|mproving Open Web Architedures

Michad Collins

B.Sc. (Hons)

A dissertation submitted to the University of Dublin,
in partial fulfilment of the requirements for the degreeof

Master of Sciencein Computer Science

September 2000



Declaration

| dedare that the work described in this dissertation is, except where otherwise stated,
entirely my own work and has not been submitted as an exercise for adegree & thisor

any other university.

Signed:

Michad Collins

15 September 2000

Permission to lend and/or copy

| agreethat Trinity College Library may lend or copy this dissertation upon request.

Signed:

Michad Collins

15 September 2000



Abstract

When people use the Internet today, they use their browsers to conned to a web
server locaed anywhere in the world and download a spedfied page that they have
requested. Unlessthis page contains a Form, CGI-Script, Java Script or a Java Applet
(providing of course the user's browser supports Jva), there is no other way the user
can interad with the web page. Even with this interadion, the user is gill physicdly
unable to edit the page itself so the source HTML code for the page can rever be
edited remotely.

Jiki is an open web architedure that will allow anyone to edit pages fredy on the web.
The system is written as a set of distributed Java components that communicate with
HTTP. Although Jki offers an adequate solution for editing in a permissve
environment, its ladk of seaurity (users can edit web-pages and manipulate them
fredy without any restrictions or version control) means that they can placenot only
text, but also images, sounds and perhaps <ripts that may not be desired by the
"owner" of the page. The objedive of this dissertation is to add authenticity and trust
to Jiki. Thisinvolves designing, developing and integrating a seaurity framework into

the Jiki architedure.



Acknowledgements

| would like to thank my supervisor Dr. Simon Dobson for al the help and effort he
has given me during the murse of this dissertation. He gave me some gred ideas and

encouraged me dl the way. Simon, thanks for everything. | appredate dl your help.

| would aso like to thank Joe Kiniry at Caltech University, California for al the help
and advice he gave me throughout the yea regarding Jiki. Joe is the designer and one
of the developers of Jiki. His help and suggestions were gratefully appredated.
Thanks for your input Joe. Thanks also to the Computer Science Department in
Trinity, particularly those in DSG. Their help and advice regarding certain areas of
this dissertation made abig dfference

Many thanks to all my family for al their encouragement and understanding duing

theyea. Their support was invaluable and I’'m truly grateful for everything they did.

Finaly, to all my M.Sc. classfriends. | have never met a greaer bunch of people in
al my life. The many times of laughter and joking we dl shared redly helped get
through the yea. | will aways look badk at the yea we spent together with terrific

memories.



Table of Contents

I 1 014 oo [ [ox 1 ' o PP P PP PP RPN 1
I R 1 0 oo [ 1o (o o PP RR PP PPPPP 1
0 © o =0 1 Y- U 2
IR S (0= 0 [ 100 S 3
L4 SUMIMBIY .. et e e et e e e e et e e e e b e e e eaa e e e eaneeeenes 4

2. LItEratUr@ SUNVEY . ..ot e e e e e 5
2.1 INEFOTUCHION. ...ttt 5
2.2 HYPEMEAIA........ue e 5

221 Goals Of HYpPermedia..........vevvueiieieie e e e 6
2.2.2 Hypermedia engiNeaing..........coevveueieeeeiieeieemee e e s 7
2.3 H T T P s 7
2.3.1 HT TP OPEraliON.....cceuiieeeeie et e e e e e e e e ae e e e e eeeeenenend 8
2.3.2 HTTP Protocol Parameters............coeeiiiiieieeeiiieeeiiieeeee e 11
2321 HTTP VEISION ...ttt 11
2.3.2.2 HTTP URL (Uniform Resource LoCaor) ...........ccoeevvvvnieeennnnn. 12
2.3.3 HTTPMEhOO ... .o 12
2331 GET e 12
2332 HEAD .o 13
2333 PO ST . 13
2334 PU T e e 14
2335 DElEE. .. 15
234 HTTP SEAUMLY covviiieieeiii et 15
2.4 WED SEAUMEY...uuieiii e et er e e e e e e e e e e e e 16
24.1 Web AUthentiCaioN...........ooiiiiiiiiii e 16



2.4.2 AULhENtICAION SEIVEIS .. ...t 18
24.3 SEQUrtY FEQUINEMENES. ... ceeeie e e e e e ee e e e e 19
24.4 SHTTP (SEAUreHTTP)..ciiieiiie e 19
2.4.5 S (Seaure SOCKEt Layer) .......veveeee e 19
2.4.6 PGP (Pretty GOOd PriVaCy) ........oveveuiiieiiiiie e e e e e e e 20
25  The Apachel] Web Server SEAUtY........covvviieiiii e ceeee e 21
25.1 Creding aUser Database..........ooovvvviieviiiii e 21
25.2 The htpassvd Program..........ceeveeeieeeie e 22
25.3 Server CONfIQUIALION ... .ccuveieeei e e e e e e e e e e 23
25.4 USING GIOUPS ..evtteeeetieeeeiieeeetteeeses s s e e e e eaeaeeeaeeeeeesssnnsssssnnnnnnnnnnns 25
255 Limiting MethOOS. ........covviiiiie e 26
2.6 XML e 27
2.7 SEIVIELS.....coiiiiieeee e 29
2.7.1 SErVIELSV CGI SCIPLS. ..uuiiiiie e e e e e 30
2.7.2 USES Of SENVIELS. ... 31
2.7.3 Servlet ArChiteAUIE. ... ... 31
2.7.4 SerVIet LIfeQYCle c.uu e 33
2.7.5 Serviet development ..........coovveii i 34
2751 Client INEEraCtioN ..........ueeeeieee e 35

2.8  Open Web ArChiteuUre..........ccoevuiiiiii e e e 36
281 KT et 36
2.8.2 JiKi Page FOrmat........cccvviiieii e 39

P U 11011 0°= PP 43
3. JiKi SEAIrity DESIgN ...ucevevieceei et nn e e e e enneennnennn B
3L INEOTUCTION. ...ttt e e 44
3.2 JiKi SECUrity INtEOratioN ........veeeeieeeeei e e e e e e e e e e e e e e e aean e 44
3.2.1 SEAUMLY SCENAIIOS. .. . eeeeeeeeeeti e e e et e e e e ee e e e e e e e e e e eee e as 45

vi



3.2.2 Seaurity PoliCy Manager.........coevvuuieeeeii et e e a7

3.2.3 Establishinga HTTP SESSION......ccccuiiiiiiieeeeic e eeeeee e 50
3.24 Encryption (MD5 Message — Digest Algorithm) ..........coccoeveieeennnnnn. 51
3.3 UML ABSIGN ..t 53
34  HighLevel ArChiteQUre.........cccvvviiieieii e e e e e e e e e e 56
34.1 GUI e 57
3.4.2 Jiki Seaurity INfrastrUuCtUure...........oovvveieeieeie e 57
3.4.3 Storage Framework .........ooovveiiiii e 58
3431 Registered client list.........ccoooveviiiiiiii e 59
3432 Read-ac@sSclient list.........uvuiiiiiiiiie e 59
3433 Edit-accassclient list ... 59
3434 Additional storage reqUIreMents...........ccceevevvveeeiiiiieeeneeeeeeeennn 60
3.4.35 Storagefileformat............ooeevviiii i 61
3.4.3.6 File Retrieval methods...........ovvvviiiiiii e 64

3.5 SUMIMEAIY e e et e e et e e e e eaaan 65
Jiki Seaurity Implementation ...........cceuuiiiiiiin e 66
4.1 INErOQUCKION.....cceeeiiiiieie ettt e e 66
4.2  Seaurity component framework............ooveviiiiieieiiieeee e 66
4.2.1 Registering NEW ClENES.........oovviiieeee e 67
4.2.2 Creding NEeW JiKi PAgES. ......uoiiierieeeeii et e e e e e e e e e e eeeeees 67
4.2.3 Authenticaing acClient...........ocovvuiiiiiiiii e 68
4.2.4 Seaurity Policy Manager aCGESS.........oevvuruieeeeiiieeeeieeeeinnnninneeeens 68
4.2.5 Changing AdMINISEFELOr ..........oevveiieeeiie e e e 69
4.2.6 General ULIITIES.......covveeeeiiiiiie e 70
G N | oo =P PURPS 70
A4 GUIS. . it ene 70
4.4.1 New Client registration..........cc.uuiveeeiii e e e eee e 71

Y



5.

7.

8.

4.4.2 New JiKi page @eaiON........cccvvuie e e 71

4.4.3 [0 (1 o= 0= o = 72
4.4.4 Page aminiStralion ..........oveveeii e e e e e e 72
45  JSDK and Servlet FrUNNEY .........ccooviiiieeeeiiieii e 73
4.6 SUMIMBIY . ..ituiieiie ettt e et eree e et e e e et e e e et e e e et a e e e e et e e e et e e eeta e e eena s 73
EVAIUALION ... 75
5.1 INEOTUCTION. ...t eee et 75
5.2  Seaurity scenario eValuation...............uveeeiuiieeeieeiieie e e e e e e e e e eeeeeees 75
52.1 SINGIE AULNOT ... 75
5.2.2 Collaborative authOring .........ccoeuuiieieiiieeeiicerre e e e e 76
523 COMMUNITIES ...t e e e e e 76
524 NO FESIICHIONS ...ttt 76
5.3  Evaluation of the Seaurity Policy Manager...........ccoevvvieiiiiiiiieeeneeeeeee, 77
54  USINGHTTP SESSIONS....uiiiiiieieiii e e e eeme e eee et e e e e e e e e e e e e aaaes 77
5.5  Encryption algorithm evaluation..............ccoeevuiiiiiiicciiiicieee e 78
56  Evaluationof theuse of flat files...........ovvvviiiiiiiiii e 78
5.7  SCAl@bility ISSUES.....cceveiieeeie ettt e e e e 79
5.8  JiKi VOIher WED SEIVEIS......uiiiiiiiei e ceeeeeeeeeeeee e 80
59  Jiki DataFormat and XML .........ccoooiiiiiiiiiiiiiiice e 81
5.10  SUMIMEAIY ...ttt et e et e e e et e e e et e e e et e e e eaa e e eenaan 82
CONCIUSION ...t e e e e e e e e e e e e e e e e e anees 84
6.1 INErOTUCTION. ....eeiiiiiiie e 84
6.2 ACKIEVEMENES. ... 84
6.3 FULUTE WOIK. ... .veiiiiiieie et 85
BiblOgrapny ... 87
N o] 1= o SRR 90
8.1 SCIEENISNOLS....cieiiiiiiiie e 90

Viii



Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.5

Figure 8.6

Tables and illustrative materials

HTTP COMMUNICEION ...t e e 8
HTTP Communicaion with threeintermediaries...............cccevvvnnnnnd 9.
HTTP Communicaion with caching............cceuviviiiiiiiieieiereeeeeeiiiins 10
XML OCUMENT .t 29
Example Serviet configuration.............ccoeevvviiiiiiiiiccciiciieeee e 29
EXaMPle SEIVIEL ... 33
Single Threaded SErVIEt..........cooviiiiiiiii e 35
Jiki High-Level Architedure...........c.coovvviiiiiiicceeee e 37
High-level view of a Jiki page Seaurity Policy Manager .................. 48
Jiki Use-Case diagram..........oveveeeieeiiie et 54
Sequence Diagram to Read / Edit a Jiki page........c.cccvvveveviiiniennee. 55
Jiki High-level Architedure...........coooovviiiiiiiiieeee e 56
Example of the Registered Clientsfile..........ccoovevviiiiiiiicceciee. 61
Example of the Read - accessfile........cooovviiiiiiiiiiiiee 62
Example of the Edit - accessfile.........ccooovviiiiiiiiiiiiee 63
Example of the Temp (New Page) file.........cccoeeeveiiiiiiiicceceee, 64
New Client registration..........cc.uuiveeiiiie e e eee e 90
New registered client JiKi page........c.ccovviiieviiiii i 91
Old registered client JiKi Page...........ooveveviiieiiiiiieeee e 91
Authorised Jiki page @liting ........cccuviieriiiieiii e 92
Seaurity Policy Manager GUI ...........cooevviiiiiiiiiieeeee e 92
Seaurity Policy Manager GUI ...........cooevviiiiiiiiieeeee e 93



“"| havetravdled the length and weadth of this courtry andtalked with the
best people, and| can asaure youthat data processngis a fad that won't last
out the yar."

— The ditor in charge of businessbook for Prentice Hall, 1957



1. Introduction

1.1 Introdu ction

The use of the Internet today has fadlitated a massve growth in amost every
industry. People dl over the world are now able to conned to the Internet using a
range of different techniques from the traditional personal computer to the personal
digital assstant (PDA). There ae now virtualy no demographic or hardware

restrictions to accessng data on the Internet.

Making data available over the Internet is a relatively straightforward process The
data must be stored on some machine running a web-server. This web-server can be
conneded to the Internet via an Internet Service Provider (ISP) using its own unique
IP addressor it can be conneded to a network that isitself conneded to an ISP. Ead
madine mnneded to the network will have its own IP address A Domain Name
Service (DNS) running on some machine will then map this IP address to some
domain name (or addres9 unique to the web-server. This means that any data stored
on the web-server to be made available over the Internet will contain a unique sub-
addess to the web-server address This hierarchy of unique addresses and sub-
addreses means that any person can enter a spedfic combination of addresses and
download the data stored there.

It is the primary responsibility of the web-server where the data is gored to handle dl
the requests for that data. When a request arrives from a dient, the web-server will
real the request and seewhat the dient is requesting. Asuming there ae no errorsin
this request and no authorisation is required, the web-server will fetch the data and
send it badk to the dient. This is the fundamental operation for all web-servers and

there ae severa different types of them.

Eadh different type of web-server has its own unique daraderistics and functionality.
However, there is one service that very few of them provide — the adility to alow

clients to change the data they requested dynamically on a form and send these



changes bad to the web-server for others to download. One such web-server that

does provide this srviceis cdled Jiki.

Jki is a web-server that alows clients to request data, download that data and allow
them to edit the data fredy. When finished, the dient can save the changes they made
and the dhanged data is then stored badk on the web-server for other clients to request
and download. There ae huge alvantages for alowing this type of service
Educaional, Scientific and Business organisations could benefit enormously from
allowing data be dhanged like this over the Internet. However, there is one major

downside to a servicelike this — the need for proper seaurity.

1.2 Objectives

The ladk of seaurity with Jiki by allowing any client to edit data they download and
have these dhanges saved badk on the web-server can lead to very serious ®arity
problems. The potential for malicious damage is enormous. This is ssmething most

people would like to avoid.

The objedives of this projed are to take the Jiki architedure and add acwuntabili ty
and trust to it. This will involve designing, developing and integrating new
components that will add dfferent levels of seaurity to the achitedure (e.g. to grant
access to cetain people to alow them edit certain pages in a cetain way). Once
seaurity has been addressed, extra functionality will be layered onto the new, more

seaure achitedure.

What is hoped to achieve is a seaure, acmuntable and trustworthy web-server that will
provide arange of seaurity services. These services will include asgning read and
edit privileges to clients for Jiki web pages, a seaurity policy manager, the adility to
create new Jiki web pages and some kind of registration processfor clients to register
themselves with Jiki.



1.3 Roadmap

The layout and contents of ead chapter in this dissertation are & follows:

Chapter 2

Chapter 2 discusses the literature survey conducted for the dissertation. This includes
a detailed look at the achitedure of the Jiki web-server and the technologies used to
implement it. The survey includes an in-depth description of HTTP 1.1, which is the
underlying transport protocol for Jiki. Several other technologies are looked at
including the possble advantages they may provide in the implementation of the new

seaurity framework.
Chapter 3

Chapter 3 discusses the design of the new seaurity framework to be integrated into the
Jki architedure. The dapter gives a description of the seaurity scenarios that the
new seaurity framework must be &le to ded with. This includes describing how
clients can be authenticated and dfferent types of permissons they may be assgned.
A discusson on the excryption agorithm to be used and reasons for using this

concludesthe dhapter.
Chapter 4

Chapter 4 describes the implementation of the new seaurity framework. It first gives
a short discusson on the medhanisms used to implement the aurrent Jiki architedure.
Following this, a description of the use of comporents to implement the new seaurity
framework is given. This includes describing how these components are used to
implement the different seaurity scenarios that were identified and explained in the
previous design chapter. The dhapter concludes with explanations of the layout of the

different GUIs for the seaurity framework.



Chapter 5

Chapter 5 discuses the evaluation of the newly integrated seaurity framework. It
gives a aiticd analysis of the usefulnessand worthinessof the system and how well it

has integrated with the original Jiki architedure.
Chapter 6

Chapter 6 gves the conclusions of this dissertation. It discusses the final conclusions
gained from completing this dissertation and looks at improvements that can be made
to the seaurity framework. It concludes with suggestions of possble diredions that

extrareseach may be caried out with Jiki.
Chapter 7

Chapter 7 contains the bibliography for all book and URL references used in this

dissrtation.
Chapter 8

Chapter 8 shows the GUI screan-shots of the new seaurity framework.

1.4 Summary

This chapter discussed the idea and concept behind this dissertation. It introduced the
Jki web-server and the unique service it provides by alowing changes be made
dynamicdly by clients to web pages it hosts. The dapter discussed the objedives of
the dissertation and the requirements of a seaurity infrastructure to be integrated into
Jiki.



2. Literature Survey

2.1 Introdu ction

In this chapter, the technologies that encompassthe eisting web architecure will be
investigated. Current reseach technologies of improving this architecure, namely
Jki, will also be investigated. The aeas that are examined are Hypermedia, HTTP
and the aility to perform updates on the web and Web Seaurity. A discusson of the
ways in which seaurity has been integrated into one comnmonly used web server,
namely Apachell, will follow this. The dapter concludes with short descriptions on
XML and Servlets. These ae aeas that are cre to understanding how the airrent

web architedure operates before aty improvements can be considered and proposed.

2.2 Hypermedia

“For many people, the most comnon experience of hypermediais
the World Wide Web” [Lowe99]

There ae many interpretations of what hypermedia is but [Lowe99] states that
hypermedia is an applicaion that allows a person to navigate through an information
gpace using associative linking. Hypermedia is a @njunction of hypertext and
multimedia and has provided an effedive way of improving the use rather than the
provison of information. One of the most significant charaderistics of hypermedia
applicaions is nontlinearity (i.e. there ae multiple possble paths through the
information as opposed to just one ain abook or film). Hencethe term Hypermedia.
Another charaderigtic includes the use of multiple types of media and dfferent ways
of accessng these, hencethe latter part of the term Hypermedia. [Lowe99] states that



there ae many definitions of exadly what hypermediais. A good definition is given

as

Hypermedia ‘An applicaion which uses as®ciative relationships among
information contained within multiple media data for the purpose of
fadlitating access to, and, manipulation of, the information encapsulated by
the data’.

2.2.1 Goals of Hypermedia

According to [LoweQ9], there ae three main goals that have been set out for
hypermedia. These ae

* To support (using the asociative relationships between information sources)
the carying out of adions which result in the identification of appropriate
information (with appropriateness being based on a given set of contextualy
defined criteria)

* To support the carying out of adions which fadlitate the dfedive use of

information

» To support the carying out of adions which result in control of appropriate

information

In summary of the @ove goals, hypermedia gplicaions sould support the carying
out of adions, which result in the identificaion, effedive utilisation and control of

appropriate information.



2.2.2 Hypermedia engineering

Thirty yeas ago, proper dructuring tedhniques barely existed in software
development. It was at much the same stage that hypermedia development is at now
[Lowe99]. Since then, software engineeing has evolved into a significant sub-
discipline of computer science  Many of the problems that triggered this evolution are

similar to those now becoming increasingly significant in hypermedia development.

It is clea that a structured hypermedia engineering approach is required. This sould
be caried out in a way that is consistent with both an approach designed to most
effedively yield results (an engineaing approad)) and the goals of hypermedia

(managing information using asociative linking) [Lowe99].

Different process models can be designed to suit different types of development,
which in turn will be suited to different types of applicaions. Examples would be
where amodel incorporating iterative refinement of an initial prototype may be best
suited to small scde gplications, whereas educaiona applications probably require a
model that considers the desired leaning objedives. Corred hypermedia engineaing
would review al models before doosing the most suitable and appropriate one for

eah different problem.

The field of hypermedia development is 4gill very young and athough every
hypermedia gplicaion development involves ome form of engineaing process

there has been little formalising of this processto date [Lowe99].

2.3 HTTP

The Hypertext Transfer Protocol (HTTP) is an applicaion-level protocol for
distributed, collaborative, hypermedia information systems [W3C1]. HTTP has been
in use by the World Wide Web global information initiative since 1990 and the first
version of HTTP, referred to as HTTP/0.9, was a smple protocol for raw data transfer
aaoss the Internet. HTTP/1.0, as defined by RFC 1945 [W3C2], improved the
protocol by alowing messages to be in the format of MIME-like (Multipurpose

Internet Mail Extensions) messages, containing meta-information about the data



transferred and modifiers on the HTTP request and response messages. HTTP is also
used as a generic protocol for communication between user agents i.e. a dient that

initiates a request, and proxies/ gatewaysto other Internet systems.

2.3.1 HTTP operation

The HTTP protocol is a request / response protocol. A client sends a request to the
server in the form of a request method, URI (Uniform Resource Identifier), and
protocol version, followed by a MIME-like message @ntaining request modifiers,
client information, and possble body content over a cwnnedion with a server. The
server responds with a status line, including the message's protocol verson and a
success or error code, followed by a MIME-like messge @ntaining server

information, entity meta-information, and possble entity-body content.

Most HTTP communicaion is initiated by a user agent and consists of a request to be
applied to a resource on some origin server. In the smplest case, this may be
acomplished via asingle onnedion (V) between the user agent (UA) and the origin
server (O) (refer to Figure 2.1).

v

<« Response

Figure2.1  HTTP Communication




A more mmplicaed situation occurs when one or more intermediaries are present in

the request / response dhain. There ae three @mmon forms of intermediary:

1 Proxy

A proxy is aforwarding agent, recaving requests for a URI in its absolute form,
rewriting all or part of the message, and forwarding the reformatted request toward
the server identified by the URI.

2. Gateway

A gateway is arecaving agent, ading as a layer above some other server(s) and, if

necessary, trandating the requests to the underlying server's protocol.
3. Tunnel

A tunnel ads as arelay point between two connedions without changing the
messages. Tunnels are used when the communication needs to passthrough an

intermediary (such as afirewall) even when the intermediary cannot understand the

contents of the messages.
Request Chain >
v
B C O
<+ Response Chain

Figure2.2  HTTP Communication with threeintermediaries




Figure 2.2 shows three intermediaries between the user agent and origin server. A
request or response message that travels the whole dain will pass through four
Separate  @nnedions. This distinction is important becaise some HTTP
communicaion options may apply only to the connedion with the nearest, non-tunnel
neighbour, only to the end-points of the chain, or to al connedions along the dain.
Although the diagram is linea, ead participant may be engaged in multiple,
simultaneous communicaions. For example, B may be receaving requests from many
clients other than A, and / or forwarding requests to servers other than C, at the same
timethat it is handling A's request.

Any party to the communicaion that is not ading as a tunnel may employ an internal
cade for handling requests. The dfed of a cate is that the request / response chain
is dortened if one of the participants along the dain has a cated response gplicable
to that request. Figure 2.3 illustrates the resulting chain if B has a caded copy of an
ealier response from O (via C) for arequest, which has not been cated by UA or A.

Request Chain >

If

< Response Chain

Figure2.3  HTTP Communication with cacding

1C




Not all responses are usefully cadeadle, and some requests may contain modifiers,

which placespeda requirements on cade behaviour.

HTTP communication usually takes placeover TCP/IP connedions. The default port
is usually 80 [W3C1], but other ports can be used. This does not predude HTTP from
being implemented on top of any other protocol on the Internet, or on other networks.
HTTP only presumes a reliable transport and any protocol that provides sich

guarantees can be used.

2.3.2 HTTP Protocol Parameters

2.3.2.1 HTTP version

HTTP uses a"<major>.<minor>" numbering scheme to indicae the different versions
of the protocol. This protocol versioning policy is intended to allow the sender to
indicate the format of a message and its cgpadty for understanding further HTTP
communicaion, rather than the feaures obtained via that communicaion. There ae
no changes made to the verson rumber for the aldition of message wmponents
which do not affed communicaion behaviour or which only add to extensible field
values. The <minor> number is incremented when the changes made to the protocol
add feaures which do not change the general message parsing algorithm, but which
may add to the message semantics and imply additional cgpabilities of the sender.
The <major> number is incremented when the format of a message within the
protocol is changed [W3C1].

A HTTP-version field indicates the version of a HTTP message in the first line of that

message

HTTPR Version ="HTTP""/" 1*DIGIT "." 1*DIGIT

11



2.3.2.2 HTTP URL (Uniform Resource Locator)

The "http" scheme is used to locae network resources via the HTTP protocol. The

scheme-spedfic syntax and semantics for http URLs are &s follows:

http_ URL = "http:" "//" host [ ":" port ] [ abs_path |
2" query ]]

“If the port is empty or is not given, port 80 is assumed. The semantics are that the
identified resource is locaed at the server listening for TCP connedions on that port
of that host, and the Request-URI for the resourceis the abs_pah. If the abs pathis
not present in the URL, it must be given as "/" when used as a Request-URI for a
resource |If aproxy recaves a host name, which is not a fully qualified domain name,
it may add its domain to the host name it recaved. If a proxy receaves a fully

gualified domain name, the proxy must not change the host name” [W3Cl1].

2.3.3 HTTP Method

The set of common methods for HTTP/1.1 are defined as follows;

2331 GET

The GET method is used to retrieve whatever information (in the form of an entity) is
identified by the Request-URI. [f the Request-URI refersto a data-producing process
it is the produced data that is returned as the entity in the response and not the source
text of the process unlessthat text happens to be the output of the process

The semantics of the GET method change to a "conditional GET" if the request
message includes an If-Modified-Snce, If-Unmodified-Snce 1f-Match, 1f-None-Match
or If-Range header field. A conditional GET method requests that the eitity be

transferred only under the cetain described circumstances identified in the

12



conditional header field(s). The main idea behind the mnditional GET method is to
reduce unnecessary network usage by allowing caded entities to be refreshed without
requiring multiple requests or transferring data dready held by the dient [W3C1].

A GET method will change to a "partial GET" if the request message includes a
Range header field. A partial GET requests that only part of the entity be transferred.
The partia GET method is smilar to the conditional GET method and is intended to
reduce unnecessry network usage by alowing partialy retrieved entities to be
completed without transferring data dready held by the dient.

2.3.3.2 HEAD

The HEAD method is identicd to the GET method except that the server must not
return a message-body in the response. The meta-information contained in the HTTP
response healers to a HEAD request should be identicd to the information sent in a
HTTP response to a GET request. This method can be used for obtaining meta-
information about the entity without transferring the entity-body itself. This method
is often used for testing hypertext links for validity, accesshility, and receit
modification [W3C1].

The response to a HEAD request may be catdeadle in the sense that the information
contained in the response may be used to update apreviously caded entity from that
resource If the new field values are different to the cated entity, then the cate

must tred its present contents as gae.

2.3.3.3 POST

The POST method is used to request that the origin server accept the enclosed entity
in anew request. POST is designed to alow a uniform method to cover the following

functions:

* Annotation of existing resources

13



» Posting a message to a bulletin board, newsgroup, mailing list or smilar group

of articles

» Providing a block of data such as the result of submitting a form to a data

handling process

* Extending a database through an append operation

The acua function performed by the POST method is determined by the server and is
usually dependent on the Request-URI. It is important to note that the adion
performed by the POST method may not necessarily result in a resource that can be
identified by a URI [W3C2].

If a resource has been creded on the origin server, the response should contain an
entity that describes the status of the request and refers to the new resource ad a
Locaion header. Responses to this method are not cadeale, unlessthe response
includes appropriate Cache-Control or Expires header fields. However, the response

can be used to dired the dient to a placewhere it can retrieve a cabeable resource

2334 PUT

The fundamental difference between the POST and PUT requests is refleded in the
different meaning of the Request-URI. The URI in a POST request identifies the
resource that will handle the enclosed entity. That resource might be adata-accepting
process a gateway to some other protocol or a separate eitity that accepts
annotations. In contrast, the URI in a PUT request identifies the entity enclosed with
the request and not the resource This means that the dient knows what URI is

intended and the server must not attempt to apply the request to some other resource

HTTP/1.1 does not define how a PUT method affeds the state of a server. Unless
otherwise spedfied for a particular entity-header, the entity-headersin the PUT
request should be goplied to the resource aeaed or modified by the PUT [W3C1].

14



2.3.3.5 Delete

The DELETE method requests that the origin server delete the resource identified by
the Request-URI. This method may be overridden by human intervention (or other
means) on the origin server. The dient cannot be guaranteed that the operation hes
been caried out, even if the status code returned from the origin server indicates that
the adion has been completed succesully. However, the server should not indicae
success unless at the time the response is given, it intends to delete the resource or

move it to an inaccessble location.

If the Delete request passes through a cade axd the Request-URI identifies one or
more airrrently caded entities, then those entries are treded as tale. Responses to
the Delete request are not cateable [W3C1].

2.3.4 HTTP Security

There ae various aurity issuesthat surround HTTP/1.1. These include:

Personal Information

* Abuse of Server Log Information
» Senditive Information

File and Path name datads

DNS (Domain Name Service) Spoafing

Locaion Headers and Spoofing

Proxies and Caching

15



2.4 Web Security

“Within the computer seaurity comnunity, ‘Trust Management’
has emerged as a new philosophy for proteding open, decentralised
systems, in contrast to traditiond toadls for seauring closed systems. Trust
Management is an esential approach because the Web crosses may trust
boundaies that old-schod computer seaurity cannd even begin to hande.”
[KHA97]

Originally, the World Wide Web was developed as a publishing medium for public
documents, so it provided few controls for restricting accessto information [Corm97].
As the web becane more popular, a larger number of documents and services were
made available. These nealed improved seaurity fadlities and a number of systems
were proposed to satisfy the new requirements. In the following sedion, the seaurity
needs of users, publishers and authors on the web are set out, and two alternative

solutions are examined.

2.4.1 Web Authentication

When a user uses the FTP or Telnet service they are authenticaed duing the initial
login process commands get sent during the service and then the user logs out.  Until
the point where the user logs out, the initial authenticaion at the start of the service
remains in effed for all operations performed. This is regarded as a singe sesson.
The HTTP protocol has no concept of asesson. When a user makes a mnnedion to a
server, only a single request and response is nt and this is independent of any other
connedion between the same two parties. The HTTP protocol was designed this way
to ensure that the server remains Sateless. Therefore, the server will store no
authentication information about any client and al client requests must be
acompanied by the necessary authentication. Unfortunately, any system that reuses

the same aithentication information is vulnerable to replay attadks.

! The Server does not retain any information about connedions establi shed between it and clients that
have sent requests

16



HTTP/1.0 provided only very basic authentication using only a static username and
passvord. If the user requested a proteded document, the server would send an
“Unauthenticated” response. Upon recaving this response, the user’s browser would
prompt for an authorised username and passwvord and resend these details in a new
request. If the server acaepts these aedentias, the requested document will be
returned. The browser can later use the same username and password, without
consulting the user, in response to other "Unauthenticated" errors from the same
server and redm. In HTTP/1.0, these aedentials are encoded but not encrypted in the
request so they can easly be deteded by monitoring the network.

HTTP/1.1 made an improvement to this authenticaion wegness It introduced a
concept cdled digest authentication. The same exchange of requests are used as in
basic authenticaion, but now the ‘Unauthenticated’ reply uses a value known as a
norce which ads as a dalenge. Instead of the dient reply with a username and
passvord, the dient cdculates a message digest (using the MD5 agorithm) from the
username, passvord and nonce and returns this with the username & authentication
information [Corm97]. The server then repedas the MD5 cdculation, using the user's
corred passvord, and returns the document if the two digests match. For the server to
be ale to do this, it must store eab user’s password for cadculating the MD5 dgest.
It is very important that these passvords are stored seaurely to prevent masquerading

taking place

The HTTP server is gateless ® cannot "remember” the nonce value between eah
challenge and its response. The nonce must therefore be derived from some
combination of information from the request padet along with values held centrally
on the server [Corm97]. However, there is dill the threa of attacks snce the server
does not ensure that nonces are unique to a single request. Choaosing carefully the
values of nonces can reduce this risk>. Only the server neads to know the value of the
nonce ad as a result, different servers can choose gpropriate methods to the

sengitivity of the information they hold.

2 A good nonce @l culation will usually include the URL of the document requested so that a successul
replay attack can only retrieve a single document, rather than the whole realm as with basic
authentication.

17



[Corm97] states "Digest Authentication does not provide a strong authentication
medhanism. That is not its intent. It is intended solely to replace amuch weder and
even more dangerous authentication mechanism: Basic Authentication. An important
design constraint is that the new authenticalion scheme be free of patent and other
export restrictions. Digest Authenticalion cannot med most needs for seaure HTTP
transadions. For those neads S (Seaure Socket Layer) or SHTTP (Seaure HTTP)

are more gpropriate protocols.”

2.4.2 Authentication Servers

Currently, most web servers perform their own authentication. However, a server
could refer to another authentication server if it neals to chedk a dient’s credentials.
Normally an authentication server is contaded after the initial exchange of username
and passvord between the dient and the spedfic web server. This means that the
authentication server has no control of what value is used as the nonce The
authentication server may provide information (e.g. a Public Key) that will alow the
web server to perform the aithentication or it will perform the aithentication itself. It
is imperative that a seaure connedion is established between the authenticaion server
and the web server to prevent any information from being stolen and later used under

false pretences.

A problem with token-based systems on a network where the web server and
authentication server both reside on the same network is the ladk of recognisable
sessons in the web protocol. The web server has no good way of knowing if
sequences of connedions arrive from the ‘same’ client so it may be necessary to
authenticate eab request individually. The result of such a scenario would mean a
very sow system and would often be intolerable for most users. An aternative to this
would be to allow web servers to cade this authenticaion information but it runs the
risk of replay attacks. Asymmetric Key encryption or Public Key encryption is one
way of seaurely cading a user’s authentication information on a web server. The
web server could be used to cade the user’s public key so only the first request sent

by the user in a sesson would incur adelay in contading the authenticaion server.

18



2.4.3 Security requirements

User authenticaion and authorisation is of little value to a web server if the document
is transmitted in clea text over the Internet. Encryption should be used to “prevent”
information from being read. The user of a web service may also have their own
seaurity requirements. Examples of this might be the ntents of a form containing

personal and/or financial information.

There ae documents that exist whose text is fredy available to the public but which
need to be cetified as genuine eg. pricelists and journa articles. This authentication
of authorship is different from authenticalion of the server where the document is
held. It does not matter where the document is held but that it is genuine. Attaching a
digital signature to the document usually does this. This is done by cdculating a
message digest value for the document (MD5, etc.) and then using the author’s private
key to encrypt this. This is then appended to the document before publication. In
order to ensure that the text has not been altered, the reader can deaypt the signature
using the aithor’s public key and re-cdculating the message digest. If the values

match, the document is authentic.

24.4 SHTTP (Secure HTTP)

[Corm97] states that SHTTP provides a mechanism for browser and server to agree
on their seaurity requirements and adds information to the normal HTTP healers to
allow signed and encrypted requests and responses to be sent and receved. The basic
medanism is to take anorma HTTP request or response, encrypt and/or sign it as
agreed, and then enclose it in an SHTTP request which caries only sufficient

information to alow the aithorised redpient to deaypt the contents.

2.4.5 SSL (Secure Socket Layer)

S9. is a protocol developed by Netscagpell and others and has been adopted by the
IETF (Internet Engineering Task Force) under the name Transport Layer Seaurity

(TLS). This provides an encrypted TCP connedion between a dient and server.

19



Thus with strong encryption, transadions cannot be read from the network by any

third party.

S is a general-purpose system so it cannot offer services that are tailored to the
applicaion that is using it [Corm97]. In order for S channels to pass through
firewalls and other proxies, spedal arrangements must be set up between the dient
and the server. Unfortunately, these may allow unauthorised users to use the same
route through the firewall sincethe dhannel is encrypted and therefore the firewall has

no way of monitoring what is passng through it.

SS9 does provide mnfidentiality and authenticaion of request and response messages
[QUOTE]. It can be used to exchange cetificates to authenticae the server and client
machines’. No reoord is kept of ead authenticaion so non-repudation is not
possble. A big problem with S is the low level of seaurity available in the export
version (due to US law export encryption restrictions). Another problem is the
difficulty of interading with applicaion-spedfic intermediaries such as proxies and
cades. Even though there is alot of commercia support for S_, it is important to

note that it is not a complete solution to web seaurity.

2.4.6 PGP (Pretty Good Privacy)

Authentication and encryption that is common on the Internet, as opposed to just the
World Wide Web, uses a technique cdled Pretty Good Privacy. PGP is an
international standard and is used for E-mail and FTP (File Transfer Protocol) traffic
because of its full availability worldwide. PGP uses a random key to encrypt ead
transadion using the IDEA symmetric dgorithm and encrypts the IDEA key using
RSA asymmetric keys [Corm97]. This form of encryption is grong and dfficult to
bre&k. Sinceit is the most widely available form of strong encryption, PGP is likely
to be used for many Web Transadion Seaurity proposals.

In order to use aPGP-based service, the user must know the public key of the service
they want and the server must know the public key of the user. Thisis adieved qute

ealy since signed PGP keys are fredy distributed and can therefore be cpied.

% These assume the presenceof third party Certificate Authoriti es

20



When users become registered, the service can obtain the public key of ead user and
the user in turn can obtain the public key of the service Ead user and server can
then maintain a file of al the public keys that are required for seaure communicaions.
This reduces the need for authentication since the keys are stored at both ends of the

communicding perties.

Using this method means that both user and server need to store files containing
public keys. The Massachusetts Institute of Tecdnology developed a way of
overcoming this by designing a public key server that would store dl public keys.
This public key server provided interfaces that allow users and services to add or
retrieve public keys. If a user wishes to use aservice they would first obtain the
public key for that service from the public key server, ched the signatures on the key
to ensure that it is genuine, and add the key to its own file of public keys.

PGP keys are relatively small, typicdly a few hundred bytes, so the anount of disk
storage required to store the different public keys is not normally a major concern.

2.5 The Apacheld web server security
In order to set up wser authentication, there ae two steps involved.
» Crede afile coontaining the usernames and passvords

» Indicae to the server what resources are to be proteded and which users are

permitted (upon entering a valid passvord) to accessthem

251 Creating a User Database

In order to crede auser database, alist of users and passwvords needs to be aeded in
a file. The file will contain a list of different usernames and their associated
passvords. It is smilar to the standard UNIX password file where eat username and
passvord is sparated by a wlon. All the passvords dored in the file ae encrypted

for obvious aurity reasons [ApadeSed.

21



2.5.2 The htpasswd program

The htpassvd® program is used to creae auser file ad to add or modify users. To
creae anew user file and add the username “michael” with the passvord “nebula” to

the file /usr/local/etc/httpd/users:

htpasswd —c /usr/local/etc/httpd/users michael

The —c argument tells htpasswd to creae anew user file. When this program is run, it
will ask for a passwvord to be entered for “michael”. This will neal to be entered a
seoond time for confirmation. Other users can be alded to the eisting file in the
same way without using the —c argument. The same command is also used to modify
the passvord of an existing user. A typicd users file might look something like the

following

michael:FrtYZ5i9HJ7T
abby:vCX2L39QwCfby8x

katie:7Fyve4HsR1kBMt

* htpasawvd isa C program that is supdied in the suppat diredory of the Apache distribution.

22




2.5.3 Server configuration

In order for Apadhe to use the usernames and passwords in the file, a realm needs to
be wmnfigured. A redm is a sedion of aweb site mntaining web documents that is to
be restricted to some or al of the usersin the user file. Redms are usually set upon a
per-diredory basis, with a diredory (and al its sub-diredories) being proteded
[ApadcheSed.

To configure and alow a diredory to be restricted within a .htaccess file, the
accessconf file must first alow user authenticaion to be set up in a .htaccessfile.
This is controlled by the AuthConfig override. “The .htaccess file should include
AllowOverride AuthConfig to alow the authentication diredives to be used in
a.htaccessfile” [ApadeSed.

To restrict a diredory to any user listed in the users file just creded, a .htaccess

should contain

AuthName “authorised personnel”
AuthType Basic

AuthUserFile /usr/local/etc/httpd/users

require valid - user

* AuthName spedfies the realm name. Once avalid username and password
is entered, al other resources within the same redm name can be accesd

with the same username and passwvord.

23




* AuthType tellsthe server what prototype isto be used for authentication.

* AuthUserFile  tells the server the location of the user file aeded by the

htpassvd program.

The &ove diredives together tell the server where to find the usernames and
passvords and what authenticaion protocol to use. The server now knows that this

resourceisrestricted to valid users.

The require  diredive is used to tell the server which usernames from the file ae
valid for particular accessmethods. The agument used with this diredive, valid -
user , tells the server that any username in the users file can be used [ApadceSed.

However, it can be configured to permit only certain users access for example:

require user michael abby

If the require  diredive was used as above, it would only allow users michael and
ablby access to the resources contained in the diredory (after entering a rred
passvord). If user katie tried to accessthe diredory, she would be denied even with
the corred passvord. Thisuse of therequire  diredive is useful to restrict different
directories in a server to different people in the same users file. As aresult, if a user
is permitted to access different diredories, they only have to remember a single

passvord®.

® Note: if the realm name differsin the different areas, the user will have tore-enter their password

24




254 Using Groups

If a dtuation requires that only seleded users from the users file ae permitted to
access certain diredories, these users can be listed on the require  line. However,
this would mean huilding username information into the .htaccessfile and this would
be very cumbersome if there ae alot of users. The Group file is a way of solving
this problem. The Group file operates smilarly to standard UNIX groups i.e. any
particular user can be amember of any number of groups. The require line can
then be used to restrict users to one or more particular groups. For example, a group
cdled msc-class could be aeaed containing users who are dlowed to access all
internal web pages. To restrict access to just users in the msc-class group, the

following would be used

require group msc - class

Apacde dlows multiple groups to be listed and require user can aso be stated,
in which case aty user in any of the listed groups, or any user listed explicitly, can

accessthe resource[ApadeSed. For example

require group msc - class phd - students

require user dsg - direct or

25




would alow any user in group msc-class or group phdstudents, or the user dsg-
diredor, to accessthe resource dter entering a valid passvord. A group file consists
of lines giving a group name followed by a spaceseparated list of usersin that group.

An example might look something like the following

msc- class:michael joe mark ciaran

phd - students:ray mads

2.5.5 Limiting Method s

In the .htaccessfile dove, the require  diredory was not given inside a<Limit>

sedion. Apade uses this to mean that the same diredives apply to al request
methods.

<Limit GET POST PUT>
require valid - user

</Limit>

If Apache was st up to limit just the POST method, the following would be dedared
in the .htaccessfile

26




AuthName “restrict posting”
AuthType Bas ic

AuthUserFile /usr/local/etc/httpd/users

<Limit POST>
require group msc - class

</Limit>

Here, only members of group msc-class are dlowed to POST. Other users
(unauthenticated) can use other methods such as GET [ApadeSed.

2.6 XML

The eXtensible Markup Language (XML) was first proposed by the World Wide Web
Consortium (W3C) as an dternative to HTML. Unlike HTML, XML is a meta
language, i.e. alanguage that alows one to crede their own markup language for their

own purpose [Architag9§.

HTML is widely accepted as the means for describing information for transmisson
over the web. HTML uses tags to describe how information should appea and
browsers interpret these tags and dsplay the marked up information on a screen.
These tags are primarily used as formatting todls. Although HTML is succesdul as
an information-delivery language, it does lack extensibility [Architag9§].

XML addresses many of HTML’s sortcomings. Unlike HTML where the formatting

of a document depends on the tags it contains, in an XML document, the tag is

27




separate from the formatting. This means that in an XML document, the information
is based on content and then the content markup is assgned a format. Individuals can
therefore aede their own tag-set that represents the information they want to

exchange.

XML provides a set of rulesthat alow the definitions of individual tag-sets rather
than abiding by the rules enforced by HTML. The syntax used for defining XML is
very similar to HTML except for threemain differences [Architag9§:

» All open tags must have a orresponding close tag
» All attribute values must be in quotes

» Empty tags (such as those used for images in HTML) must not have a dose
tag. The dart tag has a badk dash in the dose angle bradket - <image

src="image.qgif"/>.

The eXtensible Style Language (XSL) is used as the means for displaying an XML
document. It has a similar effed as Cascading Style Sheds (CSS without any effeds
of a proprietary style language. XSL separates the formatting from the content of
XML.

Figure 2.4 shows an example of the structure of an XML document.

28



<?xml version="1.0" standalone="yes"?>

<conversation>

<greeting>Hello, world!</greeting>
<response>We are not alone!</response>

</conversation>

Figure24 XML document

2.7 Servlets

Servlets are modules that run inside request/response-oriented services and extend
them in some manner. An example would be when aHTTP servicethat responds to
its clients by delivering the HTML files that it requests.

-
s
- —
I n L ity
i 1 e 5
I I || | I — T
== b =
o - . e = . — . =
Iirdor Faifrne 1L ot L sl Hirdor Foing sSonsiof =
AT LI Y i Pl i Y S waT T ¥ B
T — T =
i 1 - =
I 1l |
[ —— - i
- — e —————— =i
P ¥ 1 =
—
T |___ 1 [ ]
= = B §
—Tr—=r—7T1 _—
— T
.= 1, Al
= =11
—_ Caman -
I 1 [ —ETRE]D e
[} S U . | B L

Figure25  Example Servlet configuration

29




A Servlet can extend the cgabili ties of the HTTP service, for example, by taking the
data entered by a dient inaHTML-entry form and applying the gpropriate logic
used to upckte adatabase.

Servlets are to servers what applets are to browsers. Unlike gplets, however,
Servlets have no graphicd user interface Servlets can be anbedded in many different
servers because the Servlet APl (Applicaion Programming Interface, which is used
to write Servlets, assumes nothing about the server's environment or protocol
[Bloch99]. Servlets have become most widely used within HTTP servers and most
current web servers now support the Servlet API. As aresult, a Servlet can cdl on

other Servlets and services to satisfy arequest, if appropriate.

2.7.1 Servlets v CGI scripts

Servlets are a @mmon server-side dternative to using CGI scripts. They provide a
method of generating dynamic documents that are relatively easy to develop and are
fast to run as compared to CGI scripts [Bloch99]. With traditional CGI, a new
processis garted for ead HTTP request. If the CGI program does a relatively fast
operation, the overheal of starting the process can dominate the exeaution time.
However with Servlets, the Java Virtual Madine remains up, and ead request is
handled by a lightweight Java thread, not a hearyweight operating system process
Similarly, in traditional CGl, if there ae N smultaneous request to the same CGI
program, then the ade for the CGI program is loaded into memory N times. On the
other hand, with Servlets, there ae N threads but only a single wpy of the Servlet
class Servlets dso have more dternatives than do regular CGI programs for
optimisations such as cading previous computations and keeping database

connedions open [Hall].

Servlets are away of doing server-side development using platform-spedfic APIs.

These APIs are part of the Javall Servlet API classfrom Sun Microsystems[] .

Servlets could therefore be used to handle many different types of HTTP client
requests. These would include data posted from HTML forms typicaly used on on-
line shopping forms or banking systems.

30



2.7.2 Uses of Servlets

There ae many applicaions where Servlets are used. These gplicaions might

include

* Processng data POSTed from a HTML form. Servlets are very good when
used as part of order-processng systems, on-line payment systems, etc. where

sengitive data is gnt from the dient to the server and neeals to be processed.

* Interadion between users. Servlets can be used to handle cncurrent requests

and can support systems that provide on-line @mnferencing.

» Forwarding requests. Servlets can be used to forward client requests to other
Servlets and/or services. An advantage of alowing this might be for load
balancing. Another reasson might be when a single service has been

partitioned over a number of servers.

» Communities of adive agents. A Servlet could be used to define adive agents
that could be used to share tasks amongst eat other. Agents would be a
Servlet themselves and they could passdata to ead other if needed.

2.7.3 Servlet Architecture

All Servlets implement the JSDK (Java Servlet Development Kit) Serviet interfaceor
extend the HttpServiet class [ServletO0]. The Servlet interface provides APIs to
methods that manage the Servlet and its communications with clients. When a dient
sends a request to the server, the Serviet that deds with the request accepts two

objeds. These ae:

A\

» ServietRequest

This classencgpsulates the communication from the dient to the server.

31



» ServietResporse

This classencgpsulates the communication from the Servlet bad to the dient.

The ServietRequest interface #ilows Servlets to access a lot of information. This
would include the names of any parameters passed from the dient request, the
protocol being used by the dient, and the names of the remote host that made the
request and the server that recaved it. If clients use gplicaion protocols such as
HTTP ROSTs and HTTP RJTs, the interface provides an input strean cdled
ServietlnpuStream through which the Servlet can get the dient data.

The ServietResporse interface provides APIs for methods that allow Servlets to
respond to clients. The interface #ows Servlets to set the content length and MIME
type of the response, provides an output stream cdled ServietOutputStream, and a
writer through which the Servlet can send the response data [ Serviet0Q].

Both of these interfaces congtitute abasic Servlet. There ae many other classes and
interfaces that provide extra functionality for Serviets. Figure 2.6 shows an example

of asmple servlet [Bloch99].

32



public class SinpleServlet extends HttpServl et

/**

Handle the HTTP GET method by building a simple web

page.
*/
public void doGet (Htt pSer vl et Request request,
Ht t pSer vl et Response response)
t hrows ServletException, IOException
{

PrintWriter out;
String title = "Simple Servlet Output";

/I set content type and other response header fields first
response. set Cont ent Type("text/htm ");

/I then write the data of the response
out = response.getWiter();

out.printin("<HTML><HEAD><TITLE>");
out.printin(title);
out.printin("</TITLE></HEAD><BODY>");
out.printin("<H1>" + title + "</H1>");
out.printin("<P>This is output from

SimpleServlet.");
out.printin("</BODY></HTML>");
out.close();

}

Figure2.6  Example Servlet

2.7.4 Servlet Lifecycle

Servlets are loaded and then run in a service that accept requests from clients and
return responses. When a Servlet is loaded in a service, the Servlet’s init method is
run. The service dways cdls the Servlet’s init method when the Servlet is loaded and

33



it will not cdl it again unless the Servlet is reloaded®. The init method is aways
cdled before ay client requests are handled (i.e. before the service method is cdled)
or the Servlet is destroyed.

Upon initidlisation of the Servlet, all client requests can now be dedt with. The
Servlet’s service method is used to ded with these requests. When a dient request is
sent to the serviet, the servlet forks a separate servlet-thread to allow the request cdl
run its own service method. This means Servlets can run multiple service methods at
any one time. Therefore gpropriate precaitions must be taken to ensure that the
service methods run in a thread-safe manner [Servlet00]. For example, if aservi ce
method updites a field in the servlet objed, that access $iould be synchronized. If for
some reason, a service should not run multiple servi ce methods concurrently, the
servlet should implement the Singl eThreadModel interface This interface
guarantees that no two threads will exeaute the Serviet's service methods
concurrently [Servlet0Q].

Servlets run until they are removed from the service for example, at the request of a
system administrator. When a service removes a serviet, it runs the Servlet's destroy
method. This method is run once The service will not run it again until after it
reloads and reinitialises the servlet. When the dest r oy method runs, however, other
threads might be running service requests. If, in cleaning up it is necessary to access
shared resources (such as network connedions to be dosed), that access $ould be
synchronized [ Servlet0Q].

2.7.5 Servlet development

Servlets implement the javax.serviet.Serviet interface While developers can develop
Servlets by implementing this interface diredly, it is not necessary. Since most
Servlets extend web servers that use the HTTP protocol to interad with clients, the
most common way to develop Servlets is by spedalisng the
javax.serviet.http.HttpServiet class[Servlet0Q].

® The service @nnot reload a servlet until it has removed that same serviet by calling the destroy
method.

34



“The HttpServiet class implements the Serviet interface by extending the
GenericServlet base dass and provides a framework for handling the HTTP protocol.
Its ser vi ce method supports sandard HTTP/1.1 requests by dispatching ead request
to amethod designed to handleit” [Servlet0Q].

By default, Serviets written by spedalising the HttpServiet class can have multiple
threads concurrently running its ser vi ce method. If there was sme reason that only
a single thread was allowed to run a service method, then in addition to extending the
HttpServiet class the servlet must aso implement the SngleThread interface Figure
2.7 shows how thisis done [ Servlet0Q].

public class SurveyServlet extends HttpServlet
implements SingleThreadModel

{

/* typical servlet code, with no threading concerns
*in the service method. No extra code for the
* SingleThreadModel interface.

*/

}

Figure2.7  Single Threaded Servlet

2.7.5.1 Client Interaction

Clients that interad with Servlets and extend the HttpServiet classmust include one or

more of the following methods

e doGet for handling GET, conditional GET and HEAD requests

* doPost for handling POST requests

35



e doPut for handling PUT requests

* doDelete for handling DELETE requests

2.8 Open Web Architecture

An Open Web Architedure is an architedure that is designed and implemented to
support modification, extension and reconfiguration [Kin98]. The reconfiguration
typicdly would occur either at install-time, use-time or run-time. An Open Web
Architedure dlows the modificaion of either documents on the web, the web-
software itself or possbly both. Wiki is one such architedure where users are
permitted to manipulate documents without many restrictions using a standard web

browser [Jiki.org].

28.1 Jiki

Jiki is an open web architedure that alows the editing of web pagesin a free and non-
restrictive manner. It is a distributed, component-based (Open Source), Wiki-like
server designed and built by members of the Distributed Coadlition [Distrib.org].
Figure 2.8 shows a very high level architecure of Jiki.

36



Previewer

Figure2.8  Jki High-Level Architedure

The Jiki architedure is composed of several types of components. Each component is
a Javall Servlet that interads with one awother. Figure 2.8 shows the main

components used in Jiki. These ae

» Digpatcher
» Getter

* Editor

* Previewer

37




 Putter

All of these interad with one aother by either using HTTP to communicae
(currently just GET and POST) or use locd method cdls [Jiki.org]. Each component
is resolved using a properties file. This file maps a Servlet class that implements a
spedfic component to a Servlet name. There ae no limits to the number of names
that can be mapped to Servlet components. As long as the Servlet name asciated
with a component is listed in the properties file, the Jiki server will be ale to find the
classimplementing the Servlet component. Therefore, when a dient sends a request
to the Jiki server, Jiki will look at the name of the Servlet in the URL and find this
name in the properties file. When it finds the Servlet name, it will dynamicaly load
the dassassociated with this Serviet name.

The designers and developers of Jiki purposely designed the Jiki architedure to be
generic and extensible.  This promoted people to download and modify the
architedure to suit their needs and not have to work with a rigid, non-modifiable web-

server.

Jki has svera advantages and dsadvantages over other commonly used web-

servers. Theseinclude:

Advantages

1. Jiki iswritten in pure Java.

2. The Jiki architedure is very generic and extensible.

3. Jiki is freeto download, including all source mde and documentation.
Disadvantages

1. There is no seaurity built into the Jiki architedure. This means any client can

download and edit any page without restriction.

38



2. Jiki usesflat files for storing web pages.

3. It is dower than most other web-servers due to the flat-file storage problem

and all the inter-component communication.

4. Jiki does not have a many functions like most other web-servers (e.g. seach
functionality, database badkend, etc..).

2.8.2 Jiki Page Format

The ontent of every Jiki page is in plain text . When a dient either edits the
content of an existing page or creaes a new page, they do not have to use HTML tags
to format their text. No HTML knowledge is therefore required.

Instead, the designers dedded to design their own rules on formatting text in Jiki
pages. This is what they termed “The Jki Data Format” [Jiki.org]. In the original
Jki architedure, the designers placel a Help page (using this data format) that
explains how to use different symbols to format the text. This page is cdled
TextFormattingRules. Since the page is one of the help pages in the origina Jiki
architedure, it will not require any read authorisation after the seaurity framework has
been integrated. It will therefore be available to all clientsto read. Examples of some

of the formatting rules are as follows [Jiki.org]:

» Paragraphs
* Dont Indent paragraphs
* Wordswrap and fill asneeded
* Useblank lines as sparators
» Four or more minus sgns make ahorizontal rule

 Lists

39



» tab-* for first level

» tab-tab-* for second level, etc.

* Use* for bullet lists, 1. for numbered lists (mix at will)

» Any digit or string of digits works fine for numbered lists.
» tab-Term:-tab Definition for definition lists

* Onelinefor ead item

» Other leading white spacesignals preformatted text

» Usedoubled single-quotes (") for emphasis
» Usetripled single-quotes (™) for strong emphasis
* At most one per line.
» Dont crossline boundaries
* References
* Locd references are indicated by [words inside of square bradets).

» Remote references are indicaed by enclosing the name of the link
and its URL, separated by a verticd bar (), insde of sguare
bradets (e.g. go to the [W3Cjhttp://www.w3.org/] for information
ONnHTTP 1.1.

e Or precale URLs with "http:", "ftp:" "mailto:",etc. to crede links
automaticadly asin: http://c2.com/

This data format was a design dedsion taken and implemented into Jki by the

origina authors of the Jki Architedure [Jiki.org]. The new seaurity infrastructure

40



being integrated into the achitedure did not change or dter this in any way.
Therefore, the design dedsion made to allow the aeaion of new Jiki pages in the
seaurity framework uses the same technique & that used to edit a page in the original
architedure. Figure 2.9 shows an example of a Jiki page whose text contains ome of

these symbols for formatting purposes.

41



"Welcome to the Jiki Web!""

Jiki is cool. Jiki is fun. Jiki is Jiki. Get Jiki with
it.

Test foobar. And test again

The Jiki server started as a quick - hack
[WikiWikiWeb|http://c2.com/cgi/wiki?WikiWikiWeb] server
written in Java. From spec to implementation took 5 1/2
hours in Vancouver, BC at

[OOPSLA'"98|http://ww w.acm.org/sigplan/oopsla/oopsla98/].

See us [HardAtWorkOnJiki]. Now it is a full - blow
distributed component - based server will all sorts of cool

functionality being added everyday.

It is the first product of the

[DistributedCoalition|http://www.distributed coalition.org

.

Bookmark [jiki.recent changes] to keep abreast of Jiki
developments. Please add to [jiki.suggestions] if you
have a suggestion for Jiki. Check/add to the [jiki.bugs]
page if you find or fix a bug.

Jiki was written by several [people.autho rs], many of who

are Canadian, eh?

Please read the [help.welcome visitors] page to know

where to start. Also, learn how to use [help.good style].

Figure2.9  Jki Page data format

42




2.9 Summary

This chapter described how aspeds of the airrent web architedure operate and the
newly developed Jiki (Open Web) architedure. It gave a discusson about Web
seaurity and its implicaions, and the tednologies that will be used in adding
authenticity and seaurity to the Jiki architedure. Before looking at how an open web
architedure is designed, aspeds of the eisting architedure needed to be researched
and understood. This included the HTTP/1.1 applicaion protocol and some of the
methods that it supported (GET, POST, etc.).

Hypermedia is a new area of reseach and is becoming a technology that is being
adopted by many web developers. As a result, hypermedia and how it is engineered

was researched and the main points covering this have been discussed.

One of the main disadvantages with the Jiki web architedure is that it ladks support
for authentication and seaurity. To this regard, existing web seaurity was looked at
and how it is implemented over the present web architedure. There ae several ways
how this is done and some of these techniques have been discussed. These included
Seaure HTTP (SHTTP), Seaure Socket Layer (S9.) and Pretty Good Privacy (PGP).

Jki is esentialy a web server so most of the development work for the dissertation
will be server-side. There ae several technologies currently available for server-side
development and some of these were reseached. XML and its implicaions were

examined and also Javall Servlets and their strengths and wed&knesses.

43



3. Jiki Security Design

3.1 Introdu ction

[ApadcheSed states that there ae two ways of restricting accessto web documents:
either by the hostname of the browser being used, or by asking for a username and
passvord. The former can be used, for example, to restrict documents to use within a
company. “However, if the people who are dlowed to access the documents are
widely dispersed, or the server administrator needs to be ale to control accesson an
individual basis, it is possble to require a username axd passvord before being

adlowed accessto adocument”. Thisis cdled user authentication.

This chapter will discussthe design of integrating seaurity feaures into the Jiki web
server architedure. The dapter will then discussthe pradicdity of employing such

seaurity techniques into Jiki and appropriate ways of doing so.

3.2 Jiki security integration

In chapter 2, it was explained that one of the main problems with the Jiki web server
architedure was its ladk of seaurity and authentication. The existing design permits
any user to send a HTTP request to the server requesting any web page without any
form of identificaion (if necessary). The user does not require awy authorisation
since the Jiki server is not concerned who they are. This means users are permitted to
edit any web page they have requested with no restrictions. Any changes
subsequently made to a web page ae then stored at the server. Before adesign can be
made to resolve this problem and add seaurity to the Jiki architedure, severa

scenarios must first be identified.

44



3.2.1 Security scenarios

The following are the possble scenarios that the Jiki web-server must be caable of

handling with appropriate seaurity mecdhanisms:

1. Single author

This <enario is where only a single person is the aithor of the file. The Jiki server
must provide gpropriate seaurity to allow only the aithor of the file permisson to
edit it.

* Advantages

Only the author has the rights to edit the web page so any unauthorised people
who try to edit the page will not be &le to do so.

e Threats

There ae no significant threas associated with this <enario. The only red
threa would be if a user guessed the mrred passvord that would alow them

to edit the page.

2. Collaborative authoring

This senario is where more than one person co-authored the file. Appropriate
seaurity measures must be provided by the Jiki server to allow only the -authors of

the file permisson to edit it.
* Advantages

Changes can be made to the web page only by those who have the rights to do
s0. An example might be the use of an information base where only those

who have the rights to edit the web page can add any extra information to it.

e Threats

45



As aresult of more than one person knowing the passvord to allow them edit
the web page, there is a higher chance of this passvord being stolen. This can
occur either by hadkers who use network sniffers to sted passwords, or by
smply telling someone who then uses the passvord to edit the web page
malicioudly.

Communities

Communities are aform of collaborative aithoring whereby different communities

have different rights/privileges to author and/or edit files dored on the Jiki server.

The server must be ale to distinguish what community a user belongs to. Depending

on this, the server will thus know what privileges the user has been granted and will

ad acardingly whether the user can author and/or edit files.

4.

Advantages

The use of communities means that users can belong to more than one
community. Eacd user that does belong to more than one community may not
necessarily have the same rights and permissons to author/edit files. They
may have full privileges to edit files in one particular community but may only

have read-only rights in another.
Threats

If users are part of more than one cmmunity, it might be eay for them to
either sted passvords from colleagues or try to gain rights in communities by
using a ‘baddoor’. Since they may have full privileges in one mwmmunity, it
is important that the seaurity in the server is robust enough to deted and

prevent this from occurring.

No restrictions

There may be situations where spedfic web pages will have no seaurity access

restrictions. After the author has creaed the page, there ae no restrictions on people

46



who may download it. Similarly, ead person who downloads the page, also has full
rights to edit the page in whatever fashion they desire. This includes not only editing
the text, but also hypermedia such as pictures, audio and video can be alded to the
page. HTML links to other web sites may also be placad on the page. When the
changes have been saved, the page will be available for any other people who make a
request for it from the Jiki web-server.

* Advantages

Having no restrictions means that everyone has full rights to edit a web page.
This would be useful if the author(s) of the page wanted others to add extra
knowledge to a knowledge base for example. It is a very easy way to gather
information and does not require any HTML knowledge by users who edit the

page.

e Threats

Having no restrictions means that all the web pages are prone to attadk from
anyone. Any page may be requested from the server and edited fredy. Users
could then introduce any kind of material and the dhances of introducing some

kind of virus are big.

3.2.2 Security Policy Manager

Seaurity policies are away of implementing some or al of the scenarios described in
Sedion 3.3.1. Such seaurity policies can be designed to restrict accessto Jiki web
pages only to authorised users. The author of anew Jiki page would seled these users
a the time they credae the page. A seaurity padicy manager would then be used to
manage dl the seaurity policies applicable to ead Jiki web page from then on.

Figure 3.1 shows a high level view of how the seaurity policy manager would

manage the seaurity policies for ead Jiki web page.

47



ccccccccccccccccccccccccccccccccccccccccccc

READ
rights

Jiki : Jiki
Client — : Web Page

: :
: :

: :

: :

: :

:

: :

: :

: :

: :

: :

: :

: :

:

New .

:

:

:

ADMIN

Seaurity Policy
M anager

cccccccccccccccccccccccccccccccccccccccccc

Figure3.1  High-level view of a Jiki page Seaurity Policy Manager

When the dient credes a new Jiki Page, it can set whatever seaurity policies deemed
necessary at that time. The seaurity pdicy manager would then enforce these policies
for the lifetime of that page. Sincethe seaurity palicy manager is vital in the seaurity
of ead Jki page, it is important that accessto it is restricted to only one spedfied
client. This client will initially be the aithor of the page. Only with an authorised
client name axd passvord, will access be granted to the internal settings of the
seaurity policy manager. In order to keep resiliencein the seaurity feaures of the Jiki
Architedure, authorised accessto the seaurity policy manager can be assgned to any
client, other than the aithor’. The administrator of a Jiki page is the only person
who has authorised accessto the seaurity palicy manager for that page axd can edit
the seaurity settings.

" By default, the author of a Jiki page has initial authorised accessto the seaurity palicy managgr.

48




The seaurity palicy manager alows threetypes of seaurity settings to be set for every

Jki page. These ae:

READ - accessclients

These ae dients who have authorised read — access rights to the Jiki page.
Clients who do not have read — access rights are unable to read the page.
Clients that do have read — accessrights do not necessarily have dlit — access

rightstoo.
EDIT —accesclients

These ae dients who have alit — accessrights to the Jiki page. Only clients
who have been granted this right are ale to edit the Jiki page. By default, all

clients with edit — accessrights to a page, aso have read — accessrights.
New Administrator for the page

The aiuthor of a Jiki page is by default the aministrator of the page. The
author is the only client who has authorised access to the seaurity policy
manager. If the author wishes to cease being the alministrator for a Jiki page,
they can seled another client and authorise them as the new administrator. At
that point, the author will cease being the alministrator for the page ad will

no longer be aleto accessthe seaurity settings in the seaurity policy manager.

The medanisms above were deemed to be the most appropriate method of

implementing the seaurity settings for ead Jiki page. Designing a seaurity policy

manager to med these three settings for every Jiki page means that all the seaurity

scenarios as discussd in Sedion 3.2.1 can now be set.

49



3.2.3 Establishing a HTTP session

Whenever a dient is authenticated using their name and password, the Jiki server
should have some medchanism of remembering these details. It is human neture that
people who have to re-enter the same information over and over will get frustrated
and not like using the system. For this reason, it is important that the design of a
seaurity framework within Jiki must include amecdanism enabling the Jiki server to
‘remember’ the dient’s identity and passwvord. Since every client interads with the
server through a web-browser and communicaes using HTTP, there ae two possble

ways for the server to retain the dient’s details. These ae:

* Cookies

“Cookies are away for a server (or a Servlet, as part of a server) to send some
information to a dient to store, and for the server to later retrieve its data from
that client. Servlets snd cookies to clients by adding fieldsto HT TP response
headers. Clients automaticdly return cookies by adding fields to HTTP
request headers’ [Sun0(Q].

e HTTP sesson

“Sesgon tradking is a medianism that Servlets use to maintain state about a
series of requests from the same user (that is, requests originating from the
same browser) aadoss ®me period of time. Sesgons are shared among the
Servlets accessed by a dient. This is convenient for applicaions made up of
multiple Servlets. For example, on-line book stores uses ssson tradking to
keep track of the books being ordered by a user. All the Serviets in the

example have accssto the user's ssgon” [Sun0Q].

Both methods above have their advantages and dsadvantages. However, the use of a
HTTP sesgon does have an advantage over the use of cookies in this case. There ae

two main reasons for this and these ae & follows;

50



1. Whenever a dient sends an initiadl HTTP request to the Jki server and is
authenticated, this will be done using a web-browser. Only while this web-
browser remains open, will the HTTP sesson remain aive and will retain all
the dient’s authenticated detalls. As 0n as the web-browser is closed, the
HTTP sesgon is closed and the threa of another using trying to pretend to be

the dient is no longer aworry.

2. If a wokie was used, there is aways the seaurity threa of ‘Masquerading'.
This is a situation where amalicious user might masquerade or pretend to be
an authentic dient and use their computer where the @okie resides, to conned
to the Jiki server. This is a serious aurity bread that is difficult to resolve
since the server has no way of knowing if the dient, is in fad, the aithentic

person.

3.24 Encryption (MD5 Message — Digest Algorithm)

Ead client that sends HTTP requests to the Jiki server must first be authenticaed.
Due to the “untrustworthiness' nature of Internet users today, there ae many ways of
authenticating users before they can conned to a server and accessdata being stored
there. Encryption is a mmmon medanism used for authentication. There ae several

well-known encryption algorithms being used today, some of which include:

* DES (Data Encryption Standard) family algorithms
» RSA family algorithms

» Messge — Digest encryption algorithms

All of these dgorithms have their advantages and dsadvantages and ead one is most
applicable for use in different types of situations. The main criteria that was wanted

for the encryption of data stored on the Jiki server was that the encryption algorithm

51



had to be fast, robust and most obviously, seaure. One dgorithm fitted al of these
and isredlily available. Thiswasthe M D5 M essage — Digest encryption algorithm.

[Rivest92] states “the MD5 agorithm takes as input a message of arbitrary length and
produces as output a 128-bit "fingerprint* or "message diget" of the input. It is
conjedured that it is computationally infeasible to produce two messages having the
same message digest, or to produce aty message having a given pre-spedfied target
message digest. The MD5 agorithm is intended for digital signature goplications,
where alarge file must be "compressed” in a seaure manner before being encrypted
with a private (seaet) key under a public-key cryptosystem such as RSA. The MD5
algorithm is designed to be quite fast on 32-bit machines. In addition, the MD5
algorithm does not require any large substitution tables; the dgorithm can be @ded
quite compadly”.

[Rivest92] also states “the MD5 algorithm is an extension of the MD4 message-digest
algorithm. MDS5 is dightly dower than MD4, but is more "conservative" in design.
MD5 was designed because it was felt that MD4 was perhaps being adopted for use
more quickly than justified by the existing criticd review; becaise MD4 was designed
to be exceptionaly fad, it is "at the edge” in terms of risking succesgul cryptanalytic
attack. MD5 backs off a bit, giving up alittle in speed for a much greaer likelihood
of ultimate seaurity. It incorporates some suggestions made by various reviewers, and
contains additional optimisations. The MD5 algorithm is being placed in the public

domain for review and posshble aloption as a standard".

The MD5 agorithm was s to be idedly suited for the excryption of client
passvords © that they could be stored “seaurely” at the server. Since the MD5
algorithm is a one-way hashing algorithm, any attempt to deaypt an encrypted
passvord would be extremely difficult. For this reason, a design dedsion was taken
to store ead client name and encrypted password in afile & the server. Even if there
was a bread in seaurity and this file was copied or stolen, al the passwvords contained
in the file ae encrypted. The file therefore would be of little use to the thief, other
than the names of all the registered clients.

52



The first HTTP request a dient sends to the server requesting data that requires
authentication, the dient would neeal to enter their name and passvord. Due to the
one-way hashing function of the MD5 algorithm, the server is unable to deaypt the
client’s passvord that it stores on file to compare it with the passvord entered.
Instead, the opposite occurs. The server uses the dgorithm to encrypt the passvord
entered and compares it to the encrypted passwvord for the dient stored on file. If the
two encrypted passvord match, then the dient is authenticaed.

3.3 UML design

Figure 3.2 and Figure 3.3 show a Use-case and Sequence diagram respedively of the

design of the new seaurity framework.

53



oo O

R egizters with Jikizerver Fead Jiki page

Create new Jiki page Edit Jiki page

-

Administrate Jiki page

Client

/ Authenticate Client Authentic ate Jiki page Owner

Jiki”"ehsemr\5
Change Read rights\
Grant access to ALL standard
architecture pages /

Security P olicy

Manager
Change E dit rights

Change Administrator

Figure3.2  Jki Use-Case diagram

54




A

: Client

JikiWeb serwer Read/Edit
lights files

Request page

Check HTTP zession

U

Fequest Client name & pazswaord

Client name & Jiki page namea

Client name & password

Client authorized - send page

1

Authentic ate Client

Client name & Jiki page namea

F— —

R ead & E dit rights

— — g — — —

Mot authorized - messzage

= 1

Check read & edit rights

-

Figure 3.3

Sequence Diagram to Read / Edit a Jiki page

55




3.4 High Level Architecture

The main requirement of this dissertation was to improve an open web architedure
(Jki) by adding a seaurity infrastructure into its overal framework. One of the
principle key-points dedded to be alhered to during the design of this infrastructure
was that the design should ke any substantial changes to the existing architedure to
a minimum. Instead, the new seaurity infrastructure should be integrated into the
existing architedure with a minimum amount of change to areas not requiring these
seaurity feaures. Figure 3.4 shows the eisting Jiki High Level architedure with a

seaurity policy manager.

Jiki Web \

Server

Jiki Jiki
Client Web
Page(s)

Figure3.4  Jki High-level Architedure

56




341 GUI

The dient will communicae with the Jiki server through a number of different GUIs.
Since Jki is a web-server, both it and the dient will communicate using HTTP.
Therefore, the use of a web-browser is used as the front-end interfaceto the dient.
Some of the GUIs that will be used will i nclude:

* A new client registering with Jiki for the first time
» A client creaing anew Jiki page

» A client editing the text of a Jiki page

» All authentication procedures

* An administrator of a Jiki page making changes to the seaurity policy manager
for that page

3.4.2 Jiki Security Infrastructure

The seaurity infrastructure needs to be designed in a way that it can integrate into the
Jki architedure without changes having to be made to areas where security is not
required. Keeping the look and fed of the existing architedure dter the seaurity

infrastructure has been integrated was one of the main design objedives.

Seaurity within Jiki centres on whether a dient has the authorisation to read and/or
edit a Jki web page. However, there ae cetain pages built into the existing
architedure that are displayed for various reasons that should not require such
authorisation. Some of these include eror messages, adknowledgements, queries,
etc.. These ae wre pages within Jki that any client can real without any
authentication. Only pages creded by different clients will i nvolve the new seaurity

elements.

The functions that the new seaure achitedure will provide include:

57



» All clients must register with the Jiki server.
* New clients can creae an unlimited number of Jiki web pages.

* All new Jki web pages will involve seleding registered clients who have Read-

accessrights and Edit-accessrights.
» Authentication of every client.
* Redaling apage.
» Editing apage.
* Accessto the Seaurity Policy Manager.
* A Seaurity Policy Manager
» Edit clientswith read and/or edit rights for any Jiki web page.

» Change the aministrator of a page.

The front-end to the new seaurity fedures being incorporated into Jki will be
primarily responsible for reading the dient name and password in various aress,
parsing all input variables and passng these to the Jiki server using HTTP requests.
The front-end will also display all relevant HTTP responses recaved from the server.
The badk-end will store dl the Jiki web pages in one repository, authenticae dients,
maintain files of clients with read-rights and edit-rights to spedfic Jiki pages and
alow Jiki pages be alited by authorised clients.

3.4.3 Storage Framework

When designing a seaurity infrastructure for Jiki, three obvious gorage requirements

wererequired. These ae:

1. Registered client list

58



2. Authorised Read-accessclient list

3. Authorised Edit-accessclient list

3.4.3.1 Registered client list

The registered client list is required to store dl the names of clients who have
registered with Jiki and their respedive passvords. For seaurity reasons, ead client’s
passvord that is dored will be in an encrypted form. This list will be used to
authenticate dients if they try to real or edit a Jiki page. It will also be used if the

client tries to accessthe Seaurity Policy Manager for a page.

3.4.3.2 Read-access c lient list

The Real-accessclient list is required to store the names of every Jiki page aeaed
and the names of clients who have authorised read-access rights to a spedfic Jiki
page. Thislist will be used to authenticate a dient if they try to read a Jiki page. It is
possble that a dient’s name may not be asciated with any Jiki page, in which case
they would not have the authorisation to read any other client’s page. In this case, the
client would only be ale to read the wre achitedure pages that do not require read-
authorisation for any client. Conversely, the dient’s name may be listed after every
page listed and therefore would be aithorised to real every page aeded.

3.4.3.3 Edit-access client list

The Edit-accessclient list is used for a smilar reason to the Read-accessclient list. It
is also required to store the names of every Jiki page aeaed and the names of clients
who have authorised edit-accessrights to a spedfic Jiki page. Thislist will be used to
authenticate a dient if they try to edit a Jiki page. The very same scenario might also
occur here & with the Read-accesslist, i.e. it is possble that a dient’s name may not

be aswciated with any Jiki page, in which case they would not have the authorisation

59



to edit any other client’s page. Conversely, the dient’s name may be listed after
every page listed and therefore would be authorised to edit every Jiki page aeaed.

For all three storage requirements described, the use of either flat-files or a database
would implement these. Both of these storage medanisms have their advantages and
disadvantages. However, after caeful consideration, it was dedded that the use of
flat-files on the server would best suit these storage requirements. The reasons for

thisdedsion are;

1. The complexity involved for al threestorage requirements are minimal.

2. The ontents of the files are in simple plain-text format so the Jki server-
administrator can easly chedk the files for any problems, errors or simply out

of curiosity.

3.4.3.4 Additional storage requirements

During the design of the seaurity framework, it becane gparent that an additional
storage requirement was going to be needed. This is a temporary file to be used to
store the mntents of a new Jiki page before it is saved in the repository of all Jiki

pages on the server. The reason thisfile is needed is as follows:

» The original Jiki web architedure does not allow for the aedion of new Jiki
pages by the dient. Every client could read every existing page and there
were no restrictions on who could edit a page. By alowing a dient to crede a
new page using this present architedure, the contents of the new page would
overwrite the mntents of the previous page the dient had read, before this

new page is saved using its own page name.

» Using a temporary file to store the mntents of a new Jiki page before it is

saved will prevent the contents of the previous page from being overwritten.

6C



This temporary storage file would also be locaed in the repository of Jiki pages on

the server.

3.4.3.5 Storage file format

The file format for al the storage files used in the new seaurity framework is plain

text . Ead of the files are described as follows:

1. Registered Clientsfile

The Registered Clients file is a list of every client who is registered with the
Jki server. The list is composed of the dient’s name and their passwvord, both
separated by a @lon. The passwvord is gored in an encrypted form for seaurity
reaons’. The file is used whenever a dient neads to be aithenticated by the
server (e.g. if they try to real a Jiki page or accessthe seaurity policy manager

for apage). Figure 3.5 shows an example of thisfile.

collinmr:mn.5bfPIhmiQ2
olearycs:CbA86618n7LHA
dobsons:9vvovW8DOdH40
joe:joTp/xfcrWpEl

Gary:GalOORZdIU6FM

Figure3.5  Example of the Registered Clientsfile

8 The MD5 message — digest encryption algorithm is used to encrypt the passvord

61



3.

Read — accessfile

The Real — accessfile mntains a list of the names of every Jiki page stored at
the server. The list is composed of the page name and a sequence of client
names that are authorised to real the page. The page name and the dient
names are separated by a wlon. This file is used to keep alist of clients who
are authorised to read spedfic Jiki web pages. If a dient’s name is not listed
in this file dter a particular page name, they are not authorised to read that

page. Figure 3.6 shows an example of the Real — accessfile.

JikiJikiJava:joe,collinmr

FindPage:joe

HardAtWorkOnJiki:joe
LinkInferencing:joe
PageTitleSynonyms:joe
PostOopsla98DcBof:joe
Mike9:collinmr,Mike,Katie,Peter,Gary

Test3:collinmr,Gary,olearycs,joe

Figure3.6  Example of the Real - accessfile

Edit — accessfile

The Edit — accessfile is very similar to the Read — accessfile. It also contains

alist of the names of every Jiki page stored at the server. Thelist is composed

62




of the page name and a sequence of client names that are aithorised to edit the
page. The page name and the dient names are dso separated by a wlon. This
file is used to keg a list of clients who are aithorised to edit spedfic Jiki web
pages. By default, if a dient is authorised to edit a page, they are
automaticadly authorised to rea that page. Therefore, their name will also be
asociated with the page in the Read — accesslist. If a dient’s name is not
listed in this file dter a particular page name, then they are not authorised to
edit that page. They may however have real rights for the page. Figure 3.7

shows an example of the Edit — accessfile.

JikiJikiJava:joe,collinmr,Gary
FindPage:joe
HardAtWorkOnJiki:joe
LinkInferencing:joe
PageTitleSynonyms:joe
PostOopsla98DcBof:joe
Mike9:collinmr,Gary

Test3:collinmr,joe

Figure3.7  Example of the Edit - accessfile

63




4. Temp (New Page) file

The Temp file is used to store the contents of a new Jiki page until it has been
saved®. Thisis neaded because if not used, the mntents of the new page will
overwrite the mntents of the previous page. Using a temp file to store the
contents of the new page until it has been saved will prevent this problem.
The Temp file is aso stored in the repository of Jiki pages on the server.

Figure 3.8 shows an example of what this temp file looks like.

‘Welcome’ to my new Jiki web page

Please browse through the page -

Figure3.8  Example of the Temp (New Page) file

3.4.3.6 File Retrieval methods

The methods used to real the files explained in Sedion 3.4.3.5 are standard disk
Input/Output. The contents of all the files used are in plain text and are not in any
unconventional configuration. Even with many registered clients, the contents of
these files are relatively small. Therefore, reading and writing to these files using disk
i/0 is not expensive in terms of processng power and does not produce large

overheals or time delays.

°NOTE: ALL Jiki web pages have different page names. The new seaurity infrastructure will not
alow any two pages have the same name.

64



3.5 Summary

This chapter has described the design of the seaurity infrastructure to be integrated
into the Jiki architecdure. The reasons why particular design decisions were taken

were dso explained.

The dapter began with a description of the different seaurity scenarios that might
exist, which Jiki must provide mecanisms to ded with. Eacd of the medcanisms
needed here have their advantages and disadvantages and these were explained in
detall.

The dhapter followed on with descriptions about the Seaurity Policy Manager, the use
of HTTP sessons and the MD5 message — digest encryption algorithm. The design
dedsions and reasons for choosing these to be used in the seaurity framework were

explained.

Finally, the high-level architedure of the seaurity infrastructure was explained. This
included an explanation of the front-end GUI to the system. A design of the storage
framework followed this and how data would be saved, stored and retrieved. The
chapter concluded with an explanation and description of the format of the storage

files.

65



4, Jiki Security Implementation

4.1 Introdu ction

This chapter will discussthe implementation of the seaurity infrastructure and the way
it is integrated into the overall Jiki architedure. The dapter will give an explanation
of the mechanisms used in the present architedure that allow Jiki pages to be alited
and the alvantages and dsadvantages this provides. Following this, the technologies
used to implement the new seaurity framework will be discussed including the
reasons why they were dosen. The dapter will then give some examples of GUIs
that the dient uses to interad with the server. Finally, the chapter will conclude with

asummary.

4.2 Security component framework

Due to the generic and extensibility feaures of Jiki, the achitedure provided a lot of
avenues to approach the implementation of the new seaurity infrastructure. New
components could be developed to implement the design (the realer is referred to
chapter three for the seaurity infrastructure design) and have these integrate with the

existing architedure components.

There ae several main components required to implement the seaurity fedures. The

functions these must implement are:

* Registering new clients
* Creding new Jiki pages

* Authenticaing a dient

66



» Accessto the Seaurity Policy Manager
» Changing the administrator of a page
*  Generd utilities

These main components will be used to implement the overall seaurity infrastructure
in Jiki.

4.2.1 Registering new clients

The component used to register a new client must accept a name and passwvord from
the dient. The component must ensure that no registered client is using the same
name that the new client seleded. It must read every name in the file listing all the
registered clients and compare eab one against the name the new client has sleded.

If it isarealy being used, the new client must seled another name.

Asauming the name is not being used, the component must encrypt the new client’s
passavord using the MD5 encryption algorithm. The name and encrypted passwvord
must then be succesdully appended to the end of the file mntaining the names of
every registered client.

4.2.2 Creating new Jiki pages

When a dient tries to creae anew Jiki page, the component must first authenticae
them. The file mntaining a list of every registered client and their associated
passvord will be used to authenticate the dient. Only registered clients who have

been authenticated can creae anew page.

The dient must also enter the name of their new page. The mmponent must ensure
that no other Jiki page is using this name dready. To do this, it must ched the Read-
accessfile that contains a list of every Jiki page and the asociated names of clients
who have aiuthorised real-rights. If a page drealy uses the file-name etered, the

client must re-enter another name.

67



In order to asdgn read and edit rights to other registered clients for the new page, the
component must display a list of every registered client and allow the author to seled
the names they wish to asdgn these rights to. Finally, a text area should then be
displayed to allow the dient to enter the cntent of their new page.

4.2.3 Authenticating a client

Several components will be involved with the authenticaion of clients. Before aly
client can read or edit a page, other than the wre achitedure pages (e.g. help, error,
message pages, etc..), they must first be aithenticaed. Components that require the
authentication of a dient will first request the dient’s name and passwvord. The name
will be dhedked to seeif it is listed in the file @ntaining al the names of registered
clients. If the name is not listed, the dient is not a registered client and thus the

component will not permit the dient to procee.

Asauming the name is listed, the cmponent will encrypt the passvord using the MD5
encryption algorithm and compare this to the encrypted passwvord stored with the
name on file. If they match, this authenticates the dient and they can then proceed.

4.2.4 Security Policy Manager access

The seaurity policy manager is responsible for all permissons asciated with a page.
These permissons are the Read and Edit rights as well as any changes to the
administrator for a page. A speda component will be used to ad as the seaurity
policy manager and must be aleto ded with all of the a&ove functions.

For seaurity reasons, only the aministrator of a page will be authorised to acessthe
seaurity policy manager. By default, the author of a page bemmes the alministrator
of the page. The cmponent must authenticate ay client who tries to access the
seaurity policy manager. It does this by chedking the Edit-rights file. Inthisfile, alist
of every Jiki page name is gored. Following ead page name ae the names of clients
who are authorised to edit that page. When the page was creaed, its name was placed

in this file with the aithor’s name placed as the first name with edit-rights. A design

68



dedsion was taken to make the first name following the page name & the

administrator of that page.

Therefore, when the component authenticaes a dient trying to access the seaurity
policy manager, it must chedk whether their name is the first name following the page
name in the Edit-rights file. If it is not the first name or is not listed at all, the dient

will be denied access

The component providing the seaurity policy manager functionality will provide the
administrator with functions to edit the names of clients with read and edit rights for a
page. It will also allow the administrator to change their administration privileges and

grant these to another registered client (sedion 4.2.5 explains thisin full).

4.2.5 Changing Administrator

A design dedsion was taken to allow changes be made to the alministrator of any Jiki

page. Reasons for providing this function include:

* The aministrator might not want to continue being the page alministrator.

* The aministrator might be leaving the department or company where the

page is hosted and therefore will require anew administrator.

* There may be seaurity implicaions why a new administrator for the page is
nealed.

Even when a new administrator has been assgned for a page, the component will
ensure that the former administrator will continue to have read and edit rights. After
the new administrator has been seleded, this administrator will be the only client from

that point onward who will have authorised accessto the seaurity policy manager.

69



4.2.6 General utilities

Due to the large functionality provided by the seaurity infrastructure, there ae many
small functions that will be needed. For this reason, a dedsion was made to design a
component whose spedfic role was to ded with the small and arduous functions that

other components required.

The utilities component is designed to handle functions such as file input/output,
formatting list contents, error cheding, etc.. One big advantage of using such a
component is the re-use of code. A lot of the other components perform the same
operations  in order to maximise wde re-use, a utilities component (a Java Bean
Servlet) will be used to handle these operations.

4.3 Jiki pages

The present Jiki architedure dlows clients to edit a page by displaying the page data
in atext-area The dient can then add, edit or delete the data & they wish. Aswas
explained in sedion 2.8.2, the dient does not use HTML tags to format the data.
Instead, a pre-defined syntax for formatting page data was designed by the origina
developers of Jiki. Using this g/ntax, certain charaders in spedfic sequences before

and/or after text will format the page data.

In kegping with the overall architecure of Jiki, it was dedded to use the very same
method in the aeaion of new pages as used to edit pages. This was an option not
provided by Jiki before the integration of the new seaurity framework. This means
that when a dient creaes a new Jiki page, a text areawill be provided to alow them

enter the page data.

4.4 GUIs

Introducing a seaurity infrastructure into the Jiki architedure meant that there were
many areas where dients needed to be authenticated. Extra functionality was also

introduced such as the aeaion of new pages, a seaurity policy manager and the

7C



registration of new clients. All communicaion is passd between the dient and
server using HTTP and therefore aweb-browser is used to alow them to interface ad
communicae. Various GUIs were designed for the new seaurity framework that kept
the look and fed of the original Jiki architedure GUI. Ead GUI was designed to

keep client input to a minimum. The principle GUIs for this aurity framework are:

1. New client registration
2. New Jiki page aedion
3. Editing a page

4. Page administration

44.1 New client registration

Before a dient can read or edit any Jiki pages, other than the core Jiki pages (help
pages, error pages, €tc..), they must be registered with the Jiki server using the new
seaurity framework. Figure 8.1 in Chapter 8 shows the GUI designed to allow a new
Jiki client register themselves.

4.4.2 New Jiki page creation

There ae two scenarios when a new Jiki page can be aeded. This can be done by

either:

1. New-registered client

When a dient registers with the Jiki server, they have an option to crede a
new page & they are registering. Figure 8.2 in Chapter 8 shows the GUI

designed for this enario.

71



2. Old-registered client

All clients that are registered with the Jiki server can at any time aede anew
page. The process of credaing the page includes sleding clients with
authorised read and edit rights. Figure 8.3 in Chapter 8 shows the GUI

designed for this enario.

4.4.3 Editing a page

When a dient wants to edit a Jiki page, they must have the authorisation to be ale to
do this. Only the administrator of the page can seled the dients with these read and
edit rights. Upon succesdul authentication, the dient can then edit the data on the
page. Figure 8.4 in Chapter 8 shows the GUI designed for alowing authorised
clients to edit a page.

4.4.4 Page administration

Every Jki page is administered using a seaurity poicy managr. Only the
administrator of the page has authorised accessto the seaurity policy manager. The
manager is used to edit the alministrative settings for the page. These settings
include the names of clients with real rights and edit rights. The seaurity policy
manager also alows the page aministrator to seled a new administrator if required.
If a new administrator is sleded, after exiting the seaurity policy manager, the
present administrator will no longer be ale to access the settings again. However,
they will continue to have read and edit rights for the page. Figure 8.5 and Figure
8.6 in Chapter 8 show the GUI designed for the seaurity policy manager. Only the
administrator has authorised accessto this GUI.

72



4.5 JSDK and Servlet runner

All of the components used in the origina Jiki architedure and in the new seaurity
framework are Java Bean Servlets. In order for certain web servers to support the
running of Servlets, Sun] Microsystems developed JSDK (Java Server Development
Kit). JSDK provides all the necessary classfiles and jar files required for running

Servlets. Jiki is one such web server that requires BDK.

The original Jiki architedure uses BDK 2.0 for supporting Servlets. A later version
of JSDK (2.1) was made available by Sun since the development of Jiki. In order for
the new seaurity framework to integrate crredly with the Jiki architedure, the older
version of JSDK (2.0) was used. This older version had to be used since dianges
made to the class files and jar files in the newer verson of JSDK resulted in
incompatibili ties with existing classes on the server. If the newer version (JSDK 2.1)

were used, the server would crash as aresult of certain methods being invoked.

JSDK provides an application that when run, allow web servers who previously could
not support the use of Servlets, to now do so. Itiscdled servietrunrer. Jiki usesthe
servietrunrer to state what port number the server is running, where to find properties
files and in what diredory and its sub-diredories to find al the necessary files and

classes to support the use of Servlets.

4.6 Summary

This chapter discussed the implementation of the new seaurity infrastructure. The
chapter began hy looking at the methods used to develop the eisting architedure and
the advantages and dsadvantages assciated with these. The use of components to
develop the new seaurity infrastructure was then discussed. A detailed explanation
was given for eat of the main components required and the main functions they

provide.

The dapter followed with a discusson on the format of new Jiki pages and how a
client can use the pre-formatted text, designed by the origina Jiki authors, to crede a

new page in Jiki.

73



The dapter then explained the dedsions for the GUI designs. Some of these GUIs
were designed for spedfic reasons in order to integrate smoothly with the eisting

architedure. Some examples of these GUIs can be seen in chapter 7.

Finally, the dapter concluded with a discusson on using JSDK 2.0 and its

servietrunrer for providing support for the use of Servlets in web servers.

74



5. Evaluation

5.1 Introdu ction

This chapter will evaluate the seaurity framework that was integrated into the Jiki
architedure. Ead of the main seaurity scenarios identified in the design (Chapter 3)
will be evaluated to see how well the seaurity framework deds with them. The
chapter will also evaluate the seaurity policy manager to see how well it handles the
administration of Jiki web pages. There will be an evaluation of Jiki compared to
other web servers and a discusson on whether it redly does have alvantages over

them.

5.2 Security scenario evaluation

Ead of the different seaurity scenarios identified in the design will be evaluated to

seeif they have been implemented corredly in the seaurity framework.

5.2.1 Single Author

The original Jiki architedure did not provide aserviceto clients that alowed them to
creae anew Jki page. However, in the new seaurity framework, this srvice is
provided. Before a dient can creae apage, they must register themselves with Jiki.
When creding a new page, they can seled other registered Jiki clients who they wish
to grant read or edit rights. Only these dients will be authorised to either read and / or
edit that page.

This feaure works well and the new framework authenticates any client before they

canreal or edit a page.

75



5.2.2 Collaborative authoring

The new seaurity framework only alows one client to be the aiuthor of a new Jiki
page. Collaborative aithoring was a service supposed to allow more than one dient
to author a page. A dedsion not to support collaborative authoring was made because
after a dient creaes a new page, they can grant edit rights to ather clients for that
page. Therefore, by having edit rights to a page, this is very smilar to co-authoring
the page in the first instance.  All clients with edit rights can edit the page fredy and
make any changes they would have made when the page was first creaed.

5.2.3 Communities

Communities are used where dients have different rights for different Jiki pages.
This means that a dient might have it rights for some pages but only rea rights for
others. They may of course have no rights for some pages. Different communities
can be used therefore to keg a list of client names that have different rights for
different pages.

The seaurity framework doesn't redly implement the use of communities to its exad
definition. Instead, a Read-permisson and Edit-permisson file is used to keep a list
of client names that have real and edit rights for spedfic pages. Eadh file contains
the name of every Jiki page aeded. If a dient name is listed with the name of the

page, then they have ather real or edit rights for that page.

Even though this is a kind of workaround for the proper use of communities, it does

work well in the seaurity framework acarding to its design.

5.2.4 No restrictions

When a page has no restrictions, it means every client can read and edit the page. The
seaurity framework easily implements this when the author of a page grants edit rights
to every registered Jiki client. Having edit rights means a dient automaticdly has
read rightstoo. Therefore, every client can read and edit the page.

76



This was draightforward to implement and works without any problems in the

integrated Jiki architecure.

5.3 Evaluation of the Security Policy Manager

The seaurity policy manager was designed to allow the aministrator of a Jiki page to
change the seaurity settings. Only the administrator has authorised access to this
manager. The design also caered for allowing an administrator to relinquish their
rights as the administrator for a page and grant these rights to another client.

The implemented seaurity policy manager in the seaurity framework did work very
effedively. By default, when a dient credes a new page, they automaticadly becmme
the alministrator for the page. When authenticaed, the manager would then present
the administrator with alist of clients who do and do na have read and edit rights for
that page. The alministrator can then edit these lists if needed.

Another service that the manager provides to the alministrator is to alow them
relinquish their administration rights and grant these to another client. Again, alist of
every registered client is given and the administrator can seled the name of the dient
who they wish become the new administrator. After exiting the manager, the
administrator will no longer be ale to access these settings again. Only the new
administrator will. However, they will ill continue to have read and edit rights for

the Jiki page.

5.4 Using HTTP sessions

In sedion 3.2.3, the reasons are eplained why the use of a HTTP sesson was
seleded over the use of cookies. Using HTTP sessons in the implemented seaurity
framework proved to be avery good design dedsion and worked very well. Once a
client had been authenticaed, they did not have to authenticate themselves again (as
long as their browser remained open). The HTTP sesson objed retained the dient’s
details and validated them in al the aeas where authenticaion is required. It is quick

and runs without the dient’s knowledge.

77



5.5 Encryption algorithm evaluation

The encryption algorithm used to encrypt client passvords is the MD5 Message —
Digest agorithm. This algorithm was very succesdul and worked well in the seaurity
framework. Sedion 3.2.4 explains the dgorithm in a lot more detaill and the design

reasons why it was chosen.

One of the initial main concerns about using this algorithm was that it would be Slow
to encrypt the passwords. If this were the cae, it would obviously have a cacading
effed dowing other parts of the framework. However this did not occur and the
algorithm did work fast. Any delays that did occur were very minor and negligible.
Sincethe dient’s details were entered onto a form on a web page, any delays that did
ocaur as a result of the encryption processmerely seaned like ordinary delays we ae
al used to when using the Internet everyday. This was by chance alucky way of
masking any delays caused by the dgorithm to the dient.

5.6 Evaluation of the use of flat files

The new seaurity framework for Jiki usesthreeflat files. Thesefiles are:

*  User names and encrypted passvords
» List of clientswith Read — accessrights

» Ligt of clientswith Edit — accessrights

All of these files are in standard ASCII plain - text format. Sedion 3.3.3 explains
the reasons why a design dedsion was taken to use flat files over a database.
Unfortunately, the use of flat files to store data instead of a database does mean that
the achitedure is dightly dower with the integrated seaurity framework. Thisis a
result of the disk 1/0 overhead produced when the server needs to authenticate a dient

and read or write to any of these threefiles.

78



The use of the HTTP sesson objed to retain the dient’s name and passvord does

help alittle to speal the system up alittle, but not anything very significant.

The use of these flat files is probably the main contributor to sowing the seaurity
framework. However, one way of improving this stuation might be to cade the
contents of the password and Read / Edit accessfiles. This would involve asmall re-
design of the seaurity framework so that spedfic contents of these files are stored in
memory with periodic flushing of any changes badk to permanent storage (disk).
Until such are-design is made, advances in computer hardware should help reducethe

amount of disk ‘thrashing from slowing the system — in the short term.

5.7 Scalability issues

The new seaurity framework designed to integrate into the Jiki architedure gpliesto
Jki pages on a single server. Since Jiki is a web server, it runs on a single
designated machine and serves requests from clients requesting Jiki pages. Therefore
al seaurity information is passed only between the dient and the Jiki server. No
other third party is involved (i.e. other Jiki servers). This means that al Jiki servers
are completely independent of ead other. A client may therefore be authorised to

request and read a page from one server, but not another.

As more and more Jiki servers are established and set running, this can become a
problem. Clients therefore will need to be aithenticaed by every separate server.
However, if the Jiki architedure were re-designed to incorporate inter-communication
between servers, it would be eay to alow them share seaurity details. Files could

then be shared that contain client names, passvords, Real and Edit accessrights.

The main focus of scdability of the new seaurity framework itself only redly centres
on the number of registered clients with Jiki. The registering of clients with the server
is a feaure that was introduced by the seaurity system. It was not a service provided
by the original architedure. All other scdability issles relate the overal architedure

and are not a mnsequence of the integration of the new seaurity system.

79



As more and more dients register with Jiki, the file containing their names and
encrypted passwords gets larger. If any of these dients creae one or more Jiki pages,
then the Read and Edit — accessfiles will also grow larger. As aresult of these large

files, it means:

1. The time taken to seach the file @ntaining client names and encrypted

passvordsto find a spedfic dient name for authentication will i ncreese.

2. Locating spedfic Jiki page names in the Real and Edit — accessfiles to read

the associated names of authorised clients will also increase.

These ae two very important issues. As the files grow larger, the time taken to seach
these will increase. This dows the eitire Jiki web server. One solution to help avoid
this problem is to use adatabase to store the details contained in the files. Efficient
guerying medhanisms would then maintain a high level of speed in the framework

even with large anounts of data.

5.8 Jiki v Other web servers

The one question that is mostly asked about Jiki is why would someone want to useit.
What advantages does it provide over other popular web servers? Jiki has one main
advantage over most other web servers. This is the adility to creae new web pages
and edit the contents of an existing web page in atext area & the dient side and send
the data badk to the server using aHTTP POST.

Thisis a feaure very rare in web servers. Some web servers can be set up to allow a
client invoke aCGI script at the server to creae anew page. This processalows the
client to enter the data of a page and have this ®nt to the web server using a HTTP
POST method. The server then runs a CGI script to creae the new page, passng the
page data sent by the dient as a parameter to the script. The page can then be saved at

the server.

80



This is a very non-efficient and complex way of creding a new web page. When the
CGlI script is run, a lot of overheal is produced, slowing the server considerably.
Another problem exists in that for every single new web page aeded, the same CGI

script isrun. Thisis awaste of valuable resources and CPU time.

This is where Jiki provides a solution to the problem. Jki does not use ay CGlI
scripts to crede new web pages. Insteal, a series of Java Servlet components are used
to GET and POST the new page usng HTTP. The format for the data on every Jiki
pageisplain -text . Therefore, the dient can enter the mntents of every new page
into a text-arealocaed insde aForm. When the dient enters the page wntents, the
Form containing the text-areais then POSTed to the server. The server then savesthe

new page containing the contents of the text-area

This is a very unique way of credaing new web pages and is the very same processfor
eat new page. Ascan be seen, when the dient sends the new page to the server, the
server does not passthisto a CGI script or any other program. All that is done is the
page gets saved in permanent storage (on disk). Therefore, the processng load and

overheals produced are very low and nothing as high as those with other web servers.

This is the same processwhen editing an existing page with Jiki. The server will send
the page to the dient, and the contents of the page will be displayed in atext-areaon a
Form. The dient can then edit the contents of the page and the Form will POST this
bad to the server.

Taking a aiticd look at the way Jiki provides this srvice, it does work well and
effedively. Before the seaurity framework was integrated into the achitedure, there
were serious farity isaes in using a technique like this. However, the new seaurity
framework has lved this problem by only allowing authorised people to read and /
or edit pages.

5.9 Jiki Data Format and XML

In Sedion 2.8.2, it was ®en how the data stored on every Jiki page uses a pre-defined
format. This format is very different to conventional HTML tags used to format data

81



on most web pages. The designers of Jiki designed this data format in a way that is
smilar to a mndensed form of XML. It is very generic in that it can be thanged,
manipulated and rendered in severa different ways. This means that if a dient
wanted to define and use thelir own spedfic data format, they could edit the file
containing the rules that spedfy the present Jiki data format. For example, instead of
pladng data insde adouble-quote to make it appea in italics, this could be danged
so that a single-quote is used instead.

Alternatively, the dient could define their own rule for formatting data. They could
spedfy a particular charader or charader-set within which any data placed will be
formatted to that stated rule. This is in a way similar to using a DTD in XML.
Instead of spedfying what order tags appea and the dtributes associated with those
tags as used in aDTD, here the dient can spedfy what data format is associated with
ead data format rule.

Looking at the way Jiki formats its page data, it redly does appea very similar to a
scded-down version of XML.

5.10 Summary

This chapter discussed the evaluation of the new seaurity infrastructure. The dapter
began by evauating how well the seaurity system implemented the main scenarios

outlined in the design. It was e that it did implement these quite well.

The dapter followed with a discusson on how well the seaurity policy manager
worked and the ways it provided access to administrators of pages to change the
seaurity settings. This was omething completely new to the Jiki architedure and it
also worked very well. A short discusson of the use of HTTP sessons and the use of

the MD5 encryption algorithm foll owed.

There was a aitica analysis of the use of flat-files by the seaurity framework and this
included how well these worked when the server was running. This led to the
evaluation of how scdable the achitedure was with the new seaurity system. It was

seen that there was redly only one definitive concern in the seaurity system that

82



would cause scdability problems. This was the problem of the flat files becoming

very large.

The dapter concluded with a discusgon on the usefulness of Jiki and why someone
might want to use it over other well-known web servers. This included an
explanation of the services Jki provides that other web servers do not. This mainly
concerned the services it provides by alowing clients to creae and edit web pages in
a unique way. A brief comparison of the data format used for Jiki pages and XML

follows this.

83



0. Conclusion

6.1 Introdu ction

The Jiki web server is freeto download and use by anyone. It islocaed at [Jiki.org].
New versions of Jiki are available to download whenever updetes are made to it or
extra fedures are alded. The designers and developers of Jiki encourage users to
download the web server and to design and add any new services or feaures. Thisis

because they have made dl the Jiki source @de and documentation fredy avail able.

6.2 Achievements

Designing, developing and integrating an entire seaurity infrastructure into the Jiki
architedure was a dulenging and exciting projed. Obviousy due to time
constraints, not al the work that was initially hoped to be adieved was delivered.
However, the new seaurity integrated into the achitedure is a massve improvement
to the way it was. Not aone is there anow seaurity service but extra functionality
has also been added. Thisincludes

1. A registration processfor clients. Jiki now has a list of the names of al clients
who send requests to it for pages (except for the wre Jki pages where no
authentication isrequired e.g. Jiki main page, help pages, etc.).

2. The aility for clientsto creae new pages.
3. Read and Edit permisgons for pages.

4. A seaurity policy manager that allows the administrator of a page to change
the read and edit permissons.

84



The original architedure used Java mmponents that interrelate with ead other to
operate. The new seaurity infrastructure was developed using similar components.
These components were spedally designed not only communicae with the seaurity
components, but also the existing ones. This had to be done well in order for the

succesdul integration of the new system.

6.3 Future work

The unique opennessand extensibility of Jiki makes it perfed for adding new services
and fedures. Looking at the seaurity infrastructure that was integrated into the Jiki

architedure, there ae other extra services that could be added. Theseinclude

e The use of a database instead of flat files. The files used to store the dient

names and encrypted passwords, and the Real and Edit — accessrights might
be changed and integrated into a database instea.

» Design a service that permits authorised clients to edit only the data on a page
and not the hyperlinks. A similar service might then provide authorised

clients with full edit rights may edit the data and the hyperlinks.

» Design some way of storing the contents of a Jiki page in XML. This would
mean including the use of an XML parser to parse the page contents and then
convert thisinto HTML using XSL.

The security framework developed for Jiki does work well with its present fedures.

Adding some or all of the feaures above would make it even better and more seaure.

Jiki is a standalone web server and will run on some designated madciine. This means
that the posshility exists within an organisation that two or more Jiki web servers
could be running at the same time. Clients would therefore have to register with eat

one of them separately, neither Jiki server having any knowledge of the other. This

85



would becme frustrating for clients, espeaally if they wanted to edit pages and have

to authenticae themselves on ead server.

Looking at this senario, a possble future development solution would be the design
of some kind of distributed fadlity that would allow multiple Jiki servers to
communicae with ead other and share files and resources. A single database uld
be used to store the Jiki pages, client names, encrypted passwords, accesslists, etc..

and ead Jiki server would be &le to accessthe data stored there.

This is just one of the many possble future extensions that could be made to Jiki. Its
open-source software and documentation allows for anyone to design and develop lots
of new and useful feaures. Let’s hope Jiki promotes many other great ideas for the

Internet.

86



7.

[Kinog]

[W3C1]

[W3C2]

[W3C3]

[Kha97]

[Corm97]

[Oreilly9g]

[Lowed9|

Bibliography

Joseph R. Kiniry — 1999 Jki Documentation. Department of
Computer Science, Caltech University, California, USA

http://www.jiki.org

R. Feding (UC Irvine), J. Gettys (Compag/W3C), J. Mogu
(Compaq), H. Frystyk (W3C/MIT), L. Masinter (Xerox), P. Leah
(Microsoft), and T. BernersLege World Wide Web consortium
(W3C.org) — Hypertext Transfer Protocol — HTTP/1.1 RFC 2616 June
1999

Berners-Leg T., Fielding, R. and H. Frystyk, "Hypertext Transfer
Protocol - HTTP/1.0", RFC 1945 May 1996

Carpenter, B. and Y. Rekhter, "Renumbering Neeals Work", RFC
190Q February 1996

Rohit Khare, and Adam Rifkin, “Weaving a Web of Trust”. (1997).
Web Seaurity : A Matter of Trust. O’ Rellly.

Andrew Cormadk, White Paper “Web Searity”, 1997 Joint

Information Systems Committee

http:// www.jisc.acuk/aavauthent/

Caroline O'Rellly, M.Sc. Dissrtation, “BeanBag, An Extensble
Framework for Describing, Storing and Querying Components’,
Trinity College Dublin, 1999

David Lowe axd Wendy Hall, “Hypermedia axd the Web. An
Engineeing Approadh’. (1999. Wiley.

87



[Jiki.org] Jiki Documentation — CV'S chedkout Open Source Software

http://www.jiki.org

[Distrib.org] Distributed Coalition

http://www.distributedcoalition.org

[Architag98 The Architag International Corporation (1998

http://www.architag.com/solutions/98010601.html

[XML9g] Norman Walsh, White Paper “Technicd Introduction to XML”,
October 1998 XML.com

http://www.xml.com/pub/98/10/guidel.html

[ Greenspan98] Jay Greenspan, Introduction to XML for HotWired, 13 October 1998

http://www.hotwired.com/webmonkey/98/4 1/index1a.html2w=xml

[Gorman98] Trisha Gorman, (1998, 20 questions on XML

http://buil der.cnet.com/Authoring/Xml20¢/index.html

[Rein99] LisaRein, (March 1999, The Quest for an XML Query Standard

http://www.xml.com/xml/pub/199903/quest/index.html

[Bloch99] Cynthia Bloch, (1999 The Javall Tutoriad, A pradicd guide for

programmers, “Servlets’

http://java.sun.com/docs/books/tutorial/serviets/index.html

[ServletO0]  The Javall Web Server, Servlet Tutorial, (2000

http://jserv.java.sun.com/products/java-

server/documentation/webserverl.l/servlets/serviet tutorial.html

[Hall] Marty Hall, Servlets and JavaServer Pages 1.0

88



http://www.apl.jhu.edw~hall/java/Servlet-Tutorial/

[ApacheSed Apade Server Seaurity Documentation

http://www.apadeweek.com/feaures/userauth

[Sun0Q] Sun — Java Tutorial Documentation, (2000

http://java.sun.com/docs/books/tutorial/

[Rivest92] Ron Rivest, “The MD5 Message-Digest Algorithm”, RFC1321, MIT
Laboratory for Computer Science and RSA Data Seaurity, April 1992

http://www.w3.org/People/Raggett/seaurity/rfc1321txt

89



8. Appendix

8.1 Screen shots

+LNH\' Huegrlemiriy Jiki Upsn - Nelpcapss

i Lok e La Lem—uuczhor ll=p

{&'ﬁ:&mﬁlﬁiﬁlﬁ.

Dizc- Fomeed  Mrload | e Zemich Heliz=pe

=

aEzuk, Jhoz S

J_ BT R 5:. Irn.'trrr!-'llrr.-'."rﬂ::.:: ez ed i PR st i F izt oo B d ko= j El_'-\.‘-‘hd.:; Fedae

Jiki The
,}h:c'i - New Jiki User Distributed

Java Coalition

Let's get Jifti wich it

Jiki User details

Toowr Uace Lleae

i
Faszwesd |
|

Fe wa Fiowwurid

Subrr < ! Neze:

Fi“ —iﬁ'- T ke Minas

Figure8.1  New client registration

9C



i= Let Wew La Lem—wicabor llegp

4 5 A 4 . u oS & A &

Diac- Fomesd Melead | ave Zemch Hetiz=pe it FEY Shaz

J_ ez !.:, Leest ore [ =Npe  Apeie= e ted i EE o obeba i b resdar a- 0 Ter

e Tiki Ulxer pags

Yowr Usor Mezne |
Fasswes !
Fe vz Fosword |
n Pags narea i
uloct namela ) b mscl BEAT pishls Splect parone (57 b pranl EDTT rphis
jaleary =z %
Ergdsteres Zlients Ergisteres Uhents {dobsc-z
{joe
2

Enter your new Jiki page

Fi“ —Qﬁ'- T ek Ninas

“:J

-

Figure8.2  New registered client Jiki page

mAdianl's Mav ik page - Nelscopy

= Lek e La Lem—uuczbor llegp
= - nr . . o
D oW ¢ A S s W o & @B E
Diac- Fomend Mekead | ave Zemch Heliz=pe -l FEY Jhaz Zap
.- J_ T TR .l_l.:, | reck rrr!*llrr,'."rrﬁﬁ = e div PR i F eislener P e e Te—n j EI_I"U}”'“ Fedael
Llello again Michael
Let's get Siki with it
Tour new Regisiered Jilii TTher pue
ik Page parte: |
Heleet namels ) o grart B ol rights “elart narwe (#) to grant b 1] righrs i
{rhsny
Eemslyec Cleols Frepmsleree Chenl {uube -
e
lGay =
Eolvr yuur ouw Jiki pog:
| 3
Fi" —flb'- o ek Mina= _

Figure8.3  Oldregistered client Jiki page

91



2 Aulbwmd e - Michos - wWalsoms b Jiki - B slazaps

i= Let Wew La Lem—wicabor llegp
ol - o . - =
C SR T BT R S
Dz - Fopraid  [Meload | 2 Zemch Heliz=pe M- FEY i B B
J_ ez !.:, | rect rrr!-'llrr.-'."rr\::‘\..“ =t ed i PR s diapi b s idse e e P-oe j EI_I'\UII'H.RF Tl
Al
YWelcome ro the System
o= Dz bl
Pazeoard s ioommmene
Ztegng oW ook Dicws o ik pege
Tazpre czaoe: lenlssde oooves 3oz Lo slele oep e
Taank ea:
Thiz iz oy o-bzbl Depo ' Jial''"' fagz __;';J
The poe—delioel 2L z_vlz alluaz e Lo sly’e _be pave
Tlheak =on
=]
e | e e e ke iTh AT 1 A

Figure8.4  Authorised Jiki page eliting

E'EI"duu Adimrnsliolu | pue - YWoloume Lo J ik - Holpcaps

= Leak “ew La Lem—wuczbor llep
"i&'ﬂ’&mjdﬂlﬁlrﬁ.
. Diac- Fomend Mekead | ave Zemch Heliz=pe FEY Jhaz e o B
.- J ETATUSNER ) Irn.-trrr'*llrr SpiET e e d i E A ek i png- e ca e e Gl e j El_'-.‘-"l'ld.:; Sk
Jiki Authorisation Accepted . The
JiKi | _ Jiki Distributed
Java Coalition
Velcame joe
Your Admimistrative Settings for _
JIT Tava
ENTY pernlssioms
Selent mommes b ssnt KDV riehils el Lo riernes(s] b oesrmnee KD riehils
b
:frt; kel ok e Clhen . wAll RTTT 1i5|'|l::
RN
A =l =l =
ot e e 4% (7 |

Figure8.5  Seaurity Policy Manager GUI

92



+L Faye ddimrnslialu | jue - Yolaume Lo J ks - Holpcapss

i= Let Wew La Lem—wicabor llegp
- B e ) ™ =
i oW o A A% s S & B #
L Diac- Fomesd Melead | ave Zemch Hetiz=pe it FEY Shaz B
7l J_ ez !.:, | rect rrr!-'llrr.-'."rr\::‘\..“ =t e d i PR s i g sl cnpeaceesf i e
REAT pexmisreiones ol
Beleer neme(s) to prant HEAD rights Select narners] fo rezoove BEAD rights
1abzors Ir;-
Eogtencrzd Chonts T zarge Clonts e 547 ez
SEh
cigranR =] =l
Hiwi
MEW Admidndstrator
120 e vt en telinqmich all ADMIY tighne and grant to awnthore Client
Lo drvis
Segebaed e Rl i
= ke e AT 1E 4 |

Figure8.6  Seaurity Policy Manager GUI

93



