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Abstract 

 
An embedded system is an autonomous information processing system that 

determines or controls to a large extent the behaviour of a larger system. The 

proliferation of embedded systems applications is increasing daily, yet most 

implementations are largely proprietary and utilise very few existing software 

standards in implementing their external interfaces. For a particular class of 

embedded system, those in use in mobile environments, the use of wireless 

communications protocols is a fundamental requirement.  

 

The aim of this research is to investigate the applicability of the Object 

Management Group’s Common Object Request Broker Architecture (CORBA) 

to designing and implementing middleware (ORBs) to present interfaces to 

embedded systems. The CORBA standard enables the construction of 

distributed systems of multiple components with complex interactions and 

hence supports the building of distributed architectures modelling real-world 

systems. The project also uses a wireless protocol to assess the suitability of 

CORBA to embedded systems that operate in mobile environments. The 

applicability of the CORBA standard is assessed with a canonical application 

utilising the Lego Mindstorms Robotics kit.  

 

Having designed and built the test system outlined above, the suitability of the 

utilised technologies to the project environment, and hence to that of 

embedded systems in mobile environments, is assessed. Conclusions are 

drawn as to system performance and robustness as well as exploration of 

potential shortcomings of the design and scope for further research.  

 



 V 

 

 

Acknowledgements 

 

 

 

I would like to thank my supervisor, Dr. Vinny Cahill, for all his help and 

guidance through the year.  Thanks to Jim, Andy and Ray of the DSG group 

for their assistance at various stages of this work and all my classmates for a 

great year and barrel of laughs (and several of beer). 

 

Thanks to Ms. Hughes for the smashing dinners and the ultra-reliable taxi 

service. Most of all thanks to my family for their perpetual, and unconditional, 

support. And lastly I thank myself, without whom none of this would have 

been possible … 



 VI 

 

 

Table Of Contents 

  

1 INTRODUCTION ...................................................................................1 
 

1.1 Embedded Systems................................................................................................1 

1.2 Mobile Devices.......................................................................................................2 

1.3 Common Object Request Broker Architecture (CORBA)................................3 

1.4 Applying CORBA to Embedded Systems...........................................................4 

1.5 Project Objective...................................................................................................6 

1.6 Design Overview ....................................................................................................7 

1.7 Project Achievements............................................................................................8 

1.8 Roadmap ................................................................................................................9 

 

2 BACKGROUND ...................................................................................11 
 

2.1 Embedded Systems..............................................................................................11 
 
2.1.1 Overview ........................................................................................................ 11 
2.1.2 Engineering Constraints ................................................................................. 13 
2.1.3 Embedded Systems in Distributed Environments .......................................... 13 

2.2 The Common Object Request Broker Architecture (CORBA) ......................15 
 
2.2.1 Overview ........................................................................................................ 15 
2.2.2 The CORBA ORB.......................................................................................... 16 
2.2.3 Interface Definition Language........................................................................ 17 
2.2.4 CORBA Services............................................................................................ 18 

2.3 The General Inter-ORB Protocol.......................................................................19 
 
2.3.1 Overview ........................................................................................................ 19 
2.3.2 The Common Data Representation ................................................................ 20 



 VII 

2.3.3 The GIOP Message Set .................................................................................. 23 
2.3.4 Transport Assumptions................................................................................... 30 

2.4 Object References................................................................................................31 

2.5 CORBA and Embedded Systems.......................................................................33 
 
2.5.1 Overview ........................................................................................................ 33 
2.5.2 Embedded CORBA Research......................................................................... 35 

2.6 The Lego Mind Storms Robotics Invention System.........................................37 
 
2.6.1 Overview ........................................................................................................ 37 
2.6.2 The RCX Brick............................................................................................... 38 
2.6.3 The Development Process and Tools ............................................................. 39 
2.6.4 LegOS and the Layered Network Protocol..................................................... 40 

2.7 Mobile Applications.............................................................................................42 
 
2.7.1 Overview ........................................................................................................ 42 
2.7.2 Communications Characteristics .................................................................... 42 

 

3 DESIGN.................................................................................................45 
 

3.1 Overview...............................................................................................................45 

3.2 The Data Representation Syntax........................................................................47 

3.3 The ORB Message Set .........................................................................................48 
 
3.3.1 Client Initiated Messages ............................................................................... 48 
3.3.2 Server Initiated Messages............................................................................... 50 
3.3.3 Common Messages......................................................................................... 51 

3.4 The ORB Transport Protocol .............................................................................52 

3.5 Communication End-Points ...............................................................................53 

3.6 An Object Addressing Format ...........................................................................53 

3.7 The II OP to ESIOP Br idge.................................................................................57 

3.8 The Environment Specific ORB on the RCX (nanOrb) ..................................59 

3.9 Compar ison to other related designs................................................................. 61 

 



 VIII 

4 IMPLEMENTATION............................................................................63 

 

4.1 Implementation Goals.........................................................................................63 

4.2 The Application and its IDL specification.........................................................64 

4.3 The Client Implementation.................................................................................65 

4.4 The Gateway Implementation ............................................................................66 

4.5 The nanOrb ESIOP implementation ................................................................. 69 

4.6 The RCX ORB implementation - nanOrb ........................................................69 

4.7 Difficulties Encountered .....................................................................................72 

 

5 EVALUATION .....................................................................................74 
 

5.1 Overview...............................................................................................................74 

5.2 Efficiency ..............................................................................................................75 

5.4 Architecture Compar ison ...................................................................................78 

5.5 Improving the nanOrb Architecture................................................................. 80 

 

6 CONCLUSION......................................................................................81 
 

6.1 Work Completed ................................................................................................. 81 

6.2 Work Remaining ................................................................................................. 82 

6.3 Fur ther Research................................................................................................. 82 

 

BIBLIOGRAPHY.....................................................................................84 



 IX 

 

Table of Figures 

 

 

Figure 1 The Target Architecture .....................................................................7 

Figure 2 The Object Management Architecture .............................................15 

Figure 3 Object Request Being Sent Through the ORB.................................17 

Figure 4 GIOP Defined Primitive Data Types.................................................21 

Figure 5 Octet Sizes of Primitive Data Types.................................................22 

Figure 6 The 1.1 GIOP Messages .................................................................23 

Figure 7 The GIOP Protocol Header IDL .......................................................24 

Figure 8 The GIOP 1.1 Request Header IDL .................................................25 

Figure 9 The GIOP 1.1 Request Header IDL .................................................26 

Figure 10 The GIOP Cancel Request Header IDL .........................................27 

Figure 11 The GIOP Locate Request Header IDL .........................................28 

Figure 12 The GIOP Locate Reply Header IDL..............................................29 

Figure 13 The Interoperable Object Reference IDL .......................................32 

Figure 14 The structure of LNP packets.........................................................41 

Figure 15 The nanOrb IOR Profile ID.............................................................56 

Figure 16 The IIOP to ESIOP Half-Bridge......................................................58 

Figure 17 The nanOrb Hierarchy ...................................................................60 

Figure 18 The nanOrb Application Architecture .............................................64 

Figure 19 The nanOrb application IDL ...........................................................65 

Figure 20 The Client Application ....................................................................66 

Figure 21 Gateway translating IIOP to ESIOP requests.................................68 

Figure 22 Sample output in response for a “right (6)” invocation ...................68 

Figure 23 The nanOrbDemo IOR...................................................................70 

Figure 24 RCX Processing Client Requests ..................................................71 



 1 

Chapter One 

 

Introdu ction 

 

The overall goal of this report is to investigate the suitability of CORBA 

middle-ware technology to resource-constrained embedded systems with a 

particular focus on mobile environments. The aim being to implement a 

minimal ORB (more specifically an ‘environment specific’ ORB), on a severely 

resource limited platform (the LEGO Mindstorms RCX), along with an 

associated Environment Specific Inter-ORB Protocol (an ESIOP) to facilitate 

message based CORBA communication with that ORB.  This implementation 

is referred to throughout this document as the ‘nanOrb’ implementation. This 

chapter introduces the key areas of interest to the nanOrb project and outlines 

the project objectives and achievements. Finally a roadmap of the rest of this 

document is presented. 

 

 

1.1 Embedded Systems 

 

Embedded systems are autonomous information processing systems that 

determine, or control to a large extent, the behaviour of a larger system. An 

embedded system typically consists of a microprocessor embedded into some 

device for some specific purpose other than to provide general purpose 

computing. Continuing advances in the downsizing of computer hardware 

components (and the decrease in their cost) present new opportunities for the 

use of embedded systems in applications ranging through embedded control, 

multimedia, networking and information and biomedical appliances. Each of 

these applications imposes their own restrictions on the capabilities of the end 

system, but all share some typical characteristics. The most common of 

engineering constraints are driven by end unit cost and operating environment 
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specifics.  These result in systems consisting only of the most minimal of 

hardware resources (processing power and memory) necessary to support 

their function.  Hence the software engineering process must be highly 

efficient and is tightly constrained. Any form of inter-system communications 

is typically implemented at a very low-level and consisted of some proprietary 

communications protocol. 

 

The LEGO Mindstorms Robotics Invention System was chosen as the 

target embedded system for this report, as it accurately reflects the 

characteristics of an extremely resource constrained embedded system. At 

the centre of this robotics toolkit is the RCX brick, which contains a Hitatchi 

HD6433292 micro-controller and 32k of external RAM. These resources are 

obviously insufficient to accommodate a full ORB implementation. The RCX 

brick can communicate with another RCX or indeed an appropriately 

equipped PC via an embedded infrared transceiver. This transceiver is quite 

limited in its range, having only the 9-volt power-supply of the RCX to power 

it. As such the environment provides a device with minimal processing and 

volatile memory capabilities, in conjunction with a rudimentary communication 

mechanism. 

 

 

1.2 Mobile Devices 
 
 
The advent of wireless communications technology created a new model for 

the interconnection of electronic devices. Communicating devices no longer 

need be tied to a physical location, or indeed to be stationary. It is now 

possible to support communication for electronic devices as they are in 

motion or located in areas of minimal physical infrastructure.  This technology 

coupled with the aforementioned increase in availability of small-sized, low-

cost microprocessors has seen the phenomenal growth in both inter-

connected small-scale mobile devices (embedded systems) and connectivity 

with conventional tethered services.  This of course has important 

ramifications for the software that resides on these devices. It is now charged 
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with implementing more and more functionality, and consequently manifests 

much greater complexity.  There is hence a recent shift towards applying the 

more high-level abstract design procedures and supporting infrastructures 

that are used in conventional distributed software systems to these mobile 

applications and (embedded) devices with a view to facilitating easier and 

more standardised development. 

 

 

1.3 Common Object Request Broker Architecture (CORBA) 
 

The Object Management Groups Common Object Request Broker 

Architecture (CORBA) specifies an infrastructure that “provides 

interoperability between software objects in a heterogeneous, distributed 

environment” [1] and, to a large extent, transparent to the programmer. The 

aim of this architecture is to allow computer systems using different hardware, 

operating systems, and programming languages to communicate 

transparently and reliably. Hence a COBRA implementation enables the 

transparent communication between software objects (via a set of well 

defined interfaces), which may be implemented using any third generation 

programming language (for which an IDL mapping has been defined) and 

ultimately hosted on any distributed operating system.  

 

An implementation of the CORBA specification ultimately provides a 

“virtual bus”.  Once all communicating devices conform to the CORBA 

specification and it’s interfaces, the internal implementation details may be 

very different for each device. Once in place, any device can make objects 

available on this bus and all of the other devices on the underlying 

communications network may access them in a transparent way. The 

implementation of this virtual bus is actually the responsibility of all 

participating devices on the network. Those devices making objects available 

on the bus are deemed to be ‘servers’ while those availing of the objects are 

deemed to be clients (these roles are relevant only to the particular object and 
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apply only for the duration of the time the object is in use). A device making a 

server object available may indeed by a client of another, and vice versa. 

 

The central component of any CORBA implementation is the Object 

Request Broker (ORB). It implements the communications infrastructure 

necessary to facilitate, identify and locate objects, handle connection 

management and reliably deliver data between these objects. This ORB Core 

is the most crucial part of a CORBA implementation; it is responsible for 

implementing the communication of requests and their results. In addition to 

the ORB itself, the current CORBA 2 specification [1] describes various 

augmenting services, providing functionality such as transaction support and 

object naming resolution, which although complementary to the core 

functionality are not ultimately required by it. 

 

 

1.4 Applying CORBA to Embedded Systems 

 

There are numerous ORB products available in the marketplace today, many 

of which have been built with a particular focus on performance. Although 

these implementations may successfully facilitate the building of reliable 

distributed applications, they are typically designed to implement the full 

CORBA specification. The difficulty with these implementations, in the context 

of embedded systems, is the excessive demands they make on the host 

systems and other environmental resources. These far exceed those 

available to the majority of embedded applications. Hence there is a need for 

more efficient and/or specifically tailored CORBA implementations if CORBA 

is to be used in the embedded environment. 

 

The OMG’s ‘minimumCORBA’ specification, as described in the 

'Minimum CORBA RFP’ [2], specifies a CORBA model for environments in 

which the resources available to the implementation are constrained by the 

very nature of the applications, referred to in the document as “embedded 

systems”. Minimum CORBA provides a reduced CORBA core specification 
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which implements basic client/server functionality, whilst removing the 

aforementioned peripheral services, with the intention of bringing CORBA into 

the domain of the embedded application. The specification ultimately specifies 

features of the full CORBA specification, which may be omitted in a reduced 

ORB implementation. 

 

For even smaller embedded systems, which may not have enough 

system resources to accommodate the still relatively sizeable (approx 50k) 

Minimum CORBA implementation, another option exists. CORBA enabling 

libraries have recently emerged on the commercial market. These small 

footprint libraries can be as small as 15k in size [3], as much as ten times 

smaller than a full ORB implementation. These libraries, often called ‘engines’ 

[3], enable CORBA communication at a much lower level than conventional 

CORBA clients and servers. It is important to point out the difference between 

the simple byte-streaming service of a standard TCP/IP protocol stack 

implementation and the much greater service that CORBA functionality 

provides, enabling the networking of application software objects and their 

invocation data in a distributed environment. 

 

In all cases a CORBA implementation is dependent on an underlying 

transport protocol and implicitly a network. It ultimately assumes a minimum 

capability of this and the system hardware. The majority of current 

implementations are based on the TCP/IP protocol stack, which provides the 

underlying connection-oriented transport that the CORBA defined inter-ORB 

messaging specification, the General Inter-ORB Protocol (GIOP) expects. 

Indeed a CORBA 2.0 compliant implementation must implement an IP 

mapping of the GIOP. This implementation is called the Internet Inter-ORB 

Protocol (IIOP) and is the standard protocol used by all compliant ORBs, 

hence enabling programs built with different ORBs to communicate.  

 

The most constrained of GIOP, and hence CORBA, implementations 

ultimately must relax some of the specifications in order to accommodate their 

environment. They are somewhat customised to suit the underlying hardware 

and transport facilities. These implementations are termed “environment 
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specific” implementations [4].  Environment specific protocols enable the use 

of CORBA over transport protocols other than TCP/IP and ultimately allow the 

use of protocols that are optimised for specific environments. 

 

1.5 Project Objective 
 

The key objective of this project is to investigate the suitability of CORBA to 

embedded systems through exploring its implementation on a severely 

resource constrained system. To investigate this, an Environment Specific 

Inter-ORB Protocol (an ESIOP) and embedded ORB (“nanOrb”) are designed, 

implemented and accessed using a simple application. Through documenting 

and analysing the design process, the different configuration and 

customisation options within the implementation are illustrated. The 

implementation of this system not only ultimately demonstrates that the 

CORBA specification can be applied in this domain, but also highlights the 

difficulties involved.  

 

The end goal of any COBRA implementation is to allow the application 

developer to build a distributed application where, once the CORBA IDL 

interface is defined, only the application specific code needs development and 

the underlying infrastructure supporting distributed object invocations is 

largely transparent. Any embedded ORB implementation, and hence this one, 

should therefore provide the same functionality, allowing the developers of 

both client and server functionality to concentrate development efforts on the 

application specific code.  Hence the nanOrb environment specific messaging 

and ORB functionality is implemented in such a way as to allow the 

programmer to utilise it in creating new applications, with as little restructuring 

as possible (a certain amount of customisation is necessitated on the 

embedded device in order to preserve the efficient implementation of the ORB 

functionality). 
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1.6 Design Overview 

 

The end design of an embedded CORBA implementation should facilitate 

normal CORBA clients making invocations on the embedded service via the 

conventional IIOP mechanisms.  Therefore some form of bridging function is 

needed between the CORBA specified Internet Inter-ORB Protocol (IIOP) and 

the Environment Specific Inter-ORB Protocol (ESIOP). This bridging should 

ideally be transparent to the client (that is the client should not require any 

special knowledge of the environment specific implementation). In this way 

the client is appears to directly invoke operations on the embedded server. 

 

 

 

 

Figure 1 The Target Architecture 

 

The main effort of the design is in defining a specific message-set for the 

Environment Specific Inter-ORB Protocol (ESIOP) and the “on-the-wire” 

format of these messages as well as providing the embedded ORB 

functionality on the target system. This ORB functionality should facilitate the 

encoding and decoding of supported IDL data types and the sending and 

receiving of the ESIOP messages. 
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1.7 Project Achievements 

 

A design for enabling the aforementioned functionality has been produced 

and facilitates the transparent invocation of embedded server object methods, 

from the client. The work in this report has been kept focussed on 

implementing the ESIOP and embedded ORB functionality. The bridging 

functionality has been implemented as a CORBA server application (as 

opposed to the ORB encompassed solution described in Figure 1) in order to 

demonstrate the design. Whereas a more complete solution would implement 

a non application-specific bridge as part of an ORB implementation, the time 

constraints involved would not permit this.  This architecture necessitates that 

the gateway implements the specified IDL interface, but this should not be the 

case in a more complete solution. 

 

 

 

 

Figure 2 The nanOrb Architecture 

 

This current implementation illustrates the embedded device acting as a 

server for normal CORBA clients by translating between the necessary IIOP 

and ESIOP messages. It defines a message-set for the ESIOP 

implementation and the data encoding rules. It also supports the 

demonstration on inter-embedded system invocations via the ESIOP. It does 

not as yet facilitate the RCX making client requests of normal CORBA 

servers.  
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1.8 Roadmap 

 

The remainder of this document is divided, by chapter, according to the 

different work objectives of this research. Chapter two provides a background 

for each of the technologies utilised. The Common Object Request Broker 

Architecture is described in more detail, with particular attention to its more 

recent application to Embedded Systems, including several recent projects in 

this area. The GIOP specification is also described in more detail, detailing its 

individual components and messaging functionality. The LEGO Mindstorms 

Robotics Invention System is presented in more detail and the various 

development tools and environments available for it are reviewed.  This 

chapter does not endeavour to fully explain each of these fields in its entirety, 

instead references are provided, where appropriate, to facilitate further 

reading. 

 

Chapter three outlines the design objectives involved in mapping the 

GIOP specification onto an Environment Specific Inter-ORB Protocol and 

implementing embedded ORBs. Each of the design objectives is explored in 

detail and then developed through applying it to the Mindstorms environment. 

The intention is to illustrate the various configurations and customisations that 

are possible, and how they will ultimately effect the implementation. 

 

The implementation of a test application (“nanOrb”) is described in 

chapter four. This application is used to verify the design presented 

previously. The technologies used and the application architecture is 

described in detail. Each of the components of the final application is 

documented along with the difficulties encountered and how they were 

overcome.  

 

The application is analysed in Chapter 5 with a view to determining 

CORBA’s applicability to the embedded system domain. The advantages and 

disadvantages of using CORBA to provide standardised interfaces to 

embedded systems are examined. There are many design decisions and 
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optimisations that can be made when implementing an ESIOP. The 

justifications for each of these are investigated and the ramifications explored. 

Ultimately this chapter describes the degree to which this work was 

successful in verifying CORBA’s success. 

 

Finally Chapter 6 summarises the successes and failings of the nanOrb 

project. Conclusions are drawn from the work presented in previous chapters. 

The completed work is summarized and suggestions for further development 

and/or improvements are also made. 
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Chapter 2 

 

Background  

 

 

This chapter describes the main technologies relevant to this research, as 

outlined in the previous chapter. A number of relevant research papers and 

commercial products are also outlined, with a view to establishing the current 

‘state-of-the-art’ in these areas. The overall aim of this chapter is to give the 

reader a context within which to place this work and aid further reading and/or 

development. 

 

 

2.1 Embedded Systems 

 

2.1.1 Overview 

The IEE defines embedded systems as “…devices used to control, monitor or 

assist the operation of equipment, machinery or plant. ‘Embedded’ reflects the 

fact that they are an integral part of the system” [5]. The same literature 

further states, “all embedded systems are or include computers. Some of 

these computers are however very simple systems as compared with a PC”. 

Thus, it is true to say that many embedded systems do not look like traditional 

computers. Embedded programmable microprocessors can be found in 

consumer-electronics devices, kitchen appliances, networking equipment, and 

industrial control systems in one form or another -- from 8-bit micro-controllers 

to 32-bit Digital Signal Processors (DSPs). Though they're most often 

associated with desktop computers, the most pervasive use of 

microprocessors today is by far in embedded systems from the most simple of 

devices through to extremely sophisticated systems such as large 
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manufacturing systems and even such safety critical systems as airplane 

avionics.  

 

The very simplest embedded systems are typically charged 

(programmed) with performing a simple function or set of functions to meet a 

single predetermined purpose. In the more complex embedded systems the 

operation of the embedded system is determined by some compiled code (a 

program), which enables the embedded system to do execute the logic of a 

specific application. This ability to program the system means that the same 

system, where flexible enough, can be used for a variety of different 

purposes. In some cases a microprocessor may be designed in such a way 

that application software for a particular purpose can be added to the basic 

software in a second process, after which it is not possible to make further 

changes: this is sometimes referred to as ‘firmware’. 

 

The growth in utilization of programmable processors in embedded 

systems has largely been caused by the increase in availability of powerful, 

inexpensive processors and low-cost memory. However, perhaps the most 

exciting catalyst to this growth is the utilization of application oriented 

embedded systems within the Internet. 

 

Though this presents a diverse spectrum of potential platforms and end 

applications for an embedded system, these are not of direct concern to this 

research. It is the software design process as distinct from technology, and 

the facilitation of high-level intercommunication for embedded devices, along 

with their influencing factors, that is focused upon. External design constraints 

based, for example, on cost pressures, long life-cycle requirements, real-time 

requirements, reliability requirements etc. are not explored, although it is 

recognised that these are the defining factors for any embedded system’s 

hardware and hence, implicitly, its software (indeed embedded systems in 

many cases must be optimised for life-cycle and business-driven factors 

rather than for maximum computing throughput). Thus, to reiterate, in this 

paper we are addressing the fundamentally common physical attributes of all 

such systems, that is those common physical resource constraints that 
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influence all embedded software implementations and hence how they might 

communicate. 

 

2.1.2 Engineering Constraints 

 

It is the physical resources of the embedded system that ultimately 

drive its final software implementation (be they originally cost or otherwise 

constrained). These constraints include specifications such as the target 

processor and its instruction set, memory availability (both RAM and ROM), 

and others arising from embedded operating systems/firmware and input and 

output capabilities and requirements [6]. These constrained systems are a 

direct result of the nature of the end product (or device) in which the system 

will operate. Household appliances for example, are more and more likely to 

utilise embedded system technology, yet due to the extremely competitive, 

cost-driven markets in which these manufacturers operate, the systems 

themselves are as economic, and implicitly constrained, as possible. 

 

2.1.3 Embedded Systems in Distributed Environments 

 

In the context of this report we will describe a distributed embedded system 

as “a system in which individual embedded systems running applications and 

communicating via some network medium are physically separated” [7]. As 

embedded systems are used more and more, (“Approximately 3 billion 

embedded CPUs are sold each year, with smaller (4-, 8-, and 16-bit) CPUs 

dominating by quantity and aggregate dollar amount” [8]), they increasingly 

need to communicate and interoperate with desktop and client-server 

installations [9].  

 

The processors in an embedded system can be connected via any 

number of proprietary or standard buses, LANs, and WANs. When the degree 

of spatial distribution is relatively local, the processors are typically hard-wired 

together via a shared memory bus or similar hardware. Processors can also 
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be linked together via a separate high-speed serial bus such as the Controller 

Area Network (CAN) bus, which facilitates a greater degree of distribution and 

supports data rates of up to 1 Mbps. In order to support still further 

distribution, WAN protocols, such as the prevalent TCP/IP stack, are 

implemented in suitable devices. It is still, however, often considered far too 

expensive for smaller systems. Ultimately, although the underlying 

communications technology may not utilize a physical-connection, as the 

demand for mobility support increases, modern networks are based more and 

more on wireless communication.  

 

Embedded Systems operating in distributed environment are also 

frequently subject to real-time constraints. As such, these systems must be 

designed so that tasks are always executed by a specified deadline. The 

particular deadline may a specific time, a time interval or indeed a discrete 

event [10]. This last statement describes the two key approaches to real-time 

systems design, the event-driven and time-driven models. The greater the 

frequency of these tasks and the potential for failure on missing the deadlines, 

the more the application exhibits ‘hard real-time’ requirements. Conversely, if 

missing a deadline will not necessarily compromise the system, the 

application is said to have ‘soft real-time’ requirements [10]. 

 

In discussing the applicability of the CORBA to embedded systems, the 

focus is implicitly on distributed embedded systems, independent of the 

underlying communications mechanism and more specifically those that 

execute some form of application logic. Whether these systems are subject to 

real-time constraints or not, is less important, although more likely in the 

context of a mobile environment. 
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2.2 The Common Object Request Broker Architecture 

(CORBA) 

 

2.2.1 Overview 

 

The Object Management Group (OMG) was established in 1989 to create 

standards for distributed object computing. Its standards were intended to 

“allow interoperability of objects, component, and applications in a 

heterogeneous networked environment” [11]. Early work resulted in the Object 

Management Architecture (OMA), an abstract object model, providing 

concepts of object concepts and terminology. The Common Object Request 

Broker Architecture (CORBA) is an open distributed-object computing 

infrastructure that specifies a concrete object model, based on the OMA 

model. Its basic task is to handle requests between clients and object 

implementations, in a distributed environment. CORBA automates many 

common network programming tasks such as “object registration, location, 

and activation; request de-multiplexing; framing and error handling; parameter 

marshalling and de-marshalling; and operation dispatching” [1].  

 

 

 

 

Figure 3 The Object Management Architecture 
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CORBA allows applications to communicate with one another no 

matter where they are located or who has designed them. CORBA 1.1 was 

introduced in 1991 by the OMG and defined the Interface Definition Language 

(IDL) and the Application Programming Interfaces (API) that enable 

client/server object interaction within a specific implementation of an Object 

Request Broker (ORB). It did not however, provide for the inter-working of 

different vendors ORBs, which typically used proprietary data representation 

and marshalling schemes.  

 

CORBA 2.0 [1], adopted in December of 1994, defines true 

interoperability by specifying how ORBs from different vendors can 

interoperate using the General Inter-ORB Protocol (GIOP) specification, the 

standard implementation of this specification being the Internet Inter-ORB 

Protocol (IIOP), which utilises the TCP/IP protocol stack. All CORBA 2.0 

compliant ORB implementations must support IIOP. This support facilitates a 

standard inter-orb communications mechanism. 

 

2.2.2 The CORBA ORB 

 

The core of CORBA is the ‘ORB core’, or middleware (‘Middleware’ is the 

software that resides between an application program and the base operating 

systems and networking functions. Its purpose is to shield application 

developers from complex low-level coding). The OMG defines the ORB as 

“the middleware that establishes the client-server relationships between 

objects” [11], it further explains how, “Using an ORB, a client can 

transparently invoke a method on a server object, which can be on the same 

machine or across a network. The ORB intercepts the call and is responsible 

for finding an object that can implement the request, pass it the parameters, 

invoke its method, and return the results” [11]. The client does not have to be 

aware of where the object is located, its programming language, its operating 

system, or any other system aspects that are not part of an object's interface. 
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In so doing, the ORB provides interoperability between applications on 

different machines in heterogeneous distributed environments. 

 

 

 

Figure 4 An Object Request Being Sent Through the Object Request Broker 

 

2.2.3 Interface Definition L angu age 

 

The IDL was originally part of the Open Software Foundation's Distributed 

Computing Environment (DCE). It described function interfaces for Remote 

Procedure Calls (RPCs), so that a compiler could generate proxy and stub 

code that marshalled function parameters between machines. This same 

model is used in CORBA to define interfaces to remote objects and hence 

generate stub and proxy classes, which can be used by the programmer to 

provide the distributed object functionality. The programmer uses these 

classes in the normal way, without having to worry about their internal 

functionality, and object distribution is achieved. 

 

The Interface Definition Language (IDL) defined in CORBA facilitates 

the use, and inter-working, of multiple third generation programming 

languages. The IDL clearly defines the interface of a CORBA object according 

to a set off well-defined data types. This coupled with the GIOP and CDR (see 

below), which define the actual data representation, marshalling and transport 

rules, allows the seamless inter-working of components, which can potentially 

be created with different languages, on different operating systems, having 

different data representation rules. 
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2.2.4 CORBA Services 

 

At the heart of every CORBA implementation, is the ORB core, that which 

provides the basic objects references and invocation functionality, hence 

enabling a client to transparently invoke the services of distributed objects 

implementations. In addition to this basic middleware functionality, the OMG 

has adopted a number of value-adding functions represented by middleware 

services called the Common Object Services (COS). CORBA services greatly 

extend the functionality provided by the core and some of are essential for the 

development and deployment of distributed applications. These services 

provided include, amongst others, centralised object name resolution, 

distributed event services and transactional support. 

 

The OMG Naming Service is the simplest of the standard CORBA 

services. It essentially provides a mapping from object names to references.  

It is essentially a well-known repository that stores named object references. 

The key benefit of the OMG Naming Service is its distributed capabilities, and 

that it allows for stored object references to be accessed through a CORBA 

environment. Servers advertise themselves with the Naming Service by 

providing an object reference and an associated name at run-time, hence 

enabling clients to use the Naming Service to locate objects in a CORBA 

environment.  

 

The OMG Event Service provides support for event-driven 

communication in the CORBA environment. It essentially implements a 

publisher-subscriber model via the concept of “Event Channels” and supports 

both push and pull operations. The ORB core allows for synchronous and 

asynchronous requests. With synchronous requests, the client application is 

blocked until the request is returned to the client, whereas with an 

asynchronous request, the client continues to execute, however if a response 

is needed, the client must periodically poll the ORB for that response until it is 

ready. There is no provision in this model for event-driven communication.  

The Event Channel is an object that provides this. The Event Channel accepts 
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connections from one or more suppliers, and one or more consumers. An 

event is defined as any piece of data that has been generated as a result of 

some activity.  The key is that any event received from one of the suppliers is 

transmitted to every consumer.  

The Object Transactional Service enables transactional functionality in 

the CORBA environment. It is, in essence, a distributed transaction manager. 

It supports the inter-working of object-oriented and procedural transactional 

applications and includes support for the industry X/Open transactional 

standard.  

 

2.3 The General Inter-ORB Protocol 

 

2.3.1 Overview 

 

The biggest shortcoming of the early release of CORBA (pre CORBA 2.0) 

was its lack of a protocol specification. In order to facilitate inter-ORB 

communications each ORB vendor typically implemented their own 

proprietary inter-ORB protocol, hence complicating (if not disabling) any form 

of inter-vendor ORB communications. This problem was solved with the 

release of the CORBA 2.0 specification, which described an abstract protocol 

that facilitated inter-operability. This protocol, the General Inter-ORB Protocol, 

specified a standard set of messages, and their encoding specifics, which 

could ultimately be mapped onto any connection oriented transport 

mechanism (the aforementioned IIOP being the TCP/IP mapping of the 

abstract GIOP model). 
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The GIOP specification can be conceptually divided into three primary 

components: 

 

1) The Common Data Representation 

2) The GIOP Message Set 

3) Transport Requirements 

 

2.3.2 The Common Data Representation  

 

The Common Data Representation (CDR) provides a common syntax for the 

transfer of IDL defined data. It defines the low-level binary, “on-the-wire” 

format of inter-ORB communications (ultimately byte streams).   

 

The CDR standard itself has three key features: 

 

1) Variable Byte Addressing - The CDR supports both ‘little-endian’ and 

‘big-endian’ architectures as there is no guarantee, in the 

heterogeneous distributed environment in which CORBA operates, that 

any two communicating devices will use the same byte addressing 

rules. Using CDR, the sender does not have to perform any byte 

swapping; this is the sole responsibility of the receiver. The actual byte-

order of a message is flagged in the message protocol header, so the 

receiver knows how the message contents must be interpreted. 

 

 

2) A complete IDL mapping – The CDR defines the representation of all 

IDL defined data types, hence freeing programmers from having to 

marshal their data. Constructed data types such as structures, strings, 

arrays etc., are all built from the primitive types using OMG defined 

rules. The elements of a structure, for example, are always encoded in 

the order of their declaration. 
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TYPE Description  

boolean An 8-bit value with the range [0-1] 

char An 8-bit value with a mapping into the ISO Latin-1 8859.1 

character set. 

octet An 8-bit value with the range [0-255] that is not marshalled  

short A 16-bit integer with the range [-2exp15, 2exp15-1] 

unsigned short A 16-bit integer with the range [0, 2exp16-1] 

wchar An 8-bit, 16-bit , or 32-bit value that represents international 

character data 

long A 32-bit integer with the range [-2exp31, 2exp31-1] 

unsigned long A 32-bit integer with the range [0, 2exp32-1] 

long long A 32-bit integer with the range [-2exp63, 2exp63-1] 

unsigned long long A 32-bit integer with the range [0, 2exp64-1] 

float A 32-bit value conforming to the ANSI/IEEE 754-1985 

floating-point standard 

double A 64-bit value conforming to the ANSI/IEEE 754-1985 double-

precision floating-point standard 

long double A 128 bit value conforming to the ANSI/IEEE 754-1985 

double-precision floating-point standard 

 

Figure 5 GIOP Defined Pr imitive Data Types 

 

3) Naturally Aligned Primitive Types – THE CDR specifies that primitive 

data types should be aligned on their natural byte boundaries (that is 

the way most machine architectures would align them). Whereas this 

process is somewhat inefficient in its consumption of bandwidth, it is 

ultimately more efficient than a more compact representation, as data 

can be unmarshalled by simply ‘pointing’ at its binary value in memory. 

The alignment of a primitive data type is equal to the size of that type in 

bytes. Hence, a type of size N bytes must be positioned in an octet 

stream where the index is a multiple N.  A gap may also be inserted in 

the stream to preserve this alignment. 
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TYPE ALIGNMENT (Bytes) 

char 1 

byte 1 

short 2 

unsigned short 2 

long 4 

unsigned long 4 

long long 8 

unsigned long long 8 

float 4 

double 8 

long double 8 

boolean 1 

enumeration 4 

 

Figure 6 Octet Sizes of Pr imitive Data Types 

 

 

It is important to note that CDR encoded data is not self-identifying. 

Upon receipt, the marshalled data is nothing more than a sequence of octets 

(bytes). The receiver must know in advance how these marshalled octets are 

to be decoded. This knowledge is facilitated by the IDL definitions of an 

interface, which informs as receiver how data is to be interpreted. 
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2.3.3 The GIOP Message Set 

 

2.3.3.1 Overview 

 

The GIOP specification defines a set of eight messages (since version 1.1), 

which are considered sufficient to accomplish the functional objectives of 

CORBA. Whereas, s only two of these messages are actually required to 

achieve the basic remote invocation objectives of CORBA, the remaining six 

provide various, complimentary, functionality.  

 

 

                                                                                                          

                                                                                                                                                                                                                             

 

 

 

 

 

 

 

 

Figure 7 The 1.1 GIOP Messages 

 

The FRAGMENT message was added in version 1.1 of the GIOP 

specification, to allow for the more efficient marshalling of data by the sender. 

 

2.3.3.2 The GIOP Protocol Header 

 

In order to transmit a GIOP message, the sender will fist include the 

protocol message header, a 12-byte header consisting of five fields, and then 

the message body, which is specific to the type of message being sent. 

Message Type Issuer enum Value 

REQUEST Client 0 

REPLY Server 1 

CANCEL_REQUEST Client 2 

LOCATE_REQUEST Client 3 

LOCATE_REPLY Server 4 

CLOSE_CONNECTION Server 5 

MESSAGE_ERROR Both 6 

FRAGMENT Both 7 
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Modu le GIOP { 

 struct Version { 

  octet  major; 

  octet  minor; 

 }; 

 enum MsgType_1_1 { 

  Request, Reply, CancelRequest, LocateRequest, 

  LocateReply, CloseConn ection, MessageError, Fragment 

 }; 

 struct MessageHeader_1_1{ 

  char  magic[4];  

  Version GIOP_version; 

  octet   flags; 

  octet   message_type; 

  unsigned long  message_size; 

 }; 

};      

 

Figure 8 The GIOP Protocol Header IDL 

 

• The first four bytes always contain the characters ‘GIOP’, to indicate 

the message type. 

• The fourth and fifth bytes contain the Major and Minor version numbers 

as binary values. 

• The sixth byte is a flag, the least significant bit of which signifies 

whether the message is in big endian (0) or little-endian(1) encoding. 

The second bit is used to flag fragmentation. 

• The seventh byte is used to indicate the type of the GIOP Message 

and corresponds to the numeric value of the appropriate 

MsgType_1_1 enumeration. 

• The last four bytes are used to indicate the sized of the message, 

excluding the twelve bytes of this header. 
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2.3.3.3 The Request Message 

 

The request message is used to encode object invocations and send them to 

the server. A complete request message consists of the aforementioned 

GIOP protocol header, a request message header and also the request 

message body. The latter two forming the GIOP message body.  

 

modu le GIOP { 

 

 struct RequestHeader_1_1 { 

  IOP::ServiceContextList service_context;  

  unsigned long    request_id; 

  boo lean    respon se_expected; 

  octet     reserved[3];  

  sequence<octet>  ob ject_key; 

  string    operation; 

  Principal   requesting_principal; 

 }; 

 

}; 

 

Figure 9 The GIOP 1.1 Request Header IDL 

 

• The ‘service_context’ is an IDL defined structure used by services such 

as transactional and security services to implicitly pass service 

information with requests and replies, transparent to the client. 

• The ‘request_id’ field is an unsigned long integer value, used to 

uniquely identify a particular request, and also to relate response 

messages to their request messages. 

• The ‘response-expected’ field is used to indicate whether  a server 

response is expected in reply to a particular request. The value is set to 

false (0) for IDL specified ‘one-way’ functions. 

• The ‘reserved’ octet is reserved for future use. 
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• The ‘object_key’ field is the object key from the Interoperable Object 

Reference (IOR). This is a server specified value and has no relevance 

outside of the server’s scope. 

• The ‘operation’ field contains a string value which indicates the relevant 

method to be invoked on an object 

• The requesting principal field is used for security purposes in order to 

identify the requester. It is now deprecated, as the service context 

provides this information. 

 

The body of the request message is an octet sequence containing the 

encoded IDL specified ‘in’ and ‘out’ parameters for the requested operation. 

 

2.3.3.4 The Reply Message 

 

The reply message is sent by a server in response to a client request. A 

complete reply message consists of the GIOP protocol header, a reply 

message header and also the reply message body. The latter two forming the 

GIOP message body. The reply message indicates the success or failure of a 

request, and (in the case of the former) also includes any IDL defined ‘out’ 

parameters of the associated method invocation. 

 

modu le GIOP { 

 enum ReplyStatusType { 

  NO_EXCEPTION, USER_EXCEPTION, 

  SYSTEM_EXCEPTION, LOCATION_FORWARD 

}; 

 

 struct ReplyHeader {  

  IOP::ServiceContextList service_context;  

  unsigned long    request_id; 

  ReplyStatusType   reply_status; 

 }; 

}; 

Figure 10 The GIOP 1.1 Request Header IDL 
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• The ‘service_context’ field is used in the same way in the reply header 

as in the request header.  

 

• The ‘request_id’ field returns the uniquely identifier of the associated 

request, hence a client does not have to wait for once request to 

complete before making another. 

 

• The ‘reply_status’ field contains one of the ‘ReplyStatusType’ 

enumeration values and indicates the result of the request. The 

‘LOCATION_FORWARD’ reply is used when a server cannot fulfil a 

particular request, but advices the client to try another address. 

 

The body of the reply contains an octet sequence containing any ‘out’ 

parameters for the requested operation. 

 

 

2.3.3.5 The Cancel Request Message 

 

The ‘Cancel Request’ message is sent by a client to a server to indicate that 

the client no longer requires, or expects, a response to a particular request. A 

complete ’Cancel Request ‘message consists of the GIOP protocol header 

and the ‘Cancel Request’ message header.  

 

modu le GIOP{ 

 struct CancelRequestHeader{  

  unsigned long   request_id; 

 }; 

}; 

 

Figure 11 The GIOP Cancel Request Header IDL 
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The message header contains only the unsigned long ‘request_id’ field, which 

indicates the particular request to be cancelled. The server does not 

acknowledge the ‘Cancel Request’ message. 

 

2.3.3.6 The Locate Request Message 

 

The ‘Locate Request’ message is sent by a client to a server to determine 

whether a particular Interoperable Object Reference is valid. More specifically, 

it is a more bandwidth efficient method (as opposed to sending a complete 

request message) of determining of whether or not an object is available at a 

particular address. A complete ’Locate Request ‘message consists of the 

GIOP protocol header and the ‘Locate Request’ message header.  

 

 

modu le GIOP{ 

 struct LocateRequestHeader{  

  unsigned long   request_id; 

  sequence <octet> ob ject_key; 

 }; 

}; 

 

Figure 12 The GIOP Locate Request Header IDL 

 

The message header contains an unsigned long ‘Request Identifier’ field and 

an object key (octet sequence). This message is often used in conjunction 

with a CORBA ‘interface repository’, which acts as a central service for 

dispatching client ‘look-up’ requests to server implementations[11]. 
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2.3.3.7 The Locate Reply Message 

 

A server sends the ‘Locate Reply’ message to a client in response to the 

‘Locate Request’ message. A complete ‘Locate Reply’ message consists of 

the GIOP protocol header, the ‘Locate Reply’ message header and the 

‘Locate Reply’ message body.  

 

modu le GIOP{ 

 

 enum LocateStatusType{ 

  UNKNOWN_OBJECT, 

  OBJECT_HERE, 

  OBJECT_FORWARD 

 }; 

 

 struct LocateReplyHeader{  

  unsigned long   request_id; 

  LocateStatusType  locate_status; 

 }; 

}; 

 

Figure 13 The GIOP Locate Reply Header IDL 

 

The message header contains an unsigned long ‘Request Identifier’ field and 

the ‘locate_status’ field, indicating the result of the ‘Locate Request’ message. 

The message body then contains the Interoperable Object Reference (IOR) of 

the requested object 

 

2.3.3.8 The Close Conn ection Message 

 

The ‘Close Connection’ message is only sent by the server. The message 

consists only of a GIOP header. If the client wishes to send further requests, 

these must be sent on a new connection. This message is typically used 

when a server has reached its maximum number of concurrent connections. 
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2.3.3.9 The Message Error Message 

 

The ‘Message Error’ message can be sent by wither the client or server. It is 

sent when the protocol header of a received GIOP message indicates a 

protocol version that is not supported by the recipient.  

2.3.3.9 The Fragment Message 

 

If a GIOP client decides to use fragmentation, the first part of a request or 

response message is sent with the fragment bit in the protocol header set to 

true. The ‘Fragment’ message is used after these messages to pass further 

fragments of encoded data and also indicate whether more fragments are to 

follow. The ‘Fragment’ message exists to avoid necessitating the client 

marshalling of large messages in their entirety, before sending them. 

  

2.3.4 Transport Assumptions 
 

The GIOP specification makes certain assumptions of the underlying transport 

protocol [1]: 

 

• It provides a reliable connection oriented service. A connection-

oriented transport allows a host to open a connection to by specifying 

the address of the receiver. This process will typically return an 

identifying handle to that connection, which can then be used for the 

duration of communication without the need to specify the address for 

every the message sent. 

 

•  Connections must be full duplex.  Upon a connection being 

established, either communicating parties should be able to use that 

connection to send messages without needing the address of the 

originator. 
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• The transport is reliable. The transport should ensure that any 

messages sent over a connection are received at the destination 

without duplication. 

 

• The transport provides a byte-stream abstraction. The transport should 

ultimately be viewed as a ‘data-pipe’, once established. In this way, a 

communicating host can view a connection as a continuous stream of 

bytes and not have to deal with underlying networking issues such as 

fragmentation and re-transmission. 

 

 

2.4 Object References 

 

The CORBA specification describes an object reference as “an object name 

that reliably denotes a particular object” [11].  The ultimate aim of this 

reference is to facilitate the client utilizing the object in a location and 

implementation transparent way. The General Inter-ORB Protocol uses the 

Interoperable Object Reference (IOR) to identify objects. 

 

The IOR is a data structure that provides information on the type of object it 

references, the underlying transport protocols that support contacting it and 

optional further service information.  The IOR is structure is defined in a 

flexible manner. This flexibility is intended to facilitate the addition of support 

for multiple transport protocols and their associated optional data.  

 

An IOR consists of three key components.  The first, a ‘type_id’ is a scoped 

string indicating the most derived type of the represented objects IDL defined 

interface. The IOR will secondly always contain a sequence of one or more 

‘TaggedProfile’ structures. Each of these contains endpoint information 

indicating how an object may be contacted via a specific protocol. Within each 

of these a third value, the Object_ID is an octet sequence used by the server 

to identify the particular object. The ‘TaggedComponent’ structure may 
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optionally be included within a ‘TaggedProfile’ and is used to communicate 

extra service specific information. 

 

modu le IOP { 

 

typedef unsigned long   ProfileId; 

const ProfileId   TAG_INTERNET_IOP = 0; 

const ProfileId   TAG_MULTIPLE_COMPONENTS = 1; 

 

struct TaggedProfile { 

ProfileId  tag; 

sequence <octet> profile_data; 

}; 

 

struct IOR { 

string    type_id; 

sequence <TaggedProfile> profiles; 

}; 

 

typedef unsigned long  Compon entId; 

 

struct TaggedCompon ent { 

 compon entId  tag; 

 sequence<octet>  compon ent_data; 

}; 

 

typedef sequence<TaggedCompon ent> MultipleCopon entProfile; 

}; 

 

Figure 14 The Interoperable Object Reference IDL 

 

Hence an IOR can be defined for a server object, which contains end-point 

information for each specific protocol the server supports as well as optional 

extra ‘TaggedComponent’ data. In this way a server implementation can 

support existing and future protocols in a single published IOR. 

 

The default ‘profileId’ (as a consequence of IIOP support being mandated by 

the COBRA 2.0 specification) is the ‘TAG_INTERNET_IOP ’ ‘profileId’.  In 
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order to identify a communications end-point using the TCP/IP transport, this 

will contain Hostname or IP address and a port number, thus enabling a client 

to locate a server implementation via the TCP/IP protocol. 

 

2.5 CORBA and Embedded Systems 

 

2.5.1 Overview 

 

As has been described previously, the majority of implementations of the full 

CORBA specification consist not only of the ORB core functionality, but also 

several of the aforementioned CORBA services. Hence, these 

implementations tend to be quite large, in terms of their storage and memory 

requirements, and also computationally intensive to execute, even on modern 

day desktop computers. These implementations are hence not suitable to use 

in heavily resource constrained embedded systems.  

 

For this reason, alternatives have recently emerged. These alternatives 

use various different approaches to enabling the use of CORBA in the 

embedded environment. The first, and perhaps most simplistic, of these 

consists simply implementing a CORBA enabled gateway or proxy service for 

client’s wishing to interact with embedded devices. In this model, CORBA is 

used between the client and the gateway, and the gateway in turn 

communicates with the embedded system using a proprietary protocol, 

typically some low-level proprietary protocol. This clearly is not an embedded 

system CORBA implementation. The truer embedded CORBA 

implementations fall into two broad categories, those implementing the OMG’s 

‘minimumCORBA’ specification [2], and those implementing some form of 

protocol ‘engines’, derived from the GIOP specification, the latter enabling 

CORBA compliant communication at a much-lower level.  
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The first of the two aforementioned options, the OMG Minimal CORBA 

standard, defines a subset of the full CORBA standard, which facilitates the 

implementation of more efficient and smaller footprint ORBs. The core 

changes in the standard are the removal of most of the dynamic facilities for 

creating and using objects; this decision was based on the assumption that 

“The background of embedded systems tends to require design-time 

decisions on resource allocation, object location and creation. Together with 

pre-determined patterns of interaction, this yields a much more predictable 

system environment” [2].  

 

The standard attempts to “minimise the specification of unnecessary or 

costly services, whilst retaining maximum compatibility” [2] with the existing 

full CORBA specification. Support for the full set of CORBA IDL is retained; 

hence there is no barrier to implementations utilising any existing external 

CORBA services, when running in larger CORBA systems. 

 

The second approach to facilitating embedded CORBA, is much lower 

level approach utilising an efficient ‘protocol engine’ to enable CORBA (GIOP) 

compliant communications on an embedded system. This ‘engine’ may be in 

the form of a third-party library or a proprietary implementation. These 

‘engines’ ultimately facilitate the basic construction and deconstruction of 

GIOP compliant packets along with their transmission over the underlying 

protocol. 

 

A further consideration in the application of CORBA to embedded 

applications is the underlying transport. Whereas the de-facto modern 

networking protocol is the TCP/IP protocol suite, and indeed many embedded 

systems do require this connectivity, the processors in an embedded system 

can be connected via any number of proprietary or standard buses, as 

discussed in section 2.1.3. It is therefore often the case that embedded CORA 

applications will implement a messaging transport other than the Internet 

Inter-ORB Protocol, that is an ‘environment specific’ implementation.  
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2.5.2 Embedded CORBA Research 

 

There is a lot of research work in progress in the embedded CORBA domain. 

The focus of these efforts cover the two main approaches outlined previously, 

those of the minimumCORBA specification and customised low-level GIOP 

communications, utilizing both the Internet Inter-ORB Protocol (IIOP) and 

other Environment Specific Inter-ORB Protocols (ESIOPs). This section 

introduces some of the most relevant works and compares them to the focus 

of this report. 

 

There are several commercial and research derived high-performance 

CORBA products in existence. ORB products such as ORBit [12], ORBacus 

[13], OmniORB [14] and the ACE ORB [15] are all built with a focus on high-

performance.  

 

The ACE ORB, for example, is a product of high-performance and real-

time CORBA research at U.C.L.A. [16]. The ACE ORB (TAO), pronounced 

"dau", is an open source CORBA 2.2 compliant, C++ implementation. It more 

recently includes a minimumCORBA compliant implementation, which as a 

result of its component structure and open-source form does lend itself to 

application and customisation in the embedded environment.   

 

Lockheed Martin has developed a software infrastructure called 

“HARDPack middleware” to “manage data in an object-oriented, real-time, 

distributed environment” [17]. This product provides a CORBA 2.0 based ORB 

implementation including Dynamic Invocation Interface (DII) and an Interface 

Repository (IR) and CORBA services include naming and event 

communication. 
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The difficulty with all the aforementioned CORBA implementations is 

that although they are very efficient, their memory footprints and resource 

demands are still far too excessive for the more constrained of embedded 

systems.   

 

The K-ORB Project [18] is one minimumCORBA research effort that is 

very relevant to this project. The project describes a minimumCORBA 

framework that facilitates the building of ORBs tailored to the particular 

requirements of the target environment. It implements a ‘pluggable framework’ 

facilitating the utilisation of different components of the K-ORB system as 

required. Using this architecture multiple networking protocols are facilitated 

and hence ESIOPs accommodated. This model and its architecture have 

been leveraged throughout this work and it is anticipated that the two projects 

will be integrated in the future. 

 

For the more severely constrained of embedded systems however, all 

of these full minimumCORBA implementations are unattainable. GIOP 

compliant protocol engines can provide more efficient ORB core functionality 

for these devices. Products such as Sunsofts IIOP Protocol Engine [19] and 

IONA Technologies IIOP engine [3] enable IIOP messaging on these devices.   

 

The Sunsoft IIOP Protocol engine is a library written in C++ and is 

composed of four parts: “a CDR marshalling engine, a Type Code interpreter, 

the engine framework (including a partial ORB implementation) and IIOP-

specific modules” [19]. It also provides some run-time dynamic invocation 

support. The IONA IIOP engine provides a similar functionality via a “highly-

efficient, low-footprint run-time library” [3] written in ANSI-C. It essentially 

provides an API to the GIOP functionality. Whereas these tool do address 

embedded CORBA functionality for Internet enabled devices, they do not 

support any form of environment specific implementations. 
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 The [20] paper describes an environment specific CORBA 

implementation based on the Controller Area Network (CAN) bus. The report 

describes a “Compact Common Data Representation (CCDR)” [20] format, an 

optimised version of the CORBA CDR specification, which enables more 

efficient use of the small payload of the CAN bus (8 byte) message payloads, 

hence compromising processing speed for bandwidth efficiency. It further 

describes a customised (reduced) messages set, based on two of the eight 

GIOP specified messages, and message header format (again with a focus 

on increasing bandwidth efficiency). This work is an excellent demonstration 

of the environment driven constraints and resultant customisations that 

characterise embedded system development and hence will feature in any 

environment specific CORBA implementation. 

 

 

2.6 The Lego Mind Storms Robotics Invention System 

 

2.6.1 Overview 

 

The Lego Mindstorms Robotics Invention System is a product manufactured 

by the Lego Company. It consists of conventional Lego bricks, along with a 

‘programmable brick’ and several motors and actuators (touch and light 

sensors), which, collectively provide the building blocks of a simple but 

powerful robotics kit. Users can program and compile programs for 

constructed robots, using a PC based application, and download these to the 

robot via a wireless infrared link, which utilises the PC’s serial (RS-232) port 

and a small infrared transceiver (tower). 

 

The Mindstorms product was derived from, but is ultimately considerably 

different to, the “Programmable Brick Project” of the Epistemology and 

Learning Group in MIT’s Media Lab. The Programmable Brick is part of the 

ongoing LEGO/Logo research project at the Epistemology and Learning 
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Group, which was originally started by Seymour Papert [21], the creator of the 

LOGO language/teaching environment. 

 

Whereas the originally intended way to program Mindstorms robots was using 

the provided PC application, several language ports now exist which facilitate 

much greater flexibility and control in building applications. These range from 

Visual Basic enabling COM controls [22] to the NQC (‘Not Quite C’) language 

[23], a C like low-level language and even to replacement firmware in the form 

of pbForth [24]), tinyVM [25] and legOS [26]. 

  

2.6.2 The RCX Brick  

 

The RCX brick is the battery powered programmable micro-controller that is 

the heart of the Mindstorms kit. It is contained in a single brick that is capable 

of operating three motors, three sensors, and the infrared communications 

interface. At the core of this brick is a Hitachi HD6433292 micro-controller that 

contains 16K of ROM and 512K or RAM and runs at a speed of 16Mhz. A 

further 32K of external RAM is also contained in the brick. 

The 16K on-chip ROM contains a driver that is run when the RCX is 

first powered up. This driver facilitates the downloading of firmware to the 

RCX.  The standard firmware occupies 16K of memory and facilitates 

downloading of user-compiled programs to the RCX that can then be 

interpreted and executed by the firmware. 

The Mindstorms RCX is a very small scale embedded system with severe 

physical resource limitations. As such, it is perfectly suited to exploring the 

practicality and possibility of CORBA implementations on embedded systems 

and the associated limitations. 
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2.6.3 The Development Process a nd Too ls 

 

The standard development environment supplied with the Mindstorms kit 

supports some simple but useful programming. It is a graphical environment, 

which allows the user to drag and drop RCX actions and events as building 

blocks for an RCX application. Once built the program is compiled to byte-

code and downloaded to the robot, where the firmware of the RCX interprets 

this byte-code and controls the RCX (or the robot which is connected to) 

accordingly. The standard firmware itself controls the hardware interrupts, 

multi-threading and IR Port communications but is relatively limited from the 

developer’s perspective.  

 

There are various tools in existence that facilitate the extension of the 

RCXs capabilities via replacing different portions of the architecture. The 

simpler varieties provide replacement compilation environments for the 

developer. The Not Quite C (NQC) language [23] and the ‘spirit.ocx’ COM 

control Holdren, 2000 #13] are two such examples which provide a more 

procedural programming environment, but still fall far short of exploiting the 

hardware’s full capabilities. There are also some TCL and Perl language 

interfaces that facilitate the run-time control of the robots. 

 

In order to take advantage of the full 32K or RAM and the full 

capabilities of the RCX brick, it is necessary to replace the standard LEGO 

supplied firmware. Three such replacements exist at present. PBForth [24] is 

based on the interpretive Forth language, and provides run-time control of the 

RCX via the IR link. The TinyVM [25] environment provides a Java based 

replacement firmware for the RCX. The third replacement and also one 

providing the most comprehensive and powerful development environment is 

legOS, a GNU based cross-compilation environment that facilitates assembly 

C and C++ programming of the Hitatchi HD6433292. 
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2.6.4 LegOS and the Layered Network Protocol 

 

LegOS essentially provides a multitasking (pre-emptive) operating system for 

the RCX. The operating system and its programs are written in standard C 

(with some C++ support) and then cross-compiled for the Hitachi chip using a 

GNU built compiler. Once the basic operating system is compiled and 

downloaded to the RCX as a replacement firmware, user programs can be 

compiled, downloaded and executed.  

 

The development environment offers almost complete C language 

support, including semaphores, multi-threading, floating point emulation and 

the ability to store multiple programs (these programs are dynamically linked 

with the underlying legOS operating system).  

 

The most interesting feature of the more recent releases of the legOS 

environment however, is the Layered Network Protocol (LNP). LNP provides a 

simple networking abstraction to the underlying infrared transport mechanism. 

It facilitates the transmission of up to 255 bytes of data along with a 

checksum, to ensure integrity (this is known in LNP as an integrity packet).  

This mechanism acts like a broadcast channel for all listening hosts (where a 

host can be either an RCX brick or a PC enabled with the standard LEGO 

infrared tower). The protocol silently discards erroneous packets.  

 

The API also provides an addressing mechanism where 2 bytes of the 

255-byte payload of the integrity packet are used for addressing information, 

hence enabling the sending of a 253 byte addressed packet.  A single byte is 

used for the source and destination addressing information. Each byte is then 

bit-masked to provide port information on each node. Hence it is possible to 

describe a host-port pairing to identify a communication end-point. 

 

The programming model necessitates that a process is created to 

handle incoming packets on each participating hosts. This process sleeps and 

is awoken via an interrupt, upon receipt of an addressing packet for the port it 
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is assigned to, or an integrity (broadcast) packet. It is this transporting 

mechanism, coupled with the programming capabilities of the legOS 

environment, which makes the Mindstorms environment particularly suitable 

to an ESIOP implementation.  That is, a server process can be created to 

handle data for a particular port on a specific host, that host-port pairing being 

a uniquely identifiable LNP transport end-point. 

 

 

 

Figure 15 The structure of LNP packets 
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2.7 Mobile Applications 

 

2.7.1 Overview 

 

The advent of wireless communications technology and the subsequent 

proliferation of devices utilizing it have many ramifications for computer 

software, particularly distributed applications.  There is a broad range of 

devices utilizing the technology, each with their individual characteristics. The 

one common attribute of these devices is their need for portability, if they are 

to support true mobility.  Devices such as laptop computers, Personal Data 

Assistants (PDAs) and mobile phones are typical examples.  These devices 

must be smaller in physical dimensions and lighter in weight, than their fixed-

location (tethered) counterparts if they are to be used in a mobile environment 

and still strive to provide the same service to the user. The electronic 

component manufacturing industry has largely met these requirements, 

through the constant downsizing of chipsets and other device components, 

such as displays and battery-packs.  

 

 In conjunction with the requirements these technologies make of their 

physical attributes, they have large implications for the nature of the 

applications they host and indeed the way they are used. Whereas these 

applications can, and do, provide all the same functionality as their tethered 

counter-parts, they can also provide much further benefits to the user (such 

as location based services).  

 

2.7.2 Communications Characteristics  

 

Of particular relevance to this work, are the characteristics that the afore-

mentioned mobile devices exhibit which are distinct to those of their tethered 

peers.  A mobile device, or node, is ultimately unconstrained in its physical 

location, it can hence theoretically be utilised anywhere on the planet. The 
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wireless communications mechanism upon which these devices depend or 

not quite so unconstrained, they are subject to the limitation (or ‘coverage 

area’) of their infrastructure. A mobile phone user could for example 

potentially attempt to use the device anywhere on the planet whereas this 

attempt will only be successful if a supporting cellular network is available.   

 

Not only must the wireless transport be available before communication can 

be attempted, but it must also remain available for the duration of the devices 

usage. This may seem like an obvious statement, but when the fact that the 

device may be moving (and the ‘coverage area’ of the underlying network is 

not) is considered along with the dynamic nature of most wireless 

communication mechanisms, it cannot be assumed.  Radio-based 

mechanisms are subject to the inherent random nature of mobile radio 

devices; factors such as interference and signal reflection can practically 

annihilate a strong signal. This constitutes a significant departure from the 

assumptions of most fixed-network transports. 

 

Various attempts have been made at overcoming these limitations of 

wireless technologies, indeed emerging technologies such as Code Division 

Multiple Access (CDMA) have done much to remove interference problems, 

but ultimately they cannot be removed. Wireless applications use various 

‘smart’ techniques to reduce their affect.  Digital cellular phones use 

specialised prediction algorithms to ‘fill-in’ the space created by lost or 

erroneous packets, hence minimising the interference noticed by the user. In 

other environments, with less real-time constraint, simple time-out and re-

transmission policies may be applicable. Of course, depending on the 

capabilities of the mobile devices, and the nature of their use, a certain 

degree of autonomous operation may be acceptable, or even applicable. It 

may simply be feasible to have devices ‘contact’ the network periodically, 

perhaps simply to retrieve or deliver information relating to tasks, and then 

continue in a disconnected fashion. In systems where the application is less 

‘dispatch’ oriented, disconnected operation may be supported via the caching 

or relevant data and subsequent re-synchronisation of this data upon re-

establishment of connectivity. These implementations may support this 



 44 

disconnected operation by mimicking the server functionality on the local 

device, with a view to concealing the disconnected operation from the 

dependent applications.  The Rover [27], ALICE [28] and Dolmen [29] projects 

discuss support for such disconnected operation. 
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Chapter 3 

 

Design 

 

This chapter introduces the design goals relevant to building an Environment 

Specific Inter-ORB Protocol (ESIOP) and further develops these in the context 

of the LEGO Mindstorms environment. The aim is to not only introduce the 

generic ESIOP design process, but also to detail its application in the context 

of a specific environment. 

 

 

3.1 Overview 

 

The overall goal of this project is to investigate the suitability of CORBA 

middleware technology to resource-constrained embedded systems with a 

particular focus on mobile environments. The aim being to implement a 

minimal ORB (more specifically an ESIOP engine), on a severely resource 

limited platform (the LEGO Mindstorms RCX), along with an environment 

specific messaging protocol  (an ESIOP implementation) to facilitate CORBA 

based communication with that ORB.   

 

The design enables a standard CORBA (IIOP) client to send requests 

to a CORBA compliant server, which acts as an IIOP half-bridge (gateway) 

and translates these calls into the environment specific format, for 

communication with the embedded system. At all times the messaging 

protocol is an environment- specific implementation (or ‘functional subset’ of 

the GIOP). 
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Hence this design must describe an Environment Specific ORB messaging 

protocol that includes: 

 

1. A data representation syntax that specifies which of the standard IDL 

defined data types are supported and how they are encoded for 

transmission. 

 

2. An ORB message set that is suitable to the environment. Some form of 

mapping between the GIOP message set and this set is also required if 

full CORBA functionality is to be supported. 

 

3. An ORB transport mechanism which can provide the reliable byte-

streaming service that CORBA implementations expect 

 

4. A communication end-point mechanism such that individual server 

implementations can be reliable located. 

 

5. An Object Addressing format that facilitates the reliable addressing of 

objects in the environment. 

 

Once these, and hence the messaging protocol, have been defined the 

embedded ORB implementation can be addressed. The design of this 

embedded ORB, nanOrb, must support the aforementioned message set and 

provide as consistent an API as possible to the embedded applications it 

supports.  

 

A gateway function is also required, to facilitate the conversion of IIOP 

to ESIOP requests, and vice-versa. This gateway must be capable of 

deconstructing messages from one transport and encoding them for the other, 

along with performing any complementary functionality and optimisations that 

may be appropriate to the environment.  

 

 



 47 

3.2 The Data Representation Syntax 

 

The data representation standards for the ESIOP implementation must be 

defined. These must typically identify a distinct sub-set (or the full set) of the 

IDL defined data-types to support and an encoding syntax of each of these. 

The possibility of using a compact format (similar to that described in [20]) 

was explored, but is unnecessary due to the MTU size of the LNP transport 

being far more generous (253 bytes) than that of the CAN bus (8 bytes) used 

in the Kim project. The resource constraints in this application environment 

are more processing and storage than transport oriented. Hence, for the 

nanOrb implementation, a GIOP-like data representation scheme is 

implemented, preserving the natural memory alignment of data-types on 32-

bit boundaries. The formats of the messages are based on version 1.1 of the 

GIOP standard. The full set of IDL defined primitive data types are supported. 

 

The RCX uses a little-endian addressing architecture, as does the Intel 

386-based gateway used in nanOrb project. In a truly GIOP-based solution 

the RCX functionality would have to include the ability to perform conversion 

of data received from the gateway, were it based on a big-endian architecture. 

CORBA specifies that the message-sender’s byte ordering should be used for 

messages and flagged in the GIOP message header [1] (this rule exists to 

avoid unnecessary conversions on the server). This is not the case with this 

architecture because conversions are not necessary they are eliminated from 

the design. This highlights a potential design optimisation wherein byte 

ordering could always be the responsibility of the bridging host in order to 

reduce the load on the target embedded system. This would, of course, 

necessitate that the gateway is ‘aware’ of the destination’s underlying 

architecture (in the context of embedded systems this is not an unreasonable 

assumption). Optimisations such as this, and others, are further discussed in 

the section of this chapter, relating to the design of the bridging function. 
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3.3 The ORB Message Set 

 

In any environment specific implementation a functional subset (or the full set) 

of the GIOP message set must be defined. In order to consistently present full 

CORBA services to clients, the functionality of the GIOP messages must be 

supported in some way. Rather than implementing the full GIOP message set 

in the nanOrb design, a subset of the standard 8 GIOP 1.1 specified 

messages set is identified that is deemed suitable to the environment. 

 

As a consequence of the extreme resource constraints on the RCX, the 

memory footprint of the ESIOP engine must be kept minimal, if it is to work at 

all. A minimal number of messages are implemented in order to provide basic 

functionality and demonstrate the applicability of the CORBA to the 

environment. The number of these messages may be expanded in the future, 

but first it is necessary to determine how much of the limited memory 

resources these will consume and prove the concept. It is important to 

remember that ultimately, when implementing embedded CORBA, there will 

be a trade-off between the amount of memory utilized to provide CORBA 

functionality and the amount available for implementing application logic. 

 

3.3.1 Client Initiated Messages 
 

REQUEST – This message encodes an object invocation from a client to a 

server. The object invocation/operation is encoded and sent to the server, 

along with any IDL defined ‘IN’ and ‘OUT’ parameters (see chapter 2). The 

response to this, from the server, is contained in the Response message (if 

the ‘RESPONSE_EXPECTED’ flag is set in the request header). The 

REQUEST message must be implemented as it facilitates the fundamental 

CORBA functionality, that of remote object invocation.  Within the nanOrb 

implementation, some of the fields in this message header (such as Service 

Context and Principal information) are included, in order to comply as much 

as possible with the GIOP specification, but not populated. They are not 

necessary to provide the core CORBA functionality. They could of course be 
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developed in future implementations, to provide, for example, security and 

transactional support. 

 

Note; It is should be noted that this service contextual information could 

potentially be processed on the gateway (bridging) host, hence keeping the 

embedded ORB footprint to a minimum. 

  

LOCATE_REQUEST – This message is used to check the validity of an 

object reference and if a server will support a particular reference. The server 

may reply with a LOCATION_FORWARD type reply if it does not support an 

object locally. In particular this message is used in conjunction with an 

‘Interface Repository’ (the Interface Repository provides run-time resolution of 

server implementations), so that a client can use a single ‘well-known 

address’ to resolve object references via the LOCATION_FORWARD reply. 

The request message will perform the same functionality although in a more 

expensive manner, that is, with a greater message payload (which contains all 

the invocation data, as opposed to just the Object Reference).  It is, however, 

more expensive in the context of the Mindstorms environment, and many 

embedded systems (as our primary constraints are memory-footprint and 

processing oriented), to implement the processing necessary to facilitate the 

functionality of another message, than to send a greater sized packet over the 

underlying transport. Hence this message is not implemented in this design. It 

is worth noting that the ‘LOCATE’ functionality could be used by an IIOP client 

when talking to a gateway (or discovering it) to facilitate mobility support.  

 

CANCEL_REQUEST – This message is sent by a client to cancel a previous 

request. The request ID is used to identify the particular request. It is advisory 

only and the server is not obliged to acknowledge it. This message is not 

particularly suited to real-time control applications and hence is not 

implemented. Again, it may be of use in facilitating an application where client 

requests are valid for a longer period of time, for example if the client was to 

dictate a particular behaviour to an embedded device. Its appropriateness in 

an embedded context is really application specific. 
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3.3.2 Server Initiated Messages 

 

REPLY – This message is sent by the server if the ‘RESPONSE_EXPECTED’ 

flag is set in the request message. This can be used to return the results of an 

object invocation (where ‘OUT’ parameters are specified in the IDL) or simply 

a status. There is a REPLY_STATUS field in the header that can be used to 

indicate NO_EXCEPTION, hence reducing the need for a 

MESSAGE_ERROR message. This message is implemented. It is important, 

however, that the gateway’s call, to an RCX based object, is non-blocking. 

That is, the server should not wait for the receipt of a REPLY message before 

continuing. This is a departure from the GIOP model, but necessary due to 

the inherent unreliability of the infrared environment. Were the underlying 

transport of the ESIOP reliable, this optimisation would not be necessary. 

 

LOCATE_REPLY - This message is sent from the server in response to 

LOCATE_REQUEST message. It contains the results of a location attempt. It 

is not implemented, for the aforementioned reasons. It would not add any 

extra functionality in the RCX, and accommodating it would only serve to 

increase the memory consumption of the embedded ORB implementation. 

Again, it may be useful in facilitating location forwarding for IIOP clients using 

a gateway to request services of embedded devices (such as the RCX) in a 

mobile environment, where these devices may be in communication with 

different gateway’s at different times, depending on their location. 

 

CLOSE_CONNECTION – This message is used to inform a client that it 

should not expect to receive any further information in relation to a particular 

request. It is used to facilitate the ‘clean’ closing of a long running connection 

between the client and the ORB server. It is implemented in this 

implementation, as we are evaluating the server as a simple client controlled 

device. It would not be practical to rely on long-running connections in a 

mobile Infrared environment. It may well be applicable to an application where 

the embedded server expects to support multiple simultaneous connections 
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and hence may need to notify clients as it reaches its concurrency limit and 

wants to cease offering its service temporarily.  

 

 This highlights another potential optimisation in an ESIOP application. 

If a single, or multiple interconnected, gateway(s) exist, which are aware at all 

times of the number of connections an embedded server is supporting, these 

gateways could assume responsibility for managing maximum numbers of 

connections, hence ‘protecting’ the servers from overloading, without the need 

for the server’s to implement this functionality. 

 

3.3.3 Common Messages 

 

MESSAGE_ERROR – This message is sent when either party detects an 

error-condition as a result of a message. This is usually because of the 

incorrect formation of the message, or it’s containing an unsupported version 

number. This message is typically implemented, although the REPLY 

message does contain the functionality of flagging message errors. This 

message is implemented in the nanOrb environment, to facilitate the raising of 

exceptions when packets are incorrectly assembled and sent to the RCX. This 

will allow for the differentiation between the lack of an IR link and a ‘bad 

packet’ being the cause of a non-response from the RCX. 

  

MESSAGE_FRAGMENT – This message is used when request or reply 

messages need to be fragmented due to either transport constraints or 

buffering efficiency on the client. Due to the unlikelihood that large encoded 

packets will be sent, it is unlikely fragmentation will be required for the simple 

application that we have targeted. Hence this message is not implemented. It 

is also highly unlikely that a severely resource constrained device would have 

the resources necessary to support the buffering and reassembly of larger 

packets. 
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3.4 The ORB Transport Protocol 

 

Whereas the GIOP standard does not specify the transport protocol to be 

used, it does make certain assumptions as to the nature of this underlying 

transport mechanism. It expects a connection-oriented protocol, which the 

RCX network protocol, the Layered Network Protocol (LNP), does not provide. 

Through the provision of a connection-oriented transport, the need for 

acknowledgements of GIOP messages is alleviated. The lack of this 

functionality has some important implications for designs of this nature. 

 

Any RCX based ESIOP implementation cannot make these same 

reliable transport assumptions, as the underlying communications medium 

(Infra-red) and environment cannot reliably facilitate a true connection-

oriented service. A ‘best-effort’ implementation was attempted (whilst 

assessing the technology) involving an extra layer of abstraction between the 

ES-IOP and LNP layers, providing a TCP like timeout and re-transmit 

function. This did not provide and significant improvements over the simple 

LNP functionality, once the RCX was sufficiently out-of-range or subject to 

destructive interference, re-transmission provided no improvement.  

 

Another solution, which is more inclined to correcting IR transmission 

problems, would involve the RCX based robot reorienting itself between 

attempts to establish communication (to aid finding a better line of 

transmission to the tower) or perhaps even retracing its navigation steps so as 

to return to the last known location of reliable communications (the cost of 

buffering commands and how to retrace them then becomes a constraining 

factor). These approaches are not included in the current implementation.  

 

An altogether different solution, perhaps for exploration in further 

development of this research, would involve using a ‘mobility layer’ (as 

described in the ALICE paper [28]), or a similar approach to provide this 

service. This would assume that the RCX is always in range of a particular 
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tower, but could perhaps provide a good demonstration of mobility support in 

a CORBA environment. 

 

 

3.5 Communication End-Points 

 

The concept of a communications end-point is necessitated within the 

underlying transport of any GIOP implementation. This end point must, 

typically, uniquely identify a server process on a particular host, which 

implements the functionality specified in the IDL interface for an object. 

Without this functionality, it is difficult to envisage an embedded device being 

able to provide a CORBA service to clients.  In the case of IIOP this endpoint 

ultimately consists of an IP address and port number. LNP provides a very 

similar addressing mechanism (as described in chapter 2) where 

communication end-points are specified as host address, host port pairings. 

Using this system an individual packet can be addressed to a specific port 

(and hence a specific process) on a specific LNP host. An LNP host can be 

either an LNP enabled PC (using the LEGO Infra-Red tower) or an LNP 

enabled RCX brick. This system can be related very clearly to the IIOP 

addressing model, and facilitates the specification of LNP supporting 

Interoperable Object References. 

 

 

3.6 An Object Addressing Format 

 

The CORBA specification denotes an Object reference as “an object name 

that reliably denotes a particular object” [1]. The object reference provides “a 

handle to a specific implementation of an IDL derived object” [1]. An object 

that is accessible via a GIOP implementation is identified by an Interoperable 

Object Reference (IOR).  
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The format of an IOR includes a specific ORB’s internal object 

reference as well as a transport based address for locating that ORB and 

hence the object (the IOR data structure is covered in more detail in chapter 

2).  

 

Any environment specific ORB implementation must specify a format 

for IOR’s. In the nanOrb architecture for example, not only does the client 

require an IOR for the gateway in order to communicate requests, but a 

means is required to locate object implementations within the embedded 

environment. As previously stated, the underlying transport must provide 

some means of identifying communication end-points, these are used to 

facilitate the protocol specific ‘Tagged Profile’ in an environment specific IOR 

format.  

 

As a result of the current architecture implementing application-specific 

gateway functionality, it is not actually necessary to implement any further 

IOR support. The IIOP IOR for this gateway provides all the addressing 

information the client requires in order to make an object invocation on the 

RCX and the gateway is aware of the available servers. It is however 

necessary to further develop this architecture if true embedded CORBA 

functionality is to be supported in the nanOrb environment. 

 

The format of an embedded CORBA IOR should ultimately facilitate 

nanOrb server implementations advertising their supported objects along with 

the relevant addressing information for each protocol through which they can 

be reached (this being the intended function of the IOR). This ‘advertising’ 

would most likely be at design-time as opposed to run-time due to the 

constraints of the system (this is further discussed in chapter 6). Hence an 

IOR format is specified for the nanOrb ESIOP, which not only advertises the 

TCP/IP addressing information for the gateway, but also the LNP specific 

communication end-points for a server. 
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There were two possible IOR formats considered in this design 

process. The first involves extending the IIOP based IOR for the IIOP-ESIOP 

gateway host. This would involve adding a new ‘Tagged Component’ to the 

IIOP Profile ID, which would contain LNP addressing specifics enabling the 

gateway host to resolve RCX object references to specific RCX Host Address-

Port pairs. Whereas this would enable the accurate addressing of the RCX 

from the Gateway, it is not a very extensible or flexible solution. At the very 

least it mandates that clients of an application must be IIOP capable in order 

to request a nanOrb service (unless LNP clients parsed the IIOP ‘Tagged 

Profile’ for this information).  

 

The second format involves describes a new, LNP specific, ‘Tagged 

Profile’ for the IOR. The latter provides a truer CORBA functionality and 

defines a communication end-point specific to the LNP transport. In this way 

an IOR for any nanOrb service could contain the IIOP addressing specifics of 

a gateway host as well as the LNP addressing specifics of the target object 

implementation. Thus enabling a client to use this service via either transport, 

independently (assuming the client is capable of building messages foe either 

transport). 

 

The three main components composing an IOR were introduced in chapter 2 

of this document: 

 

1) A ‘Type ID’, indicating the most derived type (or version) of the object, 

for example: “IDL:nanOrb/nanOrbDemoApp/1.0” 

 

2) End-Point Information (Tagged Profile Data) for each specific transport 

supported by the implementation, for example, an IIOP profile would 

contain the Host Address (a DNS alias or IP address) and the TCP port 

number 

 

3) The server specified Object Key, which allows the server to internally 

identify specific IDL implementations. (Note: An optional sequence of 

Tagged Components can also be included) 
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Hence, a Tagged Profile for an LNP based Object Implementation can be 

specified: 

 

struct ProfileBody{ 

 

Version  naniop_version; 

unsigned short  hostAddress; 

unsigned short address ingmask; //facili tates resolution o f Port ID 

sequence  ob jectKey;  

 

 }; 

 

Figure 16 A sample nanOrb Tagged Profile 

 

 

Once this Tagged Profile is included in an IOR a client can theoretically 

access a nanOrb server either directly (if LNP and enabled and ESIOP 

capable) or via the gateway (if IP enabled).  It is more likely in the context of 

an embedded CORBA implementation that the end client would use the IIOP 

related portion of the IOR to contact the gateway, which would in turn use the 

ESIOP portion to contact the relevant server (the assumption is that the IOR 

is available to both parties). In this model the client knows only of a standard 

CORBA IOR and its IIOP based implementation and the gateway determines 

the specific embedded implementation to contact. This approach to defining 

per-protocol connectivity information for IOR’s is consistent with the CORBA 

IOR model and provides the greatest flexibility to clients. 
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3.7 The IIOP to ESIOP Bridge 

 

When implementing an ESIOP a complimentary bridging function (or 

gateway) is typically required in order to facilitate normal IIOP enabled clients 

making requests of ESIOP servers and also the reverse. If IIOP based 

communication is not supported, the implementation is not CORBA 2.0 

compliant [1]. This gateway should accept requests from any IIOP enabled 

CORBA client and convert these to form suitable to transmission over the ES-

IOP and vice versa. In CORBA terminology, this function is termed an IIOP to 

ESIOP ‘half-bridge’. The “half-bridge” term is used in discussing Inter-ORB 

Bridges. According to the [1]  “mediated bridges” are those that use an agreed 

median message format when translating between proprietary ORB protocols. 

This median message format is IIOP. In the case of the nanOrb architecture, 

where one ORB is using IIOP, the bridge between IIOP and an ESIOP is 

termed a “half-bridge”. 

 

Hence for the nanOrb project a gateway is needed that will perform the 

bridging between IIOP and nanOrb ESIOP messages, or between the IP and 

LNP transports.   There are some interesting design optimisations that can be 

made to such an implementation when it pertains to embedded systems, 

particularly if it can be assumed that a certain amount is known of the 

architecture and capabilities of the target devices as well as the application 

characteristics. These optimisations are ultimately aimed at removing some of 

the functionality  (and hence processing) from the embedded device and 

making it the responsibility of the gateway.  

 

It has already been discussed how a gateway host might assume all 

responsibility for ensuring the correct byte-ordering of messages in the ESIOP 

implementation, thus reducing demands on the embedded device. Other 

functionality, such as that provided by the Service Context information (see 

chapter 2) in GIOP messages, could also be made the responsibility of the 

gateway, to further free the embedded system of perhaps unnecessary 

processing effort. The security information contained in the Service Context 
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field of an IIOP client REQUEST, could conceivably be validated by the 

gateway, rather than the target system. Transactional support could 

conceivably be made more of the gateways responsibility in the same way. 

There are of course certain implicit assumptions as to the trusting of the 

gateway host. The only optimisation that is currently implemented in the 

nanOrb design is that of responsibility for byte-alignment, which is assumed to 

be the gateways. 

 

Although this bridging function should be transparent to the client and non- 

application specific, the latter is not the case for the nanOrb implementation. 

In order implement the functionality in a transparent fashion, as in the 

architecture outlined in chapter 1, it is necessary to build the functionality into 

an ORB implementation. This was not done in the nanOrb architecture purely 

as a result of time constraints. A simple CORBA server application builds the 

packets explicitly. Upon receipt of invocations and dispatches these to the 

RCX. 

 

 

 

 

Figure 17 The II OP to ESIOP Half-Br idge 
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3.8 The Environment Specific ORB on the RCX (nanOrb) 

 

The ultimate goal of this project is to investigate if, and to what extent, ORB 

functionality can be implemented on the RCX, and hence any similar 

embedded system.  

 

The core ORB in any embedded implementation must be as efficient 

as possible, in order to reduce memory consumption, and still allow 

application logic to be facilitated. It will also most likely be an application 

tailored implementation, in order to maximise efficiency (that is tailored to 

support only the functionality required by the application it supports). 

Irrespective of the final implementation, from a development perspective, the 

ORB should endeavour to provide as consistent an API as possible to the 

application (it is conceivable that some altering of this API will be necessitated 

for different applications, due to the minimal implementation nature of the 

ORB).  

 

Within the context of the aforementioned design, the nanOrb 

embedded ORB implementation must at the very least implement a server 

process to listen for incoming object invocation request on an advertised port 

(in this case an LNP port). This port may be advertised in an environment 

specific IOR or a well-known port. Upon receipt of an ESIOP (LNP) packet, 

the packet must be de-marshalled, in order to obtain the data in each of its 

fields. The relevant fields must then be validated to ensure that the packet is 

correctly formed, before the actual invocation on the relevant object is called 

(with any necessary arguments, as defined in the application IDL) and a 

response message is built, encoded, and sent to the requesting client. If any 

of the aforementioned procedures fail a MESSAGE_ERROR message must 

be built and marshalled onto a buffer before being sent back to the client. It 

should be mentioned again, that where possible, the gateway can be used to 

perform “server tasks” and hence reduce the load on the embedded system. 
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These key requirements can be summarized as follows: 

 

- Support the full IDL of the target application 

- Create processes to listen on the relevant ports for requests 

- Unmarshal received data 

- Validate message structures to ensure they are correctly formed  

- Pass the relevant unmarshalled arguments to object invocations 

- Build and encode RESPONSE messages as appropriate to the interface IDL 

- Build and encode MESSAGE_ERROR messages when necessary 

 

The embedded ORB would of could of course require much more functionality 

beyond the aforementioned, if it were intended to support more CORBA 

functionality. 

 

 

 

Figure 18 The nanOrb Hierarchy 

 

 

Whatever the functionality that is supported by the ORB implementation, it 

must ultimately present the user with a consistent set of API’s that facilitate 
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the ‘easy’ linking of application code with the ORB server. The nanOrb 

implementation facilitates this by defining a ‘handling’ function for each of the 

incoming IDL operations, within which the relevant application logic can be 

executed.  

 

The nanOrb architecture starts with the rudimentary infrared transport. 

LNP then provides an addressing mechanism and byte stream abstraction to 

this. The nanOrb ESIOP defines how GIOP messages, and hence object 

invocation data, can be mapped onto this transport protocol. The nanOrb 

architecture then implements server processes that listen on LNP defined 

end-points for incoming ESIOP packets.  It is on top of all these layers that the 

application code resides. Object implementations are hence located within the 

aforementioned handling functions for the incoming IDL operations. 

 

3.9 Comparison to other related designs 

 

It can be seen from the previous design steps, that a certain amount of 

customisation of, or variation from, the GIOP standard has taken place. This 

is typically the case when implementing CORBA in embedded systems. 

 

The Kim [20] paper describes an Environment Specific CORBA, which 

not only is a subset of functionality of the 8 GIOP messages implemented in 

an ESIOP, but the data encoding standard is also customized (and referred to 

as the “Compact Common Data Representation)” in order to efficiently use the 

small, eight byte, payload of the Controller Area Network (CAN) bus. The 

implementation does maintain full IDL support. The nanOrb design, in contrast 

to this, does not modify the data encoding rules defined in the CORBA CDR 

standard (as the LNP payload is far more generous), the same byte-boundary 

alignments are implemented. There is an implicit assumption here that the 

payload of any nanOrb message is not likely to include any more than a small 

number of arguments, on account of the processing capabilities of the RCX 

being very limited). Hence an IIOP based message payload, could 

conceivably be copied from the TCP/IP input buffer in a gateway 
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implementation, to the LNP output buffer, once the underlying architectures 

used similar byte ordering and the maximum payload of the LNP packet (253 

bytes) was not overrun. 

 

Whereas the nanOrb design does not modify some of the basic 

encoding rules defined in the CORBA specification, it does fall short of a 

minimumCORBA implementation, it only implements three of the eight GIOP 

defined messages and does not support Service Context and Principal 

information. This is not to say that a more complete (and even fully 

minimumCORBA compliant) implementation is not possible, but the ultimate 

aim of this report is to investigate the suitability of the CORBA to the 

environment and the design goals have been kept accordingly simple. 
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Chapter 4  

 

Implementation 

 

This chapter describes the development of the simple “proof-of-concept” 

application that was implemented to verify the design introduced previously. 

The application architecture is introduced and described, along with the 

underlying nanOrb infrastructure and the IDL specification. The application is 

successful in demonstrating the gateway functionality and the final invocation 

of a client request on an RCX. The difficulties encountered and assumptions 

and optimisations made are also presented. 

 

4.1 Implementation Goals 

 

The aim of implementing this application was to validate the design presented 

in the preceding chapter. Ultimately the application should facilitate a remote 

client, using the Internet Inter-ORB Protocol (IIOP) to make an object 

invocation on the RCX, via the gateway. This is accomplished though the 

client invoking an IDL derived object invocation on the nanOrb gateway (half-

bridge), which in turn relays this to the RCX, via the infrared transport 

mechanism, having made the necessary packet conversions. These packets 

are then received by the RCX, unmarshalled and the appropriate application 

code is called. The application also demonstrates that the nanOrb ESIOP 

implementation can be used between RCXs to remotely invoke operations. 

The application design was formulated to clearly demonstrate the RCX 

responding to the client’s invocations and that one RCX can make an 

invocation on a second via the nanOrb ESIOP. 
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4.2 The Application and its IDL specification 
 

The demonstration application used consists of the remote client 

sending user-specified spatial navigation commands to an RCX controlled 

robot, deemed to be the “Master”, via the gateway. The gateway converts 

these commands into the nanOrb defined ESIOP message format and sends 

them to the RCX. The set of operations consists of “forward”, “reverse”, “left” 

and “right”, and all take a time metric (in seconds) as an argument indicating 

the intended duration of the movement. This RCX then relays these 

invocations to a second RCX, deemed to be the “Slave” via the ESIOP, hence 

demonstrating inter-RCX object invocation. A simple read-only attribute is also 

included in the IDL specification to facilitate the reading of the Master RCX’s 

Host_ID (as used in LNP addressing). 

  

 

 

 

Figure 19 The nanOrb Application Architecture 
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The Interface Definition Language (IDL) specification of the demonstration 

application is defined as shown in figure 18: 

 

interface nanOrbDemo{ 

 

 readon ly att ribute short currentMaster; 

 

 void forward(in short forwardMetric); 

 void reverse(in short reverseMetric); 

 void left( in short leftMetric); 

void right(in short rightMetric); 

 

}; 

 

Figure 20 The nanOrb application IDL 

 

4.3 The Client Implementation 

 

The client functionality is written using the Java language. The Java 

Development Kit, version 1.2, includes support for CORBA, specifically IIOP, 

functionality as well as GUI Development. The Sun “idltojava” tool is used to 

generate the client application stub classes. The org.omg.CORBA.ORB class 

is used to provide the core ORB communications functionality, along with the 

org.omg.CosNaming class for providing CORBA Common Object Services 

(COS) Naming functionality. The Java ‘Swing’ classes are used to construct 

the user interface. 

 

The final application contacts a COS Naming Server (OmniNames, 

which is implemented on the same host as the gateway for this project) to 

resolve the Interoperable Object Reference (IOR) for the nanOrb gateway 

server. That is the IDL generated stub classes are used to create a 

“nanOrbDemo” object and invoke methods upon it. These invocations are 

hence relayed to the nanOrb gateway server via the IIOP, as though it were a 

normal IIOP server. 
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Figure 21 The Client Application 

 

4.4 The Gateway Implementation  

 

The nanOrb gateway performs the  “half-bridge” functionality discussed in the 

previous chapter, translating between the IIOP and the nanOrb ESIOP 

message formats. Whereas this bridging functionality would typically be built 

into the core of an ORB implementation, for the purposes of demonstration 

and to avoid unnecessarily building a full ORB implementation, the bridging 

functionality is implemented at the application layer (this is known as ‘request-

level bridging’ [1], as opposed to ‘inline bridging’ where the bridging 

functionality is implemented within the ORB). Through implementing it in the 

application layer, it is possible to better demonstrate the process of building 

the nanOrb ESIOP packets and encoding them, before sending them to the 

RCX. 

The gateway is implemented on the Linux operating system (using Red 

Hat version 6.2). The AT&T “OmniORB 3.0” ORB implementation (which has 

been tested and certified CORBA 2.1 compliant [14]) is used to provide the 
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CORBA Server functionality, in conjunction with the “OmniNames” COS 

Naming implementation. The former was chosen as it is a fully IIOP compliant 

high-performance ORB and is also supplied with source code, thus facilitating 

debugging and/or further development, if required. “OmniNames”, which 

facilitates run-time object registration and look-up, is used to provide more 

flexibility in client and server development, that is to reduce the need to copy 

“stringified IORs” between machines.  

 

Once compiled and configured, using the GNU “binutils 2.91” and 

“egcs-1.1.2” compilation environment [30], OmniORB provides the CORBA 

development environment, and OmniNames, the run-time support, for the 

gateway server processes. All code is written using the C++ language and 

compiled using the aforementioned GNU tools. 

 

The gateway application, implements the ‘nanOrbDemo_I’ interface, 

derived from the IDL generated skeleton class. Hence, upon receipt of an 

IIOP request from the client, the gateway server invokes the appropriate 

method of this ‘nanOrbDemo’ implementation. It is within the call to each of 

these methods that the nanOrb bridging functionality is implemented. 

 

This bridging functionality utilises the C++ classes outlined in the next 

section, which provide the ESIOP messaging and marshalling/unmarshalling 

functionality. These classes facilitate the building of request messages 

according to the design specification and their encoding for transmission over 

the LNP transport. 
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Figure 22 Gateway translating II OP to ESIOP requests 

 

For the purposes of demonstration, once the ESIOP packet for a 

particular request is built, the gateway echoes the packet structure to the 

screen, in order to illustrate the process (Note: The garbled data after the 

Magic field of the header is a result of it not containing a  ‘\0’ character). 

 

 

Figure 23 Gateway output in response to a “r ight (6)” invocation 
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4.5 The nanOrb ESIOP implementation 

 
 
The ESIOP functionality is implemented using a series of C++ classes, 

several of which are derived from those used to provide the same functionality 

in the ALICE [28] and KORB [18] projects.  Within the implementation of the 

IDL specified “nanOrbDemo” server, packets are constructed within the 

respective interface methods  and then sent to the appropriate nanOrb 

servers.  

 

These packets are built using the argument from the client request. 

Two simple C++ classes, ‘simplenanIOPHeader’ and ‘simplenanIOPRequest’, 

provide the protocol header and REQUEST message functionality, 

respectively.  Once the nanOrb ESIOP message is created it is marshalled 

onto a data buffer, using another C++ class, ‘simpleEncoder’ which provides 

the basic CDR-derived, byte-aligned data encoding functionality. This 

marshalled data is then sent to a final wrapper class for the LNP Daemon 

(‘simpleLNPTransport’) for transmission to the “Master” RCX. The application 

logic within these classes is used again in the implementation of the nanOrb 

server. 

 
 

4.6 The RCX ORB implementation - nanOrb 

 

Although the gateway is implemented using the C++ language, it is not 

possible to use it for the RCX implementation. Whereas the GNU cross 

compilation environment for the Hitatchi HD6433292 does provide C++ 

language support, it is not as extensive as its C language support, hence the 

latter is used for the implementation of all nanOrb functionality on the RCX. As 

a consequence of this, much of the object-oriented design work done for the 

gateway can not be re-used in the RCX environment, but a lot of the more 

generic C language code can.  
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The “Master” RCX’s port number 8 is used as an address for the 

nanOrb implementation (with the Host address of 1). This is specified as a 

‘well known’ address within the gateway implementation. The previous 

chapter discussed how this might further be developed to support the 

exporting of nanOrb IOR. Hence the TAGGED_PROFILE portion of the 

application’s IOR would be constructed as illustrated: 

 

nanOrb_ProfileBody{ 

 

Version.major = 1; 

Version.minor = 0; 

HostAddress = 0x18; 

Address ingMask = 0xF0; 

ob jectKey = “ nanOrbDemo”  

 

 }; 

Figure 24 The nanOrbDemo IOR 

 

Upon receipt of data on this port, a hardware interrupt is raised which 

awakens a process assigned to that particular port. The incoming data is 

copied to a global array, before a second packet processing routine is 

awakened via a semaphore. This separation of receiving and processing logic 

is necessary as the execution of any significant instructions within any 

hardware- interrupt driven routine is inherently unstable. 

 

The packet processing routine is responsible for ensuring the validity of 

the packet, through checking that all the necessary protocol and message 

header fields are correctly formed. Once the message has been validated, the 

invocation data is removed and the application code (the implementation of an 

IDL specified method) is invoked and passed these client specified 

arguments. The mapping between invocations and their demarshalled 

parameters and their actual implementation is facilitated by a short section of 

switching logic, which the application developer is expected to modify in order 

to support the application code. If a packet is incorrectly formed (that is it does 

not comply with the nanOrb packet structure), a MESSAGE_ERROR routine 
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is invoked. The full functionality for building and returning the 

MESSAGE_ERROR and REPLY messages has not yet been completed. This 

is due to some of the difficulties highlighted in the next section (the linker 

error).  

 

 

 

 

Figure 25 nanOrb Processing Client Requests 

 

 

Once the actual IDL method implementations are invoked, the a short 

string (constructed using the first and last characters of the invocation string) 

is presented on the RCX’s LCD display. The value of the first argument is also 

displayed, thus demonstrating the successful communication of the client 

request. 
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4.7 Difficulties Encountered 

 

Due to the nature of the application, particularly the fact that it involved 

embedded systems programming with an unsupported toolset, a number of 

difficulties were encountered during the implementation. The more serious 

difficulties are outlined in this section along with their resolutions, where 

possible. 

 

It was originally intended to use the Microsoft Windows Operating 

System as the platform for the gateway implementation, in conjunction with 

the WinLNP COM server [31]. The ‘Cygwin’ application [32] provides a GNU 

based compilation environment for the Windows operating system, which 

enables the use of the GNU cross-compilers for the Hitatchi HD6433292.  

Whereas, it was possible to use this tool to facilitate the programming of the 

RCX using legOS, the WinLNP COM control proved not to be as mature and 

reliable as the Linux based LNP Daemon (LNPD). It was therefore decided, 

after initially beginning development on the Windows platform, to migrate to 

the Linux platform. 

 

There were however some difficulties with enabling the LNP Daemon. 

These were eventually found to be caused by the Universal Asynchronous 

Receiver Transmitter (UART) chip in the Linux machine’s serial port. The 

16550AF UART chip has a documented transmit problem that can result in 

the random loss of a byte. If the FIFO functionality is enabled, it can 

occasionally fail to transmit a character. The character does not transmit and 

no interrupts are generated, hence the ‘user’ is not aware of any failure. By 

turning this FIFO functionality off (using the Linux “setserial ” command), the 

problem is resolved and the LNP Daemon functions properly. 

 

A more serious difficulty was when using the previously mentioned 

“liblnp.h” library within the OmniORB environment to request LNP functionality 

from the LNP Daemon process. The problem encountered involved any call to 

the LNP Daemon to transmit data, from within an OmniORB process, blocking 
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indefinitely and not returning. The data was sent to the LNPD process and 

received by the RCX, but the call never completed within the OmniORB 

server. This LNP functionality was provided by the aforementioned C++ 

wrapper (‘simpleLNPTransport’) class, which worked correctly when 

instantiated outside of OmniORB, but failed when called as described. This 

issue has not as yet been resolved. A second standalone application is also 

implemented, which facilitates the demonstration of the gateway functionality 

and the RCX’s response to invocations. 

 

The most serious difficulty encountered in the implementation of the 

application involved the GNU cross-compilation environment for C code. 

When certain simple C code statements were compiled to object code, 

incorrect linking information was generated, which caused the linking process 

to fail. This problem was caused by the compiler optimisation of certain 

relatively simple code structures. When these were simplified, through 

breaking them into simpler assignments and evaluation statements, the code 

compiled and linked correctly. This problem manifested itself on several 

occasions and, in each case, took considerable effort to locate the problem 

code and resolve. The debugging process when developing on the RCX 

involves writing hexadecimal information to the LCD screen on the RCX. 

Every time a change is made to application code, it must be recompiled in the 

cross-compilation environment and then downloaded (via the infrared link) to 

the RCX before it can be tested. The entire development process is hence 

iterative and extremely exhaustive. 

 

It can be seen that whereas the implementation ultimately succeeded, 

it was not without its difficulties and shortcomings. These were largely due to 

the lack of support and prior knowledge in this domain. Indeed these 

problems are typical characteristics of the embedded system development 

process and can ultimately be resolved. 
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Chapter 5 

 

Evaluation 

 

This chapter reviews the nanOrb design and implementation, with a view to 

determining the extent to which it and therefore CORBA is suited to the 

Mindstorms environment and to hence draw more general conclusions as to 

the applicability of CORBA to the embedded system domain. The efficiency of 

the nanOrb implementation is explored and the justification for each of the 

design decisions made is investigated and the ramifications explored. The 

design is then compared to the other embedded CORBA approaches outlined 

in chapter 2 and the potential for improving the nanOrb architecture is 

explored. 

 

 

5.1 Overview 

 

The nanOrb implementation enabled the Java-based IIOP client, and hence 

any IIOP enabled CORBA client to make requests of the nanOrb gateway, 

which were in turn relayed to the RCX based environment specific ORB 

(nanOrb) and successfully interpreted and executed. The fact that any 

intermediate bridging function or transport mechanism other then IIOP was in 

use was transparent to client. The application also demonstrated the use of 

the ESIOP implementation to facilitate inter-RCX messaging. It was, in this 

capacity, successful in demonstrating that CORBA can be used to present 

simple interfaces to embedded systems.   

 

The approach taken in designing the application was to sacrifice 

anything other than basic COBRA functionality in order to free more physical 

resources on the embedded system for application logic. This trade-off is 
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characteristic of almost any embedded-ORB implementation. The more 

CORBA functionality provided, the more resources consumed, ultimately 

reducing those available to the supported applications and conversely the less 

CORBA functionality implemented, the more resources available to supporting 

application logic. 

 

Whereas the unreliable nature of the infrared transport was 

accommodated as much as possible, the nanOrb implementation and 

demonstration application do not fully explore the mobility capabilities of the 

RCX and hence its effects on an ORB implementation. This is due to the time 

constraints to which this work was subjected. It is anticipated that further 

development might explore this in more detail and even enable mobility 

support, perhaps using an architecture similar to that described in the ALICE 

paper [28]. 

 

5.2 Efficiency 

 

The final nanOrb implementation, supporting request, reply and error 

messaging, is approximately 5k in size (note: this approximation is due to the 

fact that the functionality required for the latter two messages is not yet 

debugged, but is completed enough to make a reasonable approximation). 

This 5k program is hosted on the legOS firmware, which occupies a further 

20k or memory. Thus approximately 7k of memory remain available for 

supporting application logic on the RCX.  It is possible to further reduce the 

size of either the legOS firmware or indeed the nanOrb functionality. By 

removing the legOS support of RCX various functionality, such as button 

events and the different sensor inputs, and recompiling the firmware, it was 

possible to further reduce its size to approximately 16k (it was actually 

possible to further reduce this footprint, but this necessitates removing LNP 

and LCD support). The nanOrb footprint was also experimentally reduced 

through removing code supporting reply and error messages and simply 

silently discarding erroneous messages. This yielded a footprint of only 3.5k. 
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5.3 Optimisations and Consequences  

 

Whereas the nanOrb implementation does facilitate the development of 

CORBA based applications in the Mindstorms environment and potentially 

other embedded environments, it is not without its shortcomings.  The design 

chapter outlined several optimisations (or customisations) that were made to 

the CORBA speciation in order to accommodate the environment. These 

compromises ultimately constrain the capabilities of the architecture. The key 

objective of the CORBA specification is to facilitate the distribution of software 

objects in a heterogeneous environment and facilitate the transparent 

development of these. The nanOrb architecture does facilitate the former, but 

not to the full extent that a complete CORBA implementation does. It also 

compromises some of the transparency that the developer might expect of a 

CORBA implementation.  

 

The ESIOP message set was reduced to facilitate the basic object 

invocation functionality of CORBA, but little else.  The remaining five 

messages were excluded for performance reasons (the justification for which 

is provided in chapter 3). It is possible that these messages could provide 

functionality required in a different embedded environment than the 

Mindstorms environment, supporting applications of a different nature to the 

presented “nanOrbDemo” application.  The lack of this functionality (although 

it may be masked by the gateway implementation) reduces the client’s 

capability to transparently send CORBA messages to the server. It is clear 

that an ESIOP implementation facilitating a more complete message set is 

possible. This would of course provide a more complete CORBA functionality 

to clients but ultimately limit what the RCX server applications would be 

capable of, as they would have minimal memory remaining to support their 

logic. 

 

The IDL and corresponding marshalling/unmarshalling support 

designed is limited to the set of IDL defined primitive data-types.  This means 

that a programmer wishing to perform operations utilising the more complex 
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data types must ultimately perform some of the nanOrb 

marshalling/unmarshalling explicitly, using the provided API. This support 

could easily be added to the existing implementation, it was not included in 

the current design as it was not deemed to be of importance to the projects 

objective, that being to demonstrate CORBAs applicability to the embedded 

domain. 

 

The assumptions that CORBA makes of the underlying transport 

mechanism were also relaxed in the nanOrb implementation. The Mindstorms 

environment (explicitly the infrared transport mechanism) cannot, by its very 

nature, guarantee the delivery of data, as CORBA expects. Chapter 3 outlined 

some of the implications of these constraints, most noticeably that a client of 

the embedded ORB (the gateway) should not block on making a request and 

also the need for the ‘concealment’ of these failings from regular CORBA 

clients.  It is quite likely that embedded ORB implementations in environments 

other than the Mindstorms environment will be able to provide this connection-

oriented service that CORBA implementations expect. 

 

The focus of this project was on allowing CORBA compliant clients to 

make object invocations on embedded systems; the design has not 

addressed the inverse of this model. The current model does not facilitate 

embedded devices making client requests of normal CORBA compliant 

servers.  The nanOrb implementation does demonstrate the RCX acting as a 

client to a second RCX. True embedded ORB implementations should of 

course facilitate the embedded applications interacting with normal CORBA 

services as both clients and servers. The existing nanOrb implementation 

would require additional functionality in the gateway as well as some means 

of resolving IORs if it were to support the RCX’s acting as clients to normal 

CORBA services. 

 

The final optimisation involved the assigning of certain (CORBA 

specified) server responsibilities to the gateway implementation. This is not 

considered to be an unreasonable design optimisation in the context of 

embedded systems. It is not unreasonable to assume that the gateway 
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controlling access to CORBA enabled devices will be aware of their 

underlying architecture. The assignment of byte-alignment compliance to the 

gateway is therefore not considered a huge compromise. In much, the same 

way, the conjecture that the gateway might ultimately handle all service 

context processing, is also not unrealistic, although not implemented. 

 

 
 

5.4 Architecture Comparison 

 

There are several approaches to providing CORBA interfaces to resource-

constrained devices; these have already been introduced in chapter 2. The 

first of these is the comparatively simple approach of implementing a CORBA 

enabled proxy, which in turn communicates with the embedded device via 

some proprietary serial protocol, but still providing the object abstraction to the 

client. This approach whilst perhaps facilitating CORBA control of the devices, 

does not ultimately bring CORBA to the embedded system (rather it brings the 

embedded system to CORBA). Clients must use this proxy to communicate 

with the system, and the embedded systems themselves are not aware of the 

CORBA oriented services they provide.  The IDL defined application interface 

is actually implemented on the proxy and the necessary translations are made 

to messages so the embedded device may respond. This approach is used in 

various applications, for providing standard CORBA interfaces to network 

elements for example. It facilitates amore centralised management 

architecture, without actually absorbing the cost (in terms of hardware and 

software engineering) of implementing CORBA on the device. It does not 

ultimately make the embedded device “CORBA enabled”. 

 

The nanOrb implementation provides a more flexible architecture than 

this and actually “CORBA enables” the embedded device. Through defining a 

transport specific ‘tagged profile’, any LNP enabled client can contact the 

RCX, or alternatively an IP capable client can contact the gateway to relay 

requests. In both cases the invocation data is relayed to the RCX, where the 
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implementation of the IDL defined interface is located. Hence the RCX is 

‘CORBA aware’. It is important to note that the RCX based nanOrb 

implementation is ultimately application specific, although every effort has 

been made to provide a consistent platform (or API), it must ultimately be 

somewhat modified be due to the resource constraints of the RCX. The 

implementation does however provide a consistent platform upon which to 

develop applications, where extraneous functionality can be removed from the 

final implementation.  

 

The Object Management Groups (OMGs) ‘minimumCORBA’ standard is 

intended to facilitate a full CORBA functionality for embedded devices. It is a 

far more costly implementation than the nanOrb implementation described in 

the previous chapter. Whereas the specification removes some of the more 

unnecessary CORBA services, it still implements a large set of functionality. 

This report has demonstrated that embedded devices can be made available 

to standard CORBA clients without this full implementation. The nanOrb 

application illustrates that the embedded devices often do not need this 

complete functionality; much of it can be facilitated on a bridging host. This 

approach may be viewed as a hybrid of both of the previous approaches 

(using a CORBA enabled proxy and implementing minimumCORBA), but still 

enables the CORBA interface to the device. The assumption within this 

statement is that the gateway application is already necessitated, through the 

utilization of a transport other than IIOP, to perform the aforementioned ‘half-

bridge’ function. By keeping the ESIOP messages consistent with the format 

of their GIOP counterparts, albeit only a subset, it is also possible to facilitate 

clients, that are capable of using the embedded environments’ transport 

mechanism, directly request service of the devices. This support is, of course,  

only for the messages that the embedded device recognises. 
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5.5 Improving the nanOrb Architecture 
 
 

It has been illustrated that the process of designing embedded CORBA 

implementations is frequently one of compromising. That is, in order to 

accommodate the specifics of the embedded domain, certain CORBA 

expectations or features are ultimately relaxed or optimised as appropriate. 

The previous sections have highlighted what the nanOrb implementation has 

achieved, in terms of providing CORBA services on embedded devices and 

also the portions of the CORBA specification it has implicitly removed or 

altered.  Each of these presents an opportunity for improvement. However, 

the more any specific CORBA functionality is facilitated, the less resources 

are ultimately available for other improvements and/or application logic. 

 

Perhaps the biggest single improvement to the specification would be 

to develop the gateway functionality to make it a more generic, as opposed to 

application specific, and to facilitate nanOrb devices acting as clients to 

regular CORBA services. This functionality, perhaps coupled with a better 

definition of a nanOrb API, would facilitate the development of CORBA 

applications in the Mindstorms environment without the need to modify the 

infrastructure beyond some simple reconfiguration. This type of functionality is 

of course, what all CORBA implementations aim for. It is however doubtful 

that any embedded CORBA infrastructure can be completely transparent to 

the application developer, due to the nature of embedded programming and 

the constraints it imposes. 
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Chapter 6  

 

Conclusion 
 

6.1 Work Completed 

 

The aim of this report, as stated in the abstract, is to investigate the 

applicability of the Object Management Groups Common Object Request 

Broker Architecture to presenting interfaces to severely resource constrained 

embedded devices. This investigation is facilitated through the implementation 

of an environment specific CORBA application. The design process 

appropriate to implementing an Environment Specific Inter-ORB Protocol 

(ESIOP) has been presented, in conjunction with several optimisations, which 

can be made to facilitate the efficient implementation of an embedded ORB. 

This process has been further developed and demonstrated through its 

application to the demonstration environment, the LEGO Mindstorms kit, and 

ultimately illustrated by the “nanOrbDemo” application.  Lastly the successes 

and failings of the implementation have been reviewed. 

 

The overall process has involved customising (reducing) the GIOP 

message set in order to enable a minimum footprint on the RCX brick as well 

as relaxing some of the GIOP transport assumptions, due to the nature of the 

underlying infrared transport mechanism. Certain portions of the ORB 

functionality have been removed from the embedded device and implemented 

on the bridging host, again to reduce resource consumptions.  

 

The final nanOrb application clearly demonstrates that CORBA can be 

applied to embedded devices, enabling the inter-communication of normal 

CORBA requests to and their execution. It also illustrates alternative 

approaches to full providing this functionality and optimisations that can be 

exploited to better accommodate the embedded system. The inverse 
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relationship between the amount of CORBA functionality supplied and the 

amount of application logic that can hence be accommodated has been 

highlighted at various stages of this report. 

 

 The previous assessment chapter highlighted the various assumptions 

made (and their implicit compromises) in designing the nanOrb architecture. It 

is conceivable that the application of this architecture to a different embedded 

environment, supporting different distributed applications, would result in the 

imposing of different operating characteristics and end-functionality 

requirements on its implementation. The applicability of any embedded 

CORBA solution is ultimately largely dependent on its environment. 

 

6.2 Work Remaining 

 

The implementation of the REPLY and ERROR message functionality 

specified in the nanOrb design must be completed. This is just a debugging 

process; the core application logic is in functional. 

 

6.3 Further Research 

 

Whereas this report does demonstrate the provision of basic CORBA request 

functionality on the RCX, and hence embedded systems, it does not fully 

explore the extent to which this functionality can be extended. Whereas it was 

not attempted to implement a full minimumCORBA implementation (that was 

not the ultimate focus of this project), there is scope for the implementation of 

more than the aforementioned basic request functionality. Further work might 

implement this functionality in a logically progressive fashion and ultimately 

draw conclusions as to the relationship between the provision of functionality 

and the consumption of resources, hence illustrating the ‘balance’ that can be 

achieved with implementations. 
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It may also be possible to attempt a full minimumCORBA 

implementation on the RCX. This would ultimately consume all physical 

resources (memory) and hence most likely only facilitate a CORBA interface 

to the underlying hardware, as opposed to accommodating considerable 

application logic. It is anticipated that this activity will be pursued in 

conjunction with the K-ORB project [18]. 

 

The nature of the Mindstorms robots, their operating characteristics 

and the available toolset provides a rich environment for the exploration of 

mobility support within the embedded CORBA field. The infrared transport and 

addressing mechanism could enable the use of multiple PC’s acting as 

mobility gateways to the RCX’s as described in the Alice paper [28]. The 

application might also explore autonomous disconnected operation 

characteristics. 
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