
Supporting Disconnected Operation in Mobile CORBA

Niall Lynch

B.Eng.

September 1999

A Dissertation submitted in partial fulfillment of the requirements for the
Degree of MSc in Computer Science

University of Dublin

Trinity College Dublin

ii

Declaration

I, the undersigned, declare that this dissertation is entirely my own work, except where
otherwise accredited, and that it has not been previously submitted for a degree at this
or any other university or institution.

Niall Lynch

September 1999

Permission to Lend and/or Copy

I hereby declare that Trinity College may lend or copy this dissertation upon request.

Niall Lynch

 September 1999

iii

Abstract
CORBA has been used successfully for a number of years as a way of building and connecting

distributed applications. Normally this has been in the context of a wired network with static

hosts. With recent developments in wireless technology, such as GSM and wireless LANs, a

new potentially lucrative domain opens itself to the development of distributed applications.

As the use of wireless technology becomes more widespread the applications that use it will

become more complex. The CORBA architecture could be used to develop applications for this

domain. However, CORBA does not yet take into account the problems associated with mobile

computing such as limited processing resources on the mobile host and unreliable and low

bandwidth wireless links.

The Architecture for Location Independent CORBA Environments (ALICE), went some way

to addressing the problems associated with ensuring that CORBA applications could operate

successfully within a wireless network. ALICE defines a layered architecture, which takes into

account the movement of mobile hosts and ensures that client-server connections remain

established transparently to the user.

This dissertation describes how ALICE could be extended to support disconnected operation

for applications in a wireless network. The goal was to allow clients residing on a mobile

device to continue operation without having to be in contact with remote servers. In this way

the unreliability of the wireless link is avoided. This is achieved through the introduction of a

new layer in the architecture called the Disconnected IIOP (D/IIOP) layer. The D/IIOP layer

provides the additional functionality necessary to allow disconnected operation.

The concept of disconnected operation is not new but is more generally associated with file

systems such as Coda. One possible CORBA compliant way of implementing this behaviour

was to use Object by Value. Object by Value is part of the CORBA 2.3 standard and enables

the passing of an object by value rather than by reference. A prototype of the D/IIOP layer

functionality was implemented using the Object by Value approach for moving CORBA

objects. This approach was evaluated by enhancing a distributed scheduling application to

allow it to work in a disconnected mode by using D/IIOP functionality.

Object by Value did provide a mechanism to move CORBA servant functionality from the

server side to the mobile host, and this did allow a client to operate without having to connect

to the remote server. This added functionality however, came at a cost of changing both the

server and client implementations quite extensively.

iv

Acknowledgements

Many thanks to my supervisor, Dr. Vinny Cahill, for his guidance and advice throughout the

course of this project.

Thanks to Mads and Raymond for their willingness to help me with any questions and

problems I had during the course of the project

Thanks to other members of the MSc course for their friendship and for helping make the year

a lot more interesting.

Special thanks to Caroline for all her help over the year and especially for answering all my

silly questions.

Finally, thanks to my family whose constant support throughout the year was much

appreciated.

v

 Table of Contents

1. INTRODUCTION...1

1.1 TELECOMMUNICATIONS MOBILITY..2
1.1.1 The Future of Mobile Telecommunications ...8

1.2 MOBILITY IN COMPUTING..8
1.2.1 Issues in Mobile Computing ..9
1.2.2 Technologies and Trends ...10

1.3 APPLICATIONS ARE THE FUTURE ...14
1.4 CORBA ..16
1.5 ALICE AND THE PROJECT GOAL...17
1.6 ROADMAP..18

2. CORBA AND MOBILITY...19

2.1 MOBILE COMPUTING ARCHITECTURES..19
2.1.1 Bay Area Research Wireless Access Network - BARWAN...22
2.1.2 Bayou - Xerox Parc ...23
2.1.3 Monarch...25
2.1.4 MosquitoNet...26
2.1.5 Rover..26
2.1.6 MOWGLI ...28
2.1.7 Project Review Conclusions ..30

2.2 WIRELESS CORBA ...30
2.2.1 Protocol-level Issues..31
2.2.2 Application-level Issues ...32
2.2.3 General Issues ...32
2.2.4 The OMG Wireless Access Reference Model ...33
2.2.5 Dolmen...34

2.3 THE ALICE FRAMEWORK...36
2.3.1 The IIOP Layer ..38
2.3.2 The Mobility Layer...38
2.3.3 The S/IIOP Layer...39

2.4 DISCONNECTED OPERATION..40
2.4.1.1 Using the Disconnected File System Approach... 40
2.4.1.2 AspectIX.. 42

2.4.2 Using Disconnected Operation In CORBA..42

3. DESIGN ...43

3.1 SUPPORTING DISCONNECTED OPERATION IN ALICE...43
3.1.1 Using the Rover Approach...44

3.2 EXTENSION OF ALICE PROTOCOL STACK...45
3.2.1 Replication and Caching Strategy ...46
3.2.2 Cache Consistency...48
3.2.3 D/IIOP Protocol ..49

3.3 SERVER-SIDE SUPPORT..51
3.4 SUMMARY ...53

4. IMPLEMENTATION ..54

4.1 IMPLEMENTATION GOALS..54
4.2 CORBA AND JAVA FOR MOBILE OBJECTS ..54
4.3 OBJECT-BY-VALUE...55

4.3.1 Valuetypes..56

vi

4.3.2 JavaORB ... 58
4.4 INTEGRATION WITH ALICE... 58
4.5 USE CASES AND DISCONNECTION IDL.. 60

4.5.1 Connect ... 60
4.5.2 Using the Cache and Retrieving the Object .. 61
4.5.3 Conflict Detection ... 61
4.5.4 Using Object-By-Value ... 62
4.5.5 IDL: Cache manager... 62

4.6 THE DISTRIBUTED SCHEDULER APPLICATION ... 63
4.6.1 Integration of Valuetypes .. 66
4.6.2 ClassLoader .. 69

5. EVALUATION... 70

5.1 MOBILITY IN CORBA... 70
5.2 USING JAVAORB.. 72
5.3 EXTENDING AN EXISTING APPLICATION .. 73

5.3.1 Porting the Application ... 73
5.3.2 IDL Enhancements .. 73
5.3.3 OBV Application Enhancements ... 74
5.3.4 Disconnected Operation Application Enhancements.. 74

5.4 DISCONNECTED OPERATION IN ALICE... 75
5.4.1 Transparency... 75
5.4.2 Performance.. 76
5.4.3 Server Implementation .. 76
5.4.4 CORBA Compliant Operation... 76

6. CONCLUSIONS... 77

6.1 ENABLING DISCONNECTED OPERATION .. 77
6.2 FUTURE WORK ... 78

7. BIBLIOGRAPHY .. 79

vii

Table of Figures

Figure 1-1 Evolution of Telecommunications Wireless Networks.. 3

Figure 1-2 The WAP Programming Model.. 7

Figure 2-1 Mobile host using services of the fixed network.. 20

Figure 2-2 The Bayou Architecture ... 24

Figure 2-3 The Rover Toolkit client/server distributed object model 28

Figure 2-4 The Mowgli communication architecture .. 29

Figure 2-5 Reference Networking Model .. 33

Figure 2-6 Protocol Stacks in the Reference Networking Environment 34

Figure 2-7 The Dolmen Architecture ... 35

Figure 2-8 Client/Server Communication in a Wireless Network ... 37

Figure 2-9 ALICE Layered Architecture .. 38

Figure 3-1 Extended ALICE Protocol Stack.. 46

Figure 3-2 D/IIOP Layer .. 49

Figure 3-3 Create Object Replicas ... 51

Figure 3-4 Conflict Detection and Resolution ... 51

Figure 4-1 GIOP Message Representation Classes and Marshalling Classes............................ 59

Figure 4-2 Connect Use Case... 61

Figure 4-3 Retrieve Object ... 61

Figure 4-4 Conflict Detection and Resolution ... 62

Figure 4-5 Derived Class Diagram Modelling Distributed Scheduler....................................... 64

1

Chapter 1

1. Introduction

Advances in wireless networking technology have resulted in completely new ways of

communication and computing. Users can carry portable devices and have access to a shared

infrastructure independent of their location that will allow them to use numerous useful

applications. In the resulting environment users can communicate with each other easily and

there is continuous access to services provided by the wireless network. Two domains, the

mobile telecommunications domain and the mobile computing domain are driving this

scenario. Mobile voice telephony is obviously a major commercial success story with the result

that the mobile operators are moving towards providing data services as well as standard voice

communication over their networks. Mobile computing is also evolving to offer more

applications on smaller devices that are continually connected to the network and can use

networked services. The applications that are available on the mobile device and the types of

scenarios that they can be used in will be a determining factor in how successful mobile

computing will become. This chapter looks closely at the evolution of mobile

telecommunications and wireless mobile computing and how they have become of huge

commercial interest, i.e. the business case for investigating this domain. A description of the

sort of applications that are being deployed in existing networks is also provided giving an

indication of how these applications are expected to evolve. The chapter then looks at how the

Object Management Group's (OMG) [OMG ‘98] Common Object Request Broker Architecture

(CORBA) approach to building distributed applications can have a role to play in the

development of applications for mobile devices. Some aspects of the CORBA model need

some modifications if it is to be used in the wireless mobile environment. This chapter

introduces the Architecture for Location Independence in a CORBA Environment (ALICE)

that allows CORBA to be used in the wireless environment. The concept of disconnected

operation and how it could be integrated with ALICE to enhance the use of CORBA

applications in a mobile environment, which is the primary focus of this thesis, is also

introduced. Finally a roadmap of the rest of the dissertation is presented.

2

1.1 Telecommunications Mobility

The mobile phone has been a huge commercial success story that continues to get better for the

mobile telephony operators. Europe’s top twenty cellular operators are worth more than $400

billion. The number of customers within each European country is growing at a phenomenal

rate. In Finland the number of mobile phones has outnumbered the number of fixed line phones

and continues to rise. Telecom Italia Mobile is Europe’s largest mobile phone operator with 15

million subscribers. It is expected that by the year 2000 that there will be over 500 million

mobile users worldwide. This growth has been solely based on providing voice telephony,

which, not surprisingly, has proven it to be the killer application in getting people to use a

mobile phone. GSM [Redl] is the predominant digital mobile telephony standard in use and is

referred to as a second-generation mobile standard. The first generation covered the analog

mobile networks while the third generation is what is known as Universal Mobile

Telecommunications System (UMTS). The following subsections look at the evolution of

GSM, the services that will be provided using GSM and the technologies facilitating those

services, with the ultimate goal of progressing to the UMTS vision.

The telecommunications companies are now searching for more revenue generating ways of

leveraging the mobile phone. To date mobile phones have been extremely successful in

offering a voice service in the same way as the fixed line phone. In order that further channels

for revenue are found and a better product is offered to their customers, mobile phone

operators have set out to offer value added services on the handset such as calling line ID.

They have also been looking at offering more intelligent services such as database lookup of

calling line ID to provide the full details of the caller to the callee. These types of services are

also available on fixed line phones so mobile phone users would expect to have them. A major

effort is also being made in the area of enabling data communications over the mobile network.

Data communications has a big part to play in the development of what are known as smart

phones and the services they will offer to customers. Smart phones are phones that offer data

applications to the user in addition to the standard voice, calling line ID and address book

services that are standard on most phones. At present GSM networks do support one data

service called Short Message Service (SMS). SMS is limited to carrying 256 characters per

message, but nevertheless is being used to exchange emails. However, the fact that SMS has

taken off commercially in some countries points to the potential of data services. For example

in Finland mobile data applications now account for nearly 10% of the revenue for Finland’s

cellular operators, and up to a third of their profits. The data traffic is highly profitable given

3

that the cost of carrying messages is very low [FT ’99]. There are SMS based information

services on offer covering areas such as news, sport, finance, stock market information,

currency rates and job vacancies.

The next step for many telecommunications companies appears to be enabling access to the

Internet in some form or another on their phones. This would allow customers to send emails

(using standard mail protocols rather than through SMS) and browse the web. They also would

like to offer proximity services i.e. services based on the user’s location. E-commerce also

presents a lucrative domain where the mobile phone could potentially become the ATM in the

pocket for example, users could download cash onto a card through their mobile phone.

Another possibility is in streaming media services such as audio and video. These could be

extended to offer video-conferencing services.

The following diagram illustrates how the wireless networks are adapting to facilitate these

changes, moving from providing reliable voice communication to providing data services on

the mobile device. The starting point for the evolution is the second-generation GSM network

and the goal is the third generation UMTS network where data transmission rates should be

2Mbit/s. On that path there are a number of proposed technologies that should increase the data

rate.

Figure 1-1 Evolution of Telecommunications Wireless Networks

The major limitation on access to the Internet from mobile phones at present is bandwidth.

GSM offers 9.6kbit/s as a data rate. However, a lot of investment is going into new

technologies that will increase bandwidth and facilitate easier and faster data communications

Introduction of 3rd Generation

2001 - 2002

2000

1999

1998

1997

Basic GSM data at 9.6kbit/s

Fixed line-like circuit services (HSCSD)

Internet-like packet services (GPRS)

Higher data speed and capacity (EDGE)

Personal multimedia services (WCDMA)
Development of

Radio Technology

Evolution of GSM Platform

WAP

4

in wireless telephony communications networks. The following sections describe some of

those initiatives relating to provision of data services that are in the path from GSM to third

generation mobile telephony.

HSCSD - High Speed Circuit Switched Data represents an initiative by the

telecommunications operators to achieve greater throughput to the mobile device thereby

providing the capacity to enable more data applications. HSCSD is connection-oriented

meaning that the two end points of the communication are connected, like a telephone call.

This means that it is more suited for applications that require low latency, such as mobile

video-conferencing. GSM uses Time Division Multiple Access (TDMA) to divide each

channel into eight time slots. Each user is allocated one transmit and one receive slot with a

transmission rate of 9.6kbit/s. 14.4kbit/s is now available by reducing the redundancy in the

data. The move from 9.6 to 14.4kbit/s requires only small changes to the terminals and the

infrastructure. HSCSD uses multiple TDMA slots, allowing for Nx14.4kbit/s. Operators are

indicating that they will start with a two-slot (28.8kbit/s) service and then offer an asymmetric

combination of four slots for Internet access. This will give a downstream bandwidth of

43.2kbit/s and an upstream bandwidth of 14.4kbit/s. New handsets are required for HSCSD and

these are likely to accommodate a maximum of four slots. This means that it is likely that

bandwidth for HSCSD will top out at 43.2kbit/s, however using data compression can increase

this bandwidth [Emmerson ’98].

GPRS – General Packet Radio Service is another protocol that is intended to improve data

communications over wireless networks. It is a packet-based method of communication over

the GSM infrastructure. Since it is packet based it is suitable for bursty data applications such

as web browsing and is ideal for TCP/IP environments. It is basically a GSM overlay network

and changes to handsets will be needed to accommodate this new technology. A big impact of

using a packet-switched protocol will be the need to change the business model. Customers

will no longer be charged based on a unit of time but they will be charged ’per bit’. There are

four different coding schemes, which results in four different single channel data rates ranging

from 9.05 up to 21.4kbit/s per channel. A GPRS channel is equivalent to a HSCSD time slot.

Up to eight channels can be used for sending data, giving a maximum bandwidth of

171.2kbit/s.

GPRS will be introduced by some operators towards the end of 1999 and 2000, although some

operators may wait for UMTS. However, in the corporate world it will prove popular since it

5

reduces costs and increases communication since costs are based on volume not on time and

distance.

Nokia has plans to implement both HSCSD and GPRS in future versions of its mobile phone.

This will allow a subscriber to choose between the two services depending on the type of

application they are using. [Silber ’99]

Wireless Application Protocol - As data rates in mobile communications increases, it is

important to look at the higher application level that should leverage the extra bandwidth to

provide applications. There will be a demand for nicer email tools and possibly World Wide

Web browsers on the mobile terminal. People are used to browsing from their office and they

would like to continue that while away from the office. A lot of office workers spend a lot of

time away from their offices, even when they are present at work. There are obviously great

benefits for workers being able to access their corporate Intranet. At meetings or while they’re

away from their office they can get the latest organisational information, they can launch

spreadsheets and graphs, they can get information about people and any other information they

would normally use on the office desktop. Outside of the corporate domain there are also many

opportunities for mobile device services related to browsing the Internet. For example

informational services like news and weather and services relating to location.

A problem facing the telecommunications companies at the moment is how to offer reliable

application services to the mobile end users. This means having the required bandwidth to run

the application, ensuring that the application continues to run as the user roams and the

connection may become more unreliable. Another problem is what type of data application the

user will want to use on their mobile phone. At present there are not many applications that

could run on the mobile phone apart from some informational services that users could scroll

across the display of the phone. Telephone companies are now developing new types of phones

with larger displays that offer more interactive services to the users such as Web browsing. A

protocol that was developed with this as an aim was the Wireless Application Protocol (WAP).

 The WAP Specification aims to bring the telecommunications industry a step closer to the

mobile Internet defining an architecture for the delivery of Internet content to wireless devices.

It was developed by the WAP Forum, which is a group of organisations, whose goal is bringing

Internet content and advanced services to mobile devices. It essentially allows the handheld

device decide how to display the information available at the server. The organisations

responsible for setting the Forum up were Ericsson, Motorola, Nokia and Unwired Planet.

6

 However, it is obvious that standard browsers will not function on a mobile device as it exists

today, or even in the near future, firstly because of the display constraints and secondly

because of the limited bandwidth available for mobile data communications.

With WAP the low bandwidth and device limitations are taken into account. The philosophy is

to utilise as few resources as possible on the handheld device and compensate for its

limitations by enriching the functionality of the network [Parrish ’98]. The content is delivered

from standard Web servers. The content can be authored in HTML or directly formatted in the

Wireless Markup Language (WML). A scripting language called WMLScript has also been

defined. These languages assume that the normal keyboard and mouse inputs are not available

to the user and that the display is limited. A microbrowser has also been defined for the

wireless terminal that defines how WML and WMLScript should be interpreted in the handset

and presented to the user.

A WAP Proxy exists which acts as a gateway between the standard Internet protocols and

those specified by WAP. So the proxy takes the information requested by the user and

packages it for download to the device according to that devices characteristics, thus it

optimises use of the available bandwidth by only retrieving information that can be displayed.

It is important to note that the WAP standards were developed so that they complement

existing standards. The standard doesn’t specify how data should be transmitted over the air

interface. The protocol is intended to sit on top of bearer channel standards like the ones

mentioned earlier, GSM (SMS), HSCSD and GPRS. The two standards working together will

provide the complete end user product solution.

The following diagram illustrates the main components of the WAP architecture [UP '98]. The

gateway proxy resides on the fixed network and acts as the access point to the content server

and prepares the content for presentation on the wireless device. The gateway takes over all

DNS services to resolve domain names used in URLs, removing this requirement from the

handset. It translates WAP protocol requests to HTTP and TCP/IP requests.

7

Figure 1-2 The WAP Programming Model

A protocol stack has also been defined that ensures that a wide variety of network types can

run WAP applications. It makes a number of enhancements to make HTTP more suited to the

wireless network environment. For example the plaintext headers of HTTP are translated into

binary code that significantly reduces the amount of data that needs to be transmitted over the

air interface. A lightweight session re-establishment protocol has been defined that allows

sessions to be suspended and resumed without the overhead of the initial establishment again.

This allows the suspension of a session, which means saving battery power or freeing up the

network resources.

WAP is a comprehensive protocol that brings a lot of good ideas to the mobile

telecommunications domain. It takes into account the desire of companies to offer more data

services on mobile devices and accepts that there will be no standard mobile device and so it is

adaptable. It also takes into account that the access protocol for the mobile device could be one

of many possibilities and therefore is not tied to any. Combined with the probability of

increased bandwidth to mobile devices and the improvement of the mobile devices in their

ability to display information, WAP provides a real solution for providing data applications on

mobile devices in the near future. In fact phones that support WAP will be available on the

market by the end of 1999.

UMTS - UMTS the third generation mobile telephony in Europe is known as International

Mobile Telephony (IMT 2000) globally. The goal of UMTS is to have an integrated approach

to offering voice, data, fax and paging facilities enabled through technologies providing higher

bandwidth. One of these technologies is Wideband Code Division Multiple Access (W-

CDMA). Europe and Japan will start offering 3rd generation services by the end of 2001. For

the 3rd generation network the goal is to standardise on one technology worldwide by the year

2000. IMT 2000 will provide a data rate of up to 2Mbit/s. The third generation network will

Client Gateway

(WAP Proxy)

Web Server

WAE
User

Agent

Encoders
and

Decoders

CGI
Scripts

Encoded Request

Encoded Response

Request

Response (content)

Content

8

herald the convergence of mobile phones and the Internet. With high-speed wireless data

access and intelligent networks the future will see a more application rich computing scenario

for the mobile telecommunications devices where they will play a larger role in how people

work, shop, pay bills, keep appointments, keep track of the children and entertain themselves.

It is reported that UMTS will be worth Euro 10 Billion per year in Western Europe by 2005.

With this sort of bandwidth available to the mobile device and the fact that the UMTS mobile

device will provide integrated services it is obvious that the devices are no longer just phones

but small computing devices, the smart phones that the telecommunications organisations have

been developing as bandwidth grew. The types of services that could be offered on these

devices will be much less limited than they are today.

1.1.1 The Future of Mobile Telecommunications

It appears that over the next few years a big effort is being made in the mobile

telecommunications world to improve the existing services offered to mobile customers and

also increase the number of innovative services, this means the introduction of many data

services. This will be facilitated by the progression from the 2nd generation network to the 3rd

generation network. The general process through which services are developed will take on a

more computing like approach rather than a traditional telecommunications approach. The

various tools at disposal of the computing world will be used by the telecommunications world

to offer new and innovative services. It is obvious that there will be a convergence of what the

telecommunications world and the computing world will offer in the area of wireless data

communications, with both sides attempting to provide innovative services that are suited to

mobility.

The following section looks at how the computing world addresses the issue of mobility and

how some aspects of the development of mobile computing are converging to the same point as

that of mobile telecommunications.

1.2 Mobility in Computing

The most visible form of mobility in the computing world has been the portable computer or

laptop. The laptop essentially provides the same applications a user can expect to have on their

desktop computer in the office. The laptop has proven to be an essential tool for the mobile

worker meaning computing capabilities are no longer restricted to the office. The way in which

people conduct their work has become a lot more flexible. Laptops have evolved over the past

9

number of years to become smaller lighter devices that are much more convenient to carry

around. The goal of providing smaller lighter more portable and convenient computing devices

has also lead to the development of Personal Digital Assistants (PDAs). These devices offer a

restricted set of applications to the user such as an address book and personal organiser, but

they are very small and light and easy to use. PDAs are gaining in popularity as they continue

to remain small but offer an increasing range of applications to the user. They can also be

connected to the users desktop computer through a serial port and files can be exchanged

between them. They can be seen as a portable arm of the computer that allows the user to

continue to use certain applications while they are away from their office desktop computer.

They differ from the laptops in that they do not try to support the same range of applications

that the office computer can support.

In a highly competitive world demands being placed on employees are becoming greater. This

includes being able continue working regardless of location. This has lead to the desire,

regardless of location to be able to connect to the users local network, where the services they

are familiar with reside. One possible way of supporting this is through a wireless interface.

Ideally, users of wireless networks will want the same services and capabilities that they have

commonly come to expect with wired networks. The next section points out some of the

problems faced in wireless mobile computing and the following sections describe some of the

technology trends aiming to address those problems.

1.2.1 Issues in Mobile Computing

Wireless communication is much more difficult to achieve that wired communication. There

are many factors that may affect a wireless connection. The wireless connection is open to the

influence of the surrounding environment. This may affect the signal producing noise or

blocking the path.

Interference and Reliability - Interference in wireless communication occurs when there are

signal collisions i.e. when there are two or more sources sharing the same frequency. This can

happen when multiple stations waiting for the channel to become idle then begin transmitting

at the same time. Collisions can also be caused by the "hidden terminal" problem when a

mobile terminal begins transmitting without detecting that there is a transmission already in

progress.

Mobility and Location Management - This is the major advantage of a wireless system over a

fixed network. Users remain connected while they are changing location. This also places the

10

demand on the wireless system to have some mechanism to accommodate handoff across

transmission boundaries and to route traffic to mobile users. The services available to a mobile

terminal may change depending on its location. For example, access to a particular service may

no longer be available if the terminal has moved to a new domain by crossing an international

border.

Bandwidth and Latency - Performance over wireless links is limited by low bandwidth and

high latency. Ideally wireless networks should have a bandwidth approaching that of their

wired network counterparts. Performance of transport protocols, such as TCP and NFS, is

much lower since these protocols were designed for use in fixed networks. For example, in a

wireless network TCP incorrectly interprets packet loss as a sign of congestion in the network

and immediately throttles packet transmissions. This causes unnecessary performance

degradation and loss of throughput. NFS responds to losses with idle times of at least a number

of seconds. These type of recovery mechanisms limit the performance of wireless networks.

Modifications to these protocols to adapt to the wireless network characteristics would

improve performance and also maintain compatibility.

Disconnection - There are times when the mobile host may be out of range and find itself

disconnected from the network. This renders the mobile terminal unable to avail of any of the

network services normally available to it. Disconnection form the network could also be a

user’s choice since the cost of maintaining a connection for an extended period of time may be

prohibitive.

1.2.2 Technologies and Trends

There are a number of technologies and approaches that the computing world has adopted in

order to deal with the issues presented in the previous section. The following list is not

exhaustive but is intended to illustrate some of the major technological developments.

Wireless Local Area Networks - IEEE 802.11- Wireless Local Area Networks (WLANs), like

their wired counterparts, are being developed to provide high bandwidth to users in a limited

geographical area [Crow ’97]. WLANs are being used as an alternative to wired LANs since

they do not have the high installation and maintenance costs associated with wired LAN

infrastructures. The ITU-T 802.11 specification deals with all aspects of WLAN technology.

The purpose of the standard was to provide wireless connectivity to equipment that required

rapid deployment and that might be portable within a local area. The mandatory transmission

rate is 1Mb/s with optional support for a 2Mb/s data transmission rate.

11

In dealing with the issue of mobility they are more reliable than cellular networks; it is easier

to ensure a good wireless connection if the terminal is within a local area than if it is hurtling

down the motorway. High-speed handoffs are not an issue. Location is obviously restricted to

the local area and WLANs do not support nation-wide roaming. But there are many examples

of networks whose applications do not require nation-wide roaming; campus networks,

networks for mobile workforces e.g. in a car assembly plant where information can be passed

between devices used by workers, in hospitals where staff can access latest information. Even

networks for police forces could be deployed, as the technology is developed to cover wider

metropolitan areas [Phifer ’98].

In terms of bandwidth most of the commercial WLAN products provide data transmission rates

of 2Mb/s, however, this is significantly slower than the standard 10 Mb/s Ethernet LANs offer.

Standards and technology are being developed to boost transmission rates of wireless LANs

from the 2Mb/s regime to tens of megabits per second. There are research prototypes of

wireless LANs based on asynchronous transfer mode (ATM) technology running at 10Mb/s

and serving as testbeds for mobile networking at much higher rates. If wireless networks are to

be a truly viable technology they will need to transfer data at the rate of 10Mb/s [Regan ’97]

[Alkh ’97]. This is a major growth area and within the US it is believed that by 2003 WLAN

shipments will grow to $2.6 billion [FT ‘99].

Ad Hoc Networks - These types of networks are used when the existing communication

infrastructure is expensive or inconvenient to use. In an ad hoc network, each mobile node

operates not only as a host but also as a router, forwarding packets for other mobile nodes in

the network that may not be within direct wireless transmission range of each other. Mobile

nodes dynamically establish routing among themselves to form their own networks "on the

fly". Ad hoc networks approach the issue of mobility by making the mobile node adaptable to

its new location in that it is able to configure a new local network with other nodes in its new

location and continue to offer services to the user available in the new local network.

Bluetooth is one technology that is making a major impact in ad hoc networks. Bluetooth

provides the transport capability for an ad hoc network through its radio interface in the

unlicensed Industrial Scientific Medical (ISM) 2.45GHz frequency band. It enables mobile

devices to connect and communicate over short-range wireless links in ad hoc networks. It

resulted from a research at Ericsson investigating the feasibility of a low power and low cost

radio interface between mobile phones and other devices. The air interface has been optimised

to provide maximum immunity against interference in the 2.45GHz band, which it shares with

12

wireless LANs and microwave ovens. The specification originated from Ericsson has gained

support from Nokia, IBM, Toshiba, Intel and many other manufacturers. It is a combination of

software, communications protocols and a tiny radio transceiver on a chip that will let devices

communicate (both voice and data transmission) with one another over distances up to 10

metres. The range can be increased to distances of 100 metres with the addition of an optional

amplifier. Devices with Bluetooth chips in them will begin to appear on the market at the end

of 1999. Examples of such devices are mobile phones, modems, headsets, PDAs, PCs,

projectors, local area networks and so on. It paves the way for new and completely different

devices and applications [Haar ’98]. For example a laptop user enters a building where they

have never been before but would like to print a document. If both the laptop and printer were

bluetooth enabled they could communicate over that radio interface and create an ad hoc

network. A document to be printed could be passed over this network from the laptop to the

printer. In terms of bandwidth Bluetooth devices will communicate at up to 720 kb/s with a

possibility of higher rates depending on the number of nodes in the ad hoc network.

PDAs - PDAs are evolving and many are starting to incorporate a wireless interface. With a

wireless interface and the possibility of wireless data access the number of services they offer

will grow to include access to the Internet. They will also have voice applications placing the

computing companies in competition with the smartphone products to come from the mobile

telecommunication operators. In fact the Palm VII connected organiser from 3COM is already

on sale in the US and it provides wireless access to the Internet. To deal with the bandwidth

limitations imposed on using their wireless device Palm Computing came up with the

concept of “web-clipping” for their Internet access application. Web clipping is based on the

idea that less data transferred results in a more efficient system. To do this they use two

principles, firstly all user interactions are based on a simple query and response rather than on

a system of hyperlinks and secondly application partitioning is used whereby the query portion

is stored locally on the handheld. With the query portion stored locally the user enters the

request in a form before even going on line, then the user submits the request and the resultant

page or web clipping is returned, which is very small. On a typical application the query is

about 50 bytes and the returned page is less than 500 bytes. This approach accepts that the

bandwidth will be restrictive but by changing how the application operation it is possible to

provide acceptable performance to the user. The Web Clipping Proxy server is responsible for

converting the standard Internet protocols and content from the web page into a form that’s

tuned for transmission across a wireless network for display on a small device. The Web

Clipping Proxy server implements a reliable layer over the UDP protocol to talk to the Palm

13

VII handheld. Its use enables one packet to be sent up as a request and one or more to be sent

downstream containing the web clipping. This protocol greatly reduces latency and conserves

battery power relative to using TCP [Palm ’99]. This initiative is very similar in design and

approach to the WAP forum work. The Palm VII is only available in the US through a deal

with BellSouth Wireless Data, whose network covers over 260 of the most populated areas in

the US. It is interesting to note that this is a dedicated wireless network and not a voice

network carrying data. Up to now the approach for using exchanging data over wireless

networks has been by using a modem from the laptop or the handheld computer connected to a

mobile phone, which could enable the sending of data.

Another initiative in sending data over wireless links is through the use of the protocol Cellular

Digital Packet Data (CDPD). CDPD is also known as wireless IP since each device is given an

Internet IP address users can use any TCP/IP-based application such as News, Telnet, Ping and

so on. This means IP goes over the wireless link, unlike the situation with the Palm VII

connected organiser where a proxy is used. CDPD is used within the US D-AMPS (equivalent

to GSM in Europe) mobile telecommunications network to carry packetised data (IP packets)

between the mobile terminal and the mobile base station at 19.2Kb/s. Packets are then routed

across the Internet or other IP networks to the destination. By using datagram packets, CDPD-

based applications can better adjust to packet loss and delay, problems that arise when using

wireless links.

Convergence - Both the mobile computing domain and the mobile telecommunications domain

have evolved over the past number of years to a stage where the two domains are beginning to

converge by sharing similar goals. A major shared goal is to overcome the limitations of the

wireless connection such as low bandwidth and high latency in order to provide valuable

applications to the users of the portable handheld devices, which are either smart phones or

handheld/mobile computers. This goal has seen the development of protocols like GPRS that

increase the bandwidth in wireless telecommunications networks such as GSM and protocols

such as WAP at the application level and CDPD at the network level that aim to bring the

Internet to the handheld. One consortium that envisaged a convergence of the mobile telephony

world and the mobile computing world was Symbian. Symbian has developed an operating

system for both smartphones and PDAs called EPOC [Comer ’98]. These developments

highlight the effort being made to enhance the services offered to mobile device users. The

following section illustrates some of the novel applications that are being deployed now and

14

how applications will be the driving force to the success of mobile wireless

communications/computing.

1.3 Applications are the Future

Applications in the future will determine which mobile vendors will succeed. The types of

services will be the differentiating factor. Lots of research is ongoing into many fields where

mobility will make people’s life easier and more efficient. It will fundamentally change how

people think about the work place, no longer will people be tied to a location. There are many

commercial information services, which could be offered to mobile subscribers. Mobile

devices will become more intelligent and may even make decisions based on location and user

profiles.

Telecommunications Services -. Operators are having trials for other non-voice applications,

which include the customer activating the service by dialling a particular phone number. There

is a dial-a-drink service where the customer can buy a drink from a vending machine by calling

a free phone number displayed on the machine. The machine contains a GSM phone, which

activates the dispensing mechanism. The cost of the drink is charged to the caller’s phone bill.

Phone companies are moving away from just being bit pipe providers and into the higher

margin areas of end user applications. Some phone companies are putting GPS chips into their

phones so the users location can be pinpointed and services offered related to that position.

Another major set of services to be offered on future phones will be Internet services such as

web access and email. By using a technology such as WAP mobile phones will be capable of

offering a web browsing facility and an email facility.

Corporate Computing - To fund market growth it is necessary to have corporate acceptance of

wireless computing. To enable this wireless will have to be successfully integrated into the

corporate network. Wireless remote access must be secure and manageable. Wireless devices

have to offer seamless access to the network operating system and Intranet servers and

databases in a way that doesn’t upset the corporate backbone.

At present there are a number of enterprises taking on board wireless communication and this

is causing them to re-engineering business operations to create a world without cables.

On such industry adopting this technology, which isn't immediately obvious, is based on the ski

slopes of Colorado. In Vail Resorts they have deployed a Proxim Wireless LAN which covers

some of the 50-mile area of ski slopes. The wireless LAN is based in the ITU-T 802.11

15

specification. Changes in schedules for instructors were difficult to communicate especially if

the instructor was already out on the slopes. To deal with the problem they needed to be able to

track in real time which guest was skiing with which instructor, where they were skiing and

who cancelled and who re-scheduled. With the wireless LAN installed this information is

easily available at all times to instructors and supervisors. A wireless Casio Casiopeia E-11

Palm-size PC is used and Proxim provided the wireless LAN equipment. The palms PCs each

have a Proxim RangeLAN2 wireless PC adapter card and the necessary drivers that enable

remote communication. There are six base facilities and at least two access points for each.

The project is such a success there is a plan to add more to improve coverage to more parts of

the resort.

Campus Networks - Colleges are now viewing wireless technology as a cost-effective way of

deploying more accessible computing facilities for their students.

At the University of Oklahoma's College of Engineering (COE), the students don’t just use the

computers to surf the web. They submit assignments via email and participate in course related

chat discussions. They can also download video coverage of a missed lecture. However, the

unique thing is that they can do this from any location on campus, they don't need to queue to

get access to the network. They use a Proxim wireless LAN and each student has been given a

Laptop with a Proxim RangeLAN2 card for wireless network access. There are more than 700

students and staff are connected. They have also adapters for the stationary PCs so that they

can access the wireless network too. The only problem is bandwidth, with rates being quite low

meaning that the network is slow for students accessing and uploading data. However, with the

new generation wireless LAN products coming on line this should be solved.

The Medical World - One area where mobile computing could obviously be deployed to

provide a better service is in the medical profession, and particularly in relation to patient

records. It would be much more efficient if doctors and nurses did not have to carry around and

file paper records as they deal with patients in a hospital. MacNeal HealthCare centre in

Chicago decided to install a wireless LAN at one of their hospitals. They used wireless LAN

products from BreezeCOM called BreezeNet Pro, which are a line of plug and play wireless

Ethernet products including access points, station adapters, PC card adapters and Ethernet

bridges. The portable devices were pen based handheld computers. Again the standard used

was the ITU-T 802.11 wireless LAN standard. Again, bandwidth was the only significant

problem meaning the network appeared slow for the users.

16

In the Home - The ad hoc network technologies are being geared towards facilitating services

in the home environment. Bluetooth and similar proposals such as Piano from Motorola see a

world where all electronic devices have a wireless interface. These devices can then

communicate across their ad hoc network to other devices in their vicinity. The ad hoc network

infrastructure enables the devices to communicate but there are no services as such deployed

that uses this capability. Possible services in the home include a monitoring system for heating

and lighting and general energy conservation. There is also scope for use with the security

system for the house. This could also be linked to the Internet so the user could get an email or

a SMS message if there was some breach of the system [Pickar ’99]

Wireless devices are being used in an increasing number of domains. The applications are

becoming increasingly complex and many have a distributed nature. This is where CORBA

could be introduced as an approach for developing distributed applications for the wireless

domain. The next section introduces CORBA and how the OMG has realised that it must

change if it is to be used in a wireless environment.

1.4 CORBA

CORBA defines an object-oriented framework for developing distributed applications. This

framework makes network programming easier by enabling the development of distributed

applications as if they were being implemented for a single computer. CORBA defines a

standard architecture for Object Request Brokers (ORBs). An ORB allows the creation of

server objects whose member functions can be invoked by client programs anywhere in the

network. The General Inter-ORB (GIOP) was defined to enable interoperation between ORBs

and a mapping of this onto TCP/IP is called the Internet Inter-ORB Protocol (IIOP) and has

become the de-facto standard for ORB communication.

Realising the potential of wireless computing, how mobile devices were becoming increasingly

more powerful and sophisticated and that users would expect to access the services they

normally access from stationary devices from their mobile devices, the OMG issued a Request

for Proposals (RFP) on wireless access and terminal mobility. The RFP was issued in May

1999 and looked for proposals on technology that would allow mobile terminals to host both

CORBA clients and CORBA servers. The RFP pointed out that with wireless networks the

client-server interaction is affected and that interaction mechanisms for fixed environments

need to be changed to suit this environment. The RFP is based on issues presented in a white

paper from the OMG on wireless access and terminal mobility. It identified two aspects of the

CORBA specification that required changes and extensions to allow CORBA to exist within

17

the mobile computing paradigm, the application level and the protocol-level. At the protocol

level investigation should be about what needs to be done to allow IIOP, the lingua franca of

CORBA, to be used in the problematic wireless environment. At the application-level

mechanisms need to be found that allow applications to intelligently deal with wireless

network problems such as disconnection/reconnection high latencies and fluctuating

bandwidth. This thesis looks at the application level issues and how disconnected operation

may provide a mechanism that helps to hide the inherent problems of the wireless network.

1.5 ALICE and the Project Goal

ALICE allows CORBA objects running on mobile devices to interact transparently with

objects hosted by off-the-shelf CORBA implementations. In the ALICE architecture a mobile

host communicates with a mobility gateway over a wireless link. The mobility gateway acts as

a proxy for the mobile host and relays communication to and from the mobile host over the

fixed network. The ALICE framework defines a layered architecture that allows its IIOP

implementation to continue normal operation even if there are times when the host connection

to the mobility gateway is down or when the host is roaming and the mobility gateway that it

uses changes.

The primary goal of the project was to enhance the ALICE framework so that client

applications that used ALICE could continue operation in cases where the link between the

mobile host and the mobility gateway was down for an extended period of time. Distributed

object computing provides mechanisms for the replication and migration of objects. Many

projects have used these mechanisms to provide a way on bypassing the problems inherent in

using a wireless link. One such mechanism is disconnected operation. This is where the server

side application code is replicated on the mobile host, client side. It was intended to define a

new layer in the ALICE protocol stack called the Disconnected IIOP D/IIOP layer that would

provide the necessary mechanisms to support disconnected operation. This would enable the

movement of CORBA objects from the server side to the client side, where the client could

invoke on the server objects without using the wireless link. The concept of disconnected

operation has been used in file systems such as Coda, but applying it to the CORBA domain is

relatively new.

Another goal of the project was to use a standard CORBA approach to support the mechanism

of disconnected operation. One possible way was with Objects-By-Value which is part of the

CORBA 2.3 specification. It was intended to evaluate this as a mechanism for implementing

the D/IIOP layer functionality. To evaluate disconnected operation it was decided to implement

18

a distributed scheduler application that would use the Objects-By-Value specification so that

its server side functionality could be moved to the client side enabling disconnected operation.

1.6 Roadmap

The remaining chapters in this thesis catalogue the phases of the project that were carried out

in order to achieve the ultimate goal mentioned above. The following is an outline of the

chapters:

Chapter 2 CORBA and Mobility

This chapter presents some of the problems associated with computing in a mobile

environment and introduces some distributed computing techniques to overcome these

problems. It also presents how a number of research projects used those techniques to provide

mobile computing architectures. It then moves onto look at how CORBA can operate in a

mobile environment and how ALICE addressed some of the associate issues. Finally it

introduces the concept of disconnected operation.

Chapter 3 Extension of ALICE - D/IIOP

This chapter presents the proposed design and enhancement to ALICE that is required to

support disconnected operation. It also suggests some possible approaches to supporting this

functionality.

Chapter 4 Implementation

This chapter presents the implementation issues and how Object by Value was used to support

disconnected operation. It also shows how a distributed scheduling application was enhanced

to allow it to work in a disconnected mode.

Chapter 5 Evaluation

This chapter evaluates the use of Object by Value for supporting disconnected operation and

also looks at the bigger question of using disconnection as an approach to bypass the problems

of a wireless link.

Chapter 6 Conclusion

The conclusions along with some proposed future work are given in this chapter.

19

Chapter 2

2. CORBA and Mobility

Wireless communication is much more difficult to achieve than wired communication because

the surrounding environment interacts with the signal, blocking signal paths and introducing

noise and echoes. As a result wireless connections are of lower quality than wired connections

with lower bandwidths, higher error rates and more frequent spurious disconnections. These

factors can in turn increase latency due to retransmissions, retransmission timeout delays and

error control protocol processing. Wireless connections can also be lost and degraded due to

mobility, if the mobile terminal goes out of range or if some obstacle is in the way of the

signal. The number of devices in a cell can also determine whether a mobile terminal performs

well, if there is a high concentration of terminals, the network may become overloaded. With

the proliferation of mobile devices and various mobile networks another problem that will arise

is the interworking of various mobile devices from different networks. Users do not want a

situation where different mobile devices are required for different mobile usage scenarios.

This chapter looks at some issues related to mobility and discusses how distributed object

architectures can be used for mobile computing giving some examples of the mobility aware

architectures developed in research projects. This is followed by an analysis of using CORBA

for mobile computing and the OMG White Paper and Request for Proposals (RFP) on issues

relating to using CORBA in mobile computing. Next there is a description of ALICE and how

it goes some of the way to answering questions in the RFP. Finally disconnected operation is

presented as a way of extending support for mobile applications with reference to a number of

projects that use this approach.

2.1 Mobile Computing Architectures

Using Distributed Object Technology to support mobile computing brings with it a number of

mechanisms that help overcome the problems inherent in this domain mentioned above. One of

the advantages of the distributed object paradigm is that it can deal with heterogeneous

environments where there are multiple platforms and operating systems by providing a modular

and abstract way of representing these environments. As mobile computing becomes more

widespread this will become a major issue especially as there will be diversity in devices and

standards such as Bluetooth, Wireless LANs, GSM and UMTS. Users will want to use the

same devices across these different platforms. Furthermore, with the rise in the number of

20

users extra demands will be placed on mobile services. It has already been illustrated that

bandwidth and latency of the wireless link can affect how applications operate on a mobile

device. This coupled with the mobility of the user, giving rise to situations where

disconnections can occur mean that wireless link presents the core source of problems with

mobile computing. By using techniques of object replication, migration and delegation

availability can be improved. [Chen’97]

Before discussing these techniques it is useful to describe a general architecture for mobile

communications to which they could be applied:

Figure 2-1 Mobile host using services of the fixed network

A typical scenario would involve server objects providing services such as shared data storage,

information retrieval, or application components. The objects may be classified application

objects that provide application or service functionality, and data objects that provide storage

and retrieval. Client applications running on mobile hosts can access shared resources provided

in server objects. The server objects may also exist on mobile hosts and they may also be able

to migrate or replicate to secondary hosts such as the mobile host. The mobile support station

is a fixed host that contains hardware and software support for mobility, including wireless

network interfaces.

Object Replication - To provide increased availability of server resources, server objects may

be replicated and placed at different nodes within the network and on mobile hosts. This

approach is usually helpful in cases where there are breaks in overall network

interconnectivity, for instance if the mobile host becomes disconnected from the fixed network.

If the replicated copy of the server is on the mobile host then disconnected operation is

possible. With the replicated server objects on the mobile host latency is improved as the use

of the wireless link is bypassed. Replication incurs high maintenance overhead in order to

Fixed
Network

Server/
Client

Mobile
Support
Station

Server/
Client

Mobile
Host

21

maintain consistency between the object replicas. Replication also undergoes a clean-up stage

when multiple replicas of an object are reconciled, or merged back into one primary copy.

Object Migration - Replication may not always be the best option for providing high

availability and low latency of services for mobile hosts. Another option is to migrate the

server object from its original primary host to a secondary host possibly the mobile host. This

maintains one single copy of the server object in the system and eliminates the need for any

consistency strategy. This mechanism could be used in cases where a pattern arises that shows

client accesses have moved from one part of the network to another, migration of the server

may help reduce latency. However, it suffers from high setup costs in the same way as

replication.

Object Delegation - Object replication and migration have high setup costs and may not always

be the solution to providing wide availability of server objects. If a mobile host requests the

services of a rarely used server object the request may be forwarded or delegated by using a

directory service to the host that has the requested server object. Delegation basically

introduces a proxy object, the client contacts this as if it was the object it required, but the

implementation of the requested object resides elsewhere on another host. This mechanism can

be used in the scenario described in the figure above where the mobile host has only to remain

in contact with the mobile support station. It acts as a proxy for the server objects the mobile

host needs to contact. This mechanism does introduce another level of indirection by having a

request pass through a proxy object but it is a simple way of ensuring availability.

Disconnected Operation - It is possible to use migration or replication to move server objects

to the client. By migration the actual object would reside at the client side and invocations

would be local to the client minimising invocations across the network. The objects could be

’pre-fetched’ stored in a client side cache. This would require some knowledge of what the user

will do what objects it will need to operate if it was to be disconnected from the network. With

replication the objects stored on the client side are copies of the original that remain on the

server side, but the goal of disconnected operation is the same, the client cache tries to emulate

the behaviour of the server.

The following sections review some research projects that used distributed object technology

in the mobile computing domain with the goal of improving availability of service to the user.

How these projects have dealt with the various issues provides valuable information when

addressing the issue of how CORBA can be used in this environment.

22

2.1.1 Bay Area Research Wireless Access Network - BARWAN

Bay Area Research Access Network is an ongoing project at Berkley that is developing a

toolkit for application development specifically for a mobile environment [Katz ‘96]. The

motivation behind the project is that mobile applications will require the same remote

computing power now available from the desktop. In the BARWAN architecture a network

management layer manages connections of mobile units. The applications level has an

interface to this management layer, which means that its communications needs are known at

all times and it can adapt to the changing network conditions, for instance is informed when the

bandwidth has been reduced and can act on this information.

Each mobile device has a proxy, which is a process running on the fixed network that basically

manages the wireless connection. It decides what level of encryption and compression is used

and performs computing on behalf of the mobile client both interactively and in the

background. There are a number of strategies for dealing with the unreliability of the wireless

link. One of these supports situations when the mobile host is disconnected. The network

management layer will notify the application layer of the disconnection. The application layer

can store results until the user reconnects and proxy can forward any changes that have

occurred. This is useful if the connection is expensive or unreliable since the user can attach to

their proxy and reconnect later to get the results of its computation.

Application and data specific compression also takes place before transmission over the

wireless link, which increases the effective bandwidth. Cost models have been developed that

can accurately predict the overall latency of each transmission for a given type of data being

transferred. For example, depending on the link quality a raw bitmap, a compressed version, or

a lossy/highly compressed version of the bitmap could be sent to the mobile client.

They also introduce the concept of 'pre-fetching' data from the server side and storing it in a

cache on the mobile host. This can take place when the connection bandwidth is high. When

the application is operating in the future it may already have some of the data required stored,

this would reduce the demand on the bandwidth for that particular operation.

The project intended to deliver a wireless network providing high connectivity to the mobile

applications, through monitoring the performance of the wireless link. When the link

performance was affecting the application, some mechanisms to change how the data was sent

were imposed.

23

2.1.2 Bayou - Xerox Parc

Bayou is a project in Xerox Parc aiming to create a platform where applications for

collaborative work could be developed [Peterson ‘97]. The type of applications included are

shared calendars, document databases, collaborative programming tools and many others. The

major goal is to develop the infrastructure to support applications that are specifically designed

to enable people to work away from their offices.

Bayou in particular addresses the access to storage systems required by mobile applications.

These databases are often shared for both reading and writing. They must be readable and

updateable by even those users who may be disconnected from other users. To do this

replication is required and Bayou has studied new replicated data schemes and data

management issues specific to applications in a mobile environment. Existing replicated data

algorithms such as those based on maintaining strong data consistency by atomically updating

a set of copies or based on server initiated callback for checking the client cache do not work

well in a frequently partitioned network. For partitioned networks the algorithms are usually

pessimistic, with locking on replicas, or else provide few consistency guarantees and little

support for resolving conflicts.

Bayou went about devising new schemes by first looking at data management issues and

application requirements in the context of mobile computing and seeing where the existing

schemes fell short. They also decided to build a storage platform, which some prototype

applications would use. The following diagram illustrates their architecture:

24

Figure 2-2 The Bayou Architecture

A server may be resident on the mobile host enabling disconnected operation. The server will

have been preinstalled if this was the case. Bayou applications can read from and write to any

replica without having to co-ordinate this with other replicas. Every replica eventually receives

updates from all other replicas through a chain of pair-wise exchange of data. This mechanism

allows applications to supply their own data-integrity constraints, conflict detection and

resolution procedures and data propagation policies. Bayou servers manage the replication.

Each server holds a complete replica of the data. Bayou guarantees that the distributed storage

system will eventually move towards a consistent view by having a global order on write

operations. The writes carry certain information so that the Bayou server can apply the ones it

has received in the right order, without having to co-ordinate with other servers. Reconnection

of the disconnected mobile host will have to occur at some stage for there to be complete

consistency.

One prototype Bayou application was a group calendar. There are application specific policies

that ensure conflicts can be resolved. For example people provide alternative times when

Application

Bayou API
Storage
System

Mobile Host

Read or
Write

Server

Server State

Storage
System

Wireless Link

Server

Server State

Storage
System

Server

25

booking a room, this means users don’t have to wait to co-ordinate with other users and seek

approval, it also means the users can operate in a disconnected mode.

Bayou presents a system for collaborative applications to work in an environment where users

may be disconnected and where finely grained co-ordination between users is not required.

This type of application environment matches closely to some of the proposed applications for

future mobile computing systems.

2.1.3 Monarch

 Applications assume that the characteristics of the network environment remain invariant while

the software is in use, however, this isn't the case in a mobile environment. Mobility causes

changes in the environment that may result in loss of functionality as well as changes that

could result in gains in resources. In Monarch, an OGI project, Physical Media Independence

(PMI) was defined, which is an architecture which addresses the management of using the

same mobile host application on different networks [Inouye '97]. It answers the question of

how a mobile host can be reconfigured transparently as it migrates across different

environments and uses heterogeneous network interfaces. The network configuration adapts

itself as active interfaces become disabled and new interfaces become available. Adaptation

was done intelligently so that each layer of the network informed the adjacent layer what was

going on, for instance the transport layer would send a notification to the application layer to

inform it that something is changing. Applications care about bandwidth, connectivity and cost

so they want to receive notifications about these characteristics.

 The Monarch approach looks at how applications can change their behaviour in a mobile

environment by knowing what’s happening at lower levels in the network. One area of

experimentation looks at how the applications are affected by changing from an Ethernet

connection to a wireless LAN connection. The layers of the protocol stack have an adaptation

module associated with them that takes care of what needs to be changed to adjust to the new

link layer connection. These multiple adaptation layers pass information between themselves

so that the application can still function.

 Monarch concludes that applications will perform more efficiently if they co-operate with the

operating systems, which informs them of changes in the environment. A useful lesson coming

from this project is that it is important for applications to be informed of what is happening at

the transport level and to let the application decide how it should proceed using whatever pre-

defined policies it has.

26

2.1.4 MosquitoNet

 MosquitoNet is a Stanford University mobility interest group that has a number of projects in

the area. One area of research has defined the Mobile People Architecture, the MPA

[Appenzeller ’99]. This places a person at the end point of the communication session rather

than the device the person uses. For example, an email message should be directed to wherever

the user is. If they are travelling and have their mobile device switched on then it should reach

that device. If they are in their office it should go to their office desktop computer. A new layer

called the people layer is proposed that will sit on top of the application layer. This layer needs

to name people, map people’s names to application specific addresses, and route comminations

between people. The MPA introduces the concept of routing between people. A ‘Personal

Proxy’, has been defined which can act as a tracking agent or as a dispatcher. As a tracking

agent it contains a list of devices the person is currently available at and as a dispatcher the

proxy can format whatever information is being delivered into something accessible at the

particular device.

 This is a very interesting development in mobile computing. While the work in this project

may not directly feed into the work in this thesis it does, however, fit nicely into the vision of

an open application environment, where the user sees just one application but this can run on

any platform, the desktop or the mobile device. This type of open application environment, or

as the MPA calls it, the mobile aware application, can definitely be facilitated using CORBA.

 Another interesting project in MosquitoNet is NetTimer [Lai ‘99], which looks at ways of

dynamically measuring bandwidth. This is useful in a mobile network since applications need

to be able to adapt to changing network conditions, including changing bandwidth. The

NetTimer tool uses a number of bandwidth measuring algorithms to give an accurate reading.

This enables the application to adjust accordingly. This is another confirmation that the

application needs to have some indication of what's happening at the transport level in order to

take action to continue to execute or show an exception to the user.

2.1.5 Rover

 The Rover toolkit uses a client/server distributed object model that isolates mobile applications

from the limitations of mobile communications systems [Joseph '97]. Current work in this

project relates to improving the reliability of the systems operation by improving the failure

model [JK '96], which addressed client or communication failures and guaranteed reliable

message delivery from clients to servers.

27

 Client applications can run on both mobile hosts and stationary hosts. Server applications are

assumed to run on stationary hosts and hold the long-term state of the system. To allow

applications to run in the mobile environment, which is characterised by limited

communications bandwidth and varying computational resources, Rover introduced two

concepts:

• Relocatable dynamic objects

• Queued remote procedure call

 A relocatable dynamic object (RDO) is an object that can be loaded dynamically into a client

computer from a server computer to reduce client/server communication requirements. An

example of an RDO could be a simple calendar item with its associated operations or a

complex module such as the graphical user interface for a calendar application. Clients can use

RDOs so they no longer make invocations on the server objects. This is useful for disconnected

operation.

 Queued remote procedure call is a communication system that allows applications to continue

to make non-blocking procedure calls even when the host is disconnected. The mobile host has

an access manager which keeps track of the QRPCs and drains them whenever the mobile host

is connected.

 Rover has support for reliable applications built in at the client level dealing with software and

hardware failures and failures of the communications link while sending QRPCs. It also

supports failures at the server side, through logging of QRPCs.

 The following diagram shows where these mechanisms fit into the client/server model:

28

Figure 2-3 The Rover Toolkit client/server distributed object model

The first step is requesting the loading RDOs into the local client cache, this done during a

period of network connectivity. The application decides what objects should be pre-fetched

and stored and these are passed to the client from the server. The server is responsible for

maintaining a consistent view and performs the replication conflict detection procedures.

RDOs are passed back to the server according to a predefined schedule. They pass through the

consistency checking mechanism and are then returned to the client cache.

This approach of moving the objects from the server to the client to enable disconnected

operation formed the basis of the approach of this project. The major difference was that

CORBA objects are the units being transfered in this project.

2.1.6 MOWGLI

MOWGLI was a University of Helsinki project with the goal of studying, designing and testing

a data communication architecture for a pan European GSM-based mobile data service [Kojo

‘95]. A prototype was developed based on that architecture. Mobility aware applications were

developed and deployed as part of the prototyping experiment. The applications were able to

operate in disconnected or weakly connected mode and thus mask the inherent problems of

using a wireless connection.

Conflict?

Server
Application

Client
Application

Client
Application

1. Fetch RDO

Object

Modify/Resolve

Server

Object cache

ORPC Log

Network
Scheduler

2. RDO

3. Export RDOs

4. RDOs

Rover Toolkit

Access Manager on Mobile Host

29

The key concept of the MOWGLI architecture was to introduce a new element to the standard

client-server paradigm, called the mediator. The client and server communicated with each

other through the mediator. The mediator split the end to end connection into two separate

parts, one over the fixed link and the other over the wireless link. Each part of the connection

could be tailored to its own underlying transport. The following diagram illustrates the Mowgli

communication architecture;

Figure 2-4 The Mowgli communication architecture

The Mowgli Data Channel Service (MDCS) is a special transport service that transparently

replaces standard TCP/IP for use over the wireless link. It has a number of mechanisms that

improve efficiency over the wireless link such as priority based scheduling of data channels

over the link. The Mobile-Connection Host (MCH) in the fixed network provides the mobile

host access to the fixed network services. The proxy at the MCH acts as the mediator for all

data delivered between an application on the mobile node and the fixed network server. There

is also a layer on the mobile host side that sits on top of the transport layer that acts as an

interface for applications. MOWGLI also defined a Socket Protocol for communications

between the agent on the mobile host side and the proxy on the fixed host side. The Mowgli

architecture provides a very clear approach to communications in a mobile environment. The

mobile host can communicate with an entity on the fixed network that basically acts as a proxy

for the mobile host and translates its requests into something that can be passed onto other

Mobile Node

Application

Mowgli Socket

Mowgli
Application

Interface

MDCS

Wireless
Interface

Mowgli
Proxy

MDCS

Wireless
Interface

Socket

TCP/UDP

IP

Virtual
Interface

Network
Interface

Application

Socket

TCP/UDP

IP

Network
Interface

Fixed Net

Mobile-Connection Host Fixed Host

Wireless Link

30

nodes within the network. Between these two entities various strategies can be enacted in order

to maximise use of the wireless link capacity. This approach has been used by many projects in

this domain and in fact the OMG recommend an architecture like this in their White Paper on

Wireless Access and Terminal Mobility, which will be discussed in section 2.3.

2.1.7 Project Review Conclusions

The projects described in the previous sections are just a small number of the total projects

investigating issues relating to data communications in a wireless mobile context. It is obvious

that the compelling business case pointing to the huge growth of mobile communications and

computing in the future has motivated a lot of research in the area. Distributed computing

appears to have the necessary tools to deal with many of the issues presented by mobile

communications, as illustrated by the numerous projects described above. One approach,

object replication, appeared in a number of projects in order to support disconnected operation.

It is this approach to support CORBA applications in a mobile domain that is the primary focus

of this project. However, before addressing this issue the next section looks at the issues

relating to using CORBA in a mobile environment with particular reference to the OMG white

paper on wireless access and terminal mobility and their RFP of the same title.

2.2 Wireless CORBA

In the previous section it was shown how many research projects in the mobility domain were

using distributed object technology to provide mechanisms and frameworks that would enable

applications to operate reducing the affects of reduced bandwidth and increased latency cause

by the use of wireless communications. CORBA is an open, platform-neutral technology for

building distributed applications in an object-oriented way that hides most of the complexity

introduced by distribution. However, CORBA was designed to aid application distribution in

fixed networks, it did not have networks that contain wireless links in mind. With the growing

number of mobile devices using wireless communications and the diversity of operating

systems that will arise from this growth, something like CORBA is required to aid with

application development, especially since much of the existing development is using

distributed object oriented approaches.

The OMG believes that this is a very important area for CORBA standardisation. In June 1998

the telecom domain task force sent out a request for information for supporting wireless access

and mobility in CORBA. Resulting from this the OMG published a white paper on Wireless

31

Access and Terminal Mobility [OTDTF ’98] towards the end of 1998 which outlined many of

the issues related to using CORBA in a wireless environment. In May 1999 a Request for

Proposals (RFP) was issued that solicited proposals for technology that would allow mobile

terminals "to exploit and to provide CORBA-based services" [OTDTF ’99]. In the RFP the

term "mobility domain" was used to denote a domain that allows access from mobile terminals

and provides them with the ability to use and to offer CORBA-based services. This section

looks at the issues facing CORBA and the changes that need to be made for it to be used in the

wireless domain. The main areas where CORBA needed to address were in relation to

providing mechanisms dealing with the unreliability of wireless links and mobile terminal

mobility.

CORBA defines standards at three levels, the architectural level, the protocol level and the

application level. Distributed objects and their interactions are defined at the architectural

level, this will not be affected by wireless network behaviour. How objects from different

ORBs developed independently from each other communicate is defined by a set of inter-ORB

protocols. These are affected by wireless networks. A set of standard APIs defined at the

application level will also require some changes.

2.2.1 Protocol-level Issues

General Inter ORB Protocol (GIOP) defines the minimum protocol necessary to ransfer

invocations between ORBs. The Internet Inter ORB protocol (IIOP) is the inter-ORB protocol

that runs over TCP/IP and is probably the lingua franca of CORBA, since it gives the widest

possible interoperability between CORBA ORBs. For wireless access using IIOP presents

problems because of the fact it uses TCP/IP.

Firstly, there is a problem with latencies. In wireless networks latencies are higher than in fixed

networks. The throughput of a link is unpredictable and more error prone, this type of

behaviour does not suit TCP/IP connections and they perform badly. With the higher latencies

a TCP/IP end-point may believe that data was not received at the other end and may retransmit

needlessly wasting bandwidth. TCP/IP also assumes that any errors are related to network

congestion, this would cause it to reduce transmission rates.

IIOP assumes that connections between objects are maintained continuously. This assumption

cannot be made when dealing with wireless connections. Since they are more fragile, the fact

that a connection may be broken and re-established is a reality of wireless networks

particularly when a mobile device is roaming. It may also be costly to keep a connection

32

established and the user may want to disconnect but reconnect to the same session at a later

stage. IIOP does not accommodate that type of behaviour. To overcome this problem a strategy

of wrapping the communication in a way that it would allow disconnection and reconnection

would be ideal. This would require a change in the client/server model used by IIOP where the

server will cancel any operations it was about to execute on the client if the connection has

been lost. The ALICE framework, which is presented in section 2.3 provides a strategy for

dealing with this problem.

2.2.2 Application-level Issues

It is accepted that on a wireless network, disconnection and reconnection may occur quite

frequently and latencies and bandwidth will fluctuate. CORBA applications need to be aware

of these problems and should have more application level facilities to handle this.

One approach to overcome these problems is to have applications that could intelligently

handle circumstances such as lost connections or reduced throughput. The applications could

deal internally with network conditions, to determine network conditions and perhaps modify

how the application itself executes depending on those network conditions. In this way

applications would become network aware. Another approach suggested in the white paper is

to have a set of policies enforced by the ORB for applications that aren’t ‘network aware’.

These could be used in situations when there is a disconnection or when bandwidth falls to a

very low level, which may affect the application executing.

The primary focus of this thesis is to allow continued application operation through support for

disconnected operation, similar to the approach used by many of the research projects

discussed in the previous section. Further discussion on disconnected operation is presented in

section 2.4.

2.2.3 General Issues

The physical movement of the mobile device also introduces a set of problems for CORBA

applications. CORBA object references use the physical location of the object as one of the

attributes that goes into making up the reference. This reference stays the same for the lifetime

of the object, since CORBA assumes the object remains in the same location. However, if the

object's location changes it will no longer be connectable. Some mechanism is required which

ensures that the object can be found even if it's location changes. This problem will become

more apparent as more diverse applications are being developed for the mobile so that the

33

mobile device will also become host to server applications. There needs to be some way in

which clients can get a reference to server objects that will not be affected by a change in the

server’s location. The ALICE framework defines a way of ensuring clients can remain

connected to a server that changes its location, this is presented in section 2.3.

2.2.4 The OMG Wireless Access Reference Model

The OMG has come up with its own reference model in relation to wireless access and

terminal mobility. The key entity in enabling mobility is the Access Gateway, which is the

gateway between the fixed network and the wireless network. It is this gateway that the mobile

terminal contacts. The model assumes that the client and server are in different ORB domains

and that the communications path between them includes a wireless segment. The following

diagram illustrates the OMG reference networking model;

Figure 2-5 Reference Networking Model

The following diagram shows the protocol stack recommended by the OMG, showing how it

expects the various nodes in the reference model to communicate over TCP/IP or wireless

transport protocols. In the same way that IIOP was developed as the mapping for

Fixed
Network

Wireless
Access

Network

Wireless
Access

Network

Mobile
Node

Access
Gateway

Access
Gateway

34

communication using TCP/IP it is possible that a GIOP mapping could be defined for the

wireless transport and that could be used over the wireless link.

Figure 2-6 Protocol Stacks in the Reference Networking Environment

WAP is an example of one of those protocols gaining in support in wireless networks that

could have a GIOP mapping. This would mean that GIOP messages would be mapped to WAP

as it is the protocol used over the wireless link. This could possibly result in a mobile wireless

inter-ORB protocol being specified for communication across the wireless link, which could be

translated into IIOP in the fixed network.

One requirement on the wireless transport is that it can handle temporary disconnections and

automatic access recovery. This is something the ALICE framework can do, which will be

discussed in section 2.3

A number of projects have been investigating using the OMG concept of the mobility domain,

in particular the ACTS project DOLMEN.

2.2.5 Dolmen

Dolmen [Raatikainen ‘97] was an ACTS project that defined and validated an Open Service

Architecture for fixed and mobile environments, known as OSAM. Dolmen built the

architecture using the Telecommunication Information Networking Architecture Consortium

(TINA-C http://www.tinac.com/) Distributed Processing Environment (DPE). It viewed the

telecommunications infrastructure as a large scale, distributed processing environment.

Client/Server Client/Server

ORB ORB

GIOP

GIOP mapping(s) to transport

TCP/IP Wireless Transport

Access
Gateway

Fixed Node Mobile Node

35

Dolmen examined CORBA-Based object communication in the context or wireless access and

terminal mobility.

Dolmen looked at two aspects of mobility,

• Personal Mobility

• Terminal Mobility

For personal mobility the TINA concept of the User Agent (UA) was used. It normally gives a

user representation in the service provider’s domain. As the user changes location Dolmen

introduces the concept of a home and a visited domain. So now there are two User Agents each

containing information about the user and providing the user with access to the platform.

For terminal mobility the characteristics of wireless communication must also be considered,

such as low bandwidth and unreliable communications link. Since the OASM included both

fixed and mobile domains one of the goals was to enable transparent computational object

communication across the mobile link. The mechanism used to allow this was based on IIOP.

In Dolmen an ORB was pictured at either end of a mobile link.

To get the mobile and fixed domain communicating the concept of 'interoperability bridges'

was used. Interoperability bridges are described in the CORBA 2.0 architecture. A half bridge

existed in each domain that had the functionality to deconstruct and reconstruct

communications across the mobile link. The following diagram illusrates the components of

the Dolmen architecture:

Figure 2-7 The Dolmen Architecture

FDBRMDBR

Mobile Host

MDBRFDBR

Core Network

Mobility Domain A Mobility Domain B

Wireless Access Domain

36

A Fixed DPE Bridge (FDBR) serves as a DPE access point for mobile terminals. A Mobile

DPE Bridge (MDBR) connects the local ORB domain of a mobile terminal to the core network

ORB domain by interacting with an FDBR over the wireless access network. The MDBR and

the FDBR perform location management functions and DPE handovers, enabling terminal

mobility on the DPE level.

The project defines a special Light-Weight Inter-ORB Protocol (LW-IOP). This protocol takes

the problems of a wireless link into consideration and has efficient message formats and a

compressed data representation for object communication. This approach does have a

drawback in that the application needs to be able to communicate with LW-IOP. A gateway to

IIOP can be defined to allow it to communicate with applications using IIOP. This is an

important choice whether to use the lingua franca of CORBA, IIOP, which has such wide

usage or use a newly defined IOP. As is described in section 2.4 the ALICE framework still

uses IIOP for communication across the wireless link.

DOLMEN implemented two services to run on this architecture, a Hypermedia Information

Browsing service, and an Audio Conferencing service. The end user services were able to

make full use of the facilities offered by the service machine on the fixed network.

DOLMEN used CORBA concepts such as bridging to deal with the introduction of a wireless

link in the overall communications architecture. The project also made the leap of defining a

new IOP for use over the wireless link. This choice places demands on the fixed part of the

network in that it now requires a gateway to translate this protocol into IIOP. The next section

describes the ALICE framework and how it deals with the issues presented by having wireless

links in an environment that uses CORBA.

2.3 The ALICE Framework

The ALICE (Architecture for Location Independent CORBA Environments) platform is used

to deal with the transport issues relating to using CORBA in the mobile environment. It is

specific to IIOP but it could be used for a variety of protocols. It allows CORBA objects

running on mobile devices to interact transparently with objects defined within other ORB

implementations. ALICE allows server as well as client objects to reside on mobile hosts and

provides a mechanism to support the movement of the servers without the requirement of a

centralised location register [Haahr ’99].

37

The components that make up the communications architecture in ALICE are shown in the

following diagram:

Figure 2-8 Client/Server Communication in a Wireless Network

The Mobility Gateway (MG) acts as a bridge between the wireless network and the fixed

network. It takes on a similar role to the access gateway defined by the OMG for the mobility

domain. It has a number of roles in the ALICE framework, it acts as a proxy for a mobile host

by relaying incoming and outgoing messages over the fixed network for the mobile host. It also

performs address translation and redirection for a server on a mobile device that changes

location. The mobile host can change location causing it to change the mobility gateway it uses

as access to the fixed network. This is a handoff. This involves transferring state information

from the old mobility gateway to the new mobility gateway and is a difficult process.

ALICE has defined a protocol stack that hides some of the problems related to the use of a

wireless link such as low bandwidth and unreliable connectivity. The protocol takes a layered

approach in order to provide IIOP functionality as illustrated by the following diagram.

Mobile Host Mobility
Gateway

Network
Host

Client/
Server

Client/
Server

Fixed
NetworkWireless

Link

38

Figure 2-9 ALICE Layered Architecture

2.3.1 The IIOP Layer

The IIOP layer provides the ALICE implementation IIOP. It enables the creation of the eight

message types that are required to transparently locate and invoke methods of a server object.

For example a method is invoked by using an IIOP Request message. There is also an API for

the IIOP implementation that was initially defined in OMG’s Interface Definition Language

(IDL) and subsequently implemented in C++.

2.3.2 The Mobility Layer

The Mobility Layer hides broken TCP/IP connections from the layers above it by providing a

logical connection abstraction. As far as the IIOP layer is concerned the connection below it is

a normal TCP connection. When the TCP/IP connection is lost the mobility layer continues to

Actual Flow of TCP/IP protocol data units

Logical flow of IIOP protocol data units

Mobile Host Mobility Gateway Fixed Host

IIOP API

IIOP Layer

S/IIOP Layer

SOCKETS

Mobility Layer

SOCKETS ++

TCP/IP

SOCKETS

S/IIOP API

Mobility Layer

SOCKETS ++

TCP/IP

SOCKETS

S/IIOP Layer

TCP/IP

SOCKETS

ORB or IIOP

ORB or IIOP API

39

make attempts to reconnect. The IIOP logical connection remain open for this period of time

and any request data is cached until such time as the TCP/IP connection is re-established.

There is an assumption here that a reconnection will occur within a reasonable period of time.

The mobility layer also allows the IIOP layer to allocate TCP/IP ports on the mobility gateway

for incoming connection attempts. This ensures that clients on the fixed network can set up

TCP connections to the mobile device by contacting the mobility gateway, which then creates

the logical connection with the mobile device. The mobility layer also deals with handoffs

between mobility gateways when the mobile host moves from one gateway to another. This

involves tunnelling open transport connections between fixed hosts and the old mobility

gateway for the remainder of their lifetime. The mobility layer provides mobility information

for the S/IIOP layer on both the mobile host and the mobility gateway that enables address

translation and request forwarding to be performed.

2.3.3 The S/IIOP Layer

The S/IIOP layer is the mobile-aware component of the IIOP implementation in ALICE. It is

used together with the IIOP layer to support server objects on the mobile host. It is used by the

application to perform operations relating to IORs. It uses the callback mechanism of the

Mobility Layer to keep track of the current mobility gateway and uses this information to

manipulate the IORs to keep them up to date. This process is known as ’swizzling’. An IOR

contains a number of profiles, each specifying a location, in the form of hostname and port

number, where the object can be reached. A CORBA server creating an IOR adds a profile to it

indicating for each endpoint at which the object can be reached. The client on connecting to the

server tries each profile of the server’s IOR until one succeeds. Swizzling an IOR occurs when

a new IOR is to be created and the mobile host is connected to the mobility gateway. Each

profile that refers to the local mobile host is removed and replaced by one referring to the

S/IIOP layer of the mobility gateway the mobile host is connected to. The S/IIOP layer on the

mobility gateway listens on a default port, which is known by the S/IIOP layer of the mobile

host, thus allowing swizzling to occur on the mobile host. When the server application starts to

listen on an IOR, a logical connection is made between the mobile host and the mobility

gateway. This means that any connection attempts on the S/IIOP layer of the mobility gateway

will be forwarded to the mobile host.

ALICE deals with the major recurring issue relating to using a wireless link of how to handle

disconnection and reconnection. This has been achieved in a way that is transparent to the

40

CORBA application. The mobility layer will continually try to reconnect if the TCP/IP

connection has been lost. However, if the connection stays down for an extended period of

time then an exception will eventually have to be passed back to the application. It is in

situations such as this that a way of allowing the application to continue operation even when

the wireless connection has been lost would be useful. The application would be further

protected from problems relating to the wireless link. The next section addresses some of the

issues involved in using a disconnected operation approach such as how it can be supported

using object replication and relocation and how to ensure consistency on replicas.

2.4 Disconnected Operation

The CORBA environment is essentially a connection-oriented programming environment, a

client must maintain a connection to a server. In a mobile domain the challenge is to maintain

that logical connection between the server and client regardless of what happens at the

communication level.

What is required is a mobile aware ORB that has techniques for optimising access to server

objects, which will deal with the latency and bandwidth problems. It also needs some

techniques for disconnected operation, which may include object replication, object caching on

mobile hosts and some method of deferred remote invocation when a connection is down.

Some of these techniques overlap in supporting the various requirements. Object caching and

object replication can help with optimised access to objects and also in disconnected operation.

The following sections look at various existing projects that have used and experimented with

some of the mechanisms mentioned. The aim is to use some of these ideas and present some

possible solutions supporting mobile operation for CORBA applications in a wireless network.

Replication is one of approaches that can be taken for disconnected operation in a client/server

paradigm that were discussed at the start of section 2.1. Replication introduces problems such

as consistency and conflict resolution.

2.4.1.1 Using the Disconnected File System Approach

File caching is one approach that enables disconnected operation for extended periods of time

in a file system. By using this approach it must be accepted that it will lead to conflicts, which

will affect to validity of certain read and write operations. A user of such a system must be

aware that a write operation may fail long after it may have been committed on the local host

and also a read operation may return some outdated information without showing any errors.

41

Coda [Kistler ’91] is a diconnectable file system. It provides resilience to server and network

failure through the use of server replication and disconnected operation. The name-space is

mapped to individual file servers as volumes. Each client has a cache manager in charge of

caching the volumes. To achieve availability Coda uses replication, allowing volumes to be

read and written at more than one server. Coda uses an optimistic replication strategy, which

provides high file availability by allowing reads and writes even when the server and clients

are not connected. The strategy can be described as read-status-from-all, read-data-from-one,

write-to-all [Saty ’89]. With optimistic replication there will be conflicts. In Coda write-write

conflicts are detected using version vectors. A version vector summarises the modification

history of a file and conflicts are detected by comparing version vectors. If the vectors are the

same then there is no conflict, if they are different then a resolution process must take place.

This is done by a resolution protocol and if it’s not successful then by a manual process.

Disconnected operation in Coda takes place when the replicated servers are unreachable and

the client enters what is called emulation state where the cache emulates the server. At

reconnection the cache volume is merged with the servers volumes. Conflicts are detected as

described above.

Disconnected operation may only be acceptable to the user if reconciliation of conflicts is

automatic, and is done in a predictable, repeatable and acceptable way. One wireless

experiment has defined a number of algorithms for automatic resolution of conflicts based on

priority assignments and invalidation [Hild ’95]. It was illustrated that total reconciliation can

be performed as a sequence of partial reconciliations.

At the University of Washington a disconnected operation programming environment for

mobile computing devices was developed based on experience building a disconnected NFS

for portable computers. Concepts from the CODA file system approach were used to develop a

proxy to add to the standard client/server scenario. The proxy was used to mask mobility. It

acted as a pseudo-server to the client and a pseudo-client to the server. In the connected state

the proxy forwarded all of the client requests to the real server. In the disconnected state the

proxy emulated the real server but the proxy maintains a log of modifying operations that were

to be reflected on the server on reconnection [Fiuczynski ’95].

42

2.4.1.2 AspectIX

AspectIX [Geier '98] is and open architecture defined to overcome CORBA’s limitations when

it comes to providing an open architecture for use in a mobile environment. It moves beyond

the static client-server relationship of CORBA and uses the concept of distributed objects. In

this system an object is made up of distinct fragments and each fragment communicates with

other fragments to achieve the desired behaviour. The client in this architecture is a little

different from the CORBA one where the local object is a stub that delegates invocations to the

server object. In AspectIX the client of the object always has one of these fragments in its local

address space. The fragment could be a simple stub as in CORBA. The stub may connect to

another fragment (like the server object in CORBA) that implements the object’s functionality.

The fragment at the client side may also be a little more intelligent and may cache some of the

object’s data or implement some of the object’s functionality locally. This kind of behaviour

would be very useful in a mobile communications environment.

For replication the distributed object is extended by an additional fragment, which just acts as a

replica. The replica has the responsibility of implementing the consistency model

communicating with other fragments. For mobility the distributed object is extended with a

new fragment at the destination site. The state of the original fragment is then transferred to the

new one and the old fragment can be replaced by a simple stub acting as a forwarding entity.

The original fragment can then be deleted, this results in the migration of the distributed object.

The distributed object makes the decisions about replication and mobility based on the

requirements of client.

This mechanism could be a useful way of extending CORBA’s static client server architecture

and allow it to function in a mobile environment using the tools of replication and migration in

a distributed object scenario.

2.4.2 Using Disconnected Operation In CORBA

In supporting disconnected operation in a CORBA environment it is obvious that the

mechanisms of replication and relocation will be required. The next section describes how

disconnection can be integrated with the ALICE framework and proposes the mechanism of

Object by Value which was used as the approach in this project for moving objects around to

enable disconnected operation. However, as the previous sections pointed out there is also a

penalty of having to provide some support for conflict detection and resolution.

43

Chapter 3

3. Design

The previous section introduced the concept of how disconnected operation could be supported

in a distributed object system. Tools such as object replication and object relocation were used

in many of the relevant research projects discussed. In this section a design for integrating

support for disconnected operation within the ALICE framework is presented. It describes how

the standard CORBA client server model has to be altered in order to support disconnected

operation.

3.1 Supporting Disconnected Operation in ALICE

In its present form ALICE always assumes in the case of a transport disconnection, that a

reconnection will be possible within a short period of time. For example during a hand-over a

connection may be temporarily lost but ALICE keeps trying to restore the connection and when

it does communication can continue. The IIOP client and server are never aware that a broken

transport connection occurred. ALICE does not consider the case where a transport connection

is broken and it is unlikely that the connection will be re-established for a longer period of

time. In such a case it would be difficult to hide the communications breakdown from the client

and server. If the logical IIOP connection is broken ALICE has no support for resuming the

broken connection over a different transport connection.

To extend the ALICE architecture to support disconnected operation it must be decided at what

level to introduce this new functionality. For the client side of the application there are two

options: knowing that a disconnection in the underlying transport has occurred, or being

unaware of the behaviour of the underlying transport. At present the ALICE IIOP clients are

’disonnection-unaware’. To continue this support for cases where disconnections remains for

periods of time that would be noticeable to the client a new layer could be introduced to the

ALICE framework. This layer could transparently deal with the extended disconnections by

providing some additional functionality to allow the client to continue operation normally.

There may be cases where it is better for the client to know that there is a problem with the

underlying transport causing a prolonged disconnection from the network. In this case the

client could be provided with support to continue operation in disconnected mode, but it would

be aware of this i.e. it would be a ’disconnection aware’ mobile client. For the server side it

44

would be good to limit the changes to applications needed in order to support disconnected

operation. This would mean that existing applications could continue to be used in mobile

scenarios with minimal changes. The changes to the server side will be related to whatever

decisions the mobile host and client side need to make in order to support disconnected

operation.

3.1.1 Using the Rover Approach

One possible scenario for supporting disconnected operation would be to copy the server side

objects that a particular client uses from the fixed network to the mobile host. This is the

approach taken by a number of the projects described in chapter 2 and in particular the Rover

project from MIT where the communication abstraction was changed in order to compensate

for the harsh conditions of a mobile environment.

Essentially the client should be able to:

• Store copies of server objects it uses in a cache on the mobile device

• Make calls locally to the replicated objects in that cache

This will insure that client operation is unaffected by network conditions. Obviously there are

requirements on this sort of behaviour both for maintaining consistency between replicas and

merging copies at strategic points in the operation of the service. There are questions as to

whether it is worth the effort in downloading the server side objects just because the network

conditions may sometime prohibit normal application behaviour. Moving objects to the client

side also raises the questions of whether the mobile host operating system can support the

objects and the implementation code in order to continue operating the service in the same way

as it was when it resided on the fixed host. A scaled down version of the objects may be

required, meaning the objects copied over to the client would contain a subset of the

functionality of the fixed version but be sufficient to support operation of the application for

the period of disconnection. This introduces the problem of how to determine what that scaled

down version of the server objects should provide. The subset of functionality could be client

initiated or determined by a profile of the client at some previous time of subscription to the

service. In addition there is an important question of how to move the implementation code for

those objects to the mobile host and subsequently link the code so that it is executable on the

mobile device. In favour of having local invocations will be the improved application

behaviour since response times will be quicker. There is also the point that there will be no

network connection cost, which may be significant for mobile networks.

45

Another possible scenario would be to queue invocations while the mobile host was

disconnected from the network. This means that invocations now become asynchronous.

Operations can continue on the client side even if a response has not arrived for a particular

invocation. On reconnection to the network the queued invocations would be flushed to the

server side in sequence. This approach means that the mobile host does not need to have any

server side application support, which may be significant in terms of the mobile device having

restricted relating to its processing power and storage capacity. However, one drawback is that

a disconnection may last for an extended period of time and the user will have no feedback on

any of the operations that have caused invocations to be queued.

The approach of object replication does raise some issues with the standard CORBA

client/server-programming model. Firstly is it possible to make copies of CORBA objects and

move those copies from their original location while still being able to set up a

communications channel between the client and server in the normal way? If it is possible to

move the server side objects how are copies of these objects kept consistent? The next section

looks at integrating mechanisms to support this behaviour with the existing ALICE platform

and this is followed by some discussion as to how the standard CORBA model can be modified

by using some of the tools in the latest OMG specifications.

3.2 Extension of ALICE Protocol Stack

A client in the ALICE environment is shielded from the mobility support that exists in the

mobility layer and uses the IIOP layer in the normal way. As far as the client knows it always

has a connection to the server, so in effect it is a mobile-unaware client as was stated in the

previous section. Initially, the goal was to continue this transparent disconnected operation

support, enabled through the introduction of a new layer in the architecture. However, it was

decided that it would be better for some clients to know that they were operating in a

disconnected mode. Thereby the clients would be aware that any actions they take are tentative

and may require future intervention on reconnection as part of a resolution function. To fit in

with the terminology already used by ALICE the new layer was called the Dissconnected IIOP

Layer (D/IIOP). D/IIOP is an abstract design for allowing disconnected operation in CORBA.

In effect the D/IIOP layer intercepts client calls analyses them and begins the process of

enabling disconnected operation. The following figure illustrates where the D/IIOP layer fits

into the ALICE framework.

46

Figure 3-1 Extended ALICE Protocol Stack

The D/IIOP layer exposes the same IIOP API as the IIOP layer. This ensures that the IIOP

functionality is still available in the same way to the client application code as it was

originally. There is also an additional API, which provides the interface to the disconnected

functionality. In this way clients are aware that they are disconnected when they start using this

API. This approach was used to allow applications to avail of the existing IIOP implementation

but also leave the option to use the new disconnected functionality. The following sections

describe in more detail how the disconnection support will work, and certain issues that arise

in introducing this functionality.

3.2.1 Replication and Caching Strategy

The basic principle behind what the D/IIOP layer aims to support is based on work originally

coming from the file system world such as that of Coda, as well as work from the distributed

object technology world such as Rover and Bayou. In Coda availability is achieved through

server replication. It was decided to use an optimistic replication approach with the D/IIOP

layer. Availability is ensured if updates are allowed on any replica at any time. A user of a

mobile device would still want to use their applications independent of any other user in the

system. With solutions such as primary-site or majority-vote replication availability becomes

restricted [Sorensen’96].

D/IIOP Layer

IIOP API

IIOP API

IIOP Layer

D/IIOP API

Mobility Layer

Sockets +

TCP/IP

SOCKETS

47

In the same way as volumes or files are moved in the Coda system, server objects need to be

moved in the CORBA scenario to a local cache at the client on the mobile host. There are a

number of questions that arise in this scenario;

1. When are replicas of the server objects made and passed to the mobile host?

a) One possibility is to wait until network conditions deteriorate to a stage where a

disconnection may occur soon and move the objects at that point. However, this may

not be feasible since network conditions have deteriorated, the process of transferring

the objects may compound the bad conditions and a transfer may not happen

successfully before there is a complete disconnection.

b) In the Ubidata framework [Afonso ‘98] two different ways of getting replicas to the

client were used. The first was to use a periodic pull approach whereby a client

(subscriber) uses polling to obtain data from the server (publisher) according to a

predefined schedule for each of the items the client is subscribed to use. This can be

termed as a pre-fetch approach. The other approach used in Ubidata is an event-driven

push delivery of items to the client. The client receives a notification that an item has

changed and it can then download that item.

c) An alternative is to copy the objects when the application is started up on the client

side, essentially a pre-fetch approach. The underlying support provided by the D/IIOP

layer should identify the server objects required by the client to operate and make

copies of these objects. The server could use a client profile to determine what objects

it uses. The objects are then passed to mobile device stores them in its cache.

2. How are replicas of CORBA server objects made?

One of the goals of the project was to find a CORBA compliant solution enabling

disconnected operation. It was important to assess the possible ways to create replicas of

CORBA objects.

a) The CORBA LifeCycle Service [LIFE ‘97] defines services and conventions for

creating, deleting, copying and moving objects. A client that wishes to move or copy

an object issues a move or copy request on an object supporting the LifeCycleObject

interface. This puts a requirement on the server side objects, to support that interface.

It doesn’t allow objects to be moved like parameters so copying requires the use of a

factory service.

48

b) The project AspectIX discussed in the previous chapter uses a fragmented object

representation that is CORBA compliant to enable to creation of copies of CORBA

obects. The distributed object is simply extended by an additional fragment that just

acts as a replica. It is transparent to the client whether it accesses the remote object or a

local replica.

c) Object By Value is part of the CORBA 2.3 specification [OBV ‘98]. It essentially

provides the same capability that the 'pass by value' semantics of standard

programming languages do. Objects can be moved easily as a parameter in an

application.

This is just a short list of the possible approaches to addressing this issue. Further

discussion about these options is presented in the server side support section later in this

chapter. The choice of which one to use for replication can be put down as an

implementation issue.

3. How are the replicas passed to the mobile host?

This really ties in with what mechanism is used to create the replica. It is important to

realise that the object implementation also needs to be present at the mobile host, this

places a requirement on the mobile host to support that implementation.

3.2.2 Cache Consistency

Obviously when using replicated objects the issue of consistency between the replicas arises.

There are a number of approaches that were considered for ensuring replicas are consistent;

1. Write Through; for any invocation on an object there would be a write through to the

original primary copy. Any change on a local copy would be immediately apparent on the

original copy on the server side. However, this introduces the possibility of blocking in the

system, when one client is writing the changes to the server, other clients will not be able

to access the primary copy. It also does not take into account the probability of

disconnection, when a write through would not be possible. Optimistic replication was

chosen for D/IIOP in order to allow updates on any copy at any time.

2. As with Coda a callback system could be used. The server is responsible for maintaining

consistency so it manages when replicas are checked and conflicts resolved. This approach

would be suited to the case where clients are mobility unaware.

49

3. Since in D/IIOP the client is mobility aware it was decided to leave the decision for timing

of the consistency management with the client. This could be done automatically at a

particular instance, for example when the client reconnects to the network the replica

objects it modified could be passed to the server and the conflict detection and resolution

process begins.

The server is responsible for conflict detection and resolution. This will be an application

specific process, however, as is the case with Coda and Rover, a system of version vectors

should be used to aid the process. A version vector summarises the modification history of

the object. If a conflict has been detected the relevant clients should be informed and

resolution should take place based on some communication between them.

3.2.3 D/IIOP Protocol

The following diagram illustrates what takes place within the D/IIOP layer in order to enable

disconnected operation;

Figure 3-2 D/IIOP Layer

1. Initially when the client applications starts and needs to connect to a remote server object

the D/IIOP layer will check to see if the target object has already been cached.

Cached?

IIOP API D/IIOP API

Cache

1. Connect to server object

2. Get replica 3. Return replica

4. Store replica

2.(5.) Use replica

6.Flush Cache

* Use local copy

50

2. If the object was not in the local cache a request is made to the server to connect to the

object and make a copy of that object and pass it to the client side.

If the object was stored in the local cache then the client can immediately start using the

stored version.

3. The server side should respond with either an exception to say that the object cannot be

copied and the remote version must be used, or it should pass a copy of the object to the

client. The remote version may be unavailable due to some security restrictions. It is

possible that a response at this stage will indicate that the connection to the server is

broken. This information would be provided by the ALICE mobility layer. The client could

then be informed to try again later or the client invocations could be queued and passed

onto the server when the mobility layer informs the D/IIOP layer that the connection is

available once again. When to inform the client that the connection is unavailable should

be an implementation choice.

4. The object passed back should be stored in the local cache.

5. The client should then be able to access the stored local copy of the object and continue

operation.

6. When the mobile device has been disconnected from the network for a period of time and

there are objects in the cache there is obviously a requirement on resolving the cached

copies with the remote copies when re-connection takes place. A message will be delivered

from the mobility layer indicating that the connection to the remote server side is back up

so this should initiate the resolution process. Another option that should be supported is

that at a certain point in time determined by the client the cache can be flushed to the

server where conflict detection and resolution can take place. This is one function of the

D/IIOP API.

The D/IIOP layer needs to provide an Interoperable Object Reference (IOR) translation

mechanism if the standard IIOP layer is to be used. The client originally connects using an IOR

for an object on a remote device, the new copy of the remote object will have a different IOR if

it is copied to the mobile host device. The swizzling layer functionality of the S/IIOP layer

could be used.

∗ The client could directly access the copied object without going through the IIOP layer this

raises the question about where the cache is situated. This is an important question in terms

of how it relates to the marshalling of calls. In general a CORBA call goes through the

51

client proxy and then over IIOP to the remote server side. Does this mean that the server

side object replicas should be placed below the IIOP level so that the same IIOP calls can

be made to them? This would mean marshalling the message so that it can be sent over

IIOP and then unmarshalling the message again before it is delivered to the server side

object replicas stored in the local cache. A way to avoid this sort of computation on the

mobile device would be to have an application level interface which checks to see is the

object is cached; if it is then the application can access the object locally without having to

go over IIOP. This removes the need for the marshalling and unmarshalling of the original

message. This will then remove any transparency to the client, the client will know it is

directly accessing a local copy since it is no longer using IIOP.

3.3 Server-side Support

There are two major requirements on the server,

• Make replicas of the server objects requested by the client and pass them to the mobile

host where the client resides.

Figure 3-3 Create Object Replicas

• Perform conflict detection and resolution.

Figure 3-4 Conflict Detection and Resolution

Client Server1. Create Replica
Replica

2. Return Replica

Client Server1. Return Client Replicas

OriginalReplica

2. Compare

3. Resolve

4. Return Result

52

In dealing with requests from the client to make copies of objects the server has to make a

decision as to whether it can make a copy of the particular object and pass it over to the client

cache. There may be security issues involved. For instance in a banking application it is

necessary to know whether a client is the authorised account holder if they request a copy of

the account object. When the decision has been made to make a copy the server may need to

know some information about what operating system the client has and whether it can use the

object it will pass over. It may be necessary to tailor the object to fit the mobile device, this

may mean the new object to be passed will have a subset of the primary objects methods and

attributes. A possible was of providing for this is by using the Portable Object Adapter (POA)

[POA ‘98]. The POA is designed to allow programmers to construct object implementations

that are portable between different ORB products. This would suit the case of a mobile

environment where different mobile devices using the same servers may use different ORB

products. The POA also allows a single servant to support multiple object identities

simultaneously and a mechanism for associating policy information with objects implemented

in the POA. The servant manager can have a number of implementations for the same object;

one of these could be the implementation that will fit the mobile device. When a request is

made for a copy the servant implementation for the mobile device could be passed back.

In order to make a copy of the object the Lifecycle Service could be used as was pointed out in

an earlier section. It defines services and conventions for creating, deleting, copying and

moving objects. The lifecycle service addresses a number of questions in relation to moving or

copying an object; what entity does the client communicate with to copy or migrate the object?

How does the client find that entity? What happens to the implementation code of a copied or

migrated object? A client that wishes to move or copy an object issues a move or copy request

on an object supporting the LifeCycleObject interface. This puts a requirement on the server

side objects to support that interface. They are referred to as the target objects.

The POA and Lifecycle Service are two possible standard CORBA approaches to supporting

the server side functionality. Object by Value could provide the necessary server side

functionality. This specification allows the passing of objects by value rather than by reference.

It was not developed specifically for complex caching and replication, however, this can be

built on what OBV offers. It works in a similar fashion to standard programming languages'

pass by value semantics. A new instance of an object is sent from one entity to another, the

new object has a separate identity from that of the object on the sending side.

53

3.4 Summary

This chapter began with a discussion of supporting disconnected operation in ALICE. A

proposal of and approach for ALICE similar to that used by Rover was presented. The D/IIOP

layer would provide the necessary functionality to get copies of server objects onto the mobile

host. A discussion of the possible mechanisms that could be used to implement this abstract

design was also presented. The implementation of some of the aspects of this design is

presented in chapter 4.

54

Chapter 4

4. Implementation

This chapter describes the implementation carried out in the project. Firstly, the goals of the

implementation are presented. This is followed by a number of sections dealing with various

implementation choices, the implementation language, the ORB implementation used, the

choice of Object-By-Value (OBV) to implement aspects of the design from chapter 3 and the

decision to use the Java Native Interface to enable integration with ALICE. This is followed by

a description of the sample application used in order to evaluate the design of chapter 3.

4.1 Implementation Goals

The goal of the implementation was to take the design for disconnected operation presented in

chapter 3 and implement as many aspects of it as possible in order to investigate the

implications of using this approach. Part of this process was also to integrate the D/IIOP

functionality into what already existed in the ALICE framework this would mean that a client

could have all the mobility features offered by ALICE with the extra added feature of being

able to operate in a completely disconnected mode.

4.2 CORBA and Java for Mobile Objects

The Java programming language is very suited to writing network programs [Java ‘97]. It is

easy for Java applications to send and receive data across the Internet. By using Java and its

suitability to networking, in this case the network being a wireless one, the implementation of

the disconnected functionality described in chapter 3 would be made easier.

Java also suits the concept of moving objects around. In the Java world mobile objects are

defined as objects that move between two or more applications. Both the state and the code of

the object move from one application to another. In Java, moving the state of the object is a

straightforward procedure because of a facility built into Java called object serialisation

[MOJ]. Object serialisation provides a default automatic mechanism for reading and writing

the state of an object to a data stream. Java also has a feature called class loaders that enable

the actual code to be moved to where the state was moved so that the complete object can be

used at the new location. Class loaders are used to locate and load the bytecode for a Java class

across the network. This is particularly suitable for the case of a mobile host where it is more

55

probable that the required classes do not reside on the mobile host. How the class loader was

used in this project is described in a later section of this chapter.

Using CORBA with Java provides a powerful tool in terms of mobile objects. Some of the best

features of Java can be used with CORBA in the development of CORBA application. One

example of this would be CORBA using Java’s garbage collection in order to control the

cleanup of stubs on the client side. Another would be that some ORBs support is the passing of

serialised Java objects between two CORBA applications. This is through the Java mapping of

the OBV specification. The facility to move code around can also be used from within

CORBA applications. How this specification works is described in the next section. However

if a CORBA application was supporting several languages simultaneously it could not support

the passing of code for all objects. Supporting mobile code for some languages, such as C++, is

very difficult. The receiving application either has to have compile-time knowledge of the code

being downloaded, or has to be able to acquire it, maybe in the form of a dynamically loadable

library (DLL). Although the design does not require a particular language implementation,

Java was chosen for its built in object mobility support.

4.3 Object-By-Value

OBV [OBV ‘98] was the chosen approach to allow the replication of CORBA objects and

therefore enable the support for disconnected operation described in chapter 3. It appeared to

be a more direct way than the LifeCycle service through which clients could get copies of

server objects passed to them. The LifeCycle service appeared to place more requirements on

the server implementation since it had to inherit from the LifeCycle. Pure CORBA (2.1)

objects cannot be passed by value, only the passing of object references is supported. CORBA

objects are defined by an IDL interface. This allows any type of implementation, which is

valuable in a distributed system. However, there are times when it is useful to pass an object by

value rather than by reference, and many examples of passing objects has been described in

great detail in chapter 2. To support this concept in CORBA where the receiving side receives

a "new" instance of the object, with a separate identity from the sending side extensions were

made to CORBA and to IDL. The notion of a valuetype was introduced into CORBA. In

addition the notion of an abstract interface type was also introduced which allows a developer

to specify if an operation can explicitly support receiving either a valuetype or an interface at

runtime. A primary goal of the new extension was to provide good support for Java users of

CORBA. It is felt that a key factor to the continued adoption and deployment of CORBA will

be the ease of interoperability between Java and other language platforms. Because of this the

56

OBV extension was designed so that it would be easily implemented in Java. It was because of

the ability to move objects around and because of its close link with Java that OBV was used to

implement the functionality to support disconnected operation.

4.3.1 Valuetypes

Valuetypes are the key new component to CORBA that allows the passing of an object by

value. They are in many ways equivalent to regular IDL interface types but they are also an

indication to the developer that they will have some extra properties; they will have state

associated with them and also an implementation that will be required to move. These

properties put extra requirements on the valuetype beyond that of a normal IDL type. It is

important to remember that valuetypes are not CORBA objects. CORBA objects are not being

moved around by using valuetypes [Vinoski ‘98]. They do not have IORs associated with them.

It is also important to note that when using a valuetype the local implementation is always

used, there will be no remote invocation. Invocations do not pass through the ORB. This is an

important development for the implementation of the D/IIOP layer. The client will not be able

to make calls through the IIOP API once the object has been passed to the client side. The calls

will all be made directly on the Java object implementations of the CORBA valuetypes.

ValueBase - All valuetypes have a conventional base type called CORBA::ValueBase. This is

a type that plays a role similar to CORBA::Object i.e. it supports the common operations

available on all valuetypes. In the language mapping the ValueBase is mapped to an

appropriate base type that supports the marshalling and unmarshalling protocol.

Supports - The notion of an abstract interface has also been defined and this allows the

application at runtime to decide whether to use the actual valuetype or the object. A CORBA

object can inherit in the normal way from the abstract interface, but the valuetype will 'support'

the interface. This will require the valuetype to provide implementations for any of the

methods defined in the interface. The following sample IDL illustrates some of the new IDL

features [DOG]:

//Define an abstract interface

abstract interface AnAbstractInterface{

void print();

};

//Define an interface that inherits from the abstract
//interface

interface Example : AnAbstractInterface{};

57

//define a valuetype that supports the abstract interface

valuetype valueExample supports AnAbstractInterface{

// a public state

public string name_state

};

//define an interface that uses the abstract interface

interface ValueExchange{

//this operation returns AnAbtractInterface by value
//or by reference

AnAbstractInterface getInterface(in boolean byValue);

};

In the example above the client will be able to connect to the ValueExchange object and

invoke the method getInterface to download either the reference for the Example object or the

state of the valueExample valuetype. The valueExample will have an implementation of the

print() method from the abstract interface and the client can invoke this method if the value has

been passed to it and if the code is local. This will be a local invocation. The Example object

will also have an implementation of the print() method. The client can invoke this method if it

has the reference to the Example object. This is a remote invocation.

Loading - When the valuetype has been moved the new location expects that it can invoke

operations. To do this it requires the code. If it currently holds an implementation class, then

this is no problem. If it does not hold an implementation to reconstruct the object it must

attempt to load the code of the object. It can do this remotely in Java and other portable

languages, it will usually have to be a local process in C/C++. If it cannot do this then it must

raise the NO_IMPLEMENT exception.

Creation and Factories - When an instance of a valuetype is received by the ORB, it must be

demarshalled and an appropriate factory found for its actual type so that the new instance can

be created. The type is encoded by the RepositoryID, which is passed over the wire as part of

an invocation. The mapping between the type, which is specified by the RepositoryID, and the

factory is language specific. The application must register a value factory with the

RepositoryID value before an attempt is made to unmarshall an instance of a valuetype. If the

factory can’t be found then the ORB raises a MARSHAL exception.

GIOP/IIOP Extension - The general approach in extending GIOP and IIOP ws to add support

for the data, in other words the state, and support for the transmission of the type information.

The actual transmission of the code is outside the scope of the IIOP definition but it carries

enough information to support it.

58

Java Language Mapping - The mapped valuetype must implement the standard Java interface

java.io.Serializable. The mapped Java class contains method definitions, which correspond to

the operations defined on the valuetype in IDL. These definitions are defined by the developer

of the class in Java. As was stated before the actual code for the methods must be provided

before the mapped valuetype can be used.

Initializers - This provides a hook for the application to construct an instance of the valuetype.

They are equivalent to constructors in both C++ and Java.

4.3.2 JavaORB

As OBV is a relatively new extension to the CORBA specification there are not many ORB

implementations available that fully support it. The TAO ORB from the University of

Washington (http:// partially implements the specification and has plans for comprehensive

support. ORBacus from Object Oriented Concepts (http://supports it in their alpha release

version 4.02, however, this is a C++ implementation. Thus it was decided to use the

implementation from the Distributed Object Group (DOG), called JavaORB (version 2.0) since

it has a near complete Java Implementation of the specification, which is also free [DOG ‘99].

4.4 Integration with ALICE

One of the goals of the project was to integrate the new disconnected functionality with the

existing ALICE framework. The ALICE framework included an IIOP layer [Cunningham '98],

which provides the software components that allows a developer to build applications that can

communicate using IIOP. The IIOP layer implemented the IIOP protocol through a set of easy

to use objects to send and receive IIOP messages and create IORs. The IIOP layer was

implemented using C++, which meant the API was C++. Since the D/IIOP layer was to be

implemented in Java a decision to use the Java Native Interface [JNI ‘98] to access the

functionality of the IIOP layer was made. The JNI allows the developer to invoke methods in

another language, in this case C++, from a method within the Java code called a native method,

which is identified using the 'native' keyword. When this keyword is used no body for the

method is declared within the Java class in which the method is declared. Instead, the body of

the 'native' method is contained in a separate C++ source file. The benefits of Java for mobility

discussed in a previous section do not outweigh the overwhelming task of re-implementing

currently tested and debugged C++ code.

59

The D/IIOP layer IIOP API would now act as a proxy for the IIOP layer API. The objects in the

IIOP layer API would have an equivalent in the Java version of the API. This would require

some mechanism for accessing the constructor of a C++ class from a native interface call and

returning a reference to the corresponding Java object implementation so that the application

code can continue to invoke methods on the object it created. The following diagram shows the

Unified Modelling Language (UML) class diagram for the objects in the IIOP layer for GIOP

message representation and marshalling.

Figure 4-1 GIOP Message Representation Classes and Marshalling Classes

For example if the Java IIOP implementation was to create a request message coming from the

client it would need to invoke the Request object constructor in the C++ API with the

necessary parameters to create that object. A reference to that object would be returned to the

Java side, which it could use to access the newly created C++ objects in the future. In the C++

implementation, the necessary creation of the client message, and message and CDR takes

place.

Normally a native method calls a method and not a constructor. What was required was a way

of creating an equivalent C++ object when a corresponding Java object was created. One

possible approach called the facade pattern [Tines ‘99] was used to do this. With this pattern it

was possible to conceal one object behind the other. The constructing instance of the Java class

calls a JNI routine that creates a new C++ object, which returns a long to the calling Java

Request

ServerMessageClientMessage

LocateRequest CancelRequest Reply LocateReply CloseConnection

CDR

Message Encapsulation

60

method. This long now acts as a pointer to the C++ object in the Java code by means of a long

type. This should be a private final long so that it will never change (the JNI code can change

its value) in the Java code. To invoke a method on that object referenced by the pointer, the

long representing the C++ object is used and the relevant method called. In this way the Java

becomes a proxy for the C++ class.

There were many objects in the IIOP API that required this, what could be termed, hack. This

was a time consuming process. Since this did not add value to the goal of testing the D/IIOP

layer disconnected functionality support. It was decided to suspend the integration with the

ALICE framework and concentrate on the implementation of D/IIOP layer functionality using

OBV.

4.5 Use Cases and Disconnection IDL

In order to develop some IDL that best represented the design goals for the D/IIOP layer it was

decided to go through some uses cases for the key activities in providing this functionality. The

Rational Rose UML tool was used to generate the use cases. The actors in the system were

initially identified as

• The client application, this is essentially the user of the system that will require

disconnected operation as a result of being on a mobile device, which at some stage

will be disconnected from the network.

• The cache manager will look after the cache on the client side of the application,

ensuring that the requested object is fetched and stored locally on the mobile host. It is

also responsible for initiating the resolution process, by passing its stored objects back

to the server side at a particular point in time.

• The server manager takes care of creating the copies of requested objects and passing

them down to the client side. It is also responsible for conflict detection and resolution.

4.5.1 Connect

When the client side of the application starts up and needs to use server side functionality it

connects to a server side object that offers that functionality. Thereafter, it connects to various

server side objects depending on what it needs to do.

61

Figure 4-2 Connect Use Case

When the client passes a connect message through the D/IIOP layer, the IOR of the object that

it is requesting to be connected to should be passed to the cache manager.

4.5.2 Using the Cache and Retrieving the Object

When the cache manager has a reference to the object the client application requires it needs to

run a check on the cache to see if the object is already in the cache. It can also retrieve the

object from the server side.

Figure 4-3 Retrieve Object

The server gets a request for the object and then makes a copy and passes the copy back to the

client side. The server can also throw an exception if there are restrictions on making copies of

the requested object.

4.5.3 Conflict Detection

The client is required to return the copies of the server side objects at a certain stage so that the

server can perform conflict detection and if required resolution process on the objects.

Client Application Connect

Object Unavailable

Check Cache

Cache Manager

Get Object

Server Manager

Copy and Return Object

62

Figure 4-4 Conflict Detection and Resolution

4.5.4 Using Object-By-Value

Implementation of the use cases described in the previous sections is affected by the choice of

OBV to pass the objects around. By using OBV the client initially connects to the remote

server side object and then the cache manager retrieves the object on request, there is no

analysis of the IOR. Future invocations on the downloaded object are not made through

negotiation with the ORB or the D/IIOP layer. There is no IIOP message to be analysed instead

the client directly invokes on the returned object. This meant that the implementation would

not be compliant with the original abstract design for D/IIOP, however, it was decided to

continue using OBV and use the implementation to study if it could be used to support

disconnected operation.

4.5.5 IDL: Cache manager

It was originally intended to keep the caching mechanism generic so that any objects could be

cached from the server and sent back to the server for resolution. The following shows the

relevant IDL for the cache manager:

interface ManageCache {

//1.

//take a reference to the object you’d like to copy

//pass back the value type to the client side

ValueBase getValueType(in Object myObject);

//2.

//the client will want to ensure that changes

//made to the local copy are passed

//back to the server side at some stage

Cache Manager Return Objects Server Manager Conflict Detection and Resolution

63

void resolve(out ValueBase value);

};

The IDL had just two methods, one to get the valuetype from the server and one to pass it back

to the server. In getting the valuetype, for a particular object, the reference to the object is

passed as a parameter of the method. The server should then pass the valuetype associated with

that CORBA object back to the client. The client can then use the newly downloaded valuetype

directly. The process is reversed in the resolve method. The valuetype is passed up to the

server and it begins the process of resolution.

It was found that when compiling this IDL the compiler had a problem with interpreting the

ValueBase type. The generated code did not produce the stub correctly for the client side. It

had no type on the return for the getValueType() method. It appeared that a specific mapping

to a particular object was required so that the stub knew what object was going to be passed

back. In other words the interface method had to be type specific and indicate which valuetype

was being returned.

 On inquiry at time of writing it was found that support for this type of IDL would be available

in a newer release of the JavaORB product, version 2.1.1.

The process of defining IDL to pass the valuetype objects between the client and server had to

be linked with the actual application. The next section describes the sample application and

how its IDL was extended so that valuetypes could be used.

4.6 The Distributed Scheduler Application

One of the goals of the project was to implement a sample application that could use the

disconnected support as specified in chapter 3. The sample application chosen was a

distributed scheduler. This application was developed as part of an EURESCOM

(http://www.eurescom.de/) project, P715 [P715 ‘99] It was implemented using OrbixWeb3.0

as a Java application that could be used over a telecommunications platform. The goal of this

implementation was to port the application to JavaORB and to extend the IDL so that it

supported valuetypes. In this way it would be possible to evaluate the necessary effort involved

in enhancing an existing application in order to allow it to support disconnected operation.

64

The distributed scheduler was developed so that normal functionality of a calendar tool could

be offered in a distributed environment. The application has most of the basic functionality of

tools such as Microsoft Outlook and Netscape Calendar, however, it was defined using IDL

thus enabling it to function in a distributed environment. The following class diagram

illustrates the key components of the application.

Figure 4-5 Derived Class Diagram Modelling Distributed Scheduler

• The central object in the system is schedule. Each person has a schedule where all the

information relating to that person resides such as appointments and meetings. When a user

starts up the system a schedule object is created for them.

• The person object basically contains all the information relating to a user of the system such

as name, email address, location, telephone number. Each person has a schedule associated

with him or her, so when a person object is created a schedule object is also automatically

created.

Appointment

title : string
date : string
startTime : string
endTime : string
priority : string

Person_factory

create_person()
remove_person()
listPeople()
listAvailable()

Meeting

agenda : String

Person

phone : string
name : string
address : string
TINAId : string
email : string

1

1

+chai
1

1

1..*

1

+attendee
1..*

0..*

1

0..*

1People

Schedule

1

0..*

+schedule 1

+appointme

0..*

1

1

+own1
+schedule

1

Resource_factory

create_Resource()
remove_Resource()
li stResources()
li stAvail able()

Resource

id : String
type : String

0..*

1

+resource
0..*

1

1

0..*

+responsible

1 +resourc

0..*

1

1

+schedule
1

+own

1

1

0..*

1

0..*

1

65

• The appointment object contains all information relating to an appointment such as time,

date, and location.

• Meeting is a specialised case of appointment where a list of other people using the system is

associated with that appointment. The user can choose the attendees from a list of people

registered with the application. Each attendee’s schedule is be updated with details about

this meeting.

• The resource object has details about various resources that may be associated with an

appointment. These can include such items as a room or an overhead projector. A resource

is chosen from a list of available resources in the same way a person is chosen for a

meeting.

• There are two factory objects, resource factory and person factory, which are basically

management objects. They create person objects and resource objects respectively and can

then list these objects and finally delete the objects when required. The person factory is

used by a management application for the system, which is used to add people to the

system. Once a person is registered with the system an ID is associated with them. This ID

is used when by the used when starting the scheduler application to indicate to the system

which schedule object they are to be connected to.

The client development dealt with the user interface and functionality of the system, basically

offering a standard interface which users would find easy to understand and intuitively offer

the common functionality that is expected with all calendar and scheduling tools. Initially all

the client functionality that adhered to the requirements of the scheduling application were

implemented. This functionality was tested using a command line interface. The next phase

was to integrate a Graphical User Interface (GUI) that would provide the standard look and feel

of a scheduler application. GUI development can be a time consuming task so it was decided to

employ a JavaBean. A bean development company, EnterpriseSoft offered a calendar bean

with suitable features to meet many of the basic requirements of the scheduler service. The

front-end GUI code was then integrated with the client functionality specific to this

implementation.

User interaction such as creating an appointment and viewing appointment requires remote

invocations on the server object representing the user’s schedule. By extending the application

to support OBV it was intended to pass a copy of the schedule object to the client side of the

application so that invocations would be local.

66

4.6.1 Integration of Valuetypes

In order to enhance the application so that the five core objects (Schedule, Person,

Appointment, Meeting, and Resource) can be copied and passed around, each of the interfaces

needed a valuetype associated with them.

State Variables - A requirement on the integration was that the valuetypes were expected to

have the same state value as the CORBA objects. As a result when a client requested a

download of a valuetype it would have the same value as the CORBA object. To enable this

the CORBA object methods implementations invoked the valuetype methods where the actual

value would be recorded in the valuetype’s state variables. This ensured that the valuetype had

a record of all the state values of the CORBA object. For instance for the Appointment object

and valueAppointment valuetype the following IDL describes the attribute meeting title:

interface Appointment {

 attribute string title;

…

valuetype valueAppointment supports Appointment {

public string vTitle;

…

In the implementation for the Appointment object the set accessor method for title is like this

public void title(String val){

this.value.title(val);

 }

this acts on the implementation of valueAppointment:

public void title(String val){

vTitle = val;

 }

Where vTitle corresponds to the state variable of the valuetype in the IDL.

Moving Schedule -The schedule object is the key object of the system and it is this object that

initially needs to be moved to the client side to support disconnected operation. If this object is

local to the client will be able to use the application functionality as normal. A valuetype called

valueSchedule was defined for the schedule interface. The valueSchedule valuetype supported

the schedule interface, which put a requirement on the valueSchedule implementation to

67

provide implementations for the methods defined in the schedule interface. The following is a

section of the IDL for the schedule interface followed by IDL for valueSchedule valuetype:

interface Schedule {

 attribute AppointmentSeq alarms;

 attribute AppointmentSeq appointments;

 attribute GuiUpdate gui;

void createAppointment(in string title, in string date,
in string location, in in string startTime, in string endTime,
in string priority);

void createMeeting(in People attendees, in Person chair,
in ResourceSeq resources, in string agenda, in string title,in
string date, in string startTime, in string endTime, in string
priority) raises(Conflict);

…

//this method passes back a valuetype version of the
//schedule object

 valueSchedule getValueSchedule();

};

valuetype valueSchedule supports Schedule{

//defining state variables for the value type

public vAppointmentSeq vAlarms;

public vAppointmentSeq vAppointments;

public vGuiUpdate vGui;

//just a test method to print appointments

//use the state variable

void printApp();

};

Behaviour modifications - In the original IDL for schedule the method createAppointment()

returned an Appointment to the client. This had to be changed as a result of introducing a

valuetype that supported the interface. Its implementation for the createAppointment() would

68

not be able to return an Appointment object because it would exist locally to the client and

could not create the CORBA Appointment object in order to return it to the client. This had an

implication on the server code in that the AppointmentSeq had to be retireved explicitly by the

client to furnish the GUI with the values of the Appointment. The original schedule object was

also changed to include the getValueSchedule() method which returned a copy of the

valueSchedule valuetype.

Since the IDL keyword ’init’ was not supported the instance of the CORBA object and the

valuetype were closely linked. The keyword ‘init’ enables the creation of constructors for the

valuetypes. It should have possible to leave the CORBA object implementations as they are

and use another interface to create valuetype copies of the objects that are be passed to the

client. When the CORBA object was created it creates its corresponding valuetype and

subsequently supplies it with required data.

One of the methods in schedule was createMeeting(), which allowed the creation of a list of

people representing the potential attendees at a meeting. These were to be notified by the

server. Obviously this would not be able to happen if the user was creating a meeting on the

copied local valuetype. This required an alternative way of creating a meeting by the client

when the client was acting on the valueSchedule object i.e. when it was no longer accessing the

original CORBA schedule object. Within the createMeeting() method a Meeting object is

created the client is connected to schedule object a remote invocation. If the invocation is on

valueschedule a Meeting valuetype is created, the other participants would be notified at a later

point in time when the valuetype was uploaded. When the meeting is uploaded a CORBA

object version of the meeting is created. This process is part of the resolve functionality that

occurs at various intervals of operation, determined by the client. This conditional

characteristic had to be implemented for a number of the operations on the Objects of the

system, since the behaviour is different if the invocation is on the local version i.e. the

valuetype or on the remote server side version i.e. the CORBA object.

The operation of the scheduling application was demonstrated, illustrating that the porting of

the application was successful. Creation of a local appointment was also demonstrated

illustrating that behaviour of the application could be the same when valuetypes were used in

place of the remote object they were copying. With some further implementation it could be

shown that the application could operate without being connected to the remote server side as

long as it had downloaded the necessary valuetypes in advance.

69

4.6.2 ClassLoader

A class loader for the classes was also implemented. This was required by the application since

it must had to be prepared to provide the implementations of the valuetypes to clients if the

client could not find the classes locally. The class loader used a URL as the network location at

which to find the classes it required if they were not initially found at its own location. If the

classes could not be found at the URL an exception was thrown [Java ‘97].

70

Chapter 5

5. Evaluation

In this chapter the approach used in the project to achieve the original goals described in

chapter 1 is evaluated. The chapter addresses how the concept of disconnected operation was

brought into the CORBA world to improve availability of CORBA applications in the wireless

domain. This is achieved through the definition of the D/IIOP layer and its inclusion in the

ALICE framework. The definition of the D/IIOP layer is based on approaches used in a number

of previous projects. The chapter addresses how the decision to choose OBV as the mechanism

to achieve disconnection impacted on how far the implementation could meet the requirements

of D/IIOP. This is followed by an evaluation of OBV and reflects how the focus of the project

moved from strictly adhering to the D/IIOP abstract design to an evaluation of OBV. This was

achieved by using OBV to enhance an existing scheduler application to allow it to work in a

disconnected mode. A comparison is made between the D/IIOP approach and OBV approach in

order to determine the most suitable approach to providing disconnected operation in the

future.

5.1 Mobility in CORBA

In order to support disconnected operation it was necessary to find a mechanism that would

allow server object replication. To keep the mobile client operating during disconnection, the

server objects required to operate the client application had to be pre-fetched from the server

on the fixed network and replicated in the client cache before disconnection occurred. The

final phase of disconnected operation required the passing of the object back from the mobile

client to the fixed network upon reconnection to the network. The process of conflict detection

and reconnection would begin at this stage. D/IIOP was defined to support these mechanisms

in the context of the ALICE framework.

A major design choice was the use of OBV to provide the functionality defined by the D/IIOP

layer. The motivation behind the choice was that OBV was part of the CORBA 2.3 standard

and appeared to be a way of passing copies of objects around in a way similar to the pass by

value semantics of standard programming languages. In previous versions of the CORBA

specification only the passing of references of objects allowed. The OBV valuetypes

correspond to CORBA objects however they are not CORBA Objects i.e. they do not inherit

71

from CORBA::Object. This essentially means they can not be accessed in the same way as a

CORBA Object, they do not have IORs that clients can use to invoke methods defined in the

IDL for the valuetype. Even though OBV was not able to support all the requirements of the

D/IIOP layer it was decided to proceed with its use since it appeared to offer a possible

mechanism for supporting disconnected operation.

Valuetypes offer support for "data centric objects" whose nature is to be always passed by

value (like a date, or a matrix). When the object is passed from the server to the client side, it

leaves behind the capability of being accessed like a CORBA object. In the example code in

section 4.6.1 the valuetype variable is accessed via the CORBA object accessor methods.

When the copy of the valuetype is passed to the client and it exists as a local implementation

on the client side. Any changes the client makes stay local and are not propagated back to the

server side. The copied valuetype has its own identity and invocations never go over the

network.

Another facet of using valuetypes that differs from using a CORBA object is that the client

side needs to concern itself with getting the implementation for methods defined within

valuetypes. Before clients could compile the IDL and start using the objects without being

concerned with the implementation of the objects. Making the server responsible for passing

code to the client is not feasible since it can not know in advance what implementation

language the client side is using.

Downloading the valuetypes’ implementations is quite straightforward for a Java

implementation of OBV; the class loader can take care of that. However, since CORBA is used

in networks with such a heterogeneous nature, and this will continue to develop in mobile

networks, clients and servers could be written in different languages and they could execute on

different architectures. It is not possible to download valuetypes in these scenarios. This

increases the coupling between the client and server, which puts a constraint on the

applications with OBV that a client can use.

OBV does offer an equivalent to passing a CORBA object by value. A client can access a copy

of the CORBA object, which has the same state of the CORBA object at the time of the copy.

However, transparency of the implementation is lost. The client has to have knowledge of the

object’s implementation before it can access it. It doesn’t provide any support for replication so

the tools such as conflict detection and resolution are application specific However, OBV does

offer a way of implementing disconnected operation, but it must be accepted that this can never

be transparent to the client.

72

5.2 Using JavaORB

The OBV specification is relatively new. Moreover it is still evolving. This has resulted in

many ORB vendors not providing implementations for OBV. There were a number of

requirements for choosing an ORB product in this project obviously it had to support OBV,

and it had to be free. The decision to use JavaORB 2.0 from DOG was also driven by the fact it

was a Java implementation, Java being more suited to the concept of passing objects around

than other languages like C++. Section 4.2 discusses the motivational aspects behind this

choice.

There were a number of problems relating to using the JavaORB IDL compiler:

• The ValueBase type that corresponds to the CORBA::Object type did not produce the

correct stubs when passed through the IDL compiler. The ValueBase was a return type for

one of the methods. This problems meant that it was not possible to follow the original

design concepts of the D/IIOP layer making the implementation application specific.

• A method to get the corresponding valuetype for each object was defined in the IDL in

place of the original approach. Due to a bug in the compiler the stubs it generated were

incorrect and had to be changed by hand.

• It did not support the ’init’ keyword that is used for initializers, so it was not possible to

define the hooks for constructors for the valuetypes defined. This placed a constraint on

the creation of the valuetype. The valuetype was created when the CORBA object

(interface) it supported was created. Originally it had been planned for the server to create

the valuetypes when the client requested an object copy. This approach would have fitted

in with type of the server side support described in section 3.3.

These problems meant that it was not possible to follow the original design concepts of the

D/IIOP layer making the implementation application specific.

The lack of documentation on the JavaORB product was also an inhibiting factor in its use. In

its favour it was an ORB implementation that supported a large part of OBV the specification.

There were some good examples of OBV IDL with the product that helped in gaining an initial

understanding of how OBV worked. Its implementation of the naming service was easy to use

and worked as expected. There was also a newsgroup [DOG ‘99] associated with the product

where discussion in relation to problems with the ORB took place that was monitored by the

developers.

73

5.3 Extending an Existing Application

This section describes some of the experiences that came from enhancing an application to

support OBV. One important question is how does the implementation change due to the fact

that different mechanisms are being used? The original IDL needs to be modified in order to

incorporate the OBV functionality. The way in which the client operates changes as a result of

the disconnected operation functionality. The server also needs modification to deal with the

disconnected operation functionality. The following sub sections discuss these experiences.

5.3.1 Porting the Application

The application was originally implemented with Orbixweb3.0 and used the ORBacus name

service. In porting it to JavaORB it was necessary to modify the way in which the application

interacted with the ORB. When a CORBA object is created in an Orbixweb3.0 implementation

the ORB automatically connects the object to the BOA and subsequently activates it. With

JavaORB this process has to be done explicitly every time. Certain assumptions were made

about one ORB based on experience from using another ORB causing problems with the

implementation using the new ORB. This highlights one of the problems with BOA that

motivated the OMG to define the POA. The POA provides features that allow applications and

their implementations to be portable between different ORBs from different vendors.

On reflection it would have been better to port the application to use the POA especially since

JavaORB had support for it. Any future work on the application would be independent of the

ORB used.

5.3.2 IDL Enhancements

By choosing OBV major extensions had to be made to the original application IDL. Initially it

was intended to develop a simple interface that just dealt with moving an object from the

server to the client on request and from the client and back to the server at some point in time.

This was not possible when using OBV. Each object that could be passed needed a valuetype

defined in the IDL that supported that object’s interface. The interfaces of each object that had

a valuetype were also extended with a method that returned the valuetype associated with it.

This is a significant change to an IDL specification that was initially intended to be simple. In

using OBV there will be changes to the IDL particularly if there is a requirement for the

CORBA objects to use the valuetypes defined.

74

5.3.3 OBV Application Enhancements

In using OBV there were obviously changes required in the implementation due to the changes

in the IDL. An implementation was required for each valuetype. The implementations of

existing interfaces needed to be changed in order to reflect the fact that they were associated

with a valuetype. Since the keyword ’init’ was not supported the instance of the CORBA object

and the valuetype were closely linked. It should be possible to leave the CORBA object

implementations as they are and use another interface to create valuetype copies of the objects

that are be passed to the client. The keyword ‘init’ would enable the creation of constructors

for the valuetypes. In this way the original application would not need to be altered, as was the

case in this prototype.

These are obviously significant changes to an application just to make it support OBV. Some

of these changes were due functionality of OBV not being available with JavaORB. The

original IDL in section 4.5.5 would have require less manipulation of the original application

code, however, it must be accepted that when extending and application for OBV support there

will be alterations in the implementation.

5.3.4 Disconnected Operation Application Enhancements

The operation of the application was also altered to support the fact that disconnection was

taking place. The application needed to know it was taking to a local version of the object

rather than making a remote call to the server. This process could not be implemented

transparently when using OBV. This is an application specific implication relating to the

distributed scheduler. However it could be envisaged that this sort of outcome would occur in

other applications when they are expected to operate in a disconnected mode.

There was a requirement on each valuetype implementation to be aware that it was to be used

locally to the client. This did not affect most of the valuetypes as their operations were only

related to data about the client using them. When a client creates a meeting object on the server

a list of invitees is supplied and each of their schedules is updated with the meeting

information. This is obviously not possible when the client is in disconnected mode. The client

should be notified that the semantics of this operation have changed as a result of being

disconnected. Only When the object is passed back to the server on reconnection is the normal

operation of updating the invitees' schedules carried out.

75

The server side implementation requires a lot of modification if it is to support the mechanisms

that enable disconnected operation. Initially there is the object copying and passing

requirements. Then there are the requirements when the objects are passed back from the

client, this may involve conflict detection and resolution as well as any changes that need to be

made as a result of actions made by the client while in disconnected mode. These are

significant changes in order to support disconnected operation.

The motivation behind using disconnected operation depends on how much more the client

gets out of the increased application availability compared to the effort required in enhancing

the application. The benefit of increased availability is hard to quantify. It is probably easier to

determine the benefits on a per application basis.

5.4 Disconnected Operation in ALICE

One of the original goals of the project was to enhance the ALICE framework with a means of

supporting disconnected operation. The D/IIOP layer was designed to provide this

functionality. However, the decision to use OBV as the mechanism to allow for replication of

the objects, which was one of the requirements of D/IIOP, meant that many of the original

requirements for the D/IIOP layer were not supported in the implementation.

5.4.1 Transparency

A client using the D/IIOP layer uses IIOP in the normal way to connect to another object and to

send messages. The D/IIOP layer intercepts that message and performs a fetch on the object

required and stores a replica of it in a client cache. The client continues to use IIOP messages

to communicate with the cached object. Ideally this communication would be transparent.

However, this depends on the implementation of the D/IIOP functionality. If the IOR is

translated transparently to the client and invocations forwarded to the new copy of the object,

the client will still believe it is accessing the remote object. Invocations would appear to be on

the same object. The D/IIOP API provided some functionality for fetching and resolving

objects; this functionality could be provided transparently to the client so that the only API

exposed by the D/IIOP layer is the IIOP API. However, achieving transparency depends very

much on finding a suitable mechanism for passing copies of CORBA objects around the

network.

For OBV, transparency is obviously affected. The client no longer invokes operations on the

server objects using IIOP messages with the intervention of the ORB. The client accesses the

76

implementation directly and it is aware that invocations are local so it is also aware of being in

a disconnected state.

5.4.2 Performance

It is not possible to quantify performance of the two approaches but certain assumptions

relating to performance can be made based on the operation of the mechanisms. With D/IIOP,

messages could to be marshalled and unmarshalled even if the invocation is local (the client

believes the invocation is remote). This puts a computational overhead on the method

invocation, which will take a longer time than a direct invocation on the implementation. With

OBV calls are made directly on the implementation without ORB intervention, the process of

building the IIOP message is by passed therefore it should take less time.

5.4.3 Server Implementation

Both approaches place requirements on the server implementations of the application. The

server needs to provide support for creating copies of objects. It also needs to support a conflict

detection and resolution process, so the changes in both cases are significant. It is impossible to

quantify how much extra code is needed for D/IIOP in the way it was intended, however, for

the OBV implementation of the distributed scheduler 20% more code was generated.

5.4.4 CORBA Compliant Operation

OBV was a fast solution to dealing with the issue of replicating CORBA objects. It did this at

the expense of the CORBA functionality of the objects. Once the objects were replicated and

stored at the client side the application operating using the replicas could not be termed a

CORBA application. It no longer used the ORB or invoked methods that were exposed by the

interfaces it was originally using. The application became specific to the implementation

language, in the case of the distributed scheduler it became a Java application. It did however

mean that a copy of the application was operational enabling disconnected operation.

77

Chapter 6

6. Conclusions

This chapter gives a summary of the work carried out during the course of this project and the

resulting knowledge gained in relation to supporting disconnected operation in a CORBA

environment. Finally, possible future work that could be carried out to give further insight into

the domain is suggested.

6.1 Enabling Disconnected Operation

One of the achievements of the project was the proposal an enhancement to the ALICE

framework by the addition of another layer that supported disconnected operation. The D/IIOP

layer added further support for CORBA applications operating in a wireless environment. This

enhancement brought the Distributed object computing mechanisms such as object replication

and migration into the CORBA domain. Aspects of how CORBA applications worked at both

the protocol-level and the application-level were altered because of the introduction of

concepts behind the D/IIOP layer. The design proposed some changes to the standard

client/server model in order to allow for disconnected operation. Some CORBA standard

approaches were also investigated as a way of allowing this change in the standard client server

model.

A phase of the project was to evaluate the D/IIOP layer through the implementation of a

sample application, a distributed scheduler. The mechanism chosen to support the functionality

defined by D/IIOP was OBV. Initially in the implementation a goal was to ensure that any

mechanism could continue to use the ALICE implementation as it existed. Using Java as the

implementation required the use of JNI to interoperate with the ALICE implementation. Using

the JNI is a difficult and time consuming task so it was decided to concentrate on achieving

one of the other original goals, supporting disconnected operation. The focus of the project

turned to evaluating the feasibility of OBV supporting disconnected operation.

The distributed scheduler application was ported to the JavaORB implementation and its IDL

enhanced to support OBV. This process illustrated to the shortcomings of OBV in terms of

CORBA object replication and also the lack of portability of BOA implementations.

Many of the problems encountered in the project related to the fact that the OBV standard was

immature with some of the concepts yet to be fully developed. The JavaORB implementation

78

of OBV was also incomplete, which lead to a number of changes in the original approach for

enhancing the distributed scheduler to support OBV. OBV was found to provide the basic

functionality to support disconnected operation for the application. However, it did require

many changes in the original application before this could be achieved.

6.2 Future Work

Some further investigation of OBV could take place since new implementations are becoming

available that are fully compliant with the specification. Both C++ and Java implementations

will be available.

A CORBA compliant implementation of the D/IIOP layer that allows the movement of

CORBA objects could be developed. The server objects could be replicated as full CORBA

objects to the mobile host. The client application would continue to invoke methods on server

objects as if they were on the remote server side. It would be very useful to analyse

performance of the disconnected client compared to that of the connected client. It would then

be possible to say if this functionality was feasible in terms of performance.

It would be useful to integrate the D/IIOP layer functionality with ALICE. This would require

an extension of the Mobility Layer so that messages could be passed to the D/IIOP layer

informing it of disonnections and re-connections. This would further enhance the support

ALICE gives to mobile clients.

Another possible step would be to implement the conflict detection and resolution mechanisms

required when server objects are passed back from the client to the server. It would be useful to

investigate how the approaches used in standard distributed object projects would apply to the

CORBA domain.

79

7. Bibliography

[Afonso ‘98] Ana Paula Afonso et al. UbiData: An adaptable Framework for Information

Dissemination to Mobile Users, ECOOP ’98 Workshop on Mobility and

Replication.

[Alkh '97] Hasan S. Alkhatib, Chase Bailey, Mario Gerla, James McCrae. Wireless Data

Networks: Reaching the Extra Mile, IEEE Computer, December 1997

[Appenzeller '99] Guido Appenzeller et al. The Mobile People Architecture Stanford University

Technical Report CSL-TR-99-777, January 1999

[Comer '98] Richard Comerford. Pocket Computers Ignite OS Battle, IEEE Spectrum May

1998

[Crow '97] Brian P. Crow, Indra Widjaja, Jeong Geun Kim, Prescott T. Sakai. IEEE

802.11 Wireless Local Area Networks, IEEE Communications Magazine

September '97

[Cunningham '98] Raymond Cunningham. Architecture for Location Independent CORBA

Environments, a dissertation in partial fulfillment of the requirements for the

Degree of MSC in Computer Science University of Dublin, Trinity College

Dublin.

[DOG ‘99] The Distributed Object Group Homepage http://dog.exoffice.com

[Emmerson '98] Bob Emmerson, 'On the move', Communications International April 1998

[Fiuczynski '95] Marc. E. Fiuczynski. A Programming Methodology for Disconnected

Operation, University of Washington, ECOOP ’95.

[FT '99] Financial Times Media and Telecoms April '99 Editor Neil McCarthy

[Geier '98] Martin Geier et al. Support for Mobility and Replication in the AspectX

Architecture, ECOOP '98 Workshop on Mobility and Replication.

[Haahr '99] Mads Haahr, Raymond Cunningham and Vinny Cahill. Supporting CORBA

Applications in a Mobile Environment, Mobicom August 1999

[Haar '98] Jaap Haarsten. Bluetooth -- The Universal Radio Interface for ad hoc,

Wireless Connectivity, The Telecommunications Technology Journal, No. 3

1998, Ericsson Review.

80

[Hild ’95] Stephan G. Hild. Disconnected Operation for Wireless Nodes, ECOOP ’95

[Inouye ’97] Jon Inouye, Jim Binkley, Jonathan Walope. Dynamic Network

Reconfiguration Support for Mobile Computers, MobiCom ’97 Budapest,

Hungary, Spetember 26-30, 1997

[Java ‘97] Java Network Programming, Ellitte Rusty Harold, O'Reilly

[JK '97] Anthony D. Joseph and M. Frans Kaashoek. Building Reliable Mobile-Aware

Applications using the Rover Toolkit, ACM Wireless Networks October 1996

[JNI ‘98] Essential Java Native Interface, Rob Gordon, Prentice Hall

[Joseph '97] Anthony D. Joseph et al. Mobile Computing with the Rover Toolkit IEEE

Transactions on Computers: Special Issue on Mobile Computing Janaury

1997,

[Katz ‘96] Randy H. Katz, Eric A. Brewer, Elan Amir, Hari Balakrishnan, Armando Fox,

Steve Gribble, Todd Hodes, Daniel Jiang, Giao Thanh Nguyen, Venkata N.

Padmanabhan, Mark Stemm. The Bay Area Research Wireless Access

Network. Proceedings Spring COMPCON Conference 1996.

[Kistler '91] J. Kistler, and Satyanarayanan, M. Disconnected Operation in the Coda File

System. Thirteenth ACM Symposium Operating Systems, Pacific Grove, US,

1991, vol. 25, pp.213-225

[Kojo ‘95] Markku Kojo, Timo Alanko, Mika Liljeberg and Kimmo Raatikainen.

Enhanced Communication Services for Mobile TCP/IP Networking,

University of Helsinki, Department of Science Series of Publications C, No.

C-1995-15

[Lai ‘99] Kevin Lai and Mary Baker, "Measuring Bandwidth", Proceedings of IEEE

INFOCOM '99, March 1999.

[LIFE ‘97] OMG LifeCycle Service Specification, OMG document: CORBAServices

ftp://ftp.org.omg/pub/docs/

[MOJ ‘99] Programming Mobile Objects with Java, Jeff Nelson, Wiley.

[OBV ‘98] Object Management Group Objects By Value Specification, OMG Document:

orbos:98-01-18 ftp://ftp.org.omg/pub/docs/

[OMG ‘98] CORBA Specification 1998. ftp://ftp.org.omg/pub/docs/

81

[OTDTF ’98] Object Management Group Telecom Domain Task Force, White Paper on

Wireless Access and Terminal Mobility in CORBA. OMG Document:

telecom/98-11-09

[OTDTF ’99] Object Management Group Telecom Domain Task Force, Wireless Access

and Terminal Mobility Request for Proposals. OMG Document: telecom/99-

04-02

[P715 ‘99] P715 EURESCOM Services Platform;

http://www.eurescom.de/Public/Projects/P700-series/P715/p715.htm

[Palm '99] Palm VII Connected Organiser, Wireless Internet Access Comes to the Palm

Computing Platform, 3COM White Paper

[Parrish '98] Chuck Parrish 'WAP zaps IT to wireless screens', Mobile Communications

April 1998

[Phifer '98] Surfing the Web over Wireless, White Paper, A Core Competance Industry

Report, January 1998.

[Pickar '99] It's a Wireless World, Marisa Pickar, Mobile Computing May 1999.

[POA ‘98] OMG CORBA V2.2 The Portable Object Adaptor February 1998

ftp://ftp.org.omg/pub/docs/

[Raatikainen ‘97] Raatikainen et al. Service Machine Development for an Open Long-Term

Mobile and Fixed Network Environment. 1997 DOLMEN Consortium. ACTS

Ref:AC036 DOLMEN

[Redl] Siegmund H. Redl, Mathias K. Weber, Malcolm W. Oliphant. An

Introdcution to GSM, Artech House

[Regan '97] Regan, Bell Labs Technology: Trends and Developments, April 1997.

[Saty '89] Satyanarayanan M. Coda: A highly available file system for a distributed

workstation environment, Second IEEE Workshop on workstation operating

Systems, Pacific Grove, US, September '89.

[Silber '99] Steve Silberman 'Just Say Nokia', Wired September 1999

[Sorensen ‘96] Sorensen, M.G A mobility-transparent model for Consistency, Technical

Report DIKU-96-3-7, University of Copenhagen, Dec ’96.

82

[Tines ‘99] Mr Tines at Newsgroup: comp.lang.java.programmer April 1999

[UP '98] The Wireless Application Protocol, Wireless Internet Today, White Paper,

November 1998, Unwired Planet

[Vinoski ‘98] Steve Vinoski. New Features for CORBA 3.0, Communications of the ACM,

Vol. 41, No. 10, October 1998.

