| nvestigation and Development of Quality of Service
M anagement for Web based Services

Managing Quality of Servicefrom
the End-User Perspective

Eamon Dalton

A dissertation submitted to the University of Dublinin
partial fulfillment of the requirements for the degree

of Master of Science in Computer Science

2000

Declar ation

| dedare that the work described in this dissertation is, except
where otherwise stated, entirely my own work and has not been

submitted as an exercise for a degree a this or any other

university.

Signed:

Eamon Dalton
September 2000

Permission to lend and/or copy

| agree that Trinity College Library may lend or copy this
dissertation upon request.

Signed:

Eamon Dalton
September 2000

II

Acknowledgments

| would especialy like to thank my supervisor, Mr Vinny Wade for his guidance in the

completion o this dissertation and to Broadcom Eireann for their asgstance.

Thanks to my family who have dways supported me and to Grainne for her encouragement

over thelast yea.

III

Summary

With the advent of Web based delivery of businessappli cations and increasing dependency
on these services, management of availability and performance ae aitical. For service
providersto offer guarantees on Web based appli cation performance of services delivered
viaHypertext Transfer Protocol (HTTP), they must implement Quality of Service (QoS) and
have a @mposite view of service quality acossall the componentsin the servicedelivery
chain including databases, networks and webservers. In most cases thisis not possble &
different parts of the infrastructure ae outsourced to different service providers or managed
by the austomer. Even with al thisinformation availableit is gill extremely difficult to

diagnose how service performanceis perceived by the end user.

This dissertation describes the design and implementation of a framework that supports the
monitoring of Web delivered services from the end-users perspedive. The service

performance and availability can then be mmpared against a Service Level Agreement.

The framework consists of a number of components. These include alocd proxy on the end
user’s host that intercepts HTTP requests and replies. This all ows the monitoring of
availabili ty and performance parameters as perceived by the end user. The framework also
involved the design of a SLA template spedficdly for Web delivered services that can map
these parameters cgptured by the proxy in ameaningful way so that it is possble to specify
how a service delivered over HTTP should perform from the end-user perspedive. The
proxy encompasses a number of feaures including automatic retrieval of a Service Level
Agreement (SLA) with aserver.

Finally an application was devel oped that demonstrated how the framework can be gplied

to monitor SLA compliance for aWeb delivered service

IV

1

Table of Contents

INTRODUCTION ..ot

1.1 WVED DI VEIN OO SEIVICES. ..o ettt ettt ettt et et et e e e et e e e e ae e e s e e eeeaneemns

2 |V o (V7= (] o] o TR POPP
121 The End-USer PErSPEAIVE.ccuiiiiiiiieiietiee st se st se e s e sreene s

N N K=To o o= 72 o] o0 T o IO TR T SRR
1.5 OVENVIEW OF DISTRITALION.... ettt et et et e e et e e e e e e et e ee e s et e e e e een e e e s e e

TECHNOLOGIESFOR END-USER QOS.......ccooiiiieeeeee e

2.1 g 100 o [e To) o FE TSR

2.2 QUANILY OF SEIVICE....tiie sttt ettt et et ar e are et sreere e eresre e s e
221 What isQUality Of SEIVICE.....cccviieiieiirie ettt sreane e
2.2.2 Why the need fOr QOS....... ..o uiiriiie ettt et e eresne e
P2 T | = o TSR
224 Application LeVEl QOS........cccovuiiieeieeieeieeeeessisteie s sss e s sreeres s sn e s see s

2.3 Current Approachesto Service Managementccceeveeeeeeeecevvieineesieerie e e e

24 SarViCeLevd AQreameNntSttt e
24.1 Overview of Service Level AQreements.......cooevveeeiee e s e
2.4.2 SLA NEQOUATION ...ccoiiee ettt st re st e sre e sresae e s e sn e s ane s
2.4.3 ItemscontaiNed iN @ SLAooi oottt et e

251 INFOAUCHION T0 HT TP ..ottt et et e e e e e ee e e e aeeea s

1-1

1-1
1-3

1-4

1-4

1-5

1-6

....................... 2-7

2-7

2-7
2-7
2-7
2-9
2-11

2-14

2-16
2-16
2-17
2-18
2-19
2-19
2-20

253 HTTP RoXies and CaChing.......ccceeereeieaeeaee st e v sresree s

3 REQUIREMENTS ...ttt nne s

31 [Fa 1o o 18 e L) o FE TR

3.2 MOLIVALIONS REMSIEEA ... oo oottt ee e e e e e e e e e eeeeee e e e e eeene

I8 R Y/ o 1A V7= o] TSRO

3.3 SeVIiCeDEIVEY USING HTTP ...ttt

3.3.1 Anatomy of A Web Delivered SErVICe....coiviiveiiciee e
3.3.2 Where can Availability and Performance 1S1es OCCUFcccceeeeeeeeeveeceviinnnns

34 Monitoring HTTP DeliVEred SENVICES.....ocvvivieieiiee e see s s e e nsne s

3.4.1 ServiceParformanCe ParamMELarS.... oo et e e e e eae e

3.4.2 ServiceAvailability Parameters..........coouoiioiie i

35 Parameter CaplUre.... ..ot
351 Server-Side MONITOING.o oo ieee ettt sre s s

3.5.2 Monitoring via aProxy onthe Client-Side..........cccoevveeiieiceiiicieeice e
3.5.3 What information needsto be Gptured?..........ccoveevieeveeeeeiiesiiiec e

354 QOS MEDPINGS. ... ceeverrerieeeereaeeaeeeeesatessieasaessssesssereeasssreeree s et s seesee e eeesee s ee e e e s seaes

3.6 CONCIUSION. .. e et ettt ettt ee e et e et e et e e e e e eee e e e e een et e e e e e aeeenneenns

A DESIGN ..o s

4.1 (1100 U e (o) o F RO

4.2 Architecturesfor ServiCe MONITOrING.....c.oceveeeeeiiee st
421 A Single ASPand MUItiple SENVICEScooiiniiecii e
4.2.2 Multiple ASPs and MUItiple SErVICES.....c.couiuiiiiiiieiiiie e

4.3 ArchiteCturein OPErationcocoooiei ittt sre e e s
4.3.1 Additionsand Modificaionsto Services Monitoredceeeeeeveeeeeeeeeenenn,

VI

2-21

2-23

3-24

3-24

3-24
3-24
3-25

3-26
3-26
3-28
3-29
3-30
3-32
3-33
3-34
3-34
3-35
3-35

3-37

4-38

4-38

4-38
4-39

A4-42

4-43
4-44

4.4 Client-Sde Proxy Design and Operationoooveeineieeinies e s
4.4.1 Proxy Archite@ure OVEIVIEWccccoiveeeeoiiee sttt sre st sre e s
442 HTTPQOS Filter ArcChiteCtUIe.....cueeeee ittt
4.4.3 Operation o the Jigsaw Proxy and the HTTPQOS filter........ccocooviveininnnnn

45 Information ArChITECIUIE........c.uiviiee ettt ettt et st sre e ee e s
A5.1 SLA DESIGN oo et eee e eeeeeeeeeee s ees e
4.5.2 Parameter DefiNItiONc.coueiiieiir i e e

4.6 (©00] 103 101 o) o FHTEUTEERRE TR
IMPLEMENTATION. oot e et eeeeeeeeeeeeaeeeeeeeeenaaaaaeaannnnnes

51 (1100 U e (o) o F RO

5.2 HTTPQOSFIILEN ..coiiiiitiieiieiie ettt et sttt s sreere et s ene s s s
5.21 Monitoring HTTP Message Content Length and Transfer Time....................

5.3 (D210 01 0o [0 TSP SPPPTRPOIN
N @ (00 o111 07 (= ORI
55 Configuring the HTTPQOS Filter on JigSawcccccevveeeiaenee e

EVALUATION AND CONCLUSION ..ot

6.1 [Fa1 (0o U e (o) o TR
6.2 EVAIUALION OV VIOW ... et ee e e e e e eee e ee e e e e e eaeeae e e e eeeme

6.3 Case Sudy: YAhoO Mail.... ..ottt
6.3.1 TSt ENVIFONMENTcooiiiiiii ittt ettt sttt et s s sre e e
6.3.2 SLA Defined fOr Case StUAY........cuivuemririeieeir e e eesseesee s e s se e s s sns e see e
6.3.4 SLA and Services List Deploymentccovvveceieeeveeeeeeeeeeei e e
6.3.5 Proxy INitiali SAION ..o ceeiiee et e e

VII

4-44
4-45
4-47
4-48

4-52

.4-52

4-56
4-56

4-57

5-58

5-58

5-58
5-59

5-63

5-63

5-64

5-65

6-66

6-66

6-66

6-66
6-66
6-68
6-71
6-71
6-71

6.3.6 SEIVICEMONITOIING. ... coieeeeeeaee e ettt et sre e e e b s s se e s ee e e
6.3.7 ReSUILS Of Case StUAY......cccooeieiei ettt s
6.3.8 REPOIM ANAIYSIS. .. vttt ireeireeee s ereseeste e et e ste s sease e s ans et aresseersssreeressresreeeee

6.4 Srengths and Weaknesses of Framework.............u.uvieieeieiieesieniessee s s sseneas

6.5.1 ACNIEVEMENLS......oiuiiiiiieieie ittt ettt et er e e e
6.5.2 Future Development and System IMProvements........ccocevevevve e e eeeveesessiiens

0.5.3 FINAl CONCIUSIONS. ... cen e et ettt e ee e e e e e e e e ee e e neane e e annn

REFERENCES........cc o

APPENDICES.o

8.3.1 SLA for Yahoo Mail Case StUYccceevvmeeermniiine e

8.4.1 ServiceDescriptor for Yahoo Mail Case Studycoccooveiiiiieieiinie e

8.5.1 SLA Report for Yahoo Mail Case Study:ocuueerirmreeiiiieiiee e
SLA REPOI ..ot ettt ettt eee e et et eee et et e e er e st e ae e e ee e ere s ereene e s ereann s

8.6.1 Tableof Parameters Logged HTTPQOS Filter........cccovvvvivinennne.

VIII

6-72
6-72
6-72
6-73
6-74
6-74
6-77
6-78

.............................. 7-80

.............................. 8-82

8-82
8-82
8-86
8-86
8-87
8-87
8-90
8-90
8-91
8-91
8-91

E— S X (00

cereeeenneennn.8-100

LIST OF FIGURES

Figure 1: Graph illustrating Requests/secVs RespOnSes/SeC [4] ...ooovveevreveineevee e
Figure 2: Graph illustrating Requests/sec Vs Completed SeSI0NS/SeC[4]ccvvevmennnne.
Figure 3: Model of an Email SYStEM 5]c.couiriiiiriieiriiesree s s see s s sve e
Figure 4: lllustration of Servicelnstance aeation engine 6]cccvvvvvevvneceeeeeseeciennns
Figure5: lllustration of path taken for a HTTP request and response...........ovueeeeveneeen.
Figure 6: Servicemonitoring between Customer and a single Service Provider
Figure 7: Service Monitoring between Customer and aMultiple Service Providers.........
Figure 8: Jigsaw Proxy Configuration with HTTPQOS Filter...........ccuvvvvmeieiviiniiee e,
Figure 9: HTTPQOSFilter ArchiteCture OVENVIEWcvuvivvieierieeseessssiieie s sese e
Figure 10: General parameter and QOS parameter groupingsS.........oeeeveemeeneeseeenveneens
Figure 11: HTTPQoSFilter Configuration using the JgAdmMIN TOOccooeeiieeiveneee
Figure 12: Service ID and Contract ID iN LA ...

Figure 13: Framework ArChItEAUNe.........ccveieieeiee e eee et et et re et eeeere e

IX

2-12
2-13
2-15
2-16
3-26
4-40
4-42
4-46
4-47
4-54
5-64
6-70
6-76

LIST OF TABLES

Table 1: Base Performance Parameters..........cocovveiaene e e v see e eeeeee e see e =30
Table 2: Table of Sample Derived Performance Parameters..........coovevvvveececvesvennn. 3231
Table 3: Availability Parameters. it e e O OO
Table 4: Table of Classes Used by HTTPQOS.........c.covmireimeeiine e 4251
Table5: SLA Parameter GroUPINGScooeeveeeeeiieesieessintinreeseeeeesresseesressnesnessesseessssnssensnns s 4-D2
Table 6: Table of General Parameter GroupiNgS........cocceeeeeveeeieiessnsrinreeseseeseeseesesseesene e 4253
Table 7: QOSParameter GrOUPINGSccvueerreereeeeeaessernisersienisesssssessssssessesssessesseesseene 4-D3
Table 8: Database Tables and DeSCriptions..........cccevveeaeeeeeereesccreires e e eeesreenee e . 457
Table 9: Yahoo Mail Service MappingS........ccucvvureeemesiermesiesssniesseesseesssssesssnsesseeseeenes 0-68
Table 10: Table of Derived Parameters for Case SUdY.......cc.ccoeeevveeiveicesiveiinee e n. 6-68
Table 11: Parameters Assigned for Read Mail Service Mapping........cccoovvveeiinevienen..n. 6-69
Table 12: Table of Required Avail ability and Performancefor Case Sudyccoceveee. 6-69
Table 13: Service File Specifying the Yahoo Mail service..........coooveiviiiiiiiiin e 6-71

ABBREVIATIONS

AF Assured Forwarding

ASP Application Service Provider

CRM Customer Resource M anagement

DNS Domain Name Service

DTD Document Type Definition

EF Expedited Forwarding

Diffserv Differentiated Services Framework
HTTP Hypertext Transfer Protocol

IntServ Integrated Services Architecture

IP I nternet Protocol

ISP Internet Service Provider

PHB Per-Hop behaviors

QoS Quality of Service

SLA Service Level Agreement

SLAVSP Service Level Agreement Verification Service Provider
SGML Standard Generalized Markup Language
XML Extensible Markup Language

XSL Extensible Stylesheet L anguage

XI

1 INTRODUCTION

1.1 Web Ddlivered Services

Asthe Internet expands, it presents new ways to provide information to individuals and
organisations. Increasingly, the provision of information based services are taking the
Application Service Provider (ASP) approadch where the serviceis delivered over the Web
and accessed via aweb-browser. These Web based services are not just basic web hosting
services. They are often complex information management tools that off er data-mining and
remote analysis of large volumes of data viathe Web with amost al of the mntent
dynamically generated from backend databases. These Applicaion Service Providers are
targeting anything from small companies with a auple of employees that lack the skillsin
house to manage goplications locally, to corporations with thousands of employees for
which the ASP model off ers a more manageable solution to deliver applications to vast
numbers of desktops. The revenues from these complex applications are expected to grow
rapidly in the next few yeas, and are estimated to reach $8 hillion by 2002 [1].

1.2 Motivation

Thebigiswueis*“can Web delivered services be relied on?”. In particular, can performance
and availability be comparable to more traditional methods of providing applicaions and
how can this be monitored? ASPdelivery has the potential to end up making services more
unreliable that ever before due to the best eff ort nature of the Internet Protocol (IP). “Best
effort” in the cntext of the Internet Protocol, iswhere a padket is delivered to its destination
as Lon as possble but without guarantees on the time taken to get to the destination or even
that it will arrive & al. To add to the problem, any Web delivered serviceis dependent on
multiple distributed components that may aso implement “best eff ort” methodologiesin
how they operate. For some users, “best effort” is Smply not good enough particularly when
these goplications must be depended on for organisation to be able to operate. Thereisa
movement from the democratic system where everyone gets the same level of service, to one
where those who are willing to pay more get a better that “best effort” service that is typical

1-1

of the Internet. The move from best eff ort to some guaranteed level of service not only
appliesto IP traffic, it applies to the cmmponents that are being used to deliver services over
the Web and even the services themselves. The mechanism that allows guarantees to be
implemented iswhat’ s termed, “ Quality of Service’. Quality of Service (QoS) has a number
of diff erent meanings depending on the context it istalked about. In the context of networks,
it can be define & the aility of anetwork element (e.g. an application host or router) to have
some level of asaurance that its traffic and servicerequirements can be satisfied [2]. In the
simplest sense, Quality of Service (QoS) means providing consistent, predictable data
delivery service. In ather words, satisfying customer application requirements [3]. This latter
definitionis perhaps, a more suitable general definition, as QoS can be discussed at a
number of different architectural levelsincluding network, application and end user QoS.
For example, implementing QoS so that specific user(s) can receive abetter that “best eff ort”

service from a Webserver has been researched [4].

The formal spedfication o the QoS guarantees that any of these mmponents implement is
defined with what is termed, a Servicelevel Agreament. A ServicelLevel Agreanent (SLA)
spedfiesthe expeded performance and avail abilit y of a service ammponent or an overall
service that may involve multiple components, or services. However QoS asaurances are
only as good as the weakest link in the chain between sender and receiver. If any single
component to which a service depends on fail s, or has performanceisaues, the eitire service
isimpaded. For example, aWeb based Customer Resource Management (CRM) system
may be a ollection of independent services such as network, Webserver, and database
service(s), but from a austomer's point of view thisisjust one service The entire CRM
service may be deemed unavailable if any one of the underlying services (such as the

database) is unavailable.

The dependencies of Web delivered services on multi ple mmponents makes it apparent that
a omposite view of QoS and avail abili ty for all service componentsis needed when services
are chained and delivered as asingle service However, spedfic componentsin a service
delivery chain may not managed by the Service Provider and hence this information may not

aways be available. For example, the network that the end-user is accessng the service from

1-2

will likely be managed locdly. Even with thisinformation avail ableit is gill extremely
difficult to correlate QoS of different components and dagnose how a serviceis performing
overall. Extensive research to correlate QoS between service mmponents has been
conducted [5-7].

1.2.1 TheEnd-User Perspective

To say that al the componentsin aWeb delivered service were avail able 100% in a 20 day
period has very little relevance as to how a service performs, as percaved by the end-user.
Why? not being able to describe end-user perceived performance has been one of the mgjor
faults with service management to-date and is even more of a problem now with ASPs.
Looking at our CRM example, the end user is interested neither in the QoS guarantees of the
Webserver that their browser connects to or the guarantees of the network over which they
are acesgng aservice. End-users view the quality of any Web delivered servicein simple

terms, accessibility and performance, asthey perceiveit.

What is also worth remembering is that end user QoS encompasses the fail ure or successof
al other forms of QoS of the componentsin the service delivery chain and dffersatruly
meaningful way to determine how a serviceis performing overall. The fact that the Service
Provider typicdly has no ideaof how service performance and avail ability is perceived, by
the user in the scenario described previously is a particular problem. In what other industry
in today’ s market forces will a supplier be content to remain unaware of it’s customers
perspective on it’s products. Were this information available, not alone @uld it offer the
Service Provider a useful diagnostic tool and the austomer an ability to specify performance
and availability criteria that mean something to them. The aility of Service Providersto
offer some level of guaranteeto customers on the performance and avail ability of services
from the end user perspedive means that it would finally be possble to define meaningful

SLAsfor Web delivered services. Theresult - clarity and accountability!

1-3

1.3 Objectives

The primary objective of this dissertation isto develop aframework that can support QoS
monitoring and ServiceLevel Agreanentsfor Web delivered Services. This has three
sectionsto it.
» To design a dient side proxy that supports automatic configuration, monitoring and
logging of avail ability and performance parameters as perceived by the end user of
Web delivered services
» Thedesign of aSLA template specificaly for Web delivered services that will map
these parameters cgptured by the proxy in ameaningful way so that it is possbleto
spedfy how aservicedelivered over HTTP should perform, from the end-user
perspective
* Toimplement SLA verification and feedback to the Service Provider and Customer

so as to notify them of SLA compliance

1.4 Technical Approach

The completion of the dissertation was undertaken with the foll owing approach.

Initially the aeaof Quality of Service was examined including QoS in the cntext of
network, applications and service management including composite QoS management

Next, the aea of ServiceLevel Agreements and the cmmponents of a SLA and technologies
used to describe SLAs are investigated. The HTTP protocol andit’s use & a service delivery
mechanism islooked at including what the issues are in using it and the problems it presents
for monitoring performance and availabil ity from the end-user perspedive. Next the
requirements for monitoring service performance and avail abili ty from and end-user
perspective ae aldressed including what parameters can be monitored and where they can
be aptured. A framework was then designed that can describe these requirements and
monitor them using a dient side proxy to capture the gopropriate information. Finadly a

sample gplication is built that demonstrates the usefulnessof the framework.

1-4

1.5 Oveview of Dissertation
Chapter 1

Introduction: This chapter presents the motivation for the dissertation, outlines the
objedives that the dissertation aimsto achieve, the technical approach taken and finally a

description of the dissertation structure.

Chapter 2
Background Research: This chapter reviews Quality of Service, Service Level Agreaments,

Hypertext Transfer Protocol and a number of key technologies used in the dissertation.

Chapter 3

Requirements. Reviews the requirements of the framework including what information
needsto be @ptured, and where the apture process should be implemented. The uses of the
cgptured information are then investigated and finaly possble achitedures for the

framework are examined.

Chapter 4
Design: This chapter describes the design and architecture of the framework that enables the
spedfication and monitoring of SLAs for services delivered viaHTTP. The design of the

client-side momponent and information architedure is described.

Chapter 5
Implementation: This chapter describes the implementation of the framework
and some of the more complex problems that were encountered in the

implementation.

Chapter 6
Evaluation and Conclusion: This chapter evaluates the work completed in the dissertation. It
then reviews if the objectives of the dissertation where met and identifies areas for further

research.

1-5

1.6 Summary

This chapter gives an overview of the move towards the delivery of services over the Web
and the introduction of QoS in the mmponents that are used to deliver Web based services.
Although QoS can dffer specific guarantees on how an individual component in a service
delivery chain should perform, for QoS to be dfedivein service delivery, it nealsto be
managed in all the cmmponents. The problem isthat thisis not usually possble due to
technicd difficulties in generating composite views of QoS or the fad that diff erent
components are managed by diff erent organi sations. However QoS management of
components in a Web delivered service does not indicae how a service actually performsto
the end-user. Thisleares the Service Provider not knowing how the service performance and
availability are perceived by the end-user. What is suggested is that monitoring the service &
percaeved by the end-user offers atrue refledion o service avail abili ty and performance and
provides avaluable diagnostic tool for the Service Provider asto how the service performs
overdl. Finaly the objedives of this dissertation, the technicd approach taken and the
dissertation structure were outli ned.

1-6

2 TECHNOLOGIESFOR END-USER QOS

2.1 Introduction

In this chapter, a number of key issues and enabling technologies that are relevant to this
disertation are examined. Firstly, the aea of QoS and current approached to Service
Management are discussed. Following on from this, Service Level Agreements are discussed
including a briefing on the components of a SLA. Concluding the chapter is areview of the

tedhnologies for monitoring QoS and describing SLAS.

2.2 Quality of Service

In the following sedion, Quality of Service (QoS) isdiscussed asit is a mechanism that
allows ome predictabili ty to be introduced to services delivered viathe Web at a number of
different architedural levels sich as |P and application level QoS.

2.2.1 What isQuality of Service

As dated in the introduction, Quality of Service has a number of diff erent meanings
depending on the cntext we ae talking about. Essentially Quality of Service means
providing consistent, predictable data delivery service In ather words, satisfying customer
applicaion requirements. Once @n refer to QoS at a number of different levels including
network, application and end user QoS. For example, implementing QoS so that specific

users can receive abetter that “best effort” servicefrom a Webserver has been investigated

[4].

2.2.2 Why the need for QoS
One may ask the question as to why QoS is needed at al. For example, in networksthereis

an increasing investment in new tedhnologies that are increasing bandwidth avail able for use

2-7

and in the aea of web hosting, technologies such as load balancing provides the means to
hand e huge number of simultaneous requests to services. Although ever-increasing
bandwidth and over-provisioning can help to improve anditions, there ae anumber of

reasons why the introduction of QoSis dill necessry.

* Networks, systems and applications are susceptible to congestion and overload that can
aff ect data throughput because appli cation traffic is unpredictable by nature. Sincethese
appli cations often share the same resources at the same time, congestion is often the
result. Web sites can be hit due to amassve increase in traffic or what is known in the
Internet world as “the Slastdot Effect” [8]. This often results in what seemed like over-
provisioned servers and networks to quickly appea insufficient due to shee volume of
attempts to reach a site ssimultaneously. There ae simply too many users now on the web
to deliver afirst class ®rvice dl thetime based on best effort.

» Different applications have diff erent requirements for throughput, reliability, delay and
jitter. Some service ae more elastic that others. Although users are normally prepared to
put up with delay with elastic gpplicaions' becauseit is expected to be delivered later in
the day and picked up some other time, one may send an urgent email which can be
treded as ared-time or inelastic goplication [9]. So it would be more dficient if one
could segment traffic based on its requirements for delay, jitter etc. Even on relatively
unloaded IP networks, delivery delays can vary enough to adversely appli cations that
have red-time @nstraints[3].

» Certain usersare willing to pay for aguaranteed service, while others are will ing to
suffice with a“best effort”. Since QoS provides value in the service, it implies the neal

for accounting and billing.

2-8

Thelast of the three points aboveis of vital important. QoS is how network and application
Service Providers as darting to distinguish themselves from each ather. Thereis even the
emergence of QoS enabled Web Servers. Empiricd evidence suggests that overloaded
servers can have significant impad on user perceived response times. Furthermore, FIFO
scheduling done by servers can eliminate aty QoS improvements made by network

diff erentiated services. Consequently, Server QoS is a key component in delivering end to
end predictable, stable, and tiered services to end users[4]. This concept of QoS for Web
Serverswill beinvestigated later in more depth.

QoS by definition means that some users are getting a better service than ahers. Therefore
QoS requires a palicy when there is contention so that the network or appli cation knows
which users are entitled to which services or in the mntext of Web delivers srvices, which
connections to aweb server are for premium services. It isnot possble to enforce apolicy if
one cannot establish the identiti es of network or appli cation users, so another functionthat is
required is authentication. Other functions of QoS include service monitoring and

configuration.

2.2.3 |IP QoS
Generdly, IP QoS can be broken down into two dfferent types. These are Reservations and
Prioritisation QoS [2].

2231 Reservation Based

Integrated Services Architedure (IntServ) - The Integrated Services Architecture being
defined by the IETF isintended to transition the Internet into a robust integrated-service
communications infrastructure that can support the transport of audio, video, red-time, and

clasdcal datatraffic. Network resources are goportioned according to an appli cation's QoS

! An elastic gpplicaionis an appli cation whose QoS requirements are not highly constrained and for which
delays are accetablein its usage. An example of a highly elastic goplicaionwould be enail whereas video

conferencing would be considered inelastic.

2-9

request, and subject to bandwidth management policy. RSV P provides the mechanismsto do

this, as a part of the IntServ architedure.

RSV P supports two diff erent types of reservation:
* Guaranteed: This comes as close & possble to emulating a dedicated virtual
circuit. It provides firm (mathematicdly provable) bounds on end-to-end queuing
delays by combining the parameters from the various network elementsin a path, in
addition to ensuring bandwidth availabili ty.
» Controlled Load: Thisisequivaent to “best eff ort service under unloaded
conditions.” Hence, it is“better than best-effort,” but cannot provide the strictly

bounded servicethat Guaranteed service promises.

2.2.3.2 Prioritization Based

Differentiated Services Framework (Diff Serv): The Differentiated Services Framework
being defined by the IETF is intended to med the need for relatively simple and coarse
methods of providing differentiated classes of service for Internet traffic, to support various
types of applications, and specific business requirements. The diff erentiated service
approach to providing quality of servicein networks employs a small, well -defined set of
building blocks from which avariety of services may be built. Network traffic is classfied
and apportioned network resources according to bandwidth management policy criteria. To
enable QoS, classficaions give preferential treatment to appli cations identified as having

more demanding requirements.

Diff Serv currently has two standard per-hop behaviors (PHBs) defined that eff ectively
represent two servicelevels (traffic dasses):
» Expedited Forwarding (EF) EF minimises delay and jitter and provides the
highest level of aggregate quality of service Any traffic that exceeds the traffic
profile (which is defined by local policy) is discarded.
» Assured Forwarding (AF): Has four classes and three drop-precedences
within each class Excess AF traffic is not delivered with as high probability as the
traffic “within profile,” which means it may be demoted but not necessarily dropped.

2-10

2233 What aretheprimary IP QoS Parameters?
Generally, QoS parameters can be broken down into the following [3].

» Latency - The time between a node sending a message and receipt of the message by
another node.

» Jitter - An aberration that occurs when video or voiceis transmitted over a network,
and packets do not arrive & its destination in consecutive order or on atimely basis,
i.e. they vary in latency.

* Bandwidth - A measure of data transmission capadty, usually expressed in kilobits
per second (Kbps) or megabits per second (Mbps). Bandwidth indicates the
theoreticd maximum cgpadty of a mnnection, but as the theoreticd bandwidth is
approached, negative fadors guch as transmission delay can cause deterioration in
quality.

» Packet Loss- Example: 1% or lesson network-wide monthly average packet loss

* Availability - Example: 99.9% premises to service provider.

2.24 Application Level QoS
Generally QoSis applied to appli cations that have spedfic constraints for bandwidth, jitter
and delay. The techniques mentioned previoudy are able to addressthese issues. However
appli cation themselves can also benefit from QoS. “ As Internet usage grows it has become
apparent that non-isochronous applications such as deli vering static and dynamically
generated web pages can aso benefit from QoS’ [4]. Clearly, thereislittle point in
establishing network level QoS if the end appli cation that is being accessed has no priority
on which request to processes first. Some of the results that were discovered in this research
are asfollows:
» serverswere aurrently asignificant component in end to end delay
» thereare several trends that are increasing server latency time for sophisticaed
Internet applications including
* Flash crowds can overload a popular site leading to poor response times or even

denial of service

2-11

» Current processqueuing techniques on servers mean that processes take so long
that clients smply disconnect
* New tedhnologies such as SSL, Java, Database transactions and middleware

* Mediaisaso becoming rich with larger and more images and even voice and
video being requested

It dso highlighted the response rate versus the HTTP GET rate plotted for atypical web
server. As expected, when measured from an HT TP request perspective, the response rate

grows linealy until the server near's maximum capacity as follows.

100

B

s

40

Responses/second

20

Q

i &0 100 =1 200
Reguesis’second

Figure 1. Graph illustrating Requests/sec Vs Responses/sec [4]

2-12

.

Compleied Sessionssecond
ra o | o
L]

0 5 100 150 200
Hequests'second

Figure 2: Graph illustrating Requests/sec Vs Completed Sessions/sec [4]

What was even more interesting was when the same datais analysed from a dient’s
perspective. For a series of HTTP requests that would be typicd of that involved in an
online transaction or asesgon asthey arereferred to, the session throughput
collapses rapidly as the server becomes busy due to queuing and
congestion on the server. Since generally on E-commerce sites, longer
sessions are more likely to be due to a purchase going on, this represents a
significant issue. One may say that why could these issues not be
addressed through over-provisioning? If one looks at the growth rate in the
number of clients for web-based applications, it quickly becomes apparent
that the demand curve is such that static provisioning will not support the

demands that could be placed on them.

To deal with thisisaue, QoS was implemented by developing amodified version o the
apache server. It allowed each request to be dassfied according to two methods
1. User ClassBased Access. Thisuses the dients |P address cookies or some other

method to distinguish the requests and give gpropriate priority to it

2-13

2. Target Based: Supports URL based prioriti sation so that for example when a user

starts to purchase aproduceit receives higher priority

The previous dion has presented a brief synopsis of how QoS isimplemented on a number
of levels. It isworth mentioning that architectures have been devel oped that attempt to
enable end-to-end QoS for applications that have highly constrained requirements, in
particular multimedia goplicationg10] [11]. Although these achitedures provide ameansto
provision QoS from the network up to the gplication on an end-to-end basis, they are not
spedficdly targeted at the most common applicaion delivery framework for the foreseeable
future, which is Web based delivery of applications.

Finally, thereis onefinal type of QoS that has not been dscussed at al. Thisis Quality of
Service & perceived by the end user and is of particular relevance in the antext of web
delivered applications. End user QoS encompasses the fail ure or success of al other forms of

QoS from server to client in the service delivery chain.

2.3 Current Approachesto Service M anagement

A number of current approaches to service management will be discussed next. They offer
some insight into current methods of managing services and determining service avail ability.
These examples are not spedficdly Web based services but highlight the concepts and

isguesinvolved.

One gproadc to service management is to manage services as a single unit, not just as
individual components. For instants, an Internet Service Provider (ISP) might provide an e-
mail service on one of its serversto its customers. For this serviceto operate within spedfied
parameters, al of the cmmponents within that host on must be operating.

Research suggests that services should be modeled as atreestructure [5]. For example an E-

mail service would have the following structure.

2-14

E-hdail

awvailability— availability— awailability—
E-Mail Senrer 1 E-Mail Semer E-Mail Server3
awglelay— avglelay— avglrel ay—
N -
- -
] »
Senice Senice
(POP3) [SMTP) System Netwua
awailabilite awvailabili ran2uenelength thruput—
totalResponse Time totalResponseTim blocked Queuelength percentP adetl oss—
tepConnectionTime tepConnectionTim waitdueuelength aoceptedConnPerses

senrerResponseTime—|

authentication Time|

m=gRetrieval Tim e

senrerResponzeTime

transterTime

percentC P ULUtilizatior

szanFate —

freehd eman—

requestedConnPerseo
establishedConnPersSee

totalConnedtions—

embryonicConnection=

establishedConnections—

Figure 3: Model of an Email system [5]

However, thismodel fails to take into account the interdependencies a service may have on
other hosts and services. If one was to consider an E-mail service, it has many components
on which it depends including DNS, IP connectivity and SMTP servers. Failure of any of

these mmponents often means that the whole servicefail sto gperate.

Two separate, but similar models that addressthis focus on acually determining the total
availabili ty of the service defined taking into account all the cmponents the service depends
on [6, 7]. Thelatter is more focused on actually determining the total availabili ty of the
service defined taking into acount all the cmponents the service depends on. The first
targets the isaues of how to compose aservicemodel automatically. It approaches the
problem by defining templates for typicd 1SPservices and then combining this with some
auto-discovery tools which are then passed through an engine that can generate the service

mode! instance

2-15

Caustomer Support
Wiy
View R
e

Ganaralor

Service Model

Template
Sennice Modes
Craation Engine

Flanning Wiews

Service Model
|rstance

Maasurament

.ﬂ-u':c-illisv::\'-l.-e.lad Agant
Instance Configurator

IMeasurament

Agent
Ciaanif wuration
Spacification

Figure4: Illustration of Service I nstance creation engine [6]

Again, what is clear isthe ideathat services are ammposed of components and some method
isrequired that can provide an overall view of the service performance. The focusison how

the service performs overall .

24 ServicelLevel Agreements

2.4.1 Overview of Service Level Agreements

Beaing in mind what has been discussed in the previous sdions, the first point to be made
clear isthat customers do not care how a service is composed -- to them the quality of the
end serviceiswhat isimportant [12]. Generally a Service Level Agreament can be defined
as a mntrad between a Service Provider and a Customer that guarantees gecific levels of
performance and reliability at a aertain cost [12]. Typicdly the Service Provider isthe party
providing a service and the Customer is the party paying for and receiving the service and

for any one SLA therewill be a mistomer and a service provider.

2-16

SLAs areimportant in the fad that they provide ameans in the mntext of service
management to formally define the behavior and quality of the service being delivered. It
can aso include details on performance monitoring and reporting of the service being
delivered, aswell asadionsto be taken when performanceor availability do not meet the
levels spedfied in the SLA.

SLAsuntil recently, often concentrated on addressng avail ability and customer support
guarantees, such as guarantees on helpdesk problem resolution time on service outages. With
the proliferation of service outsourcing, where an organisation outsources al or portion of a
serviceto third party vendors, the organisation will usually require guarantees onthe

performance and availability of the servicethat has been outsourced.

One of the reasons performance has becme a citica factor in Web delivered servicesisthe
fad that the Web is based “best effort” mechanisms of the Internet and the cmmponentsin
the delivery chain so QoS has beame of critical importance. Generally the issue with web-
based serviceis application burnout where the service simple slows down to the extent that

users can't utilise the service aaymore [13].

2.4.2 SLA Negotiation

“ SLA negotiation takes place between customers and Service Providers during service
ordering. It enables the Service Provider and customer to formally and legally state the
responsibilities of each with regard to the servicg(s) being ardered by the austomer fromthe
ServiceProvider” [14].

There @an be avariety of types of SLA negotiation. In the case of on-line negotiation, the
interaction to formali se the spedficaion o the SLA could be done via aweb front end that
generates the appropriate SLA. Off-li ne negotiation would involve person-to-person
communication, such as telephone, medings, etc. On-line SLA negotiation is more
applicable for pre-defined services where the austomer can fill i n atemplate on-line. Off-line

negotiation is more likely to be required for more complex services [14].

2-17

SLA negotiation is concerned with three main areas

The atual service(s) detail s of the service(s) being purchased
Problem handling: what should happen when a problem occurs

Proof of compliance how service performanceis monitored and reported.

2.4.3 Iltemscontained in an SLA

The oontents of a Service Level Agreement can be broken into a number of diff erent sections

asfollows[14]:

General Items: Thesetypically include aunique identifier (within the Service Provider's
domain) for a particular SLA, definition of the terms used in the SLA and identification
of the parties to the SLA. Other items will i nclude detail ed textual definition of the
service(s) covered by the SLA and, proceduresto be invoked onviolation of SLA

guarantees

QoS Agpects: Clear and unambiguous definition of the service-independent parameters
for each service together with performance metrics for each individual parameter

required for SLA compliance

Trouble Handling Aspects: Procedures to be used to report a problem to the Service
Provider or athird party

Monitoring and Reporting Aspects: Includes gecificaion of reporting on SLA

compliance, service performance reporting period and reporting frequency.

Other items contained in a SLA may include accounting and discounting agreements and

security aspects. However, in this dissertation, QoS monitoring and reporting aspeds will be

the items mostly focused on.

2-18

25 HTTP

251 IntroductiontoHTTP

The Hypertext Transfer Protocol (HTTP) defines how client and server applications
communicatein order to transfer hypertext documents and other resources locaed on the
Internet although it is not spedficdly limited to the TCP/IP protocol stadk. The protocol is
independent of the type of resources transferred so data may be text, sound, images, query

results from a database or even an application to be executed on the dient machine.

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed,
collaborative, hypermediainformation systems. It is ageneric, stateless protocol which can
be used for many tasks beyond its use for hypertext, such as name servers and distributed
objed management systems, through extension of its request methods, error codes and
headers. A fedure of HTTP is the typing and negotiation of data representation, all owing
systemsto be built independently of the data being transferred [15].

The format of atypicd HTTP request-responseis as follows

1. A client opensa mnnedionwith aserver.

2. The dient sends arequest to the server. This request consists of arequest method, URI,
and protocol version, followed by a MIME-li ke message mntaining request modifiers,
client information, and possible entity body content over a cnnection with a server.

3. The server returns to the client a status line, header information, and possbly some entity
metai nformation and an entity body.

4. The server closes the connedion.

HTTPisastatelessprotocol in that it does not maintain any connedion information between
transactions athough HTTP/1.1 does support persistent connedions $ a cnnection does
not have to gpen each time to the fetch each URL and in doing so reduces the load onthe

server. Thismeansthat if a hypertext page has embedded references to ather resources, the

2-19

client can send multiple requests over the same wnnection for those resources. It also allows
a dient to make requests without having to wait for each response before it makes the next
request, allowing asingle TCP connedion to be used much more dficiently. Technologies
for SLAs and QoS Monitoring

252 XML

One of the primary focuses of this dissertation isto investigate a method of describing how
an HTTP delivered service should perform. XML, the Extensible Markup Language, is
emerging as akey technology in describing the structure of data. However, XML isnat a
language & its name suggests, it’s actually a metalanguage or alanguage used to describe
other languages [16]. It al ows the aeation of customised (Extensible) markups 0 unlike
HyperText Markup Language (HTML) where the markup is limited and can only describe
one type of document, XML allows the aeation of customised markups. One key feaure of
XML in comparison to HTML is XML tell s what data signifies rather than how to display it.
XML isbased on the SGML (Standard Generalized Markup Language), which isthe
international standard for defining descriptions of the structure and content of diff erent types
of electronic document. However XML has been designed so that is simpler to use that
SGML with the am of promoting the use of SGML on the Web.

2521 DTDs

Document Type Definition (DTDs) spedfies the tags that can be included in an XML
document, and the valid arrangements of those tags. The DTD spedficaionis adualy part
of the XML specification, rather than a separate entity. However aDTD it optional and
XML documents can be aeated without one. DTDs help avoid creaing invalid XML

structures and allow the verification o the XML structure of a particular document.

2522 XSL

As gated already, XML specifies how to identify data, not how to display it. HTML, on the
other hand, tell s us how something should be displayed without identifying what's
displayed. Extensible Stylesheet Language (XSL) specifies what to convert an XML tag into

2-20

so that it can be displayed in another format such in HTML [17]. Different XSL formats can
then be used to dsplay the same datain diff erent ways, for diff erent uses. This provides the
ability to render the same information dfferently for different situations of for diff erent

devices.

2523 Using XML todescribea SLA

Increasingly XML is emerging, as the de-fado standard for describing information content
and the aea of SLAsisno exception. What are the advantages of using XML to describe a
SLA?First of al, onceaDTD is defined, it all ows the aeation of SLAsin XML and bah
computers and humans can easily understand XML dueto its gructured form. It presents the
posshility for linking and merging multiple components of SLAsto define ahigher level
SLA. XML isparticularly suitable & atransport encoding format and the fad that SLAs
often need to be transported between dfferent systems provides another advantage in using
it. It al'so supports diff erent views of the same data through the use of XSL [16]. Thisis
useful in the fad that some items of a SLA might not be that interesting to a customer but
would be interesting to the Service Provider.

253 HTTP Proxiesand Caching

HTTP proxiesare an integral part of the Web today. A proxy is defined as an intermediary
program that acts as both a server and a dient for the purpose of making requests on behalf
of other clients. Requests are serviced internaly or by passng them on, with possble
tranglation, to ather servers. A proxy must implement both the dient and server
requirements. A "transparent proxy" is a proxy that does not modify the request or response
beyond what is required for proxy authentication and identificaion. A "non-transparent
proxy" isaproxy that modifies the request or response in arder to provide some alded
service to the user agent, such as group annotation services, media type transformation,
protocol reduction, or anonymity filtering. Except where a@ther transparent or non-
transparent behavior is explicitly stated, the HTTP proxy requirements apply to both types of
proxies[15].

2-21

Although proxies provide various cgpabilities that improve the end-user experience with
fedures guch as cading, they are examined in this dissertation for the aility to analyse

HTTP request and response information for requests that are directed through them.

2531 Performanceand Availability Analysis Capabilities of Proxies

When user-agents are configured to pass requests through a proxy, the proxy emulates the
target server’sinteradion with the user-agent. It al'so emulates the user-agents interadion
with the target server. Therefore the proxy is both a dient and server. The fad that a proxy
provides a means to capture these requests and replies means that it off ers the possbility of
analysing various types of information pertaining to aHTTP request. Using proxies to
cgpture information in this way has been used for a number of years. The free acding proxy
software, Squid, offers avide variety of scriptsto analyse and summaries requeststo it.
Other research tested throughput to aremote HTTP proxy [18]. In this case, the proxy
measures the time that a proxy thread receives arequest, to the time the service of the
request is completed. It also measured the anount of data logged by each request to
throughput could be calculated. Such reseach focuses on the performance aspects of HTTP,
and does not attempt at measuring the avail ability of an HTTP delivered service However it

does off er some interesting insights into the issues invol ved.

253.2 ProxytheEnd-User Experience

Aswas stated in the introduction of this dissertation, the possibility of being able to capture
the performance and availability of aservice @ percaved by the end user offersaredly
valuable way to analyse aWeb delivered service. What the aithor suggestsisthat a dient
side proxy could be used to cgpture information that can then be used to determine how a
service performs from the end-user perspedive. Where to position such a proxy that can
intercept service requests is work examining further. The proxy can in theory be placed
anywhere between the HTTP server that delivers a service and the end-user’s browser.
However, the nearer the proxy is to the end-user’ s browser the more acurate the timing
information will be. So the alvantages of pladng the proxy on the dient side ae:

» Thelatency between the browser and the proxy are negligible. This means that the proxy

receives the request from the browser with very little latency and browser receves the

2-22

reply almost immediately once the proxy reasivesit from the origin server. Thisresults
in any timing information that is logged acarately refleding the instances that requests
from and replies to the browser are performing at.

» Any connedion problems to the service can be detected and logged. If the proxy is
located remotely and the host that the browser is running on is disconneded from the

proxy in some way, any requests to the service, or failures, will not be logged.

Clealy HTTP proxies and cadiing proxiesin particular, offer significant benefitsincluding a
saving in bandwidth and reducing latency which result in an improved user experience. A
HTTP proxies provide the aility to intercept any requests and replies the end-user makesto
aWeb delivered service and could be used to indicate the performance & experienced by the

end-user, particularly when placed on the same host that the browser runs on.

26 Summary

This chapter has covered a number of key isaues and areas including the Quality of Service,
current approaches to Service Management. Service Level Agreements were investigated
including a briefing on the items that are typicdly contained in aSLA. Finally an overview

of technol ogies that all ow monitoring QoS and the description of SLA were cvered.

2-23

3 REQUIREMENTS

3.1 Introduction

This Chapter first revisited the motivations of this dissertation and the primary objectives
defined in Chapter 1. It describes the use of HTTP as a service delivery mechanism. The
potential sources of performance and avail ability issues that HTTP is prone to are
highlighted. Next the monitoring requirements of HTTP delivered services are analysed
including what parameters sould be monitored. Finaly the issue of how to monitor services
so asto be &leto capture the avail abili ty and performance & perceived by the end-user is
addressed.

3.2 Motivations Revisited

Before going further, it is worth revisiting the motivations of this reseach.

3.21 Motivations
The primary motivations are:

» The emergence of Application Service Providers and the use of the Web as a delivery
mechanism for services. One of the key isauesis can servicesthat are delivered over
the Web perform comparably with traditionall y hosted appli cations

* Quality of Service medchanisms for network, application and ather components used
to deliver services can help to guarantee the overall performance of a service.
However, there is little point in establishing network level QoS if the end
application that is being accesses has no priority on which request to
processes first. Therefore appropriate QoS nedls to be implemented on all

components. Another isaueisthat the Service Provider does not always manage the

3-24

components that a serviceis delivered over and so cannot tell if SLAsfor QoSin
components in the delivery chain are being met.

* QoS mechanisms offer little indication asto how a serviceis performing from the
end-user perspedive.

» End-user performance is the ultimate indicaion of overall service performance but
the Service Provider has no way of getting this information to dagnose problemsin
service delivery.

» Traditional SLAs that define overall service performance, do not contain meaningful

parameters to spedfy how a serviceshould perform from the end-user perspedive.

3.2.2 Objectives
The primary objective of this dissertation isto develop aframework that can support QoS
monitoring and ServiceLevel Agreanentsfor Web delivered Services. This has three
sectionstoiit.
e To design a dient side proxy that supports automatic configuration, monitoring and
logging of avail ability and performance parameters as perceived by the end user of
Web delivered services
e Thedesign of aSLA template specificaly for Web delivered services that will map
these parameters captured by the proxy in ameaningful way so that it is posgble to
spedfy how aservicedelivered over HTTP should perform, from the end-user
perspective
* Toimplement SLA verification and feedback to the Service Provider and Customer

so as to notify them of SLA compliance

Based on the objedives above the requirements can be broken into 3main sedions:

1. Client-side cmmponent to support logging of appropriate avail ability and performance
parameters

2. Design asuitable SLA for Web delivered services

3. SLA verification and feedbadk to the Service Provider and Customer

3-25

3.3 ServiceDdivery usngHTTP

Servicededlivery viaHTTP will now be examined including what the monitoring

requirements of such services might be and the methods avail able.

3.3.1 Anatomy of A Web Delivered Service

Services and the delivery mechanisms for them are changing from locdly managed and
spedfic goplicaion interfaces for each service, towards remotely managed and Web
delivered accessble via aweb-browser. A service can typicaly be any information-based
service that is provided to a austomer. For example, the Web-based Email services that are
provided freeby Y ahoo and Hotmail are typicd examples of web delivered services. The
following illustration isasimplified overview to how atypical serviceis provided via
HTTP.

Customer Internet or
i Private .
Premises S Service
Provider
Premises

—'—! fn:a Datahase

End-user _ =
running a L i
h
hr‘:emer Local Wehserver
HTTPF Proxy

Figure5: Illustration of path taken for aHTTP request and response

Taking a high level ook and ignoring details of routing and Domain Name System (DNYS)
requests, let’s examine how atypical transadion occurs when a end-user accesses the

service.

3-26

1. Theuser entersa URL in aweb-browser to acassthe service. The URL may
intentionally or unintentionall y give some indication as to the purpose of the resource
identified in the URL. For example, if the service is aweb-based email service aURL as

foll ows may return aHTML page listing mail i n the users inbox:

http://webmail .cs.tcd.ie/showlnbox

However, in most cases of services delivered viathe web, the user go to a higher level
URL that’s easy to remember such as: http:// webmail .cs.tcd.ie

This URL may provide ageneral listing of the service functions formatted in HTML and
represented as hyperlinks s that the list of functionsis easy to navigate for the user. In

the case of aweb-base emalil service these functions and the URLs they map to could be

asfollows:
e Loginto mail => http://webmail.cs.tcd.ie /loginToMail
e Logout of mail => http:// webmail.cs.tcd.ie/logoutOfMail
» Delete mail => http:// webmail .cs.tcd.ie/del eteMail
e Send mall => http:// webmail .cs.tcd.ie/sendMail
e Compose mail => http:// webmail .cs.tcd.ie/composeMail

These ae very simplified URLsin the sense that diff erent servicefunctions are represented
by diff erent resources. However it could be that diff erent servicefunction are accessed by

the same resource and identified by different queries “?” in the URL.
For example the URLSs:
http://webmail .cs.tcd.ie/webMail ?readMail

http: //webmail .cs.tcd.ie/webMail ?sendMail

Both of these URLs identify the same resource, /webMail, but the query portion of the URL

identifies to the server the function that the user wants to access

3-27

It isalso posgble to pass parameters using the POST method from aHTML form that can
then be used by the server to determine the service function the user is wantsto access. In
this case the URL will not indicate that these parameters have been sent to the server as

POST sends form parametersin the body of the submission [19].

2. If alocd HTTP proxy is used in the austomer premises, the request is passed to the
proxy to be handled. If thislocal HTTP proxy has a parent proxy, then it may in turn
passthe request on to the parent request to be dedt with.

3. Oncetherequest readies the highest level proxy, the request isthen passed to the Service

Provider. This may take place over the Internet or perhaps via aleased line directly to the

Service Providers Premises.
4. When the request reaches the Service Provider’ s web-server, it may be arequest for a

static document in which case the requested resource can be returned immediately. In the

case of dynamic data such as retrieving the listing of mailsin auser’ sinbox, the web-
server may query information from a database that isto be returned to the user viathe
web-server.

5. Thereply to the request is usually returned to the end-user viathe path and proxies that

the request was nt on. The resource may be @ded, if appropriate, in any of the proxies

on the return path to the dient. This may al ow the resourceto be accessed from the
proxy later by other usersin the austomer premises without having to retrieve the

resource aain. The reply isthe formatted by the user browser to display the information
requested.

3.3.2 Wherecan Availability and Performance | ssues Occur

Even looking at the relatively basic example &ove, fail ures or performanceimpads may

result from any of the foll owing:

» Any network component such as the cnnedion between the end user and the local
proxy, the web-server and database or the local proxy and web-server

» Any proxies used in the service delivery chain may fail or impact performance

» Theweb-server(s) that the serviceis provided viamay fail or impact performance

3-28

» Any badkend components such as databases that the service depends may fail or impad

performance

How can performance problems be overcome?QoS tednologies sich as WebQoS and
Diffserv can help solve goplicaion and network related performanceisaues |2, 4]. However
for QoS guarantees to be possble, QoS neeadsto beimplemented in al componentsin the
service delivery chain. Clealy, thereislittle point in establi shing network level QoS if the
end application that is being acesses has no priority on which request to processs first. The
problem for the Service Provider isthat it does not manage dl of the componentsin the
service delivery chain so establi shing appropriate QoS for all the mmponents can be difficult

between diff erent organisations.

In the context of the avail ability issues addressed above, redundancy may assst in making a
service morereliable in that if one component fails in the delivery chain, another can take
over to allow the serviceto continue. However, redundancy is usually not applied to all
components in aservicedeliver delivery chain, if for any reason, the st would be
prohibitive. So if the austomer’ s network connedion to the Service Provider fails, the
customer will not be &leto accessthe service However, the Service Provider may not be

aware that the austomersis experiencing difficulty acessng the service

Of course, guaranteed levels of QoS and avail ability of all the components gives no
indication asto how the service performs from the end-user perspedive. Tackling this

problem will be discussed next.

3.4 Monitoring HTTP Delivered Services

Having looked at how HTTP services are delivered, the next areato investigate is how can
HTTP delivered services be monitored to give an acarate refledion of the service &
percaved by the end wser. Looking at types of Parameters to Monitor for Services Delivered
by HTTP, they can be broken into two types:

* Performance parameters

3-29

» Availability parameters

3.4.1 Service Performance Parameters

For performance parameters, they can typicdly be broken down into parameters that are
concerned with timing information such as the time arequest is made and data-transfer
information such as the length of areply message body. Combining both of these types of

parameters off ers the possibility to derive other parameters such as throughput and latency.

3411 BaseRequest/Reply Performance Parameters
The following are suggested base parameters for HTTP performance

Parameter Name General Description

RequestTime The time in milliseconds that the request isissued

RequestBodyStartTime The time of starting to send a message body (if any)
asciated with arequest

RequestBodyEndTime The time in milliseconds of finishing the sending a
message body (if any) associated with a request

RequestContentL ength The mntent length of the request message body (if any)

ReplyTime The time in milliseconds that the reply headers are
received

ReplyContentL ength The content length of the reply message body (if any)

ReplyContentType The mntent type of the reply message body (if any)

ReplyBodyStartTime Thetime in milliseconds of starting to receive amessge

body (if any) associated with areply

ReplyBodyEndTime Thetimein milliseconds of finishing the receipt a
message body (if any) associated with areply

Table 1: Base Performance Parameters

Although, there ae other parameters that could also be monitored such as the |P addressof
the dient making the request, the ones that are identified above ae key parameters for
analysing the performance of HTTP.

3-30

34.1.2 Deriving Performance Parameters
Having defined base performance parameters, |ets look at how these parameters can be used
to determine the performance of an HTTP transadion. The base performance parameters that

are listed above @n be used to derive more useful performance parameters as follows:

Derived Parameter Description Derived By

EntityUpl oadRate The rate of upload to the requestContentL ength/
server of the request requestBodyEndTime-
message body requestBodyStartTime

HealerResponseTime The time elapsed from replyTime- requestTime

sending arequest and the
request message body to a
server, any processng by

the server and the recept of

the reply healer by the
client.

EntityDownl cadRate Therate of download from | replyContentLength/
the server of the request replyBodyEndTime-
message body replyBodyStartTime

Table 2: Table of Sample Derived Performance Parameters

Of course, there ae numerous other parameters that could be derived. However, the derived

parameters li sted above give an example of what’s possble.

34.1.3 Interpretation of Derived Perfor mance Parameters
Further analysis of derived parameters above will now be undertaken to indicate their

usefulnessand situations there they are goplicable.

entityUploadRate: This givesagood indicaion as to the mnnectivity between the dient
and server and the aility of the server to processinformation sent to it. Typicadly this could
only be used when the request has a message body such as when a POST or PUT method is
used with an HTTP request.

3-31

header ResponseTime: The time between sending arequest to the server, any processng of
the request by the server and the receipt of the reply headers. However, if the request has an

entity body this will i mpad on the time to send the request to the server.

entityDownloadRate: Indicated how fast the server and the network connection between the
server and client can return areply message body to the dient. Again some repli es may not
have an entity body as would for with a status-code of 1xx (informational), 204 (no content),

and 304 (not modified) responses.

S0 as has been establi shed, not all derived parameters can be used in all situations. However,
the option to derive a suitable parameter for a particular situation still exists enabli ng useful

informationto be generated.

3.4.2 Service Availability Parameters

Availability parameters are parameters that are use to indicate the availability of a service
delivered to the end-user. These parameters can be broken down into three main types of
parameters that can indicate servicefail ure.

» Connection fail uresto the service such as a network failure or failure to resolve a
server name. These result in the dient not being able to ogpen aHTTP connedion to
the server

» Server Errors occur when the dient can make a onnedion aHTTP server but a eror
in the server occurs and resultsin areply status-code of the 5xx variety

» ServiceErrors where abadkend component that the service depends on (such as a
database), fail s and resultsin the service failure. No mechanism isimplemented in
HTTPto indicatethisasit isnot realy related to HTTP protocol itself, but more to
the servicethat is being delivered over HTTP.

3-32

34.21 Availability Parameters

The following are suggested parameters for HTTP avail ability that can identify if a service

has failed:

Parameter Name

General Description

RequestException Any errors that occur in making arequest such as failure
to connect to a server or DNS lookup failures

ReplyStatus Use to capture the status-code. 5xx reply status indicae a
server error

ServiceErrorHeader Use to capture service eror headers that indicae failurein

a backend component that service delivery depends on.
These headers are required as badend component failures
will return valid HTTP responses that cannot be detected
as an error. These headers must be ayreed with the Service
Provider so that they can be deteded in HTTP responses

from the service

Table 3: Availability Parameters

Although, there ae other parameters that could also be monitored such as the |P addressof

the dient making the request, the ones that are identified above ae key parameters for

analysing the performance avail ability of HTTP.

3.5 Parameter Capture

Having defined base performance and availability parameters, the next issue iswhereto

cgpture these parameters to give an accurate reflection of the end-user experience. The

options avail able include

* Monitor on the server-side

* Monitor between the browser and server by using a proxy: The impli cations of

where to placesuch a proxy have been discussed already.

3-33

351 Server-Side Monitoring

Server-Side monitoring in the cntext of Web delivered serviceinvolves capturing
information an HTTP requests to and repli es from the server, at the server itself. The
problem with server-side monitoring is that is does nat provide an acairate representation of
the end-user experience because fail ed attempts to the server cannot be detected.

Another issue with server-side monitoring is the performanceimplication of monitoring
HTTPto thislevel of detail for each request and since some customers may not require such

detailed monitoring it could be an unnecessary overhead.

3.5.2 Monitoring via a Proxy on the Client-Side
The other alternative to server-side monitoring is monitoring between the server and the
browser by forcing HT TP requests to the server through a proxy. Idedly the locaion o the
proxy should be on the dient, the reasons for locaing the proxy on the dient have been
discussed alrealy. The implications of monitoring by a proxy include:
* Not all servicesthat are accessed viathe proxy may require monitoring. The
proxy must have the abili ty to configure, reconfigure and dsable monitoring of a
service.
* It resultsin another layer of indirection and there may be performance
impli cations in monitoring performance
» Serviceperformanceinformation needs to be passed back to the service provider
and perhaps athird party. The proxy needs to know what information to send and
at when to send it.
» ldedly the proxy should have the aility to deted service erors and badkend
component fail ures that impad service avail ability but return avalid HTTP reply.

So despite the advantages of using HT TP proxies for service monitoring, there ae

significant obstacles to overcome if they are deployed.

3-34

3.5.3 What information needsto be captured?
What information does ead party involved in aWeb delivered service what to know about

how the service is performing for the end-user?

For the austomer, they may wish to know the foll owing:

* What percentage of requests to the service ae performing as gedfied in the SLA:
service performance information

» What percentage of requests to the service aefailing: service availability information

* How many requests have been made to the servicein the last hour: service usage

infor mation

For the Service Provider, information that they might want to know includes:

» What percentage of ead customer’s requests comply with the SLA for that service:
service performance information

* What are the most common types of errorsin service delivery in the last month: service
availability infor mation

* How many requests have aparticular customer made to the service in the last day:

service usage information

So to be aleto verify performance and availability implies having usage information

available dso.

3.54 QoS Mappings

One of the difficulties arealy highlighted with how SLAs and QoS management are
traditionally approadhed isthe ladk of meaning to the end-user on how the serviceis
percaved to perform. This has been partly due to the focus on managing servicesin the
context of overall availability and performance of the components that the service depends
on. The other reason has been the difficulty in monitoring and reporting service performance
and availability as experienced by the end-user. Even with the means to capture performance

and availability parameters for a serviceddivered over HTTP, some interesting problems are

3-35

presented. First of all, what performance and avail ability parameters are to be cculated and
what are they to be @ culated against? The end-user of a service delivered viathe Web
views performance in terms of how fast the response to arequest arrives and typicdly this
means how soon the complete object appearsin their browser. Of course, thisis over
simplifying the complexitiesinvolved in aHT TP transadion. Service functionality is usualy
delivered by unique URLs for Web delivered service and these URL will have different
request/response rates depending on the anount of data passed to and from the server and
the processing required on the server-side. For example, the request may have an entity body
associated with it as occurs with the submission of the @ntents of an HTML form to the
server using a POST method. This data associated with the request entity may result in an
increased delay in the complete request being received at the server. Thereistypicdly a
delay associated with procesgng the request on the server and this may vary depending on
what resource has being requested. The requested resource may involve some queriesto a
remote database for example and this may aso significantly increase the processgng time of
the request on the server before the reply is sent to the dient. Finaly, the reply will usually
contain content of some type and depending on the size, will again have an impad on when

the complete reply isreceived at the dient.

Thisimpliesthat:

» The anount of data sent with each request varies which may impad when the
complete request isrecaved at the server

» The processing time of arequest at the server varies depending on the resource
requested. The cntent of reply messages may be dynamically generated while
others may be returning data representing static objects such as images on the
server file system

e The anount of data sent with areply can vary for arequest, even for the same

resource, in the ase whereit is dynamically generated.

So the specification of performance parameters for services needs to flexible to take into
aacount the drcumstances of how the end-user interfaces with aservice(s) viaHTTP. As

was mentioned already, some derived parameters are more suitable to spedfic situations. For

3-36

example, stating that a GET request to aresource should returns the complete reply body in
one seaond from the time of isuing the request may not areasonable if the anount of datain
the reply body can vary from 1 Kb to 1 Mb. A more appropriate parameter in this case may
be that the entity download rate is greaer that 10 Kbps.

3.6 Conclusion

This Chapter first revisited the motivations of this dissertation and the primary objectives
defined in Chapter 1. The use of HTTP as a service delivery medhanism was investigated, as
were the potential sources of performance and availability issues. Lealing from this,
monitoring of HTTP delivered services and the parameters that such service monitoring
should capture were defined. Finally the issue of how to monitor services © asto be aleto

cgpture the avail ability and performance & perceived by the end-user was addressed.

3-37

4 DESIGN

4.1 Introduction

The previous chapter highlighted the requirements for monitoring Web delivered services
and identified parameters to capture and the options that exist to capture them. This chapter
will first examine the possble achitectures to support such service monitoring and then

discussthe design of the cmponents that enable such monitoring to take place

4.2 Architecturesfor Service Monitoring

Having determined the type of information that should be aptured for a service, the use of
that information can be varied. In most cases, information captured on a servicewill be used
by:

» The Customer to determineif a Serviceis performing as spedfied ina SLA

» The ASP provider to determine if the serviceit’s providing is meding the SLA

with it’s customer and possble to be alerted to service faults

A number of architedures to monitor Web delivered services will now be examined. The
strengths and wegknesses will be highlighted for each ane. Some achiteduresresult in a
more efficient and flexible Service monitoring and reporting. For example, if a proxy is used
to monitor aservice and has access to a SLA for that service a cetain amount of data
analysis can be done by the proxy and then appropriate ation taken depending on the result
of that analysis. If the proxy does not have the SLA it may have to return the information
logged for all HTTP requests to the party monitoring the service performance before
performance and availabili ty issues can be highlighted to the ASPand customer. Thisaso
resultsin agreater amount of data being transferred and analysed remotely, which may not
be avery scalable solution. This just highlights some of the choices that must be made when

deciding on how information is exchanged between a Customer, Service provider and athird

party

4-38

4.2.1 A Single ASP and Multiple Services

Thefirst architedure that is presented is where the austomer install s a proxy provided by the
Application Service Provider on the end-users hast. The web-browser must be @nfigured to
only use the proxy for requests to the ASP that provided the proxy, either by the use of a
proxy auto-config file? or manually configuring the browser to do this. Once the proxy is
initialised, it retrievesa SLA for the austomer from the ASP viaHTTP, which configures the
proxy to monitor specific performance and avail abili ty parameters of requests to the service
provided by the ASP. The proxy may analyse the information gathered locdly before
sending it to the Service Provider over HTTP or may just send all the logged information
with no analysis being done locally. The Service Provider when processes the data received
against the austomers SLA which it already has and verifies that the serviceis SLA
compliant. The Service Provider can then make areport available to the austomer on service
compliance A block diagram of this architecture is given next showing the interadion

between the Customer and Service Provider.

2 A proxy auto-config fil e allows the aitomatic configuration of HTTP proxies that optimal use is made of
network resources. It suppats feaures such automatic redirecion to a semndary proxy if a primary onefails,

load balancing between a number of proxies and the use of spedfic proxies for certain resources.

4-39

5. Application Service Provider
analyses data from prowxy and
reports to customer on SLA

werification
4y 4. Proxy returns data on
A%pe“é?g{:n availability and performance to
Brovides semrvice Provider at a period
defined in SLA
AN
2 Proxy downloads
SLAS for customer TR
E Service Provider define
3. As customers accesses T SLA Specification.
service, the proxy captures
information on service iy
availability and performance.
Froxy
HTTF requests and I
replies pass through b
client-side prosxy =
Browser
End-user

Figure 6: Service monitoring between Customer and a single Service Provider

This architecture will work for the scenario described. However it presents a number of
issues.

» The proxy only monitors aaccessto a single Service Provider at atime.

4-40

If other ASPs are required to provide the same type of SLA monitoring and
verification, an additional proxy will have to be deployed and configured by the
customer for each ASP adding to management and processng overhead.

Provides no way to compare performance of services provided by different ASPs.

Leading on from this architedure, theideaof SLA verificaion asaservice will be

considered. In this senario, the customer or the ASP may approach athird party to verify

that the serviceis SLA compliant. This has anumber of advantages.

Only one proxy needs to be deployed to monitor multiple services from multiple
ASPs. In this case, the party that deliversthe SLA Verificaion Servicewill
provide the proxy to the austomer

The Customer may prefer having an independent third party verify SLA
compliance

The SLA Verificaion Service Provider (SLAV SP) can monitor multiple service
from multiple providers and possibly provide information to the ASP that

provides each service

To enable athird party to provide this srvice, it needs acassto the SLA for the Customer

and performance and avail able data captured by the proxy that the customer uses. Clearly co-

operation is required between all partiesinvolved in the service including the Customer,
ASP and the SLAV SP

The ASP will still want to know how the service is performing for its Customers. However,

the ASP now has the option of taking the data lleded by the proxy and analysing it

directly, or amore flexible goproach would be for the SLAV SP to report on SLA

Compliance. Sincethe proxy can do a cetain amount an analysislocally, a mechanism may

also be introduced whereby oncethe proxy deteds that the service is not performing to
spedficaion, it dertsthe ASP. The ASP may then retrieve information from the SLAV SP to

diagnose the problem.

4-41

4.2.2 Multiple ASPsand Multiple Services
The difficulties that were highli ghted with the previous model have resulted in the following

architecture.

2. ASP provides
customer SLAS to the
party that will monitor

SLA compliance 6. Application Service

Froviders can analyses data

T. Application Service Provider
analyses data from prosxy and

Application onthe service to the customer
reports to customer and :
P - : - Senice from the SLAVSP on a regular
possibly provides information S : ; -
for ASP also rowlcer basis or if notified by the prosy
that the SLA has been violated
SLA Verification |1 Application
serice Provider [i I;Srii\;;lg:;er
, =
T T
1. Customer and
Application Service
Provider(s) define SLA
for each service that is
to be provided
3. Proxy downloads
customer SLA{s) for the 5. Proxy returns data on availability and
services that are to be performance to the SLA Yerification
moritored. Proxy Service Provider and possibly notifies
the ASP on SLA violation
HTTP requests and N 4.4 ¢
replies pass through = . As cuti omers accetsses
client-side prosy - Sevise D PIOXy.CapILios
information on service
availability and performance.
Erowser
End-user

Figure 7: Service Monitoring between Customer and a Multiple Service Providers

4-42

4.3 Architecturein Operation

The operational description of the achitecture will now be given:

The austomer approaches the ASP to provide aservice that will be delivered viathe
Web. They negotiate an appropriate SLA for performance and availability of the service
The Service Provider makes the SLA(S) that have been defined with the Customer
availableto the SLAV SPthat the austomer will use monitor the service. The SLA can be

made available viaHTTP or some other mechanism for the SLAV SP to acassit.

3. The SLAV SPaddsthe SLA to alist of monitored services for the austomer.

The proxy on the dient is configured to contact the SLAV SP when it starts up. It
identifies the austomer that is using the proxy to the SLAV SP and is returned a li st of
services to monitor. The DTD to describe the structure of this datais defined in
Appendix B.

Once the proxy deteds that a new service requires monitoring, it automaticdly retrieves
the gopropriate SLA for that service and configures the proxy to log information for the
service described in the SLA. The DTD to describe the structure of this SLA datais
defined in Appendix A.

The proxy will retrieve the list of services from the SLAV SP at a period that is
configurable. If the proxy cannot contad the SLAV SPB, it will attempt to reconnect to the
SLAV SPat a predefined period.

7. The proxy then retrieves a SLA for each servicethat was li sted.

10.

The proxy analyses the SLA and isimmediately configured to log information related to
the service.

Periodicaly the proxy will analyse the datalogged for each service and determine if

SLA complianceis achieved. The frequency and period of service usage that the analysis
runs for is determined by parameters contained in the SLA. The data is then summarised
and sent to the SLAV SPviaHTTP.

If the analysis determines that a SLA violation occurred, the proxy may notify the ASP.
The ASP can then retrieve the data that the proxy passed to the SLAV SP and use the

informationto dagnose the service being deli vered to the austomer.

4-43

4.3.1 Additionsand Modificationsto Services Monitored

The aility to make modifications to the Services that are monitored for a Customer operates

as follows:

1. Eachtimethelist of servicesit retrieved by the proxy from the SLAV SP, it chedks for
any modification since the last retrieval.

2. If the proxy detects a new service identified, which uniquely identified the Serviceto the
Customer, a SLA for that Serviceisretrieved from the SLAVSP. The servicelist will
contain the necessary information that all ows the wrred SLA to beretrieved.

3. If the proxy detects that an update to the SLA for a Service has occurred, anew SLA for
that serviceisretrieved from the SLAV SP. Thisis paossible & ead version of the SLA
for aparticular servicehas aunique contrad identifier.

4. If the mntrad identifier returned in the list of serviceis st to —1 for a particular service

identifier, the serviceis no longer monitored.

This architecture overcomes the inflexibility that the first architecure was prone to. What
has been highlighted in the previous sdion isthat a mmon method to describe Service
performance and availability as perceived by the end-user is necessary. Considering that the
SLAV SPmay be required to monitor multi ple Services delivered by multiple ASPs for

multiple Customers, a generic way to describe Servicesis of the utmost importance

4.4 Client-Side Proxy Design and Operation

Having now defined aflexible achitedure that can support monitoring of Web delivered
services, the design of the dient-side proxy that will capture the necessary datais described
in the foll owing sedion including the processof how information on arequest and its
response is captured.

4-44

4.4.1 Proxy Architecture Overview

The dient-side proxy that is used to analyse HTTP requests is based on Jigsaw. Jigsaw isthe
W3C reference server. Its main purpose isto demonstrate new protocol features asthey are
defined (such asHTTP/1.1), and to provide the basis for experimentationsin the field of

server software [20].

Jigsaw iswritten in Javato take advantage of threads and garbage @llection, which allows
for very dynamic and flexible server architecture. The primary reason that Jigsaw was
chosen for the dient-side proxy architedureisthat it is highly extensible and al ows what
are referred to as Frames, which control how Resources (objects exported and made
aacesgble to the outside world) are served using a spedfic protocol. It also alows what are
referred to asfilters, to be dtacdhed to the Protocol Frame (such asa HT TPFrame) of a
Resource. A Filter isafull Java Objed, associated to a Frame, which can modify the

Request and/or the Reply. Usually filters are cdled before and after serving a Resource

One of the frames that Jigsaw providesis a ProxyFrame. The Jigsaw ProxyFrame
implements a full -blown proxy module for Jigsaw so that it can be @nfigured to run as an
HTTP proxy. It relieson the W3C'sHTTP client side API to handle both request forwarding
and reply caching onthe end-users behalf. The dient side APl emulates the interactions with
the origin server that the end-user’ s browser would normally make. The HTTPD component

of Jigsaw accepts the requests from and sends replies to the end-user’s browser.
Filtersin Jigsaw can be dassified in two types, server-side and the client-side filters. Server-

sidefilters are goplied to requests to the whole server if it isrunning as a Web server or

proxy. A client sidefilter appliesto the use of W3C's HTTP client side API in Jigsaw.

4-45

Web
Browser

End-User host

requesb

Jigsaw Server

reply

|
HTTPD

reguest

ProxyFrame

W3C's HTTP
Client AFI

request

rep|

HTTP
Server

fequest
reply

e

HTTPQoS
Filter

Figure 8: Jigsaw Proxy Configuration with HTTPQoS Filter

L

Typically the ProxyFrame is configured to run with a CacheFilter to enable cading or

|CPFilter to all ow the proxy to support the Internet Caching Protocol. ICP is alightweight

message format used for communicaion among Web caches [21]. However, the function of

the proxy that was required in the situation here was to be @le to monitor HTTP requests

and replies 9 these filters were not enabled. A custom filter (HTTPQO0S), shown in the

previous diagram, was designed to enable the c@pturing of the gopropriate parameters

required as discussed in the Chapter 3 of this dissertation. The details of thisfilter will be

described next and foll owed by its use in the overall proxy architecture,

4-46

442 HTTPQoSFilter Architecture

HTTP requests from and replies from W3C's HTTP Client API

x 7 . HTTFException . . HTTFException 3 3
ingoingFilter exceptionFilter >’I——P‘—‘ outgoingFilter
request reguest

HTTPQos Filter

initialize

£ 5
e @
o =
o o
e W
m b=
=. =
=
= =
- =]

inputStream
outputStream

DBConnection

JDBC

Database

Figure9: HTTPQoS Filter Architecture Overview

The HTTPQoS filter is applied to run against the dient sside HTTP API that Jigsaw uses to
handle both request forwarding and reply caching. The HTTPQoSfilter can cach requests
before they leave the proxy and get repli es as they come back from the origin server. This
feaure of the HTTPQoSfilter is used whereby the ingoingFilter is called when the request is

4-47

sent to the server and the outgoingFilter is cdled when areply is returned from the server. If
an exception occursin ingoingFilter or outgoingFilter, an exception is caught and the
exceptionFilter is called. The use of HTTPQoSwithin Jigsaw for atypical HTTP request is
new presented.

4.4.3 Operation of the Jigsaw Proxy and the HTTPQoS filter

The use of the Jigsaw proxy with the HTTPQoS filter occurs as follows for atypicd HTTP
request.

1. The end-user’s browser is configured to pass al HTTP requests viathe loca proxy.
When the end-user enters a URL in their web-browser, the request is passed to the
HTTPD, which passed the request to the ProxyFrame.

2. The ProxyFrame then usesthe HTTP client side API to make the request to the target
server. Any requests that are passed to the dient side API will use the HTTPQoSfilter.
For the request, the ingoingFilter method of HTTPQoS gets cdled and it’s passd the
full request object.

3. Therequest is passed to RequestChecke, which determines if the request needs to be
monitored. RequestChecker examines the request’s URL and method and if thereisa
mapping in any of the SLAs that corresponds to the request URL and method, the
request should be monitored.

4. Asaming the request should be monitored, an instance of QoSParameters is created. A
unique identifier for the request is generated and assgned to a request header called
requestiD. Various data relating to the request is inserted into the instance of
QoSParameters.

5. Theinstance of QoSParameters is then inserted into a hash table indexed by the
requestID so that the instance of QoSParameters can be referenced later when the reply
isreceved.

6. If therequest has an autput stream associated with it, RequestDataMover is called and is
passed the instance of QoSParameters. It then analyses the output stream of the request.
RequestDataMover cdculates the anount of datain the output stream and the time taken

4-48

to transfer the data to the server. Thisinformation is gored in the instance of
QoSParameters that is passed to RequestDataMover.

7. If therequest has no autput stream, the ingoingFilter is exited.

8. Thetarget server then handles the request and areply is returned. The reply is passed

10.

11.

12.

13.

14.

15.

16.

back to the ProxyFrame viathe dient side API.

The outgoingFilter of HTTPQOoS gets passed the original request and reply that has just
been returned.

The request associated with the reply is passed to RequestChecke again to determine if
the reply needsto be analysed.

If RequestChecke indicates that the reply should be analysed, an instance of
QoSParameters is instantiated to the original QoSParameters instance that was <t in the
ingoingFilter. Thisis possble because the request was also passed to the outgoingFilter,
and the value of the request header, requestID can be acessed from the headers of the
request. Thisvaluesisthen used to retrieve the instance of QoSParameters from the hash
table that was populated in ingoingFilter.

QoSParameters is populated various parameters such as the time that the reply returned
and as the reply status code.

If the reply has an input stream associated with it, ReplyDataMover iscaled and is
pas=d the instance of QoSParameters. ReplyDataMover then analyses the input stream
of the reply and calculates the anount of data and the time taken to transfer the data from
the target server. QoSParameters is then passed to DBQoSLogger, which inserts the
information stored in the instance of QoSParameters into alocd database via
DBConnedion.

If the reply has noinput stream, QoSParameters is passed to DBQoS.ogger and inserted
into alocal database via DBConnedion.

The instance of QoSParameters is then removed from the hash table and the
outgoingFilter is exited and the full reply isreturned to the end-user viaHTTPD

If an HTTP exception occurs in the ingoingFilter or outgoingFilter, the exceptionFilter
get pas=d the request and HT TP exception that occurred. An instance of QoSParameters
isinstantiated with areference to the original QoSParameters instancethat was st in the
ingoingFilter. Thisis possble because the request is also passed to the exceptionFilter,

4-49

and the value of the request header, requestID can be acessed from the headers of the
request. This value isthen used to retrieve the instance of QoSParameters from the hash
table that was populated in ingoingFilter. The exception that occurred is inserted into
QoSParameters. QoSParameters is then passed to DBQoS_ogger and inserted into a
local database via DBConnedion. The instance of QoSParameters is then removed from
the hash table and the exceptionFilter is exited and an error message is returned to the
user viaHTTPD

Having described the interadion of HTTPQoSwith Jigsaw in detail, the purpose of the
individual classes used by HTTPQoSis listed in the following table.

4-50

Class

Description

RequestChecker

RequestChecker providesinformation on SLA mappings for all
servicesthat the austomer wants monitored. Thisinformationis used
by HTTPQoSto determine if a particular request should be
monitored.

SLAAgent

Retrieves the list of services from the SLAV SP for the Customer via
HTTP. The information returned isin XML which is parsesto
determineif any servicethat is currently monitored has been updated
or new services added since the previous retrieval. It logs the
retrieved information to the database if appropriate. SLAAgent
retrieves the service data & a spedfic period that’s defined in the
information downloaded. If the SLAV SPcannot be mntaded, the
SLAA gent will attempt a mnnedion again in a predefined period.

QoSParameters

Stored information on ead request that is to be monitored.

DBQoSL ogger

Logs the data contained in an instance of QoSParameters

RequestDataM over

Analyses the output stream associated with the message body of a
request. It cdculates the anount of data contained in the message

body and the time taken to upload the data to the target server.

ReplyDataM over

Analyses the input stream associated with the message body of a
reply. It cdculates the anount of data cntained in the message body
and the time taken to download the data from the target server.

Table 4: Table of Classes Used by HTTPQoS

4-51

45 Information Architecture

The overall information architecture of the framework will now be described. Thisincludes
the design of the SLA that can be used to describe the QoS requirements and cther
information as perceived by the end-user of aWeb delivered Service

45.1 SLA Design

The design of the SLA to describe aWeb delivered service, as percaeved by the end-user isa
key component to the overall framework. The SLA needsto be &le to capture information
relating to performance, availability, monitoring and trouble handling aspects of a Service
delivered viathe Web in ageneric way so that a SLA for any Web delivered service @n be
defined. The aeasthat are focused on in this disertation are general items, QoS aspeds,
trouble handling, and monitoring and reporting aspeds. The acounting or seaurity aspeds
of SLAs are not addres=ed.

4511 SLA Breakdown
A breakdown of how to represent the componentsin a SLA for aWeb delivered Servicewill

now be undertaken. Two main groups of parameters/subgroups are defined as follows.

Grouping Description

Genera Parameters Contains general items uch asidentifiersfor
the service information relating to

avail abili ty and performance requirements,
adion to take for trouble handling and

monitoring and reporting aspeds.

QoS Parameters Contains gecific QoS parameters for the

service being delivered

Table 5: SLA Parameter Groupings

4-52

These groupings can contain sub groupings or just parameters.

Parameter/Parameter Grouping

Description

SERVICE-ID

Uniquely identifies the service to the austomer

CONTRACT-ID

Uniquely identifies the SLA in conjunction with the
SERVICE-ID

SERVICE-NAME

Parameter to indicate the name of the Service

SERVICE-AVAILABILITY

Parameter to indicate required service avail ability

SERVICE-PERFORMANCE

Parameter to indicate required service performance

SLA-VIOLATION-ACTION

Grouping of parameters that define the adionto take if

an SLA violation occurs

SLA-REPORTING-INFO

Grouping of parameters concerning SLA reporting

SERVICE-REQUEST S-PER-
SECOND-LIMIT

Parameter to indicate number of requests per second to
the servicethat the SLA can be gplied to

SERVICE-ERROR-HEADER

Identifies the header to be returned by the service
provider in the Gase of a backend component fail ure
that resultsin a service failure but which returns a
vaid HTTP reply

Table 6: Table of General Parameter Groupings

Grouping Description
REFERED-OBJECTS-PERFORMAN CE- Grouping of parameters for requests to
PARAMETERS referred URLS

SERVICE-MAPPINGS

Grouping of service function parameters

Table 7: QoSParameter Groupings

4-53

Based on these two higher groupings, the overview of the structure of the SLA is asfollows:

« SLA

2

GEHERAL -PARAMETERS
» SERVICE-ID v/ ALLE=26
» CONTRACT-ID v/ ALLUE=13
¥ SERVICE-HAME */ALLUE=""ahaoo Mail Web based Email Service
 SERVICE-AVAILABILITY FECUIRED-A AILABILITY -PERCEMTAGE ..
 SERVICE-PERFORMANCE RECLIRED-COMPLIANCE-PERCEMTAGE. ..
SLA-VIOLATIOH-ACTION
:| = HOTIFY-SLA-CEHTER & CTICMN=MC
® HOTIFY-ASP ACTIOMN=%ES URL=pcE35.cs ..
SLA-REPORTING-IHFO
i| > REPORT-PERIOD /2L LIE=3000000000
> REPORT-FREQUEHCY /AL LIE=50000
> SERVICE-REQUESTS-PER-SECOHD-LIMIT v ALLE=10
= SERVICE-ERROR-HEADER. /2L |IE="" A HO-pAIL-SERYICE-ERROR
QO5-PARAMETERS

k

REFERED-OBJECTS-PERFORMAHCE-PARAMETERS
* REFERED-OBJECTS-PERFORMAHNHCE-PA...
SERVICE-MAPPINGS
:| x URL-PARAMETERS-MAPPING (3)

Figure 10: General parameter and QoS parameter groupings

4512 Assigning Parametersto Service Functionsin the SLA

The variationsin the interactions with HTTP for diff erent service functions, or what could be
considered HTTP resources, require aconsiderable anount of flexibility in how parameters
are assigned. Thiswas highlighted in the previous chapter where it was demonstrated that
some derived parameters are more goplicable to certain servicefunctions and a diff erent
number of parameters may want to be gplied to a particular service function. Assuming

that the following URL is requested in a Web delivered serviceto take the input of aHTML
form using a POST method

http:// webmail.cs.tcd.ie/sendMail

First we assgn this URL and the method asociated with it to a servicefunction name, in
this case, we'll cdl it Send Mail

4-54

Mapping Name = Send Mall
» URL = http://webmail .cs.tcd.ie/sendMail
* Method = POST

Then the parameters that we wish to measure for this mapping name ae specified
For example:

HEADER-RESPONSE-TIME 2000 MAX
This means that the parameter HEAD ER-RESPONSE-TIME should be a maximum value of
2000. There @an be more than 1 parameter per mapping however and we may wish to spedfy
the upload rate dso as follows:

ENTITY-UPLOAD-RATE 1 MIN

This ecifiesthat the rate that an entity is uploaded at should be aminimum of 1.

45.1.3 Describing Parameters Assigned to a Service Function using XML
Now lets representing the mapping abovein XML:

<URL-PARAMETERS-MAPPING Start of Mapping
MAPPING-NAME="Send Mail" The mapping name
MAPPING-ID="1"> The mapping identifier
<REQUEST
METHOD="POST" The request Method

URL="http://webmail.cs.tcd.ie/sendMail"/> The request URL

<PERFORMANCE-PARAMETERS > Start of Performance Parameters
<PERFORMANCE-PARAMETER Performance Parameter
NAME="HEADER-RESPONSE-TIME" Parameter Name
VALUE="2000" Parameter Value
FUNCTION="MAX"/> Function & end of Parameter
<PERFORMANCE-PARAMETER Performance Parameter
NAME="ENTITY-UPLOAD-RATE" Parameter Name

4-55

VALUE="1" Parameter Value

FUNCTION="MIN"/> Function & end of Parameter
</PERFORMANCE-PARAMETERS> End of Performance Parameters
<MONITOR-REFERED-OBIECTS VALUE="NQ"/> Monitor Referred objects or not

</URL-PARAMETERS-MAPPING> End of Mapping

For any servicethere will usually be multi ple mappings like the one described previoudly.

The complete DTD for aSLA isgivenin Appendix A.

4.5.2 Parameter Definition

The aility to derive parameters from the base parameters logged for each request was
described in the Chapter 3. It was decided that for flexibility, the queries that cdculated the
derived parameters should be defined using XML and then stored in the local database. This
has the advantage of making the framework flexible in that it is possble to define new

parameters without having to modify the source-code of the framework.

4.5.3 Database Design

A number of components in the HTTPQoS filter make use of an Oracle Lite database to
store and retrieve data. Thisincludes the storage of data wlleded for HTTP requests and
responses, SLASs that are downloaded from the SLAV SP and data on how to cdculate
derived parameters described previoudly.

4-56

Table Name Description

QOSParameters Used to store information relating to requests and
responses to and from Services that are monitored

SLAGenera Parameters Stores information of the general SLA parameter
grouping

SLAServiceMappings Stores the service mappings that are defined for eat
service

SL A ServiceM appingParameter Stores data on the derived parameters that are to be
monitored for each service mapping

SL AReferedObj ectsParameter Stores parameters that are to be monitored for referred
requests.

SLAParameterDesciptor Stores the information of how derived parameters are
cdculated

Table 8: Database Tables and Descriptions

46 Conclusion

This chapter initialy presented a number of architedures that could support QoS monitoring
for Web delivered Service. The overall design of the dient-side proxy was then discussd
including the HTTPQoSfilter that actually analyses HTTP requests and replies and logs
appropriate performance and avail abilit y information to a database. The information
architecture of the framework was featured next. Thisincluded the design of ageneric SLA
for Web delivered Servicesin XML and anumber of DTDs that define other data structures
to support the framework. Completing the Chapter, the database tables used to store and

retrieve datawere listed and their functions described.

4-57

5 IMPLEMENTATION

5.1 Introduction

This chapter discusses the implementation detail s of the framework. This includes the
implementation of the HTTPQoSfilter and the processof monitoring data streams to and
fromaHTTP server. Where gopropriate, source @de or pseudo-code will be used to explain
how feaures were actually implemented. Finally, the configuration of the HTTPQoSfilter
on Jigsaw will be discussed.

52 HTTPQOSFilter

A key concern was the isaue of the HTTPQoSfilter implemented was that the filter should
not have asignificant impact on end-user perceived performancefor requests that are passed
through the proxy. The HTTPQoSfilter is applied to run against the dient side HTTP AP
that Jigsaw usesto handle both request forwarding and reply caching. The HTTPQoSfilter
can cach requests before they |eave the proxy and get repli es as they come badk from the
origin server. This feature of the HTTPQoSfilter is used whereby the ingoingFilter is called
when the request is sent to the server and the outgoingFilter is called when areply is
returned from the server. If an exception accurs in the ingoingFilter or outgoingFilter, an

exception is caught and exceptionFilter is called.

The fact that different methods are cdl ed in the HTTPQoSfilter when arequest is sent or a
reply received all ows gecific parameters to be logged such as the time that a request was
made and the time that areply was received. The ingoingFilter gets passed the full request
objed so it can aacessthe header fields and the entity body associated with the request. The
ingoingFilter makes a cdl to a separate objed cdled RequestDataMover that recorded the
rate that the input stream associated with the request was returned from the server and passed
to the dient

5-58

The outgoingFilter get passed the request and reply objed. Again, a cdl to a separate object
cdled ReplyDataMover is made that recorded the rate that the output stream associated with
the reply was returned from the server and passed to the dient

The exceptionFilter method get passed the request and HTTP Exception that resulted in it
being cdl ed so the exceptionFilter that can catch any exceptions that occur in the processng
of arequest or reply.

A number of obstades had to be overcome in the design o the HTTPQoSfilter so that the

filter did not impact performance These will now be discussed.

521 Monitoring HTTP Message Content Length and Transfer Time

To monitor the performance of a Web delivered service, determining the rate of data
transferred from the end-user to the target HTTP server and vise-versa needs to be clculated
for both http requests and replies. The anount of datain a HT TP message body can usually
be determined from the Content-length header field. However, sometimes this field is not
propagated with information. For example, with chunked transfer-coding, the Content-length
header field is not used so some other method hasto be used to determine the information.

Thetime that the data transfer of the message body starts and finished needs to be recorded
also to determine how long the transfer takes. To add to the complexity of this, it hasto be
donein such away so as nat to impact performance Two separate dasses are use by
HTTPQoS filter to enable such monitoring to take place. These ae RequestDataMover and
ReplyDataMover and they monitor data transfer for HTTP requests and replies to and from a
target server respectively. The detail of how RequestDataMover is used by HTTPQoSis
worth examining asit highlights the dhall enges that monitoring performance present and

how HTTPQOoS overcomes impacting performance.

5-59

The mde below is taken from ingoingFilter in HTTPQoS

Line 1 detectsif the request hasin input stream to measure. Line 3 credes an instance of
PipedOutputStream named pout. Line 4 credes an instance of PipedinputStream, pin to
which pout is passed as a parameter. This eff ectively means that whatever is fed to pout will

automaticdly be passed to pin.

HTTPQoS.java

i f(request. hasCutput Stream()){
try {
Pi pedQut put St ream pout = new Pi pedQut put St ream() ;
Pi pedl nput Stream pin = new Pi pedl nput St rean{pout);

request. set Qut put Stream(pi n);

}
catch (Exception ex) {}

1
2
3
4
5. new Request Dat aMbver (request . get Qut put Strean(), pout, nyQOSPar anet er s) ;
6
7
8
9 }

Inline 5 anew instance of RequestDataMover in instantiated, the cnstructor of which is
passed the arrent requests input stream, the instance of PipedOutputStream pout and an
instance of QoSParameters. Finally in line 6, the requests output stream is passed pin. What
this effedively allowsisto monitor the request’ s output stream without interrupting it asit is
passd to the target server. Theimplicaion o this are that the time data flows can be
measured as can the anount of data transferred to the server. Additionally sincethe

RequestDataMover is threaded it does not cause the filter to block.

5-60

Now lets ook at what happens in RequestDataMover.

Once the mnstructor of RequestDataMover is called, the references to the aurrent requests
input stream, the instance of PipedOutputStream pout and an instance of QoSParameters are
assgned to global variables in RequestDataMover. Then start() is called which hasthe df ect

of calling run() which is examined further on the next page.

RequestDataMover.java
1. class RequestDat aMbver extends Thread {

2. InputStreamin = null;

3. Qut put Stream out = nul|;

4. QoSPar anet ers nyQoSPar anet er s;

5 Request Dat aMover (| nput Stream i n, Qutput Stream out, QoSPar anet ers qoSPar anet er s)
6 {

7. t hi s. nyQoSPar anet ers = goSPar anet er s;
8 this.in =in;

9 this.out = out;

10. set Nane(" Request Dat aMbver");

11. start();

12. }

5-61

In run(), first thetimeis recorded indicating the start time of the data stream(line 19). The

input stream, in, isrea at a byte per iteration, (line 20). This datais when written to out
(line 22). The anount of read dataistradced also (line 23). When there is no more data to
read, the end time isrecorded (line 25), asis the anount of data that has been transferred
(line 26).

Examining this closer, out in RequestDataMover is areference to pout in HTTPQoS and
pout is fed to pinin HTTPQOS. Since the request’ s output stream in HTTPQoSis passed pin,

this all ows the data can be monitored eff edively whil e transferring it to the server but not

interrupting the data stream.

RequestDataMover.java ..continued

13.
14,
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32. }

public void run() {

try {
byte buf[] = new byte[1];
int got = -1,

nyQoSPar anet er s. set Request BodySt art Ti me(System current TineM I 1is());
int contentlLenght = O;
while ((got = in.read(buf)) >= 0){
out.wite(buf, 0, got);
cont ent Lenght = contentLenght + 1;
}
ny QoSPar anet er s. set Request BodyEndTi me(System currentTimeM I 1is());
ny QSPar anet er s. set Request Cont ent Lengt h(cont ent Lenght) ;
} catch (I Cexception ex) ({
ex. printStackTrace();
} finally {
try { in.close(); } catch (Exception ex) {};
try { out.close(); } catch (Exception ex) {} ;

}

ReplyDataMover simil arly does the same the processfor arequest in HTTPQOoS except data

is passed in the opposite direction. The dfedivenessof the features described previously to

5-62

prevent blocking or data stream interruption will be determined in Chapter 6, when the

performance impad of the HTTPQoS filter is analysed.

5.3 DBQoSL ogger

Sincethe action of logging parameters to the database has the potential to become a
bottlenedk and impad performance, it was decided that the logging should be anon-blocking
implementation. To log an instance of QOSParameters, an instance of the dass
DBQoSLogger is created whose mnstructor is passed the instance of QoSParameters as

foll ows.

HTTPQoS.java

1. new DBQoSLogger (QSPar aneters);

DBQoSLogger extends the Tread classin Java, a separate thread of the dass DBQoSL.ogger

now handles the logging to the database, so blocking will no longer occur.

5.4 QoSParameters

The QoSParameters classis used to store information in the HTTPQoS filter as requests and
replies are made. For example in ingoingFilter of HTTPQoS, QoSParametersis used to store
information such as the time that the request is made, the request|D and various other
parameters that are used for monitoring. Once the information contained in QoSParameters
needsto be logged, it is passed to DBQoS_ogger, as described above.

HTTPQoS.java

1. QoSParaneters nmyQOSParaneters = new QoSParaneters();
2. MyQCSPar anet er s. set Request Ti me(System currentTineM I 1is());

3. MyQOSPar anet er s. set Request | D(t hi s. get Request | D()) ;

5-63

5.5

Configuring the HTTPQoS Filter on Jigsaw

Once the HTTPQoSfilter was realy to be mnfigured on the proxy, the JigAdmin toal, which
isthe alministration tool for Jigsaw, was darted up.

The diagram bel ow demonstrated the eay of configuration of the Jigsaw server. Here the
HTTPQoS filter is applied to ProxyProp, which is the Proxy Properties controll er for Jigsaw.
Oncethisis configured, the Jigsaw will use the filter for requests and replies that are passed

through it.

JigAdmin
u rhttpsaasver
= 2
Admin i E [@ |L@‘ EEE EEE ks
@f&r‘vg‘ %ﬁﬁﬁ%}ﬁi 3\3’&‘/ Properties | Realms
u r Properties - - oy
| Sorlots Class: arga3cjigsaw. prox ProxyProp
hitp-server dentif |
SocketConnectionFrop Y
connection . 5 % 47 % 20 %
last-modified
general ‘ 11 [&] Sep [2] 2000 [2]
=] [=] [=]
loging :C.
proxy max cannections 20
] a0 g0 120 160 200
sockettimeout (300000 |
] 250000 00000
proxySet [False
proxyHost |
proxyFort |
ardgwi3c ey protocol hitp hitpgos HTTR QoS
Commit ‘l

Figure 11: HTTPQoS Filter Configuration using the JigAdmin Tool

5-64

5.6 Summary

This chapter primarily discussed the implementation details of how HTTPQoS filter
monitors data streams to and from aHTTP server. Finaly the process of configuring the
HTTPQoS filter on Jigsaw was covered hriefly.

5-65

6 EVALUATION AND CONCLUSION

6.1 Introduction

The objedive isthis chapter isto evaluate the design and flexibility of the overal framework
and the usefulnessof the information that it can provide. Following this, a cnclusion o the
completed disertation will be given and passible future work that could be undertaken to

improve and extend the framework.

6.2 Evaluation Overview

This evaluation first examines a cae study that was conducted using the framework to
monitor a Web delivered email service. The am of thiswasto demonstrate how the
framework could be goplied to monitor aWeb delivered service and provide useful

information an availability and performance from the user-perspective.

6.3 Case Study: Yahoo Mail

It was dedded that to properly evaluate the framework, a demonstration of its capabilities
should be undertaken against an adual Web delivered service. The target servicethat was
chosen was Y ahoo Mail. Yahoo Mail is afree Web based email service. It allowsits
subscribers to receive and send email viathe Internet using a standard Web browser as an
interface to the service. It supports all the traditional feaures that typicd mail user-agents
possessincluding the caabili ties to send, receive, attach files to messages, search for

messages etc, except the interfaceis anorma Web browser.

6.3.1 Test Environment

The test environment that was used to demonstrate the service onsisted of a host with a
Web browser and the Jigsaw proxy running with the HTTPQoS filter enabled. The Web
browser was configured to pass al requests viathe proxy. The Internet connection wasvia a

dialup-account to alocd ISPover a 56kbps modem. It was expected that the performance of

6-66

this connection would exhibit some variationsin the responses and perhaps connection
fail ures would accur which would highlight the monitoring capabilities of the proxy. Of
course, dropping the Internet connedion could simulate failures connecting to the serviceif

required to generate appropriate logs.

The services list and the SLA for the service which will be discussed next, were placed ona
Web server running on the same host that the proxy runs on. Thiswould not be the typicd
scenario in that the proxy would normally be mnfigured to conned to the SLAV SP, identify
the austomer and be returned the gopropriate list of servicesto manage. For ead service the
appropriate SLA would then be retrieved if not already stored locdly. However it was
sufficient in this case to use the local Web server and static XML fil es to store the services

list and SLAs 0 asto demonstrate the operation of the framework.

6-67

6.3.2 SLA Defined for Case Study

For the definition of the SLA, if wasfirst necessary to examine how Yahoo Mail acually
implements the delivery of the serviceusing HTTP. The typicd fedures that are offered in
the service needed to be assgned to servicefunctions. The service functions created for the

case study were asfollows:

6.3.2.1

Service Function URL Method
Login to Mall http://login.yahoo.com/config/login? POST
Read Mall http://us.f1.mail.yahoo.com/ym/ShowL etter? GET
Compose Mail http://us.f1.mail.yahoo.com/ym/Compose? GET
Delete Mall http://us.f1.mail.yahoo.com/ym/ShowFol der? POST
Send Mall http://us.f1.mail.yahoo.com/ym/Compose? POST
Seach Mail Form http://us.f1.mail.yahoo.com/ym/Seach? GET
Seach Mail Results | http://us.f1.mail.yahoo.com/ym/Seach? POST
Logout of Mail http://us.f1.mail.yahoo.com/ym/Logout? GET
Attach to Mall http://us.f1.mail .yahoo.com/ym/Attachments? GET

Table 9: Yahoo Mail Service Mappings

It isworth noting that the same URL and method can provide the diff erent servicefunctions.
Theimplication of thiswill be discussed later.

For the next step, parameters were assgned to each service mapping. For the purpose of the
case study, three derived performance parameters were created to monitor which consisted

of the following.

HEADER-RESPONSE-TIME Response time in milli semnds to receive areply header
from time that request is snt

ENTITY-DOWNLOAD-RATE | Transfer rate in Kbps of reply body from service

ENTITY-UPLOAD-RATE Transfer rate in Kbps of request body to service

Table 10: Table of Derived Parametersfor Case Study

6-68

For the service mappings that were defined previously, parameter values were assgned. For

example, Read Mail had the foll owing performance values pedfied:

Parameter Vaue Function
HEADER-RESPONSE-TIME 2000 MAX
ENTITY-DOWNLOAD-RATE 2 MIN

Table 11: Parameters Assigned for Read Mail Service Mapping

This gates that the header response time for areguest to the Read Mail service function
should be amaximum of 2000 and entity download rate of the message body greder that 2.

It isworth dbserving that these assgned parameters are appropriate for the Read Mail
service function but may not be gopropriate for other service functions. For example,
assgning HEAD ER-RESPONSE-TIME to the Send Mail service function may not really
provide any useful information. Thisis because if the request has alarge anount of datato
transfer it will impact the time that the full request is received by the server which will in
turn impad the time that the reply is returned to the dient. However it is possible to define a
new derived parameter that could be used for service functions that use the POST method.
For example, it could be possble to define HEAD ER-RESPONSE-TIME-AFTER-
REQUEST-BODY which measures the time from when arequest body stream ends and the
time the reply header returns. Again this highli ghts the flexibility of the framework in that
new derived parameters can be defined from the base parameters when needed. Thelist of
base parametersis defined in Appendix F for reference.

For the Yahoo Mail case study, the required avail ability and performance parameters were

defined as follows:

Minimum Service Availabili ty Percentage Required 98%

Minimum Service Performance Percentage Required 95%

Table 12: Table of Required Availability and Performance for Case Study

6-69

Looking at how the SLA is defined, each SLA has a service identifier and contract identifier.
The combination of the serviceidentifier and contrad identifier uniquely identifies the
service to the proxy. The service identifier and contract identifier are defined at the start of
each SLA asfollows.

Y ahoo Mail Service ID Yahoo Mail Contract ID

Taml version="1.0" encoding=" : -3
<SLa=
<GENEEAL-PARAWMETERS
<SERVICE-ID VALTUE="100"f>

<CONTEACT-ID VATTTE="1"/=
<SEEVICE-NAME VATLTTE="Yahoo Mail Web based Email Zervice: Caze Study"/=

Figure 12: ServiceID and Contract ID in SLA

Various other parameters were defined in the SLA but are not be mentioned here due to the
fad that there are too many to list. However the adua SLA created is avail able in Appendix
C for reference The SLA created is based onthe DTD defined in Appendix A.

6-70

6.3.3 ServicesList

Having defined the SLA, a serviceslist for the proxy to download was created. The service
filesindicates to the proxy what servicesit should retrieve SLAsfor. For the ase study, the
only service listed was the Y ahoo Mail service, which was assgned aservicelD of 100 and

a ontrad ID of 1.

The ¥Yahoo Mail Service ID
\ The Yahoo Mail Contract ID

=tzml version="1.0" encodig="TTTF-8""=>
<SERVICES SERVICES-REFRESH-PERICD=
=SERVICE-SLA-INFO=
<SERVICE-ID VALUE="100"/~
<CONTRACT-ID VALTUE="1"/>
</SERVICE-SLA-INFO=
</SERVICES>

300000"=

Table 13: Service File Specifying the Yahoo Mail service

6.3.4 SLA and ServicesList Deployment

Once the SLA and services list was created, they were placed in a subdirectory of the Web
server. The respective fil es were named 100-1.xml and services.xml. First the proxy retrieves
the servicesfile and parses the xml to determine what servicesit should have SLAsfor. For
each service listed that the proxy does not have an SLA for already, it will retrieve afile with
anaming convention o servicel D-contractl D.xml, servicel D and contradID being extracted

from the service and contrad identifier in the service list.

6.3.5 Proxy Initialisation
The proxy was configured to conned to the local Web server for the serviceslist and SLAS.
Once the proxy was initialised it conneded to the Web server and downloaded the services

6-71

file. It then retrieved the gpropriate SLA files, in this case 100-1.xml was the only one that
had to be retrieved. Thisfile then configured to proxy to log requests to Y ahoo Mail .

6.3.6 Service Monitoring
For the purpose of the test a series of requests were made to the Yahoo Mail service over the
period of one hour. The intention was to use the service & one would normally do but to try

to aacessall the service mappings gecified in the SLA so asto generate data on usage.

6.3.7 Resultsof Case Study

For this case study, a spedfic dassnamed SLAReporter was designed to demonstrate the
cgpabiliti es of the framework. It analysed the data logged by the proxy and the mntents of
the SLA for the serviceto determine if overal availability and performance ae met. It then
generated aHTML report containing the results of the analysis of the Gase study. The

contents of the report for the case study are @ntained in Appendix E.

6.3.8 Report Analysis
S_AReporter was configured to run after an hour of serviceusage to Yahoo Mail. Based on
the SLA and the data logged for the period of service usage, areport was generated. The
report contained in Appendix E provided abreakdown of a number of different aspeds of
the servicewhich include:

» ServiceUsage

* ServicePerformance

* ServiceAvailability

The report provides overall performance and avail ability of the service mmpared with what
was pedfied inthe SLA. The service usage is a so broken down by ead mapping to
indicating which are most frequently accessed service functions. Detailed performance
information for each parameter is given including the minimum, average and maximum

values observed. Then the overall availability of the serviceis reported and where fail ures

6-72

occur, the type of error isindicated. Finaly, the service avail ability is broken down for each

mapping spedfied in the SLA.

6.4 Strengthsand Weaknesses of Framework
Having previously highlighted the usefulnessof the information that the framework can

capture, the strengths and weaknesses of the framework will now be discussed.

If onelooks at the information that the report generated, monitoring at the server-side muld
cgpture some of thisinformation. For example, service usage statistics can be aptured by
the Service Provider, as can HTTP server errors. There ae anumber of reasons why the
framework developed dff ers a significant benefit over server-side monitoring.

» Server-side monitoring cannot detect connedion attempts to a servicethat fail dueto
network related problems. With client side monitoring, these fail ed connedions are
possbleto detect and record.

» Thelevel of detailed monitoring that isimplemented by the proxy may be a
significant overhead to do on the server side for al customers. It may also be
unnecessary, as particular customers may not require such monitoring. The
framework developed all ows detailed monitoring for selected Customers.

* The Service Provider may not wish to implement monitoring for a small number of
customers, or may not have the expertise to do so. This framework provides a means
for the Service Provider to offer SLA monitoring, verificaion and feedback viaa
Third party (SLAV SP).

e Thefact that aThird party can be goproached to verify SLA compliance may be
preferable to the Customer than depending on the Service Provider.

Beside the alvantages that the framework off ers over server-side monitoring, it isalso a

more flexible gproach over other posshble methods of client side monitoring.

» If aService Provider wereto dfer client side monitoring of service performance
and availability, a specific proxy would have to be installed by the Customer for

6-73

every other Service Provider that off ered the service dso. The framework
presented here dl ows a single proxy to monitor multiple services provided by
multiple ASPs

» Comparing the performance of different Service Providers with a ommon
methodology is posdgble with this framework. Thiswould be useful to determine

which Service Provider performs better from the austomer perspedive.

The benefits of the framework developed have now been highlighted. It is apparent that it
offers greaer levels of flexibility that server-side monitoring by the Service Provider or

other methods of client side monitoring for SLA Verification.

The use of the framework during the case study raised one significant isaue.

» Themethod of how mappings are defined in SLAs is not flexible enough. For the
prototype implementation, the cmparison that the RequestChecke classdoes of
request URL s against mappings was smply a start of string comparison of the
request against all the service mappings for the Customers. This may present
problems as some Service Providers pass parameters via the POST method that
indicate to the target service what service function is being accessed. Since these
parameters do not appear in the query section of the URL, a string comparison

cannot be doneto determine the service function the user is aacessng.

Overall the framework off ers aflexible achitecture for monitoring Web delivered services

from the user-perspective.

6.5 CONCLUSION

6.5.1 Achievements
A fina review of the objedives of the disertation and what was actuall y achieved will now

be examined. The primary objective of this dissertation was to develop aframework that

6-74

could support QoS monitoring and Service Level Agreaments for Web delivered Services.
This objective had threeseparate parts defined as follows:
* To design a dient side proxy that supports automatic configuration, monitoring and
logging of avail ability and performance parameters as perceived by the end user of
Web delivered services
* Thedesign of aSLA template spedficdly for Web delivered services that can map
these parameters cgptured by the proxy in ameaningful way so that it is possbleto
spedfy how a servicedelivered over HTTP should perform, from the end-user
perspective
e Toimplement SLA verification and feadback to the Service Provider and Customer

so as to notify them of SLA compliance

6-75

An overall architecture had to be designed for ead o the previous parts to work together.

This architecture was discussed in Chapter 4 and is $hown in the next diagram

Application

Service
Frowider
=,

SLA Werification
Serice Provider

Application
Service
Provider

Prosgy

HTTP

BErowser

End-user

Figure 13: Framework Architecture

Once this architedure was decided on, the first part of the objedive mnsisted of developing
aproxy that could capture the necessary parametersto be &le to monitor Web delivered
services from the end-user perspedive. This part of the framework was successully
implemented and provides a valuable piece of work that can be extended in the future. It
must be mentioned that the extensibility of the Jigsaw server fadli tated the development of

this part of the framework immensely.
The next part wasto develop a SLA template that could encompassthe QoS requirements of

aWeb delivered service & perceived by the end-user. This necesstated examining the types

of parameters that required monitoring for Web delivered services. There was a certain

6-76

amount of linkage between the SLA design and the capabil ities of the dient-side proxy as it
was necessary to be aleto capture spedfic parametersif they were to be specified in the
SLA. The use of derived parameters made the SLA design alot more flexible asit alowed
parameters to be defined from the base parameters that the proxy captures. Again this part of

the framework was successully completed.

Thethird and final part of the primary objective was to investigate SLA verificaion and
feedback to the austomer and Service Provider. This part of the primary objective was only
partialy implemented due to time restrictions. The SLAReporter classimplemented abasic
verification and feedbad system for the austomer, which was discussed previously in the

case study.

6.5.2 Future Development and System I mprovements

The work completed in this dissertation was a proof-of-concept. It investigated the

posshili ty of cgpturing performance and availabili ty information of Web delivered services
from the end-user perspedive using a dient-side proxy. It also investigated how to specify
SLAs for Web delivered services that could encompassthe QoS requirements as perceived
by the end-user. These components became part of an overall framework that enable a
Service Provider and the Customer to spedfy the performance and avail abil ity requirements
of aserviceusing ageneric SLA. Oncethe SLA isdefined it can be passed to athird party,
which provides SLA verification and feedbadk to the Service provider and the Customer.

These features were succesgully implemented but improvements and extensions could be

made to anumber of aspeds of the framework. These include:

* Theiswe of what information to send data badk to the SLAV SP and Service Provider
needs further investigation including what processng should be done locally by the
proxy and what should be done remotely.

» A more flexible method is nealed that the current implementation to spedfy the

mappings of service functions. The basic URL matching that was implemented in the

6-77

prototype could be improved and made more flexible than the aurrent URL sub-string
matching

The use of adatabase to store the SLAs and other Xml structured data may have been
inappropriate and perhaps inefficient as it necesstated parsing various XML structures
and the inserting them into database tables. Thisinformation had then to be acessed
later by using SQL. One option would be to store the serviceslist and SLAs on thefile-
system of the host the proxy runs on instead of alocd database. Then XQL could be
used for dataretrieval and filtering of the SLAs and services list. The bases parameters
that are a@ptured for ead request and reply could aso be written to aflat filein XML
format and again XQL* could be use to calculate derived perameters.

6.5.3 Final Conclusions

The onclusions that can be drawn from the body of reseach completed in this dissertation

are:

The use of a dient-side proxy for monitoring can be dfedivein capturing the
performance and availability information of Web delivered services as perceived by the
end-user.

Client side monitoring offers the aili ty to deted problems that cannot be detected on the
server side such as fail ed attempts to conned to the service, due to network problems for
example.

Client side monitoring offers a more scadable solution for monitoring services. The
overhead of monitoring to such detail on the server side may be excessve and impact the
service. It may also be unnecessary as not al customers may require such detailed
monitoring.

The framework suggested does not require significant configuration by the Service
Provider to alow Customersto use aThird Party for SLA verification (SLAV SP). As

! The XQL Pattern syntax is smple yet provides powerful query capabilities. Its purposeis to identify a subset

of an XML document based on ancestry chains, wil dcards, and qualifiers such as attribute value tests. The

syntax is concise and modeled after familiar methods for directory navigation. As a string-based syntax it

can reside within attribute values, script languages, and URLs .[22]

6-78

such, the monitoring can take place independently of the Service Provider once the SLA
has been given to the SLAV SP. Of courseif the Service Provider requires feedbad from
the Customer, the necessary hooks will have to be put in pgacefor the Service Provider
to use.

Being able to measure the QoS of a Web delivered service & perceived by the end user
alows truly meaningful ServicelLevel Agreementsto be defined between the Service
Provider and the Customer.

The framework suggested in this disertation is aflexible achitedure that al ows
multiple services from multiple service providers to be monitor using the same proxy
while dso alowing feedback to the service provider via aSLAV SP.

Thelocation of where SLA verificaion and analysis are done can be distributed in the

framework suggested, asthe SLA and service usage data ae avail able to the dient side-

proxy.

6-79

7/ REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Microsoft, “ Software & a Service The Opportunity for Applicaion Service
Providers” , 2000;

http://www.microsoft.com/| SN/downl oads/A SP%20partnership%20WP.doc
QoSForum, “The need for QoS ” , 1999;

http://www.qosforum.com/tech resources.htm

QoSForum, “The IP FAQ QoS Forum White Paper ” , 1999;
http://www.qosforum.com/docs/fag/fag.pdf

N. Bhatti and R. Friedrich, “Web Server Support for Tiered Services” , Deamber
1999; http://www.hpl.hp.com/techreports/1999/HPL -1999-160.html

Adgilent, “Agilent Firehunter ServiceModels and Baselining ” , 1999;
http://www.firehunter.com/li brary/measure2.htm

D. Caswell and S. Ramanathan, “Using Service Models for Management of Internet
Services” , 1999; http://www.hpl.hp.com/tedreports/1999/HPL -1999-43.html

G. D. Rodosek and T. Kaiser, “Determining the Avail abilit y of Distributed
Applications” , vol. Integrated Network Management V: Chapman & Hall, 1997,
S. Adler, “The Slashdot Effect ” , 1998;
http://ssadler.phy.bnl.gov/adler/SDE/SlashDotEff ect.html

N. Kausar, B. Briscoe, and J. Crowcroft, “A charging model for Sessons on the

Internet,” presented at Fourth IEEE Symposium on Computers and Communications,
Sharm El Sheikh, Egypt, 1998.

J.W. Hong, J. S. Kim, and J. T. Park, “A CORBA-based Quality-of-service
Management Framework for Distributed Multimedia Services and Applicaions” in
Proc. of IFIP/IEEE International Workshop on Distributed Systems: Operations and
Management, 1998;

F. Siqueira and V. Cahill, “Quartz: Supporting QoS-Constrained Servicesin
Heterogeneous Environments” . Trinity Coll ege Dublin, January 1999;
ftp://ftp.cs.tcd.ie/pub/tedh-reports/reports.99/TCD-CS-1999-01.pdf

7-80

[12] H. Packard, “Service Level Agreaments - An Emerging Trendin the Internet
Services Market ” , 1998; http://www.firehunter.com/li brary/agreement.htm

[13] R. Friedrich, “Providing QoS for E-BusinessProviding QoS for E-Business
Applications” , October 1998;
http://mww.hpl.hp.com/org/isal/reseach/slides/ispcon98.PDF

[14] FORM, “Engineering a Co-operative Inter-Enterprise Management Framework

Supporting Dynamic Federated Organisations Management ” : The FORM
Consortium, 2000;

[15] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Leg “Hypertext Transfer Protocol -- HTTP/1.1” : The Internet Society, June 1999;
http://www.ietf.org/rfc/rfc2616.txt

[16] P. Flynn, “Frequently Asked Questions about the Extensible Markup Language ” ;
http://www.ucc.ie/xml/

[17] JavaSoft, “Java XML Tutoria ” , 2000; http://java.sun.com/xml/tutoria_intro.html

[18] M. Asawa, “Measuring and Analyzing Service Levels. A Scdable Passve Approach
", 1998; http://www.hpl.hp.com/tedreports/97/HPL -97-138.html

[19] “Wilbur - HTML 3.2” : Web Design Group, 1997;
http://www.htmlhel p.com/reference/wil bur/block/form.html

[20] W3C, “Jigsaw Frequently Asked Questions” , 2000;
http://mww.w3.org/Jigsaw/Doc/FA Q.html

[21] D.WesselsandK. Claffey, “ICP and the Squid Web Cadhe " in IEEE Journal on
Sdected Areas In Comnunication, vol. 16: IEEE, 1998, pp. 345-357;

[22] WS3C, “Querying and Transforming XML,” , 1998.

7-81

8 APPENDICES

8.1 APPENDIX A

811 SLADTD

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT SLA (GENERAL-PARAMETERS, QOS-PARAMETERS)>

<!ELEMENT GENERAL-PARAMETERS (SERVICE-ID, CONTRACT-ID, SERVICE-NAME, SERVICE-
AVAILABILITY, SERVICE-PERFORMANCE, SLA-VIOLATION-ACTION, SLA-REPORTING-INFO,
SERVICE-REQUESTS-PER-SECOND-LIMIT, SERVICE-ERROR-HEADER)>

<!ELEMENT SERVICE-ID EMPTY>
<!ATTLIST SERVICE-ID
VALUE CDATA #REQUIRED

<!ELEMENT CONTRACT-ID EMPTY>
<!ATTLIST CONTRACT-ID
VALUE CDATA #REQUIRED

<!ELEMENT SERVICE-NAME EMPTY>
<!ATTLIST SERVICE-NAME
VALUE CDATA #REQUIRED

<!ELEMENT SERVICE-AVAILABILITY EMPTY>
<!ATTLIST SERVICE-AVAILABILITY
REQUIRED-AVAILABILITY-PERCENTAGE CDATA #REQUIRED

8-82

<!ELEMENT SERVICE-PERFORMANCE EMPTY>
<!ATTLIST SERVICE-PERFORMANCE
REQUIRED-COMPLIANCE-PERCENTAGE CDATA #REQUIRED

<IELEMENT SLA-VIOLATION-ACTION (NOTIFY-SLA-CENTER, NOTIFY-ASP)>

<!ELEMENT NOTIFY-SLA-CENTER EMPTY>
<!ATTLIST NOTIFY-SLA-CENTER

ACTION CDATA # IMPLIED

URL CDATA #IMPLIED

<!ELEMENT NOTIFY-ASP EMPTY >
<!ATTLIST NOTIFY-ASP
ACTION CDATA #IMPLIED
URL CDATA #IMPLIED

<!ELEMENT SLA-REPORTING-INFO (REPORT-PERIOD, REPORT-FREQUENCY)>

<!ELEMENT REPORT-PERIOD EMPTY>
<!ATTLIST REPORT-PERIOD
VALUE CDATA #REQUIRED

<!ELEMENT REPORT-FREQUENCY EMPTY>
<!ATTLIST REPORT-FREQUENCY
VALUE CDATA #REQUIRED

<!ELEMENT SERVICE-REQUESTS-PER-SECOND-LIMIT EMPTY >
<!ATTLIST SERVICE-REQUESTS-PER-SECOND-LIMIT
VALUE CDATA #REQUIRED

8-83

<!ELEMENT SERVICE-ERROR-HEADER EMPTY>
<!ATTLIST SERVICE-ERROR-HEADER
VALUE CDATA #REQUIRED

<IELEMENT QOS-PARAMETERS (REFERED-OBJECTS-PERFORMANCE-PARAMETERS, SERVICE-
MAPPINGS)>

<!ELEMENT REFERED-OBJECTS-PERFORMANCE-PARAMETERS (REFERED-OBJECTS-PERFORMANCE-
PARAMETER+)>

<!ELEMENT REFERED-OBJECTS-PERFORMANCE-PARAMETER EMPTY>
<IATTLIST REFERED-OBJECTS-PERFORMANCE-PARAMETER

NAME CDATA #REQUIRED

VALUE CDATA #REQUIRED

FUNCTION (MAX | MIN) #REQUIRED

<!ELEMENT SERVICE-MAPPINGS (URL-PARAMETERS-MAPPING+)>

<!ELEMENT URL-PARAMETERS-MAPPING (REQUEST, PERFORMANCE-PARAMETERS, MONITOR-
REFERED-OBJECTS)>
<!ATTLIST URL-PARAMETERS-MAPPING

MAPPING-NAME CDATA #REQUIRED

MAPPING-ID CDATA #REQUIRED

<IELEMENT REQUEST EMPTY>
<IATTLIST REQUEST
METHOD (GET | HEAD | POST | PUT | DELETE | TRACE | CONNECT) #REQUIRED
URL CDATA #REQUIRED

8-84

<IELEMENT PERFORMANCE-PARAMETERS (PERFORMANCE-PARAMETER+)>

<!ELEMENT PERFORMANCE-PARAMETER EMPTY>
<IATTLIST PERFORMANCE-PARAMETER

NAME CDATA #REQUIRED

VALUE CDATA #REQUIRED

FUNCTION (MAX | MIN) #REQUIRED

<!ELEMENT MONITOR-REFERED-OBIECTS EMPTY>
<!ATTLIST MONITOR-REFERED-OBIECTS
VALUE CDATA #REQUIRED

8-85

8.2 APPENDIX B

821 SERVICESDTD

<?xml version="1.0" encoding="UTF-8"?>
<!-- This DTD is used to describe the services that the proxy should monitor -->
<!ELEMENT SERVICE-SLA-INFO (SERVICE-ID, CONTRACT-ID)>
<!ELEMENT SERVICES (SERVICE-SLA-INFO)>
<!-- SERVICES-REFRESH-PERIOD is the time in milliseconds that the SLA Agent rechecks services-->
<!ATTLIST SERVICES
SERVICES-REFRESH-PERIOD CDATA #REQUIRED
>
<!-- SERVICE-ID is the service identifier -->
<!ELEMENT SERVICE-ID EMPTY>
<!ATTLIST SERVICE-ID
VALUE CDATA #REQUIRED
>
<!-- CONTRACT-ID is the contract identifier -->
<!ELEMENT CONTRACT-ID EMPTY>
<!ATTLIST CONTRACT-ID
VALUE CDATA #REQUIRED

8-86

8.3 APPENDIXC

8.3.1 SLA for Yahoo Mail Case Study

<?ml version="1.0" encoding="UTF-8"?>
<SLA>
<GENERAL-PARAMETERS>
<SERVICE-ID VALUE="100'/>
<CONTRACT-ID VALUE="1"/>
<SERVICE-NAME VALUE="Y ahoo Mail Web based Email Service Case Study"/>
<SLA-VIOLATION-ACTION>
<NOTIFY-SLA-CENTER ACTION="NQO"/>
<NOTIFY-ASPACTION="NO"/>
</SLA-VIOLATION-ACTION>
<SERVICE-AVAILABILITY REQUIRED-AVAILABILITY-PERCENTAGE="98"/>
<SERVICE-PERFORMANCE REQUIRED-COM PLIANCE-PERCENTAGE="95"/>
<SERVICE-REQUESTS-PER-SECOND-LIMIT VALUE="10"/>
<SERVICE-ERROR-HEADER VALUE="YAHOO-MAIL-SERVICE-ERROR"/>
<SLA-REPORTING-INFO>
<REPORT-PERIOD VALUE="3000000000/>
<REPORT-FREQUENCY VALUE="900000/>
</SLA-REPORTING-INFO>
</GENERAL-PARAMETERS>
<QOS-PARAMETERS>
<REFERED-OBJECTS-PERFORMANCE-PARAMETERS>
<REFERED-OBJECTS-PERFORMANCE-PARAMETER NAME="HEADER-RESPONSE-TIME"
VALUE="2000" FUNCTION="MAX"/>
<REFERED-OBJECTS-PERFORMANCE-PARAMETER NAME="ENTITY-DOWNLOAD-RATE"
VALUE="1" FUNCTION="MIN"/>
</REFERED-OBJECTS-PERFORMANCE-PARAMETERS>
<SERVICE-MAPHANGS>
<URL-PARAMETERS-MAPANG MAPANG-NAME="Login to Mail" MAPANG-ID="1">
<REQUEST METHOD="POST" URL="http://login.yahoo.com/config/login?'/>
<PERFORMANCE-PARAMETERS>
<PERFORMANCE-PARAMETER NAME="HEADER-RESPONSE-TIME"
VALUE="2000' FUNCTION="MAX"/>
<PERFORMANCE-PARAMETER NAME="ENTITY-DOWNLOAD-RATE"
VALUE="2" FUNCTION="MIN"/>
</PERFORMANCE-PARAMETERS>
<MONITOR-REFERED-OBJECTS VALUE="NO"/>
</URL-PARAMETERS-MAPRANG>

<URL-PARAMETERS-MAPHANG MAPANG-NAME="Read Mail" MAPANG-ID="2">
<REQUEST METHOD="GET" URL="http://us.f1.mail.yahoo.com/ynVShowL etter?'/>

8-87

<PERFORMANCE-PARAMETERS>
<PERFORMANCE-PARAMETER NAME="HEADER-RESPONSE-TIME"
VALUE="2000' FUNCTION="MAX"/>
<PERFORMANCE-PARAMETER NAME="ENTITY-DOWNLOAD-RATE"
VALUE="2" FUNCTION="MIN"/>
</PERFORMANCE-PARAMETERS>
<MONITOR-REFERED-OBJECTS VALUE="NO"/>
</URL-PARAMETERS-MAPRANG>

<URL-PARAMETERS-MAPRANG MAPANG-NAME="Compose Mail" MAPANG-ID="3">
<REQUEST METHOD="GET" URL="http://us.f1.mail.yahoo.com/ym/Compose?'/>
<PERFORMANCE-PARAMETERS>
<PERFORMANCE-PARAMETER NAME="HEADER-RESPONSE-TIME"
VALUE="5000" FUNCTION="MAX"/>
<PERFORMANCE-PARAMETER NAME="ENTITY-DOWNLOAD-RATE"
VALUE="1" FUNCTION="MIN"/>
</PERFORMANCE-PARAMETERS>
<MONITOR-REFERED-OBJECTS VALUE="NO"/>
</URL-PARAMETERS-MAPANG>

<URL-PARAMETERS-MAPHNG MAPHANG-NAME="Delete Mail* MAPANG-ID="4">
<REQUEST METHOD="POST" URL="http://us.f1.mail.yahoo.com/yn/ShowFolder?'/>
<PERFORMANCE-PARAMETERS>
<PERFORMANCE-PARAMETER NAME="HEADER-RESPONSE-TIME"
VALUE="5000' FUNCTION="MAX"/>
<PERFORMANCE-PARAMETER NAME="ENTITY-DOWNLOAD-RATE"
VALUE="1" FUNCTION="MIN"/>
</PERFORMANCE-PARAMETERS>
<MONITOR-REFERED-OBJECTS VALUE="NO"/>
</URL-PARAMETERS-MAPHNG>

<URL-PARAMETERS-MAPRANG MAPANG-NAME="Send Mail" MAPPING-ID="5">
<REQUEST METHOD="POST" URL="http://us.f1.mail.yahoo.comVym/Compose"/>
<PERFORMANCE-PARAMETERS>
<PERFORMANCE-PARAMETER NAME="ENTITY-UPLOAD-RATE"
VALUE="1" FUNCTION="MIN"/>
</PERFORMANCE-PARAMETERS>
<MONITOR-REFERED-OBJECTS VALUE="NO"/>
</URL-PARAMETERS-MAPRNG>

<URL-PARAMETERS-MAPANG MAPANG-NAME="Seach Mail" MAPANG-ID="6">
<REQUEST METHOD="GET" URL="http://us.f1.mail.yahoo.com/ynvSeach"/>
<PERFORMANCE-PARAMETERS>
<PERFORMANCE-PARAMETER NAME="HEADER-RESPONSE-TIME"
VALUE="5000" FUNCTION="MAX"/>

8-88

<PERFORMANCE-PARAMETER NAME="ENTITY-DOWNLOAD-RATE"
VALUE="1" FUNCTION="MIN"/>
</PERFORMANCE-PARAMETERS>
<MONITOR-REFERED-OBJECTS VALUE="NO"/>
</URL-PARAMETERS-MAPHNG>

<URL-PARAMETERS-MAPANG MAPANG-NAME="Seach Mail Results' MAPPING-ID="7">
<REQUEST METHOD="POST" URL="http://us.f1.mail.yahoo.com/ym/Seach"/>
<PERFORMANCE-PARAMETERS>
<PERFORMANCE-PARAMETER NAM E="HEADER-RESPONSE-TIME"
VALUE="5000' FUNCTION="MAX"/>
<PERFORMANCE-PARAMETER NAME="ENTITY-DOWNLOAD-RATE"
VALUE="2" FUNCTION="MIN"/>
</PERFORMANCE-PARAMETERS>
<MONITOR-REFERED-OBJECTS VALUE="NO"/>
</URL-PARAMETERS-MAPRNG>

<URL-PARAMETERS-MAPRANG MAPANG-NAME="Logaut of Mail" MAPANG-ID="8">
<REQUEST METHOD="GET" URL="http://us.f1.mail.yahoo.com/ym/ym/Logaut?'/>
<PERFORMANCE-PARAMETERS>
<PERFORMANCE-PARAMETER NAME="HEADER-RESPONSE-TIME"
VALUE="5000" FUNCTION="MAX"/>
<PERFORMANCE-PARAMETER NAME="ENTITY-DOWNLOAD-RATE"
VALUE="2" FUNCTION="MIN"/>
</PERFORMANCE-PARAMETERS>
<MONITOR-REFERED-OBJECTS VALUE="NQO"/>
</URL-PARAMETERS-MAPRANG>

<URL-PARAMETERS-MAPANG MAPANG-NAME="Attach to Maill" MAPANG-ID="9">
<REQUEST METHOD="GET" URL="http://us.f1.mail.yahoo.com/ym/Attachments?'/>
<PERFORMANCE-PARAMETERS>
<PERFORMANCE-PARAMETER NAME="ENTITY-UPLOAD-RATE"
VALUE="1" FUNCTION="MIN"/>
</PERFORMANCE-PARAMETERS>
<MONITOR-REFERED-OBJECTS VALUE="NO"/>
</URL-PARAMETERS-MAPRANG>
</SERVICE-MAPHANGS>
</QOS-PARAMETERS>
</SLA>

8-89

84 Appendix D

8.4.1 ServiceDescriptor for Yahoo Mail Case Study

<?xml version="1.0" encoding="UTF-8"?>
<SERVICES SERVICES-REFRESH-PERIOD="300000">
<SERVICE-SLA-INFO>
<SERVICE-ID VALUE="100"/>
<CONTRACT-ID VALUE="1"/>
</SERVICE-SLA-INFO>
</SERVICES>

8-90

8.5 Appendix E

8.5.1 SLA Report for Yahoo Mail Case Study:

SLA Report

Report Details
Service Compliance Summary

ServiceUsage
Service Performance
Service Avail ahili ty

Parameter Definitions

Report Detail s

Date of Report: Sat Sep 9 22:00:13 GMT 2000

Service Usage From: Sat Sep 9 21:00:13 GMT 2000 to Sat Sep 9 2:00:13GMT 2000
ServiceName: Y ahoo Mail Web based Email Service: Case Study

ServicelD: 100

Contract ID: 1

Service Compliance Summary
B Performance Complies as Spedfied in SLA? NO [Breadown]
B Availability Complies as Spedfied in SLA? NO [Bregkdown]

8-91

Service Usage
Total Number of Requeststo Service 31

Service Usage Breakdown By Mappings:

B Mapping Name: Login to Mall

B Number of Requests: 2

B Percentage of Total Requeststo Service 6%
B Mapping Name: Read Mall

B Number of Requests: 3

B Percentage of Total Requeststo Service 9%
B Mapping Name: Compose Mall

B Number of Requests: 7

B Percentage of Total Requeststo Service 22%
B Mapping Name: Delete Mail

B Number of Requests: 8

B Percentage of Total Requeststo Service 25%
B Mapping Name: Send Mall

B Number of Requests: 3

B Percentage of Total Requeststo Service 9%
B Mapping Name: Seach Mall

B Number of Reguests: 2

B Percentage of Total Requeststo Service 6%
B Mapping Name: Seach Mail Results

B Number of Reguests: 1

B Percentage of Total Requeststo Service 3%
B Mapping Name: Logout of Mail

B Number of Requests: O

B Percentage of Total Requeststo Service 0%
B Mapping Name: Attach to Maill

B Number of Requests: 5

B Percentage of Total Requeststo Service 16%

8-92

Service Performance
Required Percentage Performance Compliance Spedfied in SLA: 95%
Performance Compli ance Percentage in Period: 80%

B Service Performance Breakdown By Mapping

B Mapping Name: Login to Mall
B Parameter Name: HEAD ER-RESPONSE-TIME [Definition]
B Required Vaue of <2000
B Percentage of Requests Compliant: 100%
B Parameter Thresholds Observed
B Minimum: 1211
B Average: 1236
B Maximum: 1261
B Parameter Name: ENTITY-DOWNLOAD-RATE [Definition]
B Required Vaue of >2
B Percentage of Requests Compliant: 100%
B Parameter Thresholds Observed
B Minimum: 12
B Average: 12
B Maximum: 12
B Mapping Name: Read Mall
B Parameter Name: HEAD ER-RESPONSE-TIME [Definition]
B Required Vaue of <2000
B Percentage of Requests Compliant: 33%
B Parameter Thresholds Observed
B Minimum: 1871
B Average: 2274
B Maximum: 2751
B Parameter Name: ENTITY-DOWNLOAD-RATE [Definition]
B Required Value of >2

8-93

B Percentage of Requests Compliant: 33%
B Parameter Thresholds Observed
B Minimum: 1
B Average: 1
B Maximum: 2
B Mapping Name: Compose Mall
B Parameter Name: HEAD ER-RESPONSE-TIME [Definition]
B Required Vaue of <5000
B Percentage of Requests Compliant: 83%
B Parameter Thresholds Observed
B Minimum: 2201
B Average: 3031
B Maximum: 6811
B Parameter Name: ENTITY-DOWNLOAD-RATE [Definition]
B Required Vaue of >1
B Percentage of Requests Compliant: 100%
B Parameter Thresholds Observed
B Minimum: 1
B Average: 1
B Maximum: 2
B Mapping Name: Delete Mail
B Parameter Name: HEAD ER-RESPONSE-TIME [Definition]
B Required Vaue of <5000
B Percentage of Requests Compliant: 100%
B Parameter Thresholds Observed
B Minimum: 2041
B Average: 2152
B Maximum: 2311
B Parameter Name: ENTITY-DOWNLOAD-RATE [Definition]
B Required Value of >1
B Percentage of Requests Compliant: 75%

8-94

B Parameter Thresholds Observed
B Minimum: 0
B Average 1
B Maximum: 2
B Mapping Name: Send Mall
B Parameter Name: ENTITY-UPLOAD-RATE [Definiti on]
B Required Value of >1
B Percentage of Requests Compliant: 100%
B Parameter Thresholds Observed
B Minimum: 2
B Average 3
B Maximum: 3
B Mapping Name: Seach Mall
B Parameter Name: HEAD ER-RESPONSE-TIME [Definition]
B Required Vaue of <5000
B Percentage of Requests Compliant: 100%
B Parameter Thresholds Observed
B Minimum: 2031
B Average: 2086
B Maximum: 2141
B Parameter Name: ENTITY-DOWNLOAD-RATE [Definition]
B Required Vaue of >1
B Percentage of Requests Compliant: 100%
B Parameter Thresholds Observed
B Minimum: 1
B Average: 1
B Maximum: 2
B Mapping Name: Seach Mail Results
B Parameter Name: HEAD ER-RESPONSE-TIME [Definition]
B Required Vaue of <5000
B Percentage of Requests Compliant: 0%

8-95

B Parameter Thresholds Observed
B Minimum: 6871
B Average: 6871
B Maximum: 6871
B Parameter Name: ENTITY-DOWNLOAD-RATE [Definition]
B Required Value of >2
B Percentage of Requests Compliant: 0%
W Parameter Thresholds Observed
B Minimum: 1
B Average: 1
B Maximum: 1
B Mapping Name: Logout of Mail
B Parameter Name: HEAD ER-RESPONSE-TIME [Definition]
B Required Vaue of <5000
B Percentage of Requests Compliant: 0%
B Parameter Thresholds Observed
B Minimum: 0
B Average: 0
B Maximum: O
B Parameter Name: ENTITY-DOWNLOAD-RATE [Definition]
B Required Value of >2
B Percentage of Requests Compliant: 0%
B Parameter Thresholds Observed
B Minimum: 0
B Average: 0
B Maximum: O
B Mapping Name: Attach to Maill
B Parameter Name: ENTITY-UPLOAD-RATE [Definiti on]
B Required Vaue of >1
B Percentage of Requests Compliant: 0%
B Parameter Thresholds Observed

8-96

B Minimum: O
B Average: 0

B Maximum: O

Service Avail ability
Required Percentage Availability Compliance Spedfied in SLA: 98%
Total Number of Fail ed Requests to Service: 2
Percentage of Requests that Succeded: 94%
B Bred&kdown o Failure Type
B Server Error: 0
B SeviceError: 0
B HTTPException: 2
Service Availabili ty Breakdown By Mappings:
B Mapping Name: Login to Mail
B Number of Failed Requests: 0
B Percentge of Tota Fail ed Regquests: 0%
B Breadown By Failure Type
B Server Error: 0
B ServiceError: 0
B HTTPException: O
B Mapping Name: Real Mail
B Number of Failed Requests: 0
B Percentge of Tota Fail ed Regquests: 0%
B Breadown By Failure Type
B Server Error: 0
B SeviceError: 0
B HTTPException: O
B Mapping Name : Compose Mall
B Number of Failed Requests. 1
B Percentge of Tota Fail ed Requests: 50%
B Breadown By Failure Type

8-97

B Server Error: 0
B ServiceError: 0
B HTTPException: 1
B Mapping Name: Delete Mail
B Number of Failed Requests: 0
B Percentge of Tota Fail ed Requests: 0%
B Breadown By Failure Type
W Server Error: 0
B ServiceError: 0
B HTTPException: O
B Mapping Name : Send Mail
B Number of Failed Requests. 0
B Percentge of Tota Fail ed Regquests: 0%
B Breddown By Failure Type
B Server Error: 0
B SeviceError: 0
B HTTPException: O
B Mapping Name : Search Mail
B Number of Failed Requests: 0
B Percentge of Tota Fail ed Requests: 0%
B Breadown By Failure Type
B Server Error: 0
B SeviceError: 0
B HTTPException: 0
B Mapping Name: Search Mail Results
B Number of Failed Requests: 0
B Percentge of Tota Fail ed Requests: 0%
B Breddown By Failure Type
B Server Error: 0
B SeviceError: 0
B HTTPException: O

8-98

B Mapping Name : Logout of Mall
B Number of Failed Requests: 0
B Percentge of Tota Fail ed Regquests: 0%
B Breadown By Failure Type
B Server Error: 0
B SeviceError: 0
B HTTPException: O
B Mapping Name: Attach to Maill
B Number of Failed Requests. 1
B Percentge of Tota Fail ed Requests: 50%
B Breadown By Failure Type
B Server Error: 0
B ServiceError: 0
B HTTPException: 1

Parameter Definitions

B Parameters Name: HEAD ER-RESPONSE-TIME

B Definition: Response time in milli seconds to receive areply header from time
that request is sent

B Parameters Name: ENTITY-DOWNLOAD-RATE
B Definition: Transfer rate in Kbps of reply body from service

B Parameters Name: ENTITY-UPLOAD-RATE
B Definition: Transfer rate in Kbps of request body to service

8-99

8.6 Appendix F

8.6.1 Tableof ParametersLogged HTTPQoS Filter

Parameter Name Description

RequestID Therequest ID

requestURL The URL of the request

requestReferer The Referrer URL of the request
requestRefererlD Therequest ID of the Referrer URL
requestTime Thetime of the reply is being sent to the server
requestHasOutputStream Indicatesif the request has an output stream
requestContentL ength The content length of the request body
requestContentType The mntent type of the request

requestM ethod The request Method

requestBodyStartTime

The start time of reading of the request output stream

requestBodyEndTime

The end time of reading the request output stream

requestException Any exception that the request raises

replyTime Thetime of the reply is received from the server
replyStatus The HTTP status code of the reply

replyHasl nputStream Indicatesif the request has an input stream
replyContentLength The content length of the reply body
replyContentType The Content type of the reply

replyBodyStartTime

The start time reading of the reply input stream

replyBodyEndTime

The end time reading of the reply input stream

userAgent The user-agent of the Web browser making the request
servicelD The serviceidentifier that the request was logged for
contracdID The ontrad identifier that the request was logged for
mappinglD The mapping identifier that the request was logged for

serviceErrorHeader

The value of the service aror header returned by ASP

8-100

8-101

