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Abstract -- Trinity College Dublin has designed and is
currently prototyping a trace instrument that allows deep
traces of high speed interconnect traffic [5]. An initial
implementation for the Scalable Coherent Interface (SCI)
proves the concept. SCI is one of the enabling interconnect
technologies for high performance computing on PC Clusters.

Such an instrument is essential for a detailed spatial and
temporal analysis of parallel executed algorithms on loosely
coupled clusters. Currently, there are no commercial
instruments available that sample and store very deep (>>
10M byte) interconnect traces per target node.

The technology enables the non-intrusive real-time acquisition

of high speed interconnect traffic into a database. The

database, which over time is expected to represent the major

investment, provides a powerful means for a fine-grained

analysis of a large quantity of trace data. This paper describes

the technical features of the SCI trace instrument and outlines

the tool's potential for further research and development
activities.
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I. INTRODUCTION

This paper describes an instrument for acquisition and
analyses of interconnect traffic for clusters. The instrument
provides hardware designers and software developers with
a tool that allows a deeper understanding of the temporal
behaviour of their hardware and software on any given
target system. Unlike other systems, e.g. see [6], this trace
instrument is targeted to commercialy available
interconnect hardware and therefore provides the user with
information about the true temporal behaviour of clusters
made up of standard components.

This work has been supported by ESRIT project 25257 SCI
Europe

Figure 1. shows how the trace instrument’s hardware and
software components are related to each other during trace
data acquisition and a subsequent off-line data analysis.
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Fig. 1. Trace data flow overview

The instrument is designed to fulfil the following main
objectives

* Non-intrusive monitoring of interconnect traffic

* Very deep (>> 10Mbyte) interconnect traces per node

* Acquisition of all the interconnect traffic

e Synchronous trace acquisition on multiple nodes
through a shared trigger mechanism

e  Straightforward adaptation to other interconnects

« Trace data storage in commercial relational database

«  Ability to analyse causal relationships in
synchronously acquired traces from different targets

The utilisation of a relational database provides the user
with an easy means to extend and to adapt the predefined
database queries to their specific needs.
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Fig. 2. Trace hardware overview

I. TRACE INSTRUMENT HARDWARE

The hardware of the trace instrument [1] comprises of a
portable PC, two deep trace memory boards, two probe
adapters [2] and two trace probes (see Fig. 2. and Fig.3).

Blink traces from Dolphin’s SCI-PCI bridge can be
acquired via a probe card supplied by Dolphin that attaches
to their SCI interface cards via elastomeric connectors. This
card breaks out the Blink signals to a number of connectors
that will accept cables for a HP16500 series logic analyser
(see Fig. 2, Option 1). Furthermore SCILAB’s SCITRAC
cable tracer provides broadly similar connectivity (see Fig.
2, Option 2).

The instrument requires two trace probes [2] that attach to

the trace target via HP16500 series compatible cables and
are synchronised by an inter-probe cable. Each trace probe
attaches to 48bits of the 96bit-sample data path. The trace
probe multiplexes the trace samples onto LVDS cables,

which connect the probes to the trace instrument’s adapter
cards.

The probe adapters demultiplex the trace probes’ LVDS
signals. Each adapter attaches to one of the deep trace
memory boards and provides the memory board with 48bits
of a 96bit data path.

The deep trace memory boards are inserted into the PC’s
I/O slots. Each trace board contains 12 Mbytes of dual
ported VRAM; one port receives trace data from the probe
adapter while the second connects the trace memory to the
I/O bus of the trace instrument.

The first trace board inserts absolute time stamps following
each packet into the trace memory while the second board
inserts relative time stamps.

Fig. 3. Trace Instrument

Il.  TRACE INSTRUMENT SOFTWARE

The trace board’s operation is controlled by a suite of
driver, APl and GUI application software through the I/O
bus (see Fig. 5.). The trace tool APl may be employed by
the user to adapt the instrument to their specific needs.
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Fig. 4. Trace instrument control GUI

Both boards are interconnected to enable triggering over the
full 96-bit sample width. Furthermore, it is intended that a
number of instruments could be interconnected for a
synchronised trace data acquisition on two or more target
nodes. The trigger mechanism provides four level
triggering. The filter and trigger patterns are configured
through the instrument's API. A trigger and filter GUI
implementation is shown in Fig.5.
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Fig. 5. Traceinstrument trigger and filter GUI

A view of the trace board memory contents is provided
through the instrument’s control software (see Fig. 6.).
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Fig. 6. Trace memory viewer

I1l.  TRACE DATABASE

The trace instrument employs a relational database to store
and analyse trace data [2]. The trace database is designed to
accommodate all SCI packet types encountered on SCI
cable links and Blinks. The following packet classification
satisfies the Blink specification [3] and the SCI IEEE
standard [4]. This categorisation is used for the decoding,
the trace database storage and the retrieval of SCI and Blink
packets.

A. SCI cablelinks

Type 1 Request-send-packet with extended
header and O byte data
Request-send-packet with extended
header and 16 byte data
Request-send-packet with extended
header and 64 byte data

[ ]

[ ]

[ ]

Response-send-packet with 256 byte data

Type 2

Type 3

Type 17

Type 18 Response-echo-packet
Type 19 Idle Symbols
Type 20 Sync packets
B. Blinks
Type 21 Encapsulated request-send-packet with
extended header and 0 byte data
Type 22 Encapsulated request-send-packet with
extended header and 16 byte data
Type 23 Encapsulated request-send-packet with
extended header and 64 byte data
[ ]
[ ]
[ ]
Type 34 Encapsulated response-send-packet with
16 byte data
Type 35 Encapsulated response-send-packet with
64 byte data
Type 36 Encapsulated response-send-packet with
56 byte data

Subsequent to a trace acquisition the instrument’s control
software writes the trace memory contents into two trace
files. A Java decoding application reads the trace-data from
those trace files and reunites the two 48bit fractions into a
full 96bit-sample.
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Fig. 7. Trace data flow from Blink into DB-table-files

The software also detects the packet types as categorised
above and decodes the packets. The trace database is
broken up into a number of tables to accommodate the
various types of SCI packets. The database design provides
space-optimised storage. The decoded SCl-packets are
written into trace-database-table-files according to their
packet type specification. These trace-database-table-files
are used for a subsequent bulk import into the trace
database. Each trace-database-table-file is associated with a
table in the trace database. The file format reflects the
database table design to accommodate bulk imports. Figure
7 demonstrates how trace data flows from a target node’s
Blink into the trace-database-table-files. Figure 8 gives an
example of how a specific packet type, in this case a



Response-send-packet with 64 bytes data - Type 16, is distributed
into the appropriate trace-database-table-files.
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Fig. 8. Packet trace database distribution

A Trace-ID and a Packet-ID uniquely identify every SCI
packet in every trace. Every trace-data-table contains these
two IDs as primary keys. A main table is shared by all
packets and contains a packet-type-ID but al packets
occupy only a subset of the available tables. Figure 9 shows
the relations between the trace database tables.
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Fig. 9. Trace database relations

The fields in the trace-database table exhaustively
enumerate SCl-packet information, preserving the
maximum level of detail, e.g. targetlD, command type,
sourcel D, etc. This allows for very detailed queries, e.g. al
request-send packets with targetld = X, sourceld = Y and
addressOffset between A and B. It is expected that an
extensive query set will be accumulated as time goes by,
some within speciadlised GUIs. The user may give
meaningful interpretation to trace data fields through the
implementation of additional tables and additional one-to-
many relations.

The design allows the analysis of subsets of the packet’s
data while maintaining a relation to the full packet

information e.g. a query result-set is easily associated with
the full packet information.

C. Trace database Performance

A preliminary investigation has shown that direct SQL
insertions of individual packets subsequent to the packet’s
decoding are too expensive. The estimated execution time
exceeds 1 hour for a full trace while a bulk import into the
trace instrument's MS Access database can be achieved in
less than 10 minutes. MS SQL-Server imports are expected
to be even less time consuming.

The following SQL-query reconstructs a specifigpe 1
Request-send-packet with extended header and O bytes
data. The packet has a TracelD = 3 and a PacketID = 40200
and is retrieved from a trace database with 100,000 packets.
The query must retrieve 39 fields in 6 tables in order to
reassemble this packet and it's associated trace information.

CREATE PROCEDURE [ SCI_Packet Type 01] AS SELECT
SCl _Packet s. Tracel d,
SCl _Packet s. Packet | d,
SCl _Packet s. Packet _Type_Id,
SCl _Packet _Type_Id. Packet _Type_Descri pti on,
--- (place holder 33 fields in 6 tables)
SCI_Packets.relative_Time_2,
SCI_Packets.relative_Time_3
FROM SCI_Packets
INNER JOIN SCI_FlowControl ON
SCI_Packets.Traceld = SCI_FlowControl.Traceld AND
SCI_Packets.Packetld = SCI_FlowControl.Packetld
INNER JOIN SCI_Cmd ON
SCI_Packets.Traceld = SCI_Cmd.Traceld AND
SCI_Packets.Packetld = SCI_Cmd.Packetld
INNER JOIN SCI_Control ON
SCI_Packets.Traceld = SCI_Control.Traceld AND
SCI_Packets.Packetld = SCI_Control.Packetld
INNER JOIN SCI_AddressOffset ON
SCI_Packets.Traceld = SCI_AddressOffset. Traceld AND
SCI_Packets.Packetld = SCI_AddressOffset.Packetld
INNER JOIN SCI_Extended ON
SCI_Packets.Traceld = SCI_Extended.Traceld AND
SCI_Packets.Packetld = SCI_Extended.Packetld
INNER JOIN SCI_Trace_Information ON
SCI_Packets.Traceld = SCI_Trace_Information.Traceld
INNER JOIN SCI_Packet_Type_Id ON
SCI_Packets.Packet_Type_ld = SCI_Packet_Type_Id.Packet_Type_lId
WHERE (SCI_Packets.Traceld = 3) AND
(SCI_Packets.Packetld = 40200)

The query was executed using a Microsoft SQL-Server 7.0
on a 450 MHz Intel Pentium Il with 128 MB memory and
required less than l1second. The same query into an MS
Access database requires about 15 seconds. These
preliminary results indicate that a Microsoft SQL-Server is
a suitable database engine for a Packet Viewer (see Fig. 11
for an example of a packet viewer applet).

IV. TRACE DATA PRESENTATION AND ANALYSIS

The primary trace data acquisition, the decoding and the
trace bulk import are associated with the trace instrument
itself. But trace data will in al likelihood be transferred to a
remote note for performance and accessibility reasons.
Figure 10 provides a system overview. Trace data is easily
transferred from one trace database to another. A remote
node hosts a web server and a Java trace database server.
Client nodes may load trace viewer and analysis applets
into their web browser. The trace instrument can behave as
a client in this scenario. The applet establishes a socket
connection to the trace database server.
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Fig. 10. Trace system software

A. Java Trace Database Server

The Java database server creates a new thread for every
connecting client, thereby allowing concurrent access from
multiple clients. The client applet initiates the server to
connect to a particular trace database either on the local
node or aremote node. The Java server establishes the trace
database connection through an ODBC server. The trace
database server holds a set of prepared SQL statements. A
client may invoke a specific prepared SQL statements and
forward parameters to the server. The server then invokes
the statement with the inserted client parameters and returns
the query result-set to the applet.

B. Java Packet Viewer Applet

Figure 11 shows a SClI packet viewer applet. The user
provides the applet with a TracelD and PacketlD. The
software then initially queries the packet type and adjusts
its layout accordingly. A subsequent type-specific query for
the full set of trace-data provides the applet with the
required data.

V. CONCLUSION AND FURTHER WORK

This trace instrument provides a non-intrusive method of
measuring SCI interconnect traffic and consequently will
not influence the temporal behaviour of the system. It will
enable researchers and developers to analyse the true
tempora behaviour of clusters made up of standard
components. The employment of a relational database for
trace-data storage provides the user with well understood
and easy-to-use tools to extend and to adapt the predefined
database queries to their specific needs. The use of Java and
SQL makes the software platform independent.

The prototype will be enhanced through the implementation
of important methods for the analysis and visualisation of
the dynamic behaviour of parallel processes [10]. It is
proposed to employ time state diagrams (gantt charts) and
causality diagrams (hasse diagrams). SCILAB Technology
AS will incorporate the software into its SClview
instrument [7] under a nonexclusive license agreement.

The instrument is a vital tool for the validation of global

state estimation algorithms. In this context Trinity's
research interest is aimed at the runtime optimisation of

DSM systems.
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Fig. 11. Java Packet Viewer
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