 Intelligent Agents 19

2.7.3 A comparison of Search Technologies 21

2.8 Editing Tools for XML metadata 23
2.9 Summary 24

CONTENTS

3 GESTALT Architecture
3.1 Introduction e
3.2 What is GESTALT?
3.3 GESTALT Architecture
3.4 Resource Discovery Service
3.5 Role of the LOMAssistant
3.6 Summary
4 Design
4.1 Introduction
4.2 Information Retrieval Requirements
4.2.1 Search Technology
4.2.2 Result Presentation Format
4.2.3 Adaptability L
4.2.4 Information Retrieval Architecture
4.3 LOMASssistant e
431 FileAccess e
4.3.2 Mode of Communication
433 DTDParser
434 DOM.
4.3.5 Help Information
4.3.6 GUI
4.4 Resource Discovery Service
4.5 Summaryo o e e e
5 Implementation
5.1 Introductiono
5.2 Implementation of the Information Retrieval System
5.2.1 Web Server
5.2.2 Search Engineo o000
5.2.3 Communication
5.2.4 Class Overview
5.3 Implementation of the LOMAssistant
53.1 XML Parser
53.2 DTD Parser
5.3.3 Backend Operations
5.3.4 GUI Implementation
5.4 Summaryo e e
6 Evaluation and Conclusion
6.1 Introductiono
6.2 Evaluation of the thesis objectives

6.3 Evaluation of the prototype tool

ii

CONTENTS iii

6.3.1 The Search and Retrieval System 81

6.3.2 The Metadata Creation Tool 81

6.4 Evaluation of the metadata model used 83
6.5 Review of the System 84
6.6 System Improvements 85
6.7 Future Work 87
6.8 Conclusiono 87
Glossary 89
Bibliography 91
A LOMAssistant Help Information 95
A1 Imtroduction 95
A2 LOMAssistant DTD file 95
A.3 LOMAssistant XML file 96

B GEMSTONES DTD 98
B.1 Introductiono 98

B.2 GEMSTONESDTD 98

List of Figures

3.1 The GESTALT Architecture 29
3.2 Resource Discovery Architecture 32
4.1 Information Retrieval Architecture 40
4.2 Communication over HT'TP 43
4.3 Communication using Corba 44
4.4 Parser Architectureo Lo 47
4.5 The tool as a part of the Resource Discovery Service 54
5.1 'The initial search query page o8
5.2 Communication messages of a search query 59
5.3 A screenshot of the results from a search query. 60
5.4 Communication messages without a search query 61
5.5 Information Retrieval Class Diagram 62
5.6 DTD Parser Class Diagram 65
5.7 Class Diagram of the LOM Assistants backend operations 69
5.8 Class Diagram of the LOMAssistants GUI 72
5.9 A screenshot of the LOMAssistant initial Gui 73
5.10 An element data entry screen of the LomAssistant 75
5.11 An attribute data entry screen of the LomAssistant 76
6.1 Screen shot of LomAssistant 84

v

List of Tables

5.1 Element Symbols
5.2 An example of element paths from the root
5.3 Hashtable showing the storage of Help Data

Chapter 1

Introduction

CHAPTER 1. INTRODUCTION 2

1.1 Introduction

The World Wide Web is growing at a phenomenal rate, as is the number of
people using it. It has increased from over 36 million hosts in July 1998 to 56
million hosts in July 1999 and is estimated to provide access to over 800 million
documents [Con]. It is comprised of a conglomeration of millions of hosts that has
a formal structural hierarchy. However, the information that these hosts make
available to the web lacks a global co-ordination as each host acts autonomously.

The original motivation behind the Internet was to allow information sharing
within geographically and internationally dispersed teams. It was pre-dominantly
used by the research community for the dissemination of experimental data and
information. There were few hosts and the task of locating a particular resource
was not an issue [W3Cd]. The Internet has evolved immensely since those days
and it is currently being used for e-commerce, user collaboration, global com-
munication, financial data, up to date news, travel information and many other
services. One of the main reasons for this growth is the amount of information
that is freely available.

Information retrieval on the World Wide Web is an area that is rapidly grow-
ing and increasing in importance. More and more people are being driven to the
Internet in the hope of finding that essential piece of data that they can not find
anywhere else. Yet, hours are wasted on fruitless searches, as it is often difficult
to find exactly what is desired. Many think that the problem is that there is
too much information available on the Internet. However, the real issue is that
the lack of structure inherent in the information, renders information retrieval at
best haphazard. The task of searching for information in this vibrant developing
Web has become more and more tedious and time consuming.

How can a search be conducted when people are unsure of how to represent the
inquiry? A common form of representation would aid queries significantly. Most
people have experienced the phenomena of issuing a search query through one
of the many search portals and receiving back an exponential number of results.
The majority of these results are generally irrelevant, yet the issuer of the query
has to sift through all possibilities until they find an accurate one. Another
common problem often encountered is that the results are out of date and the
information is stale. Also, there is no general form of classification available to

inform people whether the data retrieved is from a source that has the authority

CHAPTER 1. INTRODUCTION 3

to provide reliable, accurate facts. These are some of the issues that arise when

attempting to identify and retrieve resources from the Internet.

1.2 Motivation

The educational domain on the Internet suffers from the problems of informa-
tion retrieval. The number of educational resources available on the Internet has
increased enormously over the last decade. This is due to significant improve-
ments in technology and a general change in people’s outlook towards education.
Computers have become much faster and more powerful at prices that are now
affordable to the general public. They are no longer an elitist tool. Practically
anyone can connect to the Internet and take advantage of its services. Therefore,
the potential audience for educational courses has increased enormously, as has
the number of educators with access to the necessary technology. The quality of
these resources has improved with the availability of multimedia tools for video,
audio and graphics.

A metamorphosis is occurring in the way people view education. It is no
longer feasible for people to train once and hope to keep the same job for the rest
of their working years. We are moving towards a lifelong education where there
is an ongoing training process throughout an individual’s career. The current
employment market requires continuous training to survive. People also demand
it due to their own expectations and goals. It is not always possible for people
to go back to college to re-train due to financial, personal or employment com-
mitments. Hence, they require some mechanism of accessing the information or
courses they need in the least disruptive manner possible to their everyday life.

This has led to a growth in distance education and online educational courses.
There has been a paradigm shift in professional education, the classroom is no
longer seen as the ultimate learning environment. [Dem97]. The benefits of
other forms of teaching such as distance education has been recognised. An
individual can take such a course in their own time and in the environment they
find most comfortable. It also provides a way for employers to offer training to
their employees without losing them for a number of days while they go off site.
However, the problem of finding and accessing educational resources to suit an

individual is still there.

CHAPTER 1. INTRODUCTION 4

There is no database or list containing all of the educational resources or ser-
vices available on the Internet. Therefore the task of finding the course that best
suits an individual can often be very difficult and time-consuming. There is a
need for a broker or an agency service to provide a way for people to find and
retrieve the educational resources that fit their particular requirements. The Bro-
ker would undergo the searching process of all the educational resources available

online and return accurate and relevant results from reliable authorities.

1.3 Objectives

The following are the objectives of this thesis.

1. Investigate approaches and technologies for the description of educational

resources and services.

2. Develop an architecture suitable for the identification and retrieval of edu-

cational resources.

3. Prototype proof of concept demonstrator which supports automatic and

semi-automatic retrieval of educational resources and services.

1.4 Approach

The intention of this dissertation is to investigate the approaches and technolo-
gies used for the description of educational resources. Firstly, the educational
resources will be examined to determine how they are described. This will in-
corporate an in-depth look at both the existing and the evolving educational
representation standards and the technologies used to define the format of edu-
cational resources.

This will be followed by an examination of the various search technologies
that are currently available for information retrieval on the World Wide Web.
The tools currently used for the creation of metadata are discussed. Finally,
the semantics and technologies will all be considered with a view to developing
an architecture for accessing heterogeneous information sites, both automatically
and semi-automatically on the World Wide Web.

CHAPTER 1. INTRODUCTION)

1.5 Structure of the Report

The report has the following structure:

e Chapter 1 Introduction

The motivation and aims of the project are outlined, followed by the ap-
proach adopted and the structure of the report.

e Chapter 2 Educational Metadata and WWW based Retrieval

The semantics, standards and technology used to describe educational re-
sources are examined in chapter two, along with an analysis of information
retrieval methods for these resources. It also details a number of tools,

which are currently being used for the creation of XML metadata.

e Chapter 3 GESTALT

Chapter three outlines the GESTALT European research project. It pro-
vides an alternative perspective on how the tool created throughout this

research could be used.

e Chapter 4 Design

This chapter outlines the requirements and the design of the system.

e Chapter 5 Implementation

Chapter five details the tools used in the design of the system. It explores
in greater depth the various classes used within the system and provides

the implementation of them.

e Chapter 6 Evaluation and Conclusion

Chapter six closes the report and project. It provides an evaluation of the
objectives of the research and the tool developed. It describes what has
been achieved, and draws conclusions on the success of the tool. It also
provides suggestions for future work in this field to turn the tool into a

commercial product.

Chapter 2

Educational Metadata and
WWW based Retrieval

CHAPTER 2. EDUCATIONAL METADATA AND WWW BASED RETRIEVALT

2.1 Introduction

This chapter looks into the background of this project. Firstly, the semantics
of how information is represented in the educational domain is presented. This
shows the motivation for the creation of metadata. The material was looked at
in terms of semantic representation, standards in the area and projects being
implemented using the current standards and contributing towards them. This is
followed by an analysis of the technology used to represent educational resources.
The technologies used to retrieve the information from the Internet are examined

and compared. Finally, the existing metadata tools are presented.

2.2 Motivation

As the web continues to grow, more and more educational resources and courses
are being developed and made available on the Internet. These courses are gen-
erally being developed independently by various institutions and companies in
different parts of the world, resulting in the development of many different struc-
tures and course types. The semantics of how the educational resources are
represented is a very important issue in the development of identification and
retrieval systems for educational resources on the Internet. A common structure
or standard format would improve information retrieval and could also enable
automated searching. It is difficult for machines to deal with information on our
behalf. This is because representing information about things, in a way that is
easy for machines to deal with is not well defined. This has lead to the develop-
ment of Metadata for educational resources.

Metadata is “data about the data”. It is a description of objects, documents
or services which may contain data about their form and content. It may be part
of the resources themselves or kept separately from them [JHK96]. Metadata
allows learning resources to be described digitally by attaching a label to the
object. The label provides information about the contents of its container without
having to actually open the container. The descriptive information metadata
supplies, allows the user to locate, evaluate, access and manage online available
learning resources. In essence, metadata serves as a complement to its contents
and reflects the content’s attributes to interested users. It facilitates document

cataloging and searching as it helps authors to describe their documents in ways

CHAPTER 2. EDUCATIONAL METADATA AND WWW BASED RETRIEVALS

that search engines, browsers and Web crawlers can understand. Work on web
based metadata is being managed by the W3C [W3Cc].

2.3 Models

A number of standard bodies were established to try and identify a set of guiding
principles which can be adopted by educational institutions for the development
of educational resources. They aim to represent the contents of the information
in an independent manner to the way in which the information is stored. This
section examines a number of the emerging standards bodies and describes the

metadata models they have produced.

2.3.1 DC

The Dublin Core (DC) group is an international group that aims to create a
common core of semantics for resource description on the Internet. The group is
composed of policy leaders from various disciplines and geographical areas along
with a number of working and technical groups.

The original motivation behind the Dublin Core in 1995 was the description
of author-generated Web resources. However, it now caters for resources that
are both digital and exist in traditional formats. It is used by a number of
formal resource description communities such as museums, libraries, government
agencies and commercial organisations. This information is described in more
detail on the DC homepage [Corb].

The Dublin Core Standard is a simple Content Description Model for Elec-
tronic resources. It is based on a metadata element set and its intended use is to
facilitate the discovery of electronic resources. The standard was composed of 15
elements in version 1, but this has just been reducded to 10 elements in version
1.1. The elements are outlined in greater detail on the Dublin Core Web Site
[Cora]. The element’s names are descriptive enough to convey a certain meaning,
e.g. Title, Author, Subject and Publisher. Each element has a limited set of
qualifiers and attributes that may be used to further refine the meaning of the

element. Each element is optional and may be repeated. It takes the form of:

CHAPTER 2. EDUCATIONAL METADATA AND WWW BASED RETRIEVAL9

Label: value
It can be used in the following way:

Publisher: Sarah Kenny

The Dublin Core has recently announced their intention to set up an Educa-
tion working group. The working group plans to discuss and develop a proposal
for the use of Dublin Core metadata in the description of educational resources.

The Dublin Core element set has a number of distinct advantages over other
metadata resource description models. It has a very simplistic structure as its
intended use was by non-cataloguers as well as resource description specialists.
This facilitates both machine processing and automatic retrieval of resources en-
coded using the Dublin Core element set. Its simple structure provides a good
base for the description of general resources, which can be refined and extended
further for specialised domains such as the Educational domain. However, some-
times the structure is viewed as too simplistic and any real application requires
a further extension of the element set.

Another key advantage of the Dublin Core is it’s semantic interoperability. It
promotes a commonly understood set of descriptors that helps to unify other data
content standards across different disciplines. This has also lead to widespread
acceptance and international recognition in the development of an effective dis-
covery infrastructure. Dublin Core includes sufficient flexibility and extensibility
to encode the structure and more elaborate semantics inherent in richer descrip-
tion standards.

The Dublin Core also provides a number of tools related to Metadata. It
provides a Metadata tool for the creation and modification of metadata templates,
automatic extraction and gathering of metadata tools, conversion tools between

various metadata form formats and integrated tool environment tools.

2.3.2 IMS

The Instructional Management Systems (IMS) [0ST] is a US based consortium
group composed of educational institutions in the USA. IMS is sponsored by
EDUCAUSE [EDU], an American professional association that addresses the ap-

CHAPTER 2. EDUCATIONAL METADATA AND WWW BASED RETRIEVAL10

plication of technology in higher education. The educational institutions can
contribute to the consortium by becoming active members at an investment level
or a development level. An investment level member means that the institu-
tion is represented on both the Advisory Board and Technical Board so they
have more control over the specifications. A Development level member gets the
specifications as soon as they have been approved as a draft.

IMS is developing and promoting open specifications for facilitating online ac-
tivities such as locating and using educational content, tracking learner progress,
reporting learner performance and exchanging student records between admin-
istrative systems. The goal of IMS is to promote the widespread adoption of
specifications. This will facilitate distributed learning environments where re-
sources from different authors can be used together seamlessly. The motivation
behind IMS was the development of instructional software and its integration
into the learning environment. This was being impeded by the lack of stan-
dards to permit sharing across institutions and across a wide range of technical
environments [Proa].

IMS is involved in writing technical specifications. It has written the IMS
Metadata Specification [0ST] where it focuses on the structure of the data. It
aims to provide a common metadata structure for educational resources. This
is to facilitate both the discovery and management of these resources on the
Internet. The IMS specification provides the labels for learning resources on
the Internet and it is Dublin Core compatible, although it does have a number
of extensions. In order to describe a resource, particular characteristics of the
resource must be identified. Multiple categories provide several different paths
to the same object. These descriptive categories form the object metadata.

The Specification is comprised of two parts, a dictionary of fields and values
and the organisation of these fields and values into groups [prob]. These are
represented in XML/RDF format as specified by the W3C [W3Cb|. Essentially,
IMS defines the terms to be used while W3C gives the format of these terms so
that applications such as Web browsers can process the metadata automatically.

The general structure is shown below.

Course
Category

Field name value pairs (repeated to any depth or level)

CHAPTER 2. EDUCATIONAL METADATA AND WWW BASED RETRIEVALI11

The IMS specification provides a common standard for educational resources
based on the general Dublin Core set. It has quite a simple structure although
it can become quite deep with repeated field name value pairs. The structure
is compliant with the W3C XML specifications ensuring its compatibility with
Web Browsers.

2.3.3 IEEE

The Institute of Electrical and Electronic Engineers (IEEE) is an international
organisation that aims to promote engineering and foster technical development
in the world. It is composed of a number of working groups each striving to
develop standards in different areas. The Learning Technology Standards Com-
mittee (LTSC) is an IEEE committee that is trying to develop the ways and
means to deploy education and training systems, or as they put it “The mission
of IEEE LTSC working groups is to develop technical Standards, Recommended
Practices, and Guides for software components, tools, technologies and design
methods that facilitate the development, deployment, maintenance and interop-
eration of computer implementations of education and training components and
systems” [IEEa]. The LTSC has a number of different working and study groups
for different standards including The Learning Objects Metadata Working Group.

The Learning Objects Metadata (LOM) Working Group is writing a stan-
dard that will specify the syntax and semantics of Learning Object Metadata.
The standard represents all of the information-collected to-date, input from the
working group and existing work being done in this area. The IMS Project (sec-
tion 2.3.2) and ARIADNE project (section 2.4.1) which were both based on the
Dublin Core standard (section 2.3.1), have both contributed a lot of work to the
LOM.

“Learning Objects are defined as any entity, digital or non-digital which can be
re-used or referenced during technology supported learning. The LOM standards
will focus on the minimal set of properties needed to allow these learning Objects
to be managed, located and evaluated” [IEEb].

LOM has a hierarchical structured metadata model with three levels. It con-
sists of categories, data elements and abstract data types. The general form of
the structure is a top level of categories, each category contains a middle level of

data elements which in turn are defined by the final level of abstract data types.

CHAPTER 2. EDUCATIONAL METADATA AND WWW BASED RETRIEVAL12

There are 8 current categories that provide the top-level organisation of the data
elements and create the context in which the data elements are evaluated.

The general structure is:

Category
Data Element: Abstract Data Type

It can be specified as shown below.

Characteristics

Language:Dlocale

It may be used in the following way

Characteristics.Language: Us_en

The IEEE LOM has a very complex structure that can take advantage of the
power of XML. It originates from the IMS (section 2.3.2) and ARIADNE (section
2.4.1) projects, so it has taken the best characteristics without being burdened
down by their respective problems. The LOM is also compatible with the Dublin
Core element set and can be mapped directly to the base structure. LOM has a
tree structure, where the leaves are field name value pairs and can be searched
easily by a machine. IMS are likely to migrate to the LOM structure [DWN'99].
The LOM has quite a heavyweight structure, which will increase the complexity
of tools written to deal with the LOM.

2.4 Projects using the Models

There are two European projects of significance actively contributing and fur-
thering the development of the IEEE LOM standards. These are ARTADNE and
GESTALT, which are described in the following sections.

2.4.1 ARIADNE

The Alliance of Remote Instructional Authoring and Distribution Networks for

Europe (ARIADNE) has been involved in standardisation activities performed

CHAPTER 2. EDUCATIONAL METADATA AND WWW BASED RETRIEVAL13

under the IEEE LTSC Committee since December 1997. ARIADNE consists
of corporate users, made up of representatives from all sponsoring organisations
and academic users, which is open to members of all European public service
universities and higher education institutions. It is a European implementation
project that uses the emerging standards and is actively contributing to the
development of educational standards especially the IEEE standards. Its goal
is to foster the sharing and reuse of electronic pedagogical material, by building
up an international system of interconnected knowledge pools. It focuses on the
semantics of the data. [ARI]

ARIADNE has been evolving in a number of different stages. Firstly, proto-
type tools and basic methodologies where developed for maintaining and exploit-
ing the knowledge pool system in a number of educational and training areas.
Then the intention was to perfect these tools further and validate them through
large-scale demonstration. Overall, ARIADNE hopes that the evolved schemes
and set of tools developed will contribute to a European standard for collabo-
rative and trans-cultural Information Technology based training approaches. It
provides tools for authoring, pedagogic hypertext generator and validation tool,
query tool, curriculum editor, knowledge pool system and learner interface [ARI].

ARIADNE uses a simple two level structure that is based on the Dublin Core
metadata specification (section 2.3.1) to categorise its metadata. It is composed
of a Course, Category and Field name pair. The general structure is presented

below.

Course
Category

Field name Pair.

The Two levelled structure of ARTADNE is easy for a user to comprehend
and search. It can be dealt with automatically by machines and retrieval agents.
It does not have a wide enough acceptance to achieve interoperability but it is
actively contributing to the IEEE LOM standards.

ARIADNE and the IMS project have recently agreed to collaborate and work
towards a common structure and core of educational metadata descriptors which

they will then propose for international standardisation [ARIMS].

CHAPTER 2. EDUCATIONAL METADATA AND WWW BASED RETRIEVAL14

2.4.2 GESTALT

Getting Educational Systems Talking Across Leading-edge Technologies (GESTALT)
is a European research project funded under the ACTs programme. Chapter three
describes the GESTALT project in detail, as it provides a broader context for
the development of this thesis. The motivation behind GESTALT along with the
project’s aims and metadata model will be discussed.

GESTALT has evolved from a combination of the IEEE LOM standard and
the IMS standard. It has its own metadata model described in section 3.2 and it

is active in the IEEE standardisation process.

2.5 Projects implementing Educational Retrieval

Systems

An investigation was carried out to discover whether any of the metadata model
groups had created any search and retrieval tools for educational resources.

IMS was found to be more concerned with defining technical specifications
that products should follow in order to work together. It did not have any
educational resource retrieval tools although it stated in the projects scope that it
intended to develop specifications for searching for resources who’s content could
run on any learning server. However, there were no collaborative projects to be
found in the process of implementing such a search system. Instead it focused on
educational authoring tools and management systems for looking after the course
content.

The ARIADNE project has not addressed the issue of search and retrieval
tools for educational courseware. It is more focused on the Learning Environ-
ment and the creation of authoring and management tools for the sharing of
knowledge within this type of environment. It has built tools to author courses
and curriculums, to validate pedagogic material, generate multimedia enriched
courseware and evaluation student performance.

The GESTALT project is in the process of developing an educational resource
retrieval and discovery service as part of its framework. This is described further
in chapter 3 which is devoted to the GESTALT project.

GESTALT was found to be alone in its quest to create a broker system for

CHAPTER 2. EDUCATIONAL METADATA AND WWW BASED RETRIEVAL15

educational resources. The other educational tools focused more on the creation

of educational courseware and pedagogic material.

2.6 Technology

The primary technology used for the representation of educational resources
metadata is XML. The following section describes the origins of the langage and
why it is particularly useful for resource description on the Internet. The DOM

is another technology often used with XML, it is also discussed in this section.

2.6.1 XML

The eXtended Mark-up Language (XML) is published by W3C [W3Cb]. This
mark-up language takes it’s origins from both SGML the Standard Generalised
Mark-up Language (SGML) and Hyper Text Mark-up Language (HTML). SGML
is a language used to describe any type of document. It is a very powerful
language because of its ability to store the content separately from the data.
However, its syntax and structure are very complicated and proved very difficult
for machines to deal with automatically. HTML has quite a simple structure
and is basically free format text. It is quite limited in its way of representing
data as it was aimed at creating pages for browsers to interpret on the Web.
Unfortunately, it does not deal very well with data content. XML was thought
to be the solution to these problems.

XML allows documents with a flexible data structure to be created, where
the content can be stored separately from the data. However, its structure is not
as complicated as the structure of SGML. Since XML allows data to be stored in
a structured format, data can be processed by many applications, which is unlike
HTML as it can only be browsed. XML also permits fields to be tagged based
on author defined tags.

XML was originally intended to enable metadata to be embedded in web
pages. This allows much more accurate search and retrieval of resources using the
Internet. However, XML is in fact a self-declarative meta-language, thus lending
itself to a wider range of uses than just metadata for web pages. It can define

metadata for a wide range of document types. There are two significant parts

CHAPTER 2. EDUCATIONAL METADATA AND WWW BASED RETRIEVAL16

to XML called the Document Type Data (DTD) and the Resource Description
Format (RDF) [St.97].

The Resource Description Format is a language for representing metadata. It
was developed as a result of the W3C’s interest in metadata. RDF is destined
to support a wide range of applications over the web and the wider Internet, in-
cluding search engine data collection (web crawling) and access to digital library
collections. Its key focus on interoperability in the exchange of metadata and it
uses XML as its transfer mechanism. RDF is an application of the Extensible
Mark-up Language (XML). Applications written in the RDF /XML language can
adopt quite different headings and categories when it comes to organising mate-
rial. The vocabulary is likely to be application-specific. RDF leaves metadata
authors free to choose the vocabulary of their choice, spelling out in detail the
allowed use of the vocabulary - essentially the ‘grammar’ of the application. The
Resource Description Format Model and Syntax Specification is complete and is
a W3C Recommendation since February 24th, 1999. The Resource Description
Framework Schema Specification is nearing completion and was made a Proposed
Recommendation on March 3, 1999.

Document Type Definition (DTD) is a data structure specification that can be
applied to documents. It provides a formal definition for the mark-up rules. XML
requires documents to conform to a complex set of specifications outlined in the
DTD. The XML processor has two jobs, it ensures that the documents are valid
in that they conform to a DTD and then it builds a document tree structure
that it passes to applications. The DTD provides a critical link between the
data files given to the XML processor and the data that is transmitted from the
XML processor to the application. Document Type Definitions help computers
to understand structures that may seem obvious to humans. They can appear in

the document they describe or in a separate file.

2.6.2 DOM

The Document Object Model (DOM) is a platform- and language-neutral in-
terface that allows programs and scripts to dynamically access and update the
content, structure and style of documents [W3Ca).

The model was created to support both HTML and XML by the W3C. An

XML document is essentially, a plain text file. An interpreter must be written

CHAPTER 2. EDUCATIONAL METADATA AND WWW BASED RETRIEVAL17

to interpret the file in such a manner that it can be used. This process is time
consuming and repeated throughout the world. This is what motivated the W3C
to create the DOM. It provides a standard way of parsing and accessing the
document’s contents.

Since XML provides more processing functionality than HTML and it is ex-
tensible, users were seen to require the ability to program XML. A standard
Application Programming Interface (API) was designed to increase the interop-
erability of documents sent over the Internet. The development of modules for
different applications is also facilitated by the existence of a standard API.

2.7 Search Technologies

Various search technologies are used to retrieve information on the Internet.
Search Engines and Intelligent Agents are two contrasting retrieval methods.
These will be discussed in the following section along with a brief comparison of

the two technologies at a conceptual level.

2.7.1 Search Engines

A search engine provides users with a way of searching for information on the
Internet. A user inputs a query into a search engine and it searches its database
for references to the input, then it returns the number of references to the user.
Behind every search engine, there is a database which stores all of the (Uniform
Resource Locators or specially formatted Internet addresses) of web pages and
other Net resources.

Most of the databases are created by crawlers, which are also known as robots
or spiders. Crawlers are software programs that roam the Web looking for new
sites by following links from page to page. They are based on the concept that
every page on the web must be linked to another page and by searching through
a large number of pages and following all of the links, a user will discover new
pages with a new collection of links. When a spider finds a new page, it adds
information about the page and its URL to the database, which can store data
about a few million pages.

The size of the engine’s database has a big impact on the success of the user’s

search. At the moment, there is no search engine powerful enough to index

CHAPTER 2. EDUCATIONAL METADATA AND WWW BASED RETRIEVALI18

the whole Internet. The search engines database is simply an index of words
and phrases associated with URLs. When a search is performed, what actually
happens is that the databases index is searched. There are many different ways for
engines to index their database including indexing web pages URL and title, web
headers, the most frequently mentioned words in a web page, the first few lines of
text, every word on the whole page and some engines even employ concept-based
indexes.

There are two main types of search systems that are in popular use on the
Internet. The first is a ‘keyword’ search system where the user types one or more
descriptive words from which the system displays a collection of web pages that
contain them, e.g. Altavista [Alt]. The second type extends this principle with
the addition of a subject tree. This allows the user to browse and explore the
subject tree in depth, and perform keyword searches within different areas, e.g.
Yahoo! [Yah]

Both systems are centralised in the way they retrieve web pages from the
Internet, and in the way they store all this information in one web location.
Meta-engines forward search queries to a number of major web engines at once.
They function by reformatting the search engine output from the various engines
so that it indexes into one concise page. The problem with meta-engines is that
they lose the capabilities of advanced search at the sites.

There are important differences between the search services, as far as size,
selection of the indexed servers, update period, user interface and support is
concerned. Each Search Engine uses different retrieval software and searching
functions leading to varying results from simultaneous search engines. Also the
update periods vary from weekly up to once a year. The larger centralised services
normally have longer periods between re-indexing the same page or server.

In many cases, not all the indexed information about a document is displayed
as part of the search result. Some services show the title of the hits only. Best-
match methods are predominant as search software, but the respective ranking
algorithms are rarely described in a satisfactory way. The services focus in gen-
eral on high recall. Precision improving facilities such as relevance feedback or
vocabulary control are seldom used. A variant of citation searching in hypertext,
provided by AltaVista [Alt] and WWW Worm, is amongst the most advanced

applications.

CHAPTER 2. EDUCATIONAL METADATA AND WWW BASED RETRIEVAL19

Search Engines like all other technologies have a number of weaknesses. They
gather everything into a central location and run the search queries there. This
gives rise to slow performance and demands considerable resources. With web
pages being added to the Internet at an exponential rate, the problem of indexing
new pages arises. The search engine must maintain the index with the most up-to-
date information possible. There is also theoretical problem of indexing virtual
hypertext. As the depth of hyperspace is infinite, an infinite index would be
required to index it. [Tec].

Search Engines are free to use any information retrieval software they choose.
They vary greatly in terms of the harvesting methods, the indexing methods
and the retrieval software. The results returned to a user depend on the use
of exact match or best match, natural language and linguistic methods, ranking
algorithms and the use of relevance feedback. The combination of techniques

does not always complement the search process.

2.7.2 Intelligent Agents

An intelligent agent is computer code that can act autonomously on behalf of a
user or a process. It is called intelligent because it can perform actions with some
level of pro-activity or reactivity. It also exhibits some level of the key attributes
of learning, co-operation and mobility. Agents are able to communicate with the
user, the system and each other. Agents can work collaboratively to help each
other complete a task or they can work against each other. Multi-agent systems
provide a network of problem solvers that work together to solve problems that
are beyond their individual capabilities [GHC97].

John Vittal developed the first operational intelligent agent system in 1979
at the company Bolt, Beranek & Newman, although the term ‘agent’ was first
mentioned by Thomas Standish in 1971 [Fis99]. However, agent technology has
only recently entered the commercial arena and increased in both use and pop-
ularity. The increase in use of Intelligent Agent technology has lead to the need
for standards. The Agent Society is an international organisation that was estab-
lished to assist in the widespread development and emergence of intelligent agent
technologies and markets [Soc|. It is working towards standardising the intelli-
gent agent technology. The Foundation for Intelligent Physical Agents (FIPA) is

an organisation that is developing interoperable specifications and standards for

CHAPTER 2. EDUCATIONAL METADATA AND WWW BASED RETRIEVAL?20

generic agent technologies to work across agent based applications [FIP].

Intelligent Agent technology can be used in the field of information retrieval.
The Internet provides an ideal domain for multi-agent technology as the agents
can address problems that may be too large for a centralised single agent. A
Multi-agent system can be used to search for and retrieve data about a particular
educational topic. Intelligent agents provide a distributed search system so the
searching task is broken down into a number of smaller operations. This increases
both the speed and performance as the operations can be performed in parallel.
However, there must be some way of dividing up the work amongst the agents,
collating the results and communicating between the agents. These tasks all
incur a certain overhead in performance. Intelligent Agents can also deal with
uncertain data and knowledge, a characteristic that is very desirable in a search
system.

The OASIS service described in [IN] and [MB] presents a distributed system
of Internet Intelligent search agents. Each agent built a collection relevant to a
certain topic. The OASIS Crawler constructed an index of Internet documents
relevant to its associated OASIS collection. (The Collections index is essentially
the same as a search engine’s index and composed of the same data.) Crawlers
worked collaboratively and gave each other URLs that were thought to be of
relevance to their collection. A harvesting strategy was required by the Collection
to filter out documents that were not relevant. An OASIS Server was used to
process the users query and to search particular collections. It had to rank the
query results in order of relevance.

The distributed search service in the OASIS service performed faster than a
centralised search service. It also proved to be very effective in searches on very
specific topics yet it was found to be imprecise on general searches. There was
a need for inter-communication standards, as the agents needed to communicate
in order to propagate URLs and increase the size of the Collections.

Searchbots developed in the University of Massachusetts is another exam-
ple of a co-operative information gathering multi-agent system [Wag]. It differs
from the OASIS system in many ways. Searchbot agents perform live search at
heterogeneous remote sites via the Internet. They focus on goal driven infor-
mation gathering. Each agent searches a different domain for relevant data and

co-ordinates results in order to locate additional sources of information. The re-

CHAPTER 2. EDUCATIONAL METADATA AND WWW BASED RETRIEVAL?21

sults are then assembled and returned to th e user within a certain time frame.
These agents suffer from much the same communication and co-ordination over-
heads as OASIS. The OASIS system was more accurate than Searchbots due to
their topic-specific nature. Searchbots were limited in the information they could
retrieve due to their live search operation.

Intelligent Agent technology raise certain security issues due to their ability to
move from one host to another. An agent operating on a machine can suddenly
halt execution, move to a remote host and resume execution there. It takes its
program code and state with it. This means that certain security measures must
be enforced to ensure that a destructive agent does not execute any problem
inducing code on a remote machine. Intelligent Agents are very effective when
performing information retrieval on a group of Web Servers where their access to
materials can be controlled. The system Mobile Assistant Programming (MAP)
described in [SP] searches for relevant HTML documents on a set of WWW
servers. However, people generally regard agents as ‘untrusted’ code and are
wary of them. There is a need for standards to restrict the area an intelligent
agent has access to, perhaps similar to the restrictions imposed on CGI programs
in a web server. A number of companies have begun implementing agents with
security restrictions such as IBM’s Aglets [IBMal).

The number of intelligent agents currently available and able to perform search
and retrieval operations on the World Wide Web is quite limited. They are largely
research projects and prototypical systems. The architecture necessary for the
widespread use of Intelligent Agents with the necessary security restrictions has
not yet been implemented on the Internet. This is curtailing the use of Intelligent

Agents in the Information retrieval domain.

2.7.3 A comparison of Search Technologies

In general search engines employ a centralised system while intelligent agents use
a distributed system. This has many repercussions for both systems. Search
Engines require a huge amount of resources and computing power hence making
them costly in terms of money and performance MB|[IN][KABL98]. The search
engine downloads all pages to its centralised site where it performs its indexing
operations. The index is stored at this centralised site and depending on the

number of users accessing the search engine at a give n time, it can become

CHAPTER 2. EDUCATIONAL METADATA AND WWW BASED RETRIEVAL?22

a bottleneck and cause long delays in returning theresults to the user. The
distributed system suffers from problems of a different sort. Each agent goes to
a site where it examines the pages and sends information back to its index. Each
agent has it’s own index. It has to incur the overhead of communication between
the different agents in the system and co-ordinate search activities between them.
However it usually has faster results than a centralised site because it can search
each of its indices in parallel [Tec].

The Search Engine is very good for a general search, it usually has some
information about just about every subject in its database. However, if you are
looking for very specific information about a particular topic, it does not always
return relevant resources of documents. An Intelligent Agent is often built to
retrieve information on a specific topic, therefore if you are looking for something
very specific it can often return good results. There are a number of topics that
the intelligent agents leave out making them quite poor at retrieving general
information[IN].

The Search Engine system does not raise many security issues. It goes to a
web site and downloads what it needs without running any programs on the site.
An Intelligent Agent on the other hand often executes code at the remote site.
This has security implications. The remote site must trust the agent not to run
any virus programs or restrict the agents access to certain files. These are issues
that need to be addressed in the global intelligent agent standards.

Search Engines are a well-established technology. They have been tried and
tested over the last few years. They have achieved wide spread acceptance and
use. They have been written for many domains and spoken languages. There is
an enormous number of search engines available of differing qualities which can
be bought or downloaded free. Intelligent Agent technology has been around for
a number of years but its only recently that they have been used as information
retrieval agents on the Internet. The information retrieval agents are generally
at the prototype stage with a number of them being implemented. They are in
limited supply and only few examples of them exist leading to a poor choice.

A large number of the Search Engines have implemented metadata support at
their sites and use them for their information retrieval activities. Since Intelligent
Agent search technology is still emerging, they offer little support for metadata.

They are only beginning to incorporate metadata into their information retrieval

CHAPTER 2. EDUCATIONAL METADATA AND WWW BASED RETRIEVAL?23

processes.
Both Search Technologies have many differing abilities and each offers ad-
vantages over the other. However, the architecture for implementing Intelligent

Agents has not yet been fully applied to the Internet.

2.8 Editing Tools for XML metadata

There are only a very small number of XML editing tools on the market at the
moment due to the emerging state of the technology. A number of SGML editing
tools have been adapted to support XML development but apart from that, there

are only a few XML tools available, and they are expensive.

e XMLPro

XMLPro is a “Pro eXtensible Mark-up Language” editor for XML. It was
developed by the company Vervet Logic [Log] and was one of the first
XML editors produced specifically for XML. It allows XML documents
to be created and editing using menus and wizards. It does not support
DTD creation but it does allow them to be imported into the tool, for the
validation of the XML.

XMLPro is not aimed at novice users and a working knowledge of SGML
is assumed. The nomenclature is left up to the user to interpret and there
is no glossary or help available to explain it. It imposes a learning curve on
the average user and very little help. The interface consists of a number of

pop-up boxes and menu bars. It will only run on window type systems.

e Visual XML
Visual XML is a tool that enables you to create and modify DTD and

XML documents. It is an open source project currently in development by
Pierre Moral and his team [Mor]. However it provides little more than a

Java-based text editor does.

e Xeena

Xeena [IBMd] is an XML editor that enables the user to create and edit an
XML document as long as it is given a valid DTD. It has a simple interface

based on a tree directed view. It is easy to use and only valid elements or

CHAPTER 2. EDUCATIONAL METADATA AND WWW BASED RETRIEVAL?24

constructs are presented to the user so that the structure in the DTD is

enforced.

All of these tools are general XML editing tools. They cater for any general
XML document being created from a general DTD. There is nothing to guide
the user or help them with any specific DTD. They are generic tools aimed to
work in all areas. If a user wants to use these editors in a specific domain such as
the educational domain, the tools do not provide them with any assistance. The
tools do not have any knowledge about the LOM model to direct them in their
functionality.

The tools range from XMLPro and Visual XML being difficult to use and not
very user-friendly, to Xeena proving quite a simple usable interface. They were
all written in Java and depend heavily on existing parser frameworks by SUN
and IBM.

The tools do not always provide validation. The process of validation involves
comparing the XML created against the documents DTD to ensure that there is
no violation of the DTD’s rules. Xeena forces the user to use a valid DTD so
that it can validate documents. XMLPro requires the user to import the DTD
into the document in order to carry out validation. The position of Visual XML
with regard to validation is not known.

After completing an investigation of the currently available tools, it has be-
come apparent that there is a need for a directed tool for use in the educational
area. It would be more beneficial to an educational user if the tool had knowl-
edge of the LOM model. This would greatly aid a user in their task of creating
educational metadata. A tool of this kind must be user friendly, easy to use and
extensible. The tree-based interface in Xeena was found to be simple and usable
for the user and it enforced the structure defined in the DTD.

2.9 Summary

This chapter examined the semantics of how information is represented and pre-
sented the educational metadata models and educational implementation projects
contributing towards the emerging standards. It described XML, the metadata

representation technology and discussed the two main search technologies. The

CHAPTER 2. EDUCATIONAL METADATA AND WWW BASED RETRIEVAL25

chapter concluded with a brief look at what is currently available in the area of

metadata creation tools.

Chapter 3

GESTALT Architecture

26

CHAPTER 3. GESTALT ARCHITECTURE 27

3.1 Introduction

This chapter introduces the European project GESTALT in which the research
carried out through the course of this thesis plays a role. The motivations and
intended use of GESTALT are outlined. This is followed by a brief description of
the architecture and the discrete components, which are envisaged as comprising
the complete GESTALT system. There is a component of special interest to this
thesis called the Resource Discovery Service. It is examined in further detail in
order to show how the system developed in this thesis could be used as a working

part in the Resource Discovery Service.

3.2 What is GESTALT?

Getting Educational Systems Talking Across Leading-edge Technologies (GESTALT)
is an Advanced Communications Technologies and Services (ACTS) ! it is the fo-
cus of the EU’s research effort to accelerate sponsored European research project.

It has been examining the area of remote learning environments in which services
such as Resource Discovery, Learning Environment, Student Profiles and Asset
Management are required for the student and lecturer to work remotely on-line.
GESTALT consists of a number of prominent European businesses along with
academic staff and researchers from universities throughout Europe.

The GESTALT vision is concerned with defining ways that will enable learning
technology products to inter-operate in remote learning environments. They hope
to achieve this vision by the use of newly available and emerging technologies.
GESTALT intends to perform integrated trials and construct an online training
demonstrator for their resource discovery service, learning environment, student
profiler and asset management system [Con98].

In GESTALT metadata has been associated with educational material for use
in the educational domain. Metadata enables inter application communication
and more efficient searching and discovery. The GESTALT metadata structures
have evolved from a combination of the IEEE LOM standard as described in

!The Advanced Communications Technologies and Services (ACTS) is a European Union
collaborative research and development programme. It aims to accelerate the deployment of
advanced communications infrastructures and services in the fields of information technology
and telematics [Tc].

CHAPTER 3. GESTALT ARCHITECTURE 28

section 2.3.3 and the IMS standard described in section 2.3.2. However, due to
the requirements of the GESTALT project some additions and modifications were

necessary. These are contained in the Gestalt Extensions to Metadata Standards
for ON-line Education Systems (GEMSTONES). The metadata model used by
GESTALT is essentially GEMSTONES. A DTD based on this model was written.

3.3 GESTALT Architecture

The initial GESTALT Architecture is depicted in figure 3.1. The system is only
complete when composed of the set of components shown above. These compo-

nents are outlined below as described in [PF99].

Web Client
It is assumed that all User Services will be delivered to the desktop, using
World Wide Web technology.

Resource Discovery Services

This is comprised of a CORBA-compliant Broker accessed via a web gate-
way, these services will allow users to explore what courses and modules
are available from which institutions.

Learning Environment

The LE database will be used to manage access and on-programme progress

User Profiles

This will store user preferences for LE interaction.

External Internet Services

These would include services to allow users to search (using metadata)
descriptions and access resources beyond those available on their immediate

programme of study.

Asset Management System

This controls access to valued resources such as learning objects which

should only be accessed within a paid for programme of study.

CHAPTER 3. GESTALT ARCHITECTURE

Discovery
Service
SELECTION Rendering
Web -
Gateway

Web
Client

"~

User
Profiles

29

Learning
Object
Rendering INSTRUCTION
— Web
Server

Learning

Video
Server

Object

Learning

Repository

Administration
& Management

Broker REFERRAL ’
Servi » Environment
ervice Database
4 4
Learning
R_esource Environment
Discovery
Service
v Learning
External Object Legrning Ad.min
Internet Metadata Objects Objects
Services
Asset) Asset - .
) Learning Administration
Production Obi Management
jects MIS
Management System
-
Learning

Admin
Database

Figure 3.1: The GESTALT Architecture

CHAPTER 3. GESTALT ARCHITECTURE 30

Administration MIS

It supports back of house management of the training institution. It re-
lates learning outcomes and student progress as assessed by the Learning

Environment to learning objectives held in the MIS.

Asset Production Management

This system is for co-ordinating production of multimedia resources and its

related metadata.

Learning Object Repository

It contains one or more file stores, firewall protected to prevent access other
than via the Asset Management System.

Video Server

It is a specialist technology for supporting multiple access to streamed mul-

timedia services.

Admin DBMS

This contains one or more file stores, firewall protected to prevent access
other than via the Administration MIS.

All of the components in the system interact together to provide a number of
functions. A user can request a course from the selection component. This checks
their requirements in their user profile and creates one for them if necessary. The
requirements contain the user preferences, pre-requisite knowledge and any other
information that could be relevant in finding a course to suit the users needs.
The broker service takes the requirements and searches for matching courses.
The broker service interacts with the asset management system and makes a It
rning environment database. Once the user has received the names of the courses
and resources that were found to match his requirements from the broker, he can
then request them from the relevant sources. The sources have been pre-warned
by the broker’s referral and expect the user.

Although GESTALT consists of an Asset Management System, a Learning
Environment and a Resource Discovery Service, it is the Resource Discovery

Service that is of special interest in this thesis, as it provides a means by which

CHAPTER 3. GESTALT ARCHITECTURE 31

potential students and learners can locate and order educational courses and

resources.

3.4 Resource Discovery Service

The purpose of the Resource Discovery Service (RDS) is to help customers locate
educational courses and resources. It offers facilities for searching, previewing and
ordering them. These services are based on the brokerage functional architecture
developed by the GAIA ACTS 2 project with the addition of a domain specific
delivery management system.

XML based metadata is fundamental to the design of the RDS. Metadata
provides a mechanism for resources to be described digitally. In this way, it is
possible to structure and tag information available on the Internet. This can
potentially transform the Internet from a resource which was previously accessed
by Web Servers and Search Engines into a resource which can be accessed by
other more domain specific applications, in this case Education Systems.

The advantage of using a RDS is that users do not have to try and locate
educational resources and courses manually. It prevents the user wasting time
searching for courses that may not be relevant or aimed at a different user level.
The RDS provides metadata information about educational resources that can
be compared against the needs of a user as defined in the user profile.

Architecturally the RDS uses a three tiered approach as shown in figure 3.2

taken from [DWNT99]. The major components are:
1. An Internet based Client.

2. An Educational Search component which keeps a cache of Course and Re-

source metadata and provides a search facilities.

3. A Customer Profiles component, which keep track of user profiles by inter-

acting with Trusted Education Systems and directly with users.

4. Agents that provide protocol conversion. The RDS can then access meta-
data from services which offer interfaces, which are neither CORBA, or
Internet based.

2GAIA was one of the ACTS projects. It developed a generic architecture for Information
availability [DWN*99].

CHAPTER 3. GESTALT ARCHITECTURE 32

e

Service/Resource

. Service Provision
Discovery

Domain specific
REFERRAL Delivery
" | Management Service

\ .

Serwce/F?espurce Service Elements
Description

Brokered Resource
Discovery Service

Offered Services

Figure 3.2: Resource Discovery Architecture

CHAPTER 3. GESTALT ARCHITECTURE 33

The Educational Search component outlined above provides the RDS search
facility. It requires a cache of course and resource metadata in order to provide
search functionality. This metadata must be created or found in an existing for-
mat. There is a need for a back end service to search the Internet for educational

metadata and retrieve it for the Educational Service.

3.5 Role of the LOM Assistant

The LOMAssistant is the name of the tool created in this thesis. It is concerned
with the metadata approach to educational resource identification. It provides
a mechanism for the location and retrieval of the course and resource metadata
that is required by the educational search cache in the GESTALT project. It
performs this operation in two steps. Firstly it locates the necessary resources
and retrieves them. Then it examines the resource to see if it has any existing
metadata. If there is no meta data the LOMAssistant provides a way for the user
to interactively create metadata for the resource. In this way, it creates the data
necessary to populate the cache used by the RDS.

There were a number of factors that had to be taken into account by the LO-
MAssistant if it was to be used as part of the GESTALT project. An examination
of the overall architecture of the RDS was necessary in order to analyse what re-
strictions or requirements GESTALT would impose upon the LOMAssistant.

Essentially, the role imposed on the LOMAssistant by GESTALT was to lo-
cate and retrieve courseware. This also involved an examination of the courseware
once it was found, to ascertain if it had any associated metadata. If there was no
metadata then it had to be created in accordance with the GESTALT metadata
model. In the case where metadata was found, it may have needed to be modi-
fied so that it adhered to the model. This outlines the XML metadata support
required by the LOMAssistant.

It was found that the LOMAssistant had to be web-based as the GESTALT
project used current and emerging web-based technologies. This suggested that
the LOMAssistant should run within a thin client browser and allow remote
access. It also indicates that the LOMAssistant had to be distributed and run
on many different platforms and environments.

Another important characteristic imposed on the LOMAssistant was the de-

CHAPTER 3. GESTALT ARCHITECTURE 34

gree of usability. The LOMAssistant was to provide an interactive mechanism of
creating metadata for educational courseware. In providing an interactive tool,
the emphasis lies on usability and user-friendliness. It has to be easy to use
and cater for a wide range of user experience ranging from proficient metadata
creators to novices.

Although, all of the characteristics above had to be considered, one of the key
requirements of any tool becoming part of a bigger project is that the tool can

be integrated and interact proficiently with the entire system.

3.6 Summary

This chapter introduced the GESTALT project, and discussed how it provided
a broader scope for the LOMAssistant. The background of GESTALT and the
RDS were outlined in terms of motivation, aims and the architecture. Finally,
the chapter ended with a discussion of how the LOMAssistant could become part
of the greater system. The features required included XML metadata support,
portability, usability and interactivity.

Chapter 4

Design

35

CHAPTER 4. DESIGN 36

4.1 Introduction

This chapter discusses the design of the system. It outlines the requirements nec-
essary to create a framework for the search and retrieval of educational courseware
and the creation of metadata for these resources. The tool created throughout
the course of this project was designed in two distinct phases. The first phase of
the design addressed the issues of information retrieval on the Internet. It pro-
vided a solution to the problem of finding educational resources and courseware.
The second half of the design deals with the creation of an editing environment
and the associated services required in the generation of XML metadata.

There was a modularised approach adopted for the design of the tool. The
system is composed of a number of components, which were created in distinct
modules. This method was chosen so that each component could be developed

and tested in separate units before starting the integration process.

4.2 Information Retrieval Requirements

This section examines the requirements of a system designed to perform infor-
mation retrieval operations. There were three key areas that were considered in

designing the retrieval system.

1. Search Technology
2. Result Presentation Format

3. Adaptability

It describes what technology was used to search for the information and why a
particular one was chosen. This is followed by a discussion of how important the

presentation format used for the results and adaptability is within the system.

4.2.1 Search Technology

Search Engine technology was chosen over Retrieval Agent technology for the
reasons discussed in the Background chapter. In brief it is a well established tech-
nology, widely available, easy to adapt and it provides better metadata support.

Various search engines could have been used, however due to time constraints

CHAPTER 4. DESIGN 37

only a modest investigation of the available search engines could be undertaken.
There were a number of issues that had to be taken into consideration.

The cost of a fully functioning Internet search engine is very high. The budget
of this project did not allow for a large-scale engine to be purchased. This led
to an examination of freeware and the constraint that a free engine had to be
used. The possibility of using an Internet wide search tool was eliminated as they
all cost money. A small multi-site search engine was chosen for this reason. It
operates by indexing a number of sites, which can be chosen by the user. If a
prototype idea could be proved with a small engine then using a larger engine
would just be a question of scalability . Other issues of less significance included
the portability of the engine, whether the source code was freely available, the

engine’s support for XML and how easy it was to use.

4.2.2 Result Presentation Format

The presentation of the results retrieved from a search query was also found to be
important, as the system needed to perform operations using these results. The
way in which the results were presented could increase the user-friendliness and
ease of use of the tool. The result format had to be adaptable so that it could be
manipulated and changed into a desired format.

Upon observing a number of engines, including search engines, meta-engines
and directories, it was noticed that they all returned the same general information
in their results. This led to the definition of a search result type. A result de-
scribes a specific URL provided by some server, based on the information defined

in the result type. A result type consists of:

Title

This is meant to capture the essence of the result contents.

URL

This represents the location of where the result can be found on the WWW.

Excerpt

This is textual data describing the contents of the URL.

Relevance Rating

CHAPTER 4. DESIGN 38

It shows how relevant a particular result is to the original search query.

The result type consists of five tags, the relevance rating was usually indicated
by the order in which the results were returned from the engine with the most

relevant at the top, so it was ignored.

<!-- START -->
<!-- TITLE -->
<!-- URL -->
<!-- EXCERPT -->
<!-- END -->

The start of a result is indicated by <!-- START --> while <!-- END -->
means that the end of that particular result has been reached. <!-- TITLE -->
signifies that the data following the keyword contains the title. The end of the
title is reached when the beginning of another keyword is reached. The URL and
excerpt keywords work in the same way as the title. The provision of a result
type means that if another search engine is to be substituted for the one currently
used, it will be compatible as long as the results are returned according to the

same result type format.

4.2.3 Adaptability

The information retrieval system had to be adaptable. This meant that any
search engine could be used within the system as long as the results retrieved
from the engine could be changed into a certain desired format. With this in
mind a typel was designed for the results. This flexible approach was adopted so
that the system was not dependent on a particular search engine. The searches
could be adapted for any situation, all that had to be done was change the engine.
The issue of actually finding the most relevant results to a query was left up to
the search engine. If there was a new and brilliant free engine that indexed the
web to come onto the market, then the tool should be adaptable enough to accept

the results from this engine.

CHAPTER 4. DESIGN 39

4.2.4 Information Retrieval Architecture

A search engine operates by receiving a search query, carrying out a search oper-
ation on the database and returning the results in some order of relevance. These
results must be broken down and filtered into the individual results before they
can be of any use. Each result is changed into a result type, which describes the
URL.

The client browser must communicate the search query with the server and
receive back the results. Two ways of carrying out the communication and pre-

senting the results to the user were examined.

e HTML presentation over HT'TP

The user is presented with a HTML web page from which they are asked to
make their search query. The query is input into a HTML form. As soon as
the user submits the query, it is sent using HI'TP to a Common Gateway

Interface (CGI) script on the server, as shown in figure 4.1.

The script takes the query string and puts it into the search engine. The
server filters the results from the search engine, generates a HI'ML page to
display the results and returns them to the browser over HT'TP.

The user can then select one of the presented results to retrieve. Selecting
a result sends the result URL back to the server where another CGIl-script
is invoked to retrieve the file onto the server.

e Applet presentation over Sockets

The user is presented with an Applet from which they are asked to make
their search query. The applet is connected via a socket to the server. The

applet takes in the query and sends it to the server over the socket.

The server takes the query and puts it into the search engine. The server
sends back the results to the applet. The applet has the task of filtering
the search results. It then displays them to the user in a text format that

it can display.

The user then must select a result. The applet sends the URL of the result

via the socket to the server. The server then retrieves the file.

CHAPTER 4.

DESIGN

HTTP Execute
Send Search Query Search
4TTP>
Format
Return Search Results Results
<o
Client Choose Result Client
Browser Browser
Download
Results
<<ETTE>> Save Result
G t
Start HTML page Start page

— Page

40
<alls>
Request
Resutls Search
Return Engine
Results

A/

<HrTe >
Request
page

Return—

Internet

Figure 4.1: Information Retrieval Architecture

CHAPTER 4. DESIGN 41

These two methods provide contrasting ways of retrieving the information.
They both provide the same essential services at the server, execution of the
search engine and retrieval of the file. Choosing between them is a matter of
comparing their presentation formats and the communication mechanisms.

HTML displays text in a very clear and user friendly format. It is easy to
navigate, easy to read and can be readily formatted. Applets on the other hand
have to be specially configured to display text and it is difficult to format, may
be unclear, may be difficult to navigate and it is not necessarily the most user
friendly and intuitive manner of displaying text.

Both sockets and HT'TP provide reliable communication mechanisms. The use
of sockets would require the creation of the socket, maintenance and mechanisms
of sending and receiving information to and from the socket. HT'TP is a standard
form of communication with well-developed forms that send information in a pre-
defined way. It was decided to use HT'TP for these reasons.

Once the educational courseware had been found and retrieved the work of
this section was complete. The second half of this tool had to address the issues

involved in the creation of metadata.

4.3 LOM Assistant

The LOMAssistant was designed to provide interactive editing tools in a user-
friendly environment. It was envisaged to be different to an XML editor as it
aimed to provide specific assistance for creating XML metadata based on the
GEMSTONES model, which incorporates the LOM. It also provided editing fa-
cilities generally present in an XML editor.

It was decided to make the LOMAssistant an applet. This was advantageous
for many reasons. It meant that the tool could be accessed through browser
technology and run on a number of different platforms. It fitted in with the tech-
nologies used by the GESTALT project. It was compatible with the information
retrieval half of the system and would complement it, along with easing the in-
tegration process. However, the use of an applet incurred a number of security
restrictions, when attempting to read or write files to the local file system.

The design incorporates two parts, the back end operations and the graphical

user interface (GUI). There were a number of requirements that had to be ad-

CHAPTER 4. DESIGN 42

dressed, in the creation of this tool. These are listed below and outlined in more

detail in the following sections.

1. File Access

2. Mode of Communication
3. DTD parser

4. DOM

5. Help Information

6. GUI usability

4.3.1 File Access

Firstly, there was the question of how to access information stored in files. One
of the key requirements of this project was extensibility so as little information
as possible was hard coded into the tool. This implied that the information used
by the system had to be stored in a format that could be accessed easily. This
lead to the development of a file intensive design.

The files could be accessed on the local system but since the tool was applet
based, it could not read from or write directly to the file system. It had to access
all files remotely so a mode of communication was needed to send the data to

and from the server.

4.3.2 Mode of Communication

It was intended that the tool be accessed through browser technology, which is
one of the most widely available modes of accessing remote servers. A mode of
communication had to be chosen, both HT'TP and CORBA were considered.

HTTP

The remote files are made available on a web server at a location that the
client has permission to access. Figure 4.2 shows this process. The client makes
a ‘GET’ request for a file, using HI'TP as the mode of communication. The

web server responds over HT'TP by returning the file. It does this by opening

CHAPTER 4. DESIGN 43

Client

HTTP

Request >

Server
HTTP

Response

Figure 4.2: Communication over HTTP

a connection stream, making a get request of the file, receives the response and

closes the connection.

CORBA

Another mode of file access considered was the use of a Common Object
Request Broker Architecture (CORBA), as presented in figure 4.3. An Interface
Definition Language (IDL) has to be written for the following reasons. It has

to define what methods the client has permission to run, to define what input

arguments the client must give and also to specify what format the response

can be returned in. The client then makes a request for a file using one of the

permissible methods and it receives the file as a response.
The sample IDL would look like this:

interface fileAccess {

/*x A method requesting data stored on a remote system

*/

Oparam query - the query used to request the data
@returns a string array containing the requested data
(each entry in the array would represent a data source

that matched the query)

string[] request_data(in string query);

CHAPTER 4. DESIGN 44

CORBA

Request

Client Server
CORBA

Response

Figure 4.3: Communication using Corba

/*x A method requesting the data stored in a particular file
Oparam filename - the name of the file
Oparam data - the data to be written out to the file
@returns a boolean indicating success or failure

*/

boolean save_data(in string filename, in string data);

};

HTTP is the general mechanism used by web browsers to transfer information
between the client and the server. It is simple, extensible and follows a standard
format. It sends simple text-based messages. It does not support multi-purpose
messages or complicated messages without encoding. It can give rise to certain
security issues because any machine in the network can make a HT'TP request to
the web server once the address of the web server is known.

CORBA provides a structured way of accessing information. It is an interna-
tional standard, widely accepted and used in place of HT'TP. It is easily extensible
but can be difficult to use. It often costs money to use and can be very expensive.
There is a communication overhead and it is generally slower than HTTP.

It was arbitrarily decided to use HI'TP as the mode of communication al-

though either methods could have been used.

CHAPTER 4. DESIGN 45

4.3.3 DTD Parser

Another key issue was how to parse the GEMSTONES DTD. The DTD provides
the fundamental metadata tree upon which the LOMAssistant tool is built B.

It contains:
e The names of all entities, attributes and elements

The default values for elements and attributes

All choice lists - or available values from which the user must choose

Indication of whether the element or attribute is required, fixed or implied

Indication of whether the element or attribute is optional, can occur once

or multiple times.

The DTD must be read into the tool, as due to the extensibility requirement,
it could not be hard coded. This required the use of a DTD parser to read it and
create a structure that could be accessed at runtime. Since the DTD was based
on a tree structure a DTD parser based on a tree structure was also used.

There is an IBM DTD [IBMb] parser freely available. However, it is only a
beta copy and it was found to be over-complicated and difficult to use. After
fruitless efforts and failed attempts to get to grips with their parser, it was de-
cided to write a simple yet extensible DTD parser. The parser needed to store
information about entities, elements and attributes that form part of an attribute
list (called an attlist in the DTD).

The entity data consisted of:

e entity name

The unique name of the entity.

e entity arguments

One or more elements that are contained in the entity.
The element data consisted of:

® Tlame

The name of the element, this is unique amongst the elements.

CHAPTER 4. DESIGN 46

e value

There are four types of accepted element content specifications.

— A list of other elements that can be specified as content
— A mixture of both data and elements

— The keyword 'EMPTY’ that specifies the element will contain no con-

tent

— The keyword ’ANY’ that specifies that the element will allow any type

of content (data) or element mark-up information.

The attribute list data consists of:

® name
The name used to identify the attlist in the DTD and reference it in a
document. This is also the name of the element that it is associated with.
e one or more attributes
A list of all the attributes that can be used with a given element. The

attribute contains three distinct parts as described below.

The attribute data consists of:

® Iame

The name used to identify the attribute in the DTD and reference it in a

document.

e type

The type that identifies the attribute as a string, tokenised or enumerated
attribute.

e value

A list in the specification of all the possible values an attribute can take,
in a document, this is the specific value assigned to the attribute by the

document developer.

CHAPTER 4. DESIGN 47
EleToken
DTDElement > EleDef > EleToken
DTDElement
EleToken
DTDElement | > | EleDef <
EleToken
DTDTreeParser
AttToken
DTDAttribute |-+ AttDef <
AttToken
DTDAttribute
AttToken
DTDAttribute |-+ AtDef | |
\ AttToken

Figure 4.4: Parser Architecture

The element and entity were found to

contain similar data types, with the

entity seen as a simple case element. This led to the use of a general design for

both of these types in the DTD parser. The attribute list was found to have a
different format based around the attribute. The DTD parser had to treat the

attributes and elements separately. It took each attribute or element/entity and

broke it down into a number of tokens.

Parser Architecture

Figure 4.4 shows the architecture of the parser. The DTDTree contains an in-
finite number of DTDAttributes and DTDElements, the DTDElements also en-

compasses the entities. Each DTDElement is broken down into an Element def-

inition, which contains information about the element and a number of element

CHAPTER 4. DESIGN 48

tokens. The DTDAttribute is similarly broken down into an Attribute definition
and a number of Attribute tokens.

The parser takes in the DTD and sequentially traverses it until it has created
an internal structure of DTDElements and DTDAttributes. It also provides ways
of accessing these elements and retrieving information about them. It was de-

signed to be a general parser so that it could deal with modifications or changes
to the DTD.

4.3.4 DOM

The W3C Document Object Model (DOM) provides tree-based support for XML.
This makes it an ideal candidate for storing the XML, once it is created from
the DTD. There are a number of well-established vendors such as SUN and IBM
[IBMb], who have written frameworks and freely available interfaces and classes
for parsing XML and accessing the DOM model. These frameworks promote the
notion of reuse and also allow data to be easily read into the DOM and taken
from it.

SAX, the simple API for XML is another alternative model that could have
been used as a way of storing XML. It is an event driven model and it allows
users to access XML documents by a sequence of events.

DOM was chosen over SAX for use in this tool because DOM is based on a
tree structure. It provides more powerful functionality, it that reads in an XML
document, parses it and creates a model that can be manipulated. With SAX
the parser does not do much, it reads in the XML document and fires a number
of events which the user much catch and deal with. These events have to be
interpreted and dealt with by the user. In SAX a model has to be written to
hold all the information obtained in the XML document. This is another reason
why SAX was not chosen, as the purpose of using the DOM was to hold the
information read in from the XML document.

The DOM is based on a tree structure. There are three main interfaces of
interest in this model that are required by an XML document. The Element inter-
face represents an element in the document, the AttributeList interface represents
an element’s attribute specifications and the Document interface represents the
entire XML document. It is the root of the document tree and provides the

primary access to the documents data. A number of helper interfaces are also

CHAPTER 4. DESIGN 49

required.

The DTD parser designed in section 4.3.3 maps directly onto the DOM frame-
work. A DOM Document can be created where the DTDElement is mapped onto
a DOM Element and the DTDAttribute is mapped to the DOM AttributeList.

4.3.5 Help Information

Usability and user-friendliness are essential requirements of the LOMAssistant.
This implies that the tool must incorporate a large amount of help information.
The tool aims to provide more assistance to the user than just an ordinary off
the shelf XML editor. The DTD that the tool is based on can be extended at
any given time and so the help information must also be extensible.

The help information consists of:

e Tagname

A unique name used to distinguish it from all other tagnames.

e Definition

The official GEMSTONES definition from the project deliverable [DWNT99].

e Description

A brief description of the definition

e Necessary

States whether that tag is required or optional.

e Example

An example of the tag as it is used in an XML document.

e Notes

Any other information of significance.

It reduces the amount of information hard coded into the tool and makes it
more dynamic.
It was decided to use XML as the mechanism for storing this information. It

reduces the amount of information hard coded into the tool and makes it more

CHAPTER 4. DESIGN 20

dynamic. This meant that an existing XML Parser could be used to extract the
XML from the file. It also meant that the help file would be extensible as a new
help instance can be added at any time. Each instance of help related to one
particular tag was called a lomelement. An example of a lomelement is outlined
below, as it is defined in the XML file. Appendix A presents a small version of
the LOMAssistant help file.

<lomelement>
<name> Identifier </name>
<definition> A unique label for the resource.</definition>
<description> This is the label used to uniquely identify the
resource from all other resources. It is usually a Uniform
Resource Locator (URL) on the Internet.
</description>
<necessary> Mandatory </necessary>
<example> http://143.225.230.104/IPER_CPP/index.html </example>
<notes> This element can be transparent to the metadata creator.
</notes>

</lomelement>

A DTD was defined to specify the format of the help file. The sample DTD

is presented below.

<!ELEMENT lom (lomelement)+>

<!ELEMENT lomelement
(name,definition,description?,necessary?,example?,notes?)>
<!ELEMENT name (\#PCDATA)>

<!ELEMENT definition (\#PCDATA)>

<!ELEMENT description (\#PCDATA)>

<!ELEMENT necessary (\#PCDATA)>

<!ELEMENT example (\#PCDATA)>

<!ELEMENT notes (\#PCDATA)>

The name of the document root is lom. It contains one or more lomelements,
indicated by ‘+’. Each lomelement can contain a name, definition, description,

necessary, example and notes. The name and definition are required fields, as they

CHAPTER 4. DESIGN o1

have no associated special characters. All other information inside a lomelement is
specified as optional, this is indicated by the use of ‘?’. The keyword ‘#PCDATA’

means that there is a string expected as the value of this tag.

4.3.6 GUI

The Graphical User Interface (GUI) was designed to be user friendly. It should
provide the user with an intuitive method of carrying out actions. It incorpo-
rated a high degree of user help as it aimed to provide more than just editing
capabilities, it attempted to provide assistance in the form of helpful descriptions
and examples. The interface captures actions taken by the user and packages
them into the appropriate events that can be dealt with by the tool.

There were certain restrictions imposed on the GUI because it was an applet.
The applet had to be of such a size that it would fit inside a browser window.
The attention of the user would be lost if he had to continuously scroll up and
down out of the browser window. Another feature of applets is that they are
action and event driven. This meant that the GUI had also to be event driven.
Applets are generally slow to download but once this is done, they are quick to
process actions.

The Java Swing classes were used in the creation of the GUI since they provide
a graphical user-interface toolkit that simplifies the development of windowing
components. Once a GUI is written using swing, it can be run anywhere as long
as they have a sufficiently up to data browser that supports them. The Java
Abstract Windowing Toolkit (AWT) could have been used but the Swing toolkit
was more up to date and provided better features, such as the tree component.

It was decided to create a tree-based GUI. This was due to the use of the
tree based DOM and DTD. The traversal of the tree is an interactive process and
it generates events that could be harnessed to show help information whenever
possible. This would increase the assistance provided by the tool. The focus
would be on the tree, as it would provide the main source of events.

The GUI was designed to be highly Object Oriented. It was composed of
a number of display panels. Each panel was a separate object, so panels could
be swapped in and out depending on the tool’s current requirements. The main
panels required by the display pane were the text panels, tree panel and button

panel.

CHAPTER 4. DESIGN 52

e Text Panel

The Text panel contained a Swing component for displaying text on screen.
Two text panels were used on the display. One displayed the HTML /XML
source code of the courseware file that the user had searched and retrieved.
The other displayed the XML metadata that was generated for the file.
These were put at the top of the display as it was based on the source code

that the user was creating the metadata.

e Tree Panel

The Tree panel was placed in the centre of the browser window, as it was
the main focus of the tool. It was composed of two parts. On the left-hand
side, the GUI tree was displayed and on the right hand side was a panel

that changed depending on where in the tree the user selected.

The GUI tree was created according to the structure of the DTD. It con-
sisted of branch nodes and leaf nodes. The branch nodes held the name
of the element. The leaf nodes contained either an attribute indicator or
the keyword ‘#PCDATA’ showing that the user must input element data.
A branch also signified that there were more tags underneath the branch,
while a leaf indicated that some data was required at this level. Whenever
the user clicked on a leaf, the panel beside the tree changed to prompt the
user for input. At a later stage, if the user re-visited the leaf, it would
display the information that the user had previously entered. This meant
that as long as the user traversed the tree, and entered information when-
ever prompted, there would be no need to try and edit the XML generated
in the textbox. This reduced the XML pre-requisite knowledge required
by a user to use the tool, even a novice could use it. All data could be
edited directly from the tree. The use of a tree also ensured that any XML
generated adhered to the structure defined in the DTD and the user could

only choose tags that were applicable at that level.

The panel beside the tree presented different information depending on
whether a branch or leaf was traversed. It displayed help information about
the tag name if a branch was selected. It showed a panel prompting the

user for information if a leaf was clicked.

e Button Panel

CHAPTER 4. DESIGN 93

The button panel contained control buttons for the applet. These included
buttons to save, help, quit and view a page. The Save button saved the
newly generated XML to the server. This was done by sending the data over
HTTP to a CGI script where it was written out to a file on the server. The
Help button displayed help information about the current node selected in
the tree. The Quit button allowed the user to quit the application and
saved their work in doing so. The View Page button enabled the user to
view the html page that they were marking up in a pop up browser window.
The purpose of the pop up window was so that the user could view the web
page without having to leave the editing environment. The button panel
was placed at the bottom of the window in general one works from top to

bottom of the page.

4.4 Resource Discovery Service

The information Retrieval System and the LOM Assistant can easily be integrated
into the GESTALT Resource Discovery Service as they are all separate compo-
nents. Figure 4.5 shows the different components that make up the system and
the flow of information between them. The information retrieval system finds ed-
ucational resources on the Internet and returns them to the LOMAssistant which
creates metadata for the resources in accordance with the GEMSTONES meta-
data model. The LOMAssistant transfers the metadata to the resource discovery
broker which uses the data to populate its database.

Although the broker system and the tool designed throughout this thesis are
separate entities, the integration process of the two systems should be straight-
forward. Metadata is the link between the two systems. Ones creates it, while

the other requires it for its operation.

4.5 Summary

In this chapter the analysis, requirements and design of the system were discussed.
From the analysis carried out in the previous chapters, certain requirements pre-
sented themselves. Using these requirements, the design decisions and the objects

needed were introduced, giving general details on the flow of control and how they

CHAPTER 4. DESIGN

Information
Retrieval System

| Educational
Courseware

Educational
Courseware
Discovery

l

LOMAssistant

Metadata
Provision
Resource

Service/Resource
Discovery

Brokered Resource
Discovery Service

Internet

04

Service Provision

REFERRAL

N

Service/Resource

Description

Domain specific
Delivery
Management Service

Offered Services

.

Service Elements

Figure 4.5: The tool as a part of the Resource Discovery Service

CHAPTER 4. DESIGN

should interact.

95

Chapter 5

Implementation

o6

CHAPTER 5. IMPLEMENTATION o7

5.1 Introduction

Chapter 4 presented the design of the system. This Chapter outlines the tools
used in the implementation of this design including the Apache Web server, ht

Dig search engine, XML Parser, DTD Parser, the Java Swing package and the
DOM. The different classes used in the system are described and these were

implemented in two separate parts.

5.2 Implementation of the Information Retrieval

System

There are a number of components of interest in this section. Firstly, the Web
Server and the Search Engine used will be described, followed by a brief outline
of the communication mechanisms and an overview of the classes operating in

this system.

5.2.1 Web Server

The Web Server used for the implementation of this project was Apache Web
Server. The Apache Software Foundation is a collaborative software develop-
ment group aimed at creating robust, commercial-grade, feature rich and freely-
available software. It provides access to a free HI'TP Web Server implementation,
which is available with source code. [APH]

Apache web server is used in this project to manage the site from where the
search engine operates and the LOMAssistant applet tool is downloaded. It also
manages access to the file system where the newly created metadata courseware
files, the GEMSTONES DTD and the XML help file are stored. These files are

all required for the implementation of the system.

5.2.2 Search Engine

ht://Dig [HTD] was the name of the Search Engine chosen for use in this project.
The main reason it was picked was because it was free, available, easy to setup
and accompanied by downloadable source code. ht://Dig is a small site search

engine that indexes a given a list of URLs.

CHAPTER 5. IMPLEMENTATION o8

Hetscape: Search

File Edit Yiew Go Communicator Help
Iv‘ ‘ Merbers ‘Weblll'lail ‘ Connections ‘ BizJournal t SrmartUpdate ‘ Miialacs
4 2 A D a2 &+ &
Back Fonward Reload Home Search Metscape Print Security Stop
v‘ § " Bookrarks Hi Lacation: Ifi_http :/fwilde: 7904 /Search/index. html | f| 1 what's Related
WWW Site Search

Please enter your search keywords

Search: |I | ‘ Searchl

Retrieve a particular Url

Edit: [| ‘ Edit

= | i % &P BB N2

Figure 5.1: The initial search query page

The system provides three major tasks, digging, merging and searching. Dig-
ging is the first step towards creating a search database. A spider is sent out to
the pre-defined sites where it follows all hyperlinks (within these sites) that it
comes across. It examines each page and extracts all the unique words. It then
stores these words in a database along with information about the related URLs
in a separate database. The merging process takes the databases already created
and merges them into several other databases that the search engine can use.
Searching is when the users actually use the information gathered by the digging
and merging processes.

A CGI web form is used to submit a query to the search engine. This web
page is illustrated in figure 5.1

CHAPTER 5. IMPLEMENTATION 99

e ——— Quer 1Strin L Execute
Query y: g Search Query> Search
2 Results Engme
o Format
«—Results : String R
esults
3 D load
Choose |- Result: URL—————————» %wn oa 4
Result esult
| —uRL
String .
6 Save Result / 5 Internet
Show
l«————Web Page : String———— Generate
Start Page Start page
Client Web
Browser Server

Figure 5.2: Communication messages of a search query

5.2.3 Communication

The client browser must communicate with the web server so that data can be
passed over and back within the system. In section 4.3.2 the possible modes of
communication were outlined. It was arbitrarily decided to use HT'TP although
CORBA could equally have been used. There are two ways this communication
can occur. The client can invoke a search query and choose a result which then

must be downloaded, or the client can enter a url directly to be downloaded.

Search Query

The user is presented with a web page asking them to enter a search query. This
web page was presented in figure 5.1. Figure 5.2 shows the messages that have

to be sent between the client and the server when a search query is issued.

1. The client sends the query string that contains the information for which
they are searching. The query is sent to the program search.CGI over
HTTP.

CHAPTER 5. IMPLEMENTATION 60

Hetscape: Search results for ‘courses syllabus networks’

File Edit Yiew Go Communicator Help

< @2 3 D 2w < &

Back. Forward Reload Home Search Metscape Pt Security Stop

v‘ 4' Bookrarks J‘ Location: Ifi_http cffwilde ?904,-"cgi—hin,-"Searc:h,-"ht,searc:h?config=htdig&restrict=&exc]_ude=é| f| @' ‘What's Related

Search results for ’(courses or course or coursed or coursing or courser) and
syllabus and (networks or network or networked or networking)’

Match: Al _|| Sort by Score _||

Refine search: |Icourses syllabus networks ” Saarchl

Documents 1 - 10 of 19 matches. More =¢’s indicate a better match.

M Scin Computer Science Networks and Distributed Sygtem 0vervlew of degree programme. The
Department of Computer Science at Trinity College Dublin, offers a one-year full-time M.Sc.
programme in Computer Science focusing on Networks and Distributed Systems. The following
sections provideabxief ...

http.:{fivww.cs ted te/courses/msends/ 07/08/99,21514 bytes

| ADD METADATA|

B.A. (Mod.) Information and Communications Technologym_

Course Reference Number TR037 B.A. (Mod.) Information and Communications Technology A
SOFTWARE COURSE FOR THE INFORMATION AGE Programme overview The degree programme
Career opportunities Courses The educational objectives of moderatorship The role of course work
Admission requirements Further information . . . i
| | i e 9P 23 2 f

Figure 5.3: A screenshot of the results from a search query

After receiving the first client request (message 1) the web server must
execute a search of ht://Dig’s database. Then the results have to be filtered
so that they appear with the button that allows a user to create metadata
for a particular result. The results are presented in a web page as shown in

the screenshot in figure 5.3.
2. The server responds with the search results of this query.

3. The client chooses one of the possible results and sends it to the server.
What actually happens here is that the URL of the clients chosen result is
sent to the server. It is sent to the program markup.CGI which calls the
class MarkUp.

CHAPTER 5. IMPLEMENTATION 61
Input Q SURL4> Download
URL uery: Result 4 %
T—uRL
T
String &
6 Save Result / 5 Internet
Show
«——Web Page : String Generate
Start Page Start page
Client Web
Browser Server

Figure 5.4: Communication messages without a search query

When the server receives the second client request (message 3) it passes it
to MarkUp which has to request the URL of that result from the host of
that URL on the Internet. The class Load performs this operation. These

classes will be detailed further in section 5.2.4.
. The server requests the URL from a remote machine.

. The remote machines responds with the contents of the URL.

The web server receives the contents of the URL from the remote host as
a response and this must be saved to a file on the Web Server. The class
SimpleFileIO performs this operation, and is detailed further in section
5.2.4.

. The server responds to the client, with a HTML page from which the client
can open up the metadata creation tool. The signifigance of this page is

that it contains the name of the file the user has retrieved as a parameter.

Direct URL

In this case, the user does not perform a search but enters a URL directly. The

messages sent between the client and the server are essentially the same except

for the stages 1 and 2 are cut out. This is illustrated in figure 5.4. The client
inputs a URL directly, this is sent to the CGI script Markup.CGI which calls the

CHAPTER 5. IMPLEMENTATION 62

Search
search.cgi calls——»
%search()
%filterResults()
%URLDecoder()
Markup / ®decode()
calls
. %startup() Load
Markup.cgi calls %generateFileName() cals
“displayPage() 5 %downLoadPage()
%generateAppletPage() %upLoadData)
%isUrlMarkedUp()
%opnamey()
cals SimpleFikelO

&ropenFile Input ()
&rcloseFilelnput()
&ropenFile Output()
&¥closeFileOutput()
SwriteToFile()
%readFromFile()

Figure 5.5: Information Retrieval Class Diagram

class MarkUp on the server. It performs the same operations here as it does in

the previous section.

5.2.4 Class Overview

This section gives a quick overview of all the classes used in the information
retrieval system. The previous section outlined when each of them was invoked.

Figure 5.5 shows the interaction of these classes.
MarkUp

This class takes in the result URL and decodes it by calling the URLDecoder
class. It checks to see if this file is already on the Web Server and if it is not it
invokes the Load class to download the contents of the URL onto the Web Server.
It generates two web pages. The first page contains a button to allow the user

to call a CGI script to open a new window in which to open the metadata tool.

CHAPTER 5. IMPLEMENTATION 63

The second page contains the applet tags for actually opening the tool, with the

users filename as a parameter.
URLDecoder

The purpose of this class is to decode any string that has been distorted by
passing it over HT'TP. When a query string is passed over HT'TP, all spaces are
removed and certain characters are converted into their hexadecimal values. This
class converts the hexadecimal values back into their correct ASCII values and

changes all ‘+’s back into spaces.
Load

This class provides methods for downloading a file from a remote site and for
uploading data to a file on a remote site. The download method requires the
URL of the required file and it uses the HT'TP ‘GET’ method to request the file
contents. It calls a method in the SimpleFilelO class to save the data to a file.
The upload method uses a HT'TP ‘POST’ request to send the date to the web
server. It requires the data to be saved, the name of the CGI file which calls a
java program to save the data and the URL of where this CGI file is to be found.

SaveData

This class takes in data and writes it out to a filename using the SimpleFilelO
class. It was written as a separate class because it was invoked by a CGI script

for the sole purpose of saving data.
SimpleFilelO

This class is used to read from files and write to them. It takes care of
the file opening and closing and it manages the data streams required for these
operations. The write method is synchronised so that it can only be called by
one process at a time. This is to ensure that the correct information is written

to the correct file, and it is not overwritten accidently.

5.3 Implementation of the LOMAssistant

The implementation of the LOMAssistant was divided into a number of parts.

These are outlined in the following sections.

CHAPTER 5. IMPLEMENTATION 64

5.3.1 XML Parser

An XML Parser is required to process the metadata so that it can be used by an
application. A parser reads in XML metadata, creates an internal structure and
provides API’s so that the data can be accessed. There are a number of pub-
licly available parsers including Lark, Larval, MSXML, XP and XML4J [MTU99|
[IBMc| [SN99]. The parser XML4J created by IBM was chosen for the implemen-
tation of this project as it was found to provide the most robust, efficient and easy
to use parser. It is used in the application by two classes. The class LomHelp
which will be described further in section 5.3.3 uses the parser to read in the
help data which is stored in XML format. The class CreateDom uses the parser
to read in XML metadata which has already been created by the LOM Assistant
tool and needs to be edited.

5.3.2 DTD Parser

The DTD parser was composed of the classes shown in figure 5.6.
XMLDTDTree

This is the main class of the DTD Parser. It breaks down the file into instances
of elements, attributes and entities and creates the appropriate classes to deal
with them. It performs this operation by looking for an open tag ‘<’ and the
matching closing tag ‘>’, and extracting the data in between. It contains two
vectors, one which stores the attributes and another which stores the elements
and entities. Vectors were used as the mechanism for storing the data as they
can grow dynamically and they are not bounded by a pre-defined upper limit.
This means that if the DTD is extended, this parser can still accomadate it.

Within a DTD there is a special syntax used to define an element, entity and
attribute. Here is a example of how an entity and an element is defined in the
DTD. Note that there are many other forms, this is just to illustrate the data
that a DTD parser must parse.

Element

<!ELEMENT GEMSTONE (General,LifeCycle,Metametadata,Technical,
Educational*, RightsManagement+,Relation*,Annotationk*,

Assessment?,QoS7?) >

CHAPTER 5. IMPLEMENTATION

XMLToken
&sname
&soptional
&smultiple
branch
$XMLToken()
%getName()
_~7| %isOptional()
XMLDef - SisMutliple()
%isBranch()
&tokenHolder
&isAndList
&numElements
XMLDTDElement :XMLDef()
name getNthElement()
& 7| %getNumTokens()
&definition - o !
&shidden isAndlList()
&entity
&xelement
&empty
%XMLDTDElement()
=7 %getName()
XMLDTDTree ~ :ggg:ﬂﬁ%()
&yelementHolder ~ YgetElement()
&yattributeHolder SgetDefinition()
%XMLDTDTree()
XMLDTDElemCreate()
XMLDTDCreateNew()
%findElement()
“findAttribute()
%getNumElemChildren()
%getChild() AN
N
" XMLDTDAtribute
&sname
& defintion
“%XMLDTDAttribute()
“getName() - AttDef
%getDefinition() ~|&tokenHolder
%AttDef() XMLAttToken
Stokenise() &yname
%getNthAttribute() &value
$getNumTokens() ~_ & defaultvalue
~_ Exlist
2\ &listHolder
&listSize
%XMLAttToken()
%getName()
®getValue()
“getDefaultValue()
WisList()
%getListSize()
%getNthListAtt()
®getPosInList()

Figure 5.6: DTD Parser Class Diagram

CHAPTER 5. IMPLEMENTATION 66

symbol | meaning

* element appears one or many times
+ element only occurs once
? element is optional

Table 5.1: Element Symbols

The 'ELEMENT indicates that it is an element. The next word is the name
of the element and everything within the brackets after the name are arguments
of the element. Each of the arguments has it’s own element structure. The
symbols ‘¥, ‘+” and ‘?’ mean specific things and this information must be also

be recorded. Table 5.1 gives an explanation for each of the symbols.
Entity
<!ENTITY % SemanticScheme "(TaxonPath,Description*,Keywords*)" >

The 'ENTITY shows that it is an entity, this is followed by the name and the
arguments are stored inside quotation marks. An entity is essentially an alias, it
is used as a shortcut instead of typing the list of arguments repeatedly. As can
be seen it has a very similar structure to the element so the two are dealt with

in the same way.
XMLDTDElement

The XMLDTDEIlement class stores information about an element and pro-
vides methods for accessing this information. It is created by the XMLDTDTree.
It contains the element or entity name, indication that it is an element not an
entity, status information and a reference to another class XMLDef which breaks

down the element or entity further.
XMLDef

This class takes the list of arguments to an element and breaks each argument
down into a token. The token is contained in a XMLToken class. The class stores

an array of these tokens and ways to access them.

XMLToken

CHAPTER 5. IMPLEMENTATION 67

This class is the bottom level of the parser as it contains the base part of the
Element. It stores the token name and whether the token is optional, multiple
or it can occur once only. It also provides methods for accessing this data.

The Attribute syntax within the DTD is shown below. It is processed by the
DTD parser in much the same way the Element and Entities are processed.

Attribute

<!ATTLIST Language
xml:lang NMTOKEN "en" >
<!ATTLIST OnLine
value (Yes | No) "Yes" >
<!ATTLIST Date
day CDATA #REQUIRED
month CDATA #REQUIRED
year CDATA #REQUIRED >

The Attribute can have many different structures. Each attribute is stored in
an attribute list. The !ATTLIST is used to identify this type. Each attribute list
has a name and then a number of attribute tokens, this can be one, none or many
attributes. Each attribute has three specific parts. The first part contains the
name of the attribute, the second part contains the type while the third contains

the default value.
XMLDTDAttribute

This class stores data about an attribute list and provides methods for con-
trolling access to the data. It is created by the XMLDTDTree. It stores the name
of the Attribute list and a reference to the AttDef which breaks the attribute list

into attributes.
AttDef

This class takes in the list of attributes in the attribute list and it separates
them into separate attributes. It provides a vector for storing the attributes and

methods for accessing them.

XMLAttToken

CHAPTER 5. IMPLEMENTATION 68

This class contains the information about an attribute. It contains it’s name,
type and default value along with methods for accessing this data. It is the base
level of an attribute.

The classes within the parser are very generic. They were designed to parse

an extensible D'TD so no specific information was hard coded into the parser.

5.3.3 Backend Operations

There are a number of classes that perform essential tasks for the LOMAssistant
that are behind the GUI. These will be outlined briefly in the following section.
Figure 5.7 presents a class diagram.

CreateDom

This class takes the tree structure generated by the DTD parser and reads it
into the W3C’s DOM model. Methods for accessing elements and attributes from
this model are provided by this class along with methods for finding particular
elements and saving values to any given element.

The task of finding the correct element within the DOM proved to be quite
tricky. The DOM model provides a specific API for accessing the internal struc-
ture. If a particular element is required, the user must use a method getTagBy-
Name , with the name of the element as a parameter and they are returned a
list of all the occurrences of that element name. Although this sounds straight-
forward, there could be any number of elements in the list, and the problem
remained of how to find the correct one. Table 5.2 shows some of the possible
paths for one particular tag called Identifier. It occurs a large number of times
and in some cases, the pathways are very similiar, differing in only one tag.

This issue was resolved by finding the pathway of the tag in question from the
root of the tree and comparing this path against that of each possible element
in the list. Other API methods were required to get the name of the element
in questions parent. The element was only considered correct, when the two
pathways were found to be identical, as a number of elements had similar parents

in the tree up to a certain level.

LomHelp

CHAPTER 5. IMPLEMENTATION

LomApplet

Finit()
%initDimensions()
QinitFiles()
WinitAppletDisplay()
“updateSplitPanes()

calls

— —calls

calls

XMLToken
name
&optional
XMLDef
&stokenHolder Spbranch
isAndList
XMLDTDElement 4 $XMLToken()
=1 %getName()
| %isOptional()
&ydefinition WXMLDef() SiaMutliple)
hidden %getNthElement() ,:SBWE"O
entity %getNumTokens()
I 7| sisAndiList)
empty
SXMLDTDElement()
SgetName()
:getHidden()
etEnti
XMLDTDTree A sgexglen'uy&m
&;elementHolder @getDefinition()
&attributeHolder
SXMLDTDTree()
XMLDTDElemCreate()
XMLDTDCreateNew()
@findElement()
@findAttribute()
:geWumE\emcmlmeno
getChid) XMLDTDAftribute
“M@pname
efintion
:;lﬁlk‘DTDgﬂrlbutE() XMLAttToken
etName
“getDefinition() AtiDef e
EptokenHolder &defaultvalue
list
$AttDef() & listHolder
Stokenise() listSize
SgetNthAttribute()
“getNumTokens() T2 @XMLAttToken()
SgetName()
@getvalue()
SgetDefaultvalue()
@isList()
SgetListSize()
BgetNthListAtt()
%®getPosinList()
CreateDom
iree
document
buildTree()
SsaueElementvaluog
getElementValue()
— “findDomElement()
“@saveAttributeValue()
SgetAttributeValue()
“printDocument()
L
name
Exdefinition
&description
LomHelp &necessary
"\ document Esexample
hashtable note
“LomHelp() “LomElement()
parseHelpFile) [> %getName()
findElement() :ge&Def()
gbinitHashtable() ‘gs:ﬁszg(s)saw
QgetExample()
@getNotes()

\

UpdateThread

“UpdateThread()
“call()
@run()

Figure 5.7: Class Diagram of the LOM Assistants backend operations

69

CHAPTER 5. IMPLEMENTATION 70

Tagname | Pathway from the tag Identifier to the root

Identifier | Gemstone, General, Identifier

Identifier | Gemstone, LifeCycle, Create, Contribute, Person, Identifier

Identifier | Gemstone, LifeCycle, InitiatedBy, Person, Identifier

Identifier | Gemstone, Metametadata, Create, Contribute, Person, Identifier
Identifier | Gemstone, Metametadata, Validate, Contribute, Person, Identifier
Identifier | Gemstone, Technical, LocSpec, Identifier

Identifier | Gemstone, Educational, EducationalUse, Prerequisite, Identifier

Identifier | Gemstone, Educational, EducationalUse, EducationalObjective, Identi fier
Identifier | Gemstone, Relation, Resource, Identifier

Identifier | Gemstone, Annotation, Person, Identifier

Table 5.2: An example of element paths from the root

key Data

General | LomElement
LifeCycle | LomElement
Identifier | LomElement

Table 5.3: Hashtable showing the storage of Help Data

This class manages access to the help file of information. Essentially, an XML
parser is used to read in the help file directly into the DOM model from which
the information can be accessed. The interface to the DOM was found to be
relatively slow, so it was decided to put the help information into a hash table.
The use of a hash table would enable the information to be accessed quicker.
Each segment of help information relative to one tag was put into an instance of
the LomElement class. The hash table is made up from these LomElements with
the name of the tag as the key to the table, as illustrated in table 5.3.

LomElement

A LomElement contains all the data relative to one particular help instance.
It contains the elements name, official GEMSTONEs definition as defined in
[DWN'99], a description of the definition, whether the tag is necessary, an ex-
ample use and a section for miscellaneous information. The class also incorporates

methods for accessing this information.
UpdateThread

The purpose of this class was to update the visual display containing the

XML without interfering with the processing taking place on the display. It was

CHAPTER 5. IMPLEMENTATION 71

designed as a thread so that it could perform this task in parallel to any other
task. It was implemented using the methods wait() and notify() so that the class
'waited’ until the DOM model which stores the XML was updated, then it was
‘notified’ that it had work to do.

5.3.4 GUI Implementation

The GUI was created using the Java Swing classes. There was one issue that was
found to be particularly difficult in using these classes. It was found to be very
difficult to place a Swing component at an exact location. There are a number of
predefined methods in the Swing API, yet much effort and time was spent trying
to co-ordinate the placement of components across multiple classes. There was
a lack of material available on the use of the Swing classes, only one real source
was found to be very useful [SUN]. This problem was encountered in the greater
part of the following classes.

The graphical user interface is highly object oriented. Figure 5.8 illustrates
the classes contained in the GUIL. It can be visualised as one large panel with a
number of smaller panels added on top. A panel is a lightweight component which
acts as a container for anything that is added to it. The classes TabTextPane
and SplitPane are used as container classes. They each display the data added

to them in a specific way.
TabTextPane

This class creates the topmost panel of the GUI illustrated in figure 5.9 It
uses the Swing component JTabbedPane which allows a number of components
to be displayed in the same space. The user chooses which component to view
by selecting the tab corresponding to the desired component. In this case, the
user can choose between viewing two different TextPanes. One shows the HTML
source code of a page while the other shows the XML metadata generated that

has been generated.
TextPane

This class is used to display text on the screen. It uses a JTextArea which

has methods for displaying and editing text. There are two instances of this class

CHAPTER 5. IMPLEMENTATION

TabTextPane

&tabbedPane

%TabTextPane()

7

/

calls

LomApplet

init()
“initDimensions()
#initFiles()
#initAppletDisplay()
“%updateSplitPanes()

calls

\

—— —calls— 9%scrollpane2

SplitPane
&splitPane
&sscrollpanel

@SplitPane()
%changePanes()

\

ButtonPane

&location

“#ButtonPane()

%actionPerformed() ~ _— —— — =

#quitOperation()
“%createFrame()
“%closeFrame()
“%getHelpinfo()
“%showPage()
®saveData()

TextPane
BtextArea

STextPane()
“updateXML()
SgetXML()

MyTree
&XMLDTDTree
&:GuiTree

*MyTree()

®huildTree()
“%createNodes()
“%getCurrNodeSelected()
“®valueChanged()

HelpPane

“HelpPane()
%displayinfo()

PcDatalnput
&tagName
&path

“%PcDatalnput()
%initDisplay()
%update()
%acceptMesg()
%actionPerformed()

CDatalnputPane
&mainName
path

“%CDatalnputPane()
SinitDisplay()
“%endDisplay()
%listDisplay()
%showData()
%actionPerformed()
%valueChanged()
%acceptMesg()

Help

%Help()
%initDisplay()
%actionPerformed()

Save

%save()
%initDisplay()
%actionPerformed()

Quit

$Quit()
%actionPerformed()
%initDisplay()

7 ShowWebPage

%ShowWebPage()
%showPage()

Display

&name
&defvalue
&listData

*Display()
“%valueChanged()
FisList()
“%getTextfieldData()
“%getSelectedData()
®getName()

Figure 5.8: Class Diagram of the LOMAssistants GUI

CHAPTER 5. IMPLEMENTATION

Tab
Panel

SplitPane

Panel

Button
Panel

L

epertme %

Compute: Sxieniea: i at <o beai—" Erpefua codied BTty
Cellege “UbLYa @, offer: @ one-year full-time b Se.
progeaune . Tanpuiee Sdemes foomsivg ca Hemw acks and
Dustized Systees i
«peTae Fxlowing seioni provce a brief cvervie: of the
progoaune and its syLabns. s
«div slgr~" center" w-cenerwtable orle— "0 widT=" 565"

L=

atlvelgr't3n’ nowEpal

= D striorred Sy steuns " Iutrodnetiane o fi

: szt b Carser i

Tristiiaed Coopuiing < s fi
«l-ca heaf=' #TCC "> Crotrivuced Computing 1

Tuinitr Collspes i lis
<lo-The Gox's of Teiing's

Fie Edit Yiew @0 Zomrunicamr -ela
[HEm [
Tz e Ry~ ahras cs. o 1 =8 B

$ T Ceneal
@7 1dentlflar
& Title
B 00 oqknty
O [Laniyraw
B[] Neseription
& JLemain
T oz age
& ez
? O StructLre
| 9 structme=atribule
o teCycle
= v ezamotadots
@ 0 Techuicg

Tltle

1Od Definitinn

‘T'he nams gven to che reacurcc

Cap lanation

Thizis the title of the course. It i -rportact 1o exter the

‘I'ile-Abinoub s =aluc wauch wdicatos what bunan largnags the oovrac

ti-le s writen in

Ihis element can pccur multip le times

Save

| ol || Web Page

L=

Apaks Slappe rurmirg

Figure 5.9: A screenshot of the LOMAssistant initial Gui

CHAPTER 5. IMPLEMENTATION 74

used. One displays the HTML source code of the courseware page for which
the user is creating metadata, while the other displays the XML metadata that
the user is in the process of creating. The XML textarea was designed to be
uneditable. This was so that the user would not try and edit it and change the
data contained within the area manually. This is because within the model, there
are a number of tags that occur more than once. If the user tried to change the
data for one of these tags manually, they might change the wrong instance of the

tag without realising it.
SplitPane

The SplitPane is the container class that makes up the middle section of the
GUI, shown about in figure 5.9. It uses a JSplitPane to display two components
side by side. The user can drag the divider that appears between the two com-
ponents over and back and specify how much space is given to each component.
This is desirable when one side of the component contains a huge amount of infor-
mation and you want a more spacious view of it. The two components contained
in this panel are a tree and a panel used to display different information to the

user, depending on what the user selects in the tree.
MyTree

This is the most important class on the GUI. It displays all of the information
contained in the DTD in a tree format. It uses the JTree Swing componet to draw
the tree. The DTD is read into the applet, parsed by the DTD parser and then
a method was written to recurisivly traverse the XMLDTDTree created by the
parser to create the visual tree. The visual tree is very important for a number
of reasons.

It provides a visual way for the user to interact and understand the model.
The tree is interactive so that if the user clicks on a node or a branch, an event is
generated and different data appears on the screen. The tree consists of a number
of folders with names beside them as shown in figure 5.9. If a folder is present,
it signifies that there are further levels below the folder. The user must traverse
these folders until they encounter a page icon. This page icon signifies that the
user must enter information.

There are two types of data that the user can enter. They can enter element
data indicated by a ‘#PCDATA’ page in the tree shown in figure 5.10. As soon

CHAPTER 5. IMPLEMENTATION 75

Hetscape:

File Edit Wiew Go GCommunicaior Hela

Htm| (XML |

<pixThe Department of
Commputer 5 ciences fr» at <a href="http;{fwww todie = Trinity
Collez e Dublinefr=, offers a one—year full—time . 5c. =
programme in Computer Science fomsing on Networks and
Distributed Systerms <
«p=The following sections provide a biief overview of the
programme and its syllabus < fpe
<div align="certer" < center<table border="0" width="205"=
v
<td valign="top" nowrape
<liwea href="#Distributed Systems "= ntroductione e diw
«<liwa href="#Professionals"=A Career in
Distributed Computing o dis
elizca href="#TCD"=Distituted Computing at
Trinity Colleg e o di=
< lizca href="#GF oals">The Goals of Trinity s

|»

] GEMSTOME what is the IDENTIFIER
General
i ?Ij \dentifiar Enter the Identifier below:
[y #PCDATA
& 3 Title

@ [CatalegEntry
@[] Language
&= [Description
@[] Domain
@ [Coverage
&9 Idea
@ [Structure

@ [LifeCycle

@ [Metametadata

Example Use:

http:#/143.225 230 104/IPER_CPP/index htrml

| Help || Save H Quit || Web Page |

E | |Applet All#pplet nunning

Figure 5.10: An element data entry screen of the LomAssistant

CHAPTER 5. IMPLEMENTATION 76

Hetscape:

File Edit “iew Go Communicator Help
[Htm| [XML]|
<p=The <a href="http/Aeww o5 tod i/ =D epartment of -

Computer Sciencesfax at <a href="httpyfeww tod ig/'=Trinity
Callege Dubline s, offers a one—year full-time M Sc.
programme in Comprter Science focusing on Metworks and
Distributed Systerms <
<pi>The following sections provide a bdef overview of the
programme and its syllabus <
<div align="renter" > center-<table border="0" width="205">
<t
«<td valign="top" nowrrape<ul-
<l href="#Distributed Syrstems > Introductiore g A
«<limea href="#Professionals"»& Career in
Distributed Computings fa=< iz
<liw<a href="#TCD"=Distibuted Computing at
Trinity Colleg e« faec li=
<limca href="#G nals">The G oals of Trinity’s

@ [General STRUCTURE
@ [ldentifier
[y #PCDATA Elelfla\st:lchuuse a organisational_structure
" ollection
@ |jT|tIel ‘ Mixed
[y Title-Attribute Linear
[y #PcDATA Hierarchical
@ [CatalogEntry Networked
@ [Language Branched
& [Description E:\rcelled
@ [Domain : omic
@ [Coverage i Continue
@ [Idea i
@ [Jstructure i
[y Structure—Attribute =
| Help || Save H Quit || Web Page
E| |Applet Allgplet nnning B -ap el S Ea) neb

Figure 5.11: An attribute data entry screen of the LomAssistant

as the user clicks on this page the other panel adjoining the tree in the splitPane
changes to ask the user for input data. This calls a PcDatalnput class. The
second type of data that can be entered is attribute data. This is indicated by
a ‘name-Attribute’ as seen in figure 5.11 where the name changes depending on
the element the attribute is linked to. This calls an instance of the CDatalnput
class.

Traversal of the tree also generates an event to display helpful information
to the user. If the user clicks on a folder icon, information about the name of
that icon is displayed on the panel beside the tree. This information is contained
in the LomHelp class and it a method to find the correct tag and extract the

required information must be called.
PcDataPane

This class provides a way of asking the user for element data. It displays the

CHAPTER 5. IMPLEMENTATION 7

element name and a JTextArea which the user can enter a value into as presented
in figure 5.10. It displays a previous value if there is one in this JTextArea. It
also shows an example use for the particular element, in an effort to provide
assistance to the user. The data is submitted by pressing the JButton at the
bottom of the pane. No data is actually stored in this class, it just displays data.
It must pass any value entered back to the parent class who deals with the storage

of information.
CDataPane

This class is used to recieve input data for an attribute list. It is shown
in figure 5.11. An attribute list can contain one or many attributes so this
component has to provide a way of inputing data for a number of components.
These attributes often have default values and value lists from which the user must
choose. Another class was created to actually display each different attribute on
the panel, this was called the Display class. A number of these are added to the
display depending on the number of attributes in the attribute list. A JButton
is placed at the end of the panel, the user must press this when they want to
submit their data. As in the PcDataPane, no data is stored in this class, it must
pass it back to the parent class who puts it into the DOM.

Display

This class is called by the CDataPane to display information related to one
instance of an attribute. It provides mechanisms for choosing values from a list
or entering textual data. It uses a JList to show value lists and a JTextField to

recieve textual input.
HelpPane

This class displays information about a particular tag on the screen for the
user. It is intended to provide extra knowledge for the user. It is just a display
component and must get the information via the parent class from the LomHelp

class where it is stored.

ButtonPane

CHAPTER 5. IMPLEMENTATION 78

This class displays a number of command buttons on the screen. It catches
the events generated when a user clicks on any of these buttons and processes

the appropriate operations.
Save, Help and Quit

These three classes are pop up frames that display information to the user,
using a JFrame. They are called when a user clicks on a button in the buttonPane.
They catch user generated events. The save operation sends the information back
to the server using a HT'TP post request. The class Load uses the class SaveData

to save the information to a file. These classes were outlined in section 5.2.4
ShowWebPage

This class opens up a separate window for displaying the courseware page for
which the user is creating metadata. It is called when the user clicks a button in

the buttonPane and can be closed at any time by the user.

5.4 Summary

This chapter has discussed the tools used in the implementation of this system
and the modularised classes were outlined. The implementation details of the

search and retrieval system and the metadata creation tool were presented.

Chapter 6

Evaluation and Conclusion

79

CHAPTER 6. EVALUATION AND CONCLUSION 80

6.1 Introduction

This chapter evaluates the dissertation and presents the conclusions that have
been drawn throughout the course of this research. It discusses whether the
objectives of the thesis were met and it examines the effectiveness of the tool, it’s
limitations, the problems encountered and what extensions would be necessary
to improve the system. It analyses the metadata model upon which the tool was

based and provides a review of the system.

6.2 Evaluation of the thesis objectives

The three objectives of the thesis were addressed throughout the course of the re-
search. The first objective of this thesis was to investigate the metadata approach
towards information retrieval of educational courseware on the WWW. Chapter
2 presents the detailed research into the field of information representation on
the Internet along with an examination of the metadata models used in both the
general and educational domain. These metadata models showed the semantic
and syntactic structure of how information is currently being represented. They
provided a basis for comparison with the models developed in the implementation
projects such as ARIADNE and GESTALT.

An investigation of the representation and search technologies was also under-
taken in this chapter. XML was examined due to the support it provides for meta-
data resources. It was also looked at in order to ascertain how documents stored
in this format could be accessed both automatically and semi-automatically. The
DOM model was found to provide a tree- based mechanism for interfacing with
XML. Search technology was the second form of technology investigated. Search
Engines and Intelligent Agents were compared and contrasted with a view to
choosing the best information retrieval method that most suited this project.

An analysis of the current existing metadata tools was carried out to find out
how they operated, what services they supported, what limitations they had and
how they could be improved upon. This provided a valuable insight into the field
of metadata creation.

The research in this area would have been incomplete without an investiga-
tion of the GESTALT project. Chapter 3 described the GESTALT project and

outlined the broader use of a search and retrieval tool that could create metadata

CHAPTER 6. EVALUATION AND CONCLUSION 81

according to a metadata model.

All of the research outlined above aided greatly the design process of a tool
for the searching and retrieval of educational courseware and the creation of
metadata. It helped identify the requirements necessary for this type of tool and
showed how the web should be the medium for providing access to the tool.

A prototype tool was built according to the architecture designed in chapter
4. It was found to meet the requirements developed throughout the course of the
research. The tool supported automatic and semi-automatic retrieval of educa-
tional resources and services and created LOM compliant metadata. Chapter 5

describes how the tool was implemented.

6.3 Evaluation of the prototype tool

As the tool was both designed and implemented in two sections, it was also

evaluated in this manner.

6.3.1 The Search and Retrieval System

Ht://Dig was the name of the search engine used to implement the search and
retrieval system. It was found to perform well as an off the shelf engine. It
took in a search query, searched its database and generated results according to
a standard accepted format. The results were found to be reasonably accurate
and precise. The search engine component of the tool was interoperable so that
in fact any search engine could be plugged in to replace Ht://Dig. The system
was generic enough to allow any engine to be used.

There was one major limitation in using the search engine Ht://Dig. The
engine had to be pre-configured to point at particular sites before it could be
used. These user could choose these sites but it they were to be changed, the

engine had to be reconfigured.

6.3.2 The Metadata Creation Tool

The LOMAssistant tool generated LOM compliant XML metadata. It read in
the GEMSTONES DTD, which was used as a basis for the metadata. Only tags

CHAPTER 6. EVALUATION AND CONCLUSION 82

defined in the DTD were made available to the user, ensuring the compliance of
any metadata created.

There was a graphical interface to the creation tool. Although it provided
much functionality, there was a simple visual interface, which was easy to navi-
gate. It was found to be relatively user friendly and quite clear. The GUI was
event, driven and captured user actions, dealing with them appropriately.

The tool was based on a tree model, which seems to be the preferred format
in XML metadata tools. The DTD was based on a tree structure, as was the
DOM model so this was reflected in the use of an interactive tree on the GUI.

The LOMAssistant was customisable. An XML file of help information was
created about the tags in the GEMSTONES DTD. This was created in XML
format so that it could be extensible and modified whenever necessary.

The tool was found to be extensible as very little information was hard coded
into the implementation of the tool. The DTD parser created was generic enough
to process any DTD, not just the GEMSTONES DTD. The help information was
put into an XML file so that it too could be modified.

As with all tools, there are usually some limitations, and the LOM Assistant
is no exception. There were a number of aspects that could be changed and
improved if there was more time available.

The tool was not found to be user-friendly enough. In the tree on the GUI,
the names ‘PCDATA’ and ‘name-Attribute’ were used to indicate to the user that
they needed to input data. The general colour used in the screen could also be
improved.

The performance of the LOMAssistant was considered to be relatively slow.
This was due to the fact that most operations involved either a search for infor-
mation in the DOM model or a search for help data from the XML file. The size
of the DTD upon which this tool is based is very large therefore the DOM model
which stores this information is also quite sizeable. The DOM model turned out
to be quite slow to access.

Although the tool informed the user that an element was required, fixed or
optional, it did not force the user to enter a value when one was outlined as
required.

There was one major issue identified as a problem for the tool. Due to the
sheer size of the GEMSTONES model, it took users on average between 45 min-

CHAPTER 6. EVALUATION AND CONCLUSION 83

utes and one hour to create metadata for a course. This was seen as too time
consuming a process. There are a large number of required tags and there is
no way that the process could be completed without filling in all of these, if the
user’s intention was to create valid XML. This problem is seen as beyond the
scope of the project and directly related to the metadata model GEMSTONES
adopted by the GESTALT consortium.

6.4 Evaluation of the metadata model used

The aim of the LOMAssistant was to create metadata for educational course-
ware according to the GEMSTONES metadata model. Therefore the tool was
dependent on the model. There were a number of issues that arose due to this
factor.

The size of the model had a big impact on this tool and any other tool being
created to deal with it. There were over 90 tags in the model and the user had
to be presented with these tags in a certain order according to the structure
predefined in the DTD. A visual way of presenting the tags had to be designed
along with a method for storing them. A tree was used in this project as it
provided a structural way of presenting a large number of tags in a relatively
small space, according to a hierarchy.

The size of the model also affects the way in which they can be stored and
accessed. The storage mechanism had to provide a relatively fast way of searching
and accessing elements. The DOM was used in this system because it was based
on a tree structure and it preserved the structure of the DOM, however it turned
out to be very slow to access.

Mechanisms for interacting with the DTD data are required by the tool. If a
user wishes to create an element from the model, they need to know the structure
of the element in terms of what tags go before it and whether it has any children
tags. They also need to know if it has a default type or default value. A search of
the model must be undergone any time this information is required. This could
lead to performance problems as the greater the number of tags, the longer it
takes to search for one.

The most important question that was identified by the use of this model was

whether all of the 90 tags were really necessary for the average user. The model

CHAPTER 6. EVALUATION AND CONCLUSION 84

Hetscape:

File Edit “iew Go Communicator Help

[Html [XML|

anl version="1.0"% -
GEMETONE:
«<(Greneral-
< Identifierhttp: s o3 tod de/oonrs es Ans ond s< /T entifiers
«<Title xxnldang="en"=This is a cne year full-time M.5c. prograrmin in Computer Science fomsing on Metwocks and Distribated Systerms < Titlex
< CatalogEntry
< Catalognec<Catal cgne=
<Entryo-< Entrys
< Catalog Bty
<Langnage mllang="en"A
<Description xanllang="en"Description
<D omains
< Semantics chemes
<TaxonPathe
=B ource</Source
Tz Taxons =

@ [General What is the DESCRIPTION

@ 3 ldentifier
[y #PCDATA
& [Title
[Title—Attribute
[y #PCDATA
@ [CatalogEntry
@ 3 language
[Language—Attribute

Enter the Description below:

Example Use:

@ [Description Thiz is a hypertextual unit on the "Object—oriented programming and
[y Description—attribute ; C++ programming language. It has been siructured in two parts.
[y #PCDATA
@ [Domain | ’m
@[Coverage EE
| Help || Save H Quit || Web Page |
E| Applet ANARRIEt MG B -ap el S Ea) neb

Figure 6.1: Screen shot of LomAssistant

takes into account practically every possible piece of data that could be related
to educational courseware. This is a great feature for specialist users who require
very precise detail on certain areas. However, most of these tags are not actually
relevant to the greater part of the intended users. The increased use of optional
tags would provide for these users, as it would eliminate the sections of the model

that are irrelevant to them.

6.5 Review of the System

A system has been developed which searches for educational courseware, retrieves
it and provides a mechanism for creating metadata for this courseware in accor-
dance to a standard metadata model. The system is extensible, relatively user-
friendly and easy to use. A screenshot taken from the metadata creation part of

the system is presented in figure 6.1.

CHAPTER 6. EVALUATION AND CONCLUSION 85

The users first view of the system presents them with a web page from which
they have the option to make a search query or to create metadata for a particular
URL. A user can initiate a search by submitting a query. This query is taken
by the search engine and used to search the database. A list of possible results
is returned, from which a result can be chosen and submitted for the creation
of metadata. They can also initiate the creation of metadata for a particular
page by typing in the URL directly into the index page. This URL must be
downloaded onto the web server before the user is presented with a page from
which they can initialise the LOMAssistant tool.

The LOMAssistant tool opens with the users chosen page on display at the
top, an interactive tree containing the metadata model in the middle and a list of
command buttons on the bottom. The user must traverse the tree and fill in data
in the adjoining panel whenever they reach a leaf. This process continues until
they have completely traversed the tree and filled in all required leaves. The GUI
was designed to visually aid the user and provide additional help information

whenever possible.

6.6 System Improvements

Although the system worked well, a number of possible improvements were iden-
tified during the course of evaluation. These were in relation to how user friendly
the tool was, its performance and its lack of support for validation of the created

metadata.
Meaningful names

In the LOM Assistant metadata creation tool, whenever the user reached a leaf
node on the tree, it meant that they had the option to input information. The
names used to differentiate between the types of information required were found
to be meaningless to the user. The name ‘PCDATA’ was presented when element
data was required and ‘name-Attribute’ was used when attribute data was needed.
These names were taken straight from the DTD and more user-friendly names
could perhaps be chosen. Although this is only a cosmetic change, the tool was
designed to provide assistance and if this can be improved in any way then it
should be done.

CHAPTER 6. EVALUATION AND CONCLUSION 86

Validation

The tool did not provide any validation. It was envisaged that the system
would provide validation for the XML metadata created by the LOMAssistant
tool. However, although this functionality was designed, due to time constraints
it was not implemented. This feature would definitely enhance the use of the

tool.
Performance

The performance of the LOMAssistant was considered to be relatively slow.
This was due to the fact that most operations involved a search for information in
the DOM model. The size of the DTD upon which this tool is based is very large
therefore the DOM model which stores this information is also quite sizeable.
The DOM model turned out to be quite slow to access. This was unforeseen
in the design stages of the tool and only realised when the implementation was

complete. The tool would be more satisfactory to use if it performed faster.
Type enforcing

Although the tool informed the user that an element was required, fixed or
optional, it did not force the user to enter a value when one was outlined as
required. This functionality would greatly aid the user in creating valid XML

metadata.
Generic Metadata

At the moment, the LOMAssistant only expects metadata in the format of
the GEMSTONES metadata model. Support for other types of metadata must
be provided in order to use the tool for editing metadata that has been created

in accordance with other models.
Integration of help XML and DTD

There was another way in which the tool could be improved. At the moment
the DTD and the XML help file are stored separately. It may be beneficial for
other users if the two files were to be integrated and stored together. Whenever

the DTD is used, it is extremely likely that there will be users curious about

CHAPTER 6. EVALUATION AND CONCLUSION 87

both the meaning and use of certain tags. After all, XML is powerful because it
provides a way of dealing with both meaning and structure. The DTD addresses
the structure of the document while the XML is concerned with the meaning.

The two files would complement each other if they were stored together.

6.7 Future Work

There are many ways that the system could be improved and expanded. The
system could become a much more highly useful product with the addition of the
suggestions outlined in the previous section.

Another possible development in the area of educational resource retrieval
could be the development of an educational ‘crawler’. It could search the Web
for relevant courses and educational courseware and populate a database with
only educational data. This database could be searched rather than a generic
search engine configured to point at relevant sites. A resource of this caliber
could prove very valuable for automatic retrieval of educational data for many
different tools and applications.

The area of brokerage and resource discovery services should be expected to
play a much greater role on the Internet. The educational metadata once created
in this project would prove very useful in a brokerage system. A database pop-
ulated with the educational metadata related to a large number of educational
resources could be searched on very specific criteria. With the demand for on-
line courses continually increasing and the number of people using the Internet

constantly growing, the use of a broker will become more and more prevalent.

6.8 Conclusion

This final chapter has described what has been learned and achieved during
the course of this project. It has examined the objectives of the research, the
effectiveness of the system, it’s limitations, the problems encountered and what
extensions would be necessary to improve the system. Possible future additions
were mentioned.

In the introductory chapter there were three aims presented for this project.

They have each been described in this report and implemented throughout the

CHAPTER 6. EVALUATION AND CONCLUSION 88

course of this project. This tool was implemented using all of the information
and knowledge gained from research into the information retrieval and metadata
fields. There are aspects of the system which could to be improved, these are
outlined in the suggestions for further work.

Many thanks are due to all the people who offered suggestions which helped
to further the development of this project.

Glossary

API Application Programming Interface

ARTADNE Alliance of Remote Instructional Authoring and Distribution Net-
works for Europe

AWT Abstract Window Toolkit

CGI Common Gateway Interface

CORBA Common Object request broker

DC Dublin Core

DTD Document Type Definition

DOM Document Object Model

FIPA The Foundation for Intelligent Physical Agents

GESTALT Getting Educational Systems Talking Across Leading-edge Tech-
nologies

GEMSTONES Gestalt Extensions to Metadata Standards for ON-line Educa-
tion Systems

GUI Graphical User Interface

HTML Hyper Text Mark-up Language

HTTP Hyper Text Transfer Protocol

IEEE Institute of Electrical and Electronic Engineers
IMS Instructional Management Systems

LE Learning Environment

89

CHAPTER 6. EVALUATION AND CONCLUSION

LOM Learning Objects Metadata

LTSC Learning Technology Standards Committee
RDF Resource Description Format

SAX Simple API for XML

SGML Standard Generalised Mark-up Language
URL Uniform Resource Locator

W3C World Wide Web Consortium

WWW World Wide Web

XML eXtensile Markup Language

90

Bibliography

[Alt]

[APH]
[AR]]

[Con]

[Con98]

[Cora]

[Corb]

[Dem97]

[DWN+99]

[EDU]

AltaVista. Altavista search engine homepage. http://www.

altavista.com.
The apache software foundation. http://www.apache.org.
ARIADNE. The ariadne web site. http://ariadne.unil.ch/.

Internet Software Consortium. Internet domain survey, july 1999.

http://www.isc.org.

GESTALT Consortium. D0201 review joint requirements. Technical
report, 1998.

Dublin Core. The dublin core element set specification. http://
purl.org/DC/about/element_set.htm.

Dublin Core. The dublin core society homepage. http://purl.org/
dc.

Yu. Demchenko. Paradigm change in education in conditions of
emerging new information technologies and global information in-
frastructure building. Proceedings of EdMedia 1997, pages 257-261,
1997.

P Doherty, V Wade, Y Nicol, R Crawford, W Donnellyand Paul
Forester, C Lambrinoudakis, M Konstantopoulos, and J S Darzen-
tas. D0301 design and specification of the resource discovery service.
Technical report, 1999.

EDUCAUSE. The educause homepage. http://educause.edu.

91

BIBLIOGRAPHY 92

[FIP]

[Fis99]

[GHC97]

[IBMa]

[IBMb]

[IBM]

[IBMd]

[IEEa]

[IEEb]

[IN]

[JHK96]

[KABL9S]

FIPA. The foundation for intelligent agents. http://www.fipa.org.

Lawrence M. Fisher. Agents and principals: The looming battle for

standards. Strategy business magazine, technology section, 1999.

Shaw Green, Leon Hurst, and Dr. Padraig Cunningham. Software
agent review. http://www.cs.tcd.ie/research_groups/aig/iag/
toplevel2.html, 1997.

IBM. The aglets development homepage. http://www.trl.ibm.co.
jp/aglets/.

IBM. The ibm xml developer site homepage. http://www.ibm.com/
developer/xml/.

IBM. Ibms developer zone, parsing tools. http://www2.software.

ibm.com/developer/tools.nsf/xml-parsing-byname.

IBM. Xeena xml editing tool. http://www.alphaworks.ibm.com/

aw.nsf/xmltechnology/xeena.

IEEE. The ieee ltsc standards specification. http://www.manta.
ieee.org/p1484/.

IEEE. The learning object metadata specification. http://www.
manta.ieee.org/p1484/wg-12 . htm.

Tadhg O’Meara Igor Nekrestyanov, Ekaterina Romanova. Building
topic-specific collections with intelligent agents.

Ole Husby Juha Hakala and Traugott Koch. Warwick framework
and dublin core metadata information. http://www.ub2.1lu.se/tk/
warwick.html, April 1996. In the proceedings of the Metadata Work-
shop II, Warwick, UK.

T Koch, A. Ard, A. Bremmer, and S Lundberg. The building and
maintenance of robot based internet search services: A review of

current indexing and data collection methods. 1998.

BIBLIOGRAPHY 93

[Log]

[MB]

[Mor]

[IMTU9Y]

[0ST]

[PF99]

[Proal

[prob]

[SN99]

[Soc]

[SP]

[St.97]

Vervet Logic. Xmlpro metadata editing tool. http://www.vervet.

com/.

Udo Heuser Mikhail Bessonov. Open architecture for distributed

search systems.

Pierre Morel. Visual xml metadata editing tool. http://www.

pierlou.com/visxml/.

Hiroshi Maruyama, Kento Tamura, and Naohiko Uramoto. XML and
Java: developing Web applications. Addison-Wesley, Reading, MA,
USA, 1999.

The National Institute of Standards and Technology. The ims meta-
data information web site. http://sdct-sunsrvl.ncsl.nist.gov/
“boland/ims.html.

Almerindo Graziano Paul Foster, Matthias Kraner. D0401 courseware

metadata design (gemstones). Technical report, 1999.

IMS Project. The background of the ims project. http://www.
imsproject.org/background.html.

IMS project. The ims metadata specification. http://www.
imsproject.org/metadata/MDusing.html.

Paul Hermans Simon North. Teach Yourself XML in 21 days. Sams
Net, Macmillian computer publishing, Indianapolis, Indiana, USA,
1999.

The Agent Society. http://www.agent.org.

Andrzej Duda Stéphane Perret. Mobile assistant programming for
efficient information access on the www. http://fidji.imag.fr/
map.html.

Simon St. Laurent. XML: a primer. MIS Press, P. O. Box 5277,
Portland, OR 97208-5277, USA, Tel: (503) 282-5215, 1997.

BIBLIOGRAPHY 94

[SUN]

[W3Cb]
(W3Cc|
[W3Cd]

[Wag]

[Yah]

SUN. The java tutorial, creating a gui with jfc/swing. http://java.

sun.com/docs/books/tutorial/uiswing/index.html.

Advanced Communications Technologies and Services consortium.
Introduction to the eu acts programme. http://www.de.infowin.
org/ACTS/ANALYSYS/INTRO/chapl.htm.

GWE Technologies. The gwe distributed search engine technical in-

formation page. http://www.gwe.co.uk/technical/sespec.htm.

W3C. The document object model specification. http://wuw.w3.
org/DOM.

W3C. The w3c specification for xml. http://www.w3.org/XML.
W3C. The w3c web site. http://www.w3.org/.
W3C. Worldwideweb - summary. http://www.w3.org/.

Tom Wagner. Searchbots, a multi-agent system. http://mas.cs.

umass.edu/research/searchbots.html.

Yahoo! The yahoo directory search engine homepage. http://www.

yahoo.com.

Appendix A

LOMAssistant Help Information

A.1 Introduction

This appendix presents the LOMAssistant DTD and a simplified version of the
LOMAssistant XML file with only a subset of the 90 tags shown. These files were
created to accompany the tool. They provide helpful information about the tags
used in the GESTALT DTD.

A.2 LOMAssistant DTD file

<?xml encoding="US-ASCII"?>
<!-- Dtd to accompany lomAssistant -->

<!ELEMENT lom (lomelement)+>

<!ELEMENT lomelement (
name,definition,description?,necessary?,example?,notes?)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT definition (#PCDATA)>

<!ELEMENT description (#PCDATA)>

<!ELEMENT necessary (#PCDATA)>

<IELEMENT example (#PCDATA) >

<|ELEMENT notes (#PCDATA)>

95

APPENDIX A. LOMASSISTANT HELP INFORMATION 96

A.3 LOMAssistant XML file

<?xml version="1.0"? standalone="no">
<!DOCTYPE lom SYSTEM "LomAssistant.dtd">
<!-- For use with the LOMAssistant -->

<lom>

<lomelement>
<name>General</name>
<definition>Context-independent features of the resource. This
contains the basic reference to the resource.
</definition>
<description>This tag groups all of the context independent features
of the resource plus the semantic descriptors for the resource.
</description>
<necessary>Mandatory </necessary>

</lomelement>

<lomelement>
<name>Identifier </name>
<definition>A unique label for the resource
</definition>
<description>This tag is used to uniquely identify the resource. It
is usually in the form of a Uniform Resource Locator (URL).
</description>
<necessary>Mandatory </necessary>
</example>
<notes>This element can be transparent to the metadata creator. It
can be created by the metadata management system. </notes>
</lomelement>

<lomelement>
<name>Title</name>
<definition>The name given to the resource
</definition>
<description>This is the title of the course. It is important to
enter the Title-Attritube value which indicates what human
language the course title is written in.
</description>
<necessary>Mandatory </necessary>

APPENDIX A. LOMASSISTANT HELP INFORMATION 97

<example>0bject-oridented programming and C++ course
</example>
</lomelement>

<lomelement>
<name>Language</name>
<definition>The human language used by the typical intended user
</definition>
<necessary>mandatory</necessary>
<example>en (this would indicate english, it - for italian)
</example>

</lomelement>

<lomelement>
<name>Description</name>
<definition>A textual description of the content of the resource
</definition>
<description>A piece of writing describing what the resource contains.
</description>
<necessary>optional </necessary>
<example>This is a hypertextual unit on the "Object-oriented
programming and C++ programming language. It has been
structured in two parts.
</example>

</lomelement>

</lom>

Appendix B

GEMSTONES DTD

B.1 Introduction

This appendix presents the GEMSTONES DTD created by the GESTALT con-
sortium based on the LOM model.

B.2 GEMSTONES DTD

<!ENTITY % SemanticScheme "(TaxonPath,Description#*,Keywords*)" >

<IENTITY % CreateScheme "(Date,Contribute+)" >

<!ENTITY % RequirementsScheme "(Type,Name,MinimumVersion?,
MaximumVersion?)" >

<IENTITY % Address "(Street?,TownCity?,StateCounty?,Postcode?,
Country?,Email,Telephone?,Fax?)" >

<IENTITY % PersonScheme " (FirstName?,MiddleName?,PrefixToLastName?,
LastName,Affiliation?,Identifier?,%Address;)" >

<!ENTITY % OrganizationScheme " (Name, (;Address;)?)" >

<!ENTITY % EducationalObjectiveScheme "(Description,Source,
Identifier)" >

<IENTITY % QuestionGeneral "(Title,Create,Statement,Level?,Version?)" >

<IENTITY % Answer '"(AnswerText,FeedBack?)" >

<!ENTITY % LocSpecScheme "Identifier" >

<!ELEMENT GEMSTONE (General,LifeCycle,Metametadata,Technical,Educationalx*,

98

APPENDIX B. GEMSTONES DTD 99

RightsManagement+,Relation*,Annotation*,Assessment?,QoS?) >
<!ELEMENT General (Identifier,Title+,CatalogEntry*,Language+,
Description*,Domain+, Coverage*,Idea*,Structure?) >
<!ELEMENT LifeCycle (Version?,Status?,Create+,Publish*,Terminate?,
InitiatedBy?) >
<!ELEMENT Metametadata (Create,MetadataScheme+,Validatex*) >
<!ELEMENT Technical (Format,Size?,LocSpec+,Requirements+,
InstallationRemarks*,0therPlatformRequirements*,Duration?,
OnLine?,Variant*) >
<!ELEMENT Educational (PedagogicalType,PedagogicalClassificationx,
CoursewareGenre, Approach*,Granularity?,InteractivityLevel?,
SemanticDensity?,EducationalUsex) >
<!ELEMENT RightsManagement (#PCDATA) >
<!ATTLIST RightsManagement
rights CDATA "INDECS" >
<!ELEMENT Relation (Kind,Resource) >
<!ELEMENT Annotation (Person,Date,Description) >
<IELEMENT Assessment (Questions) >
<!ELEMENT QoS (DatalLoss?,TimeRelated?,FlowControl?,TrafficDescriptors?,
BitRate?) >
<!ELEMENT Identifier (#PCDATA) >
<!ELEMENT Title (#PCDATA) >
<IATTLIST Title
xml:lang NMTOKEN "en" >
<!ELEMENT CatalogEntry (Catalogue,Entry) >
<!ELEMENT Language EMPTY >
<!ATTLIST Language
xml:lang NMTOKEN "en" >
<!ELEMENT Description (#PCDATA) >
<IATTLIST Description
xml:lang NMTOKEN "en" >
<!ELEMENT Domain %SemanticScheme; >
<!ELEMENT Coverage (#PCDATA) >
<!ATTLIST Coverage

APPENDIX B. GEMSTONES DTD

<!ELEMENT
<!ELEMENT
<IATTLIST

<!ELEMENT
<!ELEMENT
<IATTLIST

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<!ELEMENT
<IATTLIST

<!ELEMENT
<!ELEMENT

xml:lang NMTOKEN "en"

100

Idea (%SemanticScheme;)? >

Structure EMPTY >

Structure
organisational_structure (Collection | Mixed | Linear |
Hierarchical | Networked | Branched | Parceled | Atomic)
#REQUIRED >

Version (#PCDATA) >

Status (#PCDATA) >

Status
status_conditions (Draft | Final | Revised | Unavailable)
"Final">

Create YCreateScheme; >

Publish (Organization | Date) >

Terminate (Date) >

InitiatedBy (Person | Organization) >

MetadataScheme (#PCDATA) >

Validate Y%CreateScheme; >

Format (#PCDATA) >

Size (#PCDATA) >

LocSpec (Identifier) >

Requirements %RequirementsScheme; >

InstallationRemarks (#PCDATA) >

InstallationRemarks
xml:lang NMTOKEN "en" >

OtherPlatformRequirements (#PCDATA) >

OtherPlatformRequirements
xml:lang NMTOKEN
(#PCDATA) >
EMPTY

"en"
Duration
OnLine >
OnLine

value (Yes | No) "Yes" >
(#PCDATA) >

EMPTY >

Variant

PedagogicalType

>

APPENDIX B. GEMSTONES DTD 101

<!ATTLIST PedagogicalType
pedagogical_type (Active | Expositive | Undefined)
"Undefined" >

<!ELEMENT PedagogicalClassification JSemanticScheme; >

<!ELEMENT CoursewareGenre (Features*) >

<IATTLIST CoursewareGenre
format (Hypertext | VideoClip | Excerise | Simulation |
Questionnaire | Diagram | Figure | Graph | Image | Index
| Slide | Sound | Table | Text | Exam | Experiment |
ProblemStatement) #REQUIRED >

<!ELEMENT Approach EMPTY >

<IATTLIST Approach
pedagogical_approach (Inductive | Deductive | Exploratory)
#IMPLIED >

<IELEMENT Granularity EMPTY >

<IATTLIST Granularity
relative_size (Course | Unit | Lesson | Fragment)
#REQUIRED >

<!ELEMENT InteractivityLevel EMPTY >

<IATTLIST InteractivityLevel
user_resource_interactivity (VeryLow | Low | Medium | High |
VeryHigh) #REQUIRED >

<!ELEMENT SemanticDensity EMPTY >

<IATTLIST SemanticDensity
ratio_over_size_or_time (VeryLow | Low | Medium | High |
VeryHigh) #REQUIRED >

<!ELEMENT EducationalUse (UserRole,Description*,Prerequisitex,

EducationalObjective*,Level?,Difficulty?,Duration?) >

<!ELEMENT Kind EMPTY >

<IATTLIST Kind
relation_kind (IsPart0Of | HasPart | IsVersionOf |
HasVersion | IsFormatOf | HasFormat | References |
IsReferencedBy | IsBasedOn | IsBasisFor | Requires |
IsRequiredBy | IsPreview) #REQUIRED >

APPENDIX B. GEMSTONES DTD 102

<!ELEMENT
<!ELEMENT
<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<!ELEMENT

<!ELEMENT

<!ELEMENT
<!ELEMENT

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<IATTLIST

Resource (Identifier | Description) >
Person YPersonScheme; >
Date EMPTY >
Date
day CDATA #REQUIRED
month CDATA #REQUIRED
year CDATA #REQUIRED >
Questions (MCQuestion*,SAQuestion*,CQuestion*,MatchQuestion*) >
Questions
category CDATA #IMPLIED >
DataLoss (LossRate?) >
TimeRelated (TransferDelay?,ArrivalTime?,StartTime?,
StartOffsetTime?) >
FlowControl (BufferSize?,ProbableOrder?,ConnectionCertainty?,
DataInterference?) >
TrafficDescriptors (NetworkRestrictionk) >
BitRate (UnspecifiedBR?,AvailableBR?,VariableBitRate*,
ConstantBR?) >
Catalogue (#PCDATA) >
Entry (#PCDATA) >
Organization J%0rganizationScheme; >
Features (#PCDATA) >
Features
xml:lang NMTOKEN "en" >
UserRole EMPTY >
UserRole
user (Teacher | Author | Learner | Coordinator)
#REQUIRED >
Prerequisite %EducationalObjectiveScheme; >
EducationalObjective %EducationalObjectiveScheme; >
Level (#PCDATA) >
Difficulty EMPTY >
Difficulty
difficulty_level (VeryLow | Low | Medium | High | VeryHigh)

APPENDIX B. GEMSTONES DTD 103

#REQUIRED >

<!--Multiple choice question-->

<!ELEMENT MCQuestion (%QuestionGeneral;,MCAnswer+) >

<IATTLIST MCQuestion
multiple_selection (yes | no) '"mno"
answer_layout (horizontal | vertical) ‘'vertical"
format (text | html) "html" >

<!--Short Answer question--—>
<!ELEMENT SAQuestion (%QuestionGeneral;,SAAnswer+) >
<IATTLIST SAQuestion
number_of_answer_boxes CDATA #IMPLIED
format (text | html) "html" >

<!--Calculated question-—>
<IELEMENT CQuestion (%QuestionGeneral;,Formula,Variable+,Canswer,Unit?) >
<IATTLIST CQuestion

format (text | html) "html" >

<!l--Match question-->
<!ELEMENT MatchQuestion (%QuestionGeneral;,MatchElement+) >
<IATTLIST MatchQuestion
left_column_type (Short | Long) "Long"
right_column_type (short | long) "long"
marking_scheme (eq_weighted | all_nothing | right_less_wrong)
"eq_weighted"
column_preview (yes | no) "yes"
format (text | html) "html" >

<!ELEMENT LossRate (#PCDATA) >
<!ATTLIST LossRate

variation CDATA #IMPLIED >
<!ELEMENT TransferDelay (#PCDATA) >

APPENDIX B. GEMSTONES DTD
<IATTLIST TransferDelay

variation CDATA #IMPLIED >
<!ELEMENT ArrivalTime (#PCDATA) >
<IATTLIST ArrivalTime

variation CDATA #IMPLIED >
<!ELEMENT StartTime (#PCDATA) >
<!ATTLIST StartTime

variation CDATA #IMPLIED >
<!ELEMENT StartOffsetTime (#PCDATA) >
<!ELEMENT BufferSize (#PCDATA) >
<IATTLIST BufferSize

variation CDATA #IMPLIED >
<!ELEMENT ProbableOrder (#PCDATA) >
<!ATTLIST ProbableOrder

variation CDATA #IMPLIED >
<!ELEMENT ConnectionCertainty (#PCDATA) >
<IATTLIST ConnectionCertainty

variation CDATA #IMPLIED >
<!ELEMENT Datalnterference (Frequency?,ModulationTechnique?) >
<!ELEMENT NetworkRestriction (#PCDATA) >
<!ELEMENT UnspecifiedBR (#PCDATA) >
<!ELEMENT AvailableBR (#PCDATA) >
<!ATTLIST AvailableBR

variation CDATA #IMPLIED >
<!ELEMENT VariableBitRate (#PCDATA) >
<IATTLIST VariableBitRate

bit_rate_type (NonRealTime | RealTime) #REQUIRED
<!ELEMENT ConstantBR (#PCDATA) >
<IATTLIST ConstantBR

variation CDATA #IMPLIED >
<!ELEMENT TaxonPath (Source,Taxont+) >
<!ELEMENT Keywords (#PCDATA) >
<!ATTLIST Keywords

xml:lang NMTOKEN "en" >

104

APPENDIX B. GEMSTONES DTD

<!ELEMENT
<!ELEMENT
<IATTLIST

<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT
<!ELEMENT

Contribute
Type
Type

EMPTY >

type_requirement (OperatingSystem | Browser |

WordProcessor | VideoPlayer | AudioPlayer | GraphicsPackage |

InputDevice | OutputDevice | Processor | Protocol | Memory |

StorageDevice | NetworkConnection)
(#PCDATA) >
(#PCDATA) >
MaximumVersion (#PCDATA) >
(#PCDATA) >
(#PCDATA) >
(#PCDATA) >
(#PCDATA) >
Affiliation

Name

MinimumVersion

FirstName

MiddleName
PrefixToLastName
LastName

%0rganizationScheme; >

<!--Specific parts-->

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

MCAnswer YJAnswer; >
MCAnswer
format (text | html) "html"
correctness CDATA #IMPLIED >
SAAnswer YAnswer; >
SAAnswer
correctness CDATA #IMPLIED
allow_to_answer_in_box (number | all)
Formula (#PCDATA) >
Variable EMPTY >
Variable
name CDATA #REQUIRED
min CDATA #REQUIRED
max CDATA #REQUIRED
dec CDATA #REQUIRED >
Canswer EMPTY >
Canswer

#REQUIRED

Ilallll >

(CreationRole, (Person* | Organization?)) >

>

APPENDIX B. GEMSTONES DTD 106

format (decimals | significant_figures) '"decimals"

value CDATA #IMPLIED
tolerance CDATA #IMPLIED
tolerance_type (percent | units) ‘'percent" >
<!ELEMENT Unit EMPTY >
<IATTLIST Unit
importance CDATA #REQUIRED
name CDATA #REQUIRED
unit_space (yes | no) '"no"
unit_case (Yes | No) "No" >
<!ELEMENT MatchElement (LeftColumnMatch,RightColumnMatch) >
<!ELEMENT Frequency (#PCDATA) >
<IATTLIST Frequency
variation CDATA #IMPLIED >
<!ELEMENT ModulationTechnique (#PCDATA) >
<!ELEMENT Source (#PCDATA) >
<!ELEMENT Taxon (#PCDATA) >
<!ELEMENT CreationRole EMPTY >

<lI--Rolelnvolvement Values are a best practice vocabulary to select

from, other values can be selected-->

<IATTLIST CreationRole
role_involvement (Creator | Validator | Editor |
GraphicalDesigner | TechnicalImplementor | ContentProvider |
TechnicalValidator | EducationalValidator | ScriptWriter |

InstructionalDesigner) "Creator" >

<!ELEMENT Street (#PCDATA) >
<!ELEMENT TownCity (#PCDATA) >
<!ELEMENT StateCounty (#PCDATA) >
<!ELEMENT Postcode (#PCDATA) >
<!ELEMENT Country (#PCDATA) >
<!ELEMENT Email (#PCDATA) >

APPENDIX B. GEMSTONES DTD 107

<!ELEMENT Telephone (dialcode,number) >

<IELEMENT Fax (dialcode,number) >

<!ELEMENT Statement (#PCDATA) >

<!ELEMENT LeftColumnMatch (#PCDATA) >

<!ELEMENT RightColumnMatch (#PCDATA) >

<!ELEMENT dialcode (#PCDATA) >

<!ELEMENT number (#PCDATA) >

<!ELEMENT AnswerText (#PCDATA) >

<!ELEMENT FeedBack (#PCDATA) >

<!ENTITY % GSTLT_QoS PUBLIC "QoS" "gstltQoS.dtd" >

