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Summary 

The issue of security in file-systems is as relevant today as when the first file system was 

developed. Current file system implementations rely heavily on centralised security 

mechanisms such as access control li sts. The problem of security in file systems was made 

more complicated by the introduction of remote access to files. Storing information on a 

remote server has the potential to introduce additional security weaknesses into the file 

system model. The client, the communication links and the server make up the file system 

model. 

 

The Network File System (NFS) is a widely used and oft maligned file system. Developed 

by Sun Microsystems in the 1980s it introduced a means to access files remotely. It is by no 

means the only distributed file systems but it is one of the most widely used. Serious 

security limitations were identified in the NFS protocol, as the original design did not 

include a security aspect. Security was added to the NFS protocol by the introduction of 

secure RPC. The security added was in the form of authentication of users. The distributed 

file system model that NFS uses is susceptible to attack in the following ways.  

 

1. An attacker who can gain control of the NFS client has the abilit y to read data and can 

compromise the confidentiality of the data. If the NFS client has write access, an 

attacker can also compromise the integrity of the data stored on the server.  

 

2. An attacker who can gain access to the NFS server can compromise the confidentiality 

of the data stored on the server. The attacker can also compromise the integrity of the 

data by modifying the data stored on the server.  

 

3. An attacker who can gain access to the network can compromise the confidentiality of 

data passing over the network. If a client is performing a write operation, the attacker 
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can modify the data associated with the write operation and affect the integrity of the 

operation. The authenticity of information passing between a client and a server is not 

guaranteed as an attacker who can compromise the integrity of the information can also 

compromise the authenticity of the information by modifying the data on the fly.   

 

CryptosFS is a distributed file system prototype that uses a combination of cryptographic 

techniques to provide confidentiality, integrity and authenticity of information. Blowfish 

symmetric-key cryptography is used to encrypt file system data and meta-data. The 

symmetric-key cryptography provides information confidentiality. Asymmetric-key 

cryptography and MD5 message digests are used to create digital signatures. Validation of 

the digital signatures provides authentication and integrity.  

 

Authenticity and integrity are ensured by the validation of digital signatures by the NFS 

server. The NFS server possesses the public-key for each file allowing it to verify read and 

write requests received from clients. Integrity of the information on the remote server is 

preserved by not storing the symmetric-keys to encrypt the file data on the server.  
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1 Introduction 

The Internet has seen tremendous growth since its commercial inception early in the 

1990's. New techniques are being continuously developed to access information over 

the Internet. The last couple of years have seen an explosion in the number of people 

using hand held devices such as personal digital assistants (PDA’s) and mobile 

phones. Convergence of voice and data services is starting to happen with the 

increased use of short messaging service (SMS) and the wireless access protocol 

(WAP). Connection by users to information and services stored on remote computers 

is on the increase.  

 

Current GSM technology allows users to roam in a foreign network and to use the 

services on that network. The development of the third generation of mobile services 

Universal Mobile Telecommunications System (UMTS) and broadband services can 

only increase the numbers of users utili sing mobile communication services. As data- 

services become increasingly important in the future, users will require access to 

information on remote computers safe in the knowledge that the information is secure 

from compromise. 

 

The abilit y of an individual to securely access information on a remote machine is 

increasingly necessary with the increased usage of the Internet in every day li fe. The 

abilit y to share the information with other users and provide them with differing levels 

of access to the information is even more desirable. Current schemes for accessing 

remote information require registration and significant amounts of infrastructure to 

allow the information to be shared among users. When information is stored on a 

remote machine, the need to store passwords or keys on the remote machine makes it 

vulnerable to attack. An ideal remote information repository is one where the 
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information is stored in encrypted format. This means that the information is safe 

from all but sophisticated cryptanalysis. The use of encryption ensures security of the 

information as it makes it way from the local to the remote host avoiding problems of 

insecure communication links. 

 

CryptosFS investigates the use of public-key cryptography to replace the access 

control mechanisms of NFS [1]. Traditionally NFS uses secure RPC [2] to provide 

authentication of users. This does not provide integrity or security of information 

stored on a server. CryptosFS replaces the existing access control mechanisms of NFS 

with asymmetric-key cryptography to allow users access information. Possession of 

the private-key allows a user to create, modify and remove files and directories. 

Correspondingly, possession of the public-key allows a user to read the files and 

directories.  

 

Encrypting the file data and file meta-data with symmetric-key cryptography provides 

information confidentiality. The MD5 [3] algorithm is used in combination with 

asymmetric-key cryptography to produce digital signatures. The digital signatures are 

used as a form of access control that allows the server to validate clients requests for 

operations. The public-key of the asymmetric-key pair is used to create a digital 

signature for read operations, while the private-key is used to create a digital signature 

for write operations. This provides the integrity and authentication of the information 

on the server.  

 

Only clients who possess the correct keys can validate themselves to the server to 

perform the read and write operations. The abilit y to distribute the public or private 

keys allows a user determine the level of access to grant to other users. Using 

asymmetric-key cryptography for access control allows arbitrary sharing of f iles 
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among trusted users. This form of access control provides strong security and is a 

distributed form of access control as the asymmetric-keys can be shared with other 

users. A distributed access control mechanism scales better than a centralised form 

and is not a single point of failure. 

1.1 Granular ity of File Encryption 

Encryption of data in the file system is one of the most important aspects of the 

research. The level at which the encryption is to be applied to the file system data has 

important implications in terms of performance and security. By choosing to encrypt 

file system data at the individual file level, it provides a suff iciently low level of 

access control but more importantly, it also provides a higher level of security. 

Without individual keys for each file, it is not possible to replace the access control 

mechanism of the file system. Creating keys for each file increases the security of the 

file system by reducing the impact of a key being compromised to a single file. 

 

It is easier to generate keys to encrypt the contents of a directory rather than each 

individual file. Several of the existing cryptographic file systems encrypt all of the file 

data for a single user with one key. Typically, a user is prompted for a pass-phrase 

that generates a key to encrypt the data. Relying on a user tool to generate the 

password leaves the file system vulnerable to attack. An attacker can replace the key 

generation program with a Trojan horse that stores a copy of the keys generated for 

each user. Having the file system handle the keys transparently for the user eliminates 

this threat. 

1.2 An Overview of File System Development Options 

The idea of writing a file system from scratch is not practical given the amount of 

time and resources available for this thesis. Research of the available options to 

perform the development was important. It allowed us to identify where our proposal 
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fitted in with relation to current and past file system development. Our experience 

with file system development is limited so the research served to identify the different 

techniques that can be used. The variety of f ile systems encountered show what an 

active area of research file system development is. The file systems researched fell i n 

to one of the following three categories: 

 

1. The file system is developed in user space and runs as a user process. 

 

2. The file system is developed in the kernel and runs as a privileged process. The 

file system development implements all of the file system functionality. 

 

3. The file system is developed in the kernel and runs as a privileged process. The 

new functionality that the file system provides is stacked on top of existing file 

system functionality using stackable layers. 

 

Each of the three techniques outlined have peculiarities and advantages that are 

described in the following sections. 

1.2.1 User Process File System  

The idea of developing a file system as a user process is appealing for a variety of 

reasons not least of which being that it is simpler than other techniques. By 

developing the file system as a user level process, the complexity of kernel level 

programming can be avoided. This simpli fies the development process enormously, as 

developing in the kernel is more restrictive than user level development. The standard 

development, debugging tools and programming libraries can be used. This helps to 

reduce the time required to implement the file system. 
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One of the most advantages of developing a file system as a user level process is that 

the file system can be installed by a user without the assistance of a system 

administrator. This provides the user with greater flexibilit y in how they use files. 

Figure 1 ill ustrates how a file system developed to run in user space interacts with the 

local and remote operating systems.  

 

Figure 1: File System Implemented as a User Level Process. 

A user process requests access to a file from a user-space file system. The request is 

routed through the kernel. The steps in the communication show how a request by a 

user process results in a context switch in to and out of the kernel. Starting at (1) the 

user makes a request to read a file. This results in a call to the kernel that forwards the 

call on to the user level file system (2). The user level file system makes another call 

to the kernel (3) to retrieve the data required by the read from the storage media. 

 

The kernel passes the data back to the user level file system at (4). The user level file 

system now calls the kernel again to pass the data back to the user process (5). The 
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kernel completes the read command by delivering the data to the user process at (6). 

This results in two additional context switches to the kernel than a normal read. 

 

There are many examples in the literature of f ile systems developed as user processes; 

these include CFS [4] and TCFS [5]. Please refer to section 2 for more a more detailed 

evaluation of these file systems. All of the file systems that are implemented as a user 

level process are susceptible to a major performance problem. The use of a user level 

process requires additional context switches that increase the overhead of every 

system call and thus reduce performance.  

1.2.2 Kernel Level Process File System 

To develop a file system in the operating system kernel means forgoing the simplicity 

of development that a user process provides. This increases development complexity 

because kernel level programming requires specialist knowledge of the specific 

operating system being used. When the file system resides in the kernel, a tight 

coupling exists between the file system and the kernel level services that it uses. This 

coupling reduces the abilit y of the file system developer to port the file system to 

another operating system.  

 

Developing the file system from scratch inside the kernel allows the file system 

developer greater freedom in the implementation process. Gaining experience with the 

internals of the kernel requires time and considerable knowledge of the underlying 

operating system structure. Developing a file system from first principles does not 

utili se any of the development previously done. Redeveloping all of the file system 

functionality in this way does not make any sense. 
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Examples of f ile systems developed in the kernel include the Echo Distributed File 

System [6] and NFS. Figure 2 ill ustrates how a typical user level process utili ses the 

file system operations in the kernel. It requires two calls, (1) for the request and (2) 

for the response. 

 

Figure 2: File System implemented in the kernel. 

 
For the majority of f ile systems developed in the kernel (in UNIX based operating 

systems) the system calls that are made to the kernel are routed through the Virtual 

File System layer (VFS). The VFS layer allows the kernel to provide access to 

different file systems through a common interface. The kernel provides a data 

structure called a vnode to represent an open file or socket without revealing the 

underlying file system implementation. All operations performed on vnodes are the 

same regardless of the underlying file system implementation. Figure 3 shows how 

file system operations are routed through the VFS vnode to the underlying file system 

ext2 [7]. The NFS file system is also present to ill ustrate how a user could access 
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remote files. This serves to ill ustrate how multiple file systems are catered for in the 

same kernel.  

 

 

Figure 3: VFS Supports Multiple File Systems in the kernel1.  

1.2.3 Stackable Layer Kernel Level Process File System 

Significant work has been done using stackable layers to leverage existing 

functionality provided by file systems implemented in the kernel. The extensible file 

systems in Spring [9], Lofs, Rot13fs and Usenetfs are examples of f ile systems that 

use stackable layers and are discussed in “A Stackable File System Interface For 

Linux” [8].  The Fiscus Replicated File System [10] describes how stackable layers 

provide replication of f iles. An implementation of a cryptographic file system in  

Linux, Cryptfs [11] demonstrates how stackable layers can be used to create a useful 

file system by leveraging the existing file system functionality. Stackable layers use 

                                                 
1 Adapted from A Stackable File System Interface for Linux [8] . 
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the VFS interface and vnodes to layer functional operations one on top of the other. 

Stackable layers are described in more detail i n “Vnodes: An architecture for Multiple 

File System Types in Sun UNIX” [12].  

 

The process of developing file system functionality in the kernel is diff icult due to the 

constraints that the kernel imposes. It is preferable to reuse existing code whenever 

possible as it has usually been thoroughly tested and is generally stable. The main idea 

behind stackable layers is to reuse existing functionality by layering new functionality 

on top of it. Developers can reap the benefits of previous work and concentrate on the 

problems associated with their required functionality. 

 

The following figure shows how a stackable layer is used inside the kernel to utili se 

existing functionality.  

 

Figure 4: New File System functionali ty added to the Kernel as a 

Stackable Layer. 
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1.2.4 Stackable layers for the CryptosFS Architecture 

Having reviewed the different development techniques available, stackable layers was 

selected to develop the prototype of CryptosFS. The reasons for choosing stackable 

layers are as follows.  

1. A significant amount of work has been done on developing file systems such as 

ext2 or NFS. Stackable layers allow this existing functionality to be reused. This 

frees the developer to concentrate on the specific implementation problems. 

2. By placing the prototype of CryptosFS as a stackable layer within the kernel, it is 

possible to avoid the performance impact inherent in a user space implementation.  

3. There was a limited amount of time available for the development of the 

CryptosFS prototype. By reusing existing functionality in Cryptfs and NFS, this 

allowed us to concentrate on implementing the specific functionality of 

CryptosFS.   

 

As the CryptosFS file system is supposed to be fast it is more appropriate to place the 

file system in the kernel. Developing the file system, as a user process can’ t provide 

the fast performance that is required. This is because of the additional context 

switches that a user process requires. Placing the file system functionality in the 

kernel complicates the development process because it requires specialist knowledge 

of the kernel. Creating the file system from scratch is not a realistic option as 

suff icient time is not available to gain the necessary experience. 

 

The VFS layer of the operating system allows multiple file systems to be supported by 

the kernel. Stackable layers use VFS layer vnodes to enable a function of one file 

system to use the functionality provided by another file system. Our cryptographic file 

system layer (CryptosFS) added to the kernel provides an exact encryption/decryption 
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service to the user. CryptosFS uses the common services provided by ext2 and NFS, 

the underlying file systems as shown in Figure 5.  

 

 

Figure 5: CryptosFS uses ext2 and offers Services to the VFS Layer2. 

 
 

                                                 
2 Adapted from A Stackable File System Interface for Linux [8] 
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2 State of the Ar t in Cryptographic File Systems 

The idea of applying encryption to data stored in the file system is not a new one. 

There are many examples in the literature and the commercial world of f ile systems 

that utili se encryption. These include:  

 

1. CFS uses DES [13] cryptography to provide confidentiality of f ile data and file 

meta-data. 

2. Truff les [14] uses DES to encrypt file data and asymmetric-key cryptography to 

exchange the DES keys.  

3. TCFS uses DES encryption to provide confidentiality and authentication. 

4. Cryptfs uses Blowfish [15] encryption and stackable layers technology to encrypt 

the file data and file meta-data. 

 

Reviewing the literature for the reference file systems helped to identify the Cryptfs 

implementation. Cryptfs uses stackable layers to allow the fast implementation of f ile 

system functionality. Stackable layers exploit the abilit y to use vnodes to allow 

different file systems to use each other’s functionality. By selecting the Cryptfs 

implementation as a starting point to use for development, it provides a large amount 

of stable kernel code. Using the Cryptfs file system allows the development effort to 

be concentrated on the required cryptographic functionality without having to worry 

about the low-level details of the file system.  

2.1 Cryptographic File System – (CFS) 

CFS is a portable user-level cryptographic file system that is based on NFS. It uses the 

NFS loop back device to intercept system calls and redirect them to the kernel. CFS 

applies encryption at the granularity of the directory both on the local and remote file 
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system. Files stored in the directory are stored under a different mount point and a 

user-attached directory.  

 

Files in CFS are encrypted using a series of user level programs. A specialised form 

of the “mkdir” command “cmkdir” is used to create encrypted directories. During the 

creation of a directory, the user is prompted to enter a key. To use an encrypted 

directory the user must attach the encrypted directory to a normal directory. This 

requires the key, the name of the encrypted directory and a directory name that is used 

as a mount point to access the encrypted directory during the attach process. 

  

For example a user creates an encrypted directory “ /home/oshanahd/myeyesonly” 

with a key “declan” . To access the encrypted directory the user enters the key 

“declan” , the directory name “ /home/oshanahd/myeyesonly” and the mount directory 

/mnt/oshanahd that is used to attach the encrypted directory. CFS determines whether 

a user has the right to access the attached directory based on the user id of the process 

trying to access the directory. 

 

Different cryptographic algorithms can be used to encrypt the data in CFS, including 

DES as discussed in the Data Encryption Standard. The implementation discussed in 

the literature describes how DES with a 56-bit key is used in different modes to 

provide security. 56-bit DES no longer provides adequate security because its 56-bit 

key-size is vulnerable to brute-force attack as explained in “Eff icient DES Key 

Search” [16]. Advances in differential cryptanalysis as discussed in “Differential 

Cryptanalysis of the Data Encryption Standard” [17] and linear cryptanalysis in 

“Linear Cryptanalysis Method for DES Cipher” [18] indicate that DES is vulnerable 

to other attacks also.  



 

 14 

CFS encrypts file data and the meta-data. Encryption of the file meta-data results in 

path names and file names that are on average fifty percent bigger than the normal 

unencrypted equivalent. This reduces the size of valid file names that the user can use. 

CFS supports multiple directories allowing different keys and different cryptographic 

algorithms per directories. The additional context switches that CFS performs to 

service file requests limit the performance of the file system.  

2.2 Truff les 

The Truff les file system is a distributed file system that uses the Fiscus replicated file 

system and TIS/PEM [19]. The Truff les file system provides replication and sharing 

of f ile data. Privacy enhanced mail (PEM) provides security in the form of 

authentication and encryption. Email i s used to exchange the information required to 

share a file volume replica. Information in the email i s encrypted using DES. To allow 

different users share information securely requires the exchange of the DES key. The 

key exchange uses the public-key contained in an X.509 digital certificate. Using DES 

to encrypt the information in email l eaves the data open to brute force attack as 

discussed in “Eff icient DES Key Search” .   

 

Each Truff les volume has a different DES key so that access to the each volume is 

restricted to only those users who possess a copy of the relevant DES key. The use of 

email to exchange DES keys allows users to share access to file volumes without the 

assistance of system administrators. System administrators can use policy to limi t the 

abiliti es of certain users to share file volumes. This provides additional flexibilit y and 

security. 

 

Fiscus is a stackable file system that resides in the kernel and utili ses the underlying 

file system that the operating system provides such as the UNIX File System (UFS) or 
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NFS. UFS provides local file system storage while NFS provides remote file system 

storage. As Truff les is built on top of Fiscus it is as readily available as NFS.  Despite 

the fact that the file system capabilit y of Truff les is in the kernel, the performance of 

Truff les is limited by the use of email to exchange information. Email can be lost in 

the Internet or can be delayed due to congestion, this seriously degrades the 

performance of the file system. 

2.3 Transparent Cryptographic File System - (TCFS) 

TCFS is a modified client side NFS server that communicates with a remote NFS 

server and with a specialised RPC based attribute server. TCFS is only available for 

Linux and requires both its client and server run the Linux operating system. TCFS 

can use several different block ciphers including DES and IDEA [20].  

 

TCFS provides transparent management of user keys. Instead of the user being 

prompted to enter a key by a specialised program, random keys are generated by the 

file-system. The random keys are encrypted with the password of the user and stored 

in a file called /etc/tcfspasswd. The user id is used as an index in to the key file to 

retrieve the key for the user process trying to access the file. This has the advantage of 

transparently handing the encryption of the file data. At the same time, it reduces the 

security provided by the system to the diff iculty of decrypting the user password to 

retrieve the keys. Dictionary password programs can be used crack a user password 

with littl e diff iculty, these programs are freely available on the Internet. 

 

TCFS provides a finer granularity of encryption than CFS. An extended file attribute 

called “secure” is tested upon the creation of the file. If the “secure” attribute is set, 

subsequent read and write operations are directed through the cryptography layer. If 

the “secure” attribute is not set, the read and write operations are treated as normal. 
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2.4 Cryptfs 

Cryptfs is implemented as a kernel resident file system. Cryptfs can be mounted on 

any local or remote directory and can utili se any underlying file system such as UFS, 

ext2 or NFS. Cryptfs does not require any specialised daemon program to run as it 

layers itself on top of the existing underlying file systems. Cryptfs is implemented as a 

stackable code interface. Similar to CFS, users of Cryptfs are prompted to enter a pass 

phrase to generate a key for authentication. A message digest of the pass phrase is 

generated using MD5 and is stored in the memory used by Cryptfs. The keys to 

encrypt the file data are not stored in a file, this makes it more secure than TCFS. As 

the user must enter the pass phrase at the start of each new session that is started, this 

results in reduced flexibilit y but provides greater security. 

 

Cryptfs uses Blowfish symmetric-key cryptography for encryption of f ile data and 

meta-data. A 128-bit key provides a balance between performance and encryption 

strength. Keys can be used in two different ways. The user id can be used to identify 

the key to use. Alternatively, a combination of the user id and the session id of the 

accessing process can be used to identify the key. The second method provides 

additional security, as a malicious user who can use the root user capabilit y to forge 

the user id of the user can't attain the same session id as the user.  

 

Blowfish has the property of preserving the size of the encrypted data. This is 

desirable as many programs access files using an offset. If the encrypted data is a 

different size to the unencrypted data, it renders the offset used by programs invalid. 

This requires a conversion scheme to translate the offset values of the unencrypted 

data to the offset of the encrypted data. This in turn has implications for performance. 
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Encryption of the file name and path name attributes adds additional complexity. 

UNIX file names and path names have certain restrictions regarding valid names. 

Using certain characters such as “ /” or null produces invalid file names. This is a 

problem in Cryptfs as encryption of f ilenames produces invalid filenames. Cryptfs 

solves this problem by uu-encoding the filename to convert them to valid values. It 

does not encrypt the “.” and “ ..” directories because it could provide malicious users 

with examples of encrypted strings to try a known plain text attack. Uu-encoding 

filenames results in the encrypted filenames being 25% larger on average than the 

corresponding unencrypted names. 

 

The performance of Cryptfs is improved by the location of the encryption/decryption 

layer in the kernel. This results in the same number of context switches as file access 

in a regular file system. 

2.5 Summary of properties of Cryptographic File Systems 

The table below summarises the properties of the different cryptographic file systems 

researched. The CryptosFS file system is supposed to be fast and secure and the size 

of the encrypted file data is required to be the same as the clear text. From the review 

of the available file systems, Cryptfs was selected for detailed analysis.  Cryptfs is a 

kernel resident file system. This means that the performance of the file system is 

better than user level file systems. As Cryptfs uses stacking vnodes, the 

implementation is less complex than the complete implementation of a file system 

such as ext2. Even though it requires system administrator intervention to install , it is 

not considered a major problem.  



 

 18 

 
Properties CFS TCFS Cryptfs Truff les 

Authentication using public keys. No No No Yes 

Remote file access capabilit y. Yes Yes Yes Yes 

Cipher text preserves data size of clear text. No No Yes No 

Files encrypted with individual keys No Yes No No 

X.509 Certificates used. No No No Yes 

Kernel resident file system. No No Yes Yes 

Requires System Administrator Intervention. Yes Yes Yes No 

Figure 6: Summary of the properties of different cryptographic file 

systems. 



 

 19 

3 Design of CryptosFS 

3.1 Trusted Computer Base and CryptosFS 

Cryptography can be used in a distributed file system to provide confidentiality, 

integrity and authentication. A distributed system is by its very nature made up of 

many different components. Each of the components in a distributed system 

potentially provides an avenue for an attacker to exploit, so as to gain unauthorised 

access to data and information. Depending on the application domain, the 

requirements for information security are very different. The military typically places 

the highest priority on non-disclosure of information. The banking industry is more 

concerned with integrity of information and preventing attackers from modifying data. 

Utiliti es and service providers place a high priority on ensuring availabilit y. An 

attacker who can successfully interfere with the provision of a service can be 

extremely damaging to a service provider. 

 

The use of components to produce a distributed system requires that the components 

of the system have to be evaluated with regard to security. The combination of 

components to produce a distributed system forms what is called the trusted 

computing base (TCB). The trusted computing base is defined by Butler Lampson in 

“Requirements and Technology for Computer Security” [21] as  

“The set of trusted hardware and software components is called the trusted 

computing base or TCB. If a component is in the TCB, so is every component 

that it depends on, because if they don’ t work, it’s not guaranteed to work 

either.”  
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As part of the design process for CryptosFS it is important to evaluate how exactly 

CryptosFS fits in to the TCB. The different parts of the file system were evaluated to 

determine how they could be secured to provide the necessary level of protection. 

3.1.1 Lack of Trust in the components of CryptosFS 

CryptosFS is a fast secure version of NFS. Like other NFS implementations, it has the 

following components. 

• Client 

• Server 

• Communication mechanism 

 

The design of CryptosFS requires determining the level of trust required among the 

different components. The server should distrust the client and require that all of the 

operations it performs be validated. Validation of operations requests from a client 

requires the server to verify that the client has the authority to perform the requested 

operation. CryptosFS does not authenticate the clients identity but it does ensure that a 

valid client is performing the operation.  

 

In CryptosFS a new access control mechanism is used to control access to file stored 

on the server. The new access control mechanism uses RSA asymmetric-key 

encryption [22] to create digital signatures. This allows the server to verify that only 

valid clients are allowed to perform operations. It also allows the client to give other 

users the capabilit y to perform operations. Trust is established between clients and 

servers by the abilit y of the server to validate the operations that the client requests. 

 

Just as the server does not trust the client without verifying that it has the correct 

authority to perform an operation, the client does not trust the server. The client does 
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not trust the server because someone unknown to the client administers the server. 

The server has the abilit y to disclose information without the authorisation of the 

client.  

 

The client can prevent unauthorised access to data by using encryption. Even if the 

server discloses the data belonging to the client, the data is in encrypted format and so 

is useless without the corresponding key to decrypt it. The client encrypts all of the 

data with symmetric-key encryption before it sends it to the server. The data is never 

decrypted by the server. The server does not possess the key to perform the decryption 

of the data. This enforces trust between the client and the server even though there is 

no explicit trust. 

 

The communication mechanism allows the client and server to pass requests and 

responses to each. The client and the server do not trust the communication 

mechanism, as it is possible for an attacker to compromise it. CryptosFS is designed 

to try to overcome the problem of not trusting the communication mechanism. The 

problem with the communication mechanism is that an attacker can read and change 

the data being sent over it. The abilit y to change the data sent to a server negates the 

abilit y of a server to validate a client request for an operation. CryptosFS encrypts the 

data before it is sent over the network, this ensures confidentiality of the data. The 

server uses the digital signature created by the client to validate the client requests. 

This ensures the integrity of the data.  

3.2 Access Control Mechanisms  

Providing secure access to objects stored in a distributed environment is diff icult. As 

the number of objects and users trying to access those objects increases, traditional 

access control mechanisms become a bottleneck. Centralised management of access 
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control works on the LAN of an organisation but it is impractical for sharing objects 

in the global Internet. Centralised management of access control complicates the 

creation of new users, it prevents arbitrary once off access to files from non-trusted 

users and is a single point of failure.  

3.2.1 Access Control L ists 

Access Control Lists (ACL) as discussed in Pasc P1003.1e [23] provide a mechanism 

for secure access to objects in a distributed system. ACL’s are a form of discretionary 

access control as the end user determines who can access the object. Access control is 

defined in terms of objects and subjects. Objects are defined as what is controlled by 

the access control; a subject is defined as the entity that commences the access to the 

object.   

 

Each subject is described by a collection of attributes. The attributes are used to 

identify the subject to the object and to control the access that the subject has to the 

object. Validating the subject involves authentication and authorisation. 

Authentication involves acquiring and verifying the attributes of the subject. 

Authorisation validates the permissions of the subject by the object. Objects are 

governed by a set of rules called the access control entity (ACE). There are two types 

of ACE: authentication ACE and authorisation ACE. 

 

The authentication ACE provides a way to identify a subject from its attributes i.e. 

machine address, username or the location of the authentication information. The 

authorisation ACE defines the permissions that a particular subject has. Subjects can 

be organised into groups so that authentication and authorisation are based on the 

membership of the group.  
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ACE's are used to form ACL’s that can be stored in a centralised structure such as a 

file or a database. The ACL mechanism obtains the subjects ACE from the ACL to 

authenticate and authorise the subject’s access to the required object. As the ACL is 

stored on a single host, it is a potential single point of failure. Management and 

administration of ACL’s is problematic when there are large numbers of changes to be 

made to the subject’s attributes.  

 

3.2.2 Role Based Access Control  

Role Based Access Control (RBAC) is an example of mandatory access control. The 

subject who has access to an object does not have the automatic right to distribute 

access to the object. RBAC seeks to differentiate between the subject and the task to 

be performed. A subject can perform a task only if it has the correct permissions to 

access the objects required to complete the task. By placing the permissions to access 

an object under a specific role, any subject can be assigned that role.  

 

RBAC differs from ACL’s because a subject does not possess the abilit y to pass 

permissions on to another user. RBAC is pessimistic due to its restrictive nature. It 

assumes that subjects will attempt to pass on permissions and so by mechanism 

prevents it from happening. RBAC is group oriented because it relies on the 

assignment of subjects to roles. Each role has the abilit y to perform a certain subset of 

transactions; RBAC mechanisms adhere to the Principle of Least Privilege as 

discussed in “ Integrity in Automated Information Systems” [24]. A role that a subject 

has is only granted the minimum privilege required to perform a task. RBAC is 

centralised in nature as it requires a system administrator to manage the assignment 

and revocation of roles to and from subjects. 
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3.2.3 Capabili ty Access Control 

Capabiliti es provide access control to an object in a system by restricting access to the 

object to only those users who possess a token. The token provides the token holder 

with permission to perform operations on the object. Capabiliti es provide a single 

mechanism for accessing, naming and securing all objects within a system. Dennis 

and Van Horn discuss capabiliti es in “Programming Semantics for Multiprogrammed 

Computations” [25]. Capabiliti es are used in the Amoeba operating system [26], in 

SFS [27] and in CapaFS [28].    

 

Using capabiliti es provides improved flexibilit y as they can be shared out among 

subjects. Sharing the capabilit y to read data from an object is possible by giving 

another subject a copy of the read capabilit y. As copying capabiliti es provides a 

mechanism for sharing access to object, it is important that the capabiliti es are 

diff icult to forge. If it is not diff icult to forge capabiliti es, malicious subjects can gain 

access to objects. Strong encryption provides protection against the arbitrary forgery 

of capabiliti es.  

 

Capabiliti es come in several different forms, these include tagged, partitioned and 

sparse.   

• Tagging is a computer-architecture-oriented technique; a number of bits are added 

to each memory area, so a distinction can be made between the data and 

capabiliti es functionality.  

• Partitioned capabiliti es are stored in a special area separately from any data and 

can only be accessed by the system.  This separation is used to preserve the 

integrity of the capabiliti es.  Partitioned capabiliti es are also computer-

architecture-oriented.   
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• Sparse capabiliti es do not need to be distinguished from data by tagging or 

partitioning; a simple bit string is used to represent them.  

 

3.2.4 Lack of Formal Access Control in CryptosFS 

CryptosFS is designed as a distributed cryptographic file system that does not require 

the server to authenticate the identity of the user. CryptosFS does not use traditional 

access control for validating users. CryptosFS relies on creating digital signatures and 

using the digital signatures to verify requests for operations from clients. The server 

does not attempt to verify the identity of the user. Validations of read and write 

requests are performed by decrypting a digital signature received from the client 

making the request. To successfully read the data in the server the public-key for the 

file is required, conversely the private-key is required to perform a write operation. 

3.3 CryptosFS Secur ity Model and the use of Cryptography  

The use of cryptography reflects the lack of trust between the components of 

CryptosFS. The security model used for the CryptosFS prototype uses three different 

types of cryptography. These include Blowfish symmetric-key cryptography,  

RSA asymmetric-key cryptography and MD5 message digests. This combination of 

cryptographic algorithms is used to ensure confidentiality, integrity and authentication 

of f ile data and file meta-data. 

3.3.1 Confidentiali ty in CryptosFS 

Confidentiality ensures that only the valid users of data can perform the operation to 

read the file data. CryptosFS ensures confidentiality of f ile data and file meta-data by 

encrypting it with symmetric-key (Blowfish) encryption. Only those users who 

possess the correct symmetric-key key can decrypt the encrypted file data and meta-

data. The operation to encrypt the file data and file meta-data is only performed on the 

client of CryptosFS and the symmetric-keys are never transmitted across the network.  
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The data that is transmitted across the network is always in encrypted format, this 

guarantees confidentiality of the data even if it is successfully retrieved from the 

network. Data stored on the server is stored in encrypted format. If an attacker can 

compromise the server, the confidentiality of the file data is maintained, as the data is 

stored in encrypted format.  

3.3.2 Authentication in CryptosFS 

Authentication in CryptosFS is achieved by the use of digital signatures. A client that 

tries to perform a remote read operation must prove to the server that it has the 

authority to perform the operation. When a file is created on the server the public-key 

for the file is stored. The authentication process for a read operation involves the 

creation of a digital signature by the client. The client creates a digital signature by 

first producing a message digest of the encrypted data. The message digest is then 

encrypted with the public-key of the file. The server possesses the same public-key as 

the client and creates its own digital signature. The server authenticates the client’s 

read request by comparing the digital signature received from the client against the 

digital signature that it creates. If the digital signatures match then the client has 

successfully authenticated itself to the server for a read operation.  

 

To authenticate itself to the server for a remote write operation the client creates a 

digital signature by encrypting a message digest with the private-key of the file. The 

server decrypts the digital signature received from the client and retrieves the message 

digest contained in it. The server creates its own message digest and compares it 

against the message digest recovered from the digital signature of the client. If the 

message digests match then the client has successfully authenticated itself to the 
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server for a write operation. Only the client who possesses the private key can create 

the correct digital signature.  

 

3.3.3 Integr ity in CryptosFS 

The integrity of f iles created on the server is maintained by the use of digital 

signatures. Write operations to modify the data stored on the server require the 

private-key.  The integrity of the file data is guaranteed because even if the public key 

is changed on the server, the comparison of the message digests stored in the digital 

signatures will fail . 

3.4 Location of Cryptography in the System 

The choice of the cryptographic system is important but it is also criti cal to implement 

the cryptography in the correct place in the system. Locating the cryptography in an 

inappropriate location in the system can negate the security offered by it. Refer to “A 

Cryptographic File System for Unix” by Matt Blaze for a thorough description of the 

options available for encrypting data.   

3.4.1 Manual Encryption by the User 

The user can manually encrypt the data using an encryption tool such as PGP [29] or 

the UNIX crypt program. If encryption is required on a small scale by a single user 

then manual encryption is practical. Manual encryption requires the user to keep a 

copy of the key used for encryption. This leaves the data open to compromise from 

the key being stolen. Apart from the security risks of manual encryption, it is 

inflexible for large numbers of f iles. Manual encryption of f iles is not scaleable, 

because as the number of f iles increases the number of keys that the user has to 

manage increases.  
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If a user encrypts the data manually, it is not possible to share the data with another 

user unless they possess a copy of the cryptographic key and the cryptography 

program used to encrypt/decrypt the data. Users are human and can make mistakes 

such as entering the wrong encryption key or worse losing the key.  Many programs 

that are used in the UNIX environment create copies of data that they work with. An 

encryption program may make a temporary copy of the clear text being encrypted and 

may not delete it immediately once the encryption is finished.  

3.4.2 Encryption at the Application Level 

An alternative to applying encryption manually by the user is to embed the encryption 

in to the application that creates the data. An example of this is an editor that encrypts 

the data in the files that it creates. The user is prompted by the application program to 

enter an encryption key when the file is written to or to enter a decryption key when 

the file is read. This is a littl e more flexible than the manual approach because the 

encryption process is seamlessly integrated into the application. 

  

Sharing of data between different applications requires that each application which 

accesses the data, must implement the same cryptographic algorithm. Multiple 

implementations of a cryptographic algorithm can introduce problems due to an error 

in an implementation. Bruce Schneier in “Data Guardians” [30] describes some of the 

problems encountered with different implementations of the DES algorithms.  Failure 

on the part of the user to encrypt the file or to delete the clear text version of the file 

data can render useless the security provided by application encryption useless. 

3.4.3 Encryption at the File System Level  

Applying encryption to the data at the user or application level is not practical because 

it requires the active participation of the user. Users are human and are prone to error. 

It is better to take the responsibilit y of encrypting the data away from the user. If users 
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do not have to worry about keys then the potential for problems from incorrect keys 

being used or the keys being mislaid is eliminated.  

 

Entrusting the file system to perform encryption reduces the risks of security breaches 

due to multiple implementations of cryptographic algorithms. Cryptographic 

algorithms are complex and mistakes in implementation are possible. Experiences 

with the DES algorithm provide evidence of problems encountered due to the 

complexity of coding cryptographic algorithms.  

 

The end-to-end argument as specified by Saltzer et al in “End-to-end arguments in 

system design” [31] discusses the use of encryption to provide for secure transmission 

of f ile data. Saltzer et al argue that it is better to let the end application apply 

encryption rather than let it be performed by the communication subsystem. It is not 

appropriate to trust the communication subsystem to manage the keys required for 

encryption. A further complication of applying encryption to the communication 

subsystem is that once data has cleared the communication subsystem on the target 

machine it will be in unencrypted format.  

3.4.4 Encryption at the System Level 

The data can be encrypted at the system level using a hardware device. The hardware 

device can encrypt the data before sending it over the communication link. The 

clipper chip [32] is an electronic device that can be embedded in to network cards. 

This provides a mechanism for encrypting all communications between different 

principles. It never established itself because the US government possessed a 

backdoor that allowed it to override the encryption mechanism. 
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When file data is stored on a remote file system, the security of the communication 

link is important. Malicious users who can gain access to the link can read data sent in 

the clear to a remote site. Programs such as packet filters make this easy to do. A 

hardware device can be used to encrypt and decrypt data before it is stored on the 

physical media. Using hardware in this manner complicates back up and retrieval of 

information stored on the media. Adding an additional component to the system 

further increases the risk of failure of a component. Failure of the hardware can render 

the data inaccessible. The need to store keys at some location in the network whether 

at the local or remote site complicates matters and increases the risk of security 

breaches. 

3.4.5 CryptosFS & Encryption at the file system level 

The location in the operating system where cryptography is applied is important. 

Security of the generation, management and storage of keys can impact the overall 

effectiveness of encryption when it is applied to an operating system. During the 

design of CryptosFS the use of cryptography at the user and application level were 

rejected because of the problem with security of keys and scaling problems. It is 

preferable to let the file system take responsibilit y for the application of encryption.  

CryptosFS is designed to encrypt file data at the file system level. The keys for 

encryption are generated and stored in the file system. Key management is completely 

transparent to the user. By applying the encryption in the file system, the file data is 

encrypted and decrypted at the client only. This ensures confidentiality of the file data 

from the client end to the server end and back. Blowfish symmetric-key encryption is 

used in CryptosFS to encrypt the file data and meta-data. This provides complete 

security to the data stored on the server. 
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The CryptosFS file system is responsible for managing the encryption keys. No other 

part of the system is required to manage keys. The file data is encrypted and 

decrypted only by the CryptosFS file system application on the client. As no other 

part of the system needs to decrypt the file data, the need for complicated key-

management is removed. This simpli fies the key-management model and improves 

the security of the file system.  

 

Eff icient distributed system design dictates that as far as possible processing is 

transferred from the highly burdened server to the lightly burdened client. By passing 

the responsibilit y for encryption of f ile data to the client, a computationally expensive 

operation is removed from the server. This allows the server to concentrate on 

performing other work and allows it to scale more effectively to handle additional 

client requests. 

3.5 CryptosFS - Design Goals 

The design of CryptosFS reflects a desire to add stronger security to NFS through the 

application of different cryptographic techniques. The use of RSA asymmetric-key 

encryption was considered to encrypt the file data. After consideration, this was 

rejected because the performance of f ile operations would have been very poor.  

 

Blowfish symmetric key encryption is used in CryptosFS to perform the file data 

encryption. There are no references in the literature to show that the Blowfish 

algorithm has been successfully cryptanalysed. Blowfish offers a balance of strong 

encryption and high performance; this makes it ideal for encrypting data. The choice 

of encryption selected influenced the design of CryptosFS.  

 

The design goals for CryptosFS include: 
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� Keys produced in the file system are stored in the file system. User assistance is 

not required to produce the keys. Keys are generated from random information 

from within the operating system. 

 

� When a file is created, the file system automatically produces the required 

symmetric and asymmetric-keys. The keys generated by CryptosFS are saved 

somewhere in the file system. 

 

� Encryption of f ile data and file meta-data is performed by the client. The 

encrypted file data and meta-data are stored on the server in encrypted format. No 

decryption of f ile data is performed by the server. The server only uses encryption 

to authenticate operations by manipulating the digital signatures produced by the 

client.  

 

� The design of CryptosFS follows eff icient distributed system design principles as 

far as possible. By passing the encryption and decryption of data to the client, the 

computationally expensive work of encryption and decryption is transferred from 

busy server to the less lightly loaded client. This allows the server to scale more 

eff iciently and handle an increase in the number of f ile operations. 

 

� CryptosFS must modify the kernel RPC mechanism to allow the transfer of digital 

signatures from the client to the server and from the server to the client.  
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4 Implementation 

4.1 CryptosFS - Implementation goals  

The following are the implementation goals were set for the implementation of 

CryptosFS. 

- A combination of Blowfish symmetric-key encryption, RSA asymmetric-key 

Encryption and MD5 message digests algorithms are to be implemented. The 

different cryptographic algorithms are used to provide a mechanism for validating 

operation requests from clients on the server, as the server does not trust the client. 

 

- Cryptography is expensive in terms of the additional time it adds to a file 

operation. To offset the cost of the encryption and decryption the implementation 

of these three algorithms have to be implemented in the kernel to ensure that they 

are as fast as possible.  

 

- The following bit sizes are used for the three different cryptographic algorithms. 

� Blowfish key size of 448-bits. A key size of 448-bits provides a good balance 

of strong encryption and high performance. 

� RSA key size of 1024-bits. A key size of 1024-bits provides strong encryption 

to protect the digital signatures against brute force attack. 

� MD5 message digests of 128-bits. The 128-bit message digest size is a 

standard size used for the creation of digital signatures. 

 

- The Blowfish symmetric-key encryption algorithm is used to encrypt and decrypt 

the file data and the file meta-data. All file data and file meta-data is stored in 



 

 34 

encrypted format on the server. No symmetric-key encryption is performed by the 

server to improve security.  

 

- The MD5 algorithm is used to generate the message digests. The message digests 

are used to produce a digital signature by signing them with the RSA public or 

private-key. The RSA public-key is used by the NFS server to validate the digital 

signatures and to authenticate the results returned to the NFS client.  

 

- To implement the RSA asymmetric-key encryption in the kernel, a method for 

producing large integers in the kernel had to be found. 

 

- The kernel NFS client and server implementation in Linux use kernel RPC as its 

transport mechanism. This RPC is hand coded, as there is no rpcgen program for 

the Linux kernel. The RPC code had to be analysed to determine how best to 

modify it. The modifications allow it to transport the digital signatures and 

associated asymmetric-keys from the client to the server and vice versa. 

 

- CryptosFS is to be developed in Linux and has to use Linux kernel modules to 

allow the dynamic loading of the file system into the running kernel. 

 

4.2 Architecture of CryptosFS 

The general architecture of the CryptosFS file system is ill ustrated in the following 

diagram.  
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Figure 7: General Architecture of the CryptosFS implementation. 

The steps numbered one to six describe how and where the different cryptographic 

algorithms in CryptosFS are implemented.  

1 The symmetric and asymmetric-keys for each file are created when the file is 

created. The keys are stored in the vnode for the file. Data received from the user 

is encrypted before it is passed down to the underlying NFS client. The 

encryption is performed using the symmetric-key stored in the file vnode. 

 

2 The NFS client receives the encrypted data and the request for an operation from 

the CryptosFS layer. The client creates a digital signature for the operation it is 

requesting from the server. The client produces the digital signature by creating a 

message digest of the encrypted data received from the CryptosFS layer. The 

message digest is signed with the public or private-key of the file. The public-key 

is used for read operations and the private-key is used for write operations. The 
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digital signature, the public key and the encrypted data are encoded using XDR 

before they are sent to the server. 

3 The NFS server decodes the request from the client. The decoded request 

contains the operation requested, the digital signature and the public-key for the 

file.  

• If the client requests a write operation the server uses the public-key to decrypt 

the digital signature to retrieve the message digest created by the client. The 

server creates its message digest from the encrypted data and compares it 

against the message digest retrieved from the client’s digital signature. If the 

message digest produced by the client matches that produced by the server, the 

server knows the client who created the digital signature is authorised to 

perform the write file operation. 

• If the client requests a read operation, the server creates a message digest of 

the encrypted data. The server encrypts the message digest with the public-key 

to create a second digital signature. The server compares the two digital 

signatures and if they match the server knows that the client is authorised to 

perform the read operation. 

 

4 The NFS server performs the operation if the request from the client is validated 

correctly. The results of the operation are used to create another digital signature 

by creating a message digest of the result data. The server uses the public-key of 

the file to sign the message digest. The result data and the digital signature are 

encoded using XDR and sent back to the client. 

 

5 The NFS client decodes the results received from the server. The decoded results 

contain the results of the operation requested by the client and the digital 

signature created by the server. The client creates a message digest of the results 
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data and signs the message digest with the public-key of the file to create a digital 

signature. The client compares the digital signature it created against the one 

received from the server. If the digital signatures match, the client knows that the 

result data is correct and has not been modified as it passed over the network.  

 

6 The NFS client passes the results data back up to the CryptosFS layer. The result 

data is decrypted with the symmetric-key from the vnode. The decrypted data is 

then passed to the user process. 

4.2.1 Functionali ty in CryptosFS 

Figure 8 ill ustrates how the different components of the CryptosFS implementation fit 

together. The key generation and storage is performed in the CryptosFS layer. Both 

the NFS client and server generate digital signatures for the validation of the different 

file operations. 

 

Figure 8: Structure of components in the CryptosFS File System. 
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There are four main components in CryptosFS that perform the key generation and 

management. The different components are discussed below. 

1. cryptos_genasym generates the asymmetric-keys for each vnode; it also 

produces the digital signatures from the message digests on both the client and 

the server. 

2. bfkeys generates the symmetric-key for each vnode. 

3. cryptos_list and cryptos_file store the generated keys in main memory and in 

flat files respectively. 

4. hashfuncs generates the message digest of the encrypted data. This message 

digest is used in the generation of the digital signatures. 

Refer to Appendix A for a complete list of the software components of CryptosFS. 

4.3 Key Structure for CryptosFS 

CryptosFS uses symmetric and asymmetric-key encryption to provide confidentiality. 

To allow each file to possess its own keys, the vnode structure of the VFS layer is 

modified to store the keys to perform the encryption and decryption. The vnode is 

implemented in the Linux kernel as a C structure. The CryptosFS keys are defined as 

a layer of structures that are contained in the VFS vnode. The structure asym_keys_t 

contains the character representation of the public and private keys for the RSA 

asymmetric-key encryption. The symkey contains the character representation of the 

Blowfish key. By storing the keys in the vnode, the information accessible from each 

vnode can be individually encrypted and decrypted simply by retrieving the keys from 

the vnode structure. 
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Figure 9: Structure for CryptosFS keys as stored in VFS vnode. 

4.3.1 Vnode stacking and Encryption 

The CryptosFS prototype encrypts and decrypts the file data and meta-data before 

passing it on to the underlying ext2 and NFS file systems. This is possible by using 

stackable layers and stacking vnodes. The vnodes of the VFS layer in the Linux 

operating system possess the capabilit y to store arbitrary information. Stackable layers 

exploit this capabilit y to store a pointer to another vnode (called a hidden vnode) in 

the higher-level vnode.  

 

The encryption and decryption of data is performed on the highest-level vnode. The 

hidden vnode is used by the underlying file system to perform operations on the 

encrypted data. This allows the client to encrypt the data and pass it on to the ext2 or 

NFS file systems safe in the knowledge that the data will never be seen in clear text 

format. This mechanism allows the cryptography to be isolated into a separate layer; 

the file operations are performed by the underlying file system. 
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4.3.2 Blowfish symmetr ic-key Generation for CryptosFS 

CryptosFS uses 448-bit Blowfish keys to encrypt file data and file meta-data. The 

Blowfish keys are created automatically when a file or directory is created. For each 

symmetric-key to provide suff icient entropy, it is produced using a seed value 

obtained from the system time in the Linux operating system. The system time in 

Linux is represented by ji ff ies. Linux Kernel Internals [33] describes ji ff ies as  

"Jiffies represents the system time since the system was started up in, they are 

measured in ticks. Each tick represents 10 milli seconds".  

 

The seed to the Blowfish key generator is generated from the following formula. 

� seed = (ji ff ies % HZ) * (1000000000/HZ) 

ji ff ies = system time in milli seconds since the operating system was booted. 

HZ = 100 

The number of seconds from the time of day is retrieved from the operating system 

and is combined with the seed value to produce the Blowfish key according to the 

following formula. The key is 448-bits in length (56 bytes) and so is produced in a 

loop. 

for (i=0; i < SYMKEY_SIZE; i++)  

symkey [i] = (unsigned char) ((seconds) * (seed * i)) % CHAR_RANGE); 

 

The CHAR_RANGE is 255. Using the modulus function ensures that each of the 

characters produced is in the range 0 - 255.  

4.3.3 Generating Large Integers in the L inux kernel  

The implementation of CryptosFS requires a mechanism to generate large integers in 

the Linux kernel. The RSA asymmetric-key encryption relies on the diff icult of 

factoring large numbers for security. This is discussed in detail i n  “A method for 
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obtaining Digital Signatures and Public-Key Cryptosystems”. Without the abilit y to 

produce large numbers in the Linux kernel, it is not possible to implement the RSA 

asymmetric-key encryption algorithm in the kernel. 

 

The kernel of the operating system is limited in the functionality that it provides. Once 

the kernel is loaded in to the memory of the machine it runs continuously without ever 

being swapped out to disk. This places a limit on the size of the kernel. The aim of the 

kernel is to provide low level services quickly and eff iciently. Adding large integer 

capabilit y to the kernel to generate large integers does seem to contravene the end-to-

end argument. This is because the kernel does not have access to the functionality that 

a higher-level layer has. One of the implementation goals for CryptosFS is to use RSA 

asymmetric-key encryption in the kernel. This is not possible without a kernel 

implementation of a large integer package. 

 

Two large integer packages were evaluated to determine whether it is possible to use 

them in the Linux kernel. These included the Large Integer Package (LIP) [34] and 

the GNU Multi -Precision Arithmetic Package (GNU MP) [35]. A considerable 

amount of effort was concentrated on trying to port the LIP to the kernel. Efforts to 

port the LIP to the kernel failed as it relied too heavily on the functionality of the glibc 

library.  

 

The attempt to port the GNU MP package to the kernel was more successful. Porting 

the GNU MP package to the kernel required modification of its memory allocation 

routines. The GNU MP is a user space library that uses the glibc functions malloc, 

realloc and free for memory allocation and de-allocation. These functions are not 

available in the Linux kernel and so had to be replaced with kernel equivalents. The 

realloc function is the only function that caused significant problems as the malloc 
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and free functions mapped to the kernel functions kmalloc and kfree respectively. A 

function implemented using kmalloc and kfree allows the correct simulation of the 

operation of realloc. 

 

4.3.4 RSA Asymmetr ic-key Encryption 

The security provided by RSA asymmetric-key encryption is due to the diff iculty of 

factoring large prime numbers. The algorithm for RSA asymmetric-key encryption is 

discussed in “A method for obtaining Digital Signatures and Public-Key 

Cryptosystems”. The details of the RSA algorithm implemented are as follows: 

1. Select two large prime numbers p and q.  

2. Compute n = p*q. 

3. Select a value e that is relatively prime and is less than p*q. The public key is 

e, n. 

4. The Extended Euclidean Algorithm is used to find a suitable d value, see the 

next section for more detailed information of how this is implemented.  

5. To perform encryption, raise a value V to the power of e and obtain the 

modulus n of the result to produce cipher text C. This looks as follows: 

C = ((V^e) mod n) 

6. To perform decryption, raise the cipher text C to the power of d and obtain the 

modulus n of the result to produce the original value V. This looks as follows: 

V = ((C^d) mod n) 

 

The public-key pair is e and n and the private-key is d. The public-key pair is used by 

the NFS server to validate file operations and is made freely available. The private-

key d is stored internally by CryptosFS. The private-key is given to other users to 

allow them perform write operations on files.  
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4.3.4.1 RSA asymmetr ic-key Generation in CryptosFS 

The GNU MP library provides almost all of the functionality necessary to produce the 

RSA asymmetric-keys with the exception of the Extended Euclidean Algorithm. This 

necessitated the design and implementation of a version of the Extended Euclidean 

Algorithm. The theoretical basis for the algorithm is obtainable from a description 

written by Bruce Ikenaga as detailed in “An Example Using the Extended Euclidean 

Algorithm” [36]. 

 

The RSA asymmetric-keys are generated using the algorithm as detailed in the 

previous section. The two prime numbers p and q are produced using the GNU MP 

prime number generator function. The prime number generator function uses a base 

number as a starting point. It retrieves the next prime number greater than the base 

number. The first base number is generated using the GNU MP random number 

generator seeded with the system time (ji ff ies). The second call to the prime number 

generator uses the first prime number generated as the base number. This allows two 

different prime numbers to be generated. 

 

4.4 Storage of Keys Generated in CryptosFS 

The keys generated in CryptosFS are stored in a structure called cryptos_keys_t that is 

located in the vnode in the VFS layer. The vnode information in the VFS layer is only 

active in the memory of the computer. Some means of storing the keys to provide 

persistence is needed.  

4.4.1 L ink-list Implementation in CryptosFS 

A link-list implementation stores the keys in the computers main memory as they are 

generated by the CryptosFS file system. Each of the keys generated is stored in a link 

and the links are connected together to produce a link-list. By structuring the link-list 
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in this way, a clean separation of the implementation of the link-list and the 

information that it stores is possible. Modification of the link-list implementation is 

possible without affecting the structure that stores the key details. The following 

diagram shows the structure of the key-object that is stored in each link of the link-

list. 

 

Figure 10: Structure of the key object used in CryptosFS. 

The fields in the key object include: 

� c_ino - the vnode number of the file that the key is created for. 

� ruid - the user id of the user who created the file. 

� filename - the name of the file that the keys are created for. 

� keys - a cryptos_keys_t structure, this contains the symmetric and 

asymmetric-keys (see section 4.3 for more details). 

 

The links in the link-list used in CryptosFS are arranged to form a doubly linked-list. 

The pointer “previous_link” at the start of the list always points to NULL, as does the 

pointer “next_link” at the end of the list. Functions were written to search the list, add 

links, remove links and destroy the list. The keys generated for each user are written 

to a user file when the CryptosFS kernel module is unloaded. The following figure 

shows the layout of the link-list. 
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Figure 11: Doubly linked-L ist implemented in CryptosFS to store the 

generated keys. 

By placing the generated keys in a link-list, it is possible to dump the contents of the 

link-list to a file and so store and retrieve the keys generated. The unloading of the 

link-list is performed when the kernel module for CryptosFS is removed from the 

system. Conversely, when the kernel module for CryptosFS is inserted in to the 

system a file is read to retrieve the keys for each vnode. Suff icient information is 

stored in each file to differentiate between each vnode and the user associated with it. 

The mounting of the CryptosFS file system is only possible by the root user and it is 

in the root users account that the file containing the mount keys is stored.  

4.4.2 Key Files in CryptosFS 

The doubly linked-list implemented in CryptosFS allows suff icient information about 

the keys generated for each vnode to be stored to ensure the persistence of the keys. 

Persistence of the keys is guaranteed by writing the contents of the link-list out to a 

file for each user id.  

 

The contents of each cryptos_keyobject_t structure contained in the link-list in 

CryptosFS is written out to a file by user id and read in by user id. Concatenating the 

following pieces of information produces the key-file names. 

� homedir - home directory of the user. 
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� . + passwd_dir - Set to ".gubu/" 

� . + hostname: - Hostname of the client set by the root user when installi ng 

the CryptosFS file system kernel module. 

� userid: - Operating system id of the user. 

� username - Operating system username of the user. 

 

An example key filename for the root user on the host bonny is 

“ /root/.gubu/.bonny:0:root". 

 

The key information stored in the key-files is the same information that is stored in 

the key-objects of the link-list. The separator character "|" is used to delimit each field 

in the key-file. The following shows the field layout for the key-file. 

 

Figure 12: Field description of CryptosFS key file. 

The necessity to store the keys generated by CryptosFS could have been facilit ated by 

modifying the underlying ext2 file system used by Linux. Modification of the ext2 file 

system code was considered but rejected because of the additional time to perform the 

necessary analysis.  

4.4.3 File Operations Implemented by CryptosFS in the L inux Kernel 

Normally file operations are called using the system call i nterface that routes the calls 

from a user process through the VFS layer to the kernel. As CryptosFS stores the keys 

generated for each user in a flat file in the users home directory, a mechanism is 

needed to manipulate the information stored in these files from inside the kernel. The 

system call i nterface is only available to user space processes. 
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It is possible to perform system calls to execute the required file operation by creating 

a user process to perform the file operation. This results in an additional context 

switch from the kernel to the user process and then back in to the kernel. This 

approach is not practical because of the performance penalty it imposes. As the code 

for the VFS file is available, it is possible to copy sections of this code to implement 

the necessary file operations. The following file operations are implemented in 

CryptosFS. 

open close 

read write 

mkdir rm 

 

Figure 13: File operations implemented for key-files in CryptosFS. 

4.5 NFS Client 

The Linux NFS client is implemented in Linux as a part of the kernel. The CryptosFS 

implementation modifies the NFS protocol used by the NFS client to pass digital 

signatures. The digital signatures are used by the server to validate client requests for 

file operations. The client uses the digital signatures to validate the results returned 

from the NFS server.  

4.5.1 NFS Client Read Operations in CryptosFS 

The NFS read operations on the client are modified to generate a digital signature as 

follows. 

1. Pass an encrypted string of information to the MD5 message digest function. The 

string is in encrypted format because the CryptosFS layer encrypts the data before 

passing it to the NFS client. 

2. The MD5 message digest function creates a 128-bit message digest of the 

information.  
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3. Pass the message digest to the RSA encryption function.  

4. The RSA encryption function uses the public-key of the file to produce a digital 

signature.  

 

Figure 14: NFS Client creates a digital signature for a read operation. 

The client uses the public-key to create a digital signature which is used to 

authenticate read operations as shown in the previous figure. Read operations include 

file reads and directory lookups. The NFS server validates the read operations by 

decrypting the digital signature3.  

4.5.2 NFS Client Wr ite Operations in CryptosFS  

The only difference between the NFS clients read and write operations in CryptosFS 

is that the write operation uses the private-key of the RSA asymmetric-key pair. 

Figure 14 looks the same for a write operation except that the private-key is used to 

                                                 
3 See section 4.6 for more information on how the NFS server validates the NFS read operations. 
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perform the encryption.  The write operations include file writes, file creation, file 

removal, file copy, file move, directory creation and directory removal. The NFS 

server validates the write operations by decrypting the digital signature4. 

4.5.3 NFS Client Result Validation in CryptosFS 

When the NFS server validates and performs an operation requested by the NFS 

client, it creates a digital signature from the results of the operation. The server returns 

the results data and the digital signature to the client. The NFS client validates the 

results data received from the NFS server as follows. 

1. The results data received from the server is passed to the MD5 message digest 

function on the client. 

2. The MD5 message digest function creates a 128-bit message digest from the 

results data. 

3. The 128-bit message digest is passed to the RSA encryption function. 

4. The RSA encryption function uses the public-key of the file to create a digital 

signature. This digital signature is the client’s digital signature as the client created 

it. 

5. The client’s digital signature and the server’s digital signature are passed to a 

comparison function to check whether they match. 

6. The digital signatures do not match so the results data is not valid. 

7. The digital signatures match so the results data is valid. 

                                                 
4 See section 4.6 for more information on how the NFS server validates the NFS write operations. 
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Figure 15: NFS Client validating result data from NFS Server. 

4.6 NFS Server 

The Linux NFS server is implemented in Linux as a part of the kernel. The CryptosFS 

implementation modifies the NFS protocol to allow digital signatures to be exchanged 

between a client and server. The digital signatures allow a server to validate clients 

requests for file operations. They also allow a client to validate the results returned by 

a server.  
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4.6.1 NFS Server Validation of Read Operations in CryptosFS 

The validation of a read operation request on the NFS server uses virtually the same 

method as that used by the NFS client when validating the results of an operation 

received from the server. Figure 15 shows the process. The only difference is that in 

the validation of a read request on the server, it is the server that generates the digital 

signature. The server can validate the read operation because only a client with the 

correct public-key can create the correct digital signature. 

4.6.2 NFS Servers Validation of Wr ite Operations in CryptosFS  

The NFS write operations on the NFS server are modified to validate the digital 

signature received from the NFS client. The write operation differs from the others 

described in that it decrypts the digital signatures created to retrieve the message 

digest contained in it. 

 

1. The same encrypted data used to create the digital signature on the client is passed 

to the MD5 message digest function on the server. 

2. The MD5 message digest function creates a 128-bit message digest from the 

encrypted data received from the client. This is called the server’s message digest. 

3. The digital signature received from the client is passed to the RSA decryption 

function. 

4. The RSA decryption function uses the public-key of the file to decrypt the client’s 

digital signature and retrieve the message digest contained in it. 

5. The client’s message digest and the server’s message digest are passed to a 

comparison function to check whether they match. 

6. The message digests do not match and the write operation fails because the client 

does not possess the correct private-key. 
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7. The message digests match so the write operation can proceed. Only a client that 

possesses the private-key can generate the correct digital signature. 

 

Figure 16: NFS Server validates a digital signature for a wr ite operation. 

4.6.3 NFS Servers Authentication of Results in CryptosFS  

The results data returned by NFS server operations are modified to include a digital 

signature.  The creation of the digital signature by the server follows the same 

procedure as that performed by the NFS client when performing a read operation. 

Refer to section 4.5.1 for more information. 

4.7 XDR and RPC in NFS 

4.7.1 Overview of Secure RPC in NFS 

The original implementation of NFS has significant problems with security, as it does 

not authenticate the identity of users making requests. This makes it relatively easy to 
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forge requests being sent to server. Sun modified the NFS protocol to use both 

asymmetric-key (Diff ie Hellman) and symmetric-key (DES) encryption to 

authenticate users instead of the machines that they are logging in from. This process 

is described in detail i n “Secure Networking in the Sun environment” .  

 

The application of symmetric-key cryptography (DES) to a time stamp allows the 

secure transmission of information in the network. The DES algorithm is no longer 

secure as it is open to attack from different techniques. Distributed computing has the 

abilit y to provide supercomputing levels of processing power to groups such as the 

Digital Frontier, allowing DES and other cryptographic algorithms to be 

cryptanalysed. The weaknesses of DES have been discussed in “Differential 

Cryptanalysis of the Data Encryption Standard” . 

 

NFS uses secure RPC for Network Services. Secure RPC uses DES in Secure NFS. 

The DES authentication is designed around the abilit y of a sender to encrypt the 

current time in a message and transmit it to the receiver. The receiver decrypts the 

message, removes the time and compares it against her own clock. The authentication 

process requires that the client and the server have access to the same time. If they 

don't have a synchronised view of the time then the client requests a copy of the 

server’s time and calculates the difference between its local time and the server’s 

time. The client uses the difference between the two times to offset its clock value 

when computing timestamp values. 

 

In our discussion of how the secure RPC mechanism works, the term encryption-key 

refers to the public-key of the asymmetric-keys. Similarly, the term decryption-key 

refers to the private-key of the asymmetric-keys. Figure 17 ill ustrates the 
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authentication process in detail . Two parties are involved in the communication, client 

X and server Y. 

 
 

Figure 17: Secure RPC validation in Secure NFS. 

The authentication process requires the client and the server to agree on a secret key. 

The client, trying to communicate with the server, produces a random key to encrypt 

the timestamps. The random key is called the "Conversation Key". The client encrypts 

the Conversation Key using the encryption-key of the server. The client knows that 

the server is the only one who possesses the corresponding decryption-key. This 

ensures that only the client can decrypt the Conversation Key. The client then sends to 

the server a message containing the client ID, the encrypted conversation-key and a 

window value encrypted with the conversation-key. The server, upon receipt of the 

message, identifies the client from the client ID of the message.  

 

The server uses its decryption-key to decrypt the encrypted conversation-key. Once 

the server has decrypted the conversation-key, it uses the conversation-key to decrypt 

the window value. The window value allows the server to verify that the messages it 

receives are valid. The server authenticates the message by checking that its current 

time is between the timestamp and the timestamp plus the window. If this is not the 

case then the server rejects the message. The server now stores the following 

information in its credential table. 

1. Client ID 

2. Conversation Key for the client 
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3. The window. 

4. The timestamp of the last message. (This is used to prevent replays of messages.) 

 

If the server authenticates the client successfully, it returns to the client an ID into the 

credential table and the clients timestamp encrypted with the conversation key CK. 

The client can verify that the information is from the server as the server is the only 

one has the client’s timestamp. In subsequent communications between the client and 

the server, the client uses the client ID to identify itself to the server.   

4.7.2 XDR/RPC in CryptosFS 

The RPC mechanism used by the NFS client and server specifies the NFS protocol 

using XDR (External Data Representation Standard) as specified in RFC 1832 [37]. 

XDR is described in RFC 1832 as: 

"A standard for the description and encoding of data. It is useful for 

transferring data between different computer architectures, and has been used 

to communicate between such diverse machines as the SUN 

WORKSTATION*, VAX *, IBM-PC* and Cray*. 

 

The implementation of the NFS client and server in Linux uses XDR/RPC to ensure 

architecture independence. The CryptosFS prototype uses the Linux NFS 

implementation. The RPC structures in CryptosFS are modified to accommodate the 

digital signatures and public-keys that are transferred during an NFS file operation. 

This requires increasing the amount of space allocated for the relevant argument 

structures.  

 

Each of the NFS commands specified in the NFS protocol has its arguments and 

results encoded and decoded using XDR. The following diagram shows how the RPC 



 

 56 

mechanism encodes and decodes the arguments and results transferred between the 

between the NFS client and NFS server. 

 

Figure 18: XDR/RPC Mechanisms for NFS Client and Server 

Communication. 
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5 Performance Evaluation of CryptosFS 

5.1 Analysis of CryptosFS  

The evaluation of the performance of the CryptosFS file system is one of the goals of 

this thesis. The CryptosFS file system is implemented in the kernel because of the 

requirement for speed. A user process file system does not deliver adequate 

performance. Development of the CryptosFS file system in the kernel complicates the 

development process in two fundamental ways.  

1. The kernel li braries are limited in the functionality that they provide. The 

limited kernel functionality means functionality that is normally available 

from user space C libraries has to be implemented in the kernel. This slows the 

development process down. 

2. Developing in the kernel is sensitive to coding and logic errors. If a section of 

code has a memory error and it is loaded in to kernel, it has the potential to 

halt the machine with a kernel segmentation fault when it is executed.  

 

Finding and correcting errors in kernel code is made more diff icult by the limited 

debugging faciliti es that the kernel provides. The CryptosFS prototype uses a large 

amount of C code that relies heavily on pointer manipulation. Any errors in the kernel 

code results in the kernel stopping, requiring the machine to be rebooted. This makes 

the development process extremely slow and laborious. Rebooting the machine after 

the operating system has crashed runs the risk of damaging the hard-drive of the 

machine. This is due to the unstable state that the file system is left in when an error 

occurs in the kernel.  

  
While developing the CryptosFS prototype, two hard-drive failures occurred. The first 

failure occurred a month in to the implementation while the second occurred a month 
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before finishing the implementation. It was possible to procure a replacement for the 

initial failure but it was not possible to replace the second failure. This resulted in 

reduced capabilit y to perform a rigorous performance evaluation of the CryptosFS 

prototype. 

 
Even-though the hardware to perform a rigorous evaluation of the CryptosFS 

implementation was not available; a series of micro benchmarks of the different 

cryptographic algorithms implemented in CryptosFS was produced. The micro 

benchmarks were performed on the following processes. 

 
1. RSA asymmetric-key generation. 

2. Blowfish symmetric-key generation. 

3. Generation of a 128-bit message digest. 

4. Encryption of a 128-bit message digest using 1024-bit asymmetric-keys. 

5. Decryption of a 128-bit message digest using 1024-bit asymmetric-keys. 

6. Digital signature creation using 1024-bit asymmetric-keys. 

7. Validation of digital signatures using 1024-bit asymmetric-keys. 

5.2 Micro Benchmark Process 

The micro benchmarks of the different cryptographic algorithms in CryptosFS were 

produced on a Pentium machine running RedHat Linux 6.1 with 64MB of RAM. The 

NFS client and the server were compiled in to the kernel and were set up on the same 

machine. The loopback device was used to simulate the communication mechanism. 

The CryptosFS kernel module was loaded into the running kernel. The machine was 

run in multi user mode with a light loading. 

 

The micro benchmark calculations were produced by looping through a number of 

executions of the cryptographic process in a single run. Ten different runs were 
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performed and an average figure for each of the ten runs was calculated. The timing 

measurements were produced by obtaining the number of ji ff ies before each run 

started and the number of ji ff ies after the run had finished. This provides us with a 

mechanism of measuring the time that does not interfere with the kernel operation. 

 

The cryptographic algorithms implemented in the kernel lock the kernel before they 

start and unlock the kernel once finished. This allows complete control of the kernel 

during execution. This also prevents them being interrupted and results in faster 

execution than a corresponding user space process. 

5.3 Results of Micro Benchmarks 

 

5.3.1 RSA Asymmetr ic-key Generation 

The following table shows the average time in milli seconds to create an asymmetric-

key pair in the kernel. The generation of RSA asymmetric-keys does introduce an 

overhead as the time required to generate the 1024-bit keys is on average 2.04 

seconds. The keys are generated when a vnode is allocated for a file or for a data 

block. 

Execution Number 1 2 3 4 5 6 7 8 9 10 
Total Running 
Time per 100 
Executions in 
Milliseconds 180900 198495 157905 203360 218400 209053 242600 219240 185640 221886 
Average Execution 
Time in Seconds 1.81 1.98 1.58 2.03 2.18 2.09 2.43 2.19 1.86 2.22 
Average Execution 
time in Seconds for 
10 runs 2.04          

Table 1: Time to create a 1024-bit key RSA key. 

5.3.2 Blowfish Symmetr ic-key Generation  

Initially the number of executions performed was 100 but this always produced an 

average execution time of zero. The number of executions was increased to 10000 to 
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increase the probabilit y of producing meaningful figures. The average time to produce 

a symmetric-key is 0.00321 milli seconds. This shows the overhead for the generation 

of each of the symmetric-keys is negligible and does not introduce a significant 

overhead. Each symmetric-key is generated when a vnode is allocated for a new file 

or for a data block. 

Execution Number 1 2 3 4 5 6 7 8 9 10 
Total Running Time 
per 10000 
Executions in 
Milliseconds 33 32 32 32 32 32 32 32 32 32 

Average Execution 
Time in Milliseconds 0.0033 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 0.0032 
Average Execution 
time in Milliseconds 
for 10 runs 0.00321          

Table 2: Time to create a 448-bit Blowfish key. 

5.3.3 Generation of 128-bit Message Digests 

Creation of a message digest is the first step in the creation of a digital signature. The 

cost of generating the message digests using 16-bytes and 1024-bytes of input data 

was measured. These represent a 16-byte filename and a 1024-byte data block 

respectively. 

5.3.3.1 Generation of Message Digest from 16 bytes of Input Data 

The message digest is created from a filename of 16-bytes in length. The timing 

figures ill ustrated in table 3 shows the overhead of producing a message digest for a 

16-byte input is 0.00107 milli seconds, this does not represent a significant overhead.  

Total Running Time 
per 10000 
Executions in 
Milliseconds 11 11 11 11 11 11 10 10 10 11 

Average Execution 
Time in Milliseconds 0.0011 0.0011 0.0011 0.0011 0.0011 0.0011 0.0010 0.0010 0.0010 0.0011 
Average Execution 
time in Milliseconds 
for 10 runs 0.00107          

Table 3: Time to create a 128-bit message digest from 16-bytes input. 
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5.3.3.2 Generation of Message Digest from 1024 bytes of Input Data 

To simulate the cost of generating a message digest for a data block of 1024 bytes a 

series of tests using a 1024-bytes of data as input to the message digest function was 

executed. The figures in table 4 show the cost of generating a message digest of 1024 

bytes is 0.9505 milli seconds.  

Execution Number 1 2 3 4 5 6 7 8 9 10 

Total Running Time 
per 10000 Executions 
in Milliseconds 9350 9204 8901 9754 9823 9234 9564 9678 9780 9765 

Average Execution 
Time in Milliseconds 0.9350 0.9204 0.8901 0.9754 0.9823 0.9234 0.9564 0.9678 0.9780 0.9765 
Average Execution 
time in Milliseconds 
for 10 runs 0.9505          

Table 4: Time to create a 128-bit message digest from 1024 bytes input. 

5.3.4 Encryption of message digest using 1024-bit Asymmetr ic-keys 

The second part of the process of creating a digital signature involves encrypting a 

128-bit message digest with the public or private-key of the RSA asymmetric-key 

pair.  The public-key is used for creating digital signatures for read operations and the 

private-key is used for creating digital signatures for write operations. 

5.3.4.1 Encryption of 128-bit message digest using 1024-bit public key 

Table 5 shows the time in seconds required to encrypt a 128-bit message digest with a 

1024-bit public-key. The overhead to encrypt the message digest is on average 7 

seconds.  
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Execution Number 1 2 3 4 5 6 7 8 9 10 
Total Running Time 
per 100 Executions 
in Milliseconds 613800 628200 631200 693600 701400 765600 763200 738000 704400 783600 

Average Execution 
Time in Seconds 6.1 6.3 6.3 6.9 7.0 7.7 7.6 7.4 7.0 7.8 
Average Execution 
time in Seconds for 
10 runs 7.0          

Table 5: Time to encrypt a 128-bit message digest using a 1024-bit public-

key. 

5.3.4.2 Encryption of 128-bit Message Digest Using a 1024-bit pr ivate key 

Table 6 shows the time in seconds required to encrypt a 128-bit message digest with 

the 1024-bit private key. The overhead to encrypt the message digest is on average 

7.26 seconds. 

 
Execution Number 1 2 3 4 5 6 7 8 9 10 

Total Running Time 
per 100 Executions 
in Milliseconds 634025 750345 745001 689412 702367 749147 736902 749824 801346 704781 
Average Execution 
Time in Seconds 6.34 7.50 7.45 6.89 7.02 7.49 7.37 7.50 8.01 7.05 

Average Execution 
time in Seconds for 
10 runs 7.26          

Table 6: Time to encrypt a 128-bit message digest using a 1024-bit 

pr ivate-key. 

5.3.5 Decryption of Digital Signature using 1024-bit public-key 

The validation of the digital signatures for a write operation involves decrypting the 

digital signature using the 1024-bit public-key. The following table shows the time in 

seconds required to decrypt a digital signature using a 1024-bit public-key. The 

average time to perform this operation is 9.26 seconds. 
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Execution Number 1 2 3 4 5 6 7 8 9 10 

Total Running Time 
per 100 Executions 
in Milliseconds 855000 997500 912000 816000 810000 1104000 918000 1069500 874800 901800 

Average Execution 
Time in Seconds 8.55 9.975 9.12 8.16 8.1 11.04 9.18 10.695 8.748 9.018 
Average Execution 
time in Seconds for 
10 runs 9.26          

 Table 7: Time to decrypt a digital signature using 1024-bit public-key. 

5.3.6 Digital Signature Creation 

The process of creating a digital signature involves the creation of a message digest 

and the encryption of the message digest. A 1024-bit public-key is used to create a 

digital signature for a read operation and a 1024-bit private-key is to create a digital 

signature for a write operation. These figures show the total cost of creating a digital 

signature.  

5.3.6.1 Creation Of a Digital Signature For a Read Operation 

Table 8 shows the overhead for the creation of a digital signature for a read operation 

using a 1024-bit public-key. An average time of 11.289 seconds represents a 

significant overhead.  

Execution 
Number 1 2 3 4 5 6 7 8 9 10 
Total Running 
Time per 100 
Executions in 
Milliseconds 1050000 1045000 1170000 1293750 1184900 1221800 911360 1224720 1060800 1126400 
Average 
Execution Time in 
Seconds 10.50 10.45 11.70 12.94 11.85 12.22 9.11 12.25 10.61 11.26 
Average 
Execution time in 
Seconds for 10 
runs 11.29          

 Table 8: Time to create a digital signature for a Read Operation. 
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5.3.6.2 Creation Of a Digital Signature For a Write Operation 

Table 9 shows the overhead for the creation of a digital signature for a write operation 

using a 1024-bit private-key. An average time of 13.32 seconds represents a 

significant overhead. 

Execution Number 1 2 3 4 5 6 7 8 9 10 
Total Running 
Time per 100 
Executions in 
Milliseconds 1402500 1494656 1380575 1031080 1352501 1388141 1378658 1134083 1418362 1336608 
Average Execution 
Time in Seconds 14.03 14.95 13.81 10.31 13.53 13.88 13.79 11.34 14.18 13.37 
Average Execution 
time in Seconds for 
10 runs 13.32          

Table 9: Time to create a digital signature for a Write Operation. 

5.3.7 Digital Signature Validation  

As there are two types of digital signatures for the read and write operations, there are 

two validation processes. 

5.3.7.1 Validation of a Digital Signature For a Read Operation  

The validation of a digital signature created for a read operation using the public-key 

requires the creation of a message digest. The message digest is encrypted with the 

1024-bit public-key to create a second digital signature. The two digital signatures are 

compared to see if they match. An average run time of 13.317 seconds was recorded 

for this process. 

Execution 
Number 1 2 3 4 5 6 7 8 9 10 
Total Running 
Time per 100 
Executions in 
Milliseconds 1432945 1395723 1572348 1237948 1452629 1489256 1473578 1345123 1528362 1295734 
Average 
Execution Time 
in Seconds 14.33 13.96 15.72 12.38 14.53 14.89 14.74 13.45 15.28 12.96 
Average 
Execution time 
in Seconds for 
10 runs 14.22          

 

Table 10: Time to validate a digital signature for a Read operation. 
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5.3.7.2 Validation Of a Digital Signature For a Write Operation  

The validation of a digital signature created for a write operation requires the creation 

of another message digest. The digital signature to be validated is decrypted using the 

1024-bit public-key and the two message digests are compared to see if they match. 

An average run time of 12.730 seconds was recorded for this process. 

Execution Number 1 2 3 4 5 6 7 8 9 10 
Total Running 
Time per 100 
Executions in 
Milliseconds 1249500 1327031 1493275 1271837 1352501 1107425 1230362 1226435 1275478 1196208 
Average Execution 
Time in Seconds 12.50 13.27 14.93 12.72 13.53 11.07 12.30 12.26 12.75 11.96 
Average Execution 
Time in Seconds 
for 10 runs 12.73          

 Table 11: Time to validate a digital signature for a Write operation. 
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6 Conclusion 

The CryptosFS prototype implementation is a distributed file system that provides 

users with the abilit y to share files securely. CryptosFS provides end-to-end 

encryption of f ile data and file meta-data using symmetric-key cryptography. It uses 

asymmetric-key cryptography for validating reads and writes operations. The 

intervention of the system administrator is required to mount the CryptosFS layer and 

to recompile the operating system kernel to install the modified NFS client and server.  

 

The server in CryptosFS does not validate the users identity to authenticate access to 

files as in other distributed file systems. CryptosFS uses asymmetric-key 

cryptography as a form of capabilit y to control file access. Each file created on the 

server has a corresponding public-key. When a client makes a request to the server, it 

passes a digital signature to the server. The server uses the public-key to validate the 

request made by the client. Possession of the correct public-key allows a client 

perform a read operation; while possessing the private-key allows a client perform a 

write operation.  

 

The client in CryptosFS does not need to establish trust with the server as it stores the 

information on the server in encrypted format. The use of encryption negates the need 

for the client to trust the server because even if the server allows unauthorised access 

to the data it is useless without the symmetric-key to decrypt it. The CryptosFS 

prototype offers users the abilit y to securely store files on a remote file system with 

the knowledge that they are safe from an attacker who can compromise the server or 

the communication link between the client and the server.  
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6.1 Related work 

CryptosFS builds upon a large body of work that use stackable layers and stacking 

vnodes to allow the rapid development of f ile system functionality through the reuse 

of existing file systems. Cryptfs, another cryptographic file system, provides end-to-

end encryption of f ile data and file meta-data. The granularity of encryption in Cryptfs 

is at the directory level. All files for a user are encrypted using a single key. Cryptfs is 

a kernel level module and requires system administrator assistance to install it . 

 

CFS is a user level file system that encrypts files with symmetric-key encryption. CFS 

provides the abilit y to encrypt files on both local and remote directories. The 

encryption used in CFS changes the size of f ile data and file meta-data; this results in 

the encrypted data being bigger than the corresponding clear text.  

 

TCFS is a user level file system that is made up of a modified NFS client and server 

and an RPC based attributes server. TCFS is only available for Linux; this means that 

both the client and the server must also run the Linux operating system. All files in 

TCFS are encrypted using a single key.  

 

The Truff les file system is a distributed system that provides file sharing and 

replication functionality using the Fiscus file system. It does not require assistance 

from the system administrator. Truff les relies on centralised certification authorities to 

name users. The Truff les file system is implemented in the kernel. 

6.2 Where does CryptosFS fit in? 

CryptosFS provides users with the abilit y to securely store information on a remote 

server safe in the knowledge that the information is secure from compromise. Current 

trends in the growth of mobile communications as a mechanism to access the Internet 
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requires ever increasing data storage capabiliti es. The capabiliti es of current mobile 

devices such as PDA’s are limited by power consumption, battery size, design, and 

CPU power and data storage capabiliti es. As mobile devices are limited in their 

capabiliti es, the demand for secure access to remote storage is sure to increase.  

 

CryptosFS could help to satisfy this demand as it does not explicitl y trust the server to 

store information securely. CryptosFS uses encryption to maintain the security of 

information stored on the server. CryptosFS can be used in conjunction with NFS on 

the local area network (LAN). Users who require higher security in a wide area 

network setting can use CryptosFS. It is not the intention for CryptosFS to replace 

NFS but instead provide another option for remote file access. Increasingly 

sophisticated techniques are being developed to break security mechanisms. For this 

reason it is important that the security of the keys used for encryption in CryptosFS is 

maintained.  

 

The use of asymmetric-key cryptography in CryptosFS provides users with a 

mechanism to grant access to files with others by giving them a copy of the public-

key for read access and the private key for write access. Distribution of the relevant 

keys allows users access to files on remote system. Most other distributed file systems 

use access control li sts or some variation of it for providing protection of f iles. Access 

control li sts are an example of a centralised system. Centralised systems suffer from 

problems of scalabilit y, they are a single point of failure and they require complicated 

management. The CryptosFS prototype is a distributed file system that abolishes the 

traditional file access control mechanisms that NFS uses and replaces it with a 

distributed access control mechanism that relies on asymmetric-key cryptography.  
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The owner of the files in CryptosFS must distribute the symmetric-key before other 

users can decrypt the contents of the actual file. It is possible that an attacker could 

successfully corrupt the data on the server machine by overwriting it with garbage. 

The client in CryptosFS can detect this situation because it validates the information 

returned from the server by authenticating the blocks read using the public-key of the 

file. 

6.3 Fur ther work  

The prototype of CryptosFS developed leaves plenty of room for improvement. The 

goal of future work should be to stabili se the prototype by fixing the shortcomings 

identified during the development process. The problems identified included: 

1. CryptosFS uses the GNU MP library to generate large integers in the kernel. 

The large integers are essential for the production of the RSA asymmetric-

keys. The GNU MP library is linked in to the CryptosFS module and results in 

a very large kernel module. The GNU MP library contains a significant 

amount of functionality that is not used by the CryptosFS prototype. This 

additional functionality could be removed without affecting CryptosFS. This is 

important because the kernel can’ t be swapped out to disk and memory use is 

at a premium. 

 

2. The CryptosFS prototype has an error in the memory module of the GMP MP 

library. If an asymmetric-key size of over 1024-bits is specified, an internal 

array used in the key generation program causes a segmentation fault in the 

kernel. The reason for this is that the extended Euclidean algorithm performs 

numerous calculations on large integers and stores the results in internal 

arrays. The GNU MP package uses a memory function called “ realloc” to 

increase or decrease the size of an array. This memory reallocation is done to 
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allow the library to allocate the exact memory required dynamically. When an 

asymmetric-key size of over 1024-bits is used the kernel tries to allocate more 

than the kernel limit of 128k of memory. Fixing this problem requires 

modification of the memory allocation routines of the GNU MP library to use 

virtual memory when the kernel memory limit i s reached. 

 

3. Currently the keys generated in CryptosFS are stored in a link-list in the 

memory of the kernel and are transferred into and out of a file from memory 

when the CryptosFS module is inserted and removed from the kernel. This 

method performs adequately for small numbers of f iles but it is not scaleable. 

A more eff icient mechanism would require the modification of the ext2 file 

system to store the keys directly. 

 

4. The current prototype of CryptosFS stores the keys generated for each vnode 

in clear text format. Applying encryption to the key files provides security of 

this information. A password program could be developed to allow decryption 

of these keys. This is a simple solution although it is not the preferred solution 

as the diff iculty of compromising the system is reduced to the diff iculty of 

breaking the password. A more secure solution would be to investigate the use 

of a magnetic card to store the access key on. 

6.4 Conclusion 

File system development is a slow and laborious process. It requires specialist 

knowledge of the operating system and can result in file systems that are not easily 

portable. The development of CryptosFS builds upon a large body of work on 

stackable layers performed over the last fifteen years. This includes the work of E. 

Zadok et al in “Cryptfs: A Stackable Vnode Level Encryption File System”, J.S 
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Heidermann in “Stackable Design of File Systems” [38] and J.S. Heidemann and G.J. 

Popek in “File System Development with Stackable Layers” [39].  

 

Stackable layers are promoted as a means of developing file system functionality with 

the performance levels of a kernel implementation but with the ease of development 

of a user level file system. From our experience in developing the CryptosFS 

prototype, stackable layers do offer a viable alternative to developing file systems. 

Existing code from the Cryptfs implementation, and the Linux NFS client and server 

implementations were reused in the development of the CryptosFS prototype.  

 

During the development of CryptosFS, a significant amount of time was saved by 

reusing existing code. This is one of the biggest advantages of using stackable layers 

and stacking vnodes in file system development. Reusing the functionality of the 

Cryptfs and NFS file system allowed effort to be concentrated on developing the 

specific functionality of the cryptographic file system. 

 

The major problem of developing file system functionality in the operating system 

kernel is that the kernel is kept in memory. As the kernel can never be swapped out to 

disk memory use is at a premium in the kernel. The cryptographic functionality added 

to the kernel results in a kernel that is about 20% larger than traditional kernels. The 

reason is the GNU MP package. The GNU MP package contains a lot of extraneous 

functionality that could be removed.  

 

Developing CryptosFS has been a worthwhile experience. It has allowed us to learn a 

great deal about file system implementation and the UNIX operating system. Our 

experience of f ile system development prior to the development of the CryptosFS 

prototype was limited. Using cryptography allowed the traditional access control 
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mechanisms to be bypassed. The CryptosFS prototype is a fast secure distributed file 

system that demonstrates how it is possible to use cryptography as a form of 

distributed access control. 
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Appendix A: Components of CryptosFS prototype 

The prototype implementation of CryptosFS contains the following components: 

� bfkeys   - Generates Blowfish symmetric keys 

� cryptos_genasym - Generates RSA symmetric keys. 

- Generates and validates Digital Signatures. 

� hashfuncs  - Generates MD5 message digests. 

� cryptos_list - Stores generated keys. 

� cryptos_file - Writes keys from link list to a key file.  

- Reads keys from key file in to link-list. 

� cryptos  - Loadable Kernel Module provides file system functionality. 

� gmp-3.0.1  - Kernel Modified version of GNU MP produces large 

  integers in the Linux Kernel. 

� nfs   - Modified Linux Kernel NFS client creates digital signatures  

  for file operation and for validation of results. 

� nfsd  - Kernel NFS server modified to validate file operations by  

  decrypting digital Signatures on file operations and creating 

  digital signatures for results. 


