

CORBA based Midd leware for Coop erating

Mobile Robo ts

Colin Ryan

B.Tech.

September 2000

A Dissertation submitted in partial fulfilment of the requirements for the

Degree of M.Sc. in Computer Science

University of Dublin

Trinity College Dublin

 II

Declaration

I, the undersigned, declare that this dissertation is entirely my own work,

except where otherwise accredited, and that it has not been previously

submitted for a degree at this or any other university or institution.

 Colin Ryan

 September 2000

 III

Permiss ion to Lend and/or Copy

I hereby declare that Trinity College may lend or copy this dissertation upon

request.

 Colin Ryan

 September 2000

 IV

Abstract

An embedded system is an autonomous information processing system that

determines or controls to a large extent the behaviour of a larger system. The

proliferation of embedded systems applications is increasing daily, yet most

implementations are largely proprietary and utilise very few existing software

standards in implementing their external interfaces. For a particular class of

embedded system, those in use in mobile environments, the use of wireless

communications protocols is a fundamental requirement.

The aim of this research is to investigate the applicability of the Object

Management Group’s Common Object Request Broker Architecture (CORBA)

to designing and implementing middleware (ORBs) to present interfaces to

embedded systems. The CORBA standard enables the construction of

distributed systems of multiple components with complex interactions and

hence supports the building of distributed architectures modelling real-world

systems. The project also uses a wireless protocol to assess the suitability of

CORBA to embedded systems that operate in mobile environments. The

applicability of the CORBA standard is assessed with a canonical application

utilising the Lego Mindstorms Robotics kit.

Having designed and built the test system outlined above, the suitability of the

utilised technologies to the project environment, and hence to that of

embedded systems in mobile environments, is assessed. Conclusions are

drawn as to system performance and robustness as well as exploration of

potential shortcomings of the design and scope for further research.

 V

Acknowledgements

I would like to thank my supervisor, Dr. Vinny Cahill, for all his help and

guidance through the year. Thanks to Jim, Andy and Ray of the DSG group

for their assistance at various stages of this work and all my classmates for a

great year and barrel of laughs (and several of beer).

Thanks to Ms. Hughes for the smashing dinners and the ultra-reliable taxi

service. Most of all thanks to my family for their perpetual, and unconditional,

support. And lastly I thank myself, without whom none of this would have

been possible …

 VI

Table Of Contents

1 INTRODUCTION ...1

1.1 Embedded Systems..1

1.2 Mobile Devices...2

1.3 Common Object Request Broker Architecture (CORBA)................................3

1.4 Applying CORBA to Embedded Systems...4

1.5 Project Objective...6

1.6 Design Overview ..7

1.7 Project Achievements..8

1.8 Roadmap ..9

2 BACKGROUND ...11

2.1 Embedded Systems..11

2.1.1 Overview .. 11
2.1.2 Engineering Constraints ... 13
2.1.3 Embedded Systems in Distributed Environments .. 13

2.2 The Common Object Request Broker Architecture (CORBA)15

2.2.1 Overview .. 15
2.2.2 The CORBA ORB.. 16
2.2.3 Interface Definition Language.. 17
2.2.4 CORBA Services.. 18

2.3 The General Inter-ORB Protocol...19

2.3.1 Overview .. 19
2.3.2 The Common Data Representation .. 20

 VII

2.3.3 The GIOP Message Set .. 23
2.3.4 Transport Assumptions... 30

2.4 Object References..31

2.5 CORBA and Embedded Systems...33

2.5.1 Overview .. 33
2.5.2 Embedded CORBA Research... 35

2.6 The Lego Mind Storms Robotics Invention System...37

2.6.1 Overview .. 37
2.6.2 The RCX Brick... 38
2.6.3 The Development Process and Tools ... 39
2.6.4 LegOS and the Layered Network Protocol... 40

2.7 Mobile Applications...42

2.7.1 Overview .. 42
2.7.2 Communications Characteristics .. 42

3 DESIGN...45

3.1 Overview...45

3.2 The Data Representation Syntax..47

3.3 The ORB Message Set ...48

3.3.1 Client Initiated Messages ... 48
3.3.2 Server Initiated Messages... 50
3.3.3 Common Messages... 51

3.4 The ORB Transport Protocol ...52

3.5 Communication End-Points ...53

3.6 An Object Addressing Format ...53

3.7 The II OP to ESIOP Br idge...57

3.8 The Environment Specific ORB on the RCX (nanOrb)59

3.9 Compar ison to other related designs... 61

 VIII

4 IMPLEMENTATION..63

4.1 Implementation Goals...63

4.2 The Application and its IDL specification...64

4.3 The Client Implementation...65

4.4 The Gateway Implementation ..66

4.5 The nanOrb ESIOP implementation ... 69

4.6 The RCX ORB implementation - nanOrb ..69

4.7 Difficulties Encountered ...72

5 EVALUATION ...74

5.1 Overview...74

5.2 Efficiency ..75

5.4 Architecture Compar ison ...78

5.5 Improving the nanOrb Architecture... 80

6 CONCLUSION..81

6.1 Work Completed ... 81

6.2 Work Remaining ... 82

6.3 Fur ther Research... 82

BIBLIOGRAPHY...84

 IX

Table of Figures

Figure 1 The Target Architecture ...7

Figure 2 The Object Management Architecture ...15

Figure 3 Object Request Being Sent Through the ORB.................................17

Figure 4 GIOP Defined Primitive Data Types...21

Figure 5 Octet Sizes of Primitive Data Types...22

Figure 6 The 1.1 GIOP Messages ...23

Figure 7 The GIOP Protocol Header IDL ...24

Figure 8 The GIOP 1.1 Request Header IDL ...25

Figure 9 The GIOP 1.1 Request Header IDL ...26

Figure 10 The GIOP Cancel Request Header IDL ...27

Figure 11 The GIOP Locate Request Header IDL ...28

Figure 12 The GIOP Locate Reply Header IDL..29

Figure 13 The Interoperable Object Reference IDL32

Figure 14 The structure of LNP packets...41

Figure 15 The nanOrb IOR Profile ID...56

Figure 16 The IIOP to ESIOP Half-Bridge..58

Figure 17 The nanOrb Hierarchy ...60

Figure 18 The nanOrb Application Architecture ...64

Figure 19 The nanOrb application IDL ...65

Figure 20 The Client Application ..66

Figure 21 Gateway translating IIOP to ESIOP requests.................................68

Figure 22 Sample output in response for a “right (6)” invocation68

Figure 23 The nanOrbDemo IOR...70

Figure 24 RCX Processing Client Requests ..71

 1

Chapter One

Introdu ction

The overall goal of this report is to investigate the suitability of CORBA

middle-ware technology to resource-constrained embedded systems with a

particular focus on mobile environments. The aim being to implement a

minimal ORB (more specifically an ‘environment specific’ ORB), on a severely

resource limited platform (the LEGO Mindstorms RCX), along with an

associated Environment Specific Inter-ORB Protocol (an ESIOP) to facilitate

message based CORBA communication with that ORB. This implementation

is referred to throughout this document as the ‘nanOrb’ implementation. This

chapter introduces the key areas of interest to the nanOrb project and outlines

the project objectives and achievements. Finally a roadmap of the rest of this

document is presented.

1.1 Embedded Systems

Embedded systems are autonomous information processing systems that

determine, or control to a large extent, the behaviour of a larger system. An

embedded system typically consists of a microprocessor embedded into some

device for some specific purpose other than to provide general purpose

computing. Continuing advances in the downsizing of computer hardware

components (and the decrease in their cost) present new opportunities for the

use of embedded systems in applications ranging through embedded control,

multimedia, networking and information and biomedical appliances. Each of

these applications imposes their own restrictions on the capabilities of the end

system, but all share some typical characteristics. The most common of

engineering constraints are driven by end unit cost and operating environment

 2

specifics. These result in systems consisting only of the most minimal of

hardware resources (processing power and memory) necessary to support

their function. Hence the software engineering process must be highly

efficient and is tightly constrained. Any form of inter-system communications

is typically implemented at a very low-level and consisted of some proprietary

communications protocol.

The LEGO Mindstorms Robotics Invention System was chosen as the

target embedded system for this report, as it accurately reflects the

characteristics of an extremely resource constrained embedded system. At

the centre of this robotics toolkit is the RCX brick, which contains a Hitatchi

HD6433292 micro-controller and 32k of external RAM. These resources are

obviously insufficient to accommodate a full ORB implementation. The RCX

brick can communicate with another RCX or indeed an appropriately

equipped PC via an embedded infrared transceiver. This transceiver is quite

limited in its range, having only the 9-volt power-supply of the RCX to power

it. As such the environment provides a device with minimal processing and

volatile memory capabilities, in conjunction with a rudimentary communication

mechanism.

1.2 Mobile Devices

The advent of wireless communications technology created a new model for

the interconnection of electronic devices. Communicating devices no longer

need be tied to a physical location, or indeed to be stationary. It is now

possible to support communication for electronic devices as they are in

motion or located in areas of minimal physical infrastructure. This technology

coupled with the aforementioned increase in availability of small-sized, low-

cost microprocessors has seen the phenomenal growth in both inter-

connected small-scale mobile devices (embedded systems) and connectivity

with conventional tethered services. This of course has important

ramifications for the software that resides on these devices. It is now charged

 3

with implementing more and more functionality, and consequently manifests

much greater complexity. There is hence a recent shift towards applying the

more high-level abstract design procedures and supporting infrastructures

that are used in conventional distributed software systems to these mobile

applications and (embedded) devices with a view to facilitating easier and

more standardised development.

1.3 Common Object Request Broker Architecture (CORBA)

The Object Management Groups Common Object Request Broker

Architecture (CORBA) specifies an infrastructure that “provides

interoperability between software objects in a heterogeneous, distributed

environment” [1] and, to a large extent, transparent to the programmer. The

aim of this architecture is to allow computer systems using different hardware,

operating systems, and programming languages to communicate

transparently and reliably. Hence a COBRA implementation enables the

transparent communication between software objects (via a set of well

defined interfaces), which may be implemented using any third generation

programming language (for which an IDL mapping has been defined) and

ultimately hosted on any distributed operating system.

An implementation of the CORBA specification ultimately provides a

“virtual bus”. Once all communicating devices conform to the CORBA

specification and it’s interfaces, the internal implementation details may be

very different for each device. Once in place, any device can make objects

available on this bus and all of the other devices on the underlying

communications network may access them in a transparent way. The

implementation of this virtual bus is actually the responsibility of all

participating devices on the network. Those devices making objects available

on the bus are deemed to be ‘servers’ while those availing of the objects are

deemed to be clients (these roles are relevant only to the particular object and

 4

apply only for the duration of the time the object is in use). A device making a

server object available may indeed by a client of another, and vice versa.

The central component of any CORBA implementation is the Object

Request Broker (ORB). It implements the communications infrastructure

necessary to facilitate, identify and locate objects, handle connection

management and reliably deliver data between these objects. This ORB Core

is the most crucial part of a CORBA implementation; it is responsible for

implementing the communication of requests and their results. In addition to

the ORB itself, the current CORBA 2 specification [1] describes various

augmenting services, providing functionality such as transaction support and

object naming resolution, which although complementary to the core

functionality are not ultimately required by it.

1.4 Applying CORBA to Embedded Systems

There are numerous ORB products available in the marketplace today, many

of which have been built with a particular focus on performance. Although

these implementations may successfully facilitate the building of reliable

distributed applications, they are typically designed to implement the full

CORBA specification. The difficulty with these implementations, in the context

of embedded systems, is the excessive demands they make on the host

systems and other environmental resources. These far exceed those

available to the majority of embedded applications. Hence there is a need for

more efficient and/or specifically tailored CORBA implementations if CORBA

is to be used in the embedded environment.

The OMG’s ‘minimumCORBA’ specification, as described in the

'Minimum CORBA RFP’ [2], specifies a CORBA model for environments in

which the resources available to the implementation are constrained by the

very nature of the applications, referred to in the document as “embedded

systems”. Minimum CORBA provides a reduced CORBA core specification

 5

which implements basic client/server functionality, whilst removing the

aforementioned peripheral services, with the intention of bringing CORBA into

the domain of the embedded application. The specification ultimately specifies

features of the full CORBA specification, which may be omitted in a reduced

ORB implementation.

For even smaller embedded systems, which may not have enough

system resources to accommodate the still relatively sizeable (approx 50k)

Minimum CORBA implementation, another option exists. CORBA enabling

libraries have recently emerged on the commercial market. These small

footprint libraries can be as small as 15k in size [3], as much as ten times

smaller than a full ORB implementation. These libraries, often called ‘engines’

[3], enable CORBA communication at a much lower level than conventional

CORBA clients and servers. It is important to point out the difference between

the simple byte-streaming service of a standard TCP/IP protocol stack

implementation and the much greater service that CORBA functionality

provides, enabling the networking of application software objects and their

invocation data in a distributed environment.

In all cases a CORBA implementation is dependent on an underlying

transport protocol and implicitly a network. It ultimately assumes a minimum

capability of this and the system hardware. The majority of current

implementations are based on the TCP/IP protocol stack, which provides the

underlying connection-oriented transport that the CORBA defined inter-ORB

messaging specification, the General Inter-ORB Protocol (GIOP) expects.

Indeed a CORBA 2.0 compliant implementation must implement an IP

mapping of the GIOP. This implementation is called the Internet Inter-ORB

Protocol (IIOP) and is the standard protocol used by all compliant ORBs,

hence enabling programs built with different ORBs to communicate.

The most constrained of GIOP, and hence CORBA, implementations

ultimately must relax some of the specifications in order to accommodate their

environment. They are somewhat customised to suit the underlying hardware

and transport facilities. These implementations are termed “environment

 6

specific” implementations [4]. Environment specific protocols enable the use

of CORBA over transport protocols other than TCP/IP and ultimately allow the

use of protocols that are optimised for specific environments.

1.5 Project Objective

The key objective of this project is to investigate the suitability of CORBA to

embedded systems through exploring its implementation on a severely

resource constrained system. To investigate this, an Environment Specific

Inter-ORB Protocol (an ESIOP) and embedded ORB (“nanOrb”) are designed,

implemented and accessed using a simple application. Through documenting

and analysing the design process, the different configuration and

customisation options within the implementation are illustrated. The

implementation of this system not only ultimately demonstrates that the

CORBA specification can be applied in this domain, but also highlights the

difficulties involved.

The end goal of any COBRA implementation is to allow the application

developer to build a distributed application where, once the CORBA IDL

interface is defined, only the application specific code needs development and

the underlying infrastructure supporting distributed object invocations is

largely transparent. Any embedded ORB implementation, and hence this one,

should therefore provide the same functionality, allowing the developers of

both client and server functionality to concentrate development efforts on the

application specific code. Hence the nanOrb environment specific messaging

and ORB functionality is implemented in such a way as to allow the

programmer to utilise it in creating new applications, with as little restructuring

as possible (a certain amount of customisation is necessitated on the

embedded device in order to preserve the efficient implementation of the ORB

functionality).

 7

1.6 Design Overview

The end design of an embedded CORBA implementation should facilitate

normal CORBA clients making invocations on the embedded service via the

conventional IIOP mechanisms. Therefore some form of bridging function is

needed between the CORBA specified Internet Inter-ORB Protocol (IIOP) and

the Environment Specific Inter-ORB Protocol (ESIOP). This bridging should

ideally be transparent to the client (that is the client should not require any

special knowledge of the environment specific implementation). In this way

the client is appears to directly invoke operations on the embedded server.

Figure 1 The Target Architecture

The main effort of the design is in defining a specific message-set for the

Environment Specific Inter-ORB Protocol (ESIOP) and the “on-the-wire”

format of these messages as well as providing the embedded ORB

functionality on the target system. This ORB functionality should facilitate the

encoding and decoding of supported IDL data types and the sending and

receiving of the ESIOP messages.

 8

1.7 Project Achievements

A design for enabling the aforementioned functionality has been produced

and facilitates the transparent invocation of embedded server object methods,

from the client. The work in this report has been kept focussed on

implementing the ESIOP and embedded ORB functionality. The bridging

functionality has been implemented as a CORBA server application (as

opposed to the ORB encompassed solution described in Figure 1) in order to

demonstrate the design. Whereas a more complete solution would implement

a non application-specific bridge as part of an ORB implementation, the time

constraints involved would not permit this. This architecture necessitates that

the gateway implements the specified IDL interface, but this should not be the

case in a more complete solution.

Figure 2 The nanOrb Architecture

This current implementation illustrates the embedded device acting as a

server for normal CORBA clients by translating between the necessary IIOP

and ESIOP messages. It defines a message-set for the ESIOP

implementation and the data encoding rules. It also supports the

demonstration on inter-embedded system invocations via the ESIOP. It does

not as yet facilitate the RCX making client requests of normal CORBA

servers.

 9

1.8 Roadmap

The remainder of this document is divided, by chapter, according to the

different work objectives of this research. Chapter two provides a background

for each of the technologies utilised. The Common Object Request Broker

Architecture is described in more detail, with particular attention to its more

recent application to Embedded Systems, including several recent projects in

this area. The GIOP specification is also described in more detail, detailing its

individual components and messaging functionality. The LEGO Mindstorms

Robotics Invention System is presented in more detail and the various

development tools and environments available for it are reviewed. This

chapter does not endeavour to fully explain each of these fields in its entirety,

instead references are provided, where appropriate, to facilitate further

reading.

Chapter three outlines the design objectives involved in mapping the

GIOP specification onto an Environment Specific Inter-ORB Protocol and

implementing embedded ORBs. Each of the design objectives is explored in

detail and then developed through applying it to the Mindstorms environment.

The intention is to illustrate the various configurations and customisations that

are possible, and how they will ultimately effect the implementation.

The implementation of a test application (“nanOrb”) is described in

chapter four. This application is used to verify the design presented

previously. The technologies used and the application architecture is

described in detail. Each of the components of the final application is

documented along with the difficulties encountered and how they were

overcome.

The application is analysed in Chapter 5 with a view to determining

CORBA’s applicability to the embedded system domain. The advantages and

disadvantages of using CORBA to provide standardised interfaces to

embedded systems are examined. There are many design decisions and

 10

optimisations that can be made when implementing an ESIOP. The

justifications for each of these are investigated and the ramifications explored.

Ultimately this chapter describes the degree to which this work was

successful in verifying CORBA’s success.

Finally Chapter 6 summarises the successes and failings of the nanOrb

project. Conclusions are drawn from the work presented in previous chapters.

The completed work is summarized and suggestions for further development

and/or improvements are also made.

 11

Chapter 2

Background

This chapter describes the main technologies relevant to this research, as

outlined in the previous chapter. A number of relevant research papers and

commercial products are also outlined, with a view to establishing the current

‘state-of-the-art’ in these areas. The overall aim of this chapter is to give the

reader a context within which to place this work and aid further reading and/or

development.

2.1 Embedded Systems

2.1.1 Overview

The IEE defines embedded systems as “…devices used to control, monitor or

assist the operation of equipment, machinery or plant. ‘Embedded’ reflects the

fact that they are an integral part of the system” [5]. The same literature

further states, “all embedded systems are or include computers. Some of

these computers are however very simple systems as compared with a PC”.

Thus, it is true to say that many embedded systems do not look like traditional

computers. Embedded programmable microprocessors can be found in

consumer-electronics devices, kitchen appliances, networking equipment, and

industrial control systems in one form or another -- from 8-bit micro-controllers

to 32-bit Digital Signal Processors (DSPs). Though they're most often

associated with desktop computers, the most pervasive use of

microprocessors today is by far in embedded systems from the most simple of

devices through to extremely sophisticated systems such as large

 12

manufacturing systems and even such safety critical systems as airplane

avionics.

The very simplest embedded systems are typically charged

(programmed) with performing a simple function or set of functions to meet a

single predetermined purpose. In the more complex embedded systems the

operation of the embedded system is determined by some compiled code (a

program), which enables the embedded system to do execute the logic of a

specific application. This ability to program the system means that the same

system, where flexible enough, can be used for a variety of different

purposes. In some cases a microprocessor may be designed in such a way

that application software for a particular purpose can be added to the basic

software in a second process, after which it is not possible to make further

changes: this is sometimes referred to as ‘firmware’.

The growth in utilization of programmable processors in embedded

systems has largely been caused by the increase in availability of powerful,

inexpensive processors and low-cost memory. However, perhaps the most

exciting catalyst to this growth is the utilization of application oriented

embedded systems within the Internet.

Though this presents a diverse spectrum of potential platforms and end

applications for an embedded system, these are not of direct concern to this

research. It is the software design process as distinct from technology, and

the facilitation of high-level intercommunication for embedded devices, along

with their influencing factors, that is focused upon. External design constraints

based, for example, on cost pressures, long life-cycle requirements, real-time

requirements, reliability requirements etc. are not explored, although it is

recognised that these are the defining factors for any embedded system’s

hardware and hence, implicitly, its software (indeed embedded systems in

many cases must be optimised for life-cycle and business-driven factors

rather than for maximum computing throughput). Thus, to reiterate, in this

paper we are addressing the fundamentally common physical attributes of all

such systems, that is those common physical resource constraints that

 13

influence all embedded software implementations and hence how they might

communicate.

2.1.2 Engineering Constraints

It is the physical resources of the embedded system that ultimately

drive its final software implementation (be they originally cost or otherwise

constrained). These constraints include specifications such as the target

processor and its instruction set, memory availability (both RAM and ROM),

and others arising from embedded operating systems/firmware and input and

output capabilities and requirements [6]. These constrained systems are a

direct result of the nature of the end product (or device) in which the system

will operate. Household appliances for example, are more and more likely to

utilise embedded system technology, yet due to the extremely competitive,

cost-driven markets in which these manufacturers operate, the systems

themselves are as economic, and implicitly constrained, as possible.

2.1.3 Embedded Systems in Distributed Environments

In the context of this report we will describe a distributed embedded system

as “a system in which individual embedded systems running applications and

communicating via some network medium are physically separated” [7]. As

embedded systems are used more and more, (“Approximately 3 billion

embedded CPUs are sold each year, with smaller (4-, 8-, and 16-bit) CPUs

dominating by quantity and aggregate dollar amount” [8]), they increasingly

need to communicate and interoperate with desktop and client-server

installations [9].

The processors in an embedded system can be connected via any

number of proprietary or standard buses, LANs, and WANs. When the degree

of spatial distribution is relatively local, the processors are typically hard-wired

together via a shared memory bus or similar hardware. Processors can also

 14

be linked together via a separate high-speed serial bus such as the Controller

Area Network (CAN) bus, which facilitates a greater degree of distribution and

supports data rates of up to 1 Mbps. In order to support still further

distribution, WAN protocols, such as the prevalent TCP/IP stack, are

implemented in suitable devices. It is still, however, often considered far too

expensive for smaller systems. Ultimately, although the underlying

communications technology may not utilize a physical-connection, as the

demand for mobility support increases, modern networks are based more and

more on wireless communication.

Embedded Systems operating in distributed environment are also

frequently subject to real-time constraints. As such, these systems must be

designed so that tasks are always executed by a specified deadline. The

particular deadline may a specific time, a time interval or indeed a discrete

event [10]. This last statement describes the two key approaches to real-time

systems design, the event-driven and time-driven models. The greater the

frequency of these tasks and the potential for failure on missing the deadlines,

the more the application exhibits ‘hard real-time’ requirements. Conversely, if

missing a deadline will not necessarily compromise the system, the

application is said to have ‘soft real-time’ requirements [10].

In discussing the applicability of the CORBA to embedded systems, the

focus is implicitly on distributed embedded systems, independent of the

underlying communications mechanism and more specifically those that

execute some form of application logic. Whether these systems are subject to

real-time constraints or not, is less important, although more likely in the

context of a mobile environment.

 15

2.2 The Common Object Request Broker Architecture

(CORBA)

2.2.1 Overview

The Object Management Group (OMG) was established in 1989 to create

standards for distributed object computing. Its standards were intended to

“allow interoperability of objects, component, and applications in a

heterogeneous networked environment” [11]. Early work resulted in the Object

Management Architecture (OMA), an abstract object model, providing

concepts of object concepts and terminology. The Common Object Request

Broker Architecture (CORBA) is an open distributed-object computing

infrastructure that specifies a concrete object model, based on the OMA

model. Its basic task is to handle requests between clients and object

implementations, in a distributed environment. CORBA automates many

common network programming tasks such as “object registration, location,

and activation; request de-multiplexing; framing and error handling; parameter

marshalling and de-marshalling; and operation dispatching” [1].

Figure 3 The Object Management Architecture

 16

CORBA allows applications to communicate with one another no

matter where they are located or who has designed them. CORBA 1.1 was

introduced in 1991 by the OMG and defined the Interface Definition Language

(IDL) and the Application Programming Interfaces (API) that enable

client/server object interaction within a specific implementation of an Object

Request Broker (ORB). It did not however, provide for the inter-working of

different vendors ORBs, which typically used proprietary data representation

and marshalling schemes.

CORBA 2.0 [1], adopted in December of 1994, defines true

interoperability by specifying how ORBs from different vendors can

interoperate using the General Inter-ORB Protocol (GIOP) specification, the

standard implementation of this specification being the Internet Inter-ORB

Protocol (IIOP), which utilises the TCP/IP protocol stack. All CORBA 2.0

compliant ORB implementations must support IIOP. This support facilitates a

standard inter-orb communications mechanism.

2.2.2 The CORBA ORB

The core of CORBA is the ‘ORB core’, or middleware (‘Middleware’ is the

software that resides between an application program and the base operating

systems and networking functions. Its purpose is to shield application

developers from complex low-level coding). The OMG defines the ORB as

“the middleware that establishes the client-server relationships between

objects” [11], it further explains how, “Using an ORB, a client can

transparently invoke a method on a server object, which can be on the same

machine or across a network. The ORB intercepts the call and is responsible

for finding an object that can implement the request, pass it the parameters,

invoke its method, and return the results” [11]. The client does not have to be

aware of where the object is located, its programming language, its operating

system, or any other system aspects that are not part of an object's interface.

 17

In so doing, the ORB provides interoperability between applications on

different machines in heterogeneous distributed environments.

Figure 4 An Object Request Being Sent Through the Object Request Broker

2.2.3 Interface Definition L angu age

The IDL was originally part of the Open Software Foundation's Distributed

Computing Environment (DCE). It described function interfaces for Remote

Procedure Calls (RPCs), so that a compiler could generate proxy and stub

code that marshalled function parameters between machines. This same

model is used in CORBA to define interfaces to remote objects and hence

generate stub and proxy classes, which can be used by the programmer to

provide the distributed object functionality. The programmer uses these

classes in the normal way, without having to worry about their internal

functionality, and object distribution is achieved.

The Interface Definition Language (IDL) defined in CORBA facilitates

the use, and inter-working, of multiple third generation programming

languages. The IDL clearly defines the interface of a CORBA object according

to a set off well-defined data types. This coupled with the GIOP and CDR (see

below), which define the actual data representation, marshalling and transport

rules, allows the seamless inter-working of components, which can potentially

be created with different languages, on different operating systems, having

different data representation rules.

 18

2.2.4 CORBA Services

At the heart of every CORBA implementation, is the ORB core, that which

provides the basic objects references and invocation functionality, hence

enabling a client to transparently invoke the services of distributed objects

implementations. In addition to this basic middleware functionality, the OMG

has adopted a number of value-adding functions represented by middleware

services called the Common Object Services (COS). CORBA services greatly

extend the functionality provided by the core and some of are essential for the

development and deployment of distributed applications. These services

provided include, amongst others, centralised object name resolution,

distributed event services and transactional support.

The OMG Naming Service is the simplest of the standard CORBA

services. It essentially provides a mapping from object names to references.

It is essentially a well-known repository that stores named object references.

The key benefit of the OMG Naming Service is its distributed capabilities, and

that it allows for stored object references to be accessed through a CORBA

environment. Servers advertise themselves with the Naming Service by

providing an object reference and an associated name at run-time, hence

enabling clients to use the Naming Service to locate objects in a CORBA

environment.

The OMG Event Service provides support for event-driven

communication in the CORBA environment. It essentially implements a

publisher-subscriber model via the concept of “Event Channels” and supports

both push and pull operations. The ORB core allows for synchronous and

asynchronous requests. With synchronous requests, the client application is

blocked until the request is returned to the client, whereas with an

asynchronous request, the client continues to execute, however if a response

is needed, the client must periodically poll the ORB for that response until it is

ready. There is no provision in this model for event-driven communication.

The Event Channel is an object that provides this. The Event Channel accepts

 19

connections from one or more suppliers, and one or more consumers. An

event is defined as any piece of data that has been generated as a result of

some activity. The key is that any event received from one of the suppliers is

transmitted to every consumer.

The Object Transactional Service enables transactional functionality in

the CORBA environment. It is, in essence, a distributed transaction manager.

It supports the inter-working of object-oriented and procedural transactional

applications and includes support for the industry X/Open transactional

standard.

2.3 The General Inter-ORB Protocol

2.3.1 Overview

The biggest shortcoming of the early release of CORBA (pre CORBA 2.0)

was its lack of a protocol specification. In order to facilitate inter-ORB

communications each ORB vendor typically implemented their own

proprietary inter-ORB protocol, hence complicating (if not disabling) any form

of inter-vendor ORB communications. This problem was solved with the

release of the CORBA 2.0 specification, which described an abstract protocol

that facilitated inter-operability. This protocol, the General Inter-ORB Protocol,

specified a standard set of messages, and their encoding specifics, which

could ultimately be mapped onto any connection oriented transport

mechanism (the aforementioned IIOP being the TCP/IP mapping of the

abstract GIOP model).

 20

The GIOP specification can be conceptually divided into three primary

components:

1) The Common Data Representation

2) The GIOP Message Set

3) Transport Requirements

2.3.2 The Common Data Representation

The Common Data Representation (CDR) provides a common syntax for the

transfer of IDL defined data. It defines the low-level binary, “on-the-wire”

format of inter-ORB communications (ultimately byte streams).

The CDR standard itself has three key features:

1) Variable Byte Addressing - The CDR supports both ‘little-endian’ and

‘big-endian’ architectures as there is no guarantee, in the

heterogeneous distributed environment in which CORBA operates, that

any two communicating devices will use the same byte addressing

rules. Using CDR, the sender does not have to perform any byte

swapping; this is the sole responsibility of the receiver. The actual byte-

order of a message is flagged in the message protocol header, so the

receiver knows how the message contents must be interpreted.

2) A complete IDL mapping – The CDR defines the representation of all

IDL defined data types, hence freeing programmers from having to

marshal their data. Constructed data types such as structures, strings,

arrays etc., are all built from the primitive types using OMG defined

rules. The elements of a structure, for example, are always encoded in

the order of their declaration.

 21

TYPE Description

boolean An 8-bit value with the range [0-1]

char An 8-bit value with a mapping into the ISO Latin-1 8859.1

character set.

octet An 8-bit value with the range [0-255] that is not marshalled

short A 16-bit integer with the range [-2exp15, 2exp15-1]

unsigned short A 16-bit integer with the range [0, 2exp16-1]

wchar An 8-bit, 16-bit , or 32-bit value that represents international

character data

long A 32-bit integer with the range [-2exp31, 2exp31-1]

unsigned long A 32-bit integer with the range [0, 2exp32-1]

long long A 32-bit integer with the range [-2exp63, 2exp63-1]

unsigned long long A 32-bit integer with the range [0, 2exp64-1]

float A 32-bit value conforming to the ANSI/IEEE 754-1985

floating-point standard

double A 64-bit value conforming to the ANSI/IEEE 754-1985 double-

precision floating-point standard

long double A 128 bit value conforming to the ANSI/IEEE 754-1985

double-precision floating-point standard

Figure 5 GIOP Defined Pr imitive Data Types

3) Naturally Aligned Primitive Types – THE CDR specifies that primitive

data types should be aligned on their natural byte boundaries (that is

the way most machine architectures would align them). Whereas this

process is somewhat inefficient in its consumption of bandwidth, it is

ultimately more efficient than a more compact representation, as data

can be unmarshalled by simply ‘pointing’ at its binary value in memory.

The alignment of a primitive data type is equal to the size of that type in

bytes. Hence, a type of size N bytes must be positioned in an octet

stream where the index is a multiple N. A gap may also be inserted in

the stream to preserve this alignment.

 22

TYPE ALIGNMENT (Bytes)

char 1

byte 1

short 2

unsigned short 2

long 4

unsigned long 4

long long 8

unsigned long long 8

float 4

double 8

long double 8

boolean 1

enumeration 4

Figure 6 Octet Sizes of Pr imitive Data Types

It is important to note that CDR encoded data is not self-identifying.

Upon receipt, the marshalled data is nothing more than a sequence of octets

(bytes). The receiver must know in advance how these marshalled octets are

to be decoded. This knowledge is facilitated by the IDL definitions of an

interface, which informs as receiver how data is to be interpreted.

 23

2.3.3 The GIOP Message Set

2.3.3.1 Overview

The GIOP specification defines a set of eight messages (since version 1.1),

which are considered sufficient to accomplish the functional objectives of

CORBA. Whereas, s only two of these messages are actually required to

achieve the basic remote invocation objectives of CORBA, the remaining six

provide various, complimentary, functionality.

Figure 7 The 1.1 GIOP Messages

The FRAGMENT message was added in version 1.1 of the GIOP

specification, to allow for the more efficient marshalling of data by the sender.

2.3.3.2 The GIOP Protocol Header

In order to transmit a GIOP message, the sender will fist include the

protocol message header, a 12-byte header consisting of five fields, and then

the message body, which is specific to the type of message being sent.

Message Type Issuer enum Value

REQUEST Client 0

REPLY Server 1

CANCEL_REQUEST Client 2

LOCATE_REQUEST Client 3

LOCATE_REPLY Server 4

CLOSE_CONNECTION Server 5

MESSAGE_ERROR Both 6

FRAGMENT Both 7

 24

Modu le GIOP {

 struct Version {

 octet major;

 octet minor;

 };

 enum MsgType_1_1 {

 Request, Reply, CancelRequest, LocateRequest,

 LocateReply, CloseConn ection, MessageError, Fragment

 };

 struct MessageHeader_1_1{

 char magic[4];

 Version GIOP_version;

 octet flags;

 octet message_type;

 unsigned long message_size;

 };

};

Figure 8 The GIOP Protocol Header IDL

• The first four bytes always contain the characters ‘GIOP’, to indicate

the message type.

• The fourth and fifth bytes contain the Major and Minor version numbers

as binary values.

• The sixth byte is a flag, the least significant bit of which signifies

whether the message is in big endian (0) or little-endian(1) encoding.

The second bit is used to flag fragmentation.

• The seventh byte is used to indicate the type of the GIOP Message

and corresponds to the numeric value of the appropriate

MsgType_1_1 enumeration.

• The last four bytes are used to indicate the sized of the message,

excluding the twelve bytes of this header.

 25

2.3.3.3 The Request Message

The request message is used to encode object invocations and send them to

the server. A complete request message consists of the aforementioned

GIOP protocol header, a request message header and also the request

message body. The latter two forming the GIOP message body.

modu le GIOP {

 struct RequestHeader_1_1 {

 IOP::ServiceContextList service_context;

 unsigned long request_id;

 boo lean respon se_expected;

 octet reserved[3];

 sequence<octet> ob ject_key;

 string operation;

 Principal requesting_principal;

 };

};

Figure 9 The GIOP 1.1 Request Header IDL

• The ‘service_context’ is an IDL defined structure used by services such

as transactional and security services to implicitly pass service

information with requests and replies, transparent to the client.

• The ‘request_id’ field is an unsigned long integer value, used to

uniquely identify a particular request, and also to relate response

messages to their request messages.

• The ‘response-expected’ field is used to indicate whether a server

response is expected in reply to a particular request. The value is set to

false (0) for IDL specified ‘one-way’ functions.

• The ‘reserved’ octet is reserved for future use.

 26

• The ‘object_key’ field is the object key from the Interoperable Object

Reference (IOR). This is a server specified value and has no relevance

outside of the server’s scope.

• The ‘operation’ field contains a string value which indicates the relevant

method to be invoked on an object

• The requesting principal field is used for security purposes in order to

identify the requester. It is now deprecated, as the service context

provides this information.

The body of the request message is an octet sequence containing the

encoded IDL specified ‘in’ and ‘out’ parameters for the requested operation.

2.3.3.4 The Reply Message

The reply message is sent by a server in response to a client request. A

complete reply message consists of the GIOP protocol header, a reply

message header and also the reply message body. The latter two forming the

GIOP message body. The reply message indicates the success or failure of a

request, and (in the case of the former) also includes any IDL defined ‘out’

parameters of the associated method invocation.

modu le GIOP {

 enum ReplyStatusType {

 NO_EXCEPTION, USER_EXCEPTION,

 SYSTEM_EXCEPTION, LOCATION_FORWARD

};

 struct ReplyHeader {

 IOP::ServiceContextList service_context;

 unsigned long request_id;

 ReplyStatusType reply_status;

 };

};

Figure 10 The GIOP 1.1 Request Header IDL

 27

• The ‘service_context’ field is used in the same way in the reply header

as in the request header.

• The ‘request_id’ field returns the uniquely identifier of the associated

request, hence a client does not have to wait for once request to

complete before making another.

• The ‘reply_status’ field contains one of the ‘ReplyStatusType’

enumeration values and indicates the result of the request. The

‘LOCATION_FORWARD’ reply is used when a server cannot fulfil a

particular request, but advices the client to try another address.

The body of the reply contains an octet sequence containing any ‘out’

parameters for the requested operation.

2.3.3.5 The Cancel Request Message

The ‘Cancel Request’ message is sent by a client to a server to indicate that

the client no longer requires, or expects, a response to a particular request. A

complete ’Cancel Request ‘message consists of the GIOP protocol header

and the ‘Cancel Request’ message header.

modu le GIOP{

 struct CancelRequestHeader{

 unsigned long request_id;

 };

};

Figure 11 The GIOP Cancel Request Header IDL

 28

The message header contains only the unsigned long ‘request_id’ field, which

indicates the particular request to be cancelled. The server does not

acknowledge the ‘Cancel Request’ message.

2.3.3.6 The Locate Request Message

The ‘Locate Request’ message is sent by a client to a server to determine

whether a particular Interoperable Object Reference is valid. More specifically,

it is a more bandwidth efficient method (as opposed to sending a complete

request message) of determining of whether or not an object is available at a

particular address. A complete ’Locate Request ‘message consists of the

GIOP protocol header and the ‘Locate Request’ message header.

modu le GIOP{

 struct LocateRequestHeader{

 unsigned long request_id;

 sequence <octet> ob ject_key;

 };

};

Figure 12 The GIOP Locate Request Header IDL

The message header contains an unsigned long ‘Request Identifier’ field and

an object key (octet sequence). This message is often used in conjunction

with a CORBA ‘interface repository’, which acts as a central service for

dispatching client ‘look-up’ requests to server implementations[11].

 29

2.3.3.7 The Locate Reply Message

A server sends the ‘Locate Reply’ message to a client in response to the

‘Locate Request’ message. A complete ‘Locate Reply’ message consists of

the GIOP protocol header, the ‘Locate Reply’ message header and the

‘Locate Reply’ message body.

modu le GIOP{

 enum LocateStatusType{

 UNKNOWN_OBJECT,

 OBJECT_HERE,

 OBJECT_FORWARD

 };

 struct LocateReplyHeader{

 unsigned long request_id;

 LocateStatusType locate_status;

 };

};

Figure 13 The GIOP Locate Reply Header IDL

The message header contains an unsigned long ‘Request Identifier’ field and

the ‘locate_status’ field, indicating the result of the ‘Locate Request’ message.

The message body then contains the Interoperable Object Reference (IOR) of

the requested object

2.3.3.8 The Close Conn ection Message

The ‘Close Connection’ message is only sent by the server. The message

consists only of a GIOP header. If the client wishes to send further requests,

these must be sent on a new connection. This message is typically used

when a server has reached its maximum number of concurrent connections.

 30

2.3.3.9 The Message Error Message

The ‘Message Error’ message can be sent by wither the client or server. It is

sent when the protocol header of a received GIOP message indicates a

protocol version that is not supported by the recipient.

2.3.3.9 The Fragment Message

If a GIOP client decides to use fragmentation, the first part of a request or

response message is sent with the fragment bit in the protocol header set to

true. The ‘Fragment’ message is used after these messages to pass further

fragments of encoded data and also indicate whether more fragments are to

follow. The ‘Fragment’ message exists to avoid necessitating the client

marshalling of large messages in their entirety, before sending them.

2.3.4 Transport Assumptions

The GIOP specification makes certain assumptions of the underlying transport

protocol [1]:

• It provides a reliable connection oriented service. A connection-

oriented transport allows a host to open a connection to by specifying

the address of the receiver. This process will typically return an

identifying handle to that connection, which can then be used for the

duration of communication without the need to specify the address for

every the message sent.

• Connections must be full duplex. Upon a connection being

established, either communicating parties should be able to use that

connection to send messages without needing the address of the

originator.

 31

• The transport is reliable. The transport should ensure that any

messages sent over a connection are received at the destination

without duplication.

• The transport provides a byte-stream abstraction. The transport should

ultimately be viewed as a ‘data-pipe’, once established. In this way, a

communicating host can view a connection as a continuous stream of

bytes and not have to deal with underlying networking issues such as

fragmentation and re-transmission.

2.4 Object References

The CORBA specification describes an object reference as “an object name

that reliably denotes a particular object” [11]. The ultimate aim of this

reference is to facilitate the client utilizing the object in a location and

implementation transparent way. The General Inter-ORB Protocol uses the

Interoperable Object Reference (IOR) to identify objects.

The IOR is a data structure that provides information on the type of object it

references, the underlying transport protocols that support contacting it and

optional further service information. The IOR is structure is defined in a

flexible manner. This flexibility is intended to facilitate the addition of support

for multiple transport protocols and their associated optional data.

An IOR consists of three key components. The first, a ‘type_id’ is a scoped

string indicating the most derived type of the represented objects IDL defined

interface. The IOR will secondly always contain a sequence of one or more

‘TaggedProfile’ structures. Each of these contains endpoint information

indicating how an object may be contacted via a specific protocol. Within each

of these a third value, the Object_ID is an octet sequence used by the server

to identify the particular object. The ‘TaggedComponent’ structure may

 32

optionally be included within a ‘TaggedProfile’ and is used to communicate

extra service specific information.

modu le IOP {

typedef unsigned long ProfileId;

const ProfileId TAG_INTERNET_IOP = 0;

const ProfileId TAG_MULTIPLE_COMPONENTS = 1;

struct TaggedProfile {

ProfileId tag;

sequence <octet> profile_data;

};

struct IOR {

string type_id;

sequence <TaggedProfile> profiles;

};

typedef unsigned long Compon entId;

struct TaggedCompon ent {

 compon entId tag;

 sequence<octet> compon ent_data;

};

typedef sequence<TaggedCompon ent> MultipleCopon entProfile;

};

Figure 14 The Interoperable Object Reference IDL

Hence an IOR can be defined for a server object, which contains end-point

information for each specific protocol the server supports as well as optional

extra ‘TaggedComponent’ data. In this way a server implementation can

support existing and future protocols in a single published IOR.

The default ‘profileId’ (as a consequence of IIOP support being mandated by

the COBRA 2.0 specification) is the ‘TAG_INTERNET_IOP ’ ‘profileId’. In

 33

order to identify a communications end-point using the TCP/IP transport, this

will contain Hostname or IP address and a port number, thus enabling a client

to locate a server implementation via the TCP/IP protocol.

2.5 CORBA and Embedded Systems

2.5.1 Overview

As has been described previously, the majority of implementations of the full

CORBA specification consist not only of the ORB core functionality, but also

several of the aforementioned CORBA services. Hence, these

implementations tend to be quite large, in terms of their storage and memory

requirements, and also computationally intensive to execute, even on modern

day desktop computers. These implementations are hence not suitable to use

in heavily resource constrained embedded systems.

For this reason, alternatives have recently emerged. These alternatives

use various different approaches to enabling the use of CORBA in the

embedded environment. The first, and perhaps most simplistic, of these

consists simply implementing a CORBA enabled gateway or proxy service for

client’s wishing to interact with embedded devices. In this model, CORBA is

used between the client and the gateway, and the gateway in turn

communicates with the embedded system using a proprietary protocol,

typically some low-level proprietary protocol. This clearly is not an embedded

system CORBA implementation. The truer embedded CORBA

implementations fall into two broad categories, those implementing the OMG’s

‘minimumCORBA’ specification [2], and those implementing some form of

protocol ‘engines’, derived from the GIOP specification, the latter enabling

CORBA compliant communication at a much-lower level.

 34

The first of the two aforementioned options, the OMG Minimal CORBA

standard, defines a subset of the full CORBA standard, which facilitates the

implementation of more efficient and smaller footprint ORBs. The core

changes in the standard are the removal of most of the dynamic facilities for

creating and using objects; this decision was based on the assumption that

“The background of embedded systems tends to require design-time

decisions on resource allocation, object location and creation. Together with

pre-determined patterns of interaction, this yields a much more predictable

system environment” [2].

The standard attempts to “minimise the specification of unnecessary or

costly services, whilst retaining maximum compatibility” [2] with the existing

full CORBA specification. Support for the full set of CORBA IDL is retained;

hence there is no barrier to implementations utilising any existing external

CORBA services, when running in larger CORBA systems.

The second approach to facilitating embedded CORBA, is much lower

level approach utilising an efficient ‘protocol engine’ to enable CORBA (GIOP)

compliant communications on an embedded system. This ‘engine’ may be in

the form of a third-party library or a proprietary implementation. These

‘engines’ ultimately facilitate the basic construction and deconstruction of

GIOP compliant packets along with their transmission over the underlying

protocol.

A further consideration in the application of CORBA to embedded

applications is the underlying transport. Whereas the de-facto modern

networking protocol is the TCP/IP protocol suite, and indeed many embedded

systems do require this connectivity, the processors in an embedded system

can be connected via any number of proprietary or standard buses, as

discussed in section 2.1.3. It is therefore often the case that embedded CORA

applications will implement a messaging transport other than the Internet

Inter-ORB Protocol, that is an ‘environment specific’ implementation.

 35

2.5.2 Embedded CORBA Research

There is a lot of research work in progress in the embedded CORBA domain.

The focus of these efforts cover the two main approaches outlined previously,

those of the minimumCORBA specification and customised low-level GIOP

communications, utilizing both the Internet Inter-ORB Protocol (IIOP) and

other Environment Specific Inter-ORB Protocols (ESIOPs). This section

introduces some of the most relevant works and compares them to the focus

of this report.

There are several commercial and research derived high-performance

CORBA products in existence. ORB products such as ORBit [12], ORBacus

[13], OmniORB [14] and the ACE ORB [15] are all built with a focus on high-

performance.

The ACE ORB, for example, is a product of high-performance and real-

time CORBA research at U.C.L.A. [16]. The ACE ORB (TAO), pronounced

"dau", is an open source CORBA 2.2 compliant, C++ implementation. It more

recently includes a minimumCORBA compliant implementation, which as a

result of its component structure and open-source form does lend itself to

application and customisation in the embedded environment.

Lockheed Martin has developed a software infrastructure called

“HARDPack middleware” to “manage data in an object-oriented, real-time,

distributed environment” [17]. This product provides a CORBA 2.0 based ORB

implementation including Dynamic Invocation Interface (DII) and an Interface

Repository (IR) and CORBA services include naming and event

communication.

 36

The difficulty with all the aforementioned CORBA implementations is

that although they are very efficient, their memory footprints and resource

demands are still far too excessive for the more constrained of embedded

systems.

The K-ORB Project [18] is one minimumCORBA research effort that is

very relevant to this project. The project describes a minimumCORBA

framework that facilitates the building of ORBs tailored to the particular

requirements of the target environment. It implements a ‘pluggable framework’

facilitating the utilisation of different components of the K-ORB system as

required. Using this architecture multiple networking protocols are facilitated

and hence ESIOPs accommodated. This model and its architecture have

been leveraged throughout this work and it is anticipated that the two projects

will be integrated in the future.

For the more severely constrained of embedded systems however, all

of these full minimumCORBA implementations are unattainable. GIOP

compliant protocol engines can provide more efficient ORB core functionality

for these devices. Products such as Sunsofts IIOP Protocol Engine [19] and

IONA Technologies IIOP engine [3] enable IIOP messaging on these devices.

The Sunsoft IIOP Protocol engine is a library written in C++ and is

composed of four parts: “a CDR marshalling engine, a Type Code interpreter,

the engine framework (including a partial ORB implementation) and IIOP-

specific modules” [19]. It also provides some run-time dynamic invocation

support. The IONA IIOP engine provides a similar functionality via a “highly-

efficient, low-footprint run-time library” [3] written in ANSI-C. It essentially

provides an API to the GIOP functionality. Whereas these tool do address

embedded CORBA functionality for Internet enabled devices, they do not

support any form of environment specific implementations.

 37

 The [20] paper describes an environment specific CORBA

implementation based on the Controller Area Network (CAN) bus. The report

describes a “Compact Common Data Representation (CCDR)” [20] format, an

optimised version of the CORBA CDR specification, which enables more

efficient use of the small payload of the CAN bus (8 byte) message payloads,

hence compromising processing speed for bandwidth efficiency. It further

describes a customised (reduced) messages set, based on two of the eight

GIOP specified messages, and message header format (again with a focus

on increasing bandwidth efficiency). This work is an excellent demonstration

of the environment driven constraints and resultant customisations that

characterise embedded system development and hence will feature in any

environment specific CORBA implementation.

2.6 The Lego Mind Storms Robotics Invention System

2.6.1 Overview

The Lego Mindstorms Robotics Invention System is a product manufactured

by the Lego Company. It consists of conventional Lego bricks, along with a

‘programmable brick’ and several motors and actuators (touch and light

sensors), which, collectively provide the building blocks of a simple but

powerful robotics kit. Users can program and compile programs for

constructed robots, using a PC based application, and download these to the

robot via a wireless infrared link, which utilises the PC’s serial (RS-232) port

and a small infrared transceiver (tower).

The Mindstorms product was derived from, but is ultimately considerably

different to, the “Programmable Brick Project” of the Epistemology and

Learning Group in MIT’s Media Lab. The Programmable Brick is part of the

ongoing LEGO/Logo research project at the Epistemology and Learning

 38

Group, which was originally started by Seymour Papert [21], the creator of the

LOGO language/teaching environment.

Whereas the originally intended way to program Mindstorms robots was using

the provided PC application, several language ports now exist which facilitate

much greater flexibility and control in building applications. These range from

Visual Basic enabling COM controls [22] to the NQC (‘Not Quite C’) language

[23], a C like low-level language and even to replacement firmware in the form

of pbForth [24]), tinyVM [25] and legOS [26].

2.6.2 The RCX Brick

The RCX brick is the battery powered programmable micro-controller that is

the heart of the Mindstorms kit. It is contained in a single brick that is capable

of operating three motors, three sensors, and the infrared communications

interface. At the core of this brick is a Hitachi HD6433292 micro-controller that

contains 16K of ROM and 512K or RAM and runs at a speed of 16Mhz. A

further 32K of external RAM is also contained in the brick.

The 16K on-chip ROM contains a driver that is run when the RCX is

first powered up. This driver facilitates the downloading of firmware to the

RCX. The standard firmware occupies 16K of memory and facilitates

downloading of user-compiled programs to the RCX that can then be

interpreted and executed by the firmware.

The Mindstorms RCX is a very small scale embedded system with severe

physical resource limitations. As such, it is perfectly suited to exploring the

practicality and possibility of CORBA implementations on embedded systems

and the associated limitations.

 39

2.6.3 The Development Process a nd Too ls

The standard development environment supplied with the Mindstorms kit

supports some simple but useful programming. It is a graphical environment,

which allows the user to drag and drop RCX actions and events as building

blocks for an RCX application. Once built the program is compiled to byte-

code and downloaded to the robot, where the firmware of the RCX interprets

this byte-code and controls the RCX (or the robot which is connected to)

accordingly. The standard firmware itself controls the hardware interrupts,

multi-threading and IR Port communications but is relatively limited from the

developer’s perspective.

There are various tools in existence that facilitate the extension of the

RCXs capabilities via replacing different portions of the architecture. The

simpler varieties provide replacement compilation environments for the

developer. The Not Quite C (NQC) language [23] and the ‘spirit.ocx’ COM

control Holdren, 2000 #13] are two such examples which provide a more

procedural programming environment, but still fall far short of exploiting the

hardware’s full capabilities. There are also some TCL and Perl language

interfaces that facilitate the run-time control of the robots.

In order to take advantage of the full 32K or RAM and the full

capabilities of the RCX brick, it is necessary to replace the standard LEGO

supplied firmware. Three such replacements exist at present. PBForth [24] is

based on the interpretive Forth language, and provides run-time control of the

RCX via the IR link. The TinyVM [25] environment provides a Java based

replacement firmware for the RCX. The third replacement and also one

providing the most comprehensive and powerful development environment is

legOS, a GNU based cross-compilation environment that facilitates assembly

C and C++ programming of the Hitatchi HD6433292.

 40

2.6.4 LegOS and the Layered Network Protocol

LegOS essentially provides a multitasking (pre-emptive) operating system for

the RCX. The operating system and its programs are written in standard C

(with some C++ support) and then cross-compiled for the Hitachi chip using a

GNU built compiler. Once the basic operating system is compiled and

downloaded to the RCX as a replacement firmware, user programs can be

compiled, downloaded and executed.

The development environment offers almost complete C language

support, including semaphores, multi-threading, floating point emulation and

the ability to store multiple programs (these programs are dynamically linked

with the underlying legOS operating system).

The most interesting feature of the more recent releases of the legOS

environment however, is the Layered Network Protocol (LNP). LNP provides a

simple networking abstraction to the underlying infrared transport mechanism.

It facilitates the transmission of up to 255 bytes of data along with a

checksum, to ensure integrity (this is known in LNP as an integrity packet).

This mechanism acts like a broadcast channel for all listening hosts (where a

host can be either an RCX brick or a PC enabled with the standard LEGO

infrared tower). The protocol silently discards erroneous packets.

The API also provides an addressing mechanism where 2 bytes of the

255-byte payload of the integrity packet are used for addressing information,

hence enabling the sending of a 253 byte addressed packet. A single byte is

used for the source and destination addressing information. Each byte is then

bit-masked to provide port information on each node. Hence it is possible to

describe a host-port pairing to identify a communication end-point.

The programming model necessitates that a process is created to

handle incoming packets on each participating hosts. This process sleeps and

is awoken via an interrupt, upon receipt of an addressing packet for the port it

 41

is assigned to, or an integrity (broadcast) packet. It is this transporting

mechanism, coupled with the programming capabilities of the legOS

environment, which makes the Mindstorms environment particularly suitable

to an ESIOP implementation. That is, a server process can be created to

handle data for a particular port on a specific host, that host-port pairing being

a uniquely identifiable LNP transport end-point.

Figure 15 The structure of LNP packets

 42

2.7 Mobile Applications

2.7.1 Overview

The advent of wireless communications technology and the subsequent

proliferation of devices utilizing it have many ramifications for computer

software, particularly distributed applications. There is a broad range of

devices utilizing the technology, each with their individual characteristics. The

one common attribute of these devices is their need for portability, if they are

to support true mobility. Devices such as laptop computers, Personal Data

Assistants (PDAs) and mobile phones are typical examples. These devices

must be smaller in physical dimensions and lighter in weight, than their fixed-

location (tethered) counterparts if they are to be used in a mobile environment

and still strive to provide the same service to the user. The electronic

component manufacturing industry has largely met these requirements,

through the constant downsizing of chipsets and other device components,

such as displays and battery-packs.

 In conjunction with the requirements these technologies make of their

physical attributes, they have large implications for the nature of the

applications they host and indeed the way they are used. Whereas these

applications can, and do, provide all the same functionality as their tethered

counter-parts, they can also provide much further benefits to the user (such

as location based services).

2.7.2 Communications Characteristics

Of particular relevance to this work, are the characteristics that the afore-

mentioned mobile devices exhibit which are distinct to those of their tethered

peers. A mobile device, or node, is ultimately unconstrained in its physical

location, it can hence theoretically be utilised anywhere on the planet. The

 43

wireless communications mechanism upon which these devices depend or

not quite so unconstrained, they are subject to the limitation (or ‘coverage

area’) of their infrastructure. A mobile phone user could for example

potentially attempt to use the device anywhere on the planet whereas this

attempt will only be successful if a supporting cellular network is available.

Not only must the wireless transport be available before communication can

be attempted, but it must also remain available for the duration of the devices

usage. This may seem like an obvious statement, but when the fact that the

device may be moving (and the ‘coverage area’ of the underlying network is

not) is considered along with the dynamic nature of most wireless

communication mechanisms, it cannot be assumed. Radio-based

mechanisms are subject to the inherent random nature of mobile radio

devices; factors such as interference and signal reflection can practically

annihilate a strong signal. This constitutes a significant departure from the

assumptions of most fixed-network transports.

Various attempts have been made at overcoming these limitations of

wireless technologies, indeed emerging technologies such as Code Division

Multiple Access (CDMA) have done much to remove interference problems,

but ultimately they cannot be removed. Wireless applications use various

‘smart’ techniques to reduce their affect. Digital cellular phones use

specialised prediction algorithms to ‘fill-in’ the space created by lost or

erroneous packets, hence minimising the interference noticed by the user. In

other environments, with less real-time constraint, simple time-out and re-

transmission policies may be applicable. Of course, depending on the

capabilities of the mobile devices, and the nature of their use, a certain

degree of autonomous operation may be acceptable, or even applicable. It

may simply be feasible to have devices ‘contact’ the network periodically,

perhaps simply to retrieve or deliver information relating to tasks, and then

continue in a disconnected fashion. In systems where the application is less

‘dispatch’ oriented, disconnected operation may be supported via the caching

or relevant data and subsequent re-synchronisation of this data upon re-

establishment of connectivity. These implementations may support this

 44

disconnected operation by mimicking the server functionality on the local

device, with a view to concealing the disconnected operation from the

dependent applications. The Rover [27], ALICE [28] and Dolmen [29] projects

discuss support for such disconnected operation.

 45

Chapter 3

Design

This chapter introduces the design goals relevant to building an Environment

Specific Inter-ORB Protocol (ESIOP) and further develops these in the context

of the LEGO Mindstorms environment. The aim is to not only introduce the

generic ESIOP design process, but also to detail its application in the context

of a specific environment.

3.1 Overview

The overall goal of this project is to investigate the suitability of CORBA

middleware technology to resource-constrained embedded systems with a

particular focus on mobile environments. The aim being to implement a

minimal ORB (more specifically an ESIOP engine), on a severely resource

limited platform (the LEGO Mindstorms RCX), along with an environment

specific messaging protocol (an ESIOP implementation) to facilitate CORBA

based communication with that ORB.

The design enables a standard CORBA (IIOP) client to send requests

to a CORBA compliant server, which acts as an IIOP half-bridge (gateway)

and translates these calls into the environment specific format, for

communication with the embedded system. At all times the messaging

protocol is an environment- specific implementation (or ‘functional subset’ of

the GIOP).

 46

Hence this design must describe an Environment Specific ORB messaging

protocol that includes:

1. A data representation syntax that specifies which of the standard IDL

defined data types are supported and how they are encoded for

transmission.

2. An ORB message set that is suitable to the environment. Some form of

mapping between the GIOP message set and this set is also required if

full CORBA functionality is to be supported.

3. An ORB transport mechanism which can provide the reliable byte-

streaming service that CORBA implementations expect

4. A communication end-point mechanism such that individual server

implementations can be reliable located.

5. An Object Addressing format that facilitates the reliable addressing of

objects in the environment.

Once these, and hence the messaging protocol, have been defined the

embedded ORB implementation can be addressed. The design of this

embedded ORB, nanOrb, must support the aforementioned message set and

provide as consistent an API as possible to the embedded applications it

supports.

A gateway function is also required, to facilitate the conversion of IIOP

to ESIOP requests, and vice-versa. This gateway must be capable of

deconstructing messages from one transport and encoding them for the other,

along with performing any complementary functionality and optimisations that

may be appropriate to the environment.

 47

3.2 The Data Representation Syntax

The data representation standards for the ESIOP implementation must be

defined. These must typically identify a distinct sub-set (or the full set) of the

IDL defined data-types to support and an encoding syntax of each of these.

The possibility of using a compact format (similar to that described in [20])

was explored, but is unnecessary due to the MTU size of the LNP transport

being far more generous (253 bytes) than that of the CAN bus (8 bytes) used

in the Kim project. The resource constraints in this application environment

are more processing and storage than transport oriented. Hence, for the

nanOrb implementation, a GIOP-like data representation scheme is

implemented, preserving the natural memory alignment of data-types on 32-

bit boundaries. The formats of the messages are based on version 1.1 of the

GIOP standard. The full set of IDL defined primitive data types are supported.

The RCX uses a little-endian addressing architecture, as does the Intel

386-based gateway used in nanOrb project. In a truly GIOP-based solution

the RCX functionality would have to include the ability to perform conversion

of data received from the gateway, were it based on a big-endian architecture.

CORBA specifies that the message-sender’s byte ordering should be used for

messages and flagged in the GIOP message header [1] (this rule exists to

avoid unnecessary conversions on the server). This is not the case with this

architecture because conversions are not necessary they are eliminated from

the design. This highlights a potential design optimisation wherein byte

ordering could always be the responsibility of the bridging host in order to

reduce the load on the target embedded system. This would, of course,

necessitate that the gateway is ‘aware’ of the destination’s underlying

architecture (in the context of embedded systems this is not an unreasonable

assumption). Optimisations such as this, and others, are further discussed in

the section of this chapter, relating to the design of the bridging function.

 48

3.3 The ORB Message Set

In any environment specific implementation a functional subset (or the full set)

of the GIOP message set must be defined. In order to consistently present full

CORBA services to clients, the functionality of the GIOP messages must be

supported in some way. Rather than implementing the full GIOP message set

in the nanOrb design, a subset of the standard 8 GIOP 1.1 specified

messages set is identified that is deemed suitable to the environment.

As a consequence of the extreme resource constraints on the RCX, the

memory footprint of the ESIOP engine must be kept minimal, if it is to work at

all. A minimal number of messages are implemented in order to provide basic

functionality and demonstrate the applicability of the CORBA to the

environment. The number of these messages may be expanded in the future,

but first it is necessary to determine how much of the limited memory

resources these will consume and prove the concept. It is important to

remember that ultimately, when implementing embedded CORBA, there will

be a trade-off between the amount of memory utilized to provide CORBA

functionality and the amount available for implementing application logic.

3.3.1 Client Initiated Messages

REQUEST – This message encodes an object invocation from a client to a

server. The object invocation/operation is encoded and sent to the server,

along with any IDL defined ‘IN’ and ‘OUT’ parameters (see chapter 2). The

response to this, from the server, is contained in the Response message (if

the ‘RESPONSE_EXPECTED’ flag is set in the request header). The

REQUEST message must be implemented as it facilitates the fundamental

CORBA functionality, that of remote object invocation. Within the nanOrb

implementation, some of the fields in this message header (such as Service

Context and Principal information) are included, in order to comply as much

as possible with the GIOP specification, but not populated. They are not

necessary to provide the core CORBA functionality. They could of course be

 49

developed in future implementations, to provide, for example, security and

transactional support.

Note; It is should be noted that this service contextual information could

potentially be processed on the gateway (bridging) host, hence keeping the

embedded ORB footprint to a minimum.

LOCATE_REQUEST – This message is used to check the validity of an

object reference and if a server will support a particular reference. The server

may reply with a LOCATION_FORWARD type reply if it does not support an

object locally. In particular this message is used in conjunction with an

‘Interface Repository’ (the Interface Repository provides run-time resolution of

server implementations), so that a client can use a single ‘well-known

address’ to resolve object references via the LOCATION_FORWARD reply.

The request message will perform the same functionality although in a more

expensive manner, that is, with a greater message payload (which contains all

the invocation data, as opposed to just the Object Reference). It is, however,

more expensive in the context of the Mindstorms environment, and many

embedded systems (as our primary constraints are memory-footprint and

processing oriented), to implement the processing necessary to facilitate the

functionality of another message, than to send a greater sized packet over the

underlying transport. Hence this message is not implemented in this design. It

is worth noting that the ‘LOCATE’ functionality could be used by an IIOP client

when talking to a gateway (or discovering it) to facilitate mobility support.

CANCEL_REQUEST – This message is sent by a client to cancel a previous

request. The request ID is used to identify the particular request. It is advisory

only and the server is not obliged to acknowledge it. This message is not

particularly suited to real-time control applications and hence is not

implemented. Again, it may be of use in facilitating an application where client

requests are valid for a longer period of time, for example if the client was to

dictate a particular behaviour to an embedded device. Its appropriateness in

an embedded context is really application specific.

 50

3.3.2 Server Initiated Messages

REPLY – This message is sent by the server if the ‘RESPONSE_EXPECTED’

flag is set in the request message. This can be used to return the results of an

object invocation (where ‘OUT’ parameters are specified in the IDL) or simply

a status. There is a REPLY_STATUS field in the header that can be used to

indicate NO_EXCEPTION, hence reducing the need for a

MESSAGE_ERROR message. This message is implemented. It is important,

however, that the gateway’s call, to an RCX based object, is non-blocking.

That is, the server should not wait for the receipt of a REPLY message before

continuing. This is a departure from the GIOP model, but necessary due to

the inherent unreliability of the infrared environment. Were the underlying

transport of the ESIOP reliable, this optimisation would not be necessary.

LOCATE_REPLY - This message is sent from the server in response to

LOCATE_REQUEST message. It contains the results of a location attempt. It

is not implemented, for the aforementioned reasons. It would not add any

extra functionality in the RCX, and accommodating it would only serve to

increase the memory consumption of the embedded ORB implementation.

Again, it may be useful in facilitating location forwarding for IIOP clients using

a gateway to request services of embedded devices (such as the RCX) in a

mobile environment, where these devices may be in communication with

different gateway’s at different times, depending on their location.

CLOSE_CONNECTION – This message is used to inform a client that it

should not expect to receive any further information in relation to a particular

request. It is used to facilitate the ‘clean’ closing of a long running connection

between the client and the ORB server. It is implemented in this

implementation, as we are evaluating the server as a simple client controlled

device. It would not be practical to rely on long-running connections in a

mobile Infrared environment. It may well be applicable to an application where

the embedded server expects to support multiple simultaneous connections

 51

and hence may need to notify clients as it reaches its concurrency limit and

wants to cease offering its service temporarily.

 This highlights another potential optimisation in an ESIOP application.

If a single, or multiple interconnected, gateway(s) exist, which are aware at all

times of the number of connections an embedded server is supporting, these

gateways could assume responsibility for managing maximum numbers of

connections, hence ‘protecting’ the servers from overloading, without the need

for the server’s to implement this functionality.

3.3.3 Common Messages

MESSAGE_ERROR – This message is sent when either party detects an

error-condition as a result of a message. This is usually because of the

incorrect formation of the message, or it’s containing an unsupported version

number. This message is typically implemented, although the REPLY

message does contain the functionality of flagging message errors. This

message is implemented in the nanOrb environment, to facilitate the raising of

exceptions when packets are incorrectly assembled and sent to the RCX. This

will allow for the differentiation between the lack of an IR link and a ‘bad

packet’ being the cause of a non-response from the RCX.

MESSAGE_FRAGMENT – This message is used when request or reply

messages need to be fragmented due to either transport constraints or

buffering efficiency on the client. Due to the unlikelihood that large encoded

packets will be sent, it is unlikely fragmentation will be required for the simple

application that we have targeted. Hence this message is not implemented. It

is also highly unlikely that a severely resource constrained device would have

the resources necessary to support the buffering and reassembly of larger

packets.

 52

3.4 The ORB Transport Protocol

Whereas the GIOP standard does not specify the transport protocol to be

used, it does make certain assumptions as to the nature of this underlying

transport mechanism. It expects a connection-oriented protocol, which the

RCX network protocol, the Layered Network Protocol (LNP), does not provide.

Through the provision of a connection-oriented transport, the need for

acknowledgements of GIOP messages is alleviated. The lack of this

functionality has some important implications for designs of this nature.

Any RCX based ESIOP implementation cannot make these same

reliable transport assumptions, as the underlying communications medium

(Infra-red) and environment cannot reliably facilitate a true connection-

oriented service. A ‘best-effort’ implementation was attempted (whilst

assessing the technology) involving an extra layer of abstraction between the

ES-IOP and LNP layers, providing a TCP like timeout and re-transmit

function. This did not provide and significant improvements over the simple

LNP functionality, once the RCX was sufficiently out-of-range or subject to

destructive interference, re-transmission provided no improvement.

Another solution, which is more inclined to correcting IR transmission

problems, would involve the RCX based robot reorienting itself between

attempts to establish communication (to aid finding a better line of

transmission to the tower) or perhaps even retracing its navigation steps so as

to return to the last known location of reliable communications (the cost of

buffering commands and how to retrace them then becomes a constraining

factor). These approaches are not included in the current implementation.

An altogether different solution, perhaps for exploration in further

development of this research, would involve using a ‘mobility layer’ (as

described in the ALICE paper [28]), or a similar approach to provide this

service. This would assume that the RCX is always in range of a particular

 53

tower, but could perhaps provide a good demonstration of mobility support in

a CORBA environment.

3.5 Communication End-Points

The concept of a communications end-point is necessitated within the

underlying transport of any GIOP implementation. This end point must,

typically, uniquely identify a server process on a particular host, which

implements the functionality specified in the IDL interface for an object.

Without this functionality, it is difficult to envisage an embedded device being

able to provide a CORBA service to clients. In the case of IIOP this endpoint

ultimately consists of an IP address and port number. LNP provides a very

similar addressing mechanism (as described in chapter 2) where

communication end-points are specified as host address, host port pairings.

Using this system an individual packet can be addressed to a specific port

(and hence a specific process) on a specific LNP host. An LNP host can be

either an LNP enabled PC (using the LEGO Infra-Red tower) or an LNP

enabled RCX brick. This system can be related very clearly to the IIOP

addressing model, and facilitates the specification of LNP supporting

Interoperable Object References.

3.6 An Object Addressing Format

The CORBA specification denotes an Object reference as “an object name

that reliably denotes a particular object” [1]. The object reference provides “a

handle to a specific implementation of an IDL derived object” [1]. An object

that is accessible via a GIOP implementation is identified by an Interoperable

Object Reference (IOR).

 54

The format of an IOR includes a specific ORB’s internal object

reference as well as a transport based address for locating that ORB and

hence the object (the IOR data structure is covered in more detail in chapter

2).

Any environment specific ORB implementation must specify a format

for IOR’s. In the nanOrb architecture for example, not only does the client

require an IOR for the gateway in order to communicate requests, but a

means is required to locate object implementations within the embedded

environment. As previously stated, the underlying transport must provide

some means of identifying communication end-points, these are used to

facilitate the protocol specific ‘Tagged Profile’ in an environment specific IOR

format.

As a result of the current architecture implementing application-specific

gateway functionality, it is not actually necessary to implement any further

IOR support. The IIOP IOR for this gateway provides all the addressing

information the client requires in order to make an object invocation on the

RCX and the gateway is aware of the available servers. It is however

necessary to further develop this architecture if true embedded CORBA

functionality is to be supported in the nanOrb environment.

The format of an embedded CORBA IOR should ultimately facilitate

nanOrb server implementations advertising their supported objects along with

the relevant addressing information for each protocol through which they can

be reached (this being the intended function of the IOR). This ‘advertising’

would most likely be at design-time as opposed to run-time due to the

constraints of the system (this is further discussed in chapter 6). Hence an

IOR format is specified for the nanOrb ESIOP, which not only advertises the

TCP/IP addressing information for the gateway, but also the LNP specific

communication end-points for a server.

 55

There were two possible IOR formats considered in this design

process. The first involves extending the IIOP based IOR for the IIOP-ESIOP

gateway host. This would involve adding a new ‘Tagged Component’ to the

IIOP Profile ID, which would contain LNP addressing specifics enabling the

gateway host to resolve RCX object references to specific RCX Host Address-

Port pairs. Whereas this would enable the accurate addressing of the RCX

from the Gateway, it is not a very extensible or flexible solution. At the very

least it mandates that clients of an application must be IIOP capable in order

to request a nanOrb service (unless LNP clients parsed the IIOP ‘Tagged

Profile’ for this information).

The second format involves describes a new, LNP specific, ‘Tagged

Profile’ for the IOR. The latter provides a truer CORBA functionality and

defines a communication end-point specific to the LNP transport. In this way

an IOR for any nanOrb service could contain the IIOP addressing specifics of

a gateway host as well as the LNP addressing specifics of the target object

implementation. Thus enabling a client to use this service via either transport,

independently (assuming the client is capable of building messages foe either

transport).

The three main components composing an IOR were introduced in chapter 2

of this document:

1) A ‘Type ID’, indicating the most derived type (or version) of the object,

for example: “IDL:nanOrb/nanOrbDemoApp/1.0”

2) End-Point Information (Tagged Profile Data) for each specific transport

supported by the implementation, for example, an IIOP profile would

contain the Host Address (a DNS alias or IP address) and the TCP port

number

3) The server specified Object Key, which allows the server to internally

identify specific IDL implementations. (Note: An optional sequence of

Tagged Components can also be included)

 56

Hence, a Tagged Profile for an LNP based Object Implementation can be

specified:

struct ProfileBody{

Version naniop_version;

unsigned short hostAddress;

unsigned short address ingmask; //facili tates resolution o f Port ID

sequence ob jectKey;

 };

Figure 16 A sample nanOrb Tagged Profile

Once this Tagged Profile is included in an IOR a client can theoretically

access a nanOrb server either directly (if LNP and enabled and ESIOP

capable) or via the gateway (if IP enabled). It is more likely in the context of

an embedded CORBA implementation that the end client would use the IIOP

related portion of the IOR to contact the gateway, which would in turn use the

ESIOP portion to contact the relevant server (the assumption is that the IOR

is available to both parties). In this model the client knows only of a standard

CORBA IOR and its IIOP based implementation and the gateway determines

the specific embedded implementation to contact. This approach to defining

per-protocol connectivity information for IOR’s is consistent with the CORBA

IOR model and provides the greatest flexibility to clients.

 57

3.7 The IIOP to ESIOP Bridge

When implementing an ESIOP a complimentary bridging function (or

gateway) is typically required in order to facilitate normal IIOP enabled clients

making requests of ESIOP servers and also the reverse. If IIOP based

communication is not supported, the implementation is not CORBA 2.0

compliant [1]. This gateway should accept requests from any IIOP enabled

CORBA client and convert these to form suitable to transmission over the ES-

IOP and vice versa. In CORBA terminology, this function is termed an IIOP to

ESIOP ‘half-bridge’. The “half-bridge” term is used in discussing Inter-ORB

Bridges. According to the [1] “mediated bridges” are those that use an agreed

median message format when translating between proprietary ORB protocols.

This median message format is IIOP. In the case of the nanOrb architecture,

where one ORB is using IIOP, the bridge between IIOP and an ESIOP is

termed a “half-bridge”.

Hence for the nanOrb project a gateway is needed that will perform the

bridging between IIOP and nanOrb ESIOP messages, or between the IP and

LNP transports. There are some interesting design optimisations that can be

made to such an implementation when it pertains to embedded systems,

particularly if it can be assumed that a certain amount is known of the

architecture and capabilities of the target devices as well as the application

characteristics. These optimisations are ultimately aimed at removing some of

the functionality (and hence processing) from the embedded device and

making it the responsibility of the gateway.

It has already been discussed how a gateway host might assume all

responsibility for ensuring the correct byte-ordering of messages in the ESIOP

implementation, thus reducing demands on the embedded device. Other

functionality, such as that provided by the Service Context information (see

chapter 2) in GIOP messages, could also be made the responsibility of the

gateway, to further free the embedded system of perhaps unnecessary

processing effort. The security information contained in the Service Context

 58

field of an IIOP client REQUEST, could conceivably be validated by the

gateway, rather than the target system. Transactional support could

conceivably be made more of the gateways responsibility in the same way.

There are of course certain implicit assumptions as to the trusting of the

gateway host. The only optimisation that is currently implemented in the

nanOrb design is that of responsibility for byte-alignment, which is assumed to

be the gateways.

Although this bridging function should be transparent to the client and non-

application specific, the latter is not the case for the nanOrb implementation.

In order implement the functionality in a transparent fashion, as in the

architecture outlined in chapter 1, it is necessary to build the functionality into

an ORB implementation. This was not done in the nanOrb architecture purely

as a result of time constraints. A simple CORBA server application builds the

packets explicitly. Upon receipt of invocations and dispatches these to the

RCX.

Figure 17 The II OP to ESIOP Half-Br idge

 59

3.8 The Environment Specific ORB on the RCX (nanOrb)

The ultimate goal of this project is to investigate if, and to what extent, ORB

functionality can be implemented on the RCX, and hence any similar

embedded system.

The core ORB in any embedded implementation must be as efficient

as possible, in order to reduce memory consumption, and still allow

application logic to be facilitated. It will also most likely be an application

tailored implementation, in order to maximise efficiency (that is tailored to

support only the functionality required by the application it supports).

Irrespective of the final implementation, from a development perspective, the

ORB should endeavour to provide as consistent an API as possible to the

application (it is conceivable that some altering of this API will be necessitated

for different applications, due to the minimal implementation nature of the

ORB).

Within the context of the aforementioned design, the nanOrb

embedded ORB implementation must at the very least implement a server

process to listen for incoming object invocation request on an advertised port

(in this case an LNP port). This port may be advertised in an environment

specific IOR or a well-known port. Upon receipt of an ESIOP (LNP) packet,

the packet must be de-marshalled, in order to obtain the data in each of its

fields. The relevant fields must then be validated to ensure that the packet is

correctly formed, before the actual invocation on the relevant object is called

(with any necessary arguments, as defined in the application IDL) and a

response message is built, encoded, and sent to the requesting client. If any

of the aforementioned procedures fail a MESSAGE_ERROR message must

be built and marshalled onto a buffer before being sent back to the client. It

should be mentioned again, that where possible, the gateway can be used to

perform “server tasks” and hence reduce the load on the embedded system.

 60

These key requirements can be summarized as follows:

- Support the full IDL of the target application

- Create processes to listen on the relevant ports for requests

- Unmarshal received data

- Validate message structures to ensure they are correctly formed

- Pass the relevant unmarshalled arguments to object invocations

- Build and encode RESPONSE messages as appropriate to the interface IDL

- Build and encode MESSAGE_ERROR messages when necessary

The embedded ORB would of could of course require much more functionality

beyond the aforementioned, if it were intended to support more CORBA

functionality.

Figure 18 The nanOrb Hierarchy

Whatever the functionality that is supported by the ORB implementation, it

must ultimately present the user with a consistent set of API’s that facilitate

 61

the ‘easy’ linking of application code with the ORB server. The nanOrb

implementation facilitates this by defining a ‘handling’ function for each of the

incoming IDL operations, within which the relevant application logic can be

executed.

The nanOrb architecture starts with the rudimentary infrared transport.

LNP then provides an addressing mechanism and byte stream abstraction to

this. The nanOrb ESIOP defines how GIOP messages, and hence object

invocation data, can be mapped onto this transport protocol. The nanOrb

architecture then implements server processes that listen on LNP defined

end-points for incoming ESIOP packets. It is on top of all these layers that the

application code resides. Object implementations are hence located within the

aforementioned handling functions for the incoming IDL operations.

3.9 Comparison to other related designs

It can be seen from the previous design steps, that a certain amount of

customisation of, or variation from, the GIOP standard has taken place. This

is typically the case when implementing CORBA in embedded systems.

The Kim [20] paper describes an Environment Specific CORBA, which

not only is a subset of functionality of the 8 GIOP messages implemented in

an ESIOP, but the data encoding standard is also customized (and referred to

as the “Compact Common Data Representation)” in order to efficiently use the

small, eight byte, payload of the Controller Area Network (CAN) bus. The

implementation does maintain full IDL support. The nanOrb design, in contrast

to this, does not modify the data encoding rules defined in the CORBA CDR

standard (as the LNP payload is far more generous), the same byte-boundary

alignments are implemented. There is an implicit assumption here that the

payload of any nanOrb message is not likely to include any more than a small

number of arguments, on account of the processing capabilities of the RCX

being very limited). Hence an IIOP based message payload, could

conceivably be copied from the TCP/IP input buffer in a gateway

 62

implementation, to the LNP output buffer, once the underlying architectures

used similar byte ordering and the maximum payload of the LNP packet (253

bytes) was not overrun.

Whereas the nanOrb design does not modify some of the basic

encoding rules defined in the CORBA specification, it does fall short of a

minimumCORBA implementation, it only implements three of the eight GIOP

defined messages and does not support Service Context and Principal

information. This is not to say that a more complete (and even fully

minimumCORBA compliant) implementation is not possible, but the ultimate

aim of this report is to investigate the suitability of the CORBA to the

environment and the design goals have been kept accordingly simple.

 63

Chapter 4

Implementation

This chapter describes the development of the simple “proof-of-concept”

application that was implemented to verify the design introduced previously.

The application architecture is introduced and described, along with the

underlying nanOrb infrastructure and the IDL specification. The application is

successful in demonstrating the gateway functionality and the final invocation

of a client request on an RCX. The difficulties encountered and assumptions

and optimisations made are also presented.

4.1 Implementation Goals

The aim of implementing this application was to validate the design presented

in the preceding chapter. Ultimately the application should facilitate a remote

client, using the Internet Inter-ORB Protocol (IIOP) to make an object

invocation on the RCX, via the gateway. This is accomplished though the

client invoking an IDL derived object invocation on the nanOrb gateway (half-

bridge), which in turn relays this to the RCX, via the infrared transport

mechanism, having made the necessary packet conversions. These packets

are then received by the RCX, unmarshalled and the appropriate application

code is called. The application also demonstrates that the nanOrb ESIOP

implementation can be used between RCXs to remotely invoke operations.

The application design was formulated to clearly demonstrate the RCX

responding to the client’s invocations and that one RCX can make an

invocation on a second via the nanOrb ESIOP.

 64

4.2 The Application and its IDL specification

The demonstration application used consists of the remote client

sending user-specified spatial navigation commands to an RCX controlled

robot, deemed to be the “Master”, via the gateway. The gateway converts

these commands into the nanOrb defined ESIOP message format and sends

them to the RCX. The set of operations consists of “forward”, “reverse”, “left”

and “right”, and all take a time metric (in seconds) as an argument indicating

the intended duration of the movement. This RCX then relays these

invocations to a second RCX, deemed to be the “Slave” via the ESIOP, hence

demonstrating inter-RCX object invocation. A simple read-only attribute is also

included in the IDL specification to facilitate the reading of the Master RCX’s

Host_ID (as used in LNP addressing).

Figure 19 The nanOrb Application Architecture

 65

The Interface Definition Language (IDL) specification of the demonstration

application is defined as shown in figure 18:

interface nanOrbDemo{

 readon ly att ribute short currentMaster;

 void forward(in short forwardMetric);

 void reverse(in short reverseMetric);

 void left(in short leftMetric);

void right(in short rightMetric);

};

Figure 20 The nanOrb application IDL

4.3 The Client Implementation

The client functionality is written using the Java language. The Java

Development Kit, version 1.2, includes support for CORBA, specifically IIOP,

functionality as well as GUI Development. The Sun “idltojava” tool is used to

generate the client application stub classes. The org.omg.CORBA.ORB class

is used to provide the core ORB communications functionality, along with the

org.omg.CosNaming class for providing CORBA Common Object Services

(COS) Naming functionality. The Java ‘Swing’ classes are used to construct

the user interface.

The final application contacts a COS Naming Server (OmniNames,

which is implemented on the same host as the gateway for this project) to

resolve the Interoperable Object Reference (IOR) for the nanOrb gateway

server. That is the IDL generated stub classes are used to create a

“nanOrbDemo” object and invoke methods upon it. These invocations are

hence relayed to the nanOrb gateway server via the IIOP, as though it were a

normal IIOP server.

 66

Figure 21 The Client Application

4.4 The Gateway Implementation

The nanOrb gateway performs the “half-bridge” functionality discussed in the

previous chapter, translating between the IIOP and the nanOrb ESIOP

message formats. Whereas this bridging functionality would typically be built

into the core of an ORB implementation, for the purposes of demonstration

and to avoid unnecessarily building a full ORB implementation, the bridging

functionality is implemented at the application layer (this is known as ‘request-

level bridging’ [1], as opposed to ‘inline bridging’ where the bridging

functionality is implemented within the ORB). Through implementing it in the

application layer, it is possible to better demonstrate the process of building

the nanOrb ESIOP packets and encoding them, before sending them to the

RCX.

The gateway is implemented on the Linux operating system (using Red

Hat version 6.2). The AT&T “OmniORB 3.0” ORB implementation (which has

been tested and certified CORBA 2.1 compliant [14]) is used to provide the

 67

CORBA Server functionality, in conjunction with the “OmniNames” COS

Naming implementation. The former was chosen as it is a fully IIOP compliant

high-performance ORB and is also supplied with source code, thus facilitating

debugging and/or further development, if required. “OmniNames”, which

facilitates run-time object registration and look-up, is used to provide more

flexibility in client and server development, that is to reduce the need to copy

“stringified IORs” between machines.

Once compiled and configured, using the GNU “binutils 2.91” and

“egcs-1.1.2” compilation environment [30], OmniORB provides the CORBA

development environment, and OmniNames, the run-time support, for the

gateway server processes. All code is written using the C++ language and

compiled using the aforementioned GNU tools.

The gateway application, implements the ‘nanOrbDemo_I’ interface,

derived from the IDL generated skeleton class. Hence, upon receipt of an

IIOP request from the client, the gateway server invokes the appropriate

method of this ‘nanOrbDemo’ implementation. It is within the call to each of

these methods that the nanOrb bridging functionality is implemented.

This bridging functionality utilises the C++ classes outlined in the next

section, which provide the ESIOP messaging and marshalling/unmarshalling

functionality. These classes facilitate the building of request messages

according to the design specification and their encoding for transmission over

the LNP transport.

 68

Figure 22 Gateway translating II OP to ESIOP requests

For the purposes of demonstration, once the ESIOP packet for a

particular request is built, the gateway echoes the packet structure to the

screen, in order to illustrate the process (Note: The garbled data after the

Magic field of the header is a result of it not containing a ‘\0’ character).

Figure 23 Gateway output in response to a “r ight (6)” invocation

 69

4.5 The nanOrb ESIOP implementation

The ESIOP functionality is implemented using a series of C++ classes,

several of which are derived from those used to provide the same functionality

in the ALICE [28] and KORB [18] projects. Within the implementation of the

IDL specified “nanOrbDemo” server, packets are constructed within the

respective interface methods and then sent to the appropriate nanOrb

servers.

These packets are built using the argument from the client request.

Two simple C++ classes, ‘simplenanIOPHeader’ and ‘simplenanIOPRequest’,

provide the protocol header and REQUEST message functionality,

respectively. Once the nanOrb ESIOP message is created it is marshalled

onto a data buffer, using another C++ class, ‘simpleEncoder’ which provides

the basic CDR-derived, byte-aligned data encoding functionality. This

marshalled data is then sent to a final wrapper class for the LNP Daemon

(‘simpleLNPTransport’) for transmission to the “Master” RCX. The application

logic within these classes is used again in the implementation of the nanOrb

server.

4.6 The RCX ORB implementation - nanOrb

Although the gateway is implemented using the C++ language, it is not

possible to use it for the RCX implementation. Whereas the GNU cross

compilation environment for the Hitatchi HD6433292 does provide C++

language support, it is not as extensive as its C language support, hence the

latter is used for the implementation of all nanOrb functionality on the RCX. As

a consequence of this, much of the object-oriented design work done for the

gateway can not be re-used in the RCX environment, but a lot of the more

generic C language code can.

 70

The “Master” RCX’s port number 8 is used as an address for the

nanOrb implementation (with the Host address of 1). This is specified as a

‘well known’ address within the gateway implementation. The previous

chapter discussed how this might further be developed to support the

exporting of nanOrb IOR. Hence the TAGGED_PROFILE portion of the

application’s IOR would be constructed as illustrated:

nanOrb_ProfileBody{

Version.major = 1;

Version.minor = 0;

HostAddress = 0x18;

Address ingMask = 0xF0;

ob jectKey = “ nanOrbDemo”

 };

Figure 24 The nanOrbDemo IOR

Upon receipt of data on this port, a hardware interrupt is raised which

awakens a process assigned to that particular port. The incoming data is

copied to a global array, before a second packet processing routine is

awakened via a semaphore. This separation of receiving and processing logic

is necessary as the execution of any significant instructions within any

hardware- interrupt driven routine is inherently unstable.

The packet processing routine is responsible for ensuring the validity of

the packet, through checking that all the necessary protocol and message

header fields are correctly formed. Once the message has been validated, the

invocation data is removed and the application code (the implementation of an

IDL specified method) is invoked and passed these client specified

arguments. The mapping between invocations and their demarshalled

parameters and their actual implementation is facilitated by a short section of

switching logic, which the application developer is expected to modify in order

to support the application code. If a packet is incorrectly formed (that is it does

not comply with the nanOrb packet structure), a MESSAGE_ERROR routine

 71

is invoked. The full functionality for building and returning the

MESSAGE_ERROR and REPLY messages has not yet been completed. This

is due to some of the difficulties highlighted in the next section (the linker

error).

Figure 25 nanOrb Processing Client Requests

Once the actual IDL method implementations are invoked, the a short

string (constructed using the first and last characters of the invocation string)

is presented on the RCX’s LCD display. The value of the first argument is also

displayed, thus demonstrating the successful communication of the client

request.

 72

4.7 Difficulties Encountered

Due to the nature of the application, particularly the fact that it involved

embedded systems programming with an unsupported toolset, a number of

difficulties were encountered during the implementation. The more serious

difficulties are outlined in this section along with their resolutions, where

possible.

It was originally intended to use the Microsoft Windows Operating

System as the platform for the gateway implementation, in conjunction with

the WinLNP COM server [31]. The ‘Cygwin’ application [32] provides a GNU

based compilation environment for the Windows operating system, which

enables the use of the GNU cross-compilers for the Hitatchi HD6433292.

Whereas, it was possible to use this tool to facilitate the programming of the

RCX using legOS, the WinLNP COM control proved not to be as mature and

reliable as the Linux based LNP Daemon (LNPD). It was therefore decided,

after initially beginning development on the Windows platform, to migrate to

the Linux platform.

There were however some difficulties with enabling the LNP Daemon.

These were eventually found to be caused by the Universal Asynchronous

Receiver Transmitter (UART) chip in the Linux machine’s serial port. The

16550AF UART chip has a documented transmit problem that can result in

the random loss of a byte. If the FIFO functionality is enabled, it can

occasionally fail to transmit a character. The character does not transmit and

no interrupts are generated, hence the ‘user’ is not aware of any failure. By

turning this FIFO functionality off (using the Linux “setserial ” command), the

problem is resolved and the LNP Daemon functions properly.

A more serious difficulty was when using the previously mentioned

“liblnp.h” library within the OmniORB environment to request LNP functionality

from the LNP Daemon process. The problem encountered involved any call to

the LNP Daemon to transmit data, from within an OmniORB process, blocking

 73

indefinitely and not returning. The data was sent to the LNPD process and

received by the RCX, but the call never completed within the OmniORB

server. This LNP functionality was provided by the aforementioned C++

wrapper (‘simpleLNPTransport’) class, which worked correctly when

instantiated outside of OmniORB, but failed when called as described. This

issue has not as yet been resolved. A second standalone application is also

implemented, which facilitates the demonstration of the gateway functionality

and the RCX’s response to invocations.

The most serious difficulty encountered in the implementation of the

application involved the GNU cross-compilation environment for C code.

When certain simple C code statements were compiled to object code,

incorrect linking information was generated, which caused the linking process

to fail. This problem was caused by the compiler optimisation of certain

relatively simple code structures. When these were simplified, through

breaking them into simpler assignments and evaluation statements, the code

compiled and linked correctly. This problem manifested itself on several

occasions and, in each case, took considerable effort to locate the problem

code and resolve. The debugging process when developing on the RCX

involves writing hexadecimal information to the LCD screen on the RCX.

Every time a change is made to application code, it must be recompiled in the

cross-compilation environment and then downloaded (via the infrared link) to

the RCX before it can be tested. The entire development process is hence

iterative and extremely exhaustive.

It can be seen that whereas the implementation ultimately succeeded,

it was not without its difficulties and shortcomings. These were largely due to

the lack of support and prior knowledge in this domain. Indeed these

problems are typical characteristics of the embedded system development

process and can ultimately be resolved.

 74

Chapter 5

Evaluation

This chapter reviews the nanOrb design and implementation, with a view to

determining the extent to which it and therefore CORBA is suited to the

Mindstorms environment and to hence draw more general conclusions as to

the applicability of CORBA to the embedded system domain. The efficiency of

the nanOrb implementation is explored and the justification for each of the

design decisions made is investigated and the ramifications explored. The

design is then compared to the other embedded CORBA approaches outlined

in chapter 2 and the potential for improving the nanOrb architecture is

explored.

5.1 Overview

The nanOrb implementation enabled the Java-based IIOP client, and hence

any IIOP enabled CORBA client to make requests of the nanOrb gateway,

which were in turn relayed to the RCX based environment specific ORB

(nanOrb) and successfully interpreted and executed. The fact that any

intermediate bridging function or transport mechanism other then IIOP was in

use was transparent to client. The application also demonstrated the use of

the ESIOP implementation to facilitate inter-RCX messaging. It was, in this

capacity, successful in demonstrating that CORBA can be used to present

simple interfaces to embedded systems.

The approach taken in designing the application was to sacrifice

anything other than basic COBRA functionality in order to free more physical

resources on the embedded system for application logic. This trade-off is

 75

characteristic of almost any embedded-ORB implementation. The more

CORBA functionality provided, the more resources consumed, ultimately

reducing those available to the supported applications and conversely the less

CORBA functionality implemented, the more resources available to supporting

application logic.

Whereas the unreliable nature of the infrared transport was

accommodated as much as possible, the nanOrb implementation and

demonstration application do not fully explore the mobility capabilities of the

RCX and hence its effects on an ORB implementation. This is due to the time

constraints to which this work was subjected. It is anticipated that further

development might explore this in more detail and even enable mobility

support, perhaps using an architecture similar to that described in the ALICE

paper [28].

5.2 Efficiency

The final nanOrb implementation, supporting request, reply and error

messaging, is approximately 5k in size (note: this approximation is due to the

fact that the functionality required for the latter two messages is not yet

debugged, but is completed enough to make a reasonable approximation).

This 5k program is hosted on the legOS firmware, which occupies a further

20k or memory. Thus approximately 7k of memory remain available for

supporting application logic on the RCX. It is possible to further reduce the

size of either the legOS firmware or indeed the nanOrb functionality. By

removing the legOS support of RCX various functionality, such as button

events and the different sensor inputs, and recompiling the firmware, it was

possible to further reduce its size to approximately 16k (it was actually

possible to further reduce this footprint, but this necessitates removing LNP

and LCD support). The nanOrb footprint was also experimentally reduced

through removing code supporting reply and error messages and simply

silently discarding erroneous messages. This yielded a footprint of only 3.5k.

 76

5.3 Optimisations and Consequences

Whereas the nanOrb implementation does facilitate the development of

CORBA based applications in the Mindstorms environment and potentially

other embedded environments, it is not without its shortcomings. The design

chapter outlined several optimisations (or customisations) that were made to

the CORBA speciation in order to accommodate the environment. These

compromises ultimately constrain the capabilities of the architecture. The key

objective of the CORBA specification is to facilitate the distribution of software

objects in a heterogeneous environment and facilitate the transparent

development of these. The nanOrb architecture does facilitate the former, but

not to the full extent that a complete CORBA implementation does. It also

compromises some of the transparency that the developer might expect of a

CORBA implementation.

The ESIOP message set was reduced to facilitate the basic object

invocation functionality of CORBA, but little else. The remaining five

messages were excluded for performance reasons (the justification for which

is provided in chapter 3). It is possible that these messages could provide

functionality required in a different embedded environment than the

Mindstorms environment, supporting applications of a different nature to the

presented “nanOrbDemo” application. The lack of this functionality (although

it may be masked by the gateway implementation) reduces the client’s

capability to transparently send CORBA messages to the server. It is clear

that an ESIOP implementation facilitating a more complete message set is

possible. This would of course provide a more complete CORBA functionality

to clients but ultimately limit what the RCX server applications would be

capable of, as they would have minimal memory remaining to support their

logic.

The IDL and corresponding marshalling/unmarshalling support

designed is limited to the set of IDL defined primitive data-types. This means

that a programmer wishing to perform operations utilising the more complex

 77

data types must ultimately perform some of the nanOrb

marshalling/unmarshalling explicitly, using the provided API. This support

could easily be added to the existing implementation, it was not included in

the current design as it was not deemed to be of importance to the projects

objective, that being to demonstrate CORBAs applicability to the embedded

domain.

The assumptions that CORBA makes of the underlying transport

mechanism were also relaxed in the nanOrb implementation. The Mindstorms

environment (explicitly the infrared transport mechanism) cannot, by its very

nature, guarantee the delivery of data, as CORBA expects. Chapter 3 outlined

some of the implications of these constraints, most noticeably that a client of

the embedded ORB (the gateway) should not block on making a request and

also the need for the ‘concealment’ of these failings from regular CORBA

clients. It is quite likely that embedded ORB implementations in environments

other than the Mindstorms environment will be able to provide this connection-

oriented service that CORBA implementations expect.

The focus of this project was on allowing CORBA compliant clients to

make object invocations on embedded systems; the design has not

addressed the inverse of this model. The current model does not facilitate

embedded devices making client requests of normal CORBA compliant

servers. The nanOrb implementation does demonstrate the RCX acting as a

client to a second RCX. True embedded ORB implementations should of

course facilitate the embedded applications interacting with normal CORBA

services as both clients and servers. The existing nanOrb implementation

would require additional functionality in the gateway as well as some means

of resolving IORs if it were to support the RCX’s acting as clients to normal

CORBA services.

The final optimisation involved the assigning of certain (CORBA

specified) server responsibilities to the gateway implementation. This is not

considered to be an unreasonable design optimisation in the context of

embedded systems. It is not unreasonable to assume that the gateway

 78

controlling access to CORBA enabled devices will be aware of their

underlying architecture. The assignment of byte-alignment compliance to the

gateway is therefore not considered a huge compromise. In much, the same

way, the conjecture that the gateway might ultimately handle all service

context processing, is also not unrealistic, although not implemented.

5.4 Architecture Comparison

There are several approaches to providing CORBA interfaces to resource-

constrained devices; these have already been introduced in chapter 2. The

first of these is the comparatively simple approach of implementing a CORBA

enabled proxy, which in turn communicates with the embedded device via

some proprietary serial protocol, but still providing the object abstraction to the

client. This approach whilst perhaps facilitating CORBA control of the devices,

does not ultimately bring CORBA to the embedded system (rather it brings the

embedded system to CORBA). Clients must use this proxy to communicate

with the system, and the embedded systems themselves are not aware of the

CORBA oriented services they provide. The IDL defined application interface

is actually implemented on the proxy and the necessary translations are made

to messages so the embedded device may respond. This approach is used in

various applications, for providing standard CORBA interfaces to network

elements for example. It facilitates amore centralised management

architecture, without actually absorbing the cost (in terms of hardware and

software engineering) of implementing CORBA on the device. It does not

ultimately make the embedded device “CORBA enabled”.

The nanOrb implementation provides a more flexible architecture than

this and actually “CORBA enables” the embedded device. Through defining a

transport specific ‘tagged profile’, any LNP enabled client can contact the

RCX, or alternatively an IP capable client can contact the gateway to relay

requests. In both cases the invocation data is relayed to the RCX, where the

 79

implementation of the IDL defined interface is located. Hence the RCX is

‘CORBA aware’. It is important to note that the RCX based nanOrb

implementation is ultimately application specific, although every effort has

been made to provide a consistent platform (or API), it must ultimately be

somewhat modified be due to the resource constraints of the RCX. The

implementation does however provide a consistent platform upon which to

develop applications, where extraneous functionality can be removed from the

final implementation.

The Object Management Groups (OMGs) ‘minimumCORBA’ standard is

intended to facilitate a full CORBA functionality for embedded devices. It is a

far more costly implementation than the nanOrb implementation described in

the previous chapter. Whereas the specification removes some of the more

unnecessary CORBA services, it still implements a large set of functionality.

This report has demonstrated that embedded devices can be made available

to standard CORBA clients without this full implementation. The nanOrb

application illustrates that the embedded devices often do not need this

complete functionality; much of it can be facilitated on a bridging host. This

approach may be viewed as a hybrid of both of the previous approaches

(using a CORBA enabled proxy and implementing minimumCORBA), but still

enables the CORBA interface to the device. The assumption within this

statement is that the gateway application is already necessitated, through the

utilization of a transport other than IIOP, to perform the aforementioned ‘half-

bridge’ function. By keeping the ESIOP messages consistent with the format

of their GIOP counterparts, albeit only a subset, it is also possible to facilitate

clients, that are capable of using the embedded environments’ transport

mechanism, directly request service of the devices. This support is, of course,

only for the messages that the embedded device recognises.

 80

5.5 Improving the nanOrb Architecture

It has been illustrated that the process of designing embedded CORBA

implementations is frequently one of compromising. That is, in order to

accommodate the specifics of the embedded domain, certain CORBA

expectations or features are ultimately relaxed or optimised as appropriate.

The previous sections have highlighted what the nanOrb implementation has

achieved, in terms of providing CORBA services on embedded devices and

also the portions of the CORBA specification it has implicitly removed or

altered. Each of these presents an opportunity for improvement. However,

the more any specific CORBA functionality is facilitated, the less resources

are ultimately available for other improvements and/or application logic.

Perhaps the biggest single improvement to the specification would be

to develop the gateway functionality to make it a more generic, as opposed to

application specific, and to facilitate nanOrb devices acting as clients to

regular CORBA services. This functionality, perhaps coupled with a better

definition of a nanOrb API, would facilitate the development of CORBA

applications in the Mindstorms environment without the need to modify the

infrastructure beyond some simple reconfiguration. This type of functionality is

of course, what all CORBA implementations aim for. It is however doubtful

that any embedded CORBA infrastructure can be completely transparent to

the application developer, due to the nature of embedded programming and

the constraints it imposes.

 81

Chapter 6

Conclusion

6.1 Work Completed

The aim of this report, as stated in the abstract, is to investigate the

applicability of the Object Management Groups Common Object Request

Broker Architecture to presenting interfaces to severely resource constrained

embedded devices. This investigation is facilitated through the implementation

of an environment specific CORBA application. The design process

appropriate to implementing an Environment Specific Inter-ORB Protocol

(ESIOP) has been presented, in conjunction with several optimisations, which

can be made to facilitate the efficient implementation of an embedded ORB.

This process has been further developed and demonstrated through its

application to the demonstration environment, the LEGO Mindstorms kit, and

ultimately illustrated by the “nanOrbDemo” application. Lastly the successes

and failings of the implementation have been reviewed.

The overall process has involved customising (reducing) the GIOP

message set in order to enable a minimum footprint on the RCX brick as well

as relaxing some of the GIOP transport assumptions, due to the nature of the

underlying infrared transport mechanism. Certain portions of the ORB

functionality have been removed from the embedded device and implemented

on the bridging host, again to reduce resource consumptions.

The final nanOrb application clearly demonstrates that CORBA can be

applied to embedded devices, enabling the inter-communication of normal

CORBA requests to and their execution. It also illustrates alternative

approaches to full providing this functionality and optimisations that can be

exploited to better accommodate the embedded system. The inverse

 82

relationship between the amount of CORBA functionality supplied and the

amount of application logic that can hence be accommodated has been

highlighted at various stages of this report.

 The previous assessment chapter highlighted the various assumptions

made (and their implicit compromises) in designing the nanOrb architecture. It

is conceivable that the application of this architecture to a different embedded

environment, supporting different distributed applications, would result in the

imposing of different operating characteristics and end-functionality

requirements on its implementation. The applicability of any embedded

CORBA solution is ultimately largely dependent on its environment.

6.2 Work Remaining

The implementation of the REPLY and ERROR message functionality

specified in the nanOrb design must be completed. This is just a debugging

process; the core application logic is in functional.

6.3 Further Research

Whereas this report does demonstrate the provision of basic CORBA request

functionality on the RCX, and hence embedded systems, it does not fully

explore the extent to which this functionality can be extended. Whereas it was

not attempted to implement a full minimumCORBA implementation (that was

not the ultimate focus of this project), there is scope for the implementation of

more than the aforementioned basic request functionality. Further work might

implement this functionality in a logically progressive fashion and ultimately

draw conclusions as to the relationship between the provision of functionality

and the consumption of resources, hence illustrating the ‘balance’ that can be

achieved with implementations.

 83

It may also be possible to attempt a full minimumCORBA

implementation on the RCX. This would ultimately consume all physical

resources (memory) and hence most likely only facilitate a CORBA interface

to the underlying hardware, as opposed to accommodating considerable

application logic. It is anticipated that this activity will be pursued in

conjunction with the K-ORB project [18].

The nature of the Mindstorms robots, their operating characteristics

and the available toolset provides a rich environment for the exploration of

mobility support within the embedded CORBA field. The infrared transport and

addressing mechanism could enable the use of multiple PC’s acting as

mobility gateways to the RCX’s as described in the Alice paper [28]. The

application might also explore autonomous disconnected operation

characteristics.

 84

Bibliography

[1] OMG, “The CORBA Specification”, 2000

http://www.omg.org/technology/documents/formal/corba_2.htm

[2] The Object Management Group, “The MinimumCORBA Specification”,

1999

http://www.omg.org/homepages/realtime/rfp/real-

time_minimum_corba.html

[3] Iona Technologies, “The IONA IIOP Engine”, 2000

http://www.iona.com/products/embsys/whitepaper.html

[4] The Object Management Group, “OMG Formal Documents” 2000

http://www.omg.org/technology/documents/formal/

[5] IEE, “The Millenium Problem in Embedded Systems” 1997

http://www.iee.org.uk/2000risk/old/archive/emb.htm

[6] P. J. Koopman, “Embedded System Design Issues” : Carnagie-Mellon

University, 1996

 [7] N. Furihata, “Distributed Embedded System Design” : University of

Southern California, 1999

http://www-scf.usc.edu/~furihata/research.html

[8] B. Cole, “Architectures overlap applications,” Electronic Engineering

Times, pp. 40,64-65., 1995

[9] T. Wong, “CORBA in the Embedded Systems Context” : Highlander

Communications, 1999

 85

[10] J. Ganssle, “The Challenges of Real-Time Programming” : Embedded

Systems Programming, 1998

http://www.embedded.com/98/9807fe.htm

[11] The Object Management Group, “What is CORBA”, 2000

http://www.omg.org/corba/whatiscorba.html

[12] Redhat Corporation, “The ORBit Project Homepage”, 2000

http://www.labs.redhat.com/orbit/

[13] Object Oriented Concept Inc., “The Orbacus Homepage”, 2000

http://www.ooc.com/ob/performance.html

[14] AT&T Research Labs Cambridge, “OmniORB Home”, 2000

http://www.uk.research.att.com/omniORB/

[15] The OCI Host Site, “The ACE ORB”, 2000

http://www.theaceorb.com

[16] D. C. Schmidt, “High-Performance CORBA”, 2000

http://www.cs.wustl.edu/~schmidt/corba-research-performance.html

[17] Lockheed Martin, “The HardPack Fact Sheet”, 2000

http://www.hardpackorb.com/factsheet.pdf

[18] J. Dowling & A. Edmunds, “The K-ORB Project”, Trinity College Dublin,

2000

http://www.dsg.cs.tcd.ie/research/minCORBA/index.html

[19]
��� �������
	��������������������������������!

, “ Optimizing a CORBA IIOP

Protocol Engine for Minimal Footprint Multimedia Systems” Washington

University 1998

 86

[20] K. Kim, G. Jeon, S. Hing, S. Kim, and T. Kim, “Resource-Conscious

Customisation of CORBA for CAN-based Distributed Embedded

Systems” IEEE 2000

[21] F. Martin, “The MIT Programmable Brick Project”, 1999

http://el.www.media.mit.edu/projects/programmable-brick/

[22] S. Holdren, “Spirit OCX”, 2000

http://www.holdren.com/scott/legos/

[23] D. Baum, “Not Quite C”, 2000

http://www.enteract.com/~dbaum/nqc/index.html

[24] R. Hempel, “Forth for Mindstorms”, 1999

http://www.hempeldesigngroup.com/lego/pbFORTH/

[25] J. Solorzano, “The TinyVM Project Homepage”, 2000

http://sourceforge.net/projects/tinyvm

[26] M. L. Noga, “The legOS Project Homepage”, 2000

http://www.noga.de/legOS/

[27] A. D. Joseph, “Mobile Computing with the Rover Toolkit,” IEE

Transactions on Computers: Special Issue on Mobile Computing, 1997

[28] R. Cunningham, “Architecture for Location Independent CORBA

Environments (ALICE)”, Trinity College Dublin, 1998

[29] " �� #��	���������$�% ��� ., “Service Machine Development for an Open Long-

term Mobile and Fixed Network Environment,” DOLMEN Consortium

ACTS Ref: AC036 DOLMEN, 1997

[30] The GNU Software Foundation, “The GNU Homepage” 2000

 87

http://www.gnu.org

[31] Y. Jeannnotat, “The WinLNP Home Page” 2000

http://www.geocities.com/WinLNP

[32] CygnusSolutions Inc., “Cygwin Homepage” 2000

http://www.cygnus.com/cygwin/

