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Abstract
In this paper we assess the applicability of case-based reasoning to the difficult problem
of early software project cost estimation. We conclude that a comprehensive case
representation is not available early in the project and suggest instead that the objective
should be risk assessment rather than cost estimation. In reaching this conclusion the
existing techniques for cost estimation are discussed and evaluated. A case
representation capturing the available predictive features for early estimation is
identified and presented.  The lack of features to predict size early in the development
life cycle indicates a limitation of the conventional CBR model – and indeed any
knowledge-based approach. If a complete problem representation is not available an
automated reasoning mechanism will not be able to produce good cost estimates. The
alternative we propose is to focus on a measure called the productivity coefficient rather
than the expected effort. The productivity coefficient gives a measure of the potential
risk revealed by the characteristics of a project compared with previous project
experiences. The utility of this approach is described in a sample scenario.

1 Introduction
Case-Based Reasoning (CBR) is a problem solving technique based on the reuse
of past experiences. For this reason there is considerable optimism about its use in
difficult problem solving areas where human expertise is evidently experience
based. It is particularly suitable in weak theory domains, that is on types of
problems where cause and effect are not well understood.

Software cost estimation is such a weak theory domain and much research has
been done on the use of CBR in this area (Mukhopadhyay et al. 1992; Prietula et
al. 1996; Bisio & Malabocchia 1995; Finnie et al.1997b). Efforts at software
project cost estimation later on in the software development life cycle are most
successful because parameters defining the size of the project are available at that
stage. However, accurate estimation early in the project has the greatest strategic
impact and is dependent on human expertise. Since this expertise is experience
based it should be possible to produce the same competence in a CBR system. In
fact a difficult problem such as this highlights some limitations of the conventional
CBR model. In particular, the dependence on a complete problem representation
causes problems. Even factors that the human expert is considering implicitly must
be represented as explicit features in the CBR system.

In this paper we present a study of the use of CBR for software cost estimation
early in the project life cycle. We show the possible case representations that can
be drawn from the wider literature on cost estimation and show how these
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representations fail to adequately capture project size. At present it appears
impossible to identify features early in the life cycle that define the size of the
project. Instead we propose that the best alternative is to pursue a solution that
produces an estimate of potential risk for a specific project based on previous
experiences. This approach is similar in philosophy to that of Madachy (1995 &
1997) where cost factors and used to estimate risk rather than effort. Madachy’s
approach is rule-based while the approach presented here is case-based. It is to be
expected that a case-based approach will have knowledge engineering advantages
over the rule-based alternative. That is, given an adequate problem representation
it is easier to populate a case-base with cases that encode the knowledge implicitly
than it is to come up with the rules that capture the causal interactions in the
problem domain. However it must be acknowledged that the data capture problem
of compiling such cases in a software development environment is considerable.

Section 2 of the paper discusses and evaluates the different techniques in use for
cost estimation. Section 3 describes the process of case-based reasoning and its
applicability to this problem. Section 4 presents the proposed case representation
which is evaluated and discussed in Section 5.  Section 6 presents the conclusions
and future work.

2 Cost Estimation
There are a number of different techniques for estimating software development
costs described in the literature. These include the use of

• algorithmic models which predict estimates of effort and duration using
parametric equations;

• expert judgement involving predictions based on the skill and experience of
one or more experts and

• analogy involving the comparison of one or more completed projects with
details of a new project to predict cost and duration.

2.1 Algorithmic Models
Algorithmic models use mathematical formulae to predict effort and duration as a
function of a number of variables. They are usually derived from detailed
statistical analysis of data collected from completed software development
projects. There are a variety of algorithmic techniques in use (Heemstra 1992) but
Kitchenham categorises them into two groups – the empirical factor models and
the constraint models (Kitchenham 1991). Empirical factor models provide an
estimate of a value of a cost parameter. They are derived by applying statistical
techniques to data from previous projects. The main empirical factor model in use
is the COCOMO model (Boehm 1981; Boehm 1984). Other models falling into
this category are the ESTIMACS and PRICE SP proprietory models (Chatzoglou
& Macaulay 1996), the TRW Wolverton model (Wolverton 1974), Softcost
(Tausworthe 1981) and DOTY (Herd et al. 1977). The second categorisation of
models, constraint models, demonstrate the relationship over time between the
various cost factors such as effort, cost, schedule or staffing levels. These models
can depict the effects of varying the schedule against the effort and staffing levels.
The main constraint model in use is Putnam’s SLIM model (Putnam 1978) Other
models in this category include the Jensen model (Jensen 1983; Jensen 1984) and
COPMO (Thebaut & Shen 1984).
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Almost every model mentioned above uses an estimate of the number of source
lines of code or the size of object code as a size driver. In addition to the obvious
difficulty of estimating this in advance, is the variation in counting methods which
may change the number by a wide margin (Jones 1986). There is another
categorisation of algorithmic models that provide an alternative sizing technique to
counting lines of code. These models promote the use of a measure of the
functionality of the system as a measure of its size. These models use attributes
such as number of input/output files, reports, displays, or particular specification
or design elements as inputs to the sizing phase. The advantages here are that these
size drivers are known earlier in the development life cycle and can be estimated
from a design specification with higher certainty than lines of code. However,
there are problems also with function points, firstly the effort involved in the
collection of the input data and the difficulty in getting consistent estimates from
different individuals performing the counting (Kemerer 1989, Symons 1988). The
most common models of this type are Albrecht’s Function Point Analysis
(Albrecht 1979; Albrecht & Gaffney 1983), De Marco’s Function Bang (De
Marco 1982) and the SPQR-20 model (Jones 1986), commercially available as the
Checkmark product.

Algorithmic models are derived from project data in specific software
environments and are then used in software environments potentially very
different from that in which they were derived. This points to two problems.
Firstly, the need to ensure that any values input to the models are consistent with
the model requirements and secondly, the need to reflect the basic characteristics
of the software environment. This all indicates a need for calibration. This is
supported in the cost estimation literature as there is significant evidence that
calibration with an organisation’s historic project data is crucial (Kemerer 1987;
Jack & Mannion 1995; Cuelanaere et al. 1987; Kitchenham & Taylor 1985).

Validation of the algorithmic cost models is difficult to do, as it requires large
amounts of data from completed projects. There is a lack of data on past projects
as data collection is not common within the software development community. In
spite of this there have been a number of studies attempting to evaluate the
effectiveness of the models (Kemerer 1987; Rubin 1985; Mohanty 1981; Bredero
et al. 1989; Heemstra 1992; Kusters et al 1990). This research into the use of the
algorithmic models for cost estimation has shown that the models perform badly.

There are a number of reasons for the failure of the algorithmic cost models. The
surveys referenced above agree that poor results from the models are due in part to
using the models incorrectly. Much of the time models are used without
calibration (Heemstra 1992). In addition, the input parameters to the models used
in the calculation of the estimate are subjective. This can mean different results
when applied to the same problem, as demonstrated in the surveys.

Aside from these, there are intrinsic reasons for the cost estimation algorithmic
models not performing adequately. A majority of models do not support
calibration. Associated with this is the lack of availability of data from previous
software projects which is necessary for the calibration of those models which do
support calibration. However, the overriding reason for failure of these models is
that the models have been generalised. They were derived from data available post
hoc from completed projects. These datasets may incorporate characteristics and
peculiarities that are difficult to assess at the start of another project (Kitchenham
1991). The studies of algorithmic models also do their estimating after the fact.
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This is unrealistic when it comes to applying a model to a new project as the
factors that influence the cost may not emerge until later on in the development
process and may not be available at the time of estimation.

2.2 Expert Judgement and Estimation by Analogy
The other techniques used to estimate the costs of software development are
‘expert judgement’ where the predictions are ostensibly based on the skill,
understanding and experience of one or more experts and ‘estimation by analogy’
involving the comparison of one or more completed projects with details of a new
project to predict cost and duration . There appears to be considerable overlap in
the literature between the categories of estimation by expert judgement and
estimation by analogy. Boehm describes expert judgement as “consulting with one
or more experts, who use their experience and understanding of the proposed
project to arrive at an estimate of its cost” (Boehm 1981, p333). His definition of
estimation by analogy is that it “involves reasoning by analogy with one or more
completed projects to relate their actual costs to an estimate of the cost of a similar
new project” (ibid, p336). Heemstra states that the foundation of the analogy
estimation technique is “an analysed database of similar historical projects or
similar project parts or modules” (Heemstra 1992, p630). Vigder and Kark classify
estimation techniques as simply model based or analogy based, where analogy
based modelling involves estimating costs by comparing the current project with
previous projects (Vigder and Kark 1994). As with Heemstra, this requires
maintenance of a history of past projects. However, according to Vigder and Kark
this history of past projects can be maintained in the memory of an estimator –
which they categorise as the informal analogy model. The more formal analogy
model is an actual record of the data from past history. Vigder and Kark’s informal
analogy model could be described as expert judgement, where the expert is
depending on his/her experience to predict costs. Hughes definition of expert
judgement is “where an estimate is based on the experience of one or more people
who are familiar with the development of software applications similar to that
currently being sized” (Hughes 1996, p68). This definition in itself implies use of
analogical reasoning. The overlap is also evident in work by Vincinanza
(Vincinanza et al. 1991). For the purposes of this paper let us define estimation by
analogy as the prediction of estimates by comparison with previously completed
projects where information on those projects is available in some sort of
documented format. Therefore Vigder and Kark’s informal analogy model, i.e. use
of an expert’s memory, falls under the categorisation of expert judgement.

There is significant evidence in the literature that expert judgement is the most
dominant method of estimation (Wrigley & Dexter 1987; Heemstra & Kusters
1991; Vigder & Kark 1994). However, there has not been much research to
examine the use of expert judgement to estimate development effort or duration.
While there is little evidence in research as to what forms the basis of an expert’s
judgement, it is believed to be subject to bias and political pressure (Hughes
1996). It has even been described as guessing (Kitchenham 1991). However, the
research into expert judgement is promising for expert judgement as an estimating
technique (Vicinanza et al. 1991; Atkinson & Shepperd 1994). Although the use
of estimation by analogy formally through comparison with documented details
from previous projects is rare, that which exists has shown that it performs better
than algorithmic models (Cowderoy & Jenkins 1988; Shepperd et al. 1996;
Shepperd & Scholfield 1996). The main issue with this technique is the lack of
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available project data with which to compare the new project (Vigder & Kark
1994; Heemstra 1992). Estimation using similarities to previous projects is much
more common on an informal basis, through the use of memory and recall.

The actual usage in industry of the different cost estimation techniques does not
reflect the volume of literature and research on the subject. There is considerable
literature available on the algorithmic models but these models are not widely used
in industry (Heemstra 1992), perhaps as their accuracy is questionable and/or due
to a lack of data with which to calibrate. The most dominant way of estimating
costs is to depend somehow on previous experience, however subjective or biased
this may appear. This use of previous experience may involve using your memory
as an expert estimator (expert judgement) or by comparison with documented past
projects (estimation by analogy). This reliance on previous experience leads to an
expectation that this process can be automated or formalised in a CBR system.

3 Case-based Reasoning
Case-based reasoning (CBR) (Kolodner 1992; Kolodner 1993; Watson & Marir
1994; Barletta 1991; Slade 1991) is a relatively simple concept - it involves
matching the current problem against ones that have already been encountered in
the past and reworking the solutions of the past problems in the current context. It
can be represented as a cyclical process that is divided into the four following sub
processes as depicted in Figure 1 (Aamodt & Plaza 1994):

• retrieve the most similar case or cases from the case base

• reuse the case to solve the problem

• revise the proposed solution, if necessary

• retain the solution for future problem solving

New 
Case

Retrieved 
Case

Solved 
Case

Tested 
Case

Learned
Case Previous

Cases

Retrieve

Reuse

Revise

Retain

Problem

Proposed
Solution

Confirmed
Solution

Figure 1 : The CBR cycle (adapted from Aamodt & Plaza 1994)

A new problem, described as a case, is compared to the existing cases in the case
base and the most similar case or cases are retrieved. These cases are combined
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and reused (i.e. adapted) to suggest a solution for the new problem. The solution
proposed may need to be revised (i.e. evaluated and corrected) somewhat if it is
not a valid solution. This verified solution is retained by adding it as a new case to
the case base or as amendments to existing cases in the case base for use in future
problem solving.

3.1 The application of CBR to Cost Estimation
CBR offers a number of advantages over the other cost estimation techniques. The
developers of the various algorithmic models have attempted to derive models that
quantify the causal dependencies within the domain. As these models do not
effectively solve the problem, this suggests that the domain is difficult to model
without clear rules or a clear understanding of all the different elements that
contribute to cost estimation. The main advantage of CBR over the use of
algorithmic models is that the use of CBR avoids the need to model the domain.

One of the difficulties with any of the existing techniques is the lack of project
history data within organisations. This data is used to calibrate algorithmic models
and for comparison purposes in estimation by analogy. A lack of data also means
that the problem space is not uniformly covered. There may be a greater intensity
of sample projects in certain areas than in others. There may be other areas of the
problem space where there is no past project data available. For techniques such as
algorithmic techniques and estimation by analogy this makes deriving general
models from the data unworkable. CBR, however, will use the data that is relevant
and available to make a prediction. Furthermore, a case base will also provide an
effective means of storing data on historical projects. Another problem with
historic data is that frequently it may be incomplete. However, the performance of
a CBR application will degrade gracefully in situations of incomplete data.

CBR also has the advantage of possessing the capability to explain its reasoning. It
is possible to view the cases which are retrieved as similar to the target case and to
view the adaptation strategies that operate on the retrieved cases which result in
the prediction. It also allows manual adaptation so an expert (such as an
experienced project manager) can extrapolate from the similar retrieved cases and
adjust the recommended solution if they feel it necessary.

Lastly, as CBR is a machine learning technique, a CBR system will augment its
case base with new project scenarios over time. This is important as the software
development process is a constantly changing process with new technologies, new
methods, new techniques continually being introduced and adopted. A good cost
estimation technique needs to be able to handle this natural evolution of software
development (Bisio & Malabocchia 1995).

In recent years there has been some concrete research in the application of CBR to
cost estimation which suggests that CBR can provide a practical aid to software
development managers (Mukhopadhyay et al. 1992; Prietula et al. 1996; Bisio &
Malabocchia 1995; Finnie et al. 1997a). However, this research focuses on
problem that are similar in nature - similar types of applications from similar
organisations. The data sets used primarily describe mainframe systems,
developed in third generation languages and are restricted, within each CBR
system, to the same types of applications. They do not take into account the
variety of platforms and new technologies that contribute to software development
in the 1990s. In addition, examination of the features or attributes that contribute
to the case representation used by these systems imply that a detailed specification
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of software was available at the time that the software cost estimation was
undertaken. Thus the focus has been on estimation at a late stage in the
development life cycle.

The accuracy of software estimates has a direct impact on the quality of an
organisation’s software investment decisions. Accurate estimation as early as
possible in the development life cycle is important as it results in better priced
software, realistic development schedules and efficient acquisition and allocation
of resources.

Our research focuses on applying CBR to early cost estimation so that some of
these benefits may be realised.

4 Proposed Case Representation

The case representation is the template for the cases in the case base. The features
of the case representation are those aspects of the domain and the problem that are
considered to be most significant in determining the solution and/or outcome.
Clearly the choice of the features to be included in the case representation is
critical to the success of the CBR process. The definition of a case representation
is not the only factor that contributes to the success of the CBR application, there
are a number of implementation choices and issues with the actual reasoning
mechanism itself. However, the case is the foundation upon which CBR works and
as such is a key component of any CBR system.
To identify a case representation for early estimation involves identifying a case
representation for a software development project. The case representation must
include those aspects or characteristics of a development project that have the
most influence on the development effort of a software system. To apply to early
estimation these characteristics must be known early in the development life cycle.
The proposed case representation must be derived from the factors, or cost drivers,
that are believed to influence the cost or effort of software development. More
specifically, those cost drivers that are known early in the development stage of a
project - at the project specification stage or system engineering stage.

4.1 Cost Drivers
Our analysis of the factors affecting cost identified three main sources of
information. These included

• the algorithmic models;

• the information that estimators use and would like to have when they are
estimating and

• risk factors which determine the risk involved in an implementation, and
therefore also effect the effort involved in development.

A study was made of each of these sources of cost drivers. Many of the cost
estimation models have adjustment factors built into them. These factors are
determined from a number of variables that are believed to influence the cost of
the software development. These variables, such as product complexity, analyst
capability, computer turnaround time are usually judged on an ascending scale
from low to high. For each value selected there is a numerical adjustment that is
applied to the effort estimate. Identification of these cost drivers was made from
analysis of reviews of cost drivers (Noth and Kretzschmar 1984; Wrigley &
Dexter 1987) and empirical studies to identify which cost drivers are significant in
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affecting productivity that have been published over the years. (Brooks 1981;
Behrens 1983; Vosburgh 1984; Thadhani 1984; Boehm & Papaccio 1990;
Kitchenham 1992)

The experts also use and require certain variables or inputs to develop a prediction
of effort or cost. Identification of these inputs was made from a number of surveys
and studies to identify those factors considered most important by estimation
experts or project managers and other software personnel involved in estimating
development work (Hughes 1996; Subramanian & Breslawski 1994; Subramanian
& Breslawski 1995; Kendall & Lamb 1977; Lederer & Prasad 1992).

Evaluating the risk involved in a software development project requires assessing
those factors that influence the occurrence of undesirable events. Undesirable
events threaten successful software development and influence the outcome of a
software development project. A successful software development project is one
which is delivered on time, within budget and to the agreed user specification.
Factors which can influence the success or failure of a project must therefore also
have an influence on the effort required to perform the development work. The
main sources of such risk factors were studies by Barki and Saarinen &
Versalainen (Barki et al. 1993; Saarinen & Vepsalainen 1993).

A study by Noth & Kretzschmar found that more than 1200 cost drivers were
mentioned in the cost estimation literature (Noth and Kretzschmar 1984).
However, in our study over 200 potential cost drivers were considered. The
features that we identified as predictive and having the potential to be known early
in the development life cycle are presented in Table 1.

All current estimation techniques use some measure of the size of the system as an
input to the estimation process. Consistently, with all algorithmic models a
measure of system size, usually in lines of code (LOC) or function points, is one of
the inputs to the prediction of effort. With estimation by analogy it is also
important to choose at least one variable or feature to act as a size driver
(Shepperd et al. 1996). Thus, a size driver appears important to the estimation
process.

There are two main difficulties with size drivers. Firstly, any measure of system
size identified early in the development life cycle will itself be an estimate.
Secondly and more generally, the size drivers of LOC or function points are
inappropriate development ‘targets’ and inappropriate inputs to the estimation
process (Wrigley & Dexter 1991; Wrigley & Dexter 1987). Consider LOC firstly,
LOC is the net result of the development effort. LOC themselves do not cause
effort, effort results in LOC. With function points, counting function points gives
the impression of measuring the system requirements. The target in system
development is to satisfy the requirements. The requirements describe the required
functionality of the system to be developed. However, an extra report or screen in
the system can increase the function point count but may not contribute towards
satisfying the required functionality.
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Table 1:  Case Features

Feature

Management
Top management support/commitment
Project manager’s experience (e.g. number of projects)
Project manager’s success rating (some indication of performance on
previous projects)
Number of similar projects manager has managed
Manager’s familiarity with team
Project priority

Project Team
Team IT experience
Team understanding/experience of application

Users
User understanding of requirements
Extent of user support/participation
User IT competence and experience
User/Management agreement

System/Application
Critical business system
Architecture Type (expanded to different types appropriate to an
organisation, e.g. standalone, distributed data, distributed
processing…)
Operating mode (batch, online, real time)
Need for new hardware
Hardware concurrently developed
Required integration with other systems
Required reliability

Development Method/Process
Development Process used (expanded to different types appropriate
to an organisation e.g. classic life cycle, prototyping, object
oriented…)
Project novelty (of method and tools used)
Programming type (structured, rule-based, functional)
Need for new system software
Use of tools
Use of standards
Use of design and code inspections

This poses a problem for early estimation. Without an accurate size input it is not
reasonable to expect an accurate estimate of effort (e.g. in man months).

4.2 Proposed Productivity Measure
The effort involved in software development can be described simply as
depending on the size of the software to be developed (e.g. LOC) and on the
productivity of the developers (e.g. amount of time to develop one LOC) as
detailed in the following equation.

tyProductivi

Size
Effort ∝

As a measure of system size is unavailable and inappropriate for early estimation,
it is more appropriate to use the available predictive features to come up with a
measure which will indicate the effect that the case features will have on the
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expected productivity of the project. Let us call this measure ‘the productivity
coefficient’. The productivity coefficient for a case in the case-base can be
calculated as the ratio of the actual productivity of that case (available after the
project is completed) to the average development productivity of the organisation
calibrated across all the cases in the case-base.

Productivity Coefficient =
Actual Case Productivity

Average Productivity

A productivity coefficient of value close to one indicates that the project is one
which will produce a productivity level very close to the organisation’s average
productivity. This suggests that there may be little risk associated with this project.
A productivity coefficient value less than one indicates that the expected
productivity of this project is well below the average productivity for the
organisation which may effect the actual cost of development. This suggests that
there are characteristics about this project that suggest some level of risk is
involved. A productivity coefficient value of greater than one indicates an
expected higher level of productivity than average for the organisation suggesting
confidence and familiarity with the work being undertaken.

The productivity coefficient will provide senior management with information to
assist them in making decisions on the viability of a project or on the cost of a
project. It will indicate whether the characteristics of the project indicate that the
project is at risk of lower productivity than normal indicating a higher cost of
development.

It is important to note that although this coefficient can give an indication of where
risk may be involved in a project, it is not an actual measure of risk. It provides an
indication of an organisation’s potential productivity based on its past experiences
with ‘similar’ development projects. The additional features required in the case
representation are presented in Table 2.

Table 2: Additional Case Features

Features

See Table 1 for list of other case features

Productivity Coefficient

Actual Effort
Actual Size

5 Evaluation & discussion
Within case-based reasoning the case representation is critical. When relevant
features are not identified in advance the case representation is not complete. If
these hidden features, not identified for the case representation, are important in
certain situations then the CBR technique will not work in these circumstances.
The case representation presented in Table  and Table  may not be complete for
two reasons. Firstly, the case representation includes those features that are
indicative of effort or productivity and are known at an early stage in the
development life cycle. The features have been selected from a variety of cost
drivers. Not all of the cost drivers identified are included in the case representation
as only those known at a system engineering and planning stage can be included
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for early estimation. For example, the level of top management support will be
known but the level of changes to requirements cannot be known. As certain
features cannot be known in advance and are therefore not included, the proposed
case representation may not be complete.

In addition, the problem of cost estimation has not been solved. This suggests that
there could be factors that influence cost that have not been identified or agreed
upon in the existing literature. There may therefore be hidden features that are
important to the prediction. If this is the position, CBR as a technique will not
work well. A full evaluation of the problem using sample cases is necessary to see
whether this case representation can predict the productivity coefficient accurately.
If not, there may be hidden features that are meaningful to the prediction and
outcome.

The proposed CBR solution has two main limitations to its application. A number
of the features included in the case representation are susceptible to subjective
quantification, for example project manager experience, IT team experience,
project novelty or user understanding of requirements. One organisation or
individual may measure experience in number of years, while another may
measure experience in number of projects. The average productivity across
organisations can also be very different. Due to these facts this CBR solution will
only be applicable locally within organisations. Use across organisations may
result in inconsistent definitions of variables or quantification and subjectivity in
the rating of the features.

In addition, the proposed CBR solution is most applicable to large organisations
for two main reasons. Firstly and more importantly, larger organisations are more
likely to have enough ‘similar’ projects to provide an adequate case-base. The case
representation includes many human factors which have been identified as
important in estimating software development effort. Larger organisations may
have formalised procedures for personnel and project evaluation. Outputs from
these procedures could provide quantified inputs to the case representation.

Constant features are features that have the same value over all cases in the case
base. These features do not have an effect on the CBR process and are not needed
in the derivation of the solution. There are a number of features within the
proposed case representation that may be constant, particularly since this approach
is most likely to be successful within a single large organisation. A standard
design methodology or company approach to development, common within large
software development units, would mean that features such as use of tools, use of
standards or use of design and code inspections may be constant. Furthermore,
within a single application of the CBR technique in a large organisation there is a
possibility that any hidden features may also be constant. Constant features are
unnecessary features. This suggests that there may be a possibility that even if the
case representation were incomplete, the hidden features may not have an effect
for cases taken from the same context. A full evaluation of the case representation
using sample cases is required to evaluate this possibility.

5.1 Sample Scenario
To demonstrate how the case representation would work consider the following
project example. The project data is actual data from a project that was completed
in 1994 by an Irish software development company for one of their clients. The
details of the software development and client organisations are confidential. To
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facilitate ease of reading let the software development company be called
Company A. The details of the project in question were discussed with the project
manager from Company A responsible for the delivery of the project.

The project involved the detailed analysis, design and development of an asset
register. The client supplied a high level user requirements document and provided
input to the project by answering queries, reviewing the design and documentation
and acceptance testing the software. The client did not provide any personnel to
work on the actual design or development.

The application had a client/server architecture, with PC clients and a DEC Alpha
server. It was developed using Visual Basic and C on the client side and with a
VAX Rdb relational database on the server side.

The project was estimated at the time of accepting the contract as 247 mandays of
work. The original estimation was performed by software development project
managers within Company A. The method employed was expert judgement.
Estimation was based on the managers’ prior experience developing similar types
of projects. The actual effort involved in project was 406 mandays which was
considerable higher (64%) than the original estimate.

To demonstrate how such a project would contribute to assisting with future
estimations for Company A, a case needs to be derived for this project. To derive a
case for this project values have to be assigned to each of the features in the case
representation. Before assigning the values, a metric must be assigned to each
feature. For certain features this is a simple quantitative measure, e.g. the number
of similar projects managed. For some features this is a qualitative measure, e.g.
top management support/commitment. For other features a measure is not needed,
a value is simply chosen from a list of possible values, e.g. operating mode, or is
simply a Yes/No answer, e.g. hardware concurrently developed. Table 3 lists
proposed measures for the features in the case representation.

For any organisation using this case representation, specific definitions of
qualitative measures, such as Low, Medium and High need to be defined and
documented to minimise subjectivity. However, for the purposes of this sample
case, explicit definitions are not required.

Table 4 describes the project, as a case, with values for each of the features.

In order for this case to be added to the case base and used for future new projects
the outcome must be included to allow a productivity coefficient to be derived for
the case. The features required for the outcome, as specified in the case
representation, are the actual effort expended on the development and the actual
size of the application. The actual effort was 406 mandays. Company A does not
generally measure the size of their projects. However in this situation, a function
point analysis was performed on the project and the size of the project was
calculated to be approximately 250 function points.

To derive the productivity coefficient for this sample case the average productivity
for Company A is required. A case base, itself, will provide an average
productivity over all the projects in the case base. For the purposes of this sample
project a case base is not available. As Company A does not measure projects
habitually, there is no data that can be used to identify their average productivity.
To facilitate the aims of this evaluation the Industry Average productivity figures,
published by Symons will be used (Symons 1991). For a project of approximate
size 200 function points the industry average productivity figure is 0.11 function
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points per work hour or 0.825 function points per manday (Company A work on a
7.5 hour day).

Table 3: Proposed Feature Measures

Management Measure
Top management support/commitment Low, Medium, High
Project manager’s experience Number of Years
Project manager’s success rating Low, Medium, High
Number of similar projects manager has managed Number
Manager’s familiarity with team Low, Medium, High
Project priority Low, Medium, High

Project Team
Team IT experience Low, Medium, High
Team understanding/experience of application Low, Medium, High

Users
User understanding of requirements Low, Medium, High
Extent of user support/participation Low, Medium, High
User IT competence and experience Low, Medium, High
User/Management agreement Low, Medium, High

System/Application
Critical business system Low, Medium, High
Architecture Type Distinct Value
Operating mode (batch, online, real time) Distinct Value
Need for new hardware No/Low, Medium, High
Hardware concurrently developed Yes/No
Required integration with other systems Low, Medium, High
Required reliability Low, Medium, High

Development Method/Process
Development Process used Distinct Value
Project novelty (of method and tools used) Low, Medium, High
Programming type (structured, rule-based, functional) Distinct Value
Need for new system software Low, Medium, High
Use of tools Low, Medium, High
Use of standards Low, Medium, High
Use of design and code inspections Low, Medium, High
Productivity Coefficient
Actual Effort
Actual Size

The productivity coefficient for the project is calculated as the actual productivity
of the project divided by the average productivity. The actual productivity of the
project (calculated as 250 function points/406 mandays) is 0.616 function points
per manday. Therefore the productivity coefficient for the sample project would
work out as 0.746.

A productivity coefficient value of less than one indicates that the expected
productivity of the project would be well below the average productivity for the
organisation which will effect the actual cost of development. Considering the
sample project, the actual effort involved in this project was significantly above
what had originally been estimated, which may indicate that there were
characteristics of the project which were overlooked in the original estimation and
resulted in an estimate that was not representative of the effort involved.
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Table 4: The Sample Case

Management Measure
Top management support/commitment High
Project manager’s experience 3
Project manager’s success rating Medium
Number of similar projects manager has managed 0
Manager’s familiarity with team Low
Project priority Medium

Project Team
Team IT experience Low
Team understanding/experience of application Low

Users
User understanding of requirements Medium
Extent of user support/participation Low
User IT competence and experience Medium
User/Management agreement High

System/Application
Critical business system Medium
Architecture Type Client/Server
Operating mode (batch, online, real time) Online/Batch
Need for new hardware No
Hardware concurrently developed N/A
Required integration with other systems Medium
Required reliability Medium

Development Method/Process
Development Process used Company A

Methodology
Project novelty (of method and tools used) High
Programming type (structured, rule-based, functional) Structured
Need for new system software High
Use of tools Low
Use of standards High
Use of design and code inspections Medium
Productivity Coefficient
Actual Effort
Actual Size

It is worth noting that the fact that Industry Averages were used in the calculation
instead of actual company productivity averages may contribute somewhat to the
productivity coefficient as Company A’s productivity rate may not be exactly the
same as the Industry Average. However, use of Industry Averages allows the
illustration of this example.

With hindsight, Company A can identify some difficulties which were
encountered during the project. The project was using new company procedures
that were not well established and well known by the staff on the project. The
technology used involved new system software which took a significant amount of
time to understand and get working adequately. In addition the project team were
relatively inexperienced and had never worked as a team previously. These
characteristics of the project are identifiable within the features of the case
representing the project. Features such as project novelty, need for new system
software, manager’s experience with the team and team IT experience contribute
to the case and in this situation may have contributed to the significant overrun in
the project.
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If the case documented in Table 4 were retrieved as the most likely match for a
new project to be undertaken by Company A, the productivity coefficient of 0.74
would be meaningful. It should indicate to Company A that based on past
experiences a project similar to the new one they are considering took significantly
more effort to develop than their average expectation. This should result in an
increase in Company A’s estimate of development cost for this new project. Over
time and based on experience, this increase in the effort/cost could be related to
the value of the productivity coefficient.

6 Conclusions and Future Work
In this paper we identify the difficult problem of project development cost
estimation where human competence is evidently experience-based. More
specifically, we consider estimation at an early stage in the development life cycle
to assist with strategic decision making. If this process is to be automated in a
CBR system a case representation capturing the predictive features in the process
must be identified; such a case representation is presented here. Certain difficulties
presented themselves. With the inability to include features predictive of size the
case representation is not complete. Our proposal is that the outcome of the case
representation is a measure, called the productivity coefficient, of the effect the
case features will have on the expected productivity of the project. It will show
where the characteristics of a project, based on previous project experiences,
reveal that a project is at risk of lower productivity than normal indicating a higher
cost of development. This approach is most likely to be successful within a single
large organisation to minimise subjectivity and who can provide an adequate case-
base.

The obvious way to extend this research is to test the case representation by
evaluating it using a sample case base. This requires data about software
development projects to use as sample cases. There are difficulties with getting
project data. Firstly there is a lack of project data available (Vigder & Kark 1992;
Heemstra 1992; Subramanian & Breslawski 1994). Secondly there is a reluctance
among companies to divulge project related data due to competitive reasons even
when confidentiality is promised (Cusumano & Kemerer 1990). Collaboration
with a software development company would be ideal.

A further extension to this research is to apply the reasoning mechanism to the
proposed case representation. This would involve further research and analysis of
a number of areas, for example, the most appropriate way to index the cases,
identifying the most appropriate retrieval mechanism to employ and identifying
adaptation strategies that could be applied.

This research focused on providing cost estimation at an early stage in the
development life cycle. However, this is one direction for extending the existing
research into applying CBR to cost estimation. The other direction is to evaluate
CBR as an application to cost estimation across broader domains, i.e. across
increased application variability. In order to use CBR in estimation in a broader
context there is a need to identify abstract characteristics which are invariant in the
transformation to completely different applications. There is also a need to
develop adaptation techniques to transform cases between these different
application contexts (Delany et al. 1998).

One conclusion of this research is that without a size estimate the case
representation is not complete and it is not possible to estimate the development
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effort accurately. However, Mukhopadhyay & Kekre concluded that in a specific
application domain (process control applications) it was possible to estimate the
software size from user specified application features (Mukhopadhyay & Kekre
1992). These application features were the functions demanded by the end user
and not the result of system design so they were available very early in the
development lifecycle. The limitation here is the application is restricted to a very
specific application domain but nevertheless, it would be interesting to research
the effect of including user specified application features in the case
representation.
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