CryptosFS Fast Cryptographic Seaure NFS

Dedan Patrick O'Shanahan

A dis=rtation submitted to the University of Dublin,
in partial fulfilment of the requirements for the degreeof

Master of Sciencein Computer Science

2000

Dedaration

| dedare that the work described in this dissertationis, except where
otherwise stated, entirely my own work and has not been submitted as
an exercise for adegree dthisor any other university.

Signed:

Dedan Patrick O'Shanahan

15/9/2000

Permissonto lend and/or copy

| agreethat Trinity College Library may lend a copy this dissertation
uponrequest.

Signed:

Dedan Patrick O'Shanahan

15/9/2000

Acknowledgements

I would like to thank Christian Jensen for al his help and suppat throughou the yea. |
would also like to thank my parents Liam and Peggy O'Shanahan for their continued
suppat. Thanks aso to Paul for his patience and assstance over the yea, espedally for
his editing skill s. Spedal thanks to Edyta for putting up with the &sence enforced by my

dedsionto dothe Masters.

Summary

Theiswue of seaurity in file-systems is as relevant today as when the first fil e system was
developed. Current fil e system implementations rely heavily on centrali sed seaurity
medhanisms such as accesscontrol li sts. The problem of seaurity in fil e systems was made
more complicaed by the introduction o remote accssto fil es. Storing information ona
remote server has the potential to introduce alditional seaurity weeknesses into thefile
system model. The dient, the communicaion links and the server make up the fil e system

moddl.

The Network File System (NFS) isawidely used and dt maligned fil e system. Developed
by Sun Microsystemsin the 198Gs it introduced a means to accessfil es remotely. It isby no
means the only distributed fil e systems but it is one of the most widely used. Serious
seaurity limitations were identified in the NFS protocol, as the original design dd na
include aseaurity asped. Seaurity was added to the NFS protocol by the introduction o
seaure RPC. The seaurity added was in the form of authentication d users. The distributed

file system model that NFS usesis susceptible to attad in the following ways.

1. An attadker who can gain control of the NFS client has the aility to read data and can
compromise the cnfidentiality of the data. If the NFS client has write acces an

attadker can also compromise the integrity of the data stored onthe server.

2. An attadker who can gain accessto the NFS server can compromise the cnfidentiality
of the data stored onthe server. The atadker can also compromise the integrity of the

data by modifying the data stored onthe server.

3. An attacker who can gain accessto the network can compromise the confidentiality of

data passng over the network. If a dient is performing awrite operation, the dtadcker
\%

can modify the data essociated with the write operation and aff ed the integrity of the
operation. The authenticity of information passng between a dient and a server is not
guaranteed as an attadker who can compromise the integrity of the information can aso

compromise the authenticity of the information by modifying the data on the fly.

CryptosFSis adistributed fil e system prototype that uses a @mbination d cryptographic
techniques to provide confidentiality, integrity and authenticity of information. Blowfish
symmetric-key cryptography is used to encrypt fil e system data and meta-data. The
symmetric-key cryptography provides information confidentiality. Asymmetric-key
cryptography and MD5 message digests are used to creae digital signatures. Validation o

the digital signatures provides authenticaion and integrity.

Authenticity and integrity are ensured by the validation d digital signatures by the NFS
server. The NFS server possess the pullic-key for ead file dlowing it to verify read and
write requests receved from clients. Integrity of the information onthe remote server is

preserved by not storing the symmetric-keys to encrypt the fil e data on the server.

VI

Table of Contents

R 1011 70 o ¥ o1 o] o BT PO P PRSP PPRPPRTPIN 1
1.1 Granularity of FIl@ ENCryptioncooviiiiiiiiiiiis e 3
1.2 AnOverview of File System Development Options...............uvvveiiieiiiieecrnennnnnns 3

1.2.1 User ProCcesSHIl € SYStEMovviiiiiiei e eeee e 4
1.2.2 Kernel Level ProcessFile System.........ooooooeeiiiiiiieiiieeee e 6
1.2.3 Stadckable Layer Kernel Level ProcessFile System............ovvvvvviiiiiiiiiennes 8
1.2.4 Stadckablelayersfor the CryptosFS Architedure..............ooovvvvvvveniicmmenen. 10

2 State of the Art in Cryptographic File Systems........cccooeeeeeiiiiiiiiiieeee e, 12
2.1 Cryptographic File System — (CFS)cooiviiiiiiiiiiisimmeeeeeees e 12
2.2 THUIFIES oo e s 14
2.3 Trangparent Cryptographic File System - (TCFS)cooovviviviiiviiiiciimmeeeeeeieens 15
2.4 CIYPH S ittt e ——————————————— 16
2.5 Summary of properties of Cryptographic File Systems..............ccovvvvvvvviviieeen... 17

R B 1= o | o O Y 0] (01 s OSSN 19
3.1 Trusted Computer Base and CryptOSFScccooiieieiiiiiiiiieiieeee e 19

3.1.1 Lack of Trust inthe mmporents of CryptosFS...........cccceevviiiiiiiiiieeeicnn, 20
3.2 AcCessControl MEChaNISMSceeiiiiiiiiiie e 21
3.2 1 ACCESSCONIOl LiSES.....ciieiiiiiiiiiiteeeeeieeeei ittt e eeee e e e e e e e e 22
3.2.2 Role Based ACCESSCONMIOccoiiiiiiiiii e ee e 23
3.2.3 Capability ACCESSCONMIOlcoiiiiiiiie e 24
3.2.4 Lack of Formal AccessControl in CryptosFS...........cooovviiiiiiiiiiiieeeeeee 25
3.3 CryptosFS Saurity Model and the use of Cryptography.............cceevvviiiiiiniienne. 25
3.3.1 Confidentiality iN CryplOSFS........uuuiiiiiiiiiiiiiii et 25
3.3.2 Authenticaionin CryptOSFS.........cuuiiiiiiiiiiiiiie e 26
3.3.3 INtegrity iN CryptOSFESuuiiiiiiiiiieiie e 27
3.4 Location d Cryptography inthe System..........ciiiiiiiiccc e 27

VI

3.4.1 Manual Encryption by the USer.........coooiiiiiiiiieee e 27

3.4.2 Encryption at the Application Levelcccuviiiiiiiiiiieeeiiieeeeeeeeee 28
3.4.3 Encryption at the File System Level ... 28
3.44 Encryptionat the System Level ... 29
3.4.5 CryptosFS & Encryptionat thefilesystem level ... 30
3.5 CryptoSFS - DESIGN GOaIS......uuviiiiiiiiiiiiieeeie e 31
IMPLEMENTALTION. ... et e e e e e e e e e e e e s s e e e eeas 33
4.1 CryptosFS - Implementation QOaIS.uuvririiiiiiiieieii i 33
4.2 Architedure Of CryplOSFS..........uiiiiiiiiiiiiiiii et 34
42.1 Functionality in CryploSFS.......oooiiiiiiiieee e 37
4.3 Key Structure for CryptOSFS........ooiiiiiiiiieie e 38
4.3.1 Vnodestadking and ENCryplion.eeeeeeiiiiiiiiieemeeeeeeieeeeeee e 39
4.3.2 Blowfish symmetric-key Generationfor CryptosFS..............ccccciivviviiiens 40
4.3.3 Generating Large Integersinthe Linux kerndl ... 40
4.3.4 RSA Asymmetric-Key ENCryPtiON.......ccovviiiiiiiiiiiii e 42
4.3.4.1 RSA asymmetric-key Generationin CryptosFS...........cevvviiiiiiiiiieiieanne. 43

4.4 Storage of Keys Generated in CryptosFS...........cooooiiiiiiiiiiiiien e 43
441 Link-list Implementation in CryptosFS............cccccoiiiiiiiiiccennnn 43
4.4.2 Key Flesin CryptosFS.........oooo e 45
4.4.3 File Operations Implemented by CryptosFSin the Linux Kerndl 46
T | 1 1= o PO RRSRRRPY A7
45.1 NFS Client Read Operationsin CryptOSFS...........coooiiiiiiiiiiiiiieeee s a7
45.2 NFS Client Write Operationsin CryptosFS............oooooiiiiiiiiiinenn s 48
4.5.3 NFS Client Result Validationin CryptosFS...............ooooiiiiiiieeen s 49
4.6 NS S VN e e 50
4.6.1 NFS Srver Validation of Read Operationsin CryptosFS..............cccceees 51
4.6.2 NFS Srvers Vaidation d Write Operationsin CryptosFS....................... 51

VI

4.6.3 NFS Srvers Authentication d Resultsin CryptosFS...........oooevviiiiiiiies 52

47 XDRaNARPCINNFS......oooiiiiieiee e ereer e e e 52
4.7.1 Overview of Seare RPCINNFS........ooiiiiiiiiiiiiiii e 52
4.7.2 XDR/RPCINCryptoSFS......ccooiiiiiiiiiiiiiiimeer s eeers e 55

5 Performance Evaluation d CryptoSFS..........oooiiiiiiiiiiiiic e 57

5.1 AnalySiISOf CryptosFS..........oooiiiiiiiiiiie e 57

5.2 MicroBenchmark ProCESS..........coooiiiiiiiiiieeee e 58

5.3 Resultsof Micro Benchmarks ... 59
5.3.1 RSA Asymmetric-Key Generation................eueeeeeeiiiiieemineiieeeiieeeeeeaeeeeeeens 59
53.2 Blowfish Symmetric-key Generation............coooeeviiiiiiiiiiccc s 59
5.3.3 Generation d 128hit MeSAgE DIQESES......cevvviiiiiiiieiiiiiii i 60

5.3.3.1 Generation d Messge Digest from 16 bytes of Inpu Data................... 60
5.3.3.2 Generation d Message Digest from 1024bytes of Inpu Data............... 61
5.34 Encryption d message digest using 1024-bit Asymmetric-keys................ 61
5.3.4.1 Encryption d 128-bit message digest using 1024-bit public key! 61
5.3.4.2 Encryption d 128hit Message Digest Using a 1024-bit private key 62
5.3.5 Deayption d Digital Signature using 1024-bit puldic-key 62
5.3.6 Digital SIgNAture CreatioN............uueeirieiiiiiiiiieeeeeieeee e e e e e e e e e e simmme e e e 63
5.3.6.1 CreaionOf aDigital Signature For a Read Operation..............cccc......... 63
5.3.6.2 Creaion Of aDigital Signature For aWrite Operation..............ccc......... 64
5.3.7 Digital Signature Validation................ueeeiiiiiiiiieeeiiiiieieeeeeeeeee e 64
5.3.7.1 Vadlidation d aDigital Signature For a Read Operation........................ 64
5.3.7.2 Vadlidation Of aDigital Signature For aWrite Operation 65

B CONCIUSION. ...t e e enene bbb e e e e e 66

6.1 REGEAWOIK.. ..ot 67

6.2 Where does CryptoSFS it IN?........uuiiiiiiiiiiiiiei e 67

6.3 FUIher WOrk ... 69

T O oo: 11 o] o 1R 70
BiblOGrapNY ... e O

Appendix A: Comporents of CryptoSFS Prototypecooeveveiiiiiiiiiiieene e 77

Table of Figures

Figure 1: File System Implemented as aUser Level ProCESS..........uvveeeiiiiieeeeecceeeccceeeeenn 5
Figure 2: File System implemented inthe kernel.............cccoeeeiieiiiiiiccceiiiiiiee e
Figure 3: VFS Suppats Multiple File Systemsinthekernel...........ccccoeeviiiiiiiiiiicecicceennn. 38
Figure 4: New File System functionality added to the Kernel as a Stadkable Layer. 9
Figure 5: CryptosFS uses ext2 and dfers Servicestothe VFS Layer.vvceeeeeeeeeeeeennn. 11
Figure 6: Summary of the properties of different cryptographic file systems..................... 18
Figure 7: Genera Architedure of the CryptosFS implementation...................cccccviiceee. 35
Figure 8: Structure of componrentsin the CryptosFS File System.ooovvvvvviviiiiiicene. 37
Figure 9: Structure for CryptosFS keys as gored in VFSVNoe..............coovvvvvvveviiiccmnnne. 39
Figure 10: Structure of the key objed used in CryptosFS..........coooeeeiiiiiiiiiiieeee e, 44

Figure 11. Douly linked-List implemented in CryptosFS to store the generated keys.45

Figure 12: Field description d CryptosFSKey fil€.uvvvveiiiiiiiiiieeieeeeeie e, 46
Figure 13: Fil e operations implemented for key-filesin CryptosFS.cccceeveeeiieeeenne. a7
Figure 14: NFS Client creaes adigital signature for aread operation.............cccccceeeeenn.. 48
Figure 15: NFS Client validating result data from NFS Server.ooovvvviviiiiiiiivienenns 50
Figure 16: NFS Server validates adigital signature for awrite operation. 52
Figure 17: Seaure RPC validationin SEAUre NFS. ...t 54
Figure 18: XDR/RPC Medanisms for NFS Client and Server Communication................ 56

Xl

Table of Tables

Table 1: Timeto create a1024bit Key RSA KEY. ...cccooeeeeeeiiieeeeeeeee e 59
Table 2: Timeto create a448bit BloOwfish KeY.ovvvvveeiiiiiiii e 60
Table 3: Timeto create a128-bit message digest from 16-bytesinpu...............cooevvnnnnnnd 60
Table 4: Timeto create a 128-bit message digest from 1024bytesinpU.cccceceee 61
Table 5: Timeto encrypt a 128 -bit message digest using a 1024 bit puldic-key................ 62
Table 6: Timeto encrypt a 128bit message digest using a 1024bit private-key............... 62
Table 7: Timeto deaypt adigital signature using 1024-bit pulic-key.ccccceeeeeeenn.n. 63
Table 8: Timeto create adigital signature for aRead Operation..............ccccceeeeeeeeeeceeennns 63
Table 9: Timeto create adigital signature for aWrite Operation.................evveeeieiesieennnns 64
Table 10: Timeto validate adigital signature for a Read operation................ovvvvvviiinnees 64
Table 11 Timeto validate adigital signature for aWrite operation.ccceeeeeeveeee. 65

Xl

ACL

ACE

CFS

DES

GNU MP

LIP

NFS

PDA

PEM

RBAC

RPC

SMS

TCB

TCP

TCFS

UFS

UMTS

VFS

WAP

XDR

Abbreviations

AccessCorntrol List

AccessControl Entity

Cryptographic Fil e System

Data Encryption Standard

GNU Multi Predsion Arithmetic Library
Internet Protocol

Large Integer Package

Network File System

Personal Digital Asgstant

Privacy Enhanced Mall

Role Based AccessControl

Remote Procedure Call

Short Messaging Service

Trusted Computing Base

Transmisson Control Protocol
Transparent Cryptographic File System
UNIX File System

Universal Mohile Telecommunicaions System
Virtual File System
WirelessAccessProtocol

External Data Representation

X1

1 Introduction

The Internet has e tremendous growth sinceits commercial inceptionealy in the
1990s. New techniques are being continuowsly developed to accessinformation over
the Internet. The last coupe of yeas have seen an explosion in the number of people
using hand held devices such as persond digital assstants (PDA’s) and mobile
phores. Convergenceof voice and chta servicesis garting to happen with the
increased use of short messaging service (SMS) and the wirelessaccessprotocol
(WAP). Conredion by usersto information and services gored onremote computers

isontheincrease.

Current GSM tedhndogy all ows users to roam in aforeign network andto use the
services on that network. The development of the third generation o mobil e services
Universal Mohile Telecommunicaions System (UMTS) and lroadband services can
only increase the numbers of users utili sing mobile ommunicaion services. As data-
services beame increasingly important in the future, users will require accesto
information onremote computers sfe in the knowledge that the informationis saure

from compromise.

The aility of an individual to seaurely accessinformation onaremote machineis
increasingly necessary with the increased usage of the Internet in every day life. The
ability to share the information with cther users and provide them with dffering levels
of accessto theinformationis even more desirable. Current schemes for accessng
remote information require registration and significant amourts of infrastructure to
allow the information to be shared among users. When informationis gored ona
remote machine, the neel to store passvords or keys on the remote macdine makes it
vulnerable to attadk. An ided remote information repository is one where the

1

informationis gored in encrypted format. This means that the informationis sfe
from all but sophisticated cryptanalysis. The use of encryption ensures saurity of the
information as it makes it way from the locd to the remote host avoiding problems of

inseaure coommunicaion links.

CryptosFS investigates the use of pullic-key cryptography to replacethe accss
control mechanisms of NFS [1]. Traditionaly NFS uses saure RPC [2] to provide
authenticalion d users. This does not provide integrity or seaurity of information
stored ona server. CryptosFS replaces the existing accesscontrol medianisms of NFS
with asymmetric-key cryptography to all ow users accessinformation. Posssson o
the private-key all ows a user to creae, modify and remove files and dredories.
Correspondngly, possesson d the public-key al ows a user to read the files and

diredories.

Encrypting the file data and fil e meta-data with symmetric-key cryptography provides
information confidentiality. The MD5 [3] algorithm is used in combination with
asymmetric-key cryptography to producedigital signatures. The digital signatures are
used as aform of accesscontrol that al ows the server to validate dients requests for
operations. The pulic-key of the asymmetric-key pair is used to creae adigital
signature for read operations, whil e the private-key is used to creae adigital signature
for write operations. This provides the integrity and authentication d the information

onthe server.

Only clientswho passssthe mrred keys can vali date themselves to the server to
perform the read and write operations. The ability to distribute the pubdic or private
keys all ows a user determine the level of accessto grant to ather users. Using

asymmetric-key cryptography for accesscontrol al ows arbitrary sharing of files
2

among trusted users. Thisform of accesscontrol provides drong seaurity andisa
distributed form of accesscontrol asthe asymmetric-keys can be shared with ather
users. A distributed accesscontrol mechanism scdes better than a centralised form

andisnot asingle paint of failure.

1.1 Granularity of File Encryption

Encryption o datain the file system is one of the most important aspeds of the
reseach. Thelevel at which the encryptionisto be gplied to the fil e system data has
important implicaionsin terms of performance and seaurity. By choasing to encrypt
file system data a theindividual file level, it provides asufficiently low level of
accesscontrol but more importantly, it also provides a higher level of seaurity.
Withou individual keys for ead file, it is not passble to replacethe accescontrol
medchanism of the fil e system. Creaing keys for ead fil e increases the seaurity of the

file system by reducing the impaa of akey being compromised to asinglefile.

It iseasier to generate keys to encrypt the wntents of a diredory rather than ead
individua file. Severa of the existing cryptographic fil e systems encrypt al of thefile
datafor asingle user with ore key. Typicdly, auser is prompted for a passphrase
that generates a key to encrypt the data. Relying on a user tod to generate the
passvord leaves the fil e system vulnerable to attadk. An attadker can replacethe key
generation program with a Trojan hase that stores a wpy of the keys generated for
ead user. Having the fil e system hand e the keys transparently for the user eliminates

this threa.

1.2 An Overview of File System Development Options

Theideaof writing afile system from scratch is not pradicd given the anourt of
time and resources avail able for this thesis. Research of the avail able options to

perform the development was important. It allowed usto identify where our propacsal
3

fitted in with relation to current and pest fil e system development. Our experience
with fil e system development is limited so the reseach served to identify the diff erent
tedhniques that can be used. The variety of fil e systems encourtered show what an
adive aeaof reseach file system development is. The fil e systems reseached fell in

to ore of the foll owing three céegories:

1. Thefile system isdeveloped in user space &d runs as a user process

2. Thefile system is developed in the kernel and runs as a privileged process The

file system development implements all of the fil e system functionality.

3. Thefile system is developed in the kernel and runs as a privileged process The
new functionality that the fil e system providesis gadked ontop d existing file

system functiondlity using stadkable layers.

Eadh o the threetedhniques outlined have peauli ariti es and advantages that are

described in the foll owing sedions.
1.2.1 User ProcessFile System

The ideaof developing afile system as a user processis appeding for a variety of
reasons not least of which being that it is sSmpler than ather techniques. By
developing the fil e system as a user level process the ammplexity of kernel level
programming can be avoided. This smplifies the development processenormously, as
developing in the kernel is more restrictive than user level development. The standard
development, debugging todls and programming libraries can be used. This helpsto

reducethe time required to implement the fil e system.

One of the most advantages of developing afile system as a user level processis that
the file system can beinstall ed by a user withou the asgstance of a system
administrator. This provides the user with greaer flexibility in how they usefiles.
Figure 1ill ustrates how afil e system developed to runin user spaceinterads with the

locd and remote operating systems.

18

W |User Process L.Jser o6l

. File System

______ e @@
(1) (3) ()

m KERMNEL

yd

18

% TRANSPORT
MECHANISM

Storage
Media

Figure 1: File System Implemented as a User L evel Process

A user processrequests accessto afil e from a user-spacefil e system. The request is
routed through the kernel. The stepsin the ammmunicaion show how arequest by a
user processresultsin a mntext switch in to and ou of the kernel. Starting at (1) the
user makes arequest to read afile. Thisresultsin a cdl to the kernel that forwards the
cdl onto the user level file system (2). The user level fil e system makes ancther cdl

to the kernel (3) to retrieve the data required by the read from the storage media.

The kernel passes the data bad to the user level file system at (4). The user level file

system now cdlsthe kernel again to passthe data badk to the user process(5). The

kernel completes the read command by delivering the data to the user processat (6).

This resultsin two additional context switches to the kerndl than anormal read.

There ae many examplesin the literature of fil e systems devel oped as user processs,
these include CFS [4] and TCFS [5]. Please refer to sedion 2for more amore detail ed
evauation d these fil e systems. All of the fil e systems that are implemented as a user
level processare susceptible to a major performance problem. The use of a user level
processrequires additional context switchesthat increase the overhead of every

system cdl and thus reduce performance
1.2.2 Kernel Level ProcessFile System

To develop afile system in the operating system kernel means forgoing the simpli city
of development that a user processprovides. Thisincreases development complexity
because kernel level programming requires gedalist knowledge of the spedfic
operating system being used. When the fil e system resides in the kernel, atight
couping exists between the fil e system and the kernel level servicesthat it uses. This
couping reduces the aility of the fil e system devel oper to pat the file system to

another operating system.

Developing the fil e system from scratch inside the kernel all ows the fil e system
developer greaer freadom in the implementation process Gaining experiencewith the
internals of the kernel requirestime and considerable knowledge of the underlying
operating system structure. Developing a fil e system from first principles does not

utili se any of the development previously dore. Redeveloping all of the fil e system

functionality in this way does not make any sense.

Examples of file systems developed in the kernel include the Echo Distributed File
System [6] and NFS. Figure 2 ill ustrates how atypicd user level processutili ses the

file system operations in the kernel. It requires two cdls, (1) for the request and (2)

for the resporse.
i
& User Process
-
F
(2)
(1)

sy File System Implemented
LU in the Kernel
%
% i TRANSPORT

MECHANISM

Storage
Media

Figure 2: File System implemented in thekernel.

For the magjority of fil e systems developed in the kernel (in UNIX based operating
systems) the system cdl s that are made to the kernel are routed through the Virtual
File System layer (VFS). The VFS layer allows the kernel to provide accesto
different fil e systems through a common interface The kernel provides adata
structure cdl ed avnode to represent an open fil e or socket withou reveding the
underlying file system implementation. All operations performed on vnoes are the
same regardlessof the underlying fil e system implementation. Figure 3 shows how
file system operations are routed through the VFS vnoce to the underlying fil e system

ext2 [7]. The NFSfile system isaso present to ill ustrate how a user could access

remote files. This ®rvesto ill ustrate how multiple fil e systems are cdered for in the

same kerndl.

o
ﬁ User Process
S

Figure 3: VFS Supprts Multiple File Systemsin the kernel™.

1.2.3 Stackable Layer Kernel Level ProcessFile System

Significant work has been dore using stadkable layersto leverage existing
functionality provided by file systems implemented in the kernel. The extensiblefile
systemsin Spring [9], Lofs, Rot13fs and Usenetfs are examples of fil e systems that
use stackable layers and are discussed in “ A Stadkable Fil e System InterfaceFor
Linux” [8]. The Fiscus Replicaed File System [10] describes how stadkable layers
provide replication o files. An implementation of a ayptographic file system in
Linux, Cryptfs[11] demonstrates how stadkable layers can be used to creae auseful

file system by leveraging the existing file system functionality. Stadkable layers use

! Adapted from A Stadkable Fil e System Interfacefor Linux[8] .
8

the VFS interface ad vnodsto layer functional operations one ontop d the other.
Stadkable layers are described in more detail i n “Vnodes: An architedure for Multiple

File System Typesin SunUNIX” [12].

The processof developing fil e system functiondity in the kernel is difficult due to the
constraints that the kernel imposes. It is preferable to reuse existing code whenever
possble asit has usually been thoroughly tested and is generally stable. The main idea
behind stackable layersisto reuse existing functiondlity by layering new functionality
ontop o it. Developers can regp the benefits of previous work and concentrate onthe

problems asociated with their required functionality.

The foll owing figure shows how a stadkable layer is used inside the kernel to uili se

existing functiondlity.

i
& User Process
-

F

(2)
(1)
5 Mew File System Functionality
% as a Stackable Layer
o
o Existing File System
Implemented in the Kernel

i TRANSPORT
Storage MECHANISM

Media

Figure 4: New File System functionality added to the Kernel asa

Stackable Layer.

1.2.4 Stackablelayersfor the CryptosFS Architedure

Having reviewed the diff erent devel opment techniques avail able, stadable layers was
seleded to develop the prototype of CryptosFS. The reasons for choosing stadable
layers are as follows.

1. A significant amourt of work has been dore on ceveloping fil e systems such as
ext2 or NFS. Stadkable layers all ow this existing functiondlity to be reused. This
frees the devel oper to concentrate on the speafic implementation problems.

2. By pladng the prototype of CryptosFS as a stadkable layer within the kernel, it is
passble to avoid the performanceimpad inherent in a user spaceimplementation.

3. Therewasalimited amourt of time avail able for the development of the
CryptosFS prototype. By reusing existing functionality in Cryptfs and NFS, this
allowed us to concentrate on implementing the spedfic functionality of

CryptosFS.

Asthe CryptosFS fil e system is suppased to be fast it is more gopropriate to pacethe
file system in the kernel. Developing the fil e system, as a user processcan’t provide
the fast performancethat is required. Thisis because of the alditiona context
switches that a user processrequires. Pladng the fil e system functionality in the
kernel complicaes the development processbecaise it requires gedalist knowledge
of the kernel. Creaing the fil e system from scratch is nat aredistic option as

sufficient time is not avail able to gain the necessary experience

The VFS layer of the operating system all ows multi ple fil e systems to be suppated by
the kernel. Stadkable layers use VFS layer vnodes to enable afunction d onefile
system to use the functionality provided by anather fil e system. Our cryptographic file

system layer (CryptosFS) added to the kernel provides an exad encryptior/deayption

10

serviceto the user. CryptosFS uses the ammmon services provided by ext2 and NFS,

the underlying file systems as shown in Figure 5.

14
0 User Process
= f
'(2)
(1) z
=
¥ VFS LAYER =
ol O
- S R = e
w2
CryptosFs EXACT
COMMON
F
. l ____________________________ ? l __
-
EXT2FS NFS !
~
1]

Figure 5: CryptosFS uses ext2 and offers Servicesto the VFS L ayer?.

2 Adapted from A Stacable File System Interfacefor Linux[8]
11

2 Stateof the Artin Cryptographic File Systems

The ideaof applying encryptionto data stored in the fil e system is not a new onre.
There ae many examplesin the literature and the commercial world o file systems

that utili se encryption. These include:

1. CFSuses DES[13] cryptography to provide wnfidentiality of file data andfile
meta-data.

2. Truffles[14] uses DESto encrypt file data and asymmetric-key cryptography to
exchange the DES keys.

3. TCFSuses DES encryptionto provide onfidentiality and authentication.

4. Cryptfsuses Blowfish [15] encryption and stackable layers technology to encrypt

the file data and fil e meta-data.

Reviewing the literature for the referencefil e systems helped to identify the Cryptfs
implementation. Cryptfs uses sadkable layers to all ow the fast implementation d file
system functiondlity. Stadkable layers exploit the aility to use vhodesto all ow
different file systemsto use eab ather’s functionality. By seleding the Cryptfs
implementation as a starting paint to use for development, it provides alarge anourt
of stable kernel code. Using the Cryptfs fil e system all ows the development eff ort to
be concentrated onthe required cryptographic functionality withou having to worry

abou the low-level detail s of the fil e system.

2.1 Cryptographic File System — (CFS)
CFSisaportable user-level cryptographic file system that is based onNFS. It usesthe

NFS loop kad deviceto intercept system cdls and redired them to the kernel. CFS

applies encryption at the granularity of the diredory both onthe locd and remotefile

12

system. Files dored in the directory are stored uncer adifferent mourt point and a

user-attached dredory.

Filesin CFS are encrypted using a series of user level programs. A spedalised form
of the “mkdir” command “cmkdir” is used to creae encrypted dredories. During the
credion of adiredory, the user is prompted to enter akey. To use an encrypted
diredory the user must attach the encrypted diredory to anormal diredory. This
requires the key, the name of the encrypted dredory and a diredory name that is used

asamourt pant to accessthe encrypted dredory during the dtach process

For example auser credes an encrypted dredory “/home/oshanahd/myeyesonly”
with akey “dedan”. To accessthe encrypted dredory the user enters the key
“dedan”, the diredory name “/home/oshanahd/myeyesonly” and the mourt diredory
/mnt/oshanahd that is used to attach the encrypted diredory. CFS determines whether
auser hastheright to accessthe dtadhed dredory based onthe user id of the process

trying to accessthe diredory.

Different cryptographic dgorithms can be used to encrypt the datain CFS, including
DES as discussed in the Data Encryption Standard. The implementation dscussed in
the literature describes how DES with a 56-bit key isused in dfferent modes to
provide seaurity. 56-bit DES nolonger provides adequate seaurity becaise its 56-bit
key-sizeisvulnerable to brute-force dtadk asexplained in “Efficient DES Key
Seach” [16]. Advancesin dfferential cryptanalysis as discussed in “Differentia
Cryptanalysis of the Data Encryption Standard” [17] and linea cryptanalysisin
“Linea Cryptanalysis Methodfor DES Cipher” [18] indicate that DES is vulnerable

to ather attadks also.

13

CFS encryptsfile data and the meta-data. Encryption d the fil e meta-data resultsin
path names and file names that are on average fifty percent bigger than the normal
unencrypted equivalent. This reduces the size of valid fil e names that the user can use.
CFS suppats multiple diredories al owing diff erent keys and dff erent cryptographic
algorithms per diredories. The alditiona context switches that CFS performsto

servicefil e requests limit the performance of the fil e system.

2.2 Truffles

The Truffles fil e system is adistributed file system that uses the Fiscus repli cated file
system and TIS/PEM [19]. The Truffles fil e system provides repli cation and sharing
of file data. Privacy enhanced mail (PEM) provides saurity in the form of
authenticaion and encryption. Email i s used to exchange the information required to
share afile volumereplica Informationin the email i s encrypted using DES. To allow
different users share information seaurely requires the exchange of the DES key. The
key exchange uses the pulic-key contained in an X.509 dgital certificate. Using DES
to encrypt the information in email | eaves the data open to brute force dtad as

discussed in “Efficient DES Key Seach”.

Each Truffles volume has a different DES key so that accessto the eab vdumeis
restricted to ony those users who passessa @py of the relevant DES key. The use of
email to exchange DES keys al ows users to share accssto fil e volumes withou the
asgstanceof system administrators. System administrators can use palicy to limit the
abiliti es of certain usersto share file volumes. This provides additional flexibility and

seaurity.

Fiscusis a stadkable fil e system that resides in the kernel and uili ses the underlying

file system that the operating system provides uch asthe UNIX File System (UFS) or

14

NFS. UFS provideslocd fil e system storage whil e NFS provides remote fil e system
storage. As Trufflesis built ontop d Fiscusit isasreaily available & NFS. Despite
the fad that the fil e system cgpability of Trufflesisin the kernel, the performance of
Trufflesislimited by the use of email to exchange information. Email can belost in
the Internet or can be delayed due to congestion, this riously degrades the

performance of the fil e system.

2.3 Transparent Cryptographic File System - (TCFYS)

TCFSisamodified client side NFS server that communicates with aremote NFS
server and with a spedalised RPC based attribute server. TCFSis only avail able for
Linux and requires bath its client and server runthe Linux operating system. TCFS

can use several different block ciphersincluding DES and IDEA [20].

TCFS provides transparent management of user keys. Instead of the user being
prompted to enter akey by a spedalised program, randam keys are generated by the
file-system. The randam keys are encrypted with the passvord dof the user and stored
in afile cdled /etc/tcfspassvd. The user id is used as an index in to the key file to
retrieve the key for the user processtrying to accessthe file. This has the advantage of
transparently handing the encryption o the file data. At the sametime, it reduces the
seaurity provided by the system to the difficulty of deaypting the user passvord to
retrieve the keys. Dictionary passwvord programs can be used cradk a user passvord

with littl e difficulty, these programs are fredy avail able on the Internet.

TCFS provides afiner granularity of encryption than CFS. An extended file dtribute
cdled “seaure” istested uponthe aedion d thefile. If the “seaure” atribute is set,
subsequent read and write operations are direded through the ayptography layer. If

the “seaure” atribute is not set, the read and write operations are treated as normal.

15

2.4 Cryptfs

Cryptfsisimplemented as akernel resident fil e system. Cryptfs can be mounted on
any locd or remote diredory and can utili se ay underlying fil e system such as UFS,
ext2 or NFS. Cryptfs does nat require any spedalised daemon grogram to runas it
layersitself ontop o the existing underlying file systems. Cryptfsisimplemented as a
stackable mdeinterface Similar to CFS, users of Cryptfs are prompted to enter a pass
phrase to generate akey for authentication. A message digest of the passphraseis
generated using MD5 and is gored in the memory used by Cryptfs. The keysto
encrypt the file data ae nat stored in afile, this makes it more seaure than TCFS. As
the user must enter the passphrase a the start of ead new sessonthat is garted, this

resultsin reduced flexibility but provides greaer seaurity.

Cryptfs uses Blowfish symmetric-key cryptography for encryption d file data and
meta-data. A 128-bit key provides a balance between performance and encryption
strength. Keys can be used in two dfferent ways. The user id can be used to identify
the key to use. Alternatively, a ombination d the user id andthe sessonid of the
accessng processcan be used to identify the key. The seamndmethod provides
additional seaurity, as amalicious user who can use theroct user cgpability to forge

the user id of the user can't attain the same sessonid as the user.

Blowfish has the property of preserving the size of the encrypted data. Thisis
desirable @ many programs accessfil es using an off set. If the encrypted dataisa
different size to the unencrypted data, it renders the off set used by programsinvalid.
Thisrequires a onwversion scheme to trand ate the off set values of the unencrypted

datato the off set of the encrypted data. Thisin turn has implications for performance

16

Encryption d the file name and peth name dtributes adds additional complexity.
UNIX file names and path names have cetain restrictions regarding valid names.
Using certain charaders such as“/” or null produwcesinvalid file names. Thisisa
problem in Cryptfs as encryption d filenames produces invalid fil enames. Cryptfs
solves this problem by uu-encoding the filename to convert them to valid values. It
does nat encrypt the “.” and*“..” diredories because it could provide malicious users
with examples of encrypted strings to try aknown plain text attadk. Uu-encoding
filenames results in the encrypted fil enames being 25% larger on average than the

correspondng unencrypted names.

The performance of Cryptfsisimproved by the location d the encryption/deayption
layer in the kernel. Thisresultsin the same number of context switches asfile acces

in aregular file system.

2.5 Summary of propertiesof Cryptographic File Systems

The table below summarises the properties of the diff erent cryptographic fil e systems
reseached. The CryptosFS fil e system is suppased to be fast and seaure andthe size
of the encrypted file datais required to be the same & the dea text. From the review
of the avail able fil e systems, Cryptfs was sleded for detail ed analysis. Cryptfsisa
kernel resident fil e system. This means that the performance of the fil e system is
better than user level file systems. As Cryptfs uses gadking vnodes, the
implementation islesscomplex than the mmplete implementation d afile system
such as ext2. Even though it requires system administrator interventionto instal, it is

not considered amajor problem.

17

Properties CFS | TCFS | Cryptfs | Truffles
Authentication wsing pulic keys. No No No Yes
Remote file accescapability. Yes Yes Yes Yes
Cipher text preserves data size of clea text. No No Yes No
Fil es encrypted with individua keys No Yes No No
X.509Certificates used. No No No Yes
Kernel resident fil e system. No No Yes Yes
Requires System Administrator Intervention. Yes Yes Yes No

Figure 6: Summary of the properties of different cryptographicfile

systems.

18

3 Design of CryptosFS

3.1 Trusted Computer Base and CryptosFS

Cryptography can be used in a distributed fil e system to provide cnfidentiality,
integrity and authentication. A distributed system is by its very nature made up o
many different comporents. Each of the mmporents in adistributed system
paotentially provides an avenue for an attadker to exploit, so asto gain ureuthorised
accessto data and information. Depending on the gplication damain, the
requirements for information seaurity are very different. The military typicdly places
the highest priority on nondisclosure of information. The banking industry is more
concerned with integrity of information and preventing attadkers from modifying data.
Utiliti es and service providers place ahigh priority on ensuring avail ability. An
attadker who can succesgully interfere with the provision d aservice ca be

extremely damaging to a service provider.

The use of comporentsto produce adistributed system requires that the comporents
of the system haveto be evaluated with regard to seaurity. The cmbination o
comporentsto produce adistributed system forms what is cdled the trusted
computing base (TCB). The trusted computing base is defined by Butler Lampsonin
“Requirements and Techndogy for Computer Seaurity” [21] as
“The set of trusted hardware and software cmporentsis cal ed the trusted
computing base or TCB. If a ammporent isin the TCB, sois every comporent
that it depends on, becauseif they don't work, it’s not guaranteed to work

ather.”

19

As part of the design processfor CryptosFSit isimportant to evaluate how exadly
CryptosFSfitsin to the TCB. The different parts of the fil e system were evaluated to

determine how they could be seaured to provide the necessary level of protedion.
3.1.1 Lack of Trust in the mmponents of CryptosFS

CryptosFSisafast seaure version d NFS. Like other NFS implementations, it has the
following comporents.

* Client

e Server

e Communicaion medcanism

The design o CryptosFS requires determining the level of trust required among the
different comporents. The server shoud dstrust the dient and require that all of the
operations it performs be validated. Validation d operations requests from a dient
requires the server to verify that the dient has the authority to perform the requested
operation. CryptosFS does nat authenticae the dientsidentity but it does ensure that a

valid client is performing the operation.

In CryptosFS a new accesscontrol mechanism is used to control accessto fil e stored
onthe server. The new accesscontrol medchanism uses RSA asymmetric-key
encryption [22] to creae digital signatures. This all ows the server to verify that only
valid clients are dlowed to perform operations. It also al owsthe dient to give other
usersthe capability to perform operations. Trust is establi shed between clients and

servers by the aility of the server to validate the operations that the dient requests.

Just as the server does nat trust the dient withou verifying that it has the mrred

authority to perform an operation, the dient does nat trust the server. The dient does

20

not trust the server because someone unknawvn to the di ent administers the server.
The server has the aility to disclose information withou the aithorisation d the

client.

The dient can prevent unauthorised accessto data by using encryption. Even if the
server discloses the data belonging to the dient, the dataisin encrypted format and so
isuselesswithou the correspondng key to deaypt it. The dient encrypts al of the
data with symmetric-key encryption kefore it sendsit to the server. The datais never
deaypted by the server. The server does not passessthe key to perform the deayption
of the data. This enforces trust between the dient and the server even though thereis

no explicit trust.

The communicaion medhanism all ows the dient and server to passrequests and
resporses to ead. The dient and the server do nd trust the @mmunicaion
medhanism, asit is posgble for an attadker to compromiseit. CryptosFSis designed
to try to overcome the problem of nat trusting the communication medianism. The
problem with the communicaion medanism is that an attadker can read and change
the data being sent over it. The adility to change the data sent to a server negates the
ability of aserver to validate a dient request for an operation. CryptosFS encrypts the
data before it is snt over the network, this ensures confidentiality of the data. The
server usesthe digital signature aeaed by the dient to validate the dient requests.

This ensures the integrity of the data.

3.2 AccessControl Mechanisms

Providing seaure accesto ojeds gored in adistributed environment is difficult. As
the number of objeds and wsers trying to accessthose objeds increases, traditional

accesscontrol mecdhanisms beame abattlenedk. Centrali sed management of access

21

control worksonthe LAN of an arganisation bu it isimpradicd for sharing objeds
in the global Internet. Centrali sed management of accesscontrol complicates the
credion d new users, it prevents arbitrary once off accessto fil es from non-trusted

users andisasingle point of falure.
3.2.1 AccessControl Lists

AccessControl Lists (ACL) as discussed in Pasc P1003.% [23] provide amedanism
for seaure accesto ojjedsin adistributed system. ACL’s are aform of discretionary
accesscontrol asthe end wser determines who can accessthe objed. Accesscontrol is
defined in terms of objeds and subjeds. Objeds are defined as what is controll ed by
the accescontrol; asubjed is defined as the entity that commences the accesto the

objed.

Eadh subjed is described by a wlledion d attributes. The atributes are used to
identify the subjed to the objed andto control the acceasthat the subjed has to the
objed. Validating the subjed invalves authenticaion and authorisation.
Authentication invalves aayuiring and verifying the dtributes of the subjed.
Authorisation vali dates the permissons of the subjed by the objed. Objeds are
governed by a set of rules cdled the accescontrol entity (ACE). There ae two types

of ACE: authenticaion ACE and authorisation ACE.

The authenticaion ACE provides away to identify asubjed from its attributesi.e.
madhine address username or the locaion d the authenticaion information. The
authorisation ACE defines the permissons that a particular subjed has. Subjeds can
be organised into groups 0 that authentication and authorisation are based onthe

membership of the group.

22

ACE'sare used to form ACL’ s that can be stored in a centrali sed structure such asa
file or adatabase. The ACL mechanism obtains the subjeds ACE from the ACL to
authenticae and authorise the subjed’s accessto the required oljed. Asthe ACL is
stored onasingle hogt, it isapotentia single point of fail ure. Management and
administration d ACL’sis problematic when there ae large numbers of changesto be

made to the subjed’s attributes.

3.2.2 RoleBased AccessControl

Role Based AccessControl (RBAC) is an example of mandatory accesscontrol. The
subjed who hes accessto an oljed does nat have the automatic right to dstribute
accessto the objed. RBAC seeksto dff erentiate between the subjea and the task to
be performed. A subjed can perform atask only if it hasthe @rred permissonsto
accessthe objeds required to compl ete the task. By pladng the permissonsto access

an oljed under a spedfic role, any subjed can be assgned that role.

RBAC differsfrom ACL’s becaise asubjed does not passessthe aility to pass
permissons onto ancther user. RBAC is pessmistic due to itsrestrictive nature. It
asumes that subjeds will attempt to passon permissons and so by mechanism
prevents it from happening. RBAC isgroup aiented becauseit reliesonthe
assgnment of subjedsto roles. Eac role has the aility to perform a cetain subset of
transadions;, RBAC medanisms adhere to the Principle of Least Privilege &
discussed in “Integrity in Automated Information Systems” [24]. A rolethat asubjed
hasis only granted the minimum privilege required to perform atask. RBAC is
centralised in nature & it requires a system administrator to manage the assgnment

and revocdion d rolesto and from subjeds.

23

3.2.3 Capability AccessControl

Capahiliti es provide accescontrol to an oljed in asystem by restricting accessto the
objed to ony those users who pessessatoken. The token provides the token hdder
with permissonto perform operations onthe objed. Capabiliti es provide asingle
medhanism for accessng, naming and seauring all objeds within asystem. Dennis
and Van Horn dscusscapabiliti esin “Programming Semantics for Multi programmed
Computations’ [25]. Capabiliti es are used in the Amoeba operating system [2€], in

SFS[27] andin CapaFS [2§].

Using cgpabiliti es provides improved flexibility as they can be shared ou among
subjeds. Sharing the caability to read datafrom an oljed is possble by giving
ancther subjed a apy of the read cgpability. As copying capabiliti es provides a
mechanism for sharing accessto oljed, it isimportant that the caabiliti es are
difficult to forge. If it isnat difficult to forge caabiliti es, malicious subjeds can gain
accessto ojjeds. Strong encryption provides protedion against the abitrary forgery

of capabiliti es.

Capahiliti es come in severa different forms, these include tagged, partitioned and

sparse.

» Tagging isa computer-architedure-oriented technique; a number of bits are alded
to eadr memory areag so adistinction can be made between the data and
capabiliti es functiondlity.

¢ Partitioned cgpabiliti es are stored in aspeda areaseparately from any data and
can orly be acce=d by the system. This sparationis used to preserve the
integrity of the cagpabiliti es. Partitioned cgpabiliti es are dso computer-

architedure-oriented.

24

* Sparse cgabiliti esdo nd neeal to be distinguished from data by tagging or

partitioning; asimple bit string is used to represent them.

3.2.4 Lack of Formal AccessControl in CryptosFS

CryptosFSis designed as a distributed cryptographic fil e system that does not require
the server to authenticate the identity of the user. CryptosFS does nat use traditional
accesscontrol for validating users. CryptosFS relies on creding digital signatures and
using the digital signaturesto verify requests for operations from clients. The server
does nat attempt to verify the identity of the user. Validations of read and write
requests are performed by deaypting adigital signature receved from the dient
making the request. To succesully read the data in the server the public-key for the

fileisrequired, conversely the private-key is required to perform awrite operation.

3.3 CryptosFS Sarity Model and the use of Cryptography

The use of cryptography refleds the lad of trust between the comporents of
CryptosFS. The seaurity model used for the CryptosFS prototype uses threediff erent
types of cryptography. These include Blowfish symmetric-key cryptography,

RSA asymmetric-key cryptography and MD5 message digests. This combination o
cryptographic dgorithmsis used to ensure wnfidentidity, integrity and authentication

of file data and file meta-data.
3.3.1 Confidentiality in CryptosFS

Corfidentiality ensures that only the valid users of data can perform the operation to
read the file data. CryptosFS ensures confidentiality of file data and fil e meta-data by
encrypting it with symmetric-key (Blowfish) encryption. Only thase users who
possessthe @rred symmetric-key key can deaypt the encrypted fil e data and meta-
data. The operationto encrypt the file data and file meta-datais only performed onthe

client of CryptosFS and the symmetric-keys are never transmitted aaossthe network.

25

The datathat is transmitted aaossthe network is always in encrypted format, this
guarantees confidentiaity of the data even if it is successully retrieved from the
network. Data stored onthe server is dored in encrypted format. If an attadker can
compromise the server, the cnfidentiality of the fil e datais maintained, as the datais

stored in encrypted format.
3.3.2 Authentication in CryptosFS

Authenticationin CryptosFS is achieved by the use of digital signatures. A client that
triesto perform aremote read operation must prove to the server that it has the
authority to perform the operation. When afileis creaed onthe server the puldic-key
for thefileis gored. The authentication processfor aread operationinvalves the
credion d adigital signature by the dient. The dient creaes adigital signature by
first producing a message digest of the encrypted data. The message digest isthen
encrypted with the puldic-key of thefile. The server posesses the same pulic-key as
the dient and credesits own dgital signature. The server authenticates the dient’s
read request by comparing the digital signature recaved from the dient against the
digital signaturethat it creaes. If the digital signatures match then the dient has

succesgully authenticaed itself to the server for aread operation.

To authenticae itself to the server for aremote write operationthe dient creaesa
digital signature by encrypting a message digest with the private-key of the file. The
server deaypts the digital signature receved from the dient and retrieves the message
digest contained in it. The server credes its own message digest and compares it
against the message digest remvered from the digital signature of the dient. If the

message digests match then the dient has suiccesully authenticaed itself to the

26

server for awrite operation. Only the dient who pessesss the private key can crede

the corred digital signature.

3.3.3 Integrity in CryptosFS

The integrity of files creaed onthe server is maintained by the use of digital
signatures. Write operations to modify the data stored onthe server require the
private-key. Theintegrity of the fil e datais guarantead because even if the pulic key
is changed onthe server, the cmmparison d the message digests gored in the digital

signatures will fail.

3.4 Location of Cryptography in the System

The chaiceof the ayptographic system isimportant but it is also criticd to implement
the ayptography in the corred placein the system. Locating the ayptography in an
inappropriate locaion in the system can negate the seaurity offered by it. Refer to “A
Cryptographic File System for Unix” by Matt Blaze for athorough description d the

options avail able for encrypting data.
3.4.1 Manual Encryption by the User

The user can manually encrypt the data using an encryptiontod such as PGP [29] or
the UNIX crypt program. If encryptionisrequired onasmall scde by asingle user
then manual encryptionis pradicd. Manual encryption requires the user to keegp a
copy of the key used for encryption. This leaves the data open to compromise from
the key being stolen. Apart from the seaurity risks of manual encryption, it is
inflexible for large numbers of files. Manual encryption d filesis not scdeable,
because & the number of fil es increases the number of keys that the user hasto

manage increases.

27

If auser encrypts the data manually, it is not possble to share the data with another
user unlessthey possessa wpy of the ayptographic key and the ayptography
program used to encrypt/deaypt the data. Users are human and can make mistakes
such as entering the wrong encryption key or worse losing the key. Many programs
that are used in the UNIX environment crede cpies of datathat they work with. An
encryption program may make atemporary copy of the dea text being encrypted and

may nat delete it immediately oncethe encryptionisfinished.
3.4.2 Encryption at the Application Level

An aternative to applying encryption manually by the user isto embed the encryption
in to the gplicaionthat credesthe data. An example of thisis an editor that encrypts
the datain thefilesthat it creaes. The user is prompted by the gplicaion pogram to
enter an encryption key when the fileis written to o to enter adeayption key when
thefileisreal. Thisisalittl e more flexible than the manual approad becaise the

encryption pocessis eanlesdy integrated into the gplicaion.

Sharing of data between dff erent appli cations requires that ead appli cation which
accesses the data, must implement the same ayptographic dgorithm. Multiple
implementations of a ayptographic dgorithm can introduce problems due to an error
in an implementation. Bruce Schneier in “Data Guardians’ [30] describes sme of the
problems encountered with dff erent implementations of the DES algorithms. Failure
onthe part of the user to encrypt thefile or to delete the dea text version d thefile

data can render uselessthe seaurity provided by applicaion encryption wseless
3.4.3 Encryption at the File System L evel

Applying encryption to the data a the user or applicaionlevel isnaot pradicd becaise
it requires the adive participation d the user. Users are human and are prone to error.
It is better to take the resporsibility of encrypting the data avay from the user. If users

28

do nd have to worry abou keys then the potential for problems from incorred keys

being used o the keys being mislaid is eliminated.

Entrusting the fil e system to perform encryption reduces the risks of seaurity breades
due to multi ple implementations of cryptographic dgorithms. Cryptographic
algorithms are cmplex and mistakes in implementation are possble. Experiences
with the DES algorithm provide evidence of problems encourtered due to the

complexity of coding cryptographic dgorithms.

The end-to-end argument as edfied by Saltzer et d in “End-to-end argumentsin
system design” [31] discusses the use of encryptionto provide for seaure transmisson
of file data. Saltzer et al argue that it is better to let the end appli cation apply
encryption rather than let it be performed by the communication subsystem. It is not
appropriate to trust the communication subsystem to manage the keys required for
encryption. A further complicaion d applying encryption to the communicaion
subsystem is that once data has cleaed the communication subsystem on the target

maadineit will bein urencrypted format.
3.4.4 Encryption at the System Level

The data can be encrypted at the system level using a hardware device The hardware
device can encrypt the data before sending it over the ommunicaionlink. The
clipper chip [32] isan eledronic devicethat can be embedded in to network cards.
This provides a mecdhanism for encrypting al communications between dff erent
principles. It never establi shed itself becaise the US government possessed a

baddoa that allowed it to override the encryption mechanism.

29

When file datais gored onaremote fil e system, the seaurity of the cmmunicaion
link isimportant. Malicious users who can gain accessto the link can read data sent in
the dea to aremote site. Programs such as padet filters make this essy to do.A
hardware device can be used to encrypt and deaypt data beforeit is gored onthe
physicd media. Using hardware in this manner compli cates badk up andretrieval of
information stored onthe media. Adding an additional comporent to the system
further increases the risk of failure of a amporent. Fail ure of the hardware can render
the datainaccessble. The nee to store keys at some location in the network whether
at thelocd or remote site compli cates matters and increases the risk of seaurity

breades.
3.4.5 CryptosFS & Encryption at thefile system level

The locaionin the operating system where ayptography is applied isimportant.
Seaurity of the generation, management and storage of keys can impad the overall
effedivenessof encryptionwhen it is applied to an operating system. During the
design of CryptosFS the use of cryptography at the user and application level were
rejeded becaise of the problem with seaurity of keys and scding problems. It is
preferable to let the fil e system take resporsibility for the goplicaion d encryption.
CryptosFSis designed to encrypt fil e data & the fil e system level. The keys for
encryption are generated and stored in the fil e system. Key management is completely
transparent to the user. By applying the encryptionin the fil e system, the file datais
encrypted and ceaypted at the dient only. This ensures confidentiality of the file data
from the dient end to the server end and badk. Blowfish symmetric-key encryptionis
used in CryptosFS to encrypt the fil e data and meta-data. This provides complete

seaurity to the data stored onthe server.

30

The CryptosFS fil e system is resporsible for managing the encryption keys. No ather
part of the system isrequired to manage keys. Thefile datais encrypted and
deaypted ony by the CryptosFS fil e system applicaion onthe dient. Asno aher
part of the system neals to deaypt the fil e data, the need for complicated key-
management is removed. This smplifies the key-management model and improves

the seaurity of the fil e system.

Efficient distributed system design dictates that as far as possble processngis
transferred from the highly burdened server to the lightly burdened client. By passng
the resporsibility for encryption d file datato the dient, a computationally expensive
operationis removed from the server. This all ows the server to concentrate on
performing other work and all ows it to scde more dfedively to handle alditi onal

client requests.

3.5 CryptosFS- Design Goals

The design o CryptosFS refleds adesire to add stronger seaurity to NFS through the
application d different cryptographic techniques. The use of RSA asymmetric-key
encryption was considered to encrypt the fil e data. After consideration, thiswas

rejeded becaise the performance of fil e operations would have been very poar.

Blowfish symmetric key encryptionis used in CryptosFSto perform the fil e data
encryption. There ae no referencesin the literature to show that the Blowfish
algorithm has been successully cryptanalysed. Blowfish dff ers a balance of strong
encryption and high performance this makesit ided for encrypting data. The dhoice

of encryption seleded influenced the design of CryptosFS.

The design goals for CryptosFS include:

31

Keys produced in the fil e system are stored in the fil e system. User asgstanceis
not required to producethe keys. Keys are generated from randam information

from within the operating system.

When afileiscreaed, the fil e system automaticdly produces the required
symmetric and asymmetric-keys. The keys generated by CryptosFS are saved

somewherein the fil e system.

Encryption d file data and file meta-datais performed by the dient. The
encrypted file data and meta-data ae stored onthe server in encrypted format. No
deayption d file datais performed by the server. The server only uses encryption
to authenticate operations by manipulating the digital signatures produced by the

client.

The design o CryptosrFS foll ows efficient distributed system design principles as
far as posgble. By passng the encryption and ceayption d datato the dient, the
computationally expensive work of encryption and deayptionistransferred from
busy server to the lesslightly loaded client. This all ows the server to scde more

efficiently and handle an increase in the number of fil e operations.

CryptosFS must modify the kernel RPC medanism to al ow the transfer of digital

signatures from the dient to the server and from the server to the dient.

32

4 | mplementation

4.1 CryptosFS - Implementation gods

The following are the implementation goals were set for the implementation o

CryptosFS.

- A combination o Blowfish symmetric-key encryption, RSA asymmetric-key
Encryption and MD5 message digests algorithms are to be implemented. The
different cryptographic dgorithms are used to provide amechanism for validating

operation requests from clients on the server, as the server does not trust the dient.

- Cryptography is expensive in terms of the alditional timeit addsto afile
operation. To off set the st of the encryption and deayption the implementation
of these three dgorithms have to be implemented in the kernel to ensure that they

are assfast aspossble.

- Thefollowing bit sizes are used for the threediff erent cryptographic dgorithms.
= Blowfish key size of 448hits. A key size of 448-bits provides agood talance
of strong encryption and hgh performance
= RSA key size of 1024bits. A key size of 1024bits provides grong encryption
to proted the digital signatures against brute force dtad.
» MD5 messge digests of 128-hits. The 128 bit message digest sizeisa

standard size used for the aedion d digital signatures.

- The Blowfish symmetric-key encryption algorithm is used to encrypt and ceaypt

the file data and the file meta-data. All fil e data and file meta-datais stored in

33

encrypted format on the server. No symmetric-key encryptionis performed by the

server to improve seaurity.

The MD5 agorithm is used to generate the message digests. The message digests
are used to produce adigital signature by signing them with the RSA pulic or
private-key. The RSA pulic-key is used by the NFS server to validate the digital

signatures and to authenticate the results returned to the NFS client.

To implement the RSA asymmetric-key encryptionin the kernel, amethodfor

producing large integersin the kernel had to be found.

The kernel NFS client and server implementation in Linux use kernel RPC as its
transport mechanism. This RPC is hand coded, as there is no rpcgen program for
the Linux kernel. The RPC code had to be analysed to determine how best to
modify it. The modificaions alow it to transport the digital signatures and

asciated asymmetric-keys from the dient to the server and viceversa.

CryptosFSisto be developed in Linux and hesto use Linux kernel moduesto

allow the dynamic loading of the file system into the runnng kernel.

4.2 Architedure of CryptosFS

The general architedure of the CryptosFS fil e system isill ustrated in the foll owing

diagram.

34

Client

lUser Process

op {}

USER

wnode_op ()

cryptosfs_op ()

(VNODE
LAYER

) (CryptosFS) D®

nfs_op ()

r

o ¥ o

lignt

encode req

L decoded res

¥
ADREPC

TCPIP

ynode op ()

KERNE

T Keys generated, data encryption .

2 & 4 Digital signature created for operation/
rasult

3 & 5 Authentication of operationfresult by
decryption of digital signature.

& Decryption of data.

Server L
remaote
disk
SEEEE

MNFS
@ ?ewe @
3
decoded req encode req
¥
ADRIRPC

TCFIF

Metwiork

Communication

Figure 7: General Architedure of the CryptosFS implementation.

The steps numbered ore to six describe how and where the diff erent cryptographic

algorithms in CryptosFS are implemented.

1

The symmetric and asymmetric-keysfor ead file ae aeaed when thefileis

creded. The keys are stored in the vnode for the file. Datareceved from the user

isencrypted beforeit is passed dowvn to the underlying NFS client. The

encryptionis performed using the symmetric-key stored in the file vnoce.

The NFS client recaves the encrypted data and the request for an operation from

the CryptosFS layer. The dient creaes adigital signature for the operationit is

requesting from the server. The dient produces the digital signature by creaing a

message digest of the encrypted data receved from the CryptosFS layer. The

message digest is sgned with the pulic or private-key of the file. The public-key

isused for read operations and the private-key is used for write operations. The

35

digital signature, the pulic key and the encrypted data ae encoded using XDR
before they are sent to the server.

3 TheNFS server deades the request from the dient. The decoded request
contains the operation requested, the digital signature and the pubdic-key for the
file.

» If the dient requests awrite operation the server uses the puldic-key to deaypt
the digital signature to retrieve the message digest creaed by the dient. The
server credes its message digest from the encrypted data and compares it
against the message digest retrieved from the dient’s digital signature. If the
message digest produced by the dient matches that produced by the server, the
server knows the dient who creaed the digital signature is authorised to
perform the write fil e operation.

» If the dient requests areal operation, the server creaes a message digest of
the encrypted data. The server encrypts the message digest with the pubdic-key
to crede asecond dgital signature. The server compares the two digital
signatures and if they match the server knows that the dient is authorised to

perform the read operation.

4 The NFS server performs the operation if the request from the dient is vali dated
corredly. The results of the operation are used to creae ancther digital signature
by creaing a message digest of the result data. The server uses the pulic-key of
the file to sign the message digest. The result data and the digital signature ae

encoded using XDR and sent badk to the dient.

5 The NFS client deaodes the results recaved from the server. The deaded results
contain the results of the operation requested by the dient and the digital

signature aeaed by the server. The dient creaes amessage digest of the results
36

data and signs the message digest with the puldic-key of thefileto creae adigital

signature. The dient compares the digital signature it creaed against the one

receved from the server. If the digital signatures match, the dient knows that the

result datais corred and has not been modified as it passed over the network.

6 TheNFSclient passs the results data badk up to the CryptosFS layer. The result

datais deaypted with the symmetric-key from the vnode. The deaypted datais

then pased to the user process

4.2.1 Functionality in CryptosFS

Figure 8 ill ustrates how the diff erent componrents of the CryptosrFS implementation fit

together. The key generation and storage is performed in the CryptosFS layer. Both

the NFS client and server generate digital signatures for the validation d the diff erent

file operations.

client

cryptos - encrypts file data and performs file operations

stores keys

generates keys

‘ cryptos_list

‘ ‘cryptos_genasym ‘

‘ cryptos_file

bfkeys

nfs client creates EPC requests

generate digital signatures

‘ cryptos_genasym |

‘ hashfuncs

kernel RPC

TCPAP

server

recuests

nfs server services validated RPC

validate digital signatures
‘ cryptos_genasym ‘

‘ hashfuncs ‘

Kermnel RPC

TCRPAP

Communication
MNetwiork

Figure 8: Structure of componentsin the CryptosFS File System.

37

There ae four main comporents in CryptosFS that perform the key generation and
management. The diff erent comporents are discussd below.

1. cryptos_genasym generates the asymmetric-keys for eat vnod; it aso
produces the digital signatures from the message digests on bah the dient and
the server.

2. Dbfkeys generates the symmetric-key for ead vnoce.

3. cryptos list and cryptos file store the generated keysin main memory andin
flat fil es respedively.

4. hashfuncs generates the message digest of the encrypted data. This message
digest isused in the generation d the digital signatures.

Refer to Appendix A for a omplete list of the software cmporents of CryptosFS.

4.3 Key Structure for CryptosFS

CryptosFS uses ymmetric and asymmetric-key encryptionto provide confidentiality.
To alow ead fileto passessits own keys, the vnoce structure of the VFS layer is
modified to store the keys to perform the encryption and deayption. Thevnoceis
implemented in the Linux kernel as a C structure. The CryptosFS keys are defined as
alayer of structuresthat are contained in the VFS vnode. The structure asym_keys t
contains the charader representation d the puldic and private keys for the RSA
asymmetric-key encryption. The symkey contains the charader representation d the
Blowfish key. By storing the keys in the vnode, the information accessble from ead
vnode can beindividually encrypted and deaypted smply by retrieving the keys from

the vnoce structure.

38

inode_t

chyptos_keys t
— symikey
asymkeys_t | | |
pubkey t privikey t commaonkey t
| pubkey val privikey_val commonkeyval
pubkey len privikey len commonkey_len

Figure 9: Structure for CryptosFS keysas gored in VFS vnode.

4.3.1 Vnode stacking and Encryption

The CryptosFS prototype encrypts and deaypts the file data and meta-data before
passng it onto the underlying ext2 and NFSfile systems. Thisis possble by using
stackable layers and stadking vnodes. The vnodes of the VFS layer in the Linux
operating system possessthe caability to store abitrary information. Stadkable layers
exploit this capability to store apointer to another vnode (cdl ed ahidden vnodk) in

the higher-level vnode.

The encryptionand deayption o datais performed onthe highest-level vnode. The
hidden vnockis used hy the underlying file system to perform operations onthe
encrypted data. This allows the dient to encrypt the data and passit onto the ext2 or
NFSfile systems sfe in the knowledge that the datawill never be seen in clea text
format. This mechanism all ows the ayptography to beisolated into a separate layer;

the file operations are performed by the underlying fil e system.

39

4.3.2 Blowfish symmetric-key Generation for CryptosFS

CryptosFS uses 448-bit Blowfish keysto encrypt fil e data and file meta-data. The
Blowfish keys are aeded automaticaly when afile or diredory is creaed. For eah
symmetric-key to provide sufficient entropy, it is produced using a seed value
obtained from the system timein the Linux operating system. The system timein
Linux isrepresented by jiffies. Linux Kernel Internals [33] describesjiffies as
"Jiffies represents the system time sincethe system was garted upin, they are

measured in ticks. Ead tick represents 10 milli seaonds'.

The seed to the Blowfish key generator is generated from the foll owing formula.

» seal = (jiffies% HZ) * (100000000MHZ)
jiffies = system time in milli seconds sncethe operating system was boaed.
HZ =100
The number of seconds from the time of day isretrieved from the operating system
andis combined with the sead value to producethe Blowfish key acwrding to the
following formula. The key is448bitsin length (56 bytes) and so isproduced in a
loop.
for (i=0; i < SYMKEY_SIZE; i++)

symkey [i] = (unsigned char) ((sends) * (seda * i)) % CHAR_RANGE);

The CHAR_RANGE is 255.Using the moduus function ensures that ead of the

charaders produced isin the range O - 255.
4.3.3 Generating LargeIntegersin theLinux kernel

The implementation o CryptosFS requires a medanism to generate large integersin
the Linux kernel. The RSA asymmetric-key encryption relies onthe difficult of
fadoring large numbers for seaurity. Thisisdiscussed in detail in “A methodfor

40

obtaining Digital Signatures and Public-Key Cryptosystems’. Withou the ability to
producelarge numbersin the Linux kernel, it is not pasgble to implement the RSA

asymmetric-key encryption algorithm in the kernel.

The kernél of the operating system is limited in the functionality that it provides. Once
the kernel isloaded in to the memory of the macdineit runs continuowsly withou ever
being swapped ou to dsk. This places alimit onthe size of the kernel. The am of the
kernel isto provide low level services quickly and efficiently. Adding large integer
cgoability to the kernel to generate large integers does san to contravene the end-to-
end argument. Thisis because the kernel does nat have acceasto the functionality that
ahigher-level layer has. One of the implementation goals for CryptosFSisto use RSA
asymmetric-key encryptionin the kernel. Thisis not possble withou a kernel

implementation d alarge integer padage.

Two large integer padkages were evaluated to determine whether it is possble to use
them in the Linux kernel. These included the Large Integer Padage (L1P) [34] and
the GNU Multi-Predsion Arithmetic Padkage (GNU MP) [35]. A considerable
amourt of effort was concentrated ontrying to pat the LIP to the kernel. Effortsto
port the LIP to the kernel failed as it relied too heavily onthe functionality of the glibc

library.

The dtempt to pat the GNU MP padkage to the kernel was more successul. Porting
the GNU MP padkage to the kernel required modificaion d its memory alocation
routines. The GNU MP isauser spacelibrary that uses the gli bc functions mall oc,
redloc and freefor memory all ocation and de-all ocation. These functions are not
avail able in the Linux kernel and so had to be replaced with kernel equivalents. The

redloc functionisthe only function that caused significant problems as the mall oc
41

and freefunctions mapped to the kernel functions kmalloc and Kreerespedively. A
functionimplemented using kmall oc and Kree & ows the wmrred simulation d the

operation d redloc.

4.3.4 RSA Asymmetric-key Encryption

The seaurity provided by RSA asymmetric-key encryptionis due to the difficulty of

fadoring large prime numbers. The dgorithm for RSA asymmetric-key encryptionis

discussed in “A methodfor obtaining Digital Signatures and Public-Key

Cryptosystems’. The detail s of the RSA agorithm implemented are & foll ows:

1. Seled two large prime numbers p and .

2. Compute n = p*q.

3. Seled avalue ethat isrelatively prime andislessthan p*q. The pulic key is
e n.

4, The Extended Euclidean Algorithm is used to find a suitable d value, seethe
next seaion for more detail ed information d how thisisimplemented.

5. To perform encryption, raise avalue V to the power of e and oliain the
moduus n o the result to produce Gpher text C. Thislooks as foll ows:

C=((V™e) mod n)

6. To perform deayption, raise the apher text C to the power of d and oliain the

moduus n of the result to producethe original value V. Thislooks as foll ows:

V = ((C*d) mod n)

The pulic-key pair is e and nand the private-key isd. The public-key pair is used by
the NFS server to validate fil e operations and is made fredy avail able. The private-
key dis dored internally by CryptosFS. The private-key is given to ather usersto

allow them perform write operations on fil es.

42

4.3.4.1 RSA asymmetric-key Generation in CryptosFS

The GNU MP library provides aimost all of the functionality necessary to producethe
RSA asymmetric-keys with the exception d the Extended Euclidean Algorithm. This
necesstated the design and implementation d aversion d the Extended Euclidean
Algorithm. The theoreticd basis for the dgorithm is obtainable from a description
written by Bruce lkenaga & detail ed in “ An Example Using the Extended Euclidean

Algorithm” [36].

The RSA asymmetric-keys are generated using the dgorithm as detail ed in the
previous fdion. Thetwo prime numbers p and gare produced using the GNU MP
prime number generator function. The prime number generator function uses a base
number as a starting point. It retrieves the next prime number greaer than the base
number. The first base number is generated using the GNU MP randam number
generator seeded with the system time (jiffies). The secondcal to the prime number
generator uses the first prime number generated as the base number. This al ows two

different prime numbers to be generated.

4.4 Storageof Keys Generated in CryptosFS

The keys generated in CryptosFS are stored in a structure cdled cryptos _keys t that is
locaed in the vnodein the VFS layer. The vnode informationin the VFS layer isonly
adive in the memory of the computer. Some means of storing the keysto provide

persistenceis neeled.
4.4.1 Link-list Implementation in CryptosFS

A link-list implementation stores the keys in the computers main memory asthey are
generated by the CryptosFS fil e system. Eadh of the keys generated is dored in alink

and the links are conreded together to produce alink-list. By structuring the link-li st

43

inthisway, a dean separation d the implementation d the link-list and the
information that it storesis possble. Modificaion d the link-list implementationis
possble withou aff eding the structure that stores the key detail s. The foll owing
diagram shows the structure of the key-objed that is dored in eadt link of the link-

list.

cryptos_keyobject t

C_ino ruid filename keys

Figure 10: Structure of the key objed used in CryptosFS.

Thefieldsin the key objed include:
= C_ino- thevnode number of thefil e that the key is creaed for.
= ruid - the user id o the user who creded thefile.
= filename - the name of thefile that the keys are aeaed for.
= keys- a ayptos keys t structure, this contains the symmetric and

asymmetric-keys (seesedion 4.3for more detail s).

Thelinksin thelink-list used in CryptosFS are aranged to form adouly linked-li st.
The pointer “previous_link” at the start of the list always pointsto NULL, as does the
pointer “next_link” at the end o the list. Functions were written to seach the list, add
links, remove links and destroy the list. The keys generated for ead user are written
to auser file when the CryptosFS kernel modue is unloaded. The following figure

shows the layout of the link-li st.

44

Cryptos_keys t cryptos_keys t MULL

*eurrent_object *ourrent_object *ourrent_object

| |
| |
| |
*next_link v *next_link " *next_link

=

MULL

MULL forevious_link L *previous_link L | "previous_link

Figure 11: Doubly linked-List implemented in CryptosFSto store the

generated keys.

By pladng the generated keysin alink-list, it is posgble to dunp the mntents of the
link-list to afile and so store and retrieve the keys generated. The unloading of the
link-list is performed when the kernel modue for CryptosFS is removed from the
system. Conversely, when the kernel modue for CryptosFS isinserted in to the
system afileisread to retrieve the keys for ead vnoce. Sufficient informationis
stored in ead file to dff erentiate between ead vnode and the user associated with it.
The mounting of the CryptosFS fil e system is only passble by the root user andit is

in the root users acurt that the file cntaining the mourt keysis gored.
4.4.2 Key Filesin CryptosFS

The douly linked-list implemented in CryptosFS al ows sufficient information about
the keys generated for eat vnode to be stored to ensure the persistence of the keys.
Persistence of the keysis guaranteed by writing the @ntents of the link-list out to a

filefor ead user id.

The contents of ead cryptos_keyobjed _t structure contained in the link-list in
CryptosFSiswritten ou to afile by user id andread in by user id. Concaenating the
following pieces of information produces the key-file names.

= homedir - home diredory of the user.
45

.+ passwvd_dr - Set to ".gubu”
= .+ hostname: - Hostname of the dient set by the root user when installi ng

the CryptosFS fil e system kernel modue.

userid: - Operating system id of the user.

= username - Operating system username of the user.

An example key filename for the root user onthe host bonry is

“/root/.gubu.bonry:O:roat".

The key information stored in the key-fil es is the same information that is gored in
the key-objeds of the link-list. The separator charader "[" is used to delimit ead field

in the key-file. The following shows the field layout for the key-fil e.

c_ino | ruict |filename|symkey |pubkey_va| |pubkey_len|privkey_val |privkey_|en |c0mm0nkey_val |c0mm0nkey_len

Figure 12: Field description of CryptosFS key file.

The necessty to store the keys generated by CryptosFS could have been fadlit ated by
modifying the underlying ext2 fil e system used by Linux. Modificaion d the et2 file
system code was considered bu rejeded because of the alditional timeto perform the

necessry anaysis.
4.4.3 File Operations Implemented by CryptosFSin theLinux Kernel

Normally file operations are cdled using the system cal i nterfacethat routes the cdls
from a user processthrough the VFS layer to the kernel. As CryptosFS stores the keys
generated for ead user in aflat file in the users home diredory, a medchanism is
needed to manipulate the information stored in these fil es from inside the kernel. The

system cdl interfaceis only avail able to user spaceprocesses.

46

It ispassble to perform system cdl s to exeaute the required fil e operation by creding
auser processto perform the file operation. This resultsin an additional context
switch from the kernel to the user processand then badk in to the kernel. This
approadh is not pradicd because of the performance penalty it imposes. Asthe mde
for the VFSTileis available, it is possbleto copy sedions of this code to implement

the necessry fil e operations. The foll owing fil e operations are implemented in

CryptosFS.
open close
read write
mkdir rm

Figure 13: File operationsimplemented for key-filesin CryptosFS.

4.5 NFSClient

The Linux NFSclient isimplemented in Linux as a part of the kernel. The CryptosFS
implementation modifies the NFS protocol used by the NFS client to passdigital
signatures. The digital signatures are used by the server to validate dient requests for
file operations. The dient uses the digital signaturesto vali date the results returned

from the NFS server.
4.5.1 NFSClient Read Operationsin CryptosFS

The NFS read operations on the dient are modified to generate adigital signature &

foll ows.

1. Passan encrypted string of information to the MD5 message digest function. The
string isin encrypted format becaise the CryptosFS layer encrypts the data before
passng it to the NFS client.

2. The MD5 message digest function creaes a 128-bit message digest of the

information.

47

3. Passthe message digest to the RSA encryption function.
4. The RSA encryptionfunction wses the puldic-key of the fileto produce adigital

signature.

24%3" @ e

@

MG Mreaaage
Digest Function

(2)
56 Dt
midig

€y

Encryptibn il th
Fublic Key

@

Digital Signature

Figure 14: NFS Client creates a digital signature for aread operation.

The dient uses the pullic-key to crede adigital signature which isused to
authenticae read operations as hown in the previous figure. Read operations include
filereads and dredory lookups. The NFS server validates the read operations by

deaypting the digital signature®.
4.5.2 NFSClient Write Operationsin CryptosFS

The only diff erence between the NFS clients read and write operations in CryptosFS
isthat the write operation uses the private-key of the RSA asymmetric-key pair.

Figure 14 looks the same for awrite operation except that the private-key is used to

% Seesedion 4.6 for more information on how the NFS server vali dates the NFSread operations.
48

perform the encryption. The write operations include fil e writes, file aedion,file
removal, file mpy, file move, diredory creaionand dredory removal. The NFS

server vali dates the write operations by deaypting the digital signature”.
4.5.3 NFSClient Result Validation in CryptosFS

When the NFS server validates and performs an operation requested by the NFS

client, it credes adigital signature from the results of the operation. The server returns

the results data and the digital signature to the dient. The NFS client validates the

results datareceved from the NFS server as foll ows.

1. Theresults datareceved from the server is passed to the MD5 message digest
function onthe dient.

2. The MD5 message digest function creges a 128bit message digest from the
results data

3. The 128bit message digest is passed to the RSA encryption function.

4. The RSA encryptionfunction wses the puldic-key of thefileto creae adigital

signature. This digital signatureisthe dient’s digital signature & the dient creded

it.

5. The dient’sdigital signature andthe server’sdigital signature ae passed to a
comparison function to ched whether they match.

6. Thedigital signatures do nd match so the results datais not valid.

7. Thedigital signatures match so the results dataisvalid.

4 Seesedion 4.6 for more information on how the NFS server vali dates the NFSwrite operations.

49

243 @ e

@

s Mésaage
Digest Function

@

56 bit
i

@

Encwptibn wilth
Fublic kKey

@

Digital Sirgnature Digital Sirgnature
of Client of Server

®

Compares
Signatures

@l J@-
Signatures Signatures
Different Match

Figure 15: NFS Client validating result data from NFS Server.

46 NFS Srver

The Linux NFS server isimplemented in Linux as a part of the kernel. The CryptosFS
implementation modifies the NFS protocol to allow digital signaturesto be exchanged
between a dient and server. The digital signatures all ow a server to validate dients

requests for file operations. They also al ow a dient to validate the results returned by

aserver.

50

4.6.1 NFS Server Validation of Read Operationsin CryptosFS

The validation d aread operation request onthe NFS server uses virtualy the same
methodas that used by the NFS client when vali dating the results of an operation
receved from the server. Figure 15 shows the process The only differenceisthat in
the validation d areal request onthe server, it isthe server that generates the digital
signature. The server can validate the read operation because only a dient with the

corred pulblic-key can credethe corred digital signature.
4.6.2 NFS ServersValidation of Write Operationsin CryptosFS

The NFS write operations on the NFS server are modified to validate the digital
signature receved from the NFS client. The write operation dffers from the others
described in that it deayptsthe digital signatures creaed to retrieve the message

digest contained init.

1. Thesame encrypted data used to crede the digital signature onthe dient is passed
to the MD5 message digest function onthe server.

2. The MD5 message digest function creaes a 128-bit message digest from the
encrypted datarecaved from the dient. Thisis cdled the server’s message digest.

3. Thedigital signature recaved from the dient is passed to the RSA deayption
function.

4. The RSA deayptionfunction wses the pulic-key of thefileto deaypt the dient’s
digital signature and retrieve the message digest contained in it.

5. The dient’s message digest and the server’s message digest are passed to a
comparison function to ched whether they match.

6. The message digests do nd match and the write operation fail s becaise the dient

does not possessthe wrred private-key.

51

7. The message digests match so the write operation can proceed. Only a dient that

possesEes the private-key can generate the corred digital signature.

ar . Digital Signature
@i from Client
D 3
MDIS Méssage Decwptién il th
Digest Function Fublic Key
) iy
56 bit 56 bit
server mdg client mdg

®

Compare Message
Digests

@-J J@
Message Digests Message Digests
Different Match

Figure 16: NFS Server validates a digital signature for awrite operation.

4.6.3 NFS Servers Authentication of Resultsin CryptosFS

The results data returned by NFS server operations are modified to include adigital
signature. The aedion d the digital signature by the server foll ows the same
procedure s that performed by the NFS client when performing aread operation.

Refer to sedion 4.5.1for more information.

4.7 XDR and RPC in NFS

4.7.1 Overview of Seaure RPC in NFS

The origina implementation d NFS has sgnificant problems with seaurity, asit does

not authenticate the identity of users making requests. This makesit relatively easy to
52

forge requests being sent to server. Sun modified the NFS protocol to use bath
asymmetric-key (Diffie Hellman) and symmetric-key (DES) encryptionto
authenticae usersinstead of the macdines that they are logging in from. This process

isdescribed in detail in “Seaure Networking in the Sun environment”.

The gplication d symmetric-key cryptography (DES) to atime stamp all ows the
seaure transmisgon d informationin the network. The DES algorithm is no longer
seaure asit isopen to attadk from different tedhniques. Distributed computing has the
ability to provide supercomputing levels of processng power to groups such asthe
Digital Frontier, allowing DES and aher cryptographic dgorithmsto be
cryptanalysed. The we&knesses of DES have been dscussed in “ Differential

Cryptanalysis of the Data Encryption Standard”.

NFS uses :aure RPC for Network Services. Seaure RPC uses DES in Seaure NFS.
The DES authenticaionis designed aroundthe ability of a sender to encrypt the
current timein amessage and transmit it to the recever. Therecever deaypts the
message, removes the time and compares it against her own clock. The authenticaion
processrequires that the dient and the server have accssto the same time. If they
dorit have asynchronised view of the time then the dient requests a wpy of the
server’ stime and cdculates the diff erence between itslocd time and the server’s
time. The dient uses the diff erence between the two timesto dff set its clock value

when computing timestamp val ues.

In ou discusson d how the seaure RPC medianism works, the term encryption-key
refers to the pulic-key of the ssymmetric-keys. Simil arly, the term deayption-key

refers to the private-key of the asymmetric-keys. Figure 17 ill ustrates the

53

authenticaion processin detail. Two parties are involved in the ammunication, client

X andserver Y.

[CHID a, K abiCk), CKiwin]] [Chitime1), CKiwin+1)] il

‘ [CK(time1 -1}, Crd ID]

Client X [Crd ID] [CK(time?] . Servery

[CK(time2-1}]

Fi

Figure 17: Seaure RPC validation in Seaure NFS.

The authenticaion processrequires the dient and the server to agreeon a seaet key.
The dient, trying to communicae with the server, produces arandam key to encrypt
the timestamps. The randam key is cdled the "Cornversation Key'. The dient encrypts
the Conwversation Key using the encryption-key of the server. The dient knows that
the server isthe only one who passesses the wrrespondng deayption-key. This
ensures that only the client can deaypt the Conversation Key. The dient then sends to
the server amessage antaining the dient ID, the encrypted conversation-key and a
window value encrypted with the mnversation-key. The server, uponreceapt of the

message, identifies the client from the dient ID of the message.

The server usesits deayption-key to deaypt the encrypted conversation-key. Once
the server has deaypted the mnversation-key, it uses the mnversation-key to deaypt
the window value. The window value dlows the server to verify that the messagesiit
recaves are valid. The server authenticaes the message by cheding that its current
time is between the timestamp and the timestamp plus the window. If thisisnat the
case then the server rgjeds the message. The server now stores the foll owing
informationin its credential table.

1. ClientID

2. ConwersationKey for the dient
54

3. Thewindow.

4. Thetimestamp of the last message. (Thisis used to prevent replays of messages.)

If the server authenticates the dient succesdully, it returns to the dient an ID into the
credential table and the dients timestamp encrypted with the conversation key CK.
The dient can verify that the informationis from the server as the server isthe only
ore has the dient’ s timestamp. In subsequent communications between the dient and

the server, the dient usesthe dient ID to identify itself to the server.
4.7.2 XDR/RPC in CryptosFS

The RPC medanism used by the NFS client and server spedfies the NFS protocol
using XDR (External Data Representation Standard) as gedfied in RFC 1832[37].
XDR isdescribed in RFC 1832as:
"A standard for the description and encoding of data. It is useful for
transferring data between dfferent computer architedures, and has been used
to communicae between such dverse madines as the SUN

WORKSTATION*, VAX*, IBM-PC* and Cray*.

The implementation o the NFS client and server in Linux uses XDR/RPC to ensure
architeadure independence The CryptosFS prototype uses the Linux NFS
implementation. The RPC structures in CryptosFS are modified to acammodate the
digital signatures and publi c-keys that are transferred during an NFS fil e operation.
Thisrequiresincreasing the anourt of space #l ocaed for the relevant argument

structures.

Each o the NFS commands edfied in the NFS protocol has its arguments and

results encoded and decoded using XDR. The foll owing diagram shows how the RPC

55

mechanism encodes and deaodes the aguments and results transferred between the

between the NFS client and NFS server.

MES Client (nfs)

MNFS Server (nfsd)

nfsd decoded nfs
results arguments
HDORIRPC

nfs decoded
arguments nfsd results

HDRIRPC

T

|
XDR encoded |
nfs arguments AECEECE R LR SR R R
XDR encoded __ __
nfsd results

Figure 18 XDR/RPC Mechanismsfor NFS Client and Server

Communication.

56

5 PerformanceEvaluation of CryptosFS

5.1 Analysisof CryptosFS

The evaluation d the performance of the CryptosFS fil e system is one of the goal's of
thisthesis. The CryptosFS fil e system isimplemented in the kernel because of the
requirement for speed. A user processfil e system does not deliver adequate
performance Development of the CryptosFS fil e system in the kernel complicates the
development processin two fundamental ways.

1. Thekernel libraries are limited in the functiondlity that they provide. The
limited kernel functionality means functiondlity that is normally avail able
from user spaceC libraries hasto be implemented in the kernel. This dows the
development processdown.

2. Developinginthekernel is ®nsitive to coding andlogic arors. If asedion d
code has amemory error andit isloaded in to kernel, it has the potential to

halt the macdhine with akernel segmentation fault when it is exeauted.

Finding and correding errorsin kernel code is made more difficult by the limited
debugging fadliti es that the kernel provides. The CryptosFS prototype uses alarge
amourt of C code that relies heavily on panter manipulation. Any errors in the kernel
code resultsin the kernel stoppng, requiring the madineto be reboaed. This makes
the development processextremely slow and laborious. Reboaing the maciine dter
the operating system has crashed runs the risk of damaging the hard-drive of the
madhine. Thisis dueto the unstable state that the fil e system is left in when an error

occursin the kerndl.

Whil e devel oping the CryptosFS prototype, two hard-drive fail ures occurred. The first
fail ure occurred a month in to the implementation whil e the second accurred a month

57

before finishing the implementation. It was posgble to procure areplacement for the
initial failure but it was not passble to replacethe secondfailure. Thisresulted in
reduced cgpability to perform arigorous performance evaluation d the CryptosFS

prototype.

Even-thouwgh the hardware to perform arigorous evaluation d the CryptosFS
implementation was not avail able; a series of micro benchmarks of the diff erent
cryptographic dgorithms implemented in CryptosFS was produced. The micro

benchmarks were performed onthe foll owing processes.

1. RSA asymmetric-key generation.

2. Blowfish symmetric-key generation.

3. Generation d a128-bit message digest.

4. Encryption d a 128-bit message digest using 1024-bit asymmetric-keys.
5. Deayption d a128hit message digest using 1024-bit asymmetric-keys.
6. Digita signature aeaion wsing 1024-bit asymmetric-keys.

7. Vdidation d digital signatures using 1024-bit asymmetric-keys.

5.2 MicroBenchmark Process

The micro benchmarks of the diff erent cryptographic algorithms in CryptosFS were
produced ona Pentium madine running RedHat Linux 6.1with 64VIB of RAM. The
NFS client and the server were compiled in to the kernel and were set up onthe same
madhine. The looplbad devicewas used to simulate the communicaion mechanism.
The CryptosFS kernel modue was loaded into the running kernel. The madine was

runin multi user mode with alight loading.

The micro benchmark cdculations were produced by loopng through a number of

exeautions of the ayptographic processin asinglerun. Ten dfferent runs were

58

performed and an average figure for ead o the ten runs was cdculated. The timing
measurements were produced by obtaining the number of jiffies before eab run
started and the number of jiffies after the run hed finished. This provides us with a

medhanism of measuring the time that does not interfere with the kernel operation.

The ayptographic dgorithmsimplemented in the kernel lock the kernel before they
start and urlock the kernel oncefinished. This all ows complete wntrol of the kernel
during exeaution. This also prevents them being interrupted and results in faster

exeaution than a @rrespondng user spaceprocess

5.3 Reaultsof Micro Benchmarks

5.3.1 RSA Asymmetric-key Generation

The following table shows the arerage time in milli seands to creae an asymmetric-
key pair in the kernel. The generation d RSA asymmetric-keys does introduce an
overhead as the time required to generate the 1024-bit keysis on average 2.04
sends. The keys are generated when avnoce is all ocaed for afile or for adata

block.

Execution Number 1 2 3 4 5 6 7 8 9 10
Total Running
Time per 100
Executions in
Milliseconds 180900|198495|157905|203360|218400|209053|242600|219240|185640| 221886
Average Execution
Time in Seconds 1.81) 198 158 2.03] 2.18 2.09] 2.43] 219 1.86 2.22
Average Execution
time in Seconds for
10 runs 2.04

Table1l: Timeto createa 1024bit key RSA key.

5.3.2 Blowfish Symmetric-key Generation

Initi ally the number of exeautions performed was 100 but this always produced an

average exeautiontime of zero. The number of exeautions was increased to 10000to

59

increase the probability of producing meaningful figures. The average timeto produce

asymmetric-key is 0.00321milli seonds. This $rows the overhead for the generation

of eat of the symmetric-keysis negligible and dces not introduce asignificant

overheal. Each symmetric-key is generated when avnocke is all ocated for anew file

or for adata block.

Execution Number

Total Running Time
per 10000
Executions in
Milliseconds

33

32

32

32

32

32

32

32

32 32

Average Execution
Time in Milliseconds

0.0033

0.0032

0.0032

0.0032| 0.00

32

0.0032

0.0032

0.0032

0.0032| 0.0032

Average Execution
time in Milliseconds
for 10 runs

0.00321

Table2: Timeto create a 448bit Blowfish key.

5.3.3 Generation of 128bit Message Digests

Credion d amessage digest isthe first step in the aeaion o adigital signature. The

cost of generating the message digests using 16-bytes and 1024bytes of inpu data

was measured. These represent a 16-byte fil ename and a 1024byte data block

respedively.

5.3.3.1 Generation of Message Digest from 16 bytes of Input Data

The message digest is creaed from afil ename of 16-bytesin length. Thetiming

figuresill ustrated in table 3 shows the overheal of producing a message digest for a

16-byte inpu is 0.00107milli seaondks, this does not represent a significant overhead.

Total Running Time
per 10000
Executions in
Milliseconds

11

11

11

11

11

11

10

10

10

11

Average Execution
Time in Milliseconds

0.0011

0.0011

0.0011

0.0011

0.0011

0.0011

0.0010

0.0010

0.0010

0.0011

Average Execution
time in Milliseconds
for 10 runs

0.00107

Table3: Timeto createa 128bit message digest from 16-bytesinput.

60

5.3.3.2 Generation of Message Digest from 1024bytes of I nput Data

To simulate the st of generating a message digest for adata block of 1024 tytesa

series of tests using a1024bytes of data & inpu to the message digest function was

exeauted. The figuresin table 4 show the st of generating a message digest of 1024

bytesis 0.9505milli seconds.

Execution Number

10

Total Running Time
per 10000 Executions
in Milliseconds

9350

9204

8901

9754

9823

9234

9564

9678

9780

9765

Average Execution
Time in Milliseconds

0.9350

0.9204

0.8901

0.

9754

0.9823

0.9234

0.9564

0.9678

0.9780

0.9765

Average Execution
time in Milliseconds
for 10 runs

0.9505

Table4: Timeto create a 128bit message digest from 1024bytesinput.

5.3.4 Encryption of message digest using 1024bit Asymmetric-keys

The second part of the processof creding adigital signature involves encrypting a

128-bit message digest with the pulic or private-key of the RSA asymmetric-key

pair. The pubic-key isused for creding digital signatures for real operations and the

private-key is used for creaing digital signatures for write operations.

5.3.4.1 Encryption of 128-bit message digest using 1024bit public key

Table 5 showsthe timein seands required to encrypt a 128-bit message digest with a

1024hit pulic-key. The overhead to encrypt the message digest is onaverage 7

semnds.

61

Execution Number 1 2 3 4 5 6 7 8 9 10
Total Running Time
per 100 Executions
in Milliseconds 613800| 628200| 631200] 693600 701400| 765600 763200 738000 704400| 783600
Average Execution
Time in Seconds 6.1 6.3 6.3 6.9 7.0 7.7 7.6 7.4 7.0 7.8
Average Execution
time in Seconds for
10 runs 7.0
Table5: Timeto encrypt a 128bit message digest using a 1024bit public-
key.
5.3.4.2 Encryption of 128-bit Message Digest Using a 1024bit private key
Table 6 showsthe time in seands required to encrypt a 128-bit message digest with
the 1024 bit private key. The overhead to encrypt the message digest is on average
7.26semndk.
Execution Number 1 2 3 4 5 6 7 8 9 10
Total Running Time
per 100 Executions
in Milliseconds 634025| 750345| 745001) 689412| 702367 749147| 736902| 749824| 801346| 704781
Average Execution
Time in Seconds 6.34 7.50 7.45 6.89 7.02 7.49 7.37 7.50 8.01 7.05
Average Execution
time in Seconds for
10 runs 7.26

Table6: Timeto encrypt a 128bit message digest using a 1024bit

private-key.

5.3.5 Decryption of Digital Signature using 1024bit public-key

The vaidation d the digital signatures for awrite operation involves deaypting the

digital signature using the 1024bit pulic-key. The foll owing table shows thetimein

semnds required to deaypt adigital signature using a 1024-bit public-key. The

average timeto perform this operationis 9.26 seconds.

62

Execution Number 1 2 3 4 5 6 7 8 9 10
Total Running Time
per 100 Executions
in Milliseconds 855000{997500] 912000| 816000 810000| 1104000 918000| 1069500 874800 901800
Average Execution
Time in Seconds 8.55| 9.975| 9.12] 8.16 8.1 11.04 9.18 10.695 8.748 9.018
Average Execution
time in Seconds for
10 runs 9.26
Table7: Timeto decrypt adigital signature using 1024bit public-key.
5.3.6 Digital Signature Creation
The processof creaing adigital signature invalvesthe aedion d amessage digest
andthe encryption d the message digest. A 1024-bit pubic-key is used to crede a
digital signature for areal operation and a1024bit private-key isto creae adigital
signature for awrite operation. These figures show the total cost of creaing adigita
signature.
5.3.6.1 Creation Of a Digital Signature For a Read Operation
Table 8 shows the overheal for the aedion d adigital signature for areal operation
using a 1024hit pulic-key. An average time of 11.289semnds represents a
significant overhea.
Execution
Number 1 2 3 4 5 6 7 8 9 10
Total Running
Time per 100
Executions in
Milliseconds 1050000/1045000|1170000|1293750|1184900|1221800/911360|1224720/1060800|1126400
Average
Execution Time in
Seconds 10.50 10.45 11.70 12.94 11.85 1222 9.11] 12.25 10.61] 11.26
Average
Execution time in
Seconds for 10
runs 11.29

Table8: Timeto create a digital signature for a Read Operation.

63

5.3.6.2 Creation Of a Digital Signature For a Write Operation
Table 9 showsthe overheal for the aedion d adigital signature for awrite operation
using a 1024hit private-key. An average time of 13.32seconds represents a

significant overhea.

Execution Number 1 2 3 4 5 6 7 8 9 10

Total Running
Time per 100
Executions in
Milliseconds 1402500(1494656|1380575|1031080{1352501(1388141|1378658|1134083|1418362|1336608

Average Execution
Time in Seconds 14.03] 14.95 13.81] 10.31] 13.53| 13.88] 13.79] 11.34| 14.18 13.37

Average Execution
time in Seconds for
10 runs 13.32

Table9: Timeto create a digital signature for a Write Operation.

5.3.7 Digital Signature Validation

Asthere aetwo types of digital signatures for the read and write operations, there ae

two vali dation processes.

5.3.7.1 Validation of a Digital Signature For a Read Operation

Thevalidation d adigital signature aeded for aread operation using the pulic-key
requires the aedion d amessage digest. The message digest is encrypted with the
1024bit pulic-key to crede asecond dgital signature. The two dgital signatures are
compared to seeif they match. An average runtime of 13.317semnds was recorded

for this process

Execution
Number 1 2 3 4 5 6 7 8 9 10
Total Running
Time per 100
Executions in
Milliseconds [1432945(1395723|1572348|1237948(1452629|1489256|1473578|1345123|1528362(1295734
Average

Execution Time
in Seconds 14.33| 13.96| 15.72| 12.38] 1453 14.89] 14.74| 13.45 15.28 12.96
Average

Execution time
in Seconds for
10 runs 14.22

Table10: Timeto vdidate adigital signature for a Read operation.
64

5.3.7.2 Validation Of a Digital Signature For a Write Operation

Thevalidation o adigital signature aeded for awrite operation requires the aeaion
of another message digest. The digital signatureto be validated is deaypted using the
1024bit pulic-key and the two message digests are cmmpared to seeif they match.

An average runtime of 12.730seconds was recorded for this process

Execution Number 1 2 3 4 5 6 7 8 9 10
Total Running
Time per 100
Executions in
Milliseconds 1249500(1327031({1493275(1271837|1352501(1107425|1230362|1226435|1275478|1196208
Average Execution
Time in Seconds 12.50 13.27| 14.93| 12.72| 13.53| 11.07| 12.30] 12.26] 12.75 11.96
Average Execution
Time in Seconds

for 10 runs 12.73

Table11: Timeto vaidate adigital signature for a Write operation.

65

6 Conclusion

The CryptosFS prototype implementation is a distributed fil e system that provides
users with the aility to share files saurely. CryptosFS provides end-to-end
encryption d file data and file meta-data using symmetric-key cryptography. It uses
asymmetric-key cryptography for validating reads and writes operations. The
intervention d the system administrator is required to mourt the CryptosFS layer and

to reampil e the operating system kernel to install the modified NFS client and server.

The server in CryptosFS does not vali date the users identity to authenticate accesto
filesasin ather distributed fil e systems. CryptosFS uses asymmetric-key
cryptography as aform of capability to control file acces Ead file aeded onthe
server has a @wrrespondng pulic-key. When a dient makes arequest to the server, it
passes adigital signature to the server. The server uses the puldic-key to validate the
request made by the dient. Possesson d the corred pubdic-key allows a dient
perform areal operation; while possessng the private-key alows a dient perform a

write operation.

The dient in CryptosFS does nat need to establi sh trust with the server asit stores the
information onthe server in encrypted format. The use of encryption regates the need
for the dient to trust the server because even if the server all ows unauthorised access
to the data it is uselesswithou the symmetric-key to deaypt it. The CryptosFS
prototype off ers users the aility to seaurely store files on aremote fil e system with
the knowledge that they are safe from an attader who can compromise the server or

the ommunication link between the dient and the server.

66

6.1 Reated work

CryptosFS buil ds upona large body of work that use stackable layers and stacing
vnodes to al ow the rapid development of fil e system functionality through the reuse
of existing file systems. Cryptfs, ancther cryptographic fil e system, provides end-to-
end encryption d file data and fil e meta-data. The granularity of encryptionin Cryptfs
isat thediredory level. All filesfor auser are encrypted using asingle key. Cryptfsis

akernel level modue and requires gystem administrator asgstanceto install it.

CFSisauser level file system that encrypts fil es with symmetric-key encryption. CFS
provides the aility to encrypt files on bdh locd and remote diredories. The
encryption wsed in CFS changes the size of file data and fil e meta-data; this resultsin

the encrypted data being bigger than the mrrespondng clea text.

TCFSisauser level file system that is made up o amodified NFS client and server
and an RPC based attributes srver. TCFSisonly avail able for Linux; this means that
baoth the dient and the server must also runthe Linux operating system. All filesin

TCFS are encrypted using asingle key.

The Truffles fil e system is adistributed system that provides fil e sharing and
repli cation functionality using the Fiscus fil e system. It does not require asgstance
from the system administrator. Truffles relies on centrali sed certification authorities to

name users. The Trufflesfile system is implemented in the kernel.

6.2 Wheredoes CryptosFSfitin?

CryptosFS provides users with the &bility to seaurely store information ona remote
server safe in the knowledge that the informationis saure from compromise. Current
trends in the growth of mobile communicaions as a medianism to accessthe Internet

67

requires ever increasing data storage caabiliti es. The capabiliti es of current mobile
devices such as PDA’s are limited by power consumption, kettery size, design, and
CPU power and data storage caabiliti es. As mobil e devices are limited in their

cgoabiliti es, the demand for seaure accesto remote storage is sureto increase.

CryptosFS could help to satisfy this demand as it does nat explicitly trust the server to
store information seaurely. CryptosFS uses encryption to maintain the seaurity of
information stored onthe server. CryptosFS can be used in conjunction with NFS on
the locd areanetwork (LAN). Userswho require higher seaurity in awide aea
network setting can use CryptosFS. It isnat the intention for CryptosFS to replace
NFS but instead provide another option for remote file accss Increasingly
sophisticaed techniques are being devel oped to bre&k seaurity medanisms. For this
ressonit isimportant that the seaurity of the keys used for encryptionin CryptosFSis

maintained.

The use of asymmetric-key cryptography in CryptosFS provides users with a
medhanism to grant accessto files with athers by giving them a cpy of the pulic-
key for read accessand the private key for write accas Distribution d the relevant
keys all ows users acassto fil es on remote system. Most other distributed fil e systems
use accescontrol lists or some variation d it for providing protedion o files. Access
control lists are an example of a centrali sed system. Centrali sed systems suffer from
problems of scdability, they are asingle point of failure and they require compli cated
management. The CryptosFS prototype is adistributed fil e system that abadli shes the
traditiona file accescontrol medhanisms that NFS uses and replaces it with a

distributed acesscontrol medianism that reli es on asymmetric-key cryptography.

68

The owner of the filesin CryptosFS must distribute the symmetric-key before other
users can deaypt the contents of the acual file. It is posgble that an attadker could
succesgully corrupt the data on the server macdhine by overwriting it with garbage.
The dient in CryptosFS can deted this stuation kecause it vali dates the information
returned from the server by authenticating the blocks read using the puldic-key of the

file.

6.3 Further work

The prototype of CryptosFS devel oped leaves plenty of room for improvement. The
goal of future work shoud be to stahili se the prototype by fixing the shortcomings
identified duing the development process The problemsidentified included:

1. CryptosFS usesthe GNU MP library to generate large integers in the kernel.
Thelarge integers are esential for the production d the RSA asymmetric-
keys. The GNU MP library islinked in to the CryptosFS modue and resultsin
avery large kernel modue. The GNU MP library contains a significant
amount of functionality that is not used by the CryptosFS prototype. This
additional functionality could be removed withou aff eding CryptosFS. Thisis
important becaise the kernel can’t be swapped out to dsk and memory useis

at apremium.

2. The CryptosFS prototype has an error in the memory modue of the GMP MP
library. If an asymmetric-key size of over 1024bitsis pedfied, an interna
array used in the key generation program causes a segmentation fault in the
kernel. The reason for thisisthat the extended Euclidean algorithm performs
numerous cdculations on large integers and stores the results in internal
arrays. The GNU MP padage uses amemory function cdled “redloc” to

increase or deaease the size of an array. This memory redlocaionisdoreto

69

allow thelibrary to al ocae the exad memory required dynamicdly. When an
asymmetric-key size of over 1024bitsis used the kernel tries to all ocate more
than the kernel limit of 128k d memory. Fixing this problem requires

modificaion d the memory all ocation routines of the GNU MP library to use

virtual memory when the kernel memory limit i s readed.

3. Currently the keys generated in CryptosFS are stored in alink-list in the
memory of the kernel and are transferred into and ou of afile from memory
when the CryptosFS modue is inserted and removed from the kernel. This
method performs adequately for small numbers of files but it isnot scaedle.
A more dficient medhanism would require the modificaion d the ext2 file

system to store the keys diredly.

4. The airrent prototype of CryptosFS stores the keys generated for ead vnock
in clea text format. Applying encryption to the key fil es provides ®aurity of
thisinformation. A passvord program could be developed to all ow deayption
of these keys. Thisisasimple solution although it is nat the preferred solution
asthe difficulty of compromising the system is reduced to the difficulty of
bre&king the passvord. A more seaure solution would be to investigate the use

of amagnetic cad to store the accsskey on.

6.4 Conclusion

Fil e system development is a slow and laborious process It requires gedali st
knowledge of the operating system and can result in fil e systems that are not easily
portable. The development of CryptosFS buil ds uponalarge body of work on
stackable layers performed over the last fifteen yeas. Thisincludes the work of E.

Zadok et d in “Cryptfs: A Stadkable Vnode Level Encryption File System”, J.S

70

Heidermannin “ Stackable Design of File Systems’ [38] and J.S. Heidemann and G.J.

Popek in “File System Development with Stackable Layers’ [39].

Stadkable layers are promoted as a means of developing fil e system functionality with
the performancelevels of akernel implementation bu with the eae of development
of auser level file system. From our experiencein developing the CryptosFS
prototype, stadkable layers do dfer aviable dternative to developing fil e systems.
Existing code from the Cryptfs implementation, and the Linux NFS client and server

implementations were reused in the development of the CryptosFS prototype.

During the development of CryptosFS, a significant amourt of time was saved by
reusing existing code. Thisis one of the biggest advantages of using stackable layers
and stadking vnodes in fil e system development. Reusing the functionality of the
Cryptfs and NFSfil e system all owed effort to be mncentrated on ceveloping the

spedfic functionality of the ayptographic fil e system.

The major problem of developing fil e system functiondity in the operating system
kernel isthat the kernel is kept in memory. Asthe kernel can never be swapped ou to
disk memory useis at apremium in the kernel. The ayptographic functionality added
to the kernel resultsin akernel that is abou 20% larger than traditional kernels. The
reasonisthe GNU MP padkage. The GNU MP padage mntains alot of extraneous

functionality that could be removed.

Developing CryptosFS has been aworthwhile experience It has allowed usto lean a
grea ded abou fil e system implementation and the UNIX operating system. Our
experience of fil e system development prior to the development of the CryptosFS

prototype was limited. Using cryptography all owed the traditional accesscontrol
71

medhanisms to be bypassed. The CryptosFS prototype is afast seaure distributed file
system that demonstrates how it is possble to use ayptography as aform of

distributed accesscortrol.

72

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon, “Design and
implementation d the Sun retwork Fil esystem,” presented at the summer
USENIX, 1985.

B. Taylor and D. Goldberg, “ Seaure Networking in the Sun environment,”
presented at the summer USENIX, 1986.

R. L. Rivest, “The MD5 Message-Digest Algorithm,” Internet Activities
Board RFC 1321, April 1992.

M. Blaze, “A Cryptographic File System for Unix,” presented at 1st ACM
Conference on Computer and Communications Seaurity, 1993.

G. Cattaneo and G. Persiano, “Design and Implementation d atransparent
cryptographic file system for Unix,” Universita de Salerno, Salerno July 1997.
A.D. Birrell, A. Hisgen, C. Jerian, T. Mann, and G. Swart, “ The Echo
Distributed File System,” Digital Equipment Corporation, Palo Alto,
Cdlifornia September 1993.

R. Card, T. TS0, and S. Twedlie, “Design and Implementation d the Second
Extended Fil esystem,” presented at Dutch International Sympasium on Linux,
The Netherlands, 1986.

E. Zadok and |. Badulescu, “A Stadable File System InterfaceFor Linux,”
Columbia University, Technicd Report 1998.

Y. A. Khalidi and M. N. Nelson, “Extensible Fil e Systemsin Spring,” Sun
Microsystems, Mourtain View, CA, Tedhnicd Report SMLI TR-93-18,
September 1993.

R. G. Guy, J. S. Heidermann, W. Mak, T. W. Page Jr, G. J. Popek, and D.
Rothmeier, “Implementation d the Fiscus Replicated Fil e System,” presented
at the summer USENIX Conference, Anaheim, CA, 1990.

73

[11]

[12]

[13]

[14]

[19]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

E. Zadok, I. Badulescu, and A. Shender, “Cryptfs: A Stadable Vnode Level
Encryption File System,” Columbia University 1998.

S. R. Kleiman, “Vnodes: An architecure for Multiple File System Typesin
Sun UNIX,” presented at the summer USENIX, 1986.

National Bureau of Standards, “Data Encryption Standard,” U.S. Department
of CommerceFIPS Rublication 46,January 1977.

P. Reiher, T. Page Jr, G. Popek, J. Cook, and S. Crocker, “Truffles- A seaure
servicefor widespread file sharing,” presented at the PSRG Workshop on
Network and Distributed System Seaurity, 1993.

B. Schneier, “Description d anew variable-length key, 64-bit block cipher
(blowfish),” presented at Fast Software Encryption, Cambridge Seaurity
Workshop Procealings, Springer-Verlag, 1993.

M. J. Weiner, “Efficient DES Key Seach,” presented at Advancesin
Cryptology CRYPTO '93 Procealings, 1993.

E. Biham and A. Shamir, “Differential Cryptanalysis of the Data Encryption
Standard,” presented at Springer-Verlag, 1993.

M. Matsui, “Linea Cryptanalysis Methodfor DES Cipher,” presented at
Advancesin Cryptology CRYPTO, 1994.

J. Linn,“Privacy Enhancement for Internet Eledronic Mail: Part 1 - Message
Encryption and Authenticaion,” DEC, Tednicd Report 1992.

X. Lai andJ. Mas=y, “A propacsal for anew block encryption standard,”
presented at Advancesin Cryptology - Eurocrypt, 1990.

B. Lampson, “Requirements and Techndogy for Computer Seaurity,” in
Computers at Risk, 1991, pp. 74.01.

R. L. Rivest, A. Shamir, andL. Adleman, “A methodfor obtaining Digital

Signatures and Public-Key Cryptosystems,” , 1977.

74

[23]

[24]

[29]

[26]

[27]

[28]

[29]

[30

[31]

[32]

[33]

[34]

[39

Portable Applications Standards Committee (PASC), “Draft Standard for
Information Techndogy - Portable Operating System Interface(POSIX) - Part
1: System Applicaion Program Interfaces [C Language],” IEEE Computer
Society May 12 1993.

National Computer Seaurity Centre, “Integrity in Automated Information
Systems,” September 1991.

J. B. Dennisand E. C. Van Horn, “Programming Semantics for

Multi programmed Computations,” presented at ACM, 1966.

A. S. Tanenbaum, R. van Renesse, H. van Staveren, and G. J. Sharp,
“Experiences with the Amoeba Distributed Operating System,” presented at
Communications of the ACM, 1990.

D. Maziéres, “Seaurity and Decentrali sed Control in SFS Global File System,”
in Computer Science Department: MIT, 1997.

J. Regan, “CapaFS: A globally accessblefile system,” in Computer Science,
Distributed Systems. Dublin: University of Dublin, 1999, pp. 75.

P. R. Zimmerman, Pretty Good Privacy. In The Official PGP User's Guide:
MIT Press 1995.

B. Schneier, “Data Guardians,” in MacWorld, 1993, pp. 14851.

J. H. Sdltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in system
design,” ACM Transactions on Computing Systems, val. 2, 1984.

B. Schneier, Applied Cryptography; Protocols, Algorithms, and Souce Code
inC, 2ed: IEEE, 1995.

M. Bed, H. Bohme, M. Dziadzka, U. Kunitz, R. Magnus, and D. Verworner,
Linux Kernel Internals Second Edition, 2nded: Addison Wesley, 1998.

A. K. Lenstra and P. Leyland, “Large Integer Package,” , 1997.

T. Granlund,“GNU Multi Preasion Arithmetic library,” , 2000.

75

[36] B.lkenaga, “An Example Using the Extended Euclidean Algorithm,” , val.
2000, 1998.

[37] R. Srinivasan, “XDR: External Data Representation Standard,” Sun
Microsystems, Request for Comment 1832,August 1995.

[38] J. S.Heidemann, " Stacable Design Of File Systems,” University of
Cdifornia, Los Angeles, Technica Report UCLA-CSD-950032,September
1995.

[39] J. S HeidemannandG. J. Popek, “File System Development with Stadkable
Layers,” University of California, Los Angeles, California, Technicd Report

CSD-930019,duly 1993.

76

Appendix A: Components of CryptosFS prototype

The prototype implementation d CryptosrFS contains the foll owing comporents:
= Dbfkeys - Generates Blowfish symmetric keys
= cryptos_genasym - Generates RSA symmetric keys.

- Generates and vali dates Digital Signatures.

» hashfuncs - Generates MD5 message digests.
= cryptos _list - Stores generated keys.
= cryptos file - Writes keys from link list to akey file.

- Reads keys from key filein to link-list.

= Cryptos - Loadable Kernel Modue provides fil e system functionality.

= gmp-3.0.1 - Kernel Modified version d GNU MP produces large
integersin the Linux Kernel.

= nfs - Modified Linux Kernel NFS client creaes digital signatures
for file operation and for validation o results.

= nfsd - Kernel NFS server modified to vali date fil e operations by
deaypting digital Signatures onfile operations and creaing

digital signatures for results.

77

