

Collaborative Ad-hoc Applications

Paul O Connell BA BAI

A dissertation submitted to the University of Dublin,

in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science

September 2000

. II

Declaration

I declare that the work described in this dissertation is, except where

otherwise stated, entirely my own work and has not been submitted as an

exercise for a degree at this or any other university.

Signed: ___________________

 Paul O Connell

 September 2000

. III

Permission to lend and/or copy

I agree that Trinity College Library may lend or copy this dissertation

upon request.

Signed: ___________________

 Paul O Connell

 September 2000

. IV

Abstract

The proliferation of mobile hand-held devises and the development of ad-hoc

networking technologies has opened the possibility for users of these devises

to partake in collaborative applications with other mobile users. The sharing of

resources and information within these groups will maximise the experience

for all group members. This will require a user of the system to grant access

to local resources to other users, some of whom may be semi or completely

unknown. The major issue that affects the user of the collaborative ad-hoc

application is how can they grant access to a user who is completely unknown

to them.

People are able interact with others who are semi or completely unknown to

them in many every day situations, the extent to which they interact is

governed by the concept of trust. Trust is a complicated model that allows

people to balance the risk of the unknown against the perceived benefits of

interaction. The aim of this dissertation is to investigate if a model for trust

production can be integrated into a computer access control mechanism to

manage interaction with anonymous users.

A mechanism will be developed that will produce a trust value for any user

based on the details of previous interactions between the two or

recommendations. An dynamic trust-based access control system, which

binds minimum trust levels to access right will then be used to verify if an

unknown user is trusted enough to gain access to the users resources. A

blackjack card game that uses a trust-based access control system to assign

roles to users was implemented in java, JINI technology was used to

distribute the application.

. V

Acknowledgements

I would like to thank my supervisor Dr Christian Jensen for his advice and

help during this year. I would also like to express special thanks to all the

members of the MSc class for their help and support during the year.

. VI

Table of Contents

1 INTRODUCTION.. 1

1.1 INTRODUCTION .. 1

1.2 PROPOSED SOLUTION... 2

1.3 AIMS .. 2

1.4 ROADMAP .. 3

1.5 SUMMARY.. 3

2 LITERATURE REVIEW.. 4

2.1 INTRODUCTION .. 4

2.1.1 Overview.. 4

2.2 TRADITIONAL SECURITY APPROACHES .. 4

2.2.1 Access Control... 5

2.2.2 Authentication Processes... 8

2.2.3 Summary .. 10

2.3 TRUST MANAGEMENT SYSTEMS .. 10

2.3.1 PolicyMaker... 11

2.3.2 KeyNote ... 12

2.3.3 Summary .. 13

2.4 TRUST .. 13

2.4.1 Introduction ... 14

2.4.2 Properties and Operations .. 15

2.4.3 A Framework for Trust .. 16

2.4.4 Trust Values... 18

2.4.5 Summary ... 19

2.5 REPUTATION .. 19

2.5.1 Recommendations.. 19

2.7 CONCLUSION.. 20

3 DESIGN... 21

3.0.1 Terminology... 21

3.1 GENERAL OVERVIEW ... 21

3.2 REQUIREMENTS ... 23

. VII

3.2.1 Service Discovery and Connection Process .. 23

3.2.2 The Request Process.. 23

3.2.3 Voting Process... 23

3.2.4 Trust-based Access Control Process ... 24

3.2.5 Group formation process... 24

3.3 DESIGN OF SYSTEM COMPONENTS .. 24

3.3.1 Join Protocol Design ... 25

3.3.2 Trust-Based Access Control System Design.. 26

3.3.3 GUI and Group Interaction Design... 31

3.4 SUMMARY.. 33

4 IMPLEMENTATION.. 34

4.1 TECHNOLOGIES .. 34

4.1.1 JINI ... 34

4.1.2 XML ... 35

4.2 FRAMEWORK INTERFACE IMPLEMENTATION.. 36

4.2.1 The Join Protocol Implementation .. 37

4.2.2 Graphical User Interface Implementation .. 39

4.2.3 Trust Management Interfaces.. 40

4.3 TRUST BASED ACCESS CONTROL SYSTEM IMPLEMENTATION 41

4.3.1 Dynamic Access Control Policy Object... 41

4.3.2 Trust Result Object .. 43

4.3.3 Client Trust System Implementation.. 43

4.4 SAMPLE APPLICATION IMPLEMENTATION .. 44

4.4.1 Trust-Based Access Control .. 45

4.4.2 Blackjack Group Formation.. 46

5 EVALUATION... 50

5.1 EVALUATION OF FRAMEWORK... 50

5.1.1 The Join Protocol .. 50

5.1.2 TrustManagementInterface ... 51

5.1.3 ServiceManagerInterface .. 51

5.1.4 GUIInterface.. 51

5.2 EVALUATION OF SAMPLE APPLICATION... 51

. VIII

5.2.1 Trust-Based Access Control Results.. 52

5.3 SUMMARY.. 54

6 CONCLUSIONS .. 55

6.1 DISSERTATION REVIEW.. 55

6.2 FUTURE WORK .. 56

6.3 APPLICATION OF TRUST BASED ACCESS CONTROL.. 56

6.3.1 Intelligent doors... 56

6.4 SUMMARY.. 57

7 BIBLIOGRAPHY .. 58

8 APPENDIX ... 60

8.1 APPENDIX A: JINI ... 60

. IX

Table of Figures

FIGURE 1: AUTHORISATION PROCESS OVERVIEW.. 5

FIGURE 2: X.509 CERTIFICATION AUTHORITY HIERARCHY 8

FIGURE 3: RELATED TRUST CATEGORIES 18

FIGURE 4: HIGH-LEVEL OVERVIEW OF THE MAIN PROCESSES.. .. 22

FIGURE 5: THE JOIN PROTOCOL 25

FIGURE 6: TRUST-BASED ACCESS CONTROL SYSTEM 27

FIGURE 7: ACCESSING THE ROLE SPECIFIC GUI 32

FIGURE 8: IMPLEMENTATION OVERVIEW.. 37

FIGURE 9: TMPERMISSION OBJECT.. 42

FIGURE 10: TMPERMISSION VERIFYUSER() SEUDO CODE... 42

FIGURE 11: GENERIC ACCESS CONTROL POLICY STATEMENT [XML FORMAT] 43

FIGURE 12: TRUST RESULT XML FORMAT. 43

FIGURE 13: TRUST SYSTEM IMPLEMENTATION OVERVIEW... 44

FIGURE 14: BLACKJACK GROUP FORMATION OVERVIEW 47

FIGURE 15: GENERIC ACCESS CONTROL STATEMENT FOR THE PLAYER ROLE 53

FIGURE 16: THE CHANGE IN A USERS TRUST VALUE OVER A NUMBER OF SEESIONS 54

FIGURE 17: THE JINI ARCHITECTURE 60

. 1

1 Introduction

1.1 Introduction

The information revolution has redefined the way we communicate, conduct

business and disseminate knowledge. The proliferation of mobile devises and

networking technologies over this period has made it easier for users of these

devises to interact and share information. The technology now exists that will

allow users of these mobile devices, to form into collaborative ad-hoc groups

[Jensen]. Group working allows users to share knowledge, pool resources

and achieve results quicker than by individual processing. The synergy

achieved by group applications is possible because users of the group are

prepared to share and contribute resources and information.

In traditional groupware applications access to group is control by a

predefined list of members managed by an administrator. The members of the

group are prepared to share their resources because they trust that the

administrator of the group has already established a level of trustworthiness in

the users in places in the groups access list. The key requirement for the

success of the groupware application is that all the users “trust” the

administrator to verify members for access. This access control system is

based on the assumption that a member trusts the administrator to verify that

all existing group members will behave correctly when granted access to the

member’s local resources.

This dissertation rejects this basic assumption because the transfer of control

to the administrator means the user now has no control over who accesses

his own resources. In a modern computer system this complete lack of control

over one’s own resources is unacceptable. A mechanism that will allows a

user to maintain access over their own resources and still interact in group

applications is the focus of this dissertation.

. 2

1.2 Proposed Solution

People use trust relationships to determine how to interact with known and

unknown user every day. It enables to cooperation between people, provides

a mechanism for lowering access barriers and enables complex transactions

between groups of users. Without trust there would be a loss of efficiency and

dynamism. Marsh quotes Golembiewski and McConkie in his thesis “Perhaps

there is no single variable which so thoroughly influences interpersonal and

group behaviour as does trust ” [Marsh].

Collaborative ad-hoc applications extend on groupware applications, but do

not require an administrator to manage who can access the group. This new

application type allows members to join groups in an ad-hoc dynamic manner.

The lack of any administrator means the members of the group must manage

access to the group by themselves. The members cannot rely on any third

party to verify the trustworthiness of a user. The user of the collaborative ad-

hoc application needs to take control of the trust formation process. The users

must be provided with a mechanism that will allow them to establish a trust

value for users. In order to establish a strategy for interaction with a user

who’s intent is unknown, the user needs to able to answer the question “Why

do I trust this user to perform this action? ”.

1.3 Aims

The aim of this dissertation is to develop, design and implement a trust-based

access control system for use within a collaborative ad-hoc application

environment. The dissertation will first focus on the development of a generic

framework that will allow users to form, join and exit collaborative ad-hoc

groups. The second step will focus on the design and implementation of a

new security mechanism for use in the collaborative ad-hoc application

environment. This will involve the creation of a dynamic access control system

and a system that can calculate the trustworthiness of an individual. When

. 3

these two steps have been completed, a sample application will be

implemented to test the behaviour of the trust model developed.

1.4 Roadmap

Chapter 2 is a literature survey it examines the existing mechanism for

computer access control and the concept of trust. Chapter 3 outlines the

specification and design of the system framework. Chapter 4 outlines the

implementation route and the technologies used in the system. Chapter 5

presents the evaluation of the framework system and discusses the results

from the sample application. Chapter 6 gives an evaluation of the thesis and

contains concluding remarks on the work carried out for this dissertation. It

also discusses the direction of future work in this area. A bibliography and

appendix then presented.

1.5 Summary

This chapter has introduced the traditional mechanism for access control used

in group applications and identified the fundamental problem that users must

rely on the system administrator to verify the trustworthiness of the users they

interact with. The chapter identified the not being able to directly establish

trust in a user is a major problem in modern open networks. An alternative

solution has been proposed that will allow the user to establish direct trust in

another user. The solution calls for the development and implementation of a

trust-based access control system.

. 4

2 Literature Review

2.1 Introduction

This chapter will introduce the various issues and concepts that are relevant

to the design and implementation of the dynamic trust-based access control

system. The aim is to identify the shortcomings of existing systems used for

access control, and justify why a new system should be developed. The

chapter will then examine the concept of trust and examine a framework for

the production of trust.

2.1.1 Overview

This literature review is organized as follows. The first section starts by over

viewing the operation of authentication and access control mechanisms used

in traditional security. The third section discusses the trust management

concept, which has been proposed as a solution for access control in large

distributed systems, the PolicyMaker and Keynote trust management systems

will be introduced. The fourth section introduces the concept of trust and

examines the properties and operations that can be applied to it, a framework

for trust production is also discussed. The fifth section discusses the use

reputation and recommendations. The final section gives an overview of the

topics discussed in this review and summaries the key design issues and

points that should be apply to the design and implementation of the

collaborative ad-hoc application framework and trust-based access control

system.

2.2 Traditional Security Approaches

All security systems must be able to authorise a user to perform certain

actions. This involves the basic ability to correctly authenticate a user in the

. 5

system and then assign them some level of access control to resources within

that system. The question that the security system must answer is “ Does a

user U have the rights to do action A on resource R? ”. A high-level view of

the authorisation process can be seen below.

1. The user presents an identifier to the authentication system to be

verified.

2. The access control process then checks to see if the user has access

rights to the requested resource.

3. The access control process determines if the users pre-approved

actions allow the user to execute the current requested action.

4. Access to the resource is granted or denied.

Figure 1: Authorisation Process Overview

This is the basic four-step process that all security systems use. The rest of

this section will focus on how the authentication and access control processes

have been developed and adapted to handle large-scale distributed systems.

2.2.1 Access Control

Access control systems enforce the policy that the manager of a resource

applies to parties that requests access to that resource. The policy is relevant

to a specific resource and normally refers to who can have access to the

resource and what type of access they can have. The flexibility of the access

control mechanism in terms of how it defines who can access the resource

and secondarily what actions they can then take is the key to its success.

Authentication

Process

Access

Control

Process
User identifier

Action Resource

Verified?
Result

. 6

Two different access control systems are presented in the following sections.

The scalability and flexibility of the Access Control List (ACL) system and the

Role Based Access Control (RBAC) system will be examined [Herzberg].

2.2.1.1 Access Control Lists

The most traditional mechanism for access control is the Access Control List.

This system binds a user’s identifier directly to the action that the user is

approved to perform. The administrator by inserting the binding indicates that

he trusts the user to behave correctly in performing the actions.

There are a number of issues associated with the operation of access control

lists. The fundamental problem relates to the flexibility of the system. Every

time a new user has to be added, or a privilege granted or revoked the

administrator has to directly modify the list. The ACL system does not scale

well. As the number of user accessing the resource grows the administrator

has a greater problem managing the file. When the administrator inserts or

modifies a binding into the ACL, a statement is being made about the

trustworthiness of the user. The level of trust in the user may change over

time, but unless the ACL binding is changed it represent a static trust

statement. When a binding is inserted into the ACL, the administrator does

not state the reasons why the user is trusted to correctly perform the actions

granted.

Access control lists have been used in large-scale distributed systems

because the concept is familiar but there are a number of fundamental

reasons why they are unsuitable to this type of application.

The access control list framework relies on the absolute authentication the

requester. In a distributed system authentication of the user is possible but not

to the same extent as in an operating system.

. 7

Access control lists do not scale well. If applied in the ad-hoc application

environment where there is potential to interact with a large number of users,

maintaining an individual mapping of identities to access rights is impractical.

2.2.1.2 Role Based Access Control

In the role based access control framework users are granted access to roles

based on the administrator’s perception of their experience, competence, and

the trustworthiness [Kuhn]. Each role in the framework has an associated set

of access rights.

The system still directly maps names to roles and has the same limitation of

the ACL system in this respect. The major improvement in flexibility for the

administrator comes in the management of access rights of roles. When the

administrator adds or removes an action right from a role the effect is

immediate. He does not have to modify the privileges of every user on an

individual basis as in the ACL system. In situation where there are a large

number of users all having the same access rights, the role based system is

highly efficient when modifications have to be made.

Another benefit of associating roles to access right is that roles tend to have

overlapping responsibilities and privileges. This allows roles to inherit the

rights of lower roles and create a role hierarchy. This removes the need to

specify common actions repeatedly across different roles.

The main advantage of the role based framework is that once the role

hierarchy has been developed and the correct actions have been associated

with the role, the main administrative action is reduced to adding and revoking

users between roles. The time that is needed to develop the initial role

hierarchy and access rights might be longer than that of the ACL system.

. 8

2.2.2 Authentication Processes

The correct identification of the requesting user is a corner stone on which

most authorisation systems operate. In a small-scale system it is possible for

an administrator to assign a unique identifiers to each user of the system, but

this solution does not scale well. As the number users in a system increase

the administrator has to assign more identifiers and commits more resources

to the management of the authentication system.

Public key cryptography is used in large-scale systems to create a unique key

for every user. The system guarantees authentication of a message signed

using the system. We will examine two public key encryption based systems

that are used for authentication in distributed systems.

2.2.2.1 Distributed Key Management

The scalability problem of having administrators managing their own list of

keys lead to the development of a global key management system. The

fundamental change that allowed this system to develop was that system

administrators accepted a trusted third parties statement that a key belonged

to a user. The trust third parties, known as Certificate Authorities (CA) create

X.509 certificates, which bind a users details to a public key and includes a

reference to the CA. The X.509 key system works on a global scale because

it is replicated. A Certification Authority exists in each country. A Master

Certification Authority connects each Certification Authority at a higher level. A

X.509 certificate works across country borders because a trust chain can be

created via the Master CA.

Figure 2: X.509 Certification Authority Hierarchy

Master CA

CA1 CA

2

User

X

User

Y

. 9

The trust chain allows a user to authenticate a X.509 certificate because via

the trust chain a path can be established to some Certification Authority that

has already established a valid binding between the user and there public

key. The major fault with the X.509 system is the amount of user detail

included in the certificate at each CA is not uniform across the whole system.

A low-level CA can bind very detailed information about a user in the X.509

certificate that they give a user, but at a higher-level CA will not capture as

detailed information. The Certification Authority is used to form a trust

relationship, but it can never be a good enough authority for every one in a

large distributed system, its credibility depletes and its recommendations

increase in uncertainty as the community grows. The major issue in this

system for users is credibility, as a user climbs up the hierarchy pyramid in

order to find a common Certification Authority, there is greater reach and less

specificity [Khare]. It also assume that every one trusts the certification

authority.

2.2.2.2 Pretty Good Privacy

Pretty Good Privacy system allows user to create a decentralised trust

hierarchy by locally binding user identities to public keys. This approach is

known as creating a “web of trust” [Abdul3]. The system works on the basis

that as a user interacts with other in the distributed system, they will sign the

certificates of individuals they believe to be authentic. This creates a trust

relationship between these individuals. The system allows the user to

designate trusted users to act as introducers, and define a level of trust that

they associate with each introducer. In the case where a user interacts with

an individual who is unknown to them but who’s certificate contains the

signature of a number of known introducers, the user can be more confident

about the authenticity of the new users public key, via the recommended trust

relationship that was developed. The change from the X.509 system is that

the perceived trustworthiness of an individual is based on local decision to

trust. The problem of trust production is not addressed in this system. The

PGP system cannot answer the question why a person is trusted.

. 10

2.2.3 Summary

In this section we have examined the operation of some authentication and

access control mechanisms. We have seen that the authorisation process

assumes there is some level of trust associated with a user once this process

is complete. The problem is that on closer inspection of the two processes

involved in authorisation, neither takes responsibility for stating why a user is

trusted.

The access control process assumes incorrectly, that if a users identity is

verified correctly, then that user is trusted. This is an overuse of the

functionality provided by public key cryptography. The public key cryptography

system will correctly authenticate a user from a public key, but it does not

provide any information that can be used to derive a level of trustworthiness in

the user.

The second issue is the inflexibility of existing access control systems. The

existing access control systems rely completely on the administrator to

configure all new user bindings. This approach is too restrictive in a situation

where new bindings will be need regularly.

2.3 Trust Management Systems

The Trust Management approach to distributed system security was

developed because of the perceived inadequacy of traditional authorisation

mechanisms for distributed systems [Blaze2]. Traditionally every application

implemented its own mechanisms for specifying access policy, checking

compliance and binding user authentication to authorisation to perform

security critical operations. The developers of the trust management system

felt that this approach exposed the security of the application to high level of

risk because the application developer might make simple but subtle mistakes

the design and implementation of the system.

. 11

The main aim in the development of the trust management system was to

produce an off-the-shelf security module that could be integrated into any

application. The module allows each application to define application specific

policies and credentials.

The notion of a “resource” for which the security system is designed to protect

will vary widely across different distributed system. The developers

recognised that the system should be able to define what a resource is within

their own environment. The next step is to allow the system define access and

restriction policies that apply to its resources. Policies and credentials can be

modified to reflect changes in the use patterns of the system over time.

The solution that the Trust Management system proposes is to bind a set of

specific keys directly to authorisation to perform a specific task, this mapping

is known as a credential. The fundamental question that the trust

management system now asks is “Does the set C of credentials prove that the

request R complies with the local security policy P? ”. The request R, the local

policy P and set of credentials C are passed to a trust management engine,

which processes the request and outputs a decision whether the request and

credentials provided is valid according to the local policy.

The trust management approach advocates the use of a general purpose,

application independent algorithm for checking proof of compliance.

Applications using the single general-purpose compliance checker in a

distributed system can be confident that results from the checker are correct.

This reduces the need to have each resource in a distributed system

implement its own compliance checker.

2.3.1 PolicyMaker

PolicyMaker was the first tool for processing signed requests that embodied

“trust management” principles, developed by Blaze. The PolicyMaker takes as

input a set of local policy statements, a collection of credentials, and a string

. 12

describing a proposed trusted action. It can return a binary yes/no result or

provide additional restrictions that would allow the proposed action possible.

Security policy and credentials are defines in terms of predicates, called filters

that are associated with public keys. The PolicyMaker tool processes queries

from applications, to determine if the public key is permitted to perform an

action according to local policy. PolicyMaker recognises that complete

security information may not be available locally, so allows trust to be deferred

to trusted third parties which provide additional security information. The

actions that the PolicyMaker tool is asked to consider are application specific.

Responsibility for authorisation is split between the PolicyMaker and the

calling application, authentication by cryptographic verification of the

requester is placed with the calling application. This means that the choice of

signature scheme is independent of the choice to use PolicyMaker as the

compliance checker. The application is also responsible for ensuring that all

the credentials needed to ensure correct compliance of a request are

provided in the original query to PolicyMaker [Blaze1, Blaze2].

2.3.2 KeyNote

The KeyNote tool can be considered a successor to PolicyMaker as the basic

design principles were continued but extra design goals were specified, which

included easier integration for applications and standardisation. KeyNote

assigns more responsibility to the trust management engine, making it easier

to integrate into applications. It also requires that assertions (policies and

credentials) be written in a specific language, so that processing by the

compliance checker proceeds more smoothly.

The application passes an “Action Environment” to the KeyNote tool; this is

similar to the PolicyMaker “query” in that in contains a triplet of values, the

security policy, a list of credentials and the request. The result of passing the

action environment to the KeyNote tool is an application-defined string. In the

simplest case, the result will just be “authorised”. KeyNote like other trust

. 13

management engines, does not enforce policy directly it only provides advice

to applications that call it [Blaze1].

2.3.3 Summary

The Trust Management System attempts to improve on the traditional security

system because it rejects the use of name-key binding and pre-complied

access-control matrices. The trust management system can be considered

more secure because of its ability to integrate into other system means that

the development of the security system can be left to experts who can

guarantee that the system achieves “proof of compliance”. The risk of simple

security holes being left by applications developers is reduced.

The trust management system has addressed the problems of distributed

application security, difficult to authenticate users and resource definition. But

it still cannot answer the fundamental question “Why is the user trusted to

execute this action?”.

2.4 Trust

Trust is an important feature in the decision-making process that humans use

every day. The main issue with trust is that there are many different views of

it, and this has lead to problems when trying to develop a general definition for

trust. There are main reasons for the multiple views of trust but two reasons

stand out. First, everybody is an expert on trust, that is to say that everybody

has their own brand or idea of what trust is, and how to use it. The second is

more straightforward, and simply states that there are many different types of

trust, reflecting different situations and contexts.

We have seen in the two preceding sections how existing security systems

cannot explain why a user is trusted to perform a certain action. The aim of

this section is to show that trust can be formalised and produced within a

framework. The goal of defining trust in this way is that if a security system is

. 14

asked, “Why do you trust this person? ” it will be able to answer stating the

parameters and contexts on which it has built its trust assumption about that

person.

The next section will present a number of trust definitions used in different

fields in an attempt to create a large picture of trust as a concept. The

properties and operations that apply to trust will then be presented. A

framework for modelling trust will be explained and the discussion on how to

quantify trust will then happen.

2.4.1 Introduction

Researchers in a wide range of academic fields have studied a concept of

trust. The definitions of trust presented hereafter illustrate the different view of

trust. The aim of presenting a number of different definitions of and

statements about trust is that each explains a certain aspect of trust,

examining them as a group it is hoped will provide us with a more general

understanding of trust.

The first definition comes from Morton Deutsch (1962).

1. an individual is presented with an ambiguous path, a path that can lead

to an event perceived to be beneficial (Va+) or an event perceived to

be harmful (Va-);

2. he perceives that the occurrence of Va+ and Va- is contingent on the

behaviour of another person; and

3. he perceives the strength of Va- to be greater than the strength of Va+.

The choice the individual makes in this situation reflects his level of trust in the

other person; the decision to take the ambiguous path reflects the distrustful

choice. The repeated uses of the word perceive in the definition implies that

trust is a subjective quality an individual places in another. The second point

about this definition is that trusting decisions are based on a form of

. 15

cost/benefit analysis. Different individuals decision to trust will differ with each

individuals perception of the estimated cost (Va-) and benefit (Va+) [Marsh].

A second definition is taken from Diego Gambetta (1990).

”Trust is a particular level of the subjective probability with which an agent will

perform a particular action, both before [we] can monitor such action and in a

context in which it affects [our] own action”.

This definition again re-enforces the subjective nature of trust. The definition

also states that trust is affected by actions that we cannot monitor. This

means that in a situation where full information is not available, the quality and

meaning of the information we can monitor will have a major effect on our

level of trust.

Another aspect of trust relates it to the amount of information and risk that

situation creates. Reagle states “Trust itself represents an evaluation of

information, an analysis that requires decisions about the value of specific

information in terms of several factors” [Reagle]. In a situation where full

information is not available the likely hood of making an incorrect choice is

increased, this leads to risk. Trust has been proposed as a mechanism for the

reduction of complexity (risk) in situations. Trust is used to derive further

information from the surroundings.

2.4.2 Properties and Operations

The subjective nature of trust is evident in most of the definitions presented in

the last section. This property creates the single biggest problem to creating a

trust production model for computer models because to parameters used for

calculating trust by different people varies widely.

Trust is a non-transitive property. The following statement gives a good

example of this “If Ann trusts Bob, and Bob trusts Cathy, therefore Ann trusts

. 16

Cathy” is in general, not true. The statement can only be considered true if the

following conditions hold.

1. Bob explicitly tells Ann that he trusts Cathy. This is an example of a

recommendation.

2. Ann must trust Bob as a recommender. If Ann does not trust Bob as a

recommender then she should ignore any information he passes her.

3. Ann must be allowed make a judgement on the quality of Bob’s

recommendation.

A trust statement is a context specific. On order to give a recommendation on

the trustworthiness for someone the context in which the recommended trust

value will be used is need. The following statement is an example of this “I

trust my brother to drive a car, but not to fly a plane”.

2.4.3 A Framework for Trust

The definitions of trust that have been presented above have failed to

converge and provide us with a single generic definition. Although the concept

and operations of trust are well understood a framework for quantifying trust is

need so that unambiguous conversation can occur. McKnight and Chervany

in their working paper “The meaning of trust” [McKnight] presents a framework

that classifies different aspects of trust and provides a system which shows

how trust can influence behaviour.

System Trust

 The extent to which, one believes that the proper impersonal structures

are in place to enable one to anticipate a successful future endeavour.

System trust reflects that safeguards are in place to reduce the amount of risk

that user has to expose themselves too. These safeguards may be in the form

of regulations, guarantees or stabilising intermediaries.

Dispositional Trust

. 17

 The extent to which, a person consistently trusts across a broad

spectrum of situations and parties. This is an example of a cross-situational

cross-personal construct. It is a general intention by a person to believe that

people will behave in a certain manner and is valid over a broad spectrum of

situations. This value reflects whether an individual is optimistic or pessimistic

in their approach to new situations [Swarup].

Situational Trust

 The extent to which, one intends to depend on another in a non-

specific party in a given situation. It means that one has formed an intention to

trust every time a particular situation arises, irrespective of one’s beliefs about

the attributes of the other party in a situation. It

Trusting Belief

 The extent to which, one party believes that another party is willing and

able to act in the trusting party’s best interest. The attributes that affect the

trusting belief in another include benevolence, honesty, competence and

predictability. Assessing these attributes to form a belief is inherently

subjective process.

Belief Formation Process

 Is the process by which information and experience gathered from the

environment is processed to from new trusting beliefs about parties.

Trusting Intention

The extent to which one party is willing to depend on another party in a

given situation with the feeling of relative security even though negative

consequences are possible. A trusting intention implies the entity has made a

decision about the various risk and benefits of allow this trust

Trusting Behaviour

 The extent to which one party depends on another party in a situation

with a felling of relative security, even though negative consequences are

. 18

possible. This construct effectively describes the “act” of trusting and implies

the acceptance of risk [Povey].

Figure 3: Related Trust Categories

2.4.4 Trust Values

Trust has no measurable units, but its value can be measured. Trust can

therefore considered as a commodity like information or knowledge. There are

problems using explicit values to represent trust because since trust is

subjective the same value of trust may be associated with different levels of

trust by different entities.

The use of continues values to model trust reflect the continuous nature of

trust, allows for easy implementation and allows for comparison of different

trust frameworks. The continuous value still leaves the problem of subjectivity

for receiver of the trust information, if the framework and parameters on which

the trust value is calculated is not understood.

Marsh in this thesis represents trust as a continuous variable over a range

scale [-1,+1]. Marsh states that trust can have threshold values, which vary

between people and situations. A person will have a positive threshold value,

Trusting Behaviour

Trusting Intention

Dispositional

Trust

Belief

Formation

Process

System

Trust

Trusting Belief

Situational

Trust

. 19

above which that trust another, and a negative threshold value, below which

they will not trust a person.

2.4.5 Summary

The creation of six trust definitions has cleared the conceptual confusion by

representing trust as a broad but coherent set of constructs. The definition of

these trust types is very beneficial, it will enable parties that apply and

exchange trust information to agree on what they mean, when they process

trust values. Using the framework to identify the parameters on which trust is

based allows the users to be specific about out trust statements. This avoids

the problems associate with trust being subjective, non-transitive and context

specific.

2.5 Reputation

The last section explained that a framework for trust production can produce a

trust value based on the information about the users surrounding and

situation. In a situation where it is not possible to gather enough information to

produce a trust value about a user, it is possible to seek out the users

reputation from a trust third party. This section will examine the use of

reputation and recommendations.

2.5.1 Recommendations

Alfarez Adbul-Rahman et al [Abdul 1, Abdul2] discusses a decentralised trust

management system based on the use of recommendations between agents

in a distributed system. The concept of “social control” is used to implement a

soft security approach in an open system. It is up to the good actors to identify

‘cheaters’ and propagate this information around the system.

The system used the concepts of direct and recommended trust relationships

existing between agents. The authors recognise that in order to make a trust

. 20

decision specific information relating to aspects of the situation must be

available. They introduce the concept of a “trust category” to represent the

aspect or context in which trust is evaluated. “Trust values” are then used

within each category to further distinguish different levels or amounts of trust.

The system captures an agents reputation as concatenation of the name, trust

category and value.

 Reputation = [Name, Trust Category, Trust Value]

A person wishing to establish another person’s reputation sends a

Recommendation Request Message to a trusted recommender. They receive

a Recommendation Message back that contains a reputation.

The work in this paper is beneficial because it clarifies the protocol that is

need between parties trying to exchange reputation information. It also

highlights the processing that the receiver of a recommendation must do in

order to extract the correct information form it. The work carried out in these

papers explains how recommendation can be used and manipulated to

increase the level of trust information in a distributed group but it does not

attempt to explain how trust is initially produced by any of parties in the group.

2.7 Conclusion

This aim of this review was to highlight issues that would be relevant to the

design and development of a security system for the collaborative ad-hoc

application environment. The areas that proved the most beneficial to the aim

of this dissertation will now be refreshed. The research on the access control

mechanisms proved to be very insightful. The access control mechanism

implemented in the collaborative ad-hoc application will have to allow dynamic

access control statements. The research also shows that a framework for the

production of trust does exist and can work. Given the research carried out in

this chapter, the design of a system that incorporates these ideas can

proceed.

. 21

3 Design

The aim of this dissertation is to develop and implement a dynamic trust-

based access control system for the collaborative ad-hoc application

environment. The aim can be split into two main task, the first is the design of

a trust-based access control system for the collaborative ad-hoc application

environment and the second is the design of the application framework.

The chapter will begin by giving a general overview of the collaborative ad-

hoc application environment. This will identify the major processes. The

requirements of each process will then be discussed. Finally the design of the

components that provide the required functionality will be presented.

3.0.1 Terminology

A number of terms will be used extensively throughout this chapter to refer to

the various entities. This section will explain what is meant by each of these

terms. The user is the person who uses the collaborative ad-hoc system. The

client refers to the computer software that is installed on the users mobile

devise. The application means the software system that has collaborative ad-

hoc functionality. The group refers to the members of the collaborative group.

3.1 General Overview

The users of the collaborative ad-hoc application framework interact in groups

in an environment where an ad-hoc networking system is in operation. Each

user has a small computer device that is capable of joining the ad-hoc

network. It is assumed that each device has a screen, a hard disk to save

information on and a networking capability.

. 22

When the user is connected to the network the names and details of any ad-

hoc collaborative applications that are available on that network are displayed

to the client on their device. The user then selects a specific application and

communicates directly with that application. This service discovery and

download is shown as step 1 in figure 4. The arrows show which entities are

involved at each step.

Having discovered what roles are available for users within the application the

user attempts to join the group by making a request to the application (step 2).

The application will contact all existing group members and asks them if they

approve the new users request to join (step 3). The individual members

process the request based on the trustworthiness of the user (step 4) and

return their result to the manager. The requesting user is granted or denied

membership of the group based on the result of the vote. The approved user

then joins the group and takes part in the collaborative application (step 5).

Figure 4: High-level overview of the main processes

5: Group formation

Ad-hoc Networking Service

Ad-hoc Collaborative Application A

Ad-hoc Collaborative Application B

Application B

User

1: Service discovery

and connection

2: The Request Process

Existing

Members

3: Voting Process

Process

4: Trust based access control

. 23

3.2 Requirements

The last section introduced the five major process involved in the collaborative

ad-hoc application. This section examines each of these processes in more

detail; the focus is to identify the requirements of each process.

3.2.1 Service Discovery and Connection Process

This process allows the client to get a list of all collaborative ad-hoc

applications. This information is displayed to the user who selects which

application they wish to join. The client will download a proxy that allows it to

communicate with the application and initiate the join process. The technical

issues associated with application discovery and proxy download are handled

by the JINI Discovery and Join protocols [Sun].

3.2.2 The Request Process

The client will use this process to request the application for membership of a

group. The process allows the client to make a request to the application to

join the group in a particular role. The application will confirm or reject the

users request to join the group in that role. If the user is successful in their

request to join the group they will then register officially with the application an

be included in future voting processes. The user will typically be interested in

joining the group in the role with most access rights, to facilitate this the client

is allowed to make multiple requests to join the group. When the application

receives a request from a client to join the group in a particular role it will

initiate the voting process.

3.2.3 Voting Process

The application initiates the voting process when a client requests to join the

group. The manager will ask each member of the existing group to verify that

the requesting user has the right to join the group in the requested role. There

. 24

are a number of different voting policies that the application can implement.

Unanimous voting and majority voting are two examples of different voting

policies. A unanimous voting policy requires every group member to agree on

the decision. A majority policy only requires that more than half of the group to

agree. At the end of a vote the requesting client is informed of the decision

and so is the group. This allows a user to leave the group if they do not agree

with the result. This happens when the user rejects a request to join but the

overall group decides to approve the request. This provides a back-out

mechanism.

3.2.4 Trust-based Access Control Process

This process is responsible for using trust to making the decision whether to

accept or reject a request to join the group. The operation of this process is

the main focus of attention for this dissertation. The process is executed every

time the application looks for verification of a request to join the group. The

client is passed the requesting users identifier and role the client must accept

or reject the request. The process will calculate the requesters trust value and

decide based on the local policy whether the user is trusted enough to join.

3.2.5 Group formation process

If the user is successful in there request to join the group they will be given a

graphical user interface which provides all the functionality needed for the

application. The application will decide how the group members will

communicate. All communication between the group may be multicast or

members may unicast to each other.

3.3 Design of system components

The last section introduced the requirements of the various processes that are

needed in the collaborative ad-hoc application. This section describes the

design of the three major components of the application. It will show how the

. 25

requirements identified in the last section have been integrated into the design

of the components. The next section 3.3.1 discusses the design of the join

protocol that allows users to form into, manage and exit groups. In the

following section 3.3.2 the trust based access control design is presented.

Section 3.3.3 handles the design of the components involved in the group

formation and interaction.

3.3.1 Join Protocol Design

The request and voting processes both involve interaction between the client

and application, it makes there for to combine the requirements of both in the

design of the join protocol. The join protocol allows users in the system to

form into collaborative groups. The protocol is designed so that every member

of the group gets to verify the new user and can back-out of the group at any

stage. This ensures that each member has accepted the risk of letting the

new user join. The protocol allows a decentralised group decision to be made

on the request by a user to join. The identities of the group members are

hidden from the requesting user.

Figure 5: The Join Protocol

Client

Join Manager
Existing

Members

4

5

3

6

2

1

Legend:

 : Invocation

direction

. 26

Once the user has selected an application and downloaded a service proxy,

the join protocol will be initiated. The protocol involves six steps, which are

labelled in figure 5 and explained below.

1. Get Roles: The client gets a list of possible roles that the application

supports.

2. Request to join: The client requests to join the group in the highest

role. The client will pass an identifier and the requesting role to the join

manager.

3. Verify User: When the join manager receives a “request to join” from a

client it will start the voting process. Each member of the group will be

asked to verify the right of the user to join the group in the requested

role. At the end of the vote, the application manager will inform the user

of the result. If there is no group the user becomes the first member of

a new group.

4. Verify Group: When the user’s request to join is accepted by the

group, the client verifies the existing members. The client gets the

identifiers and current roles of the existing group members. The client

verifies the roles held by the existing members of the group to confirm

that they pass the users own access policy. This is to ensure that there

is no member of the group in a role that the client does not agree with.

If the client’s request to join is rejected, they can attempt to join in a

lower role.

5. Officially Join: When the user has verified the existing membership it

will then officially request to join the group.

6. Inform All: All members of the group are informed that a new user has

been granted access. Members can this opportunity to exit the group If

they disagree with the result of the vote.

3.3.2 Trust-Based Access Control System Design

The design goal for the trust-based access control system used in the

collaborative ad-hoc application is to minimise the amount of configuration the

user has to do. The trust-based access control system requires a number of

. 27

support components to gather information, manage policies and product trust

values. An overview of the system is shown in figure 6 and the design of

these components is presented in this section.

Figure 6: Trust-Based Access Control System

3.3.2.1 Compliance Checker

When a client has joined a group they are expected to verify the requesting

users has the rights to join the group in a specific role. The compliance

checker is passed the users name and requested role and will inform the

client that the request should be accepted or rejected. The compliance breaks

does this in three broad steps.

1. The compliance checker gathers the access control statements that

are relevant to the requesting user.

2. The checker calculates the users trust value.

3. The users trust value and requested role are compared to the access

policies. If the values agree with any of access policies the client is

informed to accept the users request.

Trust System

Trust Value Production System

Dynamic Access

Control System

Interaction Monitor

Trust Value Calculator

Trust Result Store

Compliance Checker

Interaction Store

Implemented by Client Designer

Implemented by the Application

Designer

Client

. 28

3.3.2.2 Dynamic Access Control System

The manageability of any access control system was identified in the literature

review as being inversely related to the flexibility of the bindings used within

the system, the more flexible the policy the easier it is to manage the system.

We have seen that the access control list system is neither flexible nor

scaleable because it binds the user’s identity directly to the right to access

resources. The role based access control system has poor scalability because

it still requires one policy per user but it is more flexible because it binds the

user’s identity to a role this allows for easier management of the access rights

per role.

The access control design used in this system achieves the requirement of

dynamic access by binding a minimum trust value to the right to access a role.

The statement reads, “If a user U has a trust value greater than X, then they

can access role R”. By binding a trust value to the right to access a resource,

one statement will apply to every potential user. This means the role owner

only has to define an access statement for every resource and not every user,

this greatly reduces the number of policies the user has to initially write. The

access control statements are designed to assign roles because it is easier to

manage resource access for large groups this way.

The user will potentially be interacting in many different collaborative

applications. A single access control statement format will apply across all

applications so the name of the application to which the policy applies must

be included in the statement. The user can also create a specific access

control statement for a specific user by including the user’s identifier in the

statement. This allows the user to promote a user to a role that they would not

be assigned by the general access policies.

The trust-based access control statement is must contain five piece of

information.

• The name of the application to which the policy is relevant.

. 29

• The identifier of the user to which the policy applies.

• The condition that must be met by the users trust value for the policy to

be true.

• The trust value threshold for the policy.

• The name of the role the user will be approved for if trust value meets

the condition applied.

3.3.2.3 Trust Value Production System

The trust value production system is responsible for gathering information on

the interactions with other users and producing trust values for the user about

those people. The trust values created by each application are context

(application) specific. Therefore it is the responsibility of the application

designer to develop this component. The system has two sub-components,

they are the interaction monitor and trust calculator.

3.3.2.3.1 Interaction Monitor

The interaction monitor gathers and saves information about the user’s

interaction with other users in the group. This information is used later by the

trust calculator to produce trust values on each user. The application

designers select what parameters of the interaction to monitor. The interaction

monitor saves and updates the details of the user’s interactions on the user

disk, the format in which this information is stored is proprietary.

3.3.2.3.2 Trust Calculator

The trust calculator uses the interaction details saved by the interaction

monitor to produce trust values. The trust values produced by the calculator

are only relevant to one user. Because the trust values are all based on the

same parameters the user can compare and rank the trustworthiness of the

users they have interacted with.

. 30

The calculator will allow the user to customise the algorithm by changing the

scaling factors used on the different parameters. This acknowledges the

subjective nature of trust in that different users will rank different parameters

as the most important.

The trust calculator would typically use linear equations when processing the

interaction details and producing the trust result. The use of linear equations

means mistakes in the calculator can be spotted and corrected easily. Users

can also grasp the concept of a trust value increasing or decreasing on a

linear scale as the monitored value changes.

The trust-value produced by the calculator is design to be within the range

zero to one. It reflects that trust is a probability that a user will behave as

expected, the higher the trust-value the more likely it is that the user will

behave correctly. The trust value becomes asymptotic as it approaches one

and zero, this reflects that you can never completely trust or distrust a user.

The use of this range means the scaling of recommendation value is still

within the range.

3.3.2.4 Trust results

When the trust calculator is executed at the end of the user’s session it will

save the trust values in a generic trust result on the users device. The trust

result will contain the application name, which calculated the trust value. The

need to identify which application produced the trust value arises because a

user may interact with another user in many different contexts. The trust

values produced from any two applications have completely different meaning

because they are based on different parameters and produced by different

calculators. This allows the compliance checker to identify the correct trust

result where there are multiple trust results for the same user.

The trust value will also include the user name and the date on which the trust

value was calculated. This date is important because trust derogates with

time, if the trust result for a user shows the value was calculate a long time

. 31

ago the user should not believe that the user is still as trustworthy. The trust

result must include four pieces of information.

• The name of the application to which the result applies.

• The name of the user to which the trust-value relates.

• The calculated trust value.

• The date on which the trust-value was calculated.

3.3.2.5 Trust System

The trust result store and interaction store allow the trust value production

system to save and access the details on the client device. When the

compliance checker and dynamic access control system are included, these

four components are known as the client trust system.

3.3.3 GUI and Group Interaction Design

Once the collaborative group has formed the users will download a graphical

user interface. The GUI is role specific and provides the trust-value production

system to the client. The application designer will decide what communication

mechanism is needed between the users of group.

3.3.3.1 GUI Design

There are two possible configurations that allow the client to use a graphical

user interface with the application. The first has the GUI code stored on the

client’s device, when the user accesses the application the GUI is initialised.

The second option has the GUI code stored with the application. The user

must download the code whenever they use the application. The second

design option was chosen for implementation in our system. The download

option allows the application developer to make upgrades to the GUI and still

ensure that all users have the most up-to-date version. The centralised control

makes management easier. The main issue with this option is that the code

. 32

must be downloaded every time. As mobile networking technology gets faster

the delay in downloading the code will become less noticeable.

The steps involved in accessing the GUI are shown in Figure 7.

1. The client completes the join protocol and has been given a reference

to the group manager.

2. The client calls on the group manager to provide a GUI object. The

client downloads the GUI Factory.

3. The client makes a call to the GUI Factory passing the user’s role, a

reference to the local trust system and a reference to the remote group

manager.

4. The GUI Factory produces a role specific GUI for the user. When the

GUI is initialised, the trust-value production system connects to the

trust system. The interaction and trust result details are accessed and

updated.

5. The role specific GUI will contact the group manager.

Figure 7: Accessing the Role Specific GUI

Trust System

Client

Application

 Join Manager

Group Manager

Role Specific

Service Interface

Trust-Value

Production

System

Compliance

checker
Dynamic Access

Control System

Legend:

 Local Invocation

 RPC

4

5

3

GUI Factory 2

1

. 33

The application is designed to have to two management components they are

the join and group manager. The functionality of the join manager does not

change across different application, so designing a reusable component

makes sense. The group manager provides the application specific services

and so must be design from scratch for every new application.

3.3.3.2 Group Interaction

The last section described now the system is designed to allow the client to

access a role specific GUI with the trust production system. This section

describes now the GUI can communicate with others in the group. The

application designer determines the requirement for communication between

the clients. The client GUI is given a reference to the group manager when it

is initialised; this allows the client GUI access to the centralised group

manager. The group manager now has a reference to every client GUI and

can decide how to manage this.

3.4 Summary

The design chapter first described the general architecture of the system. The

five major processes involved in the system were then introduced and the

requirements for each were identified. The functional design of three

components was then undertaken. The functionality of the join protocol, the

components involved in the trust-based access control system and the group

communicating GUI has been identified. The next chapter describes how

these components implement the required functionality.

. 34

4 Implementation

This chapter describes the implementation of the collaborative ad-hoc

application framework and a sample application. Chapter 3 described the

design of the various components and in the majority of cases the

programming task was fairly simple. In this chapter, the implementation of the

components is described as well as some of the issues that were encountered

during the implementation process.

The chapter will first introduce the technologies used in the implementation.

The next section gives a high level overview and explains the interfaces that

make up the framework in some detail. The last section describes the

implementation of the sample application.

4.1 Technologies

The Java programming language is used for the implementation of all

components in this system, it assumed that the reader is familiar with the

object-oriented nature of this language. The implementation used two

specialised technologies for certain components. This section gives a short

introduction to both.

4.1.1 JINI

A JINI system is a Java technology-centred, distributed system designed for

simplicity, flexibility and federation [Sun]. The JINI architecture provides a

mechanism for devices and programs to federate into groups and offer

resources and share resources within that group. The architecture exploits the

ability to move and execute Java programming language code from machine

to machine [Jini].

. 35

The key concept in the within the JINI architecture is that of a service. A

service can be downloaded and used by any entity in the federated group.

Systems provide services to the federation by publishing them on a lookup

service. The lookup service is central bootstrapping service and provides the

central point of contact between the system and its users. The service is

added to the lookup service by a pair of protocols known as the Discovery and

Join Protocol [Sun].

The users of the JINI system contact the lookup service and download the

service they require. All communication with the JINI architecture uses Java

Remote Method Invocation (RMI), this allows data and code to be transferred

around the network between objects. The JINI architecture assumes that

network for connecting devices and services is available, and that each

device has a Java virtual Machine installed. For more information on JINI see

Appendix 8.1. The design chapter introduced the Join Protocol used in the

collaborative ad-hoc application this is in no way related to the JINI Join

Protocol.

4.1.2 XML

In the design of the access control system the saving of access control

policies, trust results and application interaction details on the users devise

was identified as a requirement. The decision to use Extensible Mark-up

Language (XML) to save information was made for a number of reasons.

The information being stored on the file was already structured so it made

sense to use a format that maintains this structure. The saved files are easier

to understand by people because the structure of the information is included

in the file.

The ease with which the XML files can be parsed and converted into Java

objects was another advantage of this approach. Sun provide two API’s for

parsing XML documents, each suited to different types of applications. The

. 36

“Simple API” for XML (SAX) is an event-driven, serial-access mechanism that

processes the document in an element-by-element fashion. This mode was

used in the implementation for reading all file because it is more memory

efficient.

Another factor that contributed to the choice of XML as the storage format

was the possibility of exchanging the interaction details of users in commercial

transactions. If the collaborative ad-hoc application system becomes popular

the interaction details stored by the services will potentially become more

detailed. This details information might be valuable to companies who

specialise in user profiling. Storing the data in XML format makes the

information more valuable.

4.2 Framework Interface Implementation

The design identified a number of components that have to interact in a

standard way in all collaborative ad-hoc applications. In order to create a

standard framework the interaction between the various components will be

defined in different interfaces. This section will discuss the design of these

interfaces; a high-level overview of the collaborative ad-hoc application

framework is shown in figure 8.

. 37

Figure 8: Implementation Overview

4.2.1 The Join Protocol Implementation

The join protocol involves the join manager and client. Both implement an

standard interface that allows the other to invoke remote method calls.

Section 3.3.1 discussed the design of the six-step join protocol.

4.2.1.1 AdhocServiceInterface

The AdhocServiceInterface supports a number of methods. The service proxy

that the application publishes on the lookup service will be of this type. The

users of the ad-hoc environment will be pre-programmed to search for

services of this type first.

GUI / Group System

Client

AdhocClientInterface

Trust System

TrustManagementInterface

Join Manager

AdhocServiceInterface

Group Manager

ServiceManagerInterface

ProprietaryInterface

GUI Factory

GUIInterface

Legend:

XXX Object Name

YYY Interface Name

 Local Invocation

 RPC

Role Based GUI

ProprietaryInterface

Trust-value Production

System

Join Protocol

Trust-based Access Control System

. 38

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface AdhocServiceInterface extends Remote

{

public Vector getServiceRoles() throws RemoteException;

public boolean joinAsRole(PlayerDetails playerdetails, Role role)

throws RemoteException;

public ServiceManagerInterface requestLogon(AdhocClientInterface

adhocclientinterface, Role role, PlayerDetails playerdetails) throws

RemoteException;

public void logoff(AdhocClientInterface adhocclientinterface, PlayerDetails p)

 throws RemoteException;

}

The first two methods in the interface represent the first two steps of the join

protocol. The third method represents the fifth step, the client officially joining

the group. When this step happens the client is returned an object that

implements the ServiceManagerInterface.

4.2.1.2 AdhocClientInterface

The client software must implement the AdhocClientInterface. The first three

methods in the AdhocClientInterface interface are involved in the join protocol.

The last method allows other clients to request a recommendation on a user.

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface AdhocClientInterface extends Remote

. 39

{

public boolean verifyPlayerForRole(PlayerDetails playerdetails, Role role)

 throws RemoteException;

public void informAboutNewUserRole(AdhocClientInterface

adhocclientinterface, Role role, PlayerDetails playerdetails) throws

RemoteException;

public void userExit(AdhocClientInterface adhocclientinterface, PlayerDetails

playerdetails) throws RemoteException;

public double recommendationRequest(PlayerDetails playerdetails, String

context) throws RemoteException;

}

4.2.2 Graphical User Interface Implementation

Once the client has finished the join protocol they are returned a reference to

the group manager. The client will use this reference to request access to a

role-based GUI from the group manager

4.2.2.1 ServiceManagerInterface

The group manager will extend this interface, this allow any client to request

access to a role specific GUI. The group manager will return an object that

implements the GUIInterface.

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface ServiceManagerInterface extends Remote

{

 public abstract GUIInterface getService() throws RemoteException;

}

. 40

4.2.2.2 GUIInterface

The application developer has to provide a role based graphical user interface

to the users of the system. When the user has been approved for a role in the

application, the group manager will return a factory object that implements

GUIInterface. The interface contains a single method that has four

parameters. The client passes a reference to its local trust system and the

group manager. The trust-value production component of the GUI will use the

TrustManagementInterface reference to contact the client trust system. The

groupmanager_reference allow the GUI to contact the group manager. The

GUIFactory will cast the object to specific proprietary interface type.

import java.io.Serializable;

public interface GUIInterface extends Serializable

{

public Object getUI(Object groupmanager_reference, Role role, PlayerDetails

playerdetails, TrustManagementInterface trustmanagementreference);

}

4.2.3 Trust Management Interfaces

As discussed in section 3.3.2, the design of the trust-value production system

stated that the two subcomponents must be allowed to save and access

details to and from the client’s disk.

4.2.3.1 TrustManagementInterface

This interface is implemented by the client’s trust system. It allows the

downloaded trust-value production system to access the relevant application

files on the client machine. As the session proceeds the interaction monitor

can update the information held on the users in the current group. At the end

of the session, the interaction monitor writes the details to the client, it also

call the trust-value calculator to update its trust results on each client.

. 41

import java.io.Serializable;

import java.io.File;

public interface TrustManagementInterface extends Serializable

{

public File getXMLFile(String context);

public void writeXML(String context, String details);

public void addTrustManagementResult(TrustManagementResult result);

}

4.3 Trust Based Access Control System Implementation

This section presents some of the issues encountered in the implementation

of the trust-based access control system. The design of this system requires

that the dynamic access control statements and trust result should be uniform

for all users and applications.

4.3.1 Dynamic Access Control Policy Object

The design identified that the access control statement had to contain five

pieces of information. The access control policy is relevant to a particular role

and application. The access control policy must also identify which users the

are subject to the constraints of the policy. The implementation of this object

in the system allows the user two combinations. The first choice states that

the policy applies to all users, and is noted by a ‘*’ in the user field of the

statement. The second choice is more specific binds users identifier directly in

the statement. This is similar to the mechanism used in the traditional access

control list systems.

. 42

TMPermission

+toXML() : String
+verifyUser(trustvalue : double, role : Role) : boolean

-context : String
-name : String
-condition : String
-trustvalue : double
-role : Role

Figure 9: TMPermission object

The functionality of the access control statements is implemented in the

TMPermission object. This object allows the user to set and get the data held

in the five data fields. The object also implements a method that verifies if a

user’s trust value and requested role meet the conditions set out in the access

control policy, it returns a boolean result. The suedo code for the verifyUser

method is shown in Figure 10.

Figure 10: TMPermission verifyUser() seudo code.

The object supports a XML conversion function that is implemented to support

the storage of the access control policy information on the client disk. An

example of a generic access control policy can be seen in Figure 11.

public boolean verifyUser(double users_trustvalue, Role requested_role)

{

if((users_trustvalue>trust_threshold) && (requested_role==access_role))

 return true;

 else

 retrun false;

}

. 43

Figure 11: Generic Access Control Policy Statement [XML Format]

4.3.2 Trust Result Object

The trust result object has four fields that can be accessed and modified. The

object will also produce a XML format string for the purposes of storage, an

example is shown in Figure 12.

Figure 12: Trust Result XML format.

4.3.3 Client Trust System Implementation

The client trust system designed in section 3.3.2.5 is integrated into the client

software, an overview of the system is shown in figure 13. When the client

software is initialised the trust result and access control files are parsed and

the respective objects are stored in the trust result and policy store. When the

<permission>

 <context>application_name</context>

 <applysto>*</applysto>

 <condition>greater_than</condition>

<trustvalue>0.2</trustvalue>

 <role>player</role>

</permission>

<result>

 <applysto>liam</applysto>

 <context>blackjack</context>

 <lastupdate>28/8/2000</lastupdate>

 <trustvalue>0.1584</trustvalue>

</result>

. 44

ad-hoc client system receives a call to verify a user during the Join protocol

the compliance checker is called. The compliance checker calls the trust

result store and policy store to gather the relevant policies and trust results.

The trust value for the user and the requested role is verified with each policy,

if any of the policy indicates a match the users request is confirmed.

Figure 13: Trust System Implementation Overview.

4.4 Sample Application Implementation

The sample application that was implemented for demonstration of the trust-

based access control systems use in the collaborative ad-hoc application was

the card game blackjack. Blackjack is a popular card game in which users

gamble with a dealer over the value of a set of cards. The game was chosen

because the use of trust is ingrained in the way players join the game.

Trust System

Ad-hoc Client System

Compliance checker

Trust Result

Store

Policy

 Store

XML Parser XML Parser

Trust Results

XML file

AC Policy

XML file

Join Protocol

. 45

The similarity in the use of trust to assign roles to users makes it an ideal

game to implement, this allow for comparison to be made between the human

and the computer model of trust. In implementing the game it was hoped that

the trust-based access control system developed for this dissertation would

behave in a similar way to a humans.

In blackjack there are two distinct roles, one dealer role and up to five player

roles. The role a user has in the game has a major impact on the willingness

of other user to play with that user. The user holding the dealer role must be

considered trustworthy to the other players. The trustworthiness of the user is

based on three parameters, the number of times the two users have played,

the number of days since the two played last and the amount of debt that

exists between the two.

4.4.1 Trust-Based Access Control

After every session the interaction monitor will update the values of the

monitored parameters associated with a user. These details are stored on a

client device in a XML file. The TrustManagementInterface allows the

interaction monitor to save the result, the format is shown here.

<details>

 <name>liam</name>

 <sessions>2</sessions>

 <lastsessiondate>8/8/2000</lastsessiondate>

 <debt>10</debt>

</details>

Although the parameters that are monitored are the same for all users, the

user can still customise the trust calculator by defining individual scaling factor

for each trust level calculation. A configuration window is presented with the

users GUI. These details are also stored in the XML file in this way when the

client has to update their trust values the general trust calculator will produce

client specific results.

. 46

<trustmanagementconfiguration>

 <sessionlimit>10</sessionlimit>

 <lastplayedlimit>100</lastplayedlimit>

 <debtlimit>80</debtlimit>

</trustmanagementconfiguration>

When a trust value is required for a user, the trust level for each of the

parameters is calculated, the three trust level are then multiplied to return trust

value which combines the three parameters. This value is then stored as a

trust result, the format is shown here.

<trustresults>

 <result>

 <applysto>liam</applysto>

 <context>blackjack</context>

 <lastupdate>28/8/2000</lastupdate>

 <trustvalue>0.1584</trustvalue>

 </result>

<trustresult>

4.4.2 Blackjack Group Formation

When a user has been assigned their role and successful joined the group the

blackjack group formation process begins. It was stated in section 3.3.3 that

the application developer determines how the users of the group will interact.

In the blackjack implementation it was decided that all players are required to

connect directly to the user who has the dealer role.

When the BlackJackDealerGUI is initialised it will register with the Group

Manager, which implements the BlackJackManagerInterface. When the

BlackJackPlayerGUI is initialised it connects to the Group Manager and gets a

reference to the dealer of the group. The BlackJackPlayerGUI now has a

reference for the dealer, and it will register itself to start the game.

. 47

Figure 14: BlackJack Group Formation Overview

4.4.2.1 BlackJackManagerInterface

The BlackJackManagerInterface allows the dealer to register its proxy in a

central well known location. The players can then ask the GroupManager to

pass them a reference to the dealer. The interface essentially allow the users

to find each other.

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface BlackJackManagerInterface extends Remote

{

public abstract void registerDealer(BlackJackDealerInterface

blackjackdealerinterface) throws RemoteException;

 public abstract void unregisterDealer() throws RemoteException;

public abstract BlackJackDealerInterface getDealerRef()

 throws RemoteException;

Group Manager

ServiceManagerInterface

BlackJackManagerInterface

BlackJackGUIFactory

GUIInterface

BlackJackPlayerGUI

BlackJackPlayerInterface

BlackJackDealerGUI

BlackJackDealerInterface

. 48

}

4.4.2.2 BlackJackDealerInterface

The BlackJacKDealerInterface implements two methods that allow the

players to join and leave the blackjack game. The remaining methods provide

the basic functionality for the execution of the blackjack game.

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface BlackJackDealerInterface extends Remote

{

 public abstract String getAlias() throws RemoteException;

public abstract void logon(BlackJackPlayerInterface

blackjackplayerinterface) throws RemoteException;

public abstract void logoff(BlackJackPlayerInterface

blackjackplayerinterface, int settleamount) throws RemoteException;

 public abstract void hit() throws RemoteException;

public abstract void stand() throws RemoteException;

public abstract void doubledown() throws RemoteException;

 public abstract void splitpair() throws RemoteException;

public abstract int settle(Bet bet) throws RemoteException;

}

4.4.2.3 BlackJackPlayerInterface

The BlackJackPlayerInterface allow the player receive updates and

commands about the game from the BlackJack dealer.

import java.rmi.Remote;

. 49

import java.rmi.RemoteException;

public interface BlackJackPlayerInterface extends Remote

{

public void enableClient(boolean flag) throws RemoteException;

public void updateGame(Game game) throws RemoteException;

public void sendMessage(String s) throws RemoteException;

public String getAlias() throws RemoteException;

 public Bet getBet() throws RemoteException;

}

. 50

5 Evaluation

The evaluation of the work carried on collaborative ad-hoc application will

examine a number of aspects of the system. The first section will examine the

design and implementation of the components and interfaces that make up

the collaborative ad-hoc applicaion framework. The second section will look at

the implementation of the sample application. The focus here will be on the

behaviour of the trust based access control system.

5.1 Evaluation of Framework

The framework is made up of five interfaces; the focus of this evaluation is to

examine if interfaces offer the complete functionality and to recommend what

improvements might be made in future.

5.1.1 The Join Protocol

The AdhocClientInterface and the AdhocServiceInterface designed in section

3.3.1 and implemented in section 4.2.1 provide the functionality for the join

protocol. The major problem that has been identified with the join protocol is

the client might cause the protocol to run a number of times before they

receive a role. In an application where there are multiple roles, this could put a

large load on the application and clients. A possible solution to this problem is

to allow the clients say what role they will approve a user for, in the first Verify

User step of the protocol instead of just confirming or denying multiple

requests. This would complicate the join managers voting scheme and the

clients trust management system but it would reduce the number of times the

protocol is run.

. 51

5.1.2 TrustManagementInterface

The methods provided in the interface allow the application based trust-value

production system to access and store the information they produce as per

the requirements set out in section 3.3.2. In hindsight the interface should

have included one more method, this would separate the trust-based access

control system from the client and provide greater flexibility. The method

would allow the client to ask the trust-based access control system to “verify a

user”. In the current implementation the trust-system is integrated into the

client, by including this method the trust-system can be separated. By

separating the two it allows for easier updating of both components.

5.1.3 ServiceManagerInterface

The ServiceManagerInterface provides two benefits to the framework. It

allows the group manager to take over control once the join manager has

finished the join protocol with the client. It also provides a standard way for

client to get access to an object that implements the GUIInterface.

5.1.4 GUIInterface

The GUIInterface can be considered a success because it is so accessible to

the client and application. It provides a single way for all client to get access to

role-specific application-specific graphical user interface. For the application

developer it provides an easy mechanism for getting access to the clients

trust-system. It also supports the formation of communication links between

the application GUI’s, by giving them a reference to the group manager.

5.2 Evaluation of Sample Application

The dissertation used an implementation of the blackjack card game to

evaluate the performance of the trust-based access control system in a

collaborative ad-hoc environment. The focus of the evaluation on the sample

. 52

implementation is to examine the behaviour of the trust-based access control

system.

5.2.1 Trust-Based Access Control Results

A sample of interaction details, the trust-values calculated based on them and

the achieved roles are presented in table 1. These are the details gathered on

one of the users in the blackjack collaborative ad-hoc application.

No Sessions Days Since Debt Level Trust Value Role

1 (.25) 1 (.99) +10 (.99) .245 Player

2 (.5) 1 (.99) +10 (.99) .495 Player

3 (.75) 1 (.99) +10 (.99) .735 Dealer

4 (.99) 2 (.75) -10 (.8) .594 Player

5 (.99) 2 (.75) 0 (.99) .735 Dealer

Table 1: Interaction details, trust-value and user role.

The Blackjack interaction monitor follows three parameters of the interaction

between two users. It monitors the total number of sessions the two user have

shared, the number of days since the last session, and the amount of debt

between users. It is assumed in the blackjack application that users will settle

their debt at the end of each session. The trust calculator takes these details

and produces a partial trust value for each parameter, seen in brackets in

table 1. The partial trust-values are then multiplied together to produce the

overall trust-value display in column 4.

. 53

The calculator uses linear equations to produce the partial results. The trust

value for the “number of session’s” parameter rises gradually and the user is

completely trusted after four sessions. The trust value for the “days since last

session“ parameter fall as the number of days increase, in this case the limit

is also four days. The trust value for the “debt” parameter is more

complicated. If the debt level is positive it means the other user is extending

credit, in this situation a creditor always fully trusted. In the other case where

the user is a debtor, the trust level falls as the amount of debt gets larger in

the this case the debtor is no longer trusted once their debt is greater than 50.

The user in the blackjack game has defined two access control policies that

apply to all users of the system. The two policies are seen in figure 16, the

first policy state that any user with a trust value greater then 0.2 can join as a

player.The second allows any user with a trust value greater than .6 to join as

a dealer.

Figure 15: Generic Access Control Statement for the Player Role

A graph of the overall fluctuation is shown in figure 16.

<permission>

 <context>blackjack</context>

 <applysto>*</applysto>

 <condition>greater_than</condition>

 <trustvalue>0.2</trustvalue>

 <role>player</role>

</permission>

<permission>

 <context>blackjack</context>

 <applysto>*</applysto>

 <condition>greater_than</condition>

 <trustvalue>0.6</trustvalue>

 <role>dealer</role>

</permission>

. 54

0

0.2

0.4

0.6

0.8

1 2 3 4 5

Number of sessions

T
ru

st
 v

al
u

e

Series1

Figure 16: The change in a users trust value over a number of seesions

5.3 Summary

The evaluation of the collaborative ad-hoc application framework has shown

that all the requirements of framework designed in chapter 3 have been

implemented successfully into the components and interfaces described in

chapter 4. The evaluation of the framework has identified some improvements

that can be made to improve the flexibility of the overall system.

The evaluation of the trust-based access control system show that is will react

correctly to a change in behaviour of the user. The results presented in this

chapter are very limited due to a lack of time. Future evaluation of the trust-

based control system should test the performance of the compliance checker.

. 55

6 Conclusions

The introduction chapter of this dissertation identified that users currently

have no way of establishing trust in others directly. There is a reliance on a

perceived or recommended trust in users, which is too vague when security

critical issues are being considered. A proposal was suggested that a trust-

based access control system would provide a solution to the problem of

establishing direct trust in an open system.

A literature review was carried out that examined the technologies used in

traditional access control and authentication systems. The concept of trust, a

framework for trust production and the use of recommendations were also

examined. A design was developed for a collaborative ad-hoc application

framework and trust-based access control system so we could test out

proposal. The design was then implemented and evaluated. In this chapter a

general review of the whole work and the issues raised will be presented as

well as a perspective on where future work may be directed.

6.1 Dissertation Review

Traditional access control systems bind users names to the right to access a

resource. Looking at the access control statements a user cannot establish

why the administrator trusts an individual to perform an action correctly. The

assumption is that a user must be prepared to rely on the administrator ability

to correctly perceive a user’s trustworthiness.

This assumption is rejected at the beginning of this dissertation and

mechanism for establishing trust in a user became the focus of the

dissertation. Having identified the focus for our research the of the

. 56

6.2 Future Work

There are a number of avenues future work on this system could take. The

framework for trust production could be examined in more detail. This would

allow the selection of monitoring parameters to be more structured way, it

might allow identify common monitoring parameters across all trust systems.

The second avenue is the performance of the compliance check and trust-

value production system, this dissertation did not get the time to fully examine

this question.

6.3 Application of trust based access control

Mobile computer devises are becoming more wearable every day with palm-

top and mobile phones becoming fashion accessories. The possibility exists

that a collaborative ad-hoc client could run on one of these devises, the client

would represent the user in gaining access to resources in the locality

automatically. The user will not have to make explicit requests to access

resources because the system will have already arranged it, this increases

the efficiency of the user.

6.3.1 Intelligent doors

In a large public building access to certain rooms might be restricted to

frequent trustworthy visitors. An airport waiting lounge where first class ticket

holders and frequent flyers can use a VIP lounge, but the majority of normal

users must stand is a good example of this. Given the large number of people

moving through the airport and the benefit of the VIP room, the management

have to maintain a presence at the entrance and check all users.

A trust-based system could be used to protect access to the VIP room. The

first class and frequent flyers will build up trust relationship as they interact

with the airport trust system. When a VIP flyer arrives into the airport there

. 57

mobile devise will immediately join the group. The client will request to join the

group in the VIP role, which allows access to the VIP waiting room. As the

user approaches the entrance to the VIP lounge, the trust based system

controlling the doors will recognise that the user has the right to enter and it

will open automatically.

6.4 Summary

The trust-based access control system designed, implemented and tested for

use with in the collaborative ad-hoc application environment shows that direct

trust establishment is possible in large open networks. The benefit of using a

trust model to establish access control for mobile users inn open networks is it

provides a highly scalable and manageable solution when compared to the

traditional access control list and role based access control systems. The

implementation of a more extensive trust model should allow the use of trust-

based access control systems to be applied to the protection of resources in

real situations.

. 58

7 Bibliography

[Abdul1] A Abdul-Rahman, Stephen Hailes. A Distributed Trust Model.

New Security Paradigms 97.

[Abdul2] A Abdul-Rahman, Stephen Hailes. Using Recommendations

for Managing Trust in Distributed Systems.

[Abdul3] Alfarez Abdul-Rahman. The PGP Trust Model

[Blaze1] M Blaze, J Feigenbaum, J Lacy. Decentralised Trust

Management. Proceedings of the IEEE Symposium on

Security and Privacy, pages 164-173, 1996.

[Blaze2] M Blaze, J Feigenbaum, et al. The role of Trust Management

in Distributed System Security.

[Herzberg] Amir Herzerg. Access Control Meets Public Key

Infrastructure, Or: Assigning Roles to Strangers.

[Jensen] Christian Jensen, Mads Haahr. Towards a Security

Framework for Ad Hoc Applications. Position Paper.

[Jini] W Keith Edwards. Core JINI. Prentic Hall

[Khare] Rohit Khare, Adam Rifkin. Trust Management on the World

Wide Web. First Monday.

[Kuhn] Rick Kuhn. An Introduction to Role Based Access Control.

NIST CSL Bulletin on RBAC

[Marsh] Stephen Marsh. Formalising Trust as a Computational

Concept. Ph.D Thesis, Department of Computer Science and

Mathematics, University of Stirling, April 1994

[McKnight] D.H. McKnight, L.C. Chervany. The Meaning of Trust.

Working Paper, Carlson School of Management, University of

Minnesota, 1996.

[Povey] Dean Povey. Developing Electronic Trust Policies using a

Risk Management Model

[Reagle] Joseph Reagle, Trust in Electronic Markets: The convergence

of crypyographers and economists. First Monday, August

1996.

. 59

1996.

[Sun] Sun MicroSystems. Jini Architecure Specification. Revision

1.0 January 25,1999.

[Swarup] Vipin Swarup, Javier Thayer Fabrega. Trust: Benefits,

Models, and Mechanisms.

. 60

8 Appendix

8.1 Appendix A: JINI

8.1.1 Introduction

JINI is a new distributed paradigm developed by the Sun Microsystems in the

late 1990’s. The role of JINI is to “federate groups of devices and software

components into a single dynamic distributed system” [Sun]. The JINI

architecture is based on the concept of service. A service is an entity that

provides some functionality to a user and is connected to a network. The JINI

model provides a set of components that enable services to be federated into

groups, these components are known as the infrastructure components.

Figure 17: The JINI architecture

There are three types of entities within a JINI framework.

1. The Lookup Service is a central bootstrapping mechanism for the

system and it provides a central point of contact between the services

on the system and the users of the system.

2. Services: are initially registered in the lookup service by the system.

Lookup Service

Service Object

Service Attributes

Client
Service Provider

Service Object

Service Attributes

1: Discovery

2: Join

Service Object

3:

Lookup

4: Invoke

. 61

3. Clients are entities, which use the services provided by the lookup

service.

The components that the JINI model provides can be segmented into three

categories. Infrastructure components: allow the entities in a JINI framework

to discover each other and form themselves into groups. Programming

components: a set of JINI interfaces that provide a distributed extension to the

standard Java Programming model. The JINI programming components

allows for leasing, events and notifications, and transactions. Services

components: use the infrastructure and programming model to make

themselves available in the networked federation. The operations that a

service can provide are defined through an interface

The process of forming federated groups for the three basic entities of the

JINI framework is handled by the infrastructure components. The Lookup

service is assumed to be initially available.

8.1.2 Discovery Protocol

When a service provider initially connects to the network they will initially use

the discovery protocol to announce their presence. This process is known as

“service initiated discovery” and involves the service multicasting to a

predefined multicast address, this is seen in arrows 1 of figure 17.

Any lookup services that are running on the network will respond to the

multicast message by sending a proxy that implements the ServiceRegistrar

interface to the service, so further unicast communication can occur between

them. At the end of the discovery protocol the service will have a reference to

every lookup service running on the network.

8.1.3 Join Protocol

The join protocol now begins. The service provider creates a ServiceItem that

contains the service proxy object and attributes that describe the service. The

service provider will then publish the service on a lookup service, by calling

. 62

the register method on that lookup services proxy passing the ServiceItem as

a parameter. The second join stage is shown in arrow 2 of figure 17. The

service is now available to all users on the network.

The discovery and join protocols allow service providers to register their

services with the lookup service in a high customisable way. The second

aspect that the infrastructure components must handle is interaction between

the clients and the lookup service.

8.1.4 Lookup

The alternative aspect of the infrastructure components is that they provide

support for the discovery by clients of what services are available on the

lookup service. When a client joins a network it will start to listens for periodic

multicast messages from the lookup service. When a client discovers a lookup

service it can search the lookup service for services that it is interested in via

the ServiceRegistrar interface. The client can create a search template that

describes the type and extra attributes of the service it is looking for, this

object is known as a ServiceTemplate. The client can then ask the lookup

service to search for services that match the clients criteria by calling the

lookup method on the ServiceRegistrar object passing the ServiceTemplate

as a parameter. If the lookup service contains matching services these are

returned. This step is shown in arrow 3 in figure 17.

8.1.5 Service Proxy

The final step in this stage is for the client to make direct contact with the

service provider via invocation on the service object. Since the service object

originates from the service provider, the communication protocol used

between them can be service specific. This step is shown in arrow 4 in Figure

17.

