
BeanBag

An Extensible Framework

for Describing, Storing

and Querying Components

Caroline O’Reilly B.A. (Mod)

A dissertation submitted to the University of Dublin,

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science

September 1999

ii

Declaration

I declare that the work described in this dissertation is, except where

otherwise stated, entirely my own work and has not been

submitted as an exercise for a degree at this or any other

university.

Signed: ___________________

 Date: 17-September-1999

Permission to lend and/or copy

I agree that Trinity College Library may lend or copy this dissertation upon

request.

Signed: ___________________

Date: 17-September-1999

iii

Abstract

When it became obvious that Object Oriented software applications were falling short

of their promise of significant software reuse, the software industry began to look at

another solution. Hence the interest in Component Technology. If developers have the

means to use off the shelf components, application development time can be reduced

and quality will improve. Components are by nature modularised and are more

maintainable than other software applications, with easy integration of component

versions. When companies want to minimise the expense of developing in-house

solutions and the inflexibility of bought-in software, components are introduced,

allowing assembly of components into customised solutions.

Presently, there are three main component driving forces, the OMG with the CORBA

Component Model (CCM), Microsoft with COM Components (COM) and Sun with

Enterprise Java Beans (EJB).

Enterprise Java Beans is the Java component architecture for developing server side

components, as opposed to Java Beans, which is used to develop client side

components. Threading, persistence, and security are handled by an EJB Container.

All types of components will have to reside in a repository for application developers to

find them. In time it will become crucial to be able to query this repository and to view

component descriptions. As the situation stands, the EJB Deployment Descriptor does

not provide enough semantic information for a developer to understand exactly what a

component does.

This thesis examines ways of storing components and extracting information

transparently from them. It also examines ways of describing component semantics in a

way that is extensible. Developers in the future, who realise that certain semantic

information is crucial in a component description can create descriptions in a controlled

way, and other developers can search this data. The descriptions developed are XML

documents, and can be applied to all types of components, even though this thesis

focuses on EJBs primarily.

iv

Acknowledgements

Many thanks to my supervisor Dr. Paddy Nixon and Sotirios Terzis for their valuable

ideas and encouragement. Thanks also to Malcolm and Peter from IONA for their XML

and EJB expertise and for always having the answers. The M.Sc. class was invaluable

in the final weeks for their humorous bantering in the early hours. Lastly, thanks to

Niall for those gourmet sandwiches throughout the year and for many words of advice.

v

1. INTRODUCTION... 1

1.1 MOTIVATION ... 1

1.2 PROPOSED SOLUTION .. 1

1.3 ACHIEVEMENTS... 2

1.4 ROADMAP.. 2

1.5 SUMMARY... 2

2. LITERATURE SURVEY... 3

2.1 INTRODUCTION.. 3

2.2 SOFTWARE COMPONENT MOTIVATION.. 3

2.2.1 The Benefits of Components .. 4

2.3 WHAT ARE SOFTWARE COMPONENTS?.. 5

2.3.1 Components versus Other Kinds of Reuse ... 6

2.4 COMPONENT FRAMEWORKS .. 8

2.4.1 Java Beans... 9

2.4.2 Enterprise Java Beans (EJB)... 10

2.4.3 The CORBA Components Model (CCM) ... 16

2.4.4 COM Components ... 22

2.4.5 Commercial Application Servers ... 26

2.5 COMPONENT DESCRIPTION LANGUAGES ... 27

2.5.1 IDL... 27

2.5.2 OCL ... 28

2.5.3 JBCDL ... 30

2.5.4 KDL ... 30

2.6 MODELLING LANGUAGES .. 31

2.6.1 UML... 31

2.6.2 DESML .. 32

2.7 COMPONENT REPOSITORIES .. 35

2.7.1 A Distributed Repository for Object-Oriented Software Components................................. 36

2.7.2 DELOS... 36

2.7.3 Softlab’s ENABLER Open Repository.. 37

2.7.4 The Microsoft Repository... 37

2.8 XML... 38

2.8.1 DTDs.. 39

2.9 XML SCHEMAS... 41

2.10 XML QUERY LANGUAGES.. 41

vi

2.10.1 XML-QL...42

2.10.2 XQL..43

2.10.3 XSL...43

2.10.4 Lore..45

2.10.5 W3C ...45

2.11 SUMMARY ...46

3. DESIGN..47

3.1 INTRODUCTION ..47

3.2 REQUIREMENTS ...47

3.2.1 Storing Components ...47

3.2.2 Describing Components ...48

3.2.3 Querying Components..51

3.3 HIGH LEVEL ARCHITECTURE ...51

3.3.1 GUI ..52

3.3.2 The BeanBag System..52

3.3.3 Storage Framework..53

3.4 THE COMPONENT DESCRIPTION...56

3.4.1 Abstracting the Information Content..57

3.4.2 Designing the DTD ..58

3.5 COMPONENT INSERT AND RETRIEVAL ...60

3.5.1 Inserting a component...61

3.5.2 Retrieving Components ..62

3.6 SUMMARY ...63

4. IMPLEMENTATION...64

4.1 INTRODUCTION ..64

4.2 THE COMPONENT FRAMEWORK...64

4.2.1 HomeBase ..64

4.3 THE JAR ARCHIVE...64

4.4 EXTRACTING THE REMOTE INTERFACE FROM THE JAR ARCHIVE ..66

4.5 PROCESSING THE XML..67

4.5.1 Choice of XML Parser..67

4.6 CHOICE OF DATABASE ...68

4.6.1 Creating Sequences in Oracle..68

4.6.2 Use of the Oracle LONG RAW datatype..69

4.6.3 Working around the Oracle Open Cursors Exceptions..71

4.6.4 Achieving integrity in the database tables ...71

4.7 CHOICE OF QUERY LANGUAGE ..73

vii

4.7.1 Searching for an exact Interface match... 73

4.8 JDBC DRIVERS ... 74

4.9 THE CORBA ARCHITECTURE ... 74

4.9.1 Introduction to the CORBA Objects .. 75

4.9.2 CORBA Callbacks ... 75

4.10 THE GUI... 76

4.11 SUMMARY... 76

5. EVALUATION AND CONCLUSION .. 77

5.1 INTRODUCTION.. 77

5.2 EVALUATION OF MODULES ... 77

5.2.1 The Storage Framework .. 77

5.2.2 The Component Description .. 78

5.2.3 The Query System .. 79

5.2.4 Queries Implemented ... 79

5.2.5 Evaluation of Exact Interface Matching.. 79

5.3 CONCLUSIONS ... 80

5.3.1 Achievements ... 80

5.4 FUTURE DEVELOPMENTS... 81

5.4.1 BeanBag as an EJB Component .. 81

5.4.2 Extending BeanBag as a CORBA Component Repository... 83

5.4.3 Using OCL to describe the pre- and post- conditions ... 84

5.4.4 Searching on the Documentation... 85

5.4.5 The Oracle XML SQL Utility for Java ... 85

5.4.6 Implementing an XML Properties Editor .. 87

5.5 SUMMARY... 87

6. BIBLIOGRAPHY... 88

7. APPENDIX.. 92

7.1 APPENDIX A: SCREEN SHOTS .. 92

7.2 APPENDIX B: THE BEANBAG IDL... 96

7.3 APPENDIX C: BEANBAG SEQUENCE DIAGRAM.. 98

viii

FIGURE 2-1 EJB ARCHITECTURE ... 12

FIGURE 2-2 THE CORBA COMPONENT MODEL .. 19

FIGURE 2-3 BINARY REPRESENTATION OF A COM INTERFACE [SZY98] ... 25

FIGURE 2-4 USING BEHAVIOURAL ELEMENTS TO DENOTE THE INTERFACE OF A COMPONENT [KIN98] 33

FIGURE 3-1 AN EXAMPLE OF EJB REFERENCES IN A DEPLOYMENT DESCRIPTOR...................................... 51

FIGURE 3-2 THE BEANBAG HIGH LEVEL ARCHITECTURE.. 51

FIGURE 3-3 METHODS2BEANS TABLE... 54

FIGURE 3-4 EXTENSIBLE PROPERTIES TABLE... 55

FIGURE 3-5 DESCRIPTIONS TABLE ... 55

FIGURE 3-6 HIGH LEVEL MODEL OF THE COMPONENT INSERT .. 61

FIGURE 3-7 HIGH LEVEL VIEW OF THE INSERT PROCESS ... 62

FIGURE 3-8 HIGH LEVEL VIEW OF THE RETRIEVAL PROCESS... 62

FIGURE 4-1 THE CORBA ARCHITECTURE... 75

FIGURE 5-1 DESIGN FOR BEANBAG AS AN EJB COMPONENT... 82

FIGURE 7-1 RETRIEVING THE REMOTE INTERFACE OF A COMPONENT ... 92

FIGURE 7-2 MATCHING THE INTERFACE OF A COMPONENT WITH ONE IN THE DATABASE 93

FIGURE 7-3 THE METHODS2BEANS INDEXED TABLE.. 94

FIGURE 7-4 RETRIEVING TABLE & DRIVER META DATA FROM THE DATABASE .. 95

1

1. Introduction

1.1 Motivation

Anything less than complete commitment will doom component-based development to

be yet another failed software engineering panacea [Kie98].

With the growing interest in software components in the software industry, ways of

storing and retrieving relevant components is becoming increasingly important.

Retrieval methods are crucial for reuse. As libraries of components grow in size,

traditional information retrieval methods will not provide adequate precision and recall.

Procedures are needed for the effective description of components and their roles if they

are to achieve the promise of reuse. Describing syntax alone, as IDL does is not

sufficient for many applications. What is required is a way of describing both the syntax

and the semantics of components in a language independent way. These descriptions

could be stored and queried by interested parties.

1.2 Proposed Solution

The objective of this thesis was to examine ways of storing, describing and querying

components. The storage framework was designed with efficient retrieval in mind. The

component description had to be component independent and extensible, and the

querying facility had to provide flexibility.

To achieve these requirements the implementation of BeanBag went through a series of

phases. The first was to choose a component framework to work with and to examine

what information about a component was available already. Next, methods were

investigated for transparently and automatically extracting syntactic information that

was already available in a component. The next phase was to design a component

independent description which was extensible, as it is impossible to predict what

2

semantic information a developer may need in a description. When the description was

complete the storage framework was designed to provide efficient retrieval of

descriptions and a module for matching components was implemented. Finally the

system was implemented as a CORBA Server.

1.3 Achievements

The main aim of this thesis was to investigate an extensible way of describing

components. This requirement was achieved and in addition the descriptions are also

component independent. The storage framework was designed in such away as to

achieve efficient retrieval of components. The requirement of transparent insertion of

components was achieved by the BeanBag system automatically extracting any data that

was already available, generating extra data from the component and storing it in the

database.

1.4 Roadmap

The chapter that follows describes the motivations and advantages behind component

software. Also described are the component frameworks available and the current

methods of describing what components provide. Chapter 3 outlines the design steps

behind the BeanBag system and Chapter 4 outlines the implementation route and

technologies used. Chapter 5 is an evaluation of the thesis and contains concluding

remarks about the work and the directions that it could take in the future. The final

chapters contain the Appendix.

1.5 Summary

In this chapter, the problem statement was outlined, as were the requirements of the

BeanBag system. The steps taken to arrive at a system that fulfilled these requirements

was outlined and whether the requirements were met.

3

2. Literature Survey

2.1 Introduction

In this section the motivation behind the current interest in component technology is

discussed. The technologies and methodologies currently available for describing and

constructing components are investigated. Areas that are examined are Component

Frameworks, Component Description Languages, XML and XML query languages. It is

necessary to look at what technologies are available and what they offer, before

designing the BeanBag system.

2.2 Software Component Motivation

Components composed of other components allow thinking about problems at the

appropriate level of abstraction. Without this, we wind up thinking about individual

transistors instead of chips and boards [Chap97].

Component based development changes the software development process to be more

industrial like. Developers buy pre-built components and assemble them to their own

requirements. Speed of delivery improves, as does the quality and quantity of systems

developed. If a large part of a software project can be fulfilled using pre-existing

components, then skill sets will reduce. Component technology is often likened to that

of computer hardware design, where a set of pre-built components exist such as

motherboards and hard drives, and these are assembled to produce PCs. Redesigning

and rebuilding these hardware components would be expensive and time-consuming.

Instead one can configure existing components to fix the desired requirements.

4

Object-Oriented technology has fallen short of its promise of reuse, hence the

emergence of components. If developers can buy pre-tested software components off

the shelf to build their own applications, the software development cycle time will be

significantly reduced. With the diffusion of components, complex systems will yield to

modular components.

Most software projects result in software being bought in or built in-house. Each

direction brings advantages and disadvantages. Software that is built in house is

generally expensive, with customer requirements constantly changing and the

development time being long. The resulting system may not interoperate with future

systems but only with those already in-house. However, the system can be extended and

re-adapted. When buying in software, the solution generally does not fit perfectly,

however it is probably a cheaper solution in the long run, if the manufacturer stays

around long enough to support the system. Component software attempts to find a

compromise between these two dilemmas. A system can be assembled from pre-created

components, but the application developer has scope for customization. Because the

system is modularized, upgrades can happen seamlessly when individual component

upgrades are released.

For system developers, short development times and transparent upgrades are

tremendous gains. If developers are going to buy a software component over developing

their own, the component must have significant advantages. Technical superiority, cost,

and support contract may all influence the customer. Components will have to appeal to

the market if they are to succeed where class libraries have failed.

2.2.1 The Benefits of Components

The technical component market is exploding, during the next five years leading

application development organizations will move from building applications from

scratch to assembling them from components [Chap97].

5

In the previous section the motivation behind choosing components was discussed.

Component-based development also brings these advantages when designing

applications. Component-based development:

q can produce applications quickly

q can result in higher quality and more reliable software. When third-party

components are used, these have already been tested. Even though the application in

its entirety must be tested, using components results in higher quality applications.

q lets developers focus more on business problems. Programmers do not have to

worry about low-level programming details, such as database access and security.

q can be cheaper than traditional development. It can take less time and can save

money

q allows easy mixing and matching of languages and development environments.

Components written in one language can be used by another component of a

different language, even on another machine. Because components provide a

standard packaging model this transparency is possible.

q offers the best of both alternatives in the build V’s buy decision. Components

can be purchased and combined into a customized solution.

2.3 What are Software Components?

Software components are binary units of independent production, acquisition and

deployment that interact to form a functioning system [Szy98].

6

A software component is a unit of composition with contractually specified interfaces

and explicit context dependencies only. A software component can be deployed

independently and is subject to composition by third parties [Muh96].

Many applications already plug-and-play components. Netscape Communicator allows

the installation of new components such as Apple’s QuickTime or Macromedia’s

Shockwave. These components come from different vendors and can be deployed in

another application. In this case, the duplication of effort for Netscape would not have

been worthwhile and so components bring considerable advantages. Objects are not

geared for a plug-and-play architecture. If a developer is to use a new set of class

libraries, certain programming experience is required. In general it will only be

application programmers that will know how to lever the use of the class libraries. They

are not user-friendly or easy to integrate into applications. Components exist as at a

different level of abstraction. Component plug-ins are easy to install and provide

configuration at a higher level. The customer should not be interested in how the

internals of a component actually work or how it is written, but they should be able to

assemble components to provide a system tailored to their needs.

Many definitions of components exist, two are included above. The important points to

take from these definitions are that components exist independently but can be

assembled into a functioning system. They expose interfaces that are implemented

internally, and it is through these interfaces that other components interact with them.

2.3.1 Components versus Other Kinds of Reuse

The oldest types of components that we use are procedural libraries. They are

independent and in binary form and can be reused by other independent applications.

Functions, classes or modules can form components if they are independent and in

binary form. Components are generally easier to use than procedural libraries, because

often they allow the developer to assemble them visually. Components have better

version control than traditional libraries. Using components where libraries could be

7

used allows the programmer to access functionality in a consistent way and also on

remote machines.

Another popular form of reuse are class libraries, libraries of objects. These have

become the foundation for reuse in C++ and Smalltalk. However, to use a class library

effectively, a certain understanding of how the pieces of the library fit together is

required. Sometimes the libraries can be complex. Using components makes this

process easier, as the developer can often use a visual tool to place the component

where it is needed.

Components allow cross-language reuse. Components written in C++ can be used with

components written in Visual Basic or PowerBuilder. If the developer uses class

libraries, the application must be written in the same language as the class library itself.

C++ makes it easy to reuse source code, but it is not easy to create reusable binary

components. Most C++ libraries are shipped in source form, and not in compiled form.

The source code is often required to discover how to inherit from an object. Sometimes

the libraries are even modified and compiled into a private build of the library.

Components are distributed in executable format, the source is not required. In this

way, vendors do not have to divulge their source code. If the component is deployed

internally in an organisation, the absence of source code can have the advantage of the

component not being changed and its business rules are enforced.

As both components and objects are described in common terms the differences

between them can seem hazy. [Szy98] outlines what the differences and similarities are.

A component exists as its own entity and is separate from its environment. Components

make their services available to other components through interfaces. The

implementation of the component is hidden and only available through well-defined

interfaces. A component can provide many different interfaces each one providing a

different service to the client. It cannot be partially deployed. A component may contain

a set of objects and instanciate objects, or it could be implemented internally in

8

assembly language or could contain procedures. Mutable state is assigned to component

through resources. Because the resources are separate from the component itself,

changing them does not require the recompilation of the component itself.

2.4 Component Frameworks

Choosing a component model is a critical decision. This choice determines which pool

of components you’ll be able to select from, what tools you can use to assemble

applications using components, and how you’ll create your own components [Chap97].

In the previous section, common features of software components were outlined. The

design of BeanBag takes into consideration the component frameworks that are

currently available. In order to construct a generic design for all components, it is

necessary to understand component architectures and to be aware of the differences

between existing component frameworks. This section outlines the architectures of the

most common component frameworks.

A component framework is a set of interfaces and rules of interaction that govern how

components ‘plugged into’ a framework may interact [Szy98]. Today there are three

major forces in the component framework arena:

• The OMG's CORBA Components (CCM)

• Sun’s Enterprise Java Beans (EJBs)

• Microsoft’s COM.

For effective component assembly, components must be able to interoperate. Obviously

without interoperability the component market will be fragmented and less successful.

Hence the emergence of component standards such as EJB and CORBA Components.

9

Before Sun’s EJB Specification is discussed, it is worthwhile mentioning the

component standard that preceded it, namely JavaBeans.

2.4.1 Java Beans

JavaBeans is a portable platform-independent component model written in the Java

programming language. Developers take advantage of the platform independence of

Java and write reusable components once and run them anywhere.

Mike Day defines beans as objects or components created with a set of characteristics

to do their own specific job [URL7]. They have the ability to take on other

characteristics from the container on the server in which they currently reside. This

enables a bean to behave differently, depending on the specific job and environment

where you place it.

A JavaBean is a component that has interfaces or properties associated with it. It can be

interrogated by and integrated with other beans that were developed by different parties

at different times. A JavaBean is different from other objects in that it has a properties

interface. This interface can be read by certain tools as it describes what the component

does. With this information the JavaBean can be hooked up with other beans and

plugged into other environments.

JavaBeans, in contrast to Enterprise Java Beans are generally visible at runtime. The

visual component can be a button, a list box or a graphic, but the component does not

have to be visible. JavaBeans are intended to be local to a single process.

10

Individual beans will behave differently, but typical unifying features that distinguish a

bean are:

q Introspection - this enables a builder tool to analyze how a Bean works

q Customization enables a developer, using an application builder tool to customize

the appearance and behaviour of a Bean

q Events enable Beans to communicate and connect together

q Properties enable developers to customize Beans and program with them

q Persistence enables developers to customize Beans in an application builder, and

then retrieve those Beans with customized features intact for future use.

More information on JavaBeans can be found at the JavaSoft JavaBeans Website

[URL5].

2.4.2 Enterprise Java Beans (EJB)

Enterprise JavaBeans take JavaBeans to the next level, that being, to server-based

components. The Enterprise Java Beans API allows developers to build large-scale

business applications as reusable server components.

2.4.2.1 EJB1.0

The first Enterprise JavaBean (EJB) Specification, Version 1.0, from JavaSoft, was

released in March 1998. It defined an API for the development, deployment and

management of server side components. The original JavaBeans specification described

the standard behavior of Java components that primarily ran on the client side. Over 50

products have already been developed to support EJB1.0. Companies such as Oracle,

Borland, Symantec, IBM and IONA have announced and/or delivered products that

adhere to this EJB specification.

11

2.4.2.2 EJB1.1

The EJB1.1 specification is now available to the public. The main changes from EJB1.0

are:

• Mandatory support for entity beans

• Enhanced deployment descriptors which are formatted in XML, rather than being

serialized

• Java2 security replaces Java1.1 security

EJB1.1 is available from Sun, and can be downloaded from [EJB1.1].

EJB 2.0 has a due date of late 2000, and future specifications will look at issues of

connecting legacy data, integrating messaging systems and representing bean

relationships and inheritance.

Previously, developing multi-tier servers was a complex task, where developers had to

deal with issues of concurrency, transactions, security and scalability, and had to

manage threads, memory and network connections. EJB aims to make the development

of server side components easier, by decoupling application semantics from

infrastructure issues. However EJB is simply a model and vendors provide EJB

solutions.

Enterprise JavaBeans, unlike JavaBeans are generally non-visual and designed to run on

a server, and to be invoked by clients. An EJB could be built out of non-visual

JavaBeans.

Figure 2.1 illustrates the architecture of EJB with the EJB home and EJB object

implementing the home interface and remote interface respectively. The bean class is

wrapped by the EJB Object [RMH99].

12

Figure 2-1 EJB Architecture

2.4.2.3 The EJB Client

The writer of an EJB cannot assume what the client will be or on which platform it will

be running or on which machine. The EJB client could be a servlet, a client on

someone’s desktop or could be another EJB. The client could be written in any

language, perhaps Java or C++. If the client is written in Java then the client will

communicate with the EJB by using Remote Method Invocation (RMI) API. If the

client is a non-Java client then it will communicate with the EJB using CORBA

communication protocols such as IIOP.

Once the client has the name of the Enterprise JavaBean that it wishes to communicate

with, it can create a communication channel with the EJB through a network directory

service. Firstly the client receives a reference, like a proxy to the EJBHome object for

the bean. By utilising this reference, the client can retrieve a reference to the EJBObject

for that bean, and consequently can access the remote EJB’s services.

Client

EJB Server

EJB home

EJB object

bean class

home interface

remote interface

EJB home stub

EJB object stub

EJB Container

13

2.4.2.4 The EJB Component

An EJB Component is an Enterprise JavaBean. It is a component like a JavaBean,

written in Java by a developer that implements some business logic. Components live

inside a container, and many component instances can exist in a container.

2.4.2.5 The EJB Container

The EJB component model provides an environment in which server side components,

Enterprise Java Beans can be deployed. This environment (the container) provides

transactional capabilities, security and management to the component. Developers

create components that inherit the enterprise attributes from the container. The

component interacts with the container and takes advantage of its transactional or

security features without being aware of how they are implemented by the container.

The EJB container manages the state of the object. An object can have persistent state

or transient state. Components can be deployed in another vendor’s EJB container and

still work, without recompilation, providing it complies with the EJB specification.

2.4.2.6 The EJB Object

On the server side, the EJB object implements the remote interface of the bean. This

distributed object is generated automatically by the EJB vendor and by the information

provided by the deployment descriptor. The EJB object works with the EJB container to

apply transactions, security and other operations to the bean at runtime.

When a client calls a method on an EJB object, the EJB object communicates with the

EJB container and requests that the same method be called with the same parameters on

the EJB component.

14

2.4.2.7 The EJB Home Object

The EJB home object is also generated by the EJB vendor when an EJB is installed in a

container. This object is involved with the bean’s life-cycle, and is responsible for the

location, creation and removal of the Enterprise JavaBean.

2.4.2.8 The EJB Server

EJB components reside in an EJB container when they are deployed. The EJB Server

must implement the EJB container. Any server that can host an EJB container and

provide it with the services that it requires, can be an EJB Server. An EJB Server

provides lower-level services such as network connectivity to the component.

2.4.2.9 EJB Design Patterns

There are two types of Enterprise JavaBeans that can be created, the Session Bean and

the Entity Bean. This is how they differ:

Session Beans

q are non-persistent objects that implement some business logic

q are associated with a single client

q do not survive server crashes

q manage information relating to the conversation between the client and server

q are divided into two types

q Stateless Beans do not store any information relating to the client between calls

q Stateful Beans store information between calls from a client. Values and state

are retained from previous communication.

15

Entity Beans

An entity bean maps a Java class to a data source. This source could be a row in a

database or an entire table. Each entity bean has a primary key associated with it that

identifies the data within [URL21].

Entity Beans:

q are persistent objects, which represent an object view of entities in persistent

storage

q are associated with database transactions

q may provide data to multiple clients, concurrently

q survive server crashes, because the data that the bean represents is persistent.

q Represent and manipulate persistent application domain data

q Entity Beans are also divided into two classes

q Container-managed is the simplest form of entity bean. Using container

managed beans means that developers do not need to worry about how the

persistent data is stored or retrieved. The container manages the database calls.

q Bean-managed is used by developers who need more control on how the data is

stored or retrieved from the database. The database calls are made from the bean

itself and are hard coded in. The disadvantage is that the bean is more tightly

coupled with the underlying architecture.

EJB Components are deployed using the Java Beans packaging format (JAR). Server

components can be deployed in any vendor’s EJB implementation because the business

logic of server components is not tied to the implementation details of a particular

system [BW].

16

2.4.2.10 Interfaces

An EJB’s provided methods are specified by the remote interface. The EJB object

implements the remote interface of the EJB component. In order for the client to be able

to create objects on the server, the home interface is used. The home interface is a

contract between an EJB component class and its container, which defines construction,

destruction and lookup of EJB instances [URL6]. Each EJB component has a home

interface for this purpose.

2.4.3 The CORBA Components Model (CCM)

The CORBA Component Model (CCM) was approved through a vote by the ORB Task

Force at the end of August 1999. CCM is the final piece needed to complete the

CORBA 3.0 specification, which is a framework for building, assembling and

deploying plug-and-play CORBA objects.

The RFP submitted to the OMG was constructed by an influential group of distributed

middleware vendors: IONA, BEA Systems, DSTC, Expersoft, IBM, Inprise, Oracle,

Rogue Wave and Unisys. As Sun are responsible for the Enterprise JavaBean

specification, they cooperated in the submission.

CCM is essentially a language-independent extension of EJB

[URL11]

The problem that many organisations have with EJB, is that it only supports Java. Many

organisations have software written in other languages and so EJB is not suited to their

environment. CCM supports EJB components as well as components developed in

other languages such as Ada, C++, Smalltalk, COM/DCOM and COBOL.

17

[Hub99] describes the differences between CORBA Components and Enterprise Java

Beans, and examines why the OMG are developing their own component standard

instead of endorsing the EJB directly. Some of these points are listed here:

1. The CCM designers assert that ‘the JavaBeans model is inappropriate for server-

side development’. This may be the case in some ‘demanding situations’ but this

does not mean that EJBs are generally inadequate for server-side development.

2. The EJB specification deviates from the OMG charter in the following areas:

q OMG technologies must strive to integrate multiple language specifications

(e.g. Java and C++)

q OMG standards are approved according to the OMG’s open technology

specification process

q Technologies must be developed in compliance with the OMG’s Object

Management Architecture (OMA) and should respect styles such as IDL, IIOP

and the CORBA Services.

q OMG technologies must provide an explicit metamodel based on the standard

Metaobject Facility (MOF)

The CORBA Components model like EJB, is related to server-side CORBA

Components. CORBA Components extend the core CORBA object model, and provide

a higher level of abstraction, thus greatly simplifying CORBA programming. CCM

Components use services such as transactions, security, events and persistence.

18

The CORBA Component model provides:

� Extensions to IDL that will support components and the relations between them

� CIDL, a mechanism for automatic code generation for defining servant
implementations

� Extensions to the CORBA core object model

� A means to support navigation across multiple interfaces of a CORBA Component

� It includes a deployment model using XML, to describe the runtime properties of a
component.

� It defines a container model

� It introduces the container programming model

� Defines policies that provide a simplified version of CORBA Transactions.

� Defines policies for servant lifetimes, security and persistence

� Defines a mapping to Enterprise JavaBeans so that they can be supported as a
CORBA Component

[CCM99]

2.4.3.1 The Component Model

Component is a new meta-type in CORBA, it is an extension of the Object meta-type.

A Component can be specified in IDL and stored in the Interface Repository. A

component has a component reference, which is analogous to an object reference.

19

Figure 2-2 The CORBA Component Model

Clients interact with components through surface features called ports. There are five

types of ports:

• Facets - distinct named interfaces provided by the component for client interaction

• Receptacles - named connection points

• Event sources - named connection points that emit events

• Event sinks - named connection points into which events may be pushed

• Attributes - named values exposed through accessor or mutator methods

2.4.3.2 Facets

A component may provide multiple object references, called facets, which are capable

of supporting CORBA interfaces.

20

2.4.3.3 Equivalent Interface

This interface makes the component’s surface features visible to the clients. Other

interfaces provided are called facets. Clients can navigate from any facet to the

Equivalent Interface, and can obtain any facet from the component’s Equivalent

Interface.

2.4.3.4 IDL

A component definition in IDL, defines an interface of a component, that supports the

features defined in the component definition body. Component definitions differ from

interface definitions in that they can only support single inheritance.

A component body can contain the following type of port declarations

q Provides - provided interface declaration

q Uses - receptacle declarations

q emits/publishes - event source declarations

q Consumes - event sink declarations

q Attribute - attribute declarations

All these IDL declarations map onto operations in the components equivalent interface.

2.4.3.5 CORBA Components Vs Enterprise JavaBeans

The CORBA Component Model and the Enterprise JavaBean Model are actively

evolving in parallel. Each new release of the specifications retests the leader/follower

relationship. Some of the differences between the two models are detailed in [Hub99].

q CCM uses IIOP as its wiring protocol. EJB is less specific, some EJB based Java

application servers require RMI, and others support IIOP, or both. This lack of

specification on which to use in EJB adds design complexity.

21

q CCM containers can be implemented in C++ or Java. This is hardly surprising, as

integrating heterogeneous technologies is one if the OMG’s primary goals.

q CCM interfaces are specified in Component-IDL (CIDL). CIDL is an extension of

CORBA IDL. EJB is based on pure Java interface specifications.

q CCM descriptors are specified in XML using DTDs. They are more extensive than

EJB descriptors. EJB uses Deployment Descriptors to configure the Container

properties. The Deployment Descriptor in EJB1.1 is XML based. Most vendors

however have implemented EJB1.0 in which the Deployment Descriptor is itself a

JavaBean and is delivered together with the EJB as a serialized Bean in the JAR

file.

q EJB supports two component abstractions, Session and Entity Beans. CCM adds a

Process component abstraction, which is like a stateful Session Bean in EJB. CCM

Processes will allow more precise control of component lifetime, state management

and identity than is possible with standard EJBs.

q CCM specifies properties and behaviours for managing the installation of

components including managing software dependencies and component assemblies.

EJB is much less complete in this area.

q CCM defines structural and behavioural features for extensive runtime component

configuration. These aspects are less distinct in EJB.

22

q CCM places metadata (information about the component interfaces) in the CORBA

Interface Repository, therefore maintaining language independence. EJB uses Java

language features and EJB Container features to provide similar information.

q CCM defines a metamodel and expresses it in the XML Metadata Interchange

format (XMI)

q CCM uses the CORBA Services (COSS) for Events, Naming, Life Cycle,

Persistence, Security and Transactions. In some cases, CCM defines a subset of the

COSS with some design changes to tighten integration. EJB has adapted subsets of

COSS features in Transactions and Naming. JavaSoft has adapted or redesigned the

other COSS themes, which means they cannot be seen as COSS-compatible subsets.

q CCM defines a bi-directional mapping to EJB. EJB specifies a CORBA mapping

for client communication and intercontainer interoperability. EJB could not address

component model compatibility because CCM did not exist at that time.

2.4.4 COM Components

Microsoft’s component technology has evolved from the non-object oriented Visual

Basic components, to object linking and embedding with OLE and now to COM and

DCOM. COM is a binary standard. This means that it is not concerned with the

languages in which the components are written. Components do not have to be object-

oriented behind their interface.

2.4.4.1 Visual Basic, OLE and ActiveX

Microsoft's first attempt at component technology was Visual Basic controls (VBXs).

VBXs could be embedded in forms and could interact. VBXs are used to implement

23

word processors, database connectivity and charting. However, VBXs are tightly

coupled to Visual Basic forms, and so OLE controls were introduced (OCXs). OCXs

are COM objects whereas VBXs are not. To qualify as an OLE component, the COM

object has to implement many interfaces. The downside is that small controls have to

carry extra baggage, and so implementing them is less attractive than VBXs.

After OLE controls came ActiveX controls. ActiveX is a new specification. An

ActiveX control need only implement one interface, the IUnknown. The control must

also be implemented in a self-registering server, so that when the server is started, it

registers the classes with the system registry. ActiveX controls have regular COM

interfaces, but also have outgoing interfaces, which are used for a notification

mechanism.

2.4.4.2 COM

The Component Object Model (COM) is a way for software components to

communicate with each other. It is a binary and network standard that allows any two

components to communicate regardless of what machines they are running on (as long

as the machines are connected), what operating systems the machines are running (as

long as it supports COM) and what language the components are written in. COM also

provides location transparency, in that it does not matter if components are in-process

DLLs, local EXEs or if they are located on another machine.

COM objects are well encapsulated. There is no way to find out how they are

implemented internally. To communicate with a COM object, interfaces are used.

The COM interface is fundamental to COM. The only way to communicate with a

COM object is through an interface. An interface is a contract between the component

and its clients, that defines what functions are available and what the object does when

the functions are called [URL13].

An interface is represented as a pointer to an interface node. The interface node

contains a pointer to a table of function pointers, called a vtable. The client sees a

pointer to a pointer to a vtable, a double indirection. A COM component can implement

24

multiple interfaces. The client never gets a pointer to the class itself, which means that

the back end implementation can be replaced unknown to the client.

COM does not support any form of implementation inheritance. This does not mean

that you cannot reuse COM components. To reuse them, containment and aggregation

are used. When a class is inherited generally only a couple of methods are needed.

Containment means the object required is instantiated, and requests are passed to it.

One object contains another object, conceptually, i.e. one object holds an exclusive

reference to another object. Passing on the requests to the contained object simply

means calling its methods. Containment is completely transparent to the client, and it

will not know that the contained object was invoked to carry out the method. If deep

containment hierarchies occur, they can become a performance overhead, so COM

defines aggregation.

Aggregation means that instead of forwarding requests to an inner object, the inner

object’s interface reference should be given to the client. Calls on this interface are not

intercepted by the outer object, and are passed directly to the inner object, which

eliminates the forwarding overhead that exists in containment. Transparency is

important here also, and the client should be unaware that the interface it uses has been

aggregated from an inner object.

In practice containment is used more often then aggregation. Aggregation is generally

used where there are deeply nested constructions. Aggregation also brings an extra level

of complexity [Szy98].

Every COM object implements the IUnknown interface. The identity of the IUnknown

interface can serve to identify the entire COM object. All interfaces must derive from

IUnknown. IUnknown is the only interface guaranteed to be present. The IUnknown

interface supports the three mandatory methods of any COM interface, namely,

QueryInterface(), AddRef() and Release().

25

Figure 2-3 Binary representation of a COM interface [Szy98]

Every COM component has a common method called QueryInterface(). Given

one interface, QueryInterface() can be used to obtain a pointer to a different

interface. The method checks whether the given interface is supported by the COM

component and if it is, it returns the corresponding interface reference. Using

QueryInterface() the client can navigate from any provided interface to another.

Interfaces are represented using interface identifiers

Polymorphism in COM is achieved by COM objects supporting a set of interfaces. The

type of a COM object is the set of interface identifiers of the interface it supports. If a

client requires that four interfaces are supported by a COM object, and the COM object

supports these four and four others, then the client’s requirements are satisfied.

QueryInterface() is used to test whether a COM object supports the required

interfaces.

The COM interface and its specifications cannot be changed after they have been

published. The contract is immutable, you cannot add to it, you cannot delete, and you

cannot modify it. You can improve the internal implementation once you still honour

the contract. If the requirements change, you can always write a new contract, as COM

supports multiple interfaces. COM also allows for the inheritance of interfaces, so an

entire interface need not be rewritten.

Client

Variable

Interface Node

Op 1

Op 2

Op N
Component

26

2.4.4.3 DCOM

COM supports inter-process communication, but not communication across machines.

DCOM builds on COM to provide communication across process boundaries and

machine boundaries. When communication exists on a single machine, there is no need

to know how data types are represented because the sending process is using the same

representation as the receiving process. When communication is across machine

boundaries, the data representations can be different. Therefore COM creates proxy

objects on the client side and stub objects on the server side. To deal with differences in

data representations across machines, DCOM marshals data into network data

representation (NDR) which is a platform independent format.

2.4.4.4 COM+

COM+ was released by Microsoft in October 1997 and is essentially an extension of the

Microsoft Transaction Server (MTS). MTS provides components with services, such as

transaction processing monitoring, database connection pooling, and multi-user access.

COM+ allows a single threaded object designed for single users to be used by multiple

simultaneous clients. New services have been included for COM objects in COM+ such

as events, asynchronous messaging, dynamic load balancing, and life cycle

management [COM+99].

2.4.5 Commercial Application Servers

Since the CORBA Component RFP became available, vendors such as Fujitsu, IBM,

Inprise, IONA, Oracle and Sun, have stated their commitment to either support and/or

implement the CORBA Component Model. Since [EJB1.1] many vendors have already

implemented Enterprise JavaBeans Application Servers. Examples of commercial

Application Servers are:

• HomeBase from IONA. A beta release of OrbixHome was not available at the time

of writing. OrbixHome will be a full implementation of EJB1.1.

27

• BEA WebLogic Enterprise Server, version 4.2 will add support for CORBA

Components written in Java or C++. WebLogic Enterprise 5.0, scheduled for end of

1999 will support the Java2 Enterprise Edition platform, which includes EJB1.1.

• Netscape Application Server 4.0 includes EJB1.0 support and support for entity

beans.

• Ejipt 1.2 is an all Java, low cost application server that implements both the

required and optional features of EJB1.0, including entity beans. With a small

footprint of 300K, it can be deployed on a laptop, and supports Java1.1 and 1.2

clients.

2.5 Component Description Languages

A lot has to happen to make software componentization and reuse a reality. One of the

biggest hurdles is the lack of standards that let an application know what a particular

component can be used for [Kin98].

If components are going to live up to the promise of reuse, then standards are needed

for describing what a component does, so that relevant components can be retrieved.

Component Description Languages do exist, and in this section a number of them are

examined to investigate if they can sufficiently describe the semantics of the

components listed in Section 2.4.

2.5.1 IDL

IDL is used to describe the interface of a component. The description is purely syntactic

and does not give us any information about the behavior of the component or how

components relate to each other. Hence, this language does not fulfil BeanBag’s

requirements.

28

2.5.2 OCL

In 1996, the OA&D Domain task force at the OMG issued a request for proposals on

Object Analysis and Design. IBM and ObjecTime Limited jointly submitted a proposal

in January 1997. An important aspect of this proposal was the inclusion of the Object

Constraint Language, or OCL [URL4].

The Object Constraint Language (OCL) is part of the Unified Modeling Language from

Version 1.1 onwards. UML includes common constructs for object oriented modeling

such as class models, state machines, use cases and collaboration diagrams. UML is

now the global standard modeling language of the OMG. Therefore OCL is likely to

receive more attention than other normal specification languages such as VDM or Z.

The language is designed to augment class diagrams with additional information that

cannot be represented in UML diagrams. A class diagram does not contain enough

information to make it an unambiguous representation. Additional constraints about

objects in a model are needed, to provide an unambiguous description. These are

typically annotated in natural language. Formal languages have been developed to

describe these special constraints, but they are not user friendly, and typically require a

mathematical background to decipher.

OCL is a formal language that is easy to read. OCL is a modeling language and not a

programming language; therefore it is not possible to write program logic in OCL.

Because it is a modeling language, the implementation details are beyond the scope of

OCL.

OCL can be used for a number of different purposes:

q to specify invariants on classes and types in the class model

q to specify type invariant for stereotypes

q to describe pre- and post- conditions on operations and methods

q to describe guards

q as a navigational language

q to specify constraints on operations:

[URL3]

29

OCL allows the expression of invariants and pre- and post- conditions that specify the

behavior of a model, without getting involved with implementation details. The next

section describes how BeanBag could use OCL to provide more semantic descriptions

of software components.

2.5.2.1 OCL Invariants

Presenter

self.qualifiedFor->includesAll(self.offering.seminar)

This invariant for a scheduling system says that a presenter must be qualified for all

seminars that he/she is assigned to present. self refers to an instance of a presenter.

2.5.2.2 OCL Preconditions and Postconditions

SeminarSchedulingSystem

MarkAsAbsent(p : Presenter, from, to : Date)

Pre: true

Post: p.offering@pre->forAll(o | o.date >= from and o.date <= to

implies o.presenter = Set{})

In this example OCL is used to specify pre- and post- conditions for the method

MarkAsAbsent. In OCL, the value of a property at the start of an operation is denoted

by, propertyName + @ + pre. The post condition in this case marks a presenter as

absent by cancelling his/her presentations within specific dates.

OCL fulfils the requirements for BeanBag as it can be used to describe the semantics of

methods using invariants and pre- and post-conditions.

30

2.5.3 JBCDL

JBCDL is a component description language based on the Jade Bird Component Model

(JBCOM). JCBOM describes component interfaces. The JBCDL is intended to aid

component composition, component verification and component retrieval [QJHF98].

JCBOM describes a component as comprising of seven parts: template parameters,

provided functions, requirements, members, connections, imported specifications and

implementation. The component definition language was designed with reuse as a

primary aim. The language is easy to understand so developers can quickly judge the

suitability of the component. The syntax of JBCDL relates to the JBCOM and has 6

specification parts, template parameters, provides, requires, contains, connection and

imports. The implementations are described in programming languages. JDBCL is most

suited to describing object-oriented components; hence inheritance is included in the

specification, as most OO languages support this.

2.5.4 KDL

KDL is a Component Description Language developed by Joseph R. Kiniry. The

language is used to describe both the interface and behavior of software components.

The language is an extension of the OMG’s Object Constraint Language (OCL). It is

used to specify the interface and the externally observable side effects of methods.

Expression languages such as Eiffel or OCL use pre- and post- conditions on each

method. KDL allows the specification of interfaces such as IDL interfaces plus it can

also specify semantic relations of components. KDL includes relationship operators,

like those used in UML to denote relations between components (cdlHasA,

cdlContainsA). Also included are ways to specify if components are related under

cdlIsTypeOf and cdlIsKindOf.

From examining the features of these component description languages, OCL is most

suitable as it is has been adopted as a standard by the OMG and it provides the

functionality that we require, i.e. representation of pre- and post- conditions and

invariants.

31

There are other ways of describing the semantics of components and providing insights

into the functionality of a component. In the next section modelling languages are

discussed that could be utilised by BeanBag to extract more information from a

component.

2.6 Modelling Languages

The widespread utilization of a specification language, much like a normal computer

language, seems to be inversely proportional to the language’s complexity - i.e., the

simpler the language, the more system builders will use it [Kin98].

Designers need to know more about a component than just its interface. Components

and objects can be described in a formal way, so that there is no ambiguity as to their

function. Modelling languages have been developed for this purpose.

Current system specification methodologies can be divided into two communities, the

informal and formal. Most designers are familiar with UML, which like OOCL and

Cataysis belong to informal methodologies. These methods are not concerned with

system correctness. OOCL can be used to model larger systems such as organisations,

as well as software systems. It adds several diagrams to UML, but fails in the area of

component representation and interaction.

2.6.1 UML

UML is used to informally document the interactions between the user and the system,

and has become popular because its learning curve is manageable by most designers

and because the OMG has adopted it as a modelling language. Plus UML diagrams can

be interpreted easily by customers.

Component specification languages such as OCL, VDM and Z are formal specification

methodologies, while ignoring object-orientation or component software. These

methods are rooted in mathematical notation, and even though they are used to prove

32

system correctness against a specification, they require a steep learning curve for the

developer.

UML provides mechanisms for extending system specifications [Kin98]:

• Packages: a collection of model elements

• Stereotypes: indicates a usage or semantic extension

• Constraints: a semantic relationship between model elements that specifies

conditions and propositions that are invariant. The conditions are generally

described in a formal language such as Z or OCL.

{message.oclIsTypeOf(SummonRequest) }

{∀ n :� �• n + n �even.`

• Properties and tagged values

• Notes: graphical symbols that contain information, usually textual, or comments

about the model.

UML does allow component diagrams, but it does not have any utilities for describing

the relationships that components can have with each other. It does not document a

component’s inbound and outbound interfaces sufficiently. DESML addressed these

issues, and aims to provide a framework for describing components where UML stops.

2.6.2 DESML

[Kin98] describes DESML as a new set of modelling constructs, which can be used on

top of other modelling languages. DESML aims to describe a component in a formal

way to aid designers, but it also aims to be easy to use and easy to learn. [Kin98]

examines the difficulties in designing a system that would not have a steep learning

curve. DESML is a variant of UML, not an extension, as the UML core meta model

was modified in the process.

33

Figure 2-4 Using behavioural elements to denote the interface of a component [Kin98]

In [Kin98] some of the problems of component representation are discussed:

• Core Component Representation

[Kin98] describes the features that are missing in UML, when it comes to describing

components.

1. The Outbound interface: aka the needs interface. There are other elements that the

component needs to operate properly.

2. Properties and Attributes: the properties of components usually have special

semantic values, i.e. the identifier might be a unique number.

3. Events and Methods: components are connected using events, which require their

semantic information to be noted.

34

4. Dependencies and Associations

• Partial Component Interface Specification

A component depends on a set of other components, but not on all the interfaces of all

these components. UML does not provide a way of describing this.

• Component Associations

Components have associations with other components. The most common associations

are containment and aggregation. These associations are defined using stereotypes and

constraints. However, these definitions are sufficient for the OO world, but components

require more complex associations to be modelled. In [Kin98] a list of possible

associations are defined:

• Standard Local Reference

• Garbage Collector Reference Type

• Guarded Reference

• Weak Reference

• Phantom Reference

• Soft Reference

• Indirect Association

• Renewable Association

• Mobile Association

• Constant Association

• Channel Association

• Event Association

• Method Association

• Tuple Association

35

• Reflective Association

• Meta Association

• Semantic Association

• Persistent Association

• Dynamic and Emergent Structures of Components

In [Kin98] a new way of describing networks of components is introduced, that of the

Object Network Diagram. New constructs have been added, such as Agents, which

represent an autonomous thread of control, Types are classifiers of objects, and Kinds

which add semantics to types.

• Tying Knowledge/Semantics to Components

Because there is still room for mis-interpretation in UML, extra semantic information

about a component will become crucial to helping developers find the components that

they require for their system. The new metaclass Kind helps describe if two components

are semantically similar.

If UML or DESML descriptions were available to BeanBag, they could be processed

and the semantic information they provide could be stored persistently. Details about

what other components are required by a component and what its semantic kind is, are

of interest to a developer that is searching for a component

2.7 Component Repositories

BeanBag is intended to be a component repository for various components. There are

many commercial component repositories available that combine a storage mechanism

with version control and visualization. For a repository to be used successfully by

developers it should be able to store many types of components, and should contain

36

details about component interoperability, design models and interface specifications.

The next section describes research in the area of component repositories and examines

the features and shortcomings of some commercial repositories.

2.7.1 A Distributed Repository for Object-Oriented Software Components

[OYM] describes the design of a distributed OO repository. The main point to note is

that this repository is distributed among machines, with no central datastore. The

repository is used to store OO software components and the relationships between them

are represented using hypertext. Useful features include multiviews of the components

depending on whether the implementation is public or private.

Difficulties with using this system is that the target language is C++, and the repository

is not designed for storing the components described in Section 2.4. Data about the C++

classes is extracted from the source code, such as class declarations, type information,

class name, interface definition and dependencies. However this requires that the source

code of the software is available, which in real life components, will probably not be

the case. This system was in prototype version at the time of publication of [OYM].

2.7.2 DELOS

[Geor99] describes the development of a semantic repository for the DELOS

environment, which focuses on integrating legacy systems. DELOS is an environment

that supports the development of applications using distributed components that

employs a central repository containing component meta-data about IS systems. The

repository captures knowledge about the company’s business processes, operational

knowledge of legacy systems and IS knowledge of system components. The repository

is based on the Semantic Index System (SIS) which has primitives that represent entity

classes, attributes and relationships. Component behaviour is represented by using a

Finite State Machine. Queries are constructed as a sequence of nested SQL.

37

[Geor99] describes how legacy data can be represented in the repository by using

reverse-engineering rules to obtain semantics about data. Components are divided into

two groups: generic or customised. Generic components may be suitable for reuse in

many applications while customized components are specialised to perform a certain

task.

A user constructs queries about the legacy systems. Internally the queries are converted

from JDBC calls into the native query service that the legacy system supports. The

result is returned to the user. Legacy components are wrapped with DELOS wrappers

that are Java classes that can receive events from DELOS.

This system focuses on IS components. It is worthwhile to see how this system deals

with legacy components. BeanBag must be designed to handle all component types.

The DELOS system divides components into two groups depending on how reusable

they are. BeanBag should also attempt to categorise components in this way.

2.7.3 Softlab’s ENABLER Open Repository

This component repository was designed while considering the heterogeneity of

components. The repository provides a component management system with versioning

control, information sharing across workgroups and release management facilities. It is

an integration framework that spans the desktop, Internet and the network. The

components that are stored are a mix of program code, spreadsheets and forms. The

WhitePaper for Enabler can be viewed at [URL1]. The repository is not specifically

designed for the components that were discussed in Section 2.4.

2.7.4 The Microsoft Repository

Microsoft Repository is used to share software components and store information about

them such as Web pages and design documents. Version 2.0 ships with Visual Basic

6.0. The Microsoft Visual Modeler (part of Visual Studio) allows developers to express

38

a model in the form of Repository classes, interfaces, properties and relationships by

using UML [URL14].

The Microsoft Repository stores the repository data in a relational database, and XML

can be used to exchange data between the tools and the repository.

Investigating other commercial component repositories helps formulate the

requirements for BeanBag. Features such as component classification need to be

included in a component repository. It is also possible to store extra data with the

component, such as its UML design documents and perhaps its source code if it is

available. BeanBag must be designed to enable the storage of the components described

in Section 2.4.

2.8 XML

XML is, essentially, a platform-independent way to structure information

[MR99]

As one of the main requirements of BeanBag is to describe components, XML should

be investigated. This section describes what functionality XML could bring in terms of

describing components.

At the moment, web content is tied to how it is displayed. What XML does, is to

separate the content from the presentation. XML is not a language itself but rather a

way of defining languages, which has many potential applications, such as EDI.

Businesses may choose to interchange data, and XML can put structure on the data

exchanged.

XML (Extensible Markup Language) is a formal specification for expressing the

structure of data. It originates from the World Wide Web Consortium (W3C) and is

used to separate structure and content from the presentation of data. By separating

39

structure and presentation in this way, an XML document may have the same content,

but can be presented differently depending on what device is being used to access the

page, e.g. the document will look different on a mobile phone than on a computer

screen.

Just as important is the fact that XML is inherently extensible. This means that

developers can specify their own tag sets. If a tag is created to describe a set of recipes,

and if tags describe the content then it is easier to search for the relevant data. It would

be possible to retrieve the authors names and search in the bodies of recipes, because

the tags describe the data. The XML for part of the recipe could look like this:

<author> Polly Jean Harvey </author>

<recipe_name> Dorset homemade strawberry jam </recipe_name>

XML and HTML are document formats derived from SGML (Standard Generalized

Markup Language). HTML is an application of SGML, whereas XML is a subset of

SGML. XML was designed with the Web in mind, while keeping the benefits of SGML

and removing the complicated parts. HTML is suited best to fast data publishing on the

Web. If the data requires more structure then XML may be used. For high-end highly

structured publishing applications, SGML will continue to be used [URL15].

2.8.1 DTDs

Document Type Definitions (DTDs) are sets of syntax rules for XML tags. They define

what tags are used in a document, what order they should appear in, which tags can

appear nested inside others and what attributes tags have. A DTD is like a schema used

in a database, but DTDs are less restrictive and allow for more variations of data. A

DTD can specify that some fields are optional and that others can occur multiple times.

HTML has its own universal DTD, however some people will need to define their own

to suit their needs.

If an XML document is not well-formed it’s toast[URL15]

40

An XML file must be well-formed and valid. There are certain XML syntax rules that

need to be applied if a document is said to be a well-formed XML document. For

instance, data must be ended with an end tag or an empty element tag. XML tags are

case-sensitive. HTML contains error-handling code that deals with HTML with missing

end tags and non-matching tags. However, this is not sufficient for XML, which

demands a higher quality.

For an XML document to be well-formed it must follow three basic rules

1. The document starts with an XML declaration <?xml version=”1.0”?>

2. There is a root element in which all others are contained.

3. All elements must be properly nested. No overlapping is allowed.

[URL16]

If a document conforms to a specific DTD, then it is said to be a valid XML document.

XML browsers need only concern themselves with whether an XML document is well-

formed, in order to read it.

XML parsers examine XML code and report forming errors if the XML is not well

formed. A DTD might specify that certain data should be present between two tags. The

tags might be there and matching, and so it passes through the parser, but the data might

not be there. DTDs are used to ensure the correct data is there also. A validating parser

can be used to perform this task.

XML links have more functionality than HTML links. In HTML, links can be made to

the middle of a page only if there is an anchor there already. The linking specification

XLL (XML Linking Language) is being split into two separate specifications: XPointer

and XLink. XPointer allows linking to any part of another page, even with no anchor

there. XLink adds behavior to links, so that a new page might pop up, instead of the

page arriving in the browser.

HTML is an adequate markup for humans to read, however for automatic data

processing, XML is a more effective option. Using XML to describe components

41

means that descriptions can be extended, and XML parsers can be used to check if the

data is valid.

2.9 XML Schemas

The previous section described DTDs and ways to validate the content of an XML

document. However, DTDs do not contain sufficient type information for some

applications. Hence the interest in XML schemas.

Sun currently provides XML parsers for Java. Using these parsers to extract data from

XML documents is not an easy task, as it requires an understanding of the API. Sun are

looking at ways to enable the developer to access XML data in a Java-centric way by

mapping XML schemas to in-memory Java objects. This work takes the form of the

XML Data-Binding Facility.

Already we have schemas in XML in the form of DTDs, but these are a particularly

weak type of schema with little support for complex structures. This has motivated the

W3C Working Group to define a new schema language.

The XML binding facility is intended to be part of the Java2 platform. Including such a

facility means an end to parsing XML manually, and developers could access XML

content through Java classes. A schema compiler and a marshalling framework would

be included in the facility. The schema compiler would translate an XML schema into a

set of Java classes with matching accessors, i.e. get/set methods, thus hiding the parsing

complexity from the application developer.

2.10 XML Query Languages

If component descriptions are represented in XML, a way of querying this data is

required. This section describes research in the area of XML query languages.

42

2.10.1 XML-QL

In August 1998, a submission was made to the W3C for a Query Language for XML,

called XML-QL. The submission takes a database view of XML as opposed to a

document view, in that the XML document is the database and the DTD is the database

schema.

XML-QL can express queries. Queries are used to extract pieces of data from XML

documents. XML-QL also expresses transformations, which can map XML data

between DTDs and can integrate XML data from difference sources [DFFLC98].

This is an example of XML-QL taken from [DFFLC98]:

Given this DTD, which describes the book, article, publisher and author elements,

<!ELEMENT book (author+, title, publisher)>

<!ATTLIST book year CDATA>

<!ELEMENT article (author+, title, year?, (shortversion|longversion))>

<!ATTLIST article type CDATA>

<!ELEMENT publisher (name, address)>

<!ELEMENT author (firstname?, lastname)>

a corresponding XML-QL query is formed:

WHERE <book>

<publisher><name>Addison-Wesley</></>

<title> $t</>

<author> $a</>

</> IN www.a.b.c/bib.xml

CONSTRUCT $a

The URL tells us where the XML document is, and it is assumed that it contains a

bibliography, which conforms to the DTD above. This query matches every book

element in the XML document that has at least one title element, one author element

43

and one publisher element, whose name element is equal to Addison-Wesley. t and a are

variable names unlike the string literal Addison-Wesley. The resulting list is a list of

authors bound to a.

2.10.2 XQL

XML-QL has influenced the design of XQL while keeping in mind database standards

such as SQL.

XQL has a select-from-where construct, which is similar to SQL.

Select $book.author

From bib:URL www.a.b.c/bib.xml, book:$bib.book

Where $book.publisher.name =”Addison-Wesley”

[IKK98]

In XQL element variables can be defined in a from-clause, such as bib and book in this

example. The element variable bib is bound to an XML document. To make a

reference to an element variable, it is prefixed with $.

The groupby -clause allows the resulting elements to be grouped together. The

orderby -clauses, sorts the resulting elements.

2.10.3 XSL

XSL is a transformational language being defined by the XSL Working Group. XSL

has similarities with the XML-QL approach proposed. The group believes that a

convergence of XSL and XML-QL would result in a powerful and flexible query and

transformation language for XML [SLR98].

XSL is already a W3C work in progress and can accommodate regular/irregular data or

recursive data structures. There is no particular format for results, and results can be in

44

terms of XML text, primitives like strings or integers, or as structures representing parts

of the documents.

The main difference between XSL and XML-QL is its syntax. XSL uses a URL like

syntax for specifying queries, and XML delimiters. XML-QL uses keywords as

delimiters and patterns for selection.

An example of XML-QL:

WHERE <book>

<publisher><name>Addison-Wesley</name></publisher>

<author>$a</author>

</book>

CONSTRUCT $a

The same query in XSL

<xsl:for-each select = “book[publisher/name =

‘AddisonWesley’]/author”>

<xsl:value-of />

<xsl:for-each>

If results are required from more than one publisher, the query can be easily extended

<xsl:for-each select = “book[publisher[name = ‘AddisonWesley’]

 or name=’Microsoft

Press’]]/author”>

<xsl:value-of />

<xsl:for-each>

[SLR98]

XSL does not currently address some of the issues that are addressed in XML-QL,

namely:

� Variables and Joins

� Object Identifiers

45

� Regular expressions in patterns

� Integrating Data from Multiple XML Sources

2.10.4 Lore

Lore is a Database Management System for XML that has been under development at

Stanford University. Lore includes a functional prototype with a query language,

indexing techniques, a cost-based query optimiser and support for logging and recovery.

Lore also includes techniques for carrying out proximity searches.

The Lore project focuses on defining a declarative query language for XML, developing

new technology for interactive searches over XML data and building an efficient XML

query processor. More information can be found at [URL18].

2.10.5 W3C

In December 1998 the W3C held a workshop on query languages called QL’98.

Companies discussed the problems and issues in creating a query language capable of

handling XML. The aim of the workshop was to establish whether the W3C should

start a new working group to define an XML-based query language. 92 participants

from 31 different companies and 7 different research facilities discussed their business

and commercial needs [URL17].

A query language is required that will take advantage of XML’s data model while at the

same time allowing the kinds of applications that SQL provides for databases. If there

were a query language for XML it could improve current document searching

techniques as queries would use the XML document structure to search relevant parts of

the document.

The major issues that emerged relating to an XML query language were:

1. That a query language should take XML in and return XML

2. That a schema should not be required, but the language should have

the ability to take advantage of one when present;

46

3. Companies are anxious to come to an agreement so they can move

forward with shipping product.

[URL17]

It was proposed that the pattern matching utility in XSL, came closest in providing the

basic functionality of an XML-query language. However, the XSL pattern language

needs to be extended. XSL can only work on one document at a time.

XQL received a lot of attention at the conference because it extends the pattern

language in XSL. As XQL includes indexing strategies, this makes it more suitable for

a larger document set, and scalable.

2.11 Summary

This chapter described the technologies and methodologies required for designing a

component repository. The motivation behind the current interest in component

software was discussed, as were the benefits that components provide. Before designing

the repository, the main component frameworks were investigated. This chapter

included descriptions of the architectures of the main component frameworks, i.e.

CORBA Components (CCM), Enterprise JavaBeans (EJB) and COM components. A

comparison of CCM and EJB was included, as was a list of available commercial

application servers.

A substantial requirement of BeanBag was to design an extensible component

description. Therefore descriptions of component description languages such as IDL,

OCL, JBCDL and KDL were given. Components can be described using modelling

languages such as UML and DESML, and so these were described. XML was examined

as a way of describing components in an extensible way and a note on XML schemas

were included. Lastly, the XML query languages, XML-QL, XQL, XSL and the Lore

project were investigated to discover their features and shortcomings.

47

3. Design

3.1 Introduction

Chapter 2 described research in the area of component repositories and what component

technologies are available. This chapter uses that information to construct a set of

requirements for each of the modules in BeanBag. Then, each module is designed with

these requirements in mind. Lastly, a high-level view of the BeanBag process for insert

and retrieval is outlined.

3.2 Requirements

The aim of this thesis was to design a framework for describing, storing and querying

components that was extensible and that could be applied to all types of components.

Each module of the BeanBag system has its own requirements. These are outlined in

the following sections.

3.2.1 Storing Components

There is no requirement to store the component itself, it is sufficient to store the URL of

the component. The main pre-requisite for storing components, is that the system must

use the storage mechanism that is available, i.e. an Oracle relational database. The

following functionality must be provided:

� If a description contains a new property, a dynamic way to store it must be

supported

� Given the component name, BeanBag should return a reference to it

� Given the component name, BeanBag should return its remote interface description

and its developer defined description

48

� Component descriptions will vary depending on the type of component to store. For

instance Enterprise Java Beans has an XML Deployment Descriptor, and a remote

interface, that can be retrieved using Reflection. The description of a COM object

will be in a different format. How BeanBag extracts the description will depend on

the type of component being inserted.

3.2.2 Describing Components

The primary requirement for the component description is that the component

description must be component independent and easy to query. The component

developer will be required to describe the semantics of a component before its

deployment. This will be in the form of an extra file that the developer will populate, as

in some cases it may not be possible to extend the description of the component that

already exists. For instance, in the case of EJBs, the Deployment Descriptor cannot be

extended to include user-defined descriptions.

Before methods used to describe semantic information about components are examined,

the information that is already stored in a component must be discussed. In Enterprise

JavaBeans, information about what is contained in the JAR at deployment time is

contained in the Deployment Descriptor.

3.2.2.1 The Enterprise JavaBean Deployment Descriptor (DD)

EJBs are deployed in JAR archives. An EJB-JAR file can contain one or more

Enterprise Java Beans as EJB Java class files that include the remote and home

interfaces. The EJB-JAR contains an XML Deployment Descriptor.

In [EJB1.1] the Deployment Descriptor has been divided into two sections:

• Structural Information (mandatory)

Enterprise Bean Name, Enterprise Bean Class, Enterprise Bean Type etc.

• Assembly Information (optional)

49

Typically only EJB-JAR files with assembled applications contain assembly

information, therefore this is optional. The assembly information describes how

the bean in the EJB-JAR is composed into a larger application.

The format of the Deployment Descriptor (DD) has changed from [EJB1.0] to

[EJB1.1]. The new DD format is based on XML. The aim was to achieve a vendor-

independent DD. The DD no longer contains information, which is specific to each EJB

Server.

The role of the Deployment Descriptor is to provide information about the Enterprise

Java Bean that is not contained in the code. The DD must be well formed XML and

conform to the DTD in [EJB1.1].

The Deployment Descriptor must contain the following information about the

Enterprise Java Bean:

• ejb-name: Enterprise bean’s name - there is no relationship between this name

and the JNDI name that the Deployer will assign the bean

• ejb-class: Enterprise bean’s class - the fully qualified name of the class that

implements the business rules of the bean

• home: Enterprise bean’s home interface

• remote: Enterprise bean’s remote interface

• session/entity: The bean’s structural information

• session-type: Stateful/Stateless (session)

• transaction-type: Is transaction demarcation performed by the Container

or the Enterprise Bean (session)

• persistence-type: Is persistence management performed by the Container or

the Enterprise Bean (entity)

• primkey-class: A primary key class must be provided for an entity with

bean-managed persistence (entity)

• cmp-fields: The Container Managed fields (entity)

50

• The Environment Entries

• The Beans resource factory references

• The EJB references to homes of other EJBs

• Security Roles

A typical .ejbml file looks like the following:

<enterprise-beans>

<session>

...

<ejb-name>EmployeeService</ejb-name>

<ejb-class>com.wombat.empl.EmployeeServiceBean

</ejb-class>

...

<ejb-ref>

<description>

This is a reference to the entity bean that

encapsulates access to employee records.

</description>

<ejb-ref-name>ejb/EmplRecord</ejb-ref-name>

<ejb-ref-type>Entity</ejb-ref-type>

<home>com.wombat.empl.EmployeeRecordHome</home>

<remote>com.wombat.empl.EmployeeRecord</remote>

</ejb-ref>

<ejb-ref>

<ejb-ref-name>ejb/Payroll</ejb-ref-name>

<ejb-ref-type>Entity</ejb-ref-type>

<home>com.aardvark.payroll.PayrollHome</home>

<remote>com.aardvark.payroll.Payroll</remote>

</ejb-ref>

<ejb-ref>

<ejb-ref-name>ejb/PensionPlan</ejb-ref-name>

<ejb-ref-type>Session</ejb-ref-type>

<home>com.wombat.empl.PensionPlanHome</home>

<remote>com.wombat.empl.PensionPlan</remote>

</ejb-ref>

...

51

</session>

...

</enterprise-beans>

Figure 3-1 An Example of EJB References in a Deployment Descriptor

3.2.3 Querying Components

Section 2.10 described XML Query Languages. If an XML component description and

other component data are stored in a relational database, the minimum requirements for

the query module are:

• To return a component from the data store that matches the interface provided by

the user. The match may be exact or partial.

� The system should attempt to rank the returned components in terms of cost,

version or preferred vendor. User-profiles could be used to tailor the search to the

user

� The queries must be efficiently executed

3.3 High Level Architecture

From examining the requirements, it is obvious that the system will be a three-tier

system, using a database, interfaced by a server with business logic and accessed by

may clients.

Figure 3-2 The BeanBag High Level Architecture

Client

GUI
BeanBag
System Oracle

Database

JDBC

52

3.3.1 GUI

The user will interface with BeanBag via a GUI. It is anticipated that queries will be

input by selecting combo boxes and Boolean statements or by entering SQL statements.

GUI queries will have to be converted into a form that can be used to query the

database.

Examples of queries that a user may request are:

• Retrieve a component that can add two numbers

• Retrieve a component like this component, but cheaper

• Retrieve a component that is a more recent version than this

• Retrieve two components that do the same work as this one

• Retrieve a component written by this author

• Retrieve all components that are from this company

3.3.2 The BeanBag System

The main function of the BeanBag system is to insert and retrieve components. Other

functions that it must perform are:

• Match the user query with components that are already in the database

• Transparently insert new properties for components as they occur

• Keep track of statistics about the components. A user may like to know how many

people have downloaded one component and what their reviews were.

• Retrieve/Insert the following data about a component:

• The component URI, name and statistics

• The component’s remote interface

53

• The component’s semantic developer defined description

• The .ejbml file (in the case of EJBs)

The BeanBag system will be divided into a front and back end. The front end will be

responsible for translating user queries into database queries, manipulating the

component to extract information from it and parsing user input. The back end will

manage the connection to the database and will create and delete database structures

and execute JDBC calls.

3.3.3 Storage Framework

When designing the tables that are to contain the data the following functionality is

required

1. An efficient means of retrieval

2. An extensible framework allowing new properties to be added as the user defines

them

3. The framework should be component independent

3.3.3.1 Efficient Retrieval

Searching through large data structures in a database table is not efficient. If the user

requests that BeanBag find a component matching a component interface, a direct

comparison search would take a while. Also, two interfaces can be the same yet one

may have the base classes in a different order, may include line feeds and comments or

have the methods in a different order.

One way to implement this type of searching is to extract details from an interface at

insert time that may be searched in the future. Elements that may be queried are method

names, base classes extended, interfaces implemented and the number of parameters.

When these details are extracted they can by inserted into an Indexed Table.

The Indexed Table for methods maps method names to beans that implement those

methods. Then when a user requests all components that implement certain methods,

54

BeanBag retrieves this data quickly and can AND or OR the results in much the same

way as some Web search engines do.

This is an example of how the Indexed Table for methods looks, presuming that

component names are mapped to a unique key, which is stored in another table.

methodName beanNames

findProductBySKU 100063,100345,459990

findProductsByDescription 100063,987665

Figure 3-3 methods2beans table

3.3.3.2 XML Extensible Properties Table

Section 3.4 describes the design of the user defined component description. It is

sufficient to know that this file is an XML file. From this, it can be deduced that the

data to store is contained within XML elements and attributes. Because the XML

elements and attributes describe the data contained, they also need to be recorded with

the data.

A separate table for each element would be difficult to manage. When a new element

type is inserted by the developer, a new table would be created, which might never be

populated by another component. If elements and attributes were mapped to columns of

a table, this would be inefficient and cumbersome to manage. Many of the columns

would remain empty and new columns would be added regularly.

The design chosen was to have one Properties table. This would have a column for the

bean unique identifier, element name, attribute name, value and the element index.

These columns form a composite key. Using this format, new properties can be added

easily and efficiently.

55

Pkey ElementName AttrbuteName Value Index

100063 name id Caroline 1

100063 name email oreillcr@cs.tcd.ie 1

104566 name id Jack 2

104566 Name email Jack@cs.tcd.ie 2

Figure 3-4 Extensible Properties Table

3.3.3.3 Bean Interfaces Table

It is likely that the most common request to the BeanBag system will be to retrieve the

component description of a component in the database. For this reason the user defined

descriptions and those extracted from the component will be stored in their entirety and

indexed by the beans unique primary key. An example with regard to EJBs is to store

the .ejbml file.

pkey .ejbml description

100063 <enterprise-beans>

<session>

<ejb-name>EmployeeService</ejb-name>

<ejb-class>com.wombat.empl.EmployeeServiceBean

</ejb-class> ...

104566 <enterprise-beans>

<entity>

<ejb-name>EmployeeService</ejb-name>

<ejb-class>com.radio.empl.RadioerviceBean

</ejb-class> ...

Figure 3-5 Descriptions Table

56

3.4 The Component Description

To describe the semantics of a component that are not contained in the .ejbml file, a

new file is needed, that will be populated by the component developer. This file,

xml/component.xml will be included in the EJB-JAR at deployment time.

A component description may include the following data:

• Component Type { DCOM | EJB | CORBA | JavaBean }

• Author {name, email }

• Company

• Version

• Date Written

• Genre/Kind {Game, Mathematical, E-Commerce, CORBA, GUI }

• Comments

• Method Comments

• Pre-condition

• Post-condition

• Parameters {unique, max number…}

• Outbound interface/Needs interface {what other components does this

component need to perform}

• Transport {IIOP, RMI}

As the component description must be component independent and extensible, XML is

a logical choice for representing the description. Using XML allows new elements to be

added to the DTD and then the XML can be validated. As described in Section 2.10, an

XML query language could be used to query the XML descriptions. There were several

steps in designing the XML and the DTD. These are described in the next sections.

57

3.4.1 Abstracting the Information Content

Firstly, the information that was to be included in the component description was

modelled as a hierarchy of elements.

Component

Type

Release

Version

DateOfRelease

ExpiryDate

Author

Name

Email

WebSite

Phone

Institution

Name

Address

WebSite

Phone

Genre

TestEnvironment

Package

Version

Needs

ComponentName

Method

MethodName

ReturnType

Parameters

Invariants

PreCondition

PostCondition

Transport

Comment

Author

Date

Comment

58

3.4.2 Designing the DTD

The next step was to design a DTD that could represent the information content. The

DTD is used in the validation stage to ensure that the description file contains correct

data. The DTD ensures that the minimum data is present in the XML description. For

more information on XML and DTDs see [NH99]. This is the DTD that was designed

to support the component description:

<?xml version="1.0" encoding="UTF-8"?>

// This is the DTD for describing components. The Occurence Indicators
// are [?: 0/1, *: 0/more, +: 1/more]

// data & comment are used multiple times in the DTD and so they are
// defined as entities.

// there could be more than 1 component in an EJB-JAR archive

<!ELEMENT components (component+)>

<!ELEMENT component (type, date+, release, author+, institution*,
genre+, keyword*, test.environment*, needs*, method*, transport,
comment*)>

<!ENTITY % common.attrib

 "id ID #IMPLIED

 ">

<!ENTITY % date.attrib

 "day CDATA #REQUIRED

 month(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)
#REQUIRED

 year CDATA #REQUIRED

 ">

<!ELEMENT date EMPTY>

<!ATTLIST date

 %common.attrib;

 %date.attrib; >

// there will be only 1 component type and it is required

<!ELEMENT type EMPTY>

<!ATTLIST type

59

 isa (EJB | CORBA | DCOM | JAVABEAN) "EJB">

// there will be only one release date and it is required

<!ELEMENT release EMPTY>

<!ATTLIST release version CDATA #REQUIRED

 release-date IDREF #REQUIRED

 expiry-date IDREF #IMPLIED >

// there could be more than 1 author

<!ELEMENT author EMPTY>

<!ATTLIST author %common.attrib;

 email CDATA #REQUIRED

 website CDATA #IMPLIED

 phone CDATA #IMPLIED >

// A number of companies or universities could be involved

<!ELEMENT institution (company*,university*)>

<!ELEMENT company EMPTY>

<!ATTLIST company name CDATA #REQUIRED

 address CDATA #REQUIRED

 website CDATA #IMPLIED

 phone CDATA #IMPLIED >

<!ELEMENT university EMPTY>

<!ATTLIST university name CDATA #REQUIRED

 address CDATA #REQUIRED

 website CDATA #IMPLIED

 phone CDATA #IMPLIED >

// a component could belong to many genres. They have to be pre-

// defined for consistency

<!ELEMENT genre EMPTY>

<!ATTLIST genre belongs (e-commerce | games | journalism | maths |
cad) #REQUIRED>

// for efficient searching, components can be assigned keywords

<!ELEMENT keyword EMPTY>

<!ATTLIST keyword %common.attrib;>

// what envionments was the component tested in

<!ELEMENT test.environment (package?, version?)>

60

// what other components does this component need to function

<!ELEMENT needs ANY>

<!ATTLIST needs

 xlink:form CDATA #FIXED "simple">

// what are the component methods in terms of pre- and post-

// conditions

<!ELEMENT method (parameter*, pre-condition*, post-condition*,
invariant*, comment*)>

<!ATTLIST method id ID #REQUIRED return.type CDATA #REQUIRED>

<!ELEMENT parameter EMPTY>

<!ATTLIST parameter name CDATA #REQUIRED type CDATA #REQUIRED>

// the transport used

<!ELEMENT transport EMPTY>

<!-- need to know how to say iiop or rmi or your own... -->

<!ATTLIST transport type CDATA #REQUIRED>

// comments

<!ELEMENT comment (#PCDATA)>

<!ATTLIST comment

 written.by IDREF #REQUIRED

 date IDREF #REQUIRED>

<!ELEMENT package (#PCDATA)>

<!ELEMENT version (#PCDATA)>

<!ELEMENT pre-condition (#PCDATA)>

<!ELEMENT post-condition (#PCDATA)>

<!ELEMENT invariant (#PCDATA)>

3.5 Component Insert and Retrieval

Given the location of a component, the first operation that BeanBag executes should be

the module to check the type of the component. The component could be a DCOM

component, a CORBA Component or an EJB. The insert module must discover the

component type and follow that insert route.

61

Figure 3.6 outlines the high-level insert operation.

Figure 3-6 High Level Model of the Component Insert

In this thesis, only one route is examined to evaluate the feasibility of the BeanBag

system. This is the EJB route.

Having designed the database tables and the developer XML description, the flow of

data through the system can be outlined, from when the user inserts the location of a

component to its insertion into the database. The following sections outline the main

processes in BeanBag. Appendix C includes the sequence diagrams for these processes.

3.5.1 Inserting a component

The insert process takes the location of a component from the user, processes the

component JAR file, and stores the semantic and syntactic data in the database. These

are the modules that are used in the insert process.

Insert component

Discover

component type

EJBDCOM CCM JavaBean

EJB Insert

Methods

Component

Insert Method

62

Figure 3-7 High Level View of the Insert Process

3.5.2 Retrieving Components

To retrieve a component the user selects criteria that a retrieved component must

satisfy. The user input must be transformed into a database query. When the query has

executed the user should be notified. What follows is a high level view of the modules

that are used during the retrieval process.

Figure 3-8 High Level View of the Retrieval Process

insert /dd/msc/components/ecommerce.jar

C
lien

t G
U

I

P
arse JA

R
 A

rch
ive

R
etrieve In

terface

R
etrieve X

M
L

V
alid

ate th
e X

M
L

S
to

re n
am

e,

lo
catio

n
, in

terface,

X
M

L
 an

d
 m

eth
o

d

n
am

es

Client BeanBag Server Database

C
lien

t G
U

I

Q
u

ery D
atab

ase T
ab

les

Client BeanBag Server Database

T
ran

slate to
 Q

u
ery

F
o

rm
 R

esu
lts

retrieve components with this interface...

63

3.6 Summary

In this chapter the design of the BeanBag system was described. The initial sections

outlined the requirements for storing, describing and querying components. The EJB

Deployment Descriptor was examined, to determine what component information it

contained before the component description was designed.

The next sections described the design of the system modules. The design for the

storage framework discussed methods for achieving efficient retrieval and for

accommodating extensible component descriptions, by describing the database tables.

Next, the methodology behind designing the XML component description and DTD

was outlined in detail. Lastly, a high level description of the operation of the system at

component insert and retrieval was presented.

64

4. Implementation

4.1 Introduction

Chapter 3 discussed the design of BeanBag. In this chapter, the implementation of the

system is described and any issues that were encountered during the implementation.

The implementation of BeanBag followed a path, from implementing components,

extracting data from the JAR archive, to examining ways of querying the database.

Each step describes what technologies were considered and which were chosen.

4.2 The Component Framework

The Enterprise JavaBeans Framework was chosen as the first component framework to

be supported by the BeanBag system, as the EJB Specification had been released from

Sun in March, and there were many implementations of the specification. At the time of

implementing the system, there were no CORBA Component implementations.

4.2.1 HomeBase

HomeBase is the current Application Server from IONA. It was chosen because it was

free and there were demos and documentation available on the IONA website.

4.3 The JAR archive

Section 2.4.2.9 described how EJB components are deployed as JAR archives. Given

the location of the component, i.e. The JAR archive, BeanBag had to extract the .ejbml

file and the developer described xml/component.xml file from the JAR archive.

Every EJB JAR should contain at least one .ejbml file according to [EJB1.1]. If the

65

JAR archive does not include one, BeanBag throws an exception. A more detailed

description of JAR archives can be found at [JAR].

The Java classes in java.util.ZipFile provide methods for finding and reading files

in a JAR. The JAR corresponds to a java.util.ZipFile and the files it contains

correspond to java.util.ZipEntry files.

To check if a particular file is in a JAR archive, the following code is used:

 ZipFile jarFile = new ZipFile(jarfile);

 // check to see if a file ‘fileName’ exists in the archive
 Enumeration enums;

 for (enums=jarFile.entries(); enums.hasMoreElements();) {

 // get the next entry in the archive
 ZipEntry jarEntry = (ZipEntry)enums.nextElement();
 String filename = jarEntry.getName();

 if (filename.equals(fileName))
 return true;
 }

A Java bug exists relating to reading files from JAR archives, which results in an

’Unexpected end of ZLIB input stream error’ occurring. The behaviour is described in

more detail in [URL9]. This bug is fixed in jdk1.2 so the BeanBag application should

be ported to this version in the future.

The workaround involves never attempting to read more bytes than the jarEntry

contains, as shown in this code example:

...

 // workaround for Java Bug 4040920
 byte buffer[] = new byte[1024];
 int remaining, length;

 String line = new String("");
 try {
 DataInputStream dis = new DataInputStream

 (archive.getInputStream(file));
 String nextline;

 // get the size of this file
 remaining = (int)file.getSize();

 // read in the file in 1024 byte blocks
 while (remaining>0 &&

66

 (length=dis.read(buffer, 0, Math.min(1024, remaining)))
 != -1){

 line = line + new String(buffer);
 remaining -= length;

 }
 dis.close();
 }

 ...

4.4 Extracting the Remote Interface from the JAR archive

Once the .ejbml file has been read from the JAR archive, the file is parsed to extract

details about the components it contains. This file provides information such as the

bean names, whether they are session or entity beans, and more importantly, the home

interface name and the remote interface name. The entire file is stored in the database.

This is an example of an .ejbml file describing the cart EJB i.e. cart.ejbml

<ejbml>
 <session-bean
 name="cart"
 package="order"
 descriptor="order/CartDeployment"
 home="order.CartHome"
 remote="order.Cart"
 bean="order.CartBean"
 type="stateful"
 timeout="600"
 tx-attribute="TX_SUPPORTS"
 >
 </session-bean>

</ejbml>

Once BeanBag has parsed the remote interface class name from the .ejbml file, the Java

Reflection API is used to extract the remote interface from that class. The Reflection

API returns the signature of the remote interface class, except the names of the

parameters to the methods. For more information about the Java Reflection API see

[FLAN97_2].

The remote interface returned for the cart EJB is:

 public abstract interface order.Cart extends javax.ejb.EJBObject {
 // Constructors

67

 // Fields

 // Methods

 public abstract void add(order.Product, int) throws
 java.rmi.RemoteException;

public abstract void remove(int) throws java.rmi.RemoteException;

public abstract javax.swing.table.TableModel getTable() throws
 java.rmi.RemoteException;

public abstract void purchase() throws javax.ejb.CreateException,
 java.rmi.RemoteException;

 }

When the remote interface has been discovered, it is stored in the database. For efficient

searching the remote interface is parsed to extract the method names, base classes and

implemented interfaces. This information is stored in indexed tables, as described in

Section 3.3.3.1.

4.5 Processing the XML

Section 4.3 described how to extract files from the EJB Jar archive. When BeanBag

reads the xml/component.xml file, the file has to be validated, and then the elements

and attributes must be parsed so that they can be stored in the database. An XML Parser

is used to parse XML files and is also used for XML validation. The

xml/component.xml file and its corresponding DTD were described in Section 3.4.

4.5.1 Choice of XML Parser

There are many XML Parsers available, but Suns ProjectX TR2 Parser was chosen as

the error messages it generates during validation give details about line numbers in the

XML file where the errors occur.

There are two methods of XML parsing, Event Driven (SAX) and Tree Based (DOM).

Both are described in detail in [NH99]. The SAX Model was used to parse the XML

file, as opposed to the DOM model because the SAX Parser is more memory efficient.

Using the DOM parser involves constructing a tree corresponding to the XML file in

memory, which can consume time and memory. Using DOM brings extra functionality

68

such as look ahead, which means that an application can tell at what point in the

element list it is. However, the SAX Parser was sufficient for BeanBag.

When the XML file is validated and the elements and attributes have been parsed by

BeanBag they are stored in the Properties Table described in Section 3.3.3.2.

4.6 Choice of Database

The Oracle 8 Enterprise Edition Release 8.0.3.0.0 Relational database was used to store

component data, as it was the only database available during the project. Had the Oracle

8i database been available, with XML support, the task of storing XML descriptions

would have been made easier, as the XML would have been parsed automatically. The

XML SQL Utility is described in more detail in Section 5.4.5.

4.6.1 Creating Sequences in Oracle

For effective searching, all the major tables had a numerical primary key. Each bean

name corresponded to a unique number, which in turn was used to index into the tables.

There are a couple of ways to go about creating unique sequence numbers in Oracle.

One way would have been to get the MAX number in the column so far and add one.

However, this solution does not scale when you have more than one client. It would

have been possible for two clients to read the MAX of the column at the same time, add

one and for both to write back the same number. Of course, one of the clients would get

an integrity violation and would fail.

A better solution was to use Oracle Sequences. JDBC has no knowledge of sequences;

they are created through SQL.

An Oracle sequence is created like this

// create a sequence of name my_seq

CREATE SEQUENCE my_seq

// specify the interval between sequence numbers and give a start value

INCREMENT BY 1

START WITH 1

// specify the minimum and maximum value a sequence number can be

69

MINVALUE 1

MAXVALUE 9999999999999999999999

// the sequence cannot generate more numbers if it reaches the max value

NOCYCLE

// guarantee that sequence numbers are generated in the order that the requests come. This is
// not important for primary key generation, but might be for timestamping

ORDER

// specify how many values Oracle pre-allocates and keeps in memory for faster access
CACHE 300

To use the sequence when inserting into a table, nextval and currval are used:

 // insert a new primary key and bean name into the NAMES table
 PreparedStatement pstmt = conn.prepareStatement

("INSERT INTO names VALUES(my_seq.nextval,?)");

 // insert the bean name, as parameter number 1

 pstmt.setString(1, componentName);

 pstmt.executeUpdate();

 pstmt.close();

Using sequences in Oracle means that one user can never acquire the same sequence

number generated by another user. Two users can concurrently increment the same

sequence but they will not get the same value back. Therefore when a user increments a

sequence, the number numbers returned may be 1000, 1001, 1002, 1004, because

another user is incrementing at the same time, and has received 1003. Sequence

numbers are generated independently of tables and so the same sequence can be used

for one or more tables.

4.6.2 Use of the Oracle LONG RAW datatype

The table structure for storing component descriptions needed columns large enough to

store .ejbml files and developer XML descriptions. Each component’s XML description

and .ejbml file had to be stored in its entirety.

The Oracle VARCHAR and VARCHAR2 datatypes specify variable length character

strings. It is recommended that you use VARCHAR2 as opposed to VARCHAR as in the

70

future VARCHAR in Oracle may take on different semantics [OSQL]. A size for VARCHAR

and VARCHAR2 must be specified, the minimum begin 1, and the maximum being

4000.

4000 characters was not large enough for storing .ejbml files or XML files, so the LONG

datatype was chosen. The LONG datatype allows character data of variable length to be

stored up to 2 gigabytes.

The LONG RAW datatype was used to store .ejbml files and XML files as binary data.

When storing binary data in Oracle the RAW datatype should be used. LONG and LONG

VARCHAR get treated as character data and may get converted as data moves from one

platform to another, whereas LONG RAW data is binary and never altered [URL19].

The use of the LONG datatype allows flexibility in size, but it brings restrictions that

effected the design, such as:

• A table cannot contain more than one LONG column.

• LONG columns cannot be indexed.

• A stored function cannot return a LONG value.

• LONG columns cannot appear in certain parts of SQL statements:

WHERE, GROUP BY, ORDER BY, or CONNECT BY clauses or with the

DISTINCT operator in SELECT statements

For a complete listing see [OSQL].

4.6.2.1 Inserting the LONG RAW datatype

Storing the descriptions as binary data when using the Oracle Thin Drivers involved

creating a prepared statement and then using setBinaryStream(), to insert the data

as binary data.

71

...

 // insert the XML file into the table ’XML’
 PreparedStatement pstmt = conn.prepareStatement
 ("INSERT INTO xml VALUES(?,?)");

 // insert the componentName, as its numerical value
 pstmt.setInt(1, pkey);

 // insert the XML file, as retrieved from the ReadJar object
 InputStream fin = new StringBufferInputStream(xmldesc);
 len = xmldesc.length();
 pstmt.setBinaryStream(2, fin, len);

 pstmt.executeUpdate();
 pstmt.close();

...

4.6.3 Working around the Oracle Open Cursors Exceptions

During the development of BeanBag an Oracle exception occurred that the maximum

number of open cursors was exceeded. Oracle opens cursors internally and so an

application can not be sure how many are used. If the number of open cursors is not set,

the default number is 50. [URL20] describes how to change this default value in the

Oracle database.

In order to avoid open cursors errors, JDBC Statements and ResultSets need to be

closed after each method is finished using them.

4.6.4 Achieving integrity in the database tables

Each client had a connection to a CORBA object on the Server. Each CORBA object

had a connection to the Oracle database. This is described in more detail in Section 4.9.

Therefore it could have been possible for two clients to do an update of a row of a table

at the same time, and cause the data inserted to be incorrect. This problem would only

occur with Indexed Tables when rows are updated to include new bean identifiers.

In Oracle there is no lock row command, by default Oracle does row level locking.

Whenever you do an update or delete, Oracle locks the row. The syntax for doing an

update on a row is

SELECT methodName, beans FROM methods2beans WHERE

72

methodname=’demoSelect’ FOR UPDATE OF beans;

When this command is used. auto-commit must be turned off, which is set to true by

default.

...

stmt = conn.createStatement();

// 1. turn off the auto-commit
 conn.setAutoCommit(false);

// 2. select rows for update
 if (!newElement) {

 cmd = "SELECT " + cols[0] + ", " + cols[1] +
" FROM " + table + " WHERE " + cols[0] + "=’"
+ element + "’ FOR UPDATE OF " + cols[1];

 rset = stmt.executeQuery(cmd);

 // 3. for each row, update it
 if (rset.next()) {

cmd = "UPDATE " + table + " SET " + cols[1] +"=’" +
newValue +

 "’ WHERE " + cols[0] + "=’" + element +"’";

 stmt.executeUpdate(cmd);
 rset.close();

 }
 }

...

 // 4. tidy up and turn on auto-commit
 conn.commit();
 conn.setAutoCommit(true);
 stmt.close();

The FOR UPDATE clause locks the rows selected by the query. Once a row is selected for

update, other users cannot lock or update it until the end of the transaction. The FOR

UPDATE clause signals an intent to insert, update, or delete rows returned by the query,

but does not require that one of these operations is performed. A SELECT statement with

a FOR UPDATE clause is often followed by one or more UPDATE statements with WHERE

clauses [OSQL].

73

4.7 Choice of Query Language

The next step in the implementation of BeanBag was to examine ways of querying the

data that had been stored. Many XML query languages exist, as outlined in Section

2.10. However, XQL is designed to work against an object-oriented database (e.g.

Versant or ObjectStore) but for the purposes of this project, only a relational database

was available. Therefore SQL was used as a query language, even though XQL is

specifically designed for this purpose.

4.7.1 Searching for an exact Interface match

As mentioned in Section 4.6.2, a SELECT statement cannot be used on a LONG column.

This meant that the SELECT statement could not be used to find a component that

implemented a particular interface. So the approach taken was to parse the interface of a

component, extract details of its method names, base classes, interfaces implemented

and to store this information in indexed tables. The time taken to insert a component

increased because the component interface had to be parsed. But the component

matching time improved.

In order for an interface to match another exactly the following members must match:

• The interface name and its signature

• The method signatures

• The number of methods

• The types of their parameters and number of parameters

• The names of the methods

• The return types of the methods

• The base classes

• The implemented interfaces

• The member variables, public, protected and private

• The constructors

74

BeanBag parses out method names and base classes from the user input, to find beans

that match these requirements in the Indexed Tables. The only information that is not

available in the database about the interface are the names of the parameters, as these

are not returned by the Java Reflection API.

4.8 JDBC Drivers

As BeanBag used an Oracle database the Oracle Thin JDBC Driver was used, to

interface with the database. There are two types of Oracle JDBC drivers that could have

been used, each providing slightly different functionality. The Oracle Thin Driver is a

100% Java Implementation. It is quite small (300K, or 150K compressed). [SK]

describes how the OCI driver is faster than the thin driver, because the OCI based driver

does much of its data marshalling in C. OCI is a C library used to access Oracle

databases and the Oracle OCI drivers are a JDBC layer written on top of this library.

Using the OCI driver means that your application will not be 100% compliant. For a

more detailed description of JDBC see [Flan97].

4.9 The CORBA Architecture

The next step after the database issues were resolved was to implement the CORBA

architecture. OrbixWeb3.1 was used, as it was available and the ORB was sufficient for

what was required. No advanced features such as object by value were needed.

75

4.9.1 Introduction to the CORBA Objects

The CORBA Architecture comprised of a three-tier model consisting of a client, server

and a database, as shown below. The IDL interfaces are listed in Appendix B.

Figure 4-1 The CORBA Architecture

When a client enters the system, it connects to the repositoryFactory CORBA

Object on the server, and calls its create method. The repositoryFactory object

creates a repository object for the client and returns its reference. Each client maps

to its own repository object on the server, which in turn has a connection to the

database.

4.9.2 CORBA Callbacks

Each client contains a callback object. The client was implemented in this way, because

when it asked the server to execute some SQL, it had to wait for a reply. Some SQL

commands may take a long time to execute or perhaps may never return due to an

Oracle error. By using callbacks, clients do not wait for replies. When the server gets

the reply from the database, it packages the data and sends it in a callback to the client,

which automatically updates the GUI JTable.

 callback

Client

Server

 callback

Client

Oracle
Database

repositoryFactory

repository

repository

create

callback

76

When implementing callbacks in OrbixWeb3.1, sometimes callbacks did not arrive on

the client, specifically when they were implemented as oneways. The reason for this

was that the oneway request was the first request on the proxy object. If this is the case,

the proxy object has the daemons port number embedded in the object reference, and so

it contacts the daemon, instead of the server. If it is a oneway, the daemon does not

send a reply to the client, with a LOCATION_FORWARD reply and the oneway gets

lost. The workaround is to set IT_IIOP_USE_LOCATOR to false in

OrbixWeb.properties, so that the object reference contains the transient port number of

the server, and not the well-known port number [URL12].

4.10 The GUI

With the server side completed the client was the next module to be implemented. The

client was implemented as a GUI using Java Swing. More information on Java Swing

can be found at [URL10].

If an error occurred at the database, it would not be visible at the client, unless the

server returned the error. Therefore, each time the server catches a database exception,

it is returned to the client, where it is caught and displayed in the Log Center.

Screen shots of the BeanBag application are in Appendix A.

4.11 Summary

This chapter discussed the implementation of BeanBag and the decisions made on the

technologies used. Decisions were made on the component framework used, the XML

Parser, the query language, JDBC driver and the distributed architecture. Each of these

decisions was discussed in this chapter. Implementation details such as extracting files

from JARs, implementing Oracle sequences and using the Oracle LONG RAW

datatype were included. These details were discussed either because they refer to bugs

in third-party products or because the documentation on how to implement certain

features was not readily available.

77

5. Evaluation and Conclusion

5.1 Introduction

This chapter evaluates the current BeanBag system with regards to the requirements set

out in Chapter 3. There were three components of the BeanBag system, namely the

storage framework, the component description and the query system, each with

individual requirements. In this chapter, each module is evaluated. Following the

evaluation are the conclusions that can be drawn from the first BeanBag prototype, and

how the system could evolve in future versions.

5.2 Evaluation of Modules

To evaluate the BeanBag system, each module of the application is evaluated against

the requirements set out for it in Section 3.2.1.

5.2.1 The Storage Framework

The functionality required from the BeanBag storage module was that the end user

should give the location of a component to the system and BeanBag should

automatically extract information from it and store this data in a relational database.

These requirements were achieved.

The design of the Properties table set out in Section 3.3.3.2 worked efficiently. When

previously unseen properties are discovered in the xml/component.xml file,

BeanBag parses them out like the others and inserts them in the Properties table. In this

way, BeanBag uses one large table for storing user properties, but without wasting

space.

78

5.2.2 The Component Description

The main objective of this project was to make it easy to extend the description of a

component so that the developer of the component could define their own properties.

This requirement was achieved in BeanBag, by using XML and allowing the properties

to be defined in a DTD.

5.2.2.1 Defining new properties in the Developer Description

The steps involved in defining a new property for a component are

1. Add a description for the new property as an element in the components.dtd

A component can use security, e.g. SSL. The new element for security may look like

this:

<!ELEMENT security EMPTY>

<!ATTLIST security id ID #REQUIRED>

2. Add this element to the overall component description in the components.dtd

For instance, a component can use zero or more levels of security

<!ELEMENT components (component+)>

<!ELEMENT component (type, date+, release, author+,

institution*, genre+, keyword*, test.environment*, needs*,

method*, transport, security*, comment*)>

3. Define the element in the xml/component.xml file, which in turn will be included in

the EJB-JAR archive. The XML for the security element would look like this:

<components>

<component>

...
<security id="SSL"></security>
...

</component>
 </components>

79

Using the BeanBag system, insert the JAR. BeanBag will automatically parse the XML

and validate it against its corresponding DTD. If there are no errors, the new property

will be inserted transparently into the Properties table.

5.2.3 The Query System

The requirements for the Query Interface were described in Section 3.2.3. It was not

possible to use an XML Query language such as XQL, as BeanBag had to use a

relational database, whereas XQL requires an Object-Oriented database. Therefore

queries on the database were achieved by composing SQL queries.

5.2.4 Queries Implemented

The GUI allows the user to input any SQL query and the client passes this to the server

to be executed. The main queries that are implemented in this version are:

• Return all the properties for a component

• Return the interface for a component

• Return all components that implement particular methods

• Return a component that implements this interface

Section 4.7.1 describes how exact interface matching was implemented. The interface

matching in this version of BeanBag, matches the method names, base classes and

implemented interfaces exactly but has yet to match method parameters and types.

5.2.5 Evaluation of Exact Interface Matching

The Exact Interface Matching module could be improved. Presently the interface input

by the user is parsed to extract the method names, base classes and the interfaces

extended. Then components that correspond to these values are returned. Interface

parsing is useful when a partial match is requested. However with an exact interface

match, all parts of the interface must match.

80

Another way to achieve an exact interface match would be to strip out all white spaces

and comments from an interface before it is inserted into the database. This interface

would not have parameter names, as it is returned by Reflection. The input interface

could also undergo processing to strip out comments and whitespace, and both

interfaces could be compared. A hashing function could be applied to both interfaces,

and if they are exact matches, the resulting hash codes should be the same.

5.3 Conclusions

5.3.1 Achievements

The BeanBag system that has been developed is a working prototype, for Enterprise

Java Bean components. EJBs were used as a starting point for the component

repository.

The requirements for the storage framework were outlined in Section 3.2.1. Component

data was stored in the relational database and a dynamic way of storing new properties

was implemented, using the Properties table [see Section 3.3.3.2]. The name, remote

interface, user description and other data is stored transparently when a component

location is given to the BeanBag system. An error system was implemented so that

database errors are returned to the GUI client. The bottleneck of the storage mechanism

is that the Properties table will become large and this may incur a performance

overhead when searched on. The component type-checking model described in Section

3.5 was not implemented, but could be in the future.

The primary requirement for describing components was to design a component

independent and extensible description. This was achieved by using XML. This meant

that the component description was extensible, as XML is extensible by definition. The

limitation of using XML was implementing the linking of components. Because the

XLink and XPointer specifications are incomplete, the functionality in BeanBag for

linking a component with all the sub-components it needs is not implemented.

81

The BeanBag retrieval mechanism implements different levels of interface matching

and the retrieval of component semantics. Interfaces can be matched on their methods,

base classes and interfaces implemented. The exact interface-matching module is not

implemented in its entirety, and Section 5.4.2.1 describes how this module could be

extended.

In Section 3.3 the requirement for keeping statistics about components was mentioned.

This would be a useful feature for developers to provide feedback on components

retrieved and how relevant they were, so that other developers could see these reviews

when searching for components. This functionality was not implemented in the

prototype due to time constraints. Similarly, a ranking system for components retrieved

from the query module, was not implemented.

The BeanBag prototype is a working component repository that facilitates the efficient

storage of EJB components. The query mechanism can retrieve components, their

interfaces and their developer descriptions. The description mechanism is extensible

and could be applied to other component types in the future. The following section

describes how BeanBag could be evolved to include extra functionality.

5.4 Future Developments

BeanBag is implemented as a CORBA Server. However, it could develop in two

directions. It could be extended as a CORBA Server, or it could be implemented as an

EJB Component. Both directions are examined here.

5.4.1 BeanBag as an EJB Component

The BeanBag system operates as a typical three-tier model, comprising of clients that

communicate with an application server. The server uses business logic and also

communicates with a database. As outlined in [URL21] developing this middle tier is

an expensive business. In a perfect world, the developer should only be concerned with

the business logic required to implement the system. Details of how to implement

transaction management, persistence and security should not be of primary interest to

82

the developer. Abstracting these services is what the EJB Container does [see Section

2.4.2] and so BeanBag is a perfect candidate for evolving to an EJB Component.

During the implementation, an attempt was made to convert BeanBag into an EJB

Component using HomeBase. The BeanBag storage framework used composite keys on

some database tables, and therefore finder methods had to be written for the EJBHome

object. This object is used to retrieve the components that are needed by the client. It

uses finder methods to do this, the simplest of which matches a primary key. However,

writing finder methods for composite keys was not implemented in HomeBase at the

time (July 1999). This functionality will be supported by IONA in the future, but it was

decided to implement BeanBag as a CORBA Server.

The design of BeanBag as an EJB Component is shown in Figure 5.1, with a set of EJB

Entity Beans for persistent access and a number of Session Beans to execute the

business logic for the system.

Figure 5-1 Design for BeanBag as an EJB Component

Session Beans contain the business logic that BeanBag already uses, for reading JAR

archives, using the Reflection API and parsing XML files. However, the code for

entity beans, 1 per table to
manage persistence

Oracle database

session beans, that
implement the business
logic

remote interfaces

EJB Container

83

accessing the database will not be used, as the role of the EJB entity beans is to manage

persistence. Business objects will operate on objects that represent the persistent data,

without the knowledge of when and how the data is stored in the database.

For more information on constructing Enterprise JavaBeans, consult [RMH99].

5.4.2 Extending BeanBag as a CORBA Component Repository

BeanBag at present is a prototype of a CORBA Component Repository that could be

extended in the following ways.

5.4.2.1 Exact Interface Matching

At present the exact interface-matching module of BeanBag matches the component

methods, base classes and interfaces. In order for an exact interface match to occur

many components of an interface have to match. These were outlined in Section 4.7.1.

Matching parameter types and member variables could be implemented in the next

version of the system.

5.4.2.2 Adding a Class Loader

BeanBag uses Reflection to query the remote interfaces of an EJB Bean. This implies

that the EJB-JAR archive must be on the CLASSPATH of the Server. However, it

would be inconceivable to expect the user to add the path of the EJB-JAR to the

CLASSPATH each time a new component was to be inserted, and to re-register the

BeanBag server.

A Class Loader should be added to the BeanBag system, to dynamically load the classes

that are needed. From parsing the .ejbml files the name of the remote class can be

found, and then the remote interface class can be loaded by the class loader, so that the

Reflection API can be used to retrieve the remote interface. [URL8] describes Class

Loaders in more detail.

84

5.4.2.3 Transactions

Inserting a component into the BeanBag system results in a number of database tables

being updated. BeanBag should utilise transactions to ensure that if there is an error

while inserting data into one or more tables, that the insert operation is aborted, else

when the component was inserted again, BeanBag would complain that it has been

inserted previously.

5.4.3 Using OCL to describe the pre- and post- conditions

In the current version of BeanBag, pre- and post- conditions are represented as strings

in XML tags. The scope of the project did not include condition parsing, however a

future version of the system should implement this module to facilitate the retrieval of

components that satisfy a pre- or post- condition. This allows the user to extract more

semantic information about a component.

In a future version of the system, pre- and post- conditions, invariants and other

semantic information about methods, could be represented in OCL [see Section 2.5.2].

A module could be added to match the user requirements for methods with the OCL

expressions describing component behaviour.

This is an example of how the post-condition for the birthdayHappens() method is

represented in OCL.

Person::birthdayHappens()

post : age = age@pre + 1

The OCL for the post-condition can be represented in the XML tags for methods described in

Section 3.4.2. The XML for the birthdayHappens () method in the BeanBag system would

look like this:

<method id=’birthdayHappens’>

<parameter name=’age’ type=’integer’></parameter>

<post-condition>age = age@pre + 1</post-condition>

</method>

85

5.4.4 Searching on the Documentation

BeanBag could be extended to enable the storage of developers’ component

documentation and design documents. If the JavaDoc was stored in the component,

BeanBag could be extended to automatically extract parts of the documentation and

store them in the database, so that developers could query this data. This would also

apply to the UML design documents, if they were deployed with the component. This

documentation would be useful from a semantic perspective to developers and

component assemblers.

5.4.5 The Oracle XML SQL Utility for Java

New technologies also influence the direction that BeanBag may take in the future.

XML processing and schema languages are always progressing. Oracle’s DMBS

Oracle8i includes XML parsers for Java, C, C++ and PL/SQL. The DBMS product can

return query results as XML and load data from an XML document into a database

table or view. This means that the XML file does not have to be parsed by a SAX

Parser.

The Oracle XML SQL Utility for Java performs the following:

� Generates XML documents from SQL queries

� Writes XML documents into database tables

� Supports W3C XML 1.0 Recommendation

Using the XML SQL Utility, a BeanBag client could perform this query:

SELECT beanName FROM Properties WHERE keyword = ‘e-commerce’;

and the result returned from the database would be in XML form:

<?xml version=”1.0”?>

86

<ROWSET>

<ROW id=”1”>

<beanName>FinanceBean</beanName>

</ROW>

<ROW id=”2”>

<beanName>BankingBean</beanName>

</ROW>

</ROWSET>

BeanBag could use style sheets to display these results to the user.

The ability for the XML SQL Utility to write XML documents to the database brings

more benefits to BeanBag. The current database includes a simple table Names that

maps unique identifiers to component names. The column names are id and name. To

insert a row into this table in SQL looks like:

INSERT INTO Names (id, name) VALUES (10101, ‘BankingBean’);

If this were to be represented in XML it would look like the following XML file, which

includes its DTD and one bean name and id.

<?xml version = “1.0”?>

<!DOCTYPE ROWSET [

<!ELEMENT ROWSET (ROW)*>

<!ELEMENT ROW (ID, NAME)>

<!ELEMENT ID (#PCDATA)>

<!ELEMENT NAME (#PCDATA)>

]>

<ROWSET>

<ROW>

<ID>10101</ID >

<NAME>BankingBean</NAME>

</ROW>

</ROWSET>

The database table Names Meta Data is:

ID VARCHAR(10)

NAME VARCHAR(20)

87

The XML SQL API is then used to store the XML file in the database.

Had this technology been available during this project, it would have eliminated the

process of parsing the XML file and saving the elements and attributes in the database.

The database tables could have been designed in conjunction with the DTD to allow for

this utility to insert the data automatically.

5.4.6 Implementing an XML Properties Editor

In BeanBag, components are deployed with their Developer Description, i.e. in the case

of EJBs, the xml/component.xml file. Developers need to populate this file

themselves, therefore it would be useful to have a GUI interface for it. Technologies

such as the XML Editor Maker from Alphaworks IBM is a Java tool that generates

visual editors from XML schemas, for instance DTDs. Editor Maker reads the DTD and

produces the corresponding Java classes for a GUI Editor automatically.

The current version of EditorMaker is available from the Alphaworks website. During

the implementation phase of this system it was installed, but the current version has

some class referencing inconsistencies with its sister component, XML BeanMaker.

5.5 Summary

In this chapter, the BeanBag modules were evaluated against the requirements outlined

in Chapter 3. An example of how to insert a component property into the description

was given to show how the XML component descriptions are extensible. The query

module was evaluated and sample queries that are implemented were listed.

The final section comprises of the conclusions, and outlines exactly what was

implemented in the system. Certain functionality was not included in the system, and

reasons for this are given. The BeanBag system could develop as a CORBA server or as

an EJB component, and both these avenues are explored in the future developments

section.

88

6. Bibliography

[BW] Anne Thomas. (1998). Borland/Inprise Enterprise JavaBeans WhitePaper

[CCM99] OMG. The CORBA Component Model, Final submission

http://www.omg.org/cgi-bin/doc?orbos/99-02-05

[Chap97] David Chappell, Chappell & Associates. (1997) The Next Wave,

Component Software Enters the Mainstream. A Rational Whitepaper.

[COM+99] JP Morgenthal. (July 1999). Microsoft COM+ will Challenge

Application Server Market. Microsoft COM+ Whitepaper, July 1999.

[DFFLC98] Alin Deutsch, Mark Fernandez, Daniela Florescu, Alon Levy, Dan Suciu.

XML-QL: A Query Language for XML. QL’98.

[EJB1.0] Enterprise JavaBeans Specification 1.0

http://java.sun.com/products/ejb/docs10.html

[EJB1.1] Enterprise JavaBeans Specification 1.1

http://java.sun.com/products/ejb/docs.html

[Flan97] David Flanagan. (1997). Java Examples in a Nutshell. O’Reilly.

[Flan97_2] David Flanagan. (1997). Java In A Nutshell. O’Reilly.

[Geor99] Nektarios Georgalas. (1999). A Framework that uses Repositories for

Information Systems and Knowledge Integration. Proceedings of the

ASSET99 Symposium on Application-Specific Systems and Software

Engineering Technology, IEEE Computer Society, Dallas, Texas, 24-27

March 1999

[HHK98] Ali Hamie, John Howse, Stuart Kent. (1998). Interpreting the Object

Constraint Language. Proceedings of Asia Pacific Conference in

Software Engineering, IEEE Press.

[Hub99] Richard Hubert. (May 1999). CORBA Components Vs EJB Styles,

Setting Standards for Distributed Architecture. Component Strategies.

[IKK98] Hiroshi Ishikawa, Kazumi Kubota, Yahuhiko Kanemasa. A Query

Language for XML Data. QL’98.

[Kie98] Don Kiely. (April 13, 1998). The Component Edge. InformationWeek

89

Issue 677.

[Kin98] Joseph R. Kiniry. (1998). The Specification of Dynamic Distributed

Component Systems. OOPSLA ’98.

[Kin99] Joseph R. Kiniry. (1999). Leading to a Kind Description Language:

Thoughts on Component Specification. Presented at the COOTS'99

Advanced Topics Workshop On Validating the Composition/Execution

of Component-based systems.

[MR99] Mark Reinhold, An XML Data-Binding Facility for the Java Platform, 30

July 1999

[Muh96] M. Muhlhauser. Special Issues in Object–Oriented Programming

ECOOP96 Workshop Reader.

[NH99] Simon North, Paul Hermans. (February 1999). SAMS Teach Yourself

XML in 21 Days.

[Oracle99] Oracle XML SQL Utility for Java. (July 1999). Release Notes for 1.1.0.

[OSQL] The Oracle8 SQL Server Reference

[OYM] Mika Ohtsuki, Norihiko Yoshida and Akifumi Makinouchi. (1996) A

Distributed Repository for Object-Oriented Software Components. 3rd

Asia-Pacific Software Engineering Conference (APSEC '96).

[QJHF98] Wu Qiong, Chang Jichuan, Mei Hong, Yang Fuqing. (1998). JBCDL: An

Object-Oriented Component Description Language. Proceedings of the

Technology of Object-Oriented Languages and Systems-Tools.

[RMH99] Richard Monson-Haefel. (June 1999). Enterprise JavaBeans. O’Reilly.

[SK] Salman Khan. Accessing Oracle from Java. Whitepaper from Oracle

Corp.

[SLR98] David Schach, Joe Lapp, Jonathan Robie, Querying and Transforming

XML. QL’98.

[Szy98] Clemens Szyperski. (1998). Beyond Object-Oriented Programming.

Addison-Wesley.

[URL1] Softlab Whitepaper on Enabler Technology Overview.

90

http://www.softlabna.com/Products/Enabler/WhitePaper/ena_tech.html

[URL2] The Enterprise JavaBeans Specification Version 1.1 Public Release

http://java.sun.com/products/ejb/docs.html

[URL3] UML Object Constraint Language Specification, Version 1.1, September
1997

http://www.rational.com/uml/resources/documentation/index.jtmpl

[URL4] IBM article on the Object Constraint Language

http://www.software.ibm.com/ad/standards/ocl.html/

[URL5] The JavaBean’s FAQ
http://java.sun.com/beans/FAQ.html

[URL6] Mark Johnson. (1998). A beginner’s guide to Enterprise JavaBeans,
JavaWorld.
http://www.javaworld.com/javaworld/jw-10-1998/jw-10-beans.html

[URL7] Mike Day. (1998). Contrasting JavaBeans and Enterprise JavaBeans, A
Developer’s Round Table Discussion. IBM Online Library.

http://www.ibm.com/java/education/javabeans-enterprise-javabeans.html

[URL8] The Java Class Loader API
http://java.sun.com/products/jdk/1.0.2/api/java.lang.ClassLoader.html

[URL9] The Java Bug Parade
http://developer.java.sun.com/developer/bugParade/bugs/4040920.html

[URL10] The Swing Connection
http://java.sun.com/products/jfc/tsc/index.html

[URL11] The CORBA Component Model

http://www.omg.org/news/pr99/9_02a.html

[URL12] IONA Knowledge Base article on oneways
http://www.iona.com/online/support/kb/OrbixWeb/articles/1074.398.html

[URL13] Dr. GUI on Components, COM and ATL, Microsoft Corp. 1999
http://msdn.microsoft.com/isapi/msdnlib.idc?theURL=/library/welcome/
dsmsdn/msdn_drguion020298.htm

[URL14] Microsoft Repository SDK Version 2.1b. 1999
http://msdn.microsoft.com/repository/downloads/sdk/default.asp

[URL15] Trisha Gorman. (1998). 20 questions on XML
http://builder.cnet.com/Authoring/Xml20/index.html

[URL16] Jay Greenspan, Introduction to XML for HotWired, 13 October 1998
http://www.hotwired.com/webmonkey/98/41/index1a.html?tw=xml

[URL17] Lisa Rein. (March 1999). The Quest for an XML Query Standard.
http://www.xml.com/xml/pub/1999/03/quest/index.html

[URL18] The Lore Database Management System

http://WWW-DB.Stanford.EDU/lore/

91

[URL19] An article posted on comp.databases.oracle.misc

http://x47.deja.com/getdoc.xp?AN=207304091&CONTEXT=93540261
4.411041870&hitnum=5

[URL20] An article posted on borland.public.delphi.database.sqlservers

Oracle8 - maximum open cursors exceeded

http://x42.deja.com/getdoc.xp?AN=506493851&CONTEXT=93446794
4.1664876594&hitnum=3

[URL21] Simon Ritter. Enterprise JavaBeans: Answers to every developer’s top
questions. IBM Online Library.
http://www.software.ibm.com/developer/library/ejbsun/Appendix

92

7. Appendix

7.1 Appendix A: Screen Shots

Figure 7-1 Retrieving the Remote Interface of a Component

93

Figure 7-2 Matching the Interface of a Component with one in the Database

94

Figure 7-3 The methods2beans Indexed Table

95

Figure 7-4 Retrieving Table & Driver Meta Data from the Database

96

7.2 Appendix B: The BeanBag IDL

// forward declaration

interface repository;

// factory that will create a new repository object for each client

interface repositoryFactory {

repository newRepository();

};

// this is the callback object. When the sql is finished on the

// server it notifies the client

typedef sequence<string> strArray;

interface callback {

// return the column names of the result set

oneway void columnNames(in strArray oneD);

// return the results

oneway void results(in strArray twoD);

};

// the main repository object that will interface with the database

interface repository {

// thrown this exception if there is an error on the server side

// this way the client knows what is happening with the database

exception db_error {string reason;};

// Methods corresponding to the Interface Tab

string retrieveDesc(in string componentName) raises (db_error);

strArray retrieveBeansWithMethods(in strArray methods,

in string bool) raises (db_error);

strArray retrieveBeansThatExtend(in strArray extend,

in string bool) raises (db_error);

// Methods corresponding to the XML Tab

oneway void retrieveProperties(in string componentName,

in callback obj);

oneway void retrieveBeansFromProperties(in string whereClause,

in callback obj);

97

// Methods corresponding to the SQL Tab

oneway void executeSQL(in string sql, in callback obj);

// Methods corresponding to the Insert/Remove Tab

void insertComponent(in string location) raises (db_error);

void deleteFromTable(in string beanName) raises (db_error);

// Methods corresponding to the Admin Tab

strArray printMeta() raises (db_error);

void createTables() raises (db_error);

void dropTables() raises (db_error);

void closeUpShop() raises (db_error);

void queryData(in string tableName) raises (db_error);

string retrieveLocation(in string componentName)

raises (db_error);

string retrieveXML(in string componentName)

raises (db_error);

};

98

7.3 Appendix C: BeanBag Sequence Diagram

,QVHUW&RPSRQHQW��MDUILOH�

User

Interface

AccessDBs EJBIO Oracle

DataBase

,QVHUW&RPSRQHQW��ORFDWLRQ�

5HPRWH,QWHUIDFH,Q-DU�ORFDWLRQ�

ReadJar

&RXQW%HDQV��5HPRWH,QIR�

6WRUH1DPH�3ULPDU\.H\��FRPSRQHQW1DPH�

6WRUH

�1$0(6

,QVHUW/RFDWLRQ��NH\��ORFDWLRQ�
6WRUH

&20321(17

*HQHUDWH'HVFULSWLRQ��5HPRWH&ODVV�

,QVHUW'HVFULSWLRQ��QDPH��GHVFULSWLRQ�
6WRUH

�'(6&5,37,216

6WRUH
�0(7+2'�%($1,QVHUW0HWKRG��NH\��PHWKRG�

,V)LOH,Q-DU��[PO)LOH1DPH��ORFDWLRQ�

5HDG,QIR)URP)LOH��]LS(QWU\)RU;0/)LOH�-DU)LOH�

insert
name

insert
location

insert
remote
interface
definition

insert
XML
elements
and
values

99

�.(<6�%($1

�3523(57,(6

�;0/

8VHU�,QWHUIDFH $FFHVV'%V (-%,2 2UDFOH�'DWD%DVH5HDG-DU

SDUVH;0/)LOH

�,QVHUW3URSHUW\��QDPH����HOHPHQW1DPH���DWWULEXWH1DPH�

�YDOXH���1XPEHU�

6WRUH

,QVHUW;0/��QDPH��[POILOH��ORFDWLRQ�
6WRUH

SAXParser

�,QVHUW.H\ZRUGV��NH\��NH\ZRUGV�

6WRUH

Insert XML
elements
and values

