SIBLINGS

A Server Framework
for the Platform-Adaptive Delivery
of Site Content

Joseph Sant

A dissertation submitted to the University of Dublin,
in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

September, 2000

Declaration

| declare that the work described in this dissertation
is, except where otherwise stated, entirely my own work
and has not been submitted as an exercise for a degree at
this or any other university.

Signed:
Joseph Sant
September 15, 2000

Permission to lend and/or copy

| agree that Trinity College Library may lend or
copy this dissertation upon request.

Signed:

Joseph Sant
September 15, 2000

II

Summary

The increasing use of devices such as connected palmtops and internet
appliances has led to a need for web site designers to accommodate a wider range of
client platforms and capabilities. Several approaches for transparently supporting
this task have been proposed and implemented. Most assume that one site structure
and navigation scheme can be appropriate for all devices and concentrate on
adapting the presentation of content. This dissertation presents a server
infrastructure that will support transparent adaptation of presentation while
allowing for different site structures and navigation schemes.

This dissertation describes the design and implementation of a server
framework based on Jigsaw’s object-oriented server architecture that enables the
adaptive delivery of site content to diverse client platform types. The server can
support the use of parallel platform-specific static HTML page collections in web site
authoring by dynamically selecting the pages most appropriate for the client
platform. The framework was designed to be able to use current protocols and work
effectively on small and medium-powered servers. Most of the server enhancements
are pluggable components that would facilitate the accommodation of new standards
by encoding and plugging new components. It can work with traditional HTML as
well as more advanced document base structures (i.e. XML for content
representation and XSL style sheets to provide formatting).

The server enhancements implemented include the characterisation of user
requests according to their platform type, the automatic provision of client platform
information to dynamic page creation tools such as servlets, and options in server
configuration to allow web masters to specify the adaptive redirection of user
requests to more suitable directories, adaptive re-mapping of user request document
names and scheduled regeneration of documents from their respective XML and XSL
source.

A sample web site involving different navigation and presentation

approaches for desktop and palmtop clients is implemented using the server.

I1I

Table of Contents

1 INTRODUCTTION ..cccotiitirierieeieneeneesieenieesestesueesseesseesesssesseesseenes VII
1 A '3 Vs o Yo 10 Toi o) o KU 1
1.2 Heterogeneity and Clients, Servers and Users.........ccccceeeveeen... 2
1.3 Objectives of Dissertationc.cccceeeeviereeeicieeieeesieee e 3
1.4 Overview of Dissertation.c.cccveeeeercirireeciieeeeecieeeeeeiieee e 4

2 Web-Based Document Basescccoouvveviiiiiiiiiiiiinerieeeee e 6
J22% AN ' Vs o Yo 11 Toj o) o KON 6

2.1.1 Static DOCUMENLSccoouviiiiiiiiieieieeecceceeee e 6
2.1.2 Dynamic DOCUMENLES.uvviiieiiiiiiiiiiiiiiiieeeeieeeeiiiiiiieeeeeeeeeraenanns 7
2.1.3 Document FOrmatscccoccvevviiiiniiiiniiiiniiiiciicceccee, 8
2.1.3. 1 HTML.c.oiiieeee e 8
2.1.3.2 XMLttt ettt ettt s 9
2.1.3.3 XSL - Converting XML to Other Formats........ccccee....... 10
2.1.4 RDF oo s e 11
2.2 HTTP and Document Retrieval.........ccccceeeeeiiiiiiiiiiiieeeiieeee, 11
A R 5 S S <Ta ST v 12
2.2.2 HTTDP ReSPDONSES ..cevuivenieenneieeeeeeneeernereneeerneernneeenesernneeennes 13
2.3 User Interfaces for Web Document Bases...........cccceveeeureeennne. 14
2.4 SUMMATY ..o 14

3 Media-Independent Access to Web Documents............cccvvveeeeeenn.. 16
3.1 INtroducChiONooeieeeiiiieeeee et 16
3.2 Issues in Media-Independent ACCESS........ccoouvreeecreireeecreeeannnss 16

3.2.1 Platform Hardware Characteristics........c.cccevveevevernueennennnen. 16
3.2.2 User Interface Capabilities ... cccooueeeeemmmeeeeeeeeeeeeeeeeeeeeeeeeeens 17
3.2.3 Communications Characteristics.......c.ccceevuerrierneirseeneeennen. 18
3.2.4 User Interface Design for Media-Independent Access....... 18
3.2.4.1 Desktops, PDA’s and User Interaction Models............ 19

3.3 Models for Device-Independent Interactionccoeveuuuunnnn.... 20

1A%

3.4 Media-Independent Access - Current Research and Standards.

21
3.4.1 Composite Capability /Personal Preference.........cccc.......... 21
3.5 Architectures for Media Independent Access......cceeeeeeennn..... 23
3.5.1 Discussion of Architecturesccoceeveeriieeniersienneeeneeennen. 27
3.6 SUMMATY ..vviiiiiii 28
SYSECIM DICSTEIN ettt ettt e e et e et eeeeeeseeaneeeeeennnes 29
4.1 INtroducChionooieeeiiiiieeeieee e 29
4.2 Design: Fundamental Assumptions.......ceeeeeeeeeeeeeeeeeeeeneeeaeennn. 29
4.3 Design GOoalS......cccoviriiiriiniiniiiiiiiici 30
44 Candidate Strate@IeS. .uuu et 31
4.5 SIbHNES — Strategy «.ooooveiieiiiiieieeee 34
4.6 The JigSaW Web-SeIVer. ..o 36
4.6.1 OVEIVIEW. ittt ettt ettt et e e eeenee e 36
4.6.2 The DaemoOncccoouiiriiiiiiiieieeeee et 38
4.6.3 Resources, Frames and Filterscccccvvvvvvvvvvvvvivevieeeneieeinnnnns 39
4.6.4 Jigsaw’s Lookup and Perform Algorithm.ccccevvvvvvvnnnes 40
4.7 ArchiteCtUre........oooieiiiiiieeeee e 43
4.7.1 Characterisation SUDSYStEM..........uvvvvvviviiiiiiiiiiiiierireeireeeeannen, 44
4.7.2 Dissemination of Client Platform Information 45
4.7.3 ReQUESE PrOCESSINE ..ouuuviernieinnieenneieineeteeneeeeeerenneeernsesrnneeennees 47
4.7.4 Automated Document Regenerationccceeeeeveeeveveeeeennnns 49
4.8 SUMMATY ..o 49
INPIeMENTATION ..o e e e e e eeeeees 50
5.1 INtroduCtionoeeeeciiiiieeeiieeeeeeee e 50
5.2 Implementation Goals.........cccceecuiieieiiiiiie e 50
5.3 Functional Changes..........cccceiiiriiiieiiiiiiieeeciiee e cieeeeessvieee e 50
5.3.1 Platform Characterisationc.ccceecueeiienieinieenienieeneeeen. 50
5.3.2 Disseminating Platform Information..........ccccccccevenninnn.. 52
5.3.3 Adaptive Redirectionccccccvvviiiiiiiiiiiiiiiiiiiiiiieeeeeeeeee 53
5.3.4 Adaptive Re-mMapDDing . cooe oo e eeeeees 55

5.3.5 Automated Regeneration........cccccccvvvviiiiiiiiiiiiiiiiiiieieeeeeee 56
5.4 Implementation Features and Discussionccccceeeivveeennnns 57
5.5 SUMMATY ..o 58

6 Evaluation and Conclusions...........ccccvueeeeeciiieeeeiiieeee e eeeieeee e 59
6.1 INtrodUuCHON ...cvvviiieiiiiie et rre e 59
6.2 EvalUQtion. ..cccooouveeiiiiii e 59

6.2.1 EireCan — A Case StUAY «eeveemmoeeee e 60

6.2.2 EireCan - Site Structure.cccoeeeeviiriiiniiieiieeeeceeeens 60

6.2.3 EireCan — S0ource DiIreCtOrVuoeeeeeemeeeieeeeeeeeeeeeeeeeeeeeeennnes 61

6.2.4 EireCan — Look-and-Feel and Navigationccccceeeeeeeeeeeeeenn. 63

6.2.5 EireCan — Serviets.....c.cccoevveririenenneneneeneeneeeeeeee e 65

6.2.6 EireCan — Automated File Regeneration.ccccoeeeeeeennnne.. 65

6.2.7 EireCan — Adaptive Re-mMapping. «cceeeeeeeeeeeeeeeeeeeeeeeeeeeeeennns 67

6.2.8 EireCan — Set-UpP ..o 68

6.2.9 EireCan — DiSCUSSIONcoeueiiriieriiieieiieeeieeeieeesnee e 69
6.3 A Critical ANalysiS......cciiieiiiiiiiiiiiieiiiiiiiee et sire e 70

6.3.1 Efficacy of Adaptation....ccoeeeeeeeeeeeeeeeeeeeeeee e 70

6.3.2 Practicality Of USe ...ccooeeieieeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 72

6.3.3 SYStemM TeStINE coooeeieeiiiee i 74

6.3.4 Performance Testingcooo oo 75
6.4 FULUIE WOTK ..t 75
6.5 CONCIUSIONSoviiiieiiiiieeeiee ettt e e e e e sraeea e 76

Bibliographyccoivviiiiiiiiiiiceciee e 77

VI

Table of Figures

Figure 2-1 HTTP Request PrOCESSINE .. cccccivviriiiiiiiieeeiiieeiiiiiiiineeeeeeevesiiieeeessesens 12
Table 3-1 Adaptive Architecture COmMPATISON «uuuuueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenes 27
Figure 4-2 Attaching Filters to File RESOUTICES. ... oeeeeee e eeeeeeeeenns 38
Figure 4-3 Jigsaw - Simplified Server LOgiC oo 39
Figure 4-5 Jigsaw - Look-up Logic [LOOKUDPT ..ueeeeeieeeieeeeeeeeeeeeeeeeeeeee e 42
Figure 4-6 Jigsaw - Perform Logic [LOOKUPT ... eeeeeieeeeeeee e eeeeenns 43
Figure 4-7 Characterisation Subsystem - Static Structurecoovveeuuveeeeeeeeennn. 45
Figure 4-8 Request Static Structure-Simplifiedccoooeeeeieieeiiieiiiiieeeeeeeeeee. 46
Figure 4-9 Sibings: Intelligent Retrieval Request Processing........cooeeeeeeeeeeennn. 48
Figure 5-1 platforms.Xml SOUTCEcooeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 52
Figure 5-2 Configuring an AdaptorFrameccooooeeeeeeieeeeieeeeeeeeeeeeeeeeeeeeeeeeenn 55
Figure 5-3 Configuring Automated Regeneration.......ccceeeeeeeeieiiiiiiiiiiiiieiieieennn. 57
Figure 6-1 IRCAN DTD....cooctiiiieieinienniteeieenieeniteesreeseeeseeessessseesseesssessnsessnneens 61
Figure 6-2 IRCAN.XML Sample Mark-Up..ccoeuummoeeee e eeeeenns 62
Figure 6-5 EireCan Palmtop Query FOrm.. ..o, 65
Figure 6-6 Configuring Regenerated Files. ... 67
Figure 6-7 remapFileName eXampPle....ooooeeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee s s 68
Table 6-1 Siblings Function Test ReSUltsccooeeeeeeeeieieieeeeeeeeeeeeeeeeeeeeeeeeeeee e 74
Table 6-2 Regeneration Test ReSUIEScooeeeeeeeeiieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 75

VII

1 INTRODUCTION

1.1 Introduction

Most web sites have been designed with the assumption that they
would be viewed using a desktop with relatively good graphics capabilities, a
large screen (14” or greater) and a keyboard. With the advent of inexpensive,
powerful and connected Personal Digital Assistants (PDAs) and a variety of
other types of internet appliances, the assumption that pages will be viewed
only on a desktop is no longer valid. This has led to a need for web site

designers to accommodate a wider range of client platforms and capabilities.

This need has led to research and development of server and client
architectures that transparently present the information requested in a
manner most suitable for the client device. Several different architectures
have been proposed for the adaptation of output to accommodate client
platform features [MA2000, ABRAMS1998, ORACLE2000]. Many of these
assume that a single site structure and navigation scheme can be suitable for
every platform and therefore focus on providing alternate presentations of the
same documents. An example of this approach is maintaining the one
document set but eliding or converting images to lower resolution or grey-
scale for palmtop platforms.

This dissertation presents the Siblings Adaptive Server Framework, a
server architecture and implementation that would provide for adaptive
output but accommodate different site structures and navigation schemes for
different platforms. A novel feature of this framework is that it will support
the use of static pages in the design and implementation of adaptive web
sites. It allows the web master to use separate hierarchies of static pages for
different platforms. Until recently, the suggestion of having a separate site
structure for every platform would have been considered difficult to manage

[ABRAMS1998]. The use of the Extensible Markup Language (XML) to

represent site content and style sheets to produce the necessary web pages

makes it feasible.

The server architecture presented assumes that parallel document
bases with possibly different structures may be necessary to accommodate
different platforms. The Jigsaw Server from the World Wide Web
Consortium was used as a base for the implementation. This server
architecture was chosen because its object-oriented design and the availability
of source code facilitated customisation and extension of web server function.
The enhancements to the server include the ability to detect the Platform type
from the User-Agent String, the provision of platform information to servlets
launched by the server, and the ability to redirect requests and re-map
document names to more suitable directories or documents based on the
request’s platform type.

An adaptive web site was designed and implemented using the
Siblings architecture. This was used to evaluate the framework for both
system function and practicality of use. This sample site was designed for
viewing with either a desktop or palmtop and involved the use of both
intelligent retrieval of static pages and the implementation of platform-
sensitive servlets. Document name re-mapping was used and some of the files
were automatically regenerated by the server from their source XML and XSL
(Extensible Stylesheet Language) stylesheets. All static pages on the site were
created from XML documents and XSL stylesheets. Some of the base XML

docments were complex.

1.2 Heterogeneity and Clients, Servers and Users.

Media Independent Access to Web document bases is a growing area
of interest due to an increasing diversity of input, output and processing
features of Internet client devices and the increasing use of alternate
transmission media for Internet communications (e.g. wireless lans, GSM). A
recent Price-Waterhouse [PW1999] report stated, “On the client side, it is

perhaps inevitable that the highly uniform environment defined by

ubiquitous Personal Computers (PC’s) built around x86 processors and
running various versions of Microsoft Windows can only give way to greater
platform diversity”. A broad range of Internet appliances such as set-top
boxes, smart phones, and connected personal digital assistants are already
being used to communicate over the Internet. International Data Corporation
[IDG1999] has predicted that there will be more than 151 million Internet
appliances deployed by 2002 and that purchases of Internet appliances will
eventually surpass those of PC’s. Of particular interest to this thesis is the
role of connected Personal Digital Assistants (PDA’s) and PC’s in the future

panorama of clients accessing Internet Document Bases.

1.3 Objectives of Dissertation

The primary objective of this dissertation is to develop an
infrastructure that enables platform-adaptive delivery of site content through
the implementation of intelligent retrieval of the documents most suitable for
the clients platform and provision of platform information to dynamic page
programs. A secondary objective of the infrastructure is to accommodate next
generation document bases that will likely entail greater use of XML source
documents and XSL style sheets. The dissertation will focus on
accommodating the most common desktop platform, a Windows-based PC
and the most common palmtop platform, and a PalmOs based PDA. The
dissertation also discusses current research in the adaptation of content for

heterogeneous clients.

The infrastructure will be developed attempting the best compromise
between the following issues:
» Efficiency in Processing of Requests.

e Ease of Use for Webmasters.

Flexibility of Adaptivity.

Protection of Intellectual Property and Valued Data.

Author Control of Output.

* Ease of Deployment.

The dissertation involved reviewing pertinent literature in web-based
document bases and adaptive architectures, then using that background to
design and implement Siblings as an adaptive web server framework. The

implementation was evaluated using a case study and some test suites.

1.4 Overview of Dissertation.

This thesis starts with an introduction (Chapter 1) that gives an
overview of the thesis. This is followed by a discussion of the necessary
background in web-based document bases and adaptive implementations
necessary to design and implement an adaptive framework (Chapter 2 and 3).
The design and implementation of Siblings is presented in Chapters 4 and 5.
The final chapter, Chapter 6, presents an evaluation of the Siblings
implementation and the conclusions that may be drawn from the thesis. A

chapter-by-chapter breakdown of the thesis follows:

Chapter 1
Introduction. This chapter presents an overview of the dissertation and

describes the motivation behind the research and the primary objectives.

Chapter 2
Web-Based Document Bases. This chapter introduces the background to
understanding Web document bases, including major protocols, common

document types, and user-interface considerations.

Chapter 3
Media Independent Access to Web Documents. This chapter introduces the
major issues in Device-Independent Access to Web Document Bases, and

discusses current research, standards and implementations in the field.

Chapter 4

System Architecture. This chapter introduces the system design and
discusses the design goals, fundamental assumptions, design strategy. It also
discusses the Jigsaw Web Server architecture that will be used a base
architecture and the design changes proposed for that architecture. Design
strategies are discussed in reference to existing implementation of adaptive

content delivery.

Chapter 5
Implementation. This chapter discusses the implementation of changes
to the Jigsaw server made to effect platform-base adaptation of server

responses.

Chapter 6
Evaluation and Conclusion. This chapter evaluates and critiques the
server design and implementation, lists some suggestions for future
enhancements and provides a conclusion for the dissertation. An adaptive
web site that was designed to support either desktops or palmtops

transparently implemented using the Siblings architecture is also discussed.

2 Web-Based Document Bases

2.1 Introduction

The Siblings Server Framework is intended to serve documents
adapted to the client’s platform using Hypertext Transport Protocol (HTTP).
To properly design and discuss a web server architecture, consideration must
be made for the nature of current and proposed web document bases, the
mechanics of document retrieval using HTTP, and the user view of retrieved
documents.

A typical usage pattern on the web entails a user via a browser
submitting a request for a pre-formatted document to a server, the server
performing a lookup to find the document, the server returning the document
to the client, and the browser on the client rendering the document. Most
commonly, HTTP (Hypertext Transport Protocol) would be used as the
request protocol and HTML (Hypertext Mark-up Language) would be used to
encode the documents. Increasingly, documents are also being dynamically
created in response to a request. This is done by launching a new process or
thread on the server that uses the information in the request to create HTML
output specifically for that request.

The increasing use of XML (a mark-up language for describing
content) enables alternate modes of interaction between clients and web-
based document bases. With XML, it is feasible for the client to request XML-
encoded content from a web site and perform both the formatting and

rendering of the downloaded content on the client.

2.1.1 Static Documents

Static Documents are persistent files that are stored on the server.
These files may obey any one of a number of commonly used formats. The
dominant formats used are HTML, simple text, JPEG, GIF, PNG and multi-

media file formats such as MPEG and MP3. Static documents can be served

very efficiently by web-servers because most of the mechanics for looking up
and retrieving the file has already been implemented efficiently within the
underlying operating system. Another advantage of static documents is that
they can be cached very easily.

Static document bases also have major disadvantages. Using static
documents for responses to HTML form queries is not practical. The number
of possible responses to most form queries requires that a response be created
specifically for that query. Another problem with large static document bases
is that they can be very difficult to maintain. Large static document bases
may entail thousands of files with complex inter-relationships due to links
between files. The addition and deletion of files from the document base
causes problems with maintaining consistency and avoiding broken links
(links that target a document that has been deleted or moved). If a site
structure is altered, very often a large number of files must be changed to
reflect the change in site structure (i.e. changing link targets). If documents
are generated by using cascading style sheets or programmatically this
problem can be ameliorated since one or mores scripts can be run to update

all files that are impacted by the changes.

2.1.2 Dynamic Documents.

A document can be dynamically created in response to a request by
launching a program or thread to deal specifically with that request. This is
especially useful if the request entails access to a database on the server or if
the generation of the response to the query requires complex logic or
calculations. Most modern servers support one or more ways of delivering
dynamic documents. The most common techniques to generate dynamic
documents are CGI applications, Servlets, and server pages. CGI applications
are any application that is designed to accept and return information
conforming to the Common Gateway interface. CGI applications are loaded
as processes with every CGI request and the process is destroyed after a reply

is returned.

Servlets are programs that are loaded only once and therefore tend to
be more efficient. Every request will cause a new thread to be launched
instead of a new process. Server pages allow you to embed executable
instructions inside some type of mark-up. Server pages invert the standard
dynamic page creation approach of using executable code to generate mark-
up. With server pages you embed executable instructions inside the mark-up
and the file will be automatically compiled. These might be compiled into
servlets or CGI applications. [WBP2000] The major disadvantage to all
dynamic document creation techniques is the extra computational load that
results from having to launch a new operating system process or thread to

service each request.

2.1.3 Document Formats

2.1.3.1 HTML

The main features of HTML are that it is easily learned and that there
is a large set of pre-defined tags for the formatting and presentation of
content. Importantly, HTML is the most widely supported mark-up language
with respect to browser and tools. It is also the most widely known. HTML
can be used to describe compound documents, such as documents that
comprise text information and references to graphics files. HTML was
originally designed as a simple markup language to exchange documents
between scientists at the CERN research facility. Since then it has evolved
with a long series of ad-hoc changes making it unwieldy. As a result there
will not be another revision of HTML. Instead of revising HTML, a new
standard XHTML, is a restatement of HTML 4.0 as an application of XML. As
such it provides compatibility with current HTML 4.0 browsers while
allowing for extensions through the addition of new tags [RICHMOND2000].

A major problem with HTML is that it necessarily intersperses
information content with presentation-oriented mark-up. Since the document
is structured according to its presentation it is very difficult to

programmatically extract the information content from an HTML page.

2.1.3.2 XML

“XML is a framework for developing an unlimited number of special-
purpose data languages” [Bosak 2000]. Whereas HTML’s prime focus was to
provide an easy-to-use mark-up language for the presentation of information,
XML, or Extensible Markup Language, focuses on the representation of
information. It will allow industry groups to collaborate in the creation and
use of industry-specific communication, and specify that language using an
XML Document Type Definition (DTD). Once defined, the tags and structure
specified in the DTD can be used for communication and information storage.

The Organization for the Advancement of Structured Information
Standards (OASIS) estimates that well in excess of 100 industry trade groups
are working to develop their own industry-specific syntax for communication
using XML [GASKIN2000]. The United Nations and OASIS are co-operating
to help standardise XML business specifications under the moniker of ebXML
[EBXML] . Possible uses of XML include electronic commerce applications,
enhancing Internet searches, enabling self-describing BLOBs (binary large
objects) and content personalization [HOGAN].

There are many web sites, articles and textbooks on XML and its
related technologies. Two excellent collections of links and categorised
resources can be found at xml.org [XMLORG] and the Cetus Links page
[CETUSLINKS]. Both include many links to XML reference sites, white
papers, link collections and tutorials. There are also links to similar materials
on the Extensible Style Language (XSL) and the Extensible Link Language
(XLL). Jon Bosak and Tim Bray, two technologists who played crucial roles in
the development of XML, have written an excellent overview article for the
Scientific American titled “XML and the Second-Generation Web”
[BOSAK1999]. A variety of introductory and advanced tutorials are available
from individuals and companies including those from SUN [SUNXML],
Microsoft [MSFTXML] and IBM [IBMXML].

A purported advantage of the use of XML is that it is ideal for “open”

solutions to data exchange problems since the documents are text-based and

the exchange format could be agreed upon and published. An open XML data
exchange schema will circumvent interference from third parties and
eliminate dependence on software vendors or bindings to specific tools
[Bosak 2000].

Another of the key benefits that XML provides is the increase in the
granularity of information retrieval on the web. Any investigation of the
design of browsers, servers and proxies elucidates the fact that much of the
effort on the web revolves around the request and retrieval of files (most
commonly HTML files and the graphic files they reference). XML will allow
the creation and use of tags and attributes to describe any class of objects. An
XML document base could simply be properly tagged descriptions of a
company’s products or a university’s courses. If the items in the document are
tagged appropriately it enables users to selectively retrieve only those parts of

the document that are of interest to them.

2.1.3.3 XSL - Converting XML to Other Formats

The fundamental benefit of XML is that it allows information content
to be represented separately from its presentation mark-up. This does not
eliminate the need for a consistent way of formatting and presenting the
information in XML documents. XSL is used to prescribe formatting
instruction and rules for XML documents. It can be implemented in a manner
similar to that of CSS, Cascading Style Sheets. XSL is a rich formatting/style
language that allows the user to prescribe formatting instructions taking into
account the structure of the XML document. It has special keywords that
allow the Style Sheet author to associate formatting activity with certain parts
of the document structure tree. XSL also includes many built-in functions and
the ability to embed JavaScript for highly customised output.

XSL is not without its detractors. Mike Leventhal in a series of articles
for XML.com [LEVENTHAL1999a,b,c] makes the point that the language is
difficult to learn, is subject to inconsistent implementation by vendors, and for

all its complexity does not represent any significant advance over existing

10

technologies. He supports his arguments by pointing to complex XSL code
used to perform straightforward tasks, and shows a comparison between
formatting of XML using XSL and another using both DOM (Document
Object Model) and CSS (Cascading Style sheets).

2.1.4 RDF

Resource Description Format (RDF) is used for the specification of
metadata for digital resources. It allows applications on the web to discover
properties about the web resources they are processing. These properties
may include cataloguing information, relationships to other web resources, or
intellectual property issues. RDF files must be valid XML files. RDF provides
the advantage over XML in that it provides information on the interpretation
of data, rather than simply specifying a structure for data representation.

In order for RDF to be useful in describing metadata, it must be able to
express a variety of relationships, it must be extensible, and it must be

modular.

2.2 HTTP and Document Retrieval

The most commonly used protocol for document retrieval on the web
is the HTTP (Hypertext Tranport Protocol). Versions of this protocol in
common use are HTTP 0.9, 1.0 and 1.1. Garshol has written an excellent
discussion of how HTTP works [Garshol]. A good discussion of the main
features and main differences with respect to HITP 1.0 and 1.1 is found in
Krishnamurthy et al. [KRISH99]. Using this protocol, a client (e.g. browser)
sends a text-based ‘request’” message containing the requested document
name and some information about the client to a server. The server then
interprets the request, attempts to look for the document on disk or creates it
dynamically, and sends the document back with header information that can
be used by the client browser. The combination of the header plus any data is
called a response. If the server cannot retrieve a requested document, it will

typically return a response containing an error code in the header and a

11

document indicating that an error has occurred. A simplified schematic of the

HTTP protocol in action is shown in Figure 2-1.

1 | ; ;
(le r Rendered rgwser ;"e’"p’(‘)’l: ; /eb ﬁﬁs[:"e Search Orﬁr (O8]
't-‘-)— = ﬁ’i‘t S Se= ﬁver .
Page] N Header+ —| ~ File Stream
Stream or Error
Status

Figure 2-1 HTTP Request Processing

The most common used functions of an HTTP web server is to retrieve
tiles (typically HTML and graphic files) for remote clients or to launch
processes or threads which would dynamic create a document at the users
request. Another function of a web server is to redirect requests for a specific
document in a specific directory to other directories or other files. This may be
necessary when a path becomes obsolete (e.g. the file or directory has been
deleted or is empty). Other functions of web servers include authorization

and security.

2.2.1 HTTP Requests

HTTP document requests must be formatted to include information
about the request method and the document name. Optionally information
about the client can be included. In the simplest case, a browser sends the
request method, the document name and the protocol followed by a blank

line.

12

GET /User/ Pal ntop/index. htm HTTP/ 1.0
[blank I'ine here]

A request can include information about the client such as
Authorization, Content-Encoding, Content-Length, User-Agent and several
other parameters. A full list of the request header fields for both HTTP 1.0
and 1.1 is available on the World Wide Consortium site [RFC1945, RFC2068].
Of special significance to this thesis is the User-Agent header field. This field
is commonly used to report the name or compatibility of the browser and
perhaps the operating system name. An example of a request with an User-

Agent header field and an accept header field is shown below:

Netscape 3.0 Browser Operating

Compatible Name System
GET / User/ Pal nt op/ i ndex’ht i HTTP/ 1.0 /
User - Agent: Mozillafl. 22 (conpati bl e; owser 1.0; PalnOS 2.0)

Accept: */*

If one could inventory the names of browsers and operating systems
associated with palmtops the User-Agent could be used to differentiate

between palmtops and desktops.

2.2.2 HTTP Responses

Once the server has processed the request it sends an appropriately
formatted response to the remote client. The server will attempt to locate the
requested document then form a response composed of a specially formatted
header followed by the document content. Typically the header will include
the HTTP version, a numeric status code for the request, a short text code, the
date, the date the file was last modified, the length of the document and the
MIME type of the document. A detailed explanation of both the request and

response formats is available at the World Wide Web Consortium web site

13

[RFC1945, RFC2068]. There is a defined list of status codes which indicate a
variety of error conditions or success. When redesigning server function or
implementing proxies, these status codes could be used to trigger special

actions such as redirection to an HTML page relating to the error condition.

2.3 User Interfaces for Web Document Bases

A tull discussion of User Interface Design for the Web would be out of
the scope of this dissertation. There are several issues in User Interface
Design that might impact the design of a server intended to serve information
to diverse platforms. The central issue considered is whether the different
platforms require different site structures, tool usage, and navigation
schemes. If this is the case then any approaches that focus on customising the
presentation of a single document base with a single structure for each
platform must be called into question.

There are very few empirical studies of the differences between
browsing behaviour on diverse platforms such as desktops and palmtops.
Jones et al. [JONES1999] performed a study of 20 participants in performing
specific tasks using a desktop browser and a palmtop browser. The study
results indicated significant differences in task completion on the different
platforms. It was also found that small screen users selected search facilities
twice as often as large screen users, with as many as 80% of small screen users
beginning by using the search options of the site. The most commonly
viewed pages differed significantly between users of the two platforms. Users
of palmtops scrolled to find information more often than the desktop group.
Jones et al. suggests that the metaphors used with larger screens are not the

most appropriate for the new devices [JONES2000].

2.4 Summary

This chapter presented an overview of the types and formats of
documents that may be found in a web-based document base. An overview

of the HTTP protocol and a brief discussion of how the features of the client

14

device might necessitate different document base structures was also
presented. In the next chapter, we will look at the issues, models and existing
implementations that relate to media-independent access to web-based

document bases.

15

3 Media-Independent Access to Web
Documents

3.1 Introduction

In chapter 2, we discussed the features of web-based document bases
and their retrieval via HTTP. This chapter discusses the main issues
associated with media-independent access, proposed models for device-
independent interaction, and current research and implementations in the
field of media-independent access to web document bases. The chapter
provides further background for the design of the Siblings Adaptive Server

Framework.

3.2 lIssues in Media-Independent Access

3.2.1 Platform Hardware Characteristics

The standard Desktop environment for accessing the internet has been
a PC-ased on a 32-bit Intel-compatible chip running a version of Microsoft
Windows Operating environment. This platform represented over 90% of
Desktop sales in 1999 [LEM1999].

As of 1999 the dominant browsers for the PC platform were Internet
Explorer and Netscape Navigator, together having a market share of almost
100% [ITANALYSIS1999]. Each browser is feature-rich and require several

megabytes of memory and disk space to run properly.

By contrast, the dominant Personal Digital Assistants were the
PalmPilot and their work-alikes (e.g. Handspring). PalmOS-compatible
PDA’s had 78.6% of the U.S. market-share for the high-end professional PDAs
in 1998 [SJMT1999]. A representative example of the features of a connected
PDA could be those of the PalmPilot V. This palmtop had a 160 by 160 grey
scale display with no keyboard and a 6cm by 6cm touchscreen. It uses a 16

MHz Risc Chip and came standard with 2 Megs of RAM. The choice of chip

16

is largely constrained by power consumption since one of the advantages of
the Palm platform is their ability to run for extended periods of time on

commonly available AA batteries.

3.2.2 User Interface Capabilities

Typically Desktop PC’s would provide the widest range of user
interface capabilities due to their large full-featured display, extensive RAM
and disk space, fast processor and full-sized keyboard. However, the
standard user interface for access to the web in a PC is that constrained by the
typical browser. The typical interface is therefore graphic and text-oriented
with heavy reliance on the mouse and keyboard for input. The most
commonly used interface tools that would be provided are those that are
available in an HTML form; command buttons, text boxes, text areas, text
labels, drop-down lists, check-boxes and radio buttons. All of these except for
text boxes and text areas depend on the mouse for input. Since the screens are
comparatively large it is possible to display reasonable amounts of textual or

graphics on the screen.

The dominant OS in the PDA/Palmtop market is the PalmOs with
approximately 75% of the market. The form factor and function of most of the
PalmOs compatible palmtops are similar. Although there are colour versions
of the Palm, most Palm machines are characterised by their small grey-scale
touch screen suitable for pen-based data-entry and their lack of a keyboard.
The PalmPilot V has a small backlit LCD screen (160x160) that restricts the
amount of text and the type of graphics that can be displayed at one time. It
uses a grey-scale display. In order to compensate for the lack of a keyboard,
the PalmOS supports hand-writing recognition using a special alphabet set
called Graffiti. This script is very easily learned and it is estimated that after 5
minutes of practice character input accuracy of 97% is typical
[MACKENZIE97]. It has also been stated that text input speeds as high as 30
wpm are possible using the Graffiti script [PALM1995]. Alternatively, the
image of a keyboard (known as a “soft keyboard”) can be displayed on the

17

touchscreen and can be used to enter character-type data. In either case the

speed of character input is not as fast as with a full-sized keyboard.

3.2.3 Communications Characteristics

There is a wide variation in latency, bandwidth and connection
stability between the various communication techniques available on
desktops and connected PDAs. Typically desktops will use communication
techniques that have higher bandwidth, lower latency and more connection
stability. The wireless networks that would be used to connect PDAs are
typified by low bandwidth, high latency and poor connection stability
[APION1999]. The bandwidth of the faster communications techniques
available for desktops (ASDL, Cable Modems, ISDN, T1) is orders of
magnitude faster than those expected for connected PDAs (wireless lans,
cellular communications). High performance lans using guided media would
have bandwidths in the 100 Mbps range whereas high performance wireless

lans would be in the 10 Mbps.

3.2.4 User Interface Design for Media-Independent Access

The most common web-oriented user interfaces were designed for a
standard desktop/laptop configuration. This was sufficient since the
overwhelming majority of web clients in the mid and late 1990’s were likely to
be desktops. This is changing now with the increasing market share of
PDA'’s, set-top boxes and smart-phones. Since user interface design depends
on the devices available and users” device configurations are becoming more
diverse, the question “What is the device” is now problematic

[WINOGRAD1999].

The platform characteristics of desktops and palmtops have already

been discussed. Several critical differences between a desktop and a PDA are:

e PDA'’s have a smaller screen size

* PDA’s may have only grey-scale.

18

* PDA’s may be restricted to pen-based touchscreens.
* Connectivity with PDA’s is likely to be slower.
« PDA’s will most likely have slower processors and less available
memory.
Although we may expect technological advances and market forces to
result in faster processors, more memory, and greater availability of colour
screens, PDA’s will remain constrained by their smaller screen size and lack

of a keyboard.

3.2.4.1 Desktops, PDA’s and User Interaction Models.

The dramatic differences between the PC and PDA platforms forces us
to consider whether the user interaction model for PDA’s differs from that of
desktops. If the user interaction model for PDA’s is different, it could mean
that users of an XML or HTML document base on PDAs might intrinsically
access the document base differently in both the information they request and

the way they navigate through the document base.

An indication of the differences between accessing Web pages via PDA
or desktop can be gleaned from suggested best practices for designing web
pages for handheld devices. Kacin provides a series of tips for designing web
pages for handheld devices [KACIN1999]. The article suggests only including
the most critical information on the site to try to avoid extravagant effects or
colours. There is a strong recommendation to minimize any use of graphics.
Where possible, graphics should be designed for smaller screen sizes (e.g.
150x140 pixels). Of particular interest is that the article suggests page lengths
be kept small, and that drill down navigation of multiple pages be used in
preference to scrolling a single large page. The article suggests that dynamic
generation of HTML be done on the server. Form input should be kept to a
minimum because of slow speed and higher error rates of input using Graffiti
(the Palm symbolic handwriting script) and soft keyboards. One suggestion

was to pre-populate form fields where possible.

19

3.3 Models for Device-Independent Interaction

Several models have been developed to accommodate device-
independent interaction with users. Some are strictly theoretical, whereas
others have implementations. There is also a commercial package, Digital

Plastic, which promises adaptive display of content [ECLIPTIC2000].

Thevenin and Coutaz [THEVENIN1999] present a model and
demonstration implementation for Adaptive and Plastic interfaces. They
differentiate between “Adaptability”, the capacity of a system to allow users
to customize their system from a predefined set of parameters and
“Adaptivity”, which is the capacity of the system to perform adaptation
automatically without deliberate action from the user’s part. They also define
the term plasticity as the capacity of a user interface to withstand variations of
the system physical characteristics and the environment while preserving
usability. It should be possible to define plastic interfaces once for a variety of
configurations thereby reducing development and maintenance costs. The
article discusses some of the critical issues of design for adaptation and
describes a framework of models for developing plastic interfaces. The
framework includes information derived from a user task model, a definition
for an abstract user interface, descriptions for the physical characteristics of
the target platforms, potential environmental affects on the system or user

behaviour and interactors available for communicating with the user.

Winograd [WINOGRAD1999] discusses several different models for
Interaction Architectures. Early interaction models required programs to
directly interaction with sensors/actuators (i.e. devices). In the model used
currently, user applications interact with a timesharing/window manager
that that wuses device drivers to communicate with the actual
sensors/actuators (devices). A significant advantage was that device drivers

abstracted the interface to classes of devices.

Winograd takes the abstraction one step further by re-interpreting the

role of the manager as responding to phenomenon (instead of a device-

20

oriented interaction). Phenomena are things and events that are relevant to a
program. The manager would communicate with one or more “observers”.
This layer of observers replaces rather than adds to the layer of device drivers.
An observer may fulfil the same role as a device driver or may interpret the
results from other observers (e.g. simple device oriented observers) and
report the complex phenomenon to the manager. It is possible that a

hierarchy of observers may be required to implement a system.

3.4 Media-Independent Access - Current Research
and Standards.

The issues surrounding media-Independent access are dealt with in a
variety of different research and standardisation efforts including; Composite
Capability /Personal Profile [CCPP1999], Adaptive Content Delivery
[MA2000], and Appliance-Independent User-Interface = Languages
[ABRAMS1998]. Some of the major issues in Media-Independent Access
include:

* Mechanisms for detection of the software and hardware capabilities of
the client device.

* Standardizing methods for describing user preferences.

* Developing content adaptation algorithms that will optimally render
and retrieve data according to the needs and capabilities of the client.

This includes policies on when to use one algorithm over another.

* Where to do the adaptation - server, client or proxy.
» Efficiency of methods
* Flexibility of methods.

3.4.1 Composite Capability/Personal Preference

Composite Capability/Personal Profile or CC/PP is a developing
standard being led by the W3C to describe and communicate the capabilities
and preferences of web-enabled appliances. An overview and discussion of

this standard is available from the W3C [CCPP1999]. CC/PP will allow the

discovery of a client’s capabilities and preferences to enable more appropriate

21

content negotiation. The standard proposes the use of XML and RDF to
describe the client’s capabilities and preferences. The features that are
considered important to describe are those for hardware and any software
set-ups for the user agent. The standard is being developed with the goals of
ensuring reasonable content negotiation speeds, minimizing content
negotiation transactions, allowing assembly of a profile from multiple
sources, allowing for some user control over agent information, enabling the
use of compact data formats and allowing for the possibility of multiple
network elements between the user agent and origin server. The document
gives examples of some of the hardware, software and preference information
that might be represented as metadata. These include hardware features such
as screen size, colours, vendor and class of device and a variety of software
features and preferences.

A profile may change over the duration of one session. CC/PP focuses
on the critical issue of reliably describing and propagating the “current”
status of the profile for any single network transaction. Although there may
be advantages to keeping a persistent view of a users original profile and any
changes effected over the session it is not addressed by the standard.

A profile may be composed of default settings provided by a software
or hardware vendor, persistent local changes and temporary changes. The
default settings could be the typical configuration associated with a standard
product. Persistent local changes would be changes to the standard
configuration resulting from customisation. A user may have added memory
or a printer to their hardware configuration or added a new capability to a
software product via a plug-in. Temporary changes are those that may occur
during a session such as turning sound or cookies on or off.

Another important consideration is that a profile might best be
“assembled” from several distinct documents or profiles. This can be done
with an “inline” definition that contains all information necessary for the
profiling or by using indirect referencing. Indirect referencing uses remote

sites to retrieve default configurations, possibly directly from the hardware

22

and software vendor’s sites. This indirection to other remote sites could
expose the profiling process to new security attacks. It was suggested that a
solution to this attack could be the use of digital signatures to verify the
URL'’s for the profile.

Other issues discussed included the efficiency considerations of
propagation temporary changes to a composite capability /personal profile. It
was suggested that although the entire profile could be transmitted with each
change a more efficient means would be to only propagate the features that

have been changed.

3.5 Architectures for Media Independent Access

Several architectures have been suggested for media-independent
access. Typically the research and techniques strive for generality; that the
architecture work for a wide variety of client-devices. These architectures
may be server-based, client-based (e.g. browser enhancements), proxy-based,
or some combination thereof.

Ma et al [MA2000] discusses some of the benefits and disadvantages of
server-based versus proxy-based content adaptation. Server-based solutions
allow both static (offline) and dynamic (on-the-fly) content adaptation. Static
adaptation allows the creation of multiple versions of the authored content
(offline if necessary). Dynamic adaptation adapts content on a request-by-
request basis. The study suggests that server-based approaches allow for
more author control since it would be easier to specify and view the adapted
output under different preference and capability profiles. Other advantages
include the ability to encrypt all output and more control of the document
base with respect to copyright and business implications.

Some of the disadvantages of the server-based approach is the
increased computational load and resource use on the server, the difficulty of
geographically distributing the adapted content to widely dispersed clients,
and the management problems associated with the alternate document sets

generated through server-based static adaptation.

23

Ma et al. also discusses the advantages and disadvantages of proxy-
based architectures. With proxy-based content adaptation, a proxy would
intermediate between client and server passing on requests from the client to
the server and adapting the server response for the client. Some suggested
advantages of proxy-based content adaptation include ease of situating
content adaptation geographically close to clients, efficiencies relating to
allowing proxies to adapt content from several different servers.

Ma et al. mention several disadvantages to a proxy-based approach.
Since the proxy typically must be able to adapt output from several different
servers the adaptation would have to be generic. There would be less control
of the adaptation of an author’s content and the presentation on some
platforms might not be acceptable to the author. Another issue is the
potential of a proxy to be used to alter the content so that its business value to
the original source is decreased (e.g. blocking advertisements).

Ma et al. have categorized content adaptation techniques into
Information Abstraction, Modality transformation, Data transcoding, Data
priorisation, and purpose classification. Information abstraction involves
providing digests of text or thumbnails of images. Only the most important
information is retained. Modality transforms involve changing the format of
the data so that it can be accommodated by client device. An example of this
might be sending sets of images instead of a video to devices that are not
capable of playing videos. Other modality transforms are text-to-speech and
speech-to-text. Data transcoding is converting media to the format most
appropriate for the client device. Converting colour images to grey-scale is an
example of data transcoding. Data priorisation priorises the data being sent
so that the appropriate level of quality of service can be associated with the
data. Purpose classification exposes the purpose of a media or interface item
allowing redundant items to be ignored on devices with constrained
interfaces.

Ma et al mentioned the advantage server-based approaches have over

proxy-based approaches in maintaining control of copyright and dealing with

24

the business implications of the document base. Although not discussed in
the article, this has special significance for XML document bases. The
information in the XML document bases may have been costly to acquire,
assemble, or create and may represent great business value to clients. The
XML document would be of greater value to someone wishing to “steal” the
information since the tags describe the meaning of the data and would allow
the creation of programs to parse this information and if beneficial reuse,
reformat, or reassemble it. Converting XML to HTML or WML documents at
the server,therefore, provides better protection for the intellectual property of
the authors. The authors developed a framework for adaptive content
delivery which used an intermediate XML format to represent document
structure and provided support for HTML re-authoring and transcoding
graphics and multi-media files.

Bickmore and Schilit [DIGESTOR] developed a proxy, Digestor, which
would accept user requests and automatically transform the document to
better suit the client device. Digestor would convert the retrieved HTML
document into an intermediate Abstract Syntax Tree before going through a
convolution of transformations to adapt output to the client device.

Abrams et al [ABRAMS1998] suggested using a combination of XML-
compliant appliance-independent user interface language [UIML] and device
or server specific compilers that would compile the UIML into an interface
appropriate for the specific device. This allows the adaptive rendering to be
performed on the server or on the client (perhaps as a plug-in to a browser).
Through the use of this mark-up language it is suggested that only one
interface document base need be maintained and that development of multi-
platform interfaces could be facilitated by having previewers for the different
platform targets. The UIML could be compiled into anything from native
user-interface API’s (e.g. ActiveX) to JavaBeans or mark-up languages.

The steps in defining a UIML interface are:

 listing the interface elements and the abstract class they belong

to.

25

* specifying which elements would be used for a given appliance
and how they would be used,

» providing the data to be used by the interface,

» specifying a style by associating actual device-specific interface
elements with the abstract classes that were assigned to the
interface elements and finally listing any event actions.

Portal-to-Go [ORACLE2000], a commercial product available from
Oracle also implements a media-independent solution using an intermediate
user interface language defined in XML. The user interface language is
known as SimpleResult. Although both use a device-independent user
interface language, Abrams et al. suggests specifying the web interface in
their device-independent language whereas Portal-to-Go can “scrape”
existing HTML documents to discover user interface features and create the
intermediate document using tags from SimpleResult DTD automatically. The
adaptation is accomplished through the creation and use of ‘adaptors’ and
‘transformers’. Adaptors convert information from source documents to
intermediate SimpleResult documents. Transformer convert the SimpleResult
document into the appropriate mark-up for the target device. The major
advantage to this approach is that by using an intermediate document it
avoids the potential combinatorial explosion associated with having many-to-
many relation between document types and target device types. Another
benefit is that the allowance for multiple transformers avoids the least
common denominator approach to specifying user interfaces.

Another commercially available is the IBM WebSphere Transcoding
Publisher [IBM2000]. The system uses an image transcoding engine and a text
transcoding to adapt documents for a client. The image transcoder can
change various features of the image including the image format. The text
transcoder can eliminate or alter features in the document that are not
appropriate for the client. Transcoders are implemented as JavaBeans (Java
classes that have the capability of reporting their capabilities to a client). An

interesting feature of the Transcoding Publisher is that the transcoding can be

26

distributed on different machines and different types of transcoding can be
chained.
The table below, Table 3-1, summarises some major features of the

various architectures discussed above.

Architecture Locus of Intermediate Automated Single Transcoding
Work Mark-up or Re- Document
Representation | Authoring/ Base
Transforms
Abrams et al. | Server,Proxy Yes No Yes No
Browser
Digestor Proxy No Yes Yes Yes
Ma. et al. Server/Proxy No Yes Yes Yes
Portal-to-Go Server Yes Yes Yes No
Websphere | Server/Proxy No Yes Yes Yes
Transcoder

Table 3-1 Adaptive Architecture Comparison

3.5.1 Discussion of Architectures

The architectures discussed above all have the advantage that they can
support platform-adaptivity and require only one document base. This
would reduce the level of effort needed to create and maintain a site. Another
advantage of all the architectures, excepting that of Abrams et al. ,is that they
perform automated re-authoring of existing documents. This means that the
existing investment in the desktop-oriented HTML web site is preserved.
These systems will retrieve the existing pages and intelligently reformat them
for the client device. There are several problems with re-authoring. It is very
difficult to extract the information content out of HTML mark-up. Since it is
difficult to assess the purpose of the elements of a page, the architectures
depend on simple heuristics related to presentation features of the HTML
page to re-author the document. Assessing whether the content is
appropriate is often impossible.

Several of the implementations could require extensive programmer

support to optimise a site for a platform. Portal-to-Go and WebSphere

27

Transcoding Publisher depended on user-written programs or scripts for any
customisation of the adaptivity over and above that provided by the
respective packages. This would be a serious drawback for smaller and

medium-sized sites.

3.6 Summary

This chapter discussed the issues involved in media-independent
access to web document bases and provided background into the models and
architectures that have been developed to provide media-independent access.
This chapter and Chapter 2, combined, provided the background from which
to embark on the design of a platform-adaptive web server framework; the
Siblings Framework. In the next chapter we will discuss the design of the

Siblings Framework.

28

4 System Design

4.1 Introduction

With the background on document base structures, retrieval
mechanisms and existing adaptive architectures presented in the previous
chapters we can now embark on the design of the Sibling Adaptive Server
Framework. This chapter presents the design for the Siblings Web Server
Framework in the context of the design assumptions and goals. This
framework involves a set of enhancements to the Jigsaw web server and
therefore uses its architecture as its starting point. A discussion of the Jigsaw
architecture is presented as background for understanding the design of the

enhancements.

4.2 Design: Fundamental Assumptions

Any technology must be both effective and practical in order to be
widely adopted. For a web site intended to be adaptive to be effective it must
deliver the most appropriate site content, presented in the most suitable
manner for a client platform. It should also provide a navigation scheme that
is appropriate for the platform. For an adaptive server to be practical it
should be efficient in operation so that it will not overload current hardware.
More importantly, it must be practical for the web masters and web-site
architects to create and manage a site that uses the technology. In light of
these considerations, the following assumptions have been the driving force

behind the design.

» Different Content, Presentation and Navigation Schemes Might Be Required for
Different Platforms.
By looking at the suggested best practices for the desktop and palmtop

platforms and empirical studies it is reasonable to assume that a superior web

29

site on a palmtop might require a different site structure and perhaps even

different content than that for a Desktop [KACIN1999,JONES2000].

* Maintaining a Small Number of Device-Class Specific Page Hierarchies is
Practicable.

It can be practical to maintain a small number of device-class specific
Page Collections through the use of XML, XSL and dynamic page creation
programs. Less volatile site content could be stored in a single XML
document base, and different sets of XSL style sheets developed for the
various platforms. For more volatile information, dynamic page creation
programs such as servlets can be used to access a database. By storing site
content in XML and using XSL style sheets to produce HTML pages, changes
in the XML document can be used to trigger the automatic recreation of the
affected HTML pages using the appropriate XSL style sheet and an XSLT
processor. XSLT, or XSL Tranformations, is part of the XSL stylesheet
language that deals with transformations and methods of accessing parts of
an XSL style sheet. This can be highly automated by writing operating system
scripts that run the XSLT processor with the appropriate files when required.

 Adaptation based solely on Dynamic Page Creation is CPU-intensive.

Dynamic pages could consume several orders of magnitude more CPU
time than that required to serve a static page [ITYENGAR]. It is therefore
thought that this approach would not be suitable for small and medium-sized

server installations.

* Dynamic Page Creation is a Critical Part of Any Adaptive Framework.

Dynamic Page creation is the most reasonable way for web-masters to
deal with volatile information. Any adaptive system should be able to
provide these dynamic page creation programs with access to information

about the client’s platform.

4.3 Design Goals

The design goals for the Siblings framework are to:

30

» provide for platform-adaptivity via intelligent retrieval.

* provide for platform-adaptivity via forwarding Platform
information to servlets.

* accommodate next generation document bases such as those
that use XML and XSL to create HTML or XHTML documents.

* support current protocols and standards;

* minimise re-architecting of existing Jigsaw Framework.

* Use best practices in Object-Oriented Design in design of
framework.

* Make as many of enhancements pluggable.

* Ensure enhancements integrate with Jigsaw.

4.4 Candidate Strategies

Five major strategies were considered to accomplish the adaptation of

site content for diverse platforms:

Dynamic Pages. Creating dynamic pages on the server that are

customised for the client platform.

Intelligent Retrieval. Using the server to select the most appropriate

static page for a particular platform from multiple sets of static pages.

Client Proxy. Server serves XML source and style sheets, client proxy

formats locally.

Intermediate Mark-up Languages. Develop or use a platform-independent
user interface mark-up language either on server or client. This
intermediate user interface language is used to define an ‘abstract
interface” for the site which is rendered differently for different

platforms.

These strategies were subjectively evaluated against the following

criteria

31

» Server Loading. The CPU loading on the server could affect scalability
and restrict the applicability of the architecture to more powerful

server platforms.

» Author Control. Author control of the final presentation can sometimes

be lost when using generic formatting for a platform.

* Data Protection. Site content is often highly valued by the site owners.
Returning XML to a client instead of HTML distributes the site content

in a much more usable form.

» Presentation Quality. Generic approaches to interface design often result

in less attractive designs.

* Ease of Management. Using a single document base for all platforms
generally would be more manageable than multiple document bases

for each platform.

* Flexibility in Navigation/Structure. Different platforms might necessitate

different navigation schemes and site structures.

Each design strategy has several advantages and disadvantages.
Because Server-based Dynamic page creation programs are executed with
every request it is possible to create output closely tailored to the features of
the device. This approach can accommodate the features of individual client
configurations. Dynamic page creation programs are also suitable for
situations where the information is volatile or involves database access. The
disadvantages of the use of dynamic page creation programs for platform-
adaptivity are that they do consume considerable CPU time. Another problem
with this approach is that if a different user experience (different navigation,
different content, and different site structure) were desired for different
platforms the necessary logic to encode this would likely be very complex. As
with any server-based approach, the critical site content is partially protected
from unauthorised re-use since the information is maintained in pure form on

the server and distributed in the HTML pages interspersed with extra mark-

32

up commands. The extra mark-up in the HTML makes it very difficult to
extract the information from a page. This advantage is shared by any server-

based approach to adaptation (e.g. intelligent retrieval).

Server-based intelligent retrieval has the advantage of efficient use of
the CPU, the ability to effectively use caching, and the enabling of the use of
different site structures and navigational schemes for different sites.
Intelligent retrieval uses the static page retrieval mechanism of the server that
is typically highly optimised and very efficient. Intelligent retrieval as
implemented in this thesis would require different directory trees for each
different platform supported. This puts limits on the number of different
platforms that can practicably be supported and the level of customisation
that is possible for the client. Server-based intelligent retrieval would only be
useful to adapt output for client device classes and not for individual client

configurations.

Another approach to platform-adaptation is to use XML to store site
content and using a proxy on the client to render the XML into appropriate
HTML for the client configuration. This enables highly customised output
and very efficient use of server resources. Transformation of the XML to
HTML is done on the client. This offloads most of the work involved in
adaptation from the server to the client. One disadvantage of using a proxy
on the client is that there is a loss of author control of output. The proxy must
be able to transform a wide variety of XML files for a wide variety of
configurations. The author would not necessarily be able to predict how the

output would be rendered on these different configurations.

Intermediate user-interface mark-up languages are currently being
used in commercially available adaptive solutions (e.g. Harmonia, Portal-to-
Go). This approach promises ease of management since only one document
base would be necessary. The abstract interface defined using the
intermediate mark-up language would be rendered differently for different

platforms. This necessarily forces the authors to use a ‘one size fits all’

33

approach to choosing site content to display and navigation. This approach
provides multiple presentations for the same user experience, but does not
accommodate multiple user experiences for diverse platforms. Table 4-1,
below, summarises the advantages and disadvantages of the various

strategies is shown below.

Server Author Data Present- Ease of Navigatory
Load. Control Protection ation Manage- Strucutural
Quality ment Flexibility
Dynamic Pages Med- Med- High Med - High Med
(S) High High High
Intelligent Low High High Med - Med High
Retrieval (S) High
XML+Proxy Low Low Low Med - High Low
(Client) High
Transcoding Med Med High Med Med Low
UIML Low Low High Low - High Low
(Client) Med

Table 4-1 Comparison of Adaptation Strategies

4.5 Siblings — Strategy

The strategy chosen was a hybrid server-based strategy that provides
for intelligent retrieval of pages based on the client platform and enhanced
support for platform-adaptive dynamic page creation programs by
forwarding platform information to these programs. It was decided that this
strategy provided the best compromise of advantages and disadvantages to
run on low-end server platforms using current technology and standards to

produce suitable output and allow different site navigational schemes.
The advantages of a server-based approach include:

* PDAs and SmartPhones might not have the processor or

memory capacity to efficiently perform adaptive rendering.

34

* Converting XML to HTML at the server provides some
protection for the intellectual property and business value of the
information in the XML document base.

* Better author control of output.

* Good Use of Bandwidth. The server could have profiles for low
bandwidth systems that would retrieve and render the
outputted HTML so that it was better optimised for low
bandwidth.

* More flexibility in navigation and retrieval.

Since the intelligent retrieval of documents proposed here is based on
using parallel directories to store the HTML for each major platform, this
could add to site management problems. A major problem with multiple
hierarchies is maintaining consistency between the hierarchies. If all site
content is encoded in XML and the HTML is generated from XSL or CSS style
sheets, much of the updating can be automated. If an HTML file is dependent
on an XML file, it can be recreated every time the XML file is changed.
Programs such as MAKE are designed to automatically run procedures
whenever a file is older than the files which depend on it.

Intelligent retrieval typically involves a table lookup and optionally a
redirection to a different directory. Neither is as CPU intensive as launching a
new process or thread. A major advantage of intelligent retrieval is that it
allows site architects to use different navigational structures and prescribe
different content for different platforms.

It was decided to use the Jigsaw Web Server from the W3C as a base
architecture because the:

» architecture is fully object-oriented and allows alteration of the

request/retrieval process in several ways;

* source is available;

* server is Java-based making it easy to extend;

* performance is acceptable when compared to other servers.

35

The main concern with choosing a Java-based server is speed. Java
compiles to an intermediate byte-code that must be interpreted into machine
code at run time before execution. C and C++ based web servers compile
directly into machine code (i.e. object code) avoiding any run-time
interpretation. The authors of Jigsaw state that the server can achieve
performance comparable with C and C++ based web servers. This is done
primarily through very sophisticated use of caching. The most compelling
reason to use Jigsaw is that it has a clean, fully object-oriented design oriented

toward graceful extension of the server’s function.

4.6 The Jigsaw Web-Server.

4.6.1 Overview.

The Jigsaw web-server is a Java-based Object-Oriented web server
developed by the World Wide Web Consortium. The key design advantage of
the server is that it facilitates customisation and extension of the web-server’s
function and that it has a clean object-oriented design. Other notable features
include support for the HTTP 1.0 and HTTP 1.1 protocols and the fact that the
server has been open-sourced.

The server’s design represents a departure from more conventional
servers. Most conventional servers interpret the document path in the user
request simply as a file or directory name to be retrieved. Jigsaw, by contrast,
treats the path as a sequence of separate lookup and processing steps. Each
component of the path acts as an anchor to attached objects that can perform
lookup, retrieval and filtering tasks. These objects are instances of either a
frame or a filter. Frames are used to provide specialised lookup and retrieval
techniques. Filters are typically used to modify a request or reply either
before or after passing through a frame although they are capable of lookup
functions. = The diagram below illustrates how the document path

“/archives/index.html” would be interpreted.

36

/archives/index.html

i index.html
ROOT archives in _
1 Frame Object 1 Frame Object 1 Frame Object
* M M .
0 or more Filter Objects 0 or more Filter Objects 0 or more Filter Objects

Figure 4-1 Document Path Components

As Jigsaw follows through the document path, it calls the appropriate
routines of any components associated with a particular directory or file.
Jigsaw’s Lookup and Perform Algorithm is discussed in greater detail in
Section 4.6.4. An administrator can customise request processing by attaching
different Java frame or filter classes anywhere in the web server document
hierarchy. This ‘per directory” or “per file” configuration allows for fine-tuned
customisation of server function. The diagram below shows the Edit
Resource Window of the Jigsaw Administration Program, with an
HTTPFrame attached to the CANADA_WEATHER.html file and a
RegenerativeFilter attached to the HTTPFrame. The HTTPFrame class
encodes lookup and retrieval functions that are associated with standard
HTTP requests. The HTTPFrame class is included in the Jigsaw distribution.
The RegenerativeFilter could be any Jigsaw or programmer-supplied class that

derives from a standard Jigsaw ResourceFilter class.

37

w3 Edit Resource
Fesource Help

rFrames-
T IRELAND_WEATHER. htrl
| @ O HTTPFrame (frame-03
@ [RegenerativeFilter (...

rAftributes -
Class: argawdc.tools.resources FileResource

l[dentifier IRELAMD_WEATHER htrnl

14 ah a2

Last Modified

Sep 2000

L e e
L e e

e

Fllename IRELANMD_WEATHER htrml

Backup [_] False

omimit || | Feset

Figure 4-2 Attaching Filters to File Resources

4.6.2 The Daemon

Jigsaw uses a daemon, httpd.java, which waits on a server port,
servicing incoming requests by forwarding the request to a pool of client
The client object is capable of many of the tasks essential to
communicating with a client. These tasks include starting, interrupting and
closing connections; processing requests, emitting replies, and maintaining
critical state to enable the determination of whether a connection can be
retained after request processing. Client objects run in their own thread. The
pool of clients will attempt to associate a new request with an idle client
before creating a new client object for that request. This improves efficiency

because it reduces the need for the expensive task of creating and destroying

38

threaded objects. If there are no idle client objects and the maximum number
of connections has been reached, a connection is refused. Figure 4-3 lists

simplified pseucode for the Jigsaw daemon logic.

whil e server not interrupted
Accept a client connection
Forward connection request to client poo
i f maxi num connections reached then
rej ect connection
continue to next iteration
else if idle-client-exists then
assign connection to avail able client
el se
create new client and add to poo
assign connection to newly created client.
end-if
Use Resource Mdule to | ocate Resource.
Fire the "ingoing’ nethod of all filters.
Call the "perform of the target Resource.
Fire the 'outgoing’ nethod of all filters.
Log reply.
end-whi | e.

Figure 4-3 Jigsaw - Simplified Server Logic

The daemon also manages a set of classes to perform tasks such as
logging, authentication and resource management. The Java class used to
perform logging can easily be reset using a Server Administration program.
The daemon does load a catalogue of ‘authentication realms’ but the
mechanics of implementing security is primarily associated with resources

themselves.

4.6.3 Resources, Frames and Filters

Jigsaw treats every server resource (e.g. directories, files) as a full Java
object. These are lightweight objects that usually only store an identifier and
some last-modified attributes. Resources can be classified as a simple or
container resource (resources which contain other resources). If the resource
is a container (e.g. a directory) it will also store a reference to an indexer object

to enable the resource to index its contents.

39

The methods used to ‘serve’ the resource are encoded in a ‘Frame’ that
is associated with the resource. For instance, an HTTPFrame would provide
all the methods necessary to serve a resource using the HTTP protocol. Two
key functions of any frame are the ‘Lookup” and ‘Perform” functions. You can
also use the frame to associate more state information with the basic resource.
These frames are a powerful tool for configuring and extending the
operations of the server. The Jigsaw administration tool allows you to attach
one of several frames to directories and other resources thereby defining the
behaviour of that directory or resource. There are several specialized frames
included with the server that provide extra functionality over the HttpFrame
such as content negotiation, request redirection, invoking CGI scripts and
servlets, and emitting ZIP files.

For the programmer wishing to extend the capabilities of the server,
the most common method would be to inherit from one of the existing frames
or filters and add functionality as needed. Filters are similar to frames but are
used to intercept requests before being processed by a frame and/or intercept
the emitted reply from the frame before the reply is returned to the client.
Filters can be attached to any frame. Examples of filters available with the
server includes filters to compress output, display the content of requests and

replies to the console, limit concurrent access to a resource, and many others.

4.6.4 Jigsaw’'s Lookup and Perform Algorithm.

As mentioned before, Jigsaw treats a document path as a series of
components to be used in the search and retrieval of a document. As Jigsaw
processes the document path it will call the appropriate functions from the
components and maintain a lookup state. Amongst other things, the lookup
state stores a representation of the document path still to be processed.
Amongst the objects that can be associated with a document path component
is one and only one frame, and zero or more filters. Each frame and filter has
a lookup method that determines how the next component in the document

path can be located. Each frame also has a perform function, which encodes

40

how to create a response if the frame is associated with the terminal
component of the document path. Filters are used to do pre-processing of the
request, or post-processing of the response. For example, a URL,
”/archives/index.html”, has 3 components; “/” or the root, “archives” which
is a sub-directory, and “index.html” which is the actual target file. Let’s
assume that during the server configuration process, the web-site
administrator associated an HTTPFrame with the root, the archives
subdirectory, and the contents of the archives subdirectory. The HTTPFrame
has the routines for the lookup and retrieval of documents using the HTTP
protocol. Let’s also assume that the administrator has attached a filter, F1, to
the root directory, F2 to ‘archives’” subdirectory and F3 to the “index.html”
file. Please note that attaching filters to frames such as the HTTPFrame is

optional and typically would not be necessary.

Resource Attached Frame Attached Filter
root HTTPFrame F1
archives < HTTPFrame < F2
index.html I HTTPFrame ¢ F3

Figure 4-4 Set-up for /archives/index.html

In this scenario, Jigsaw would start from the root directory, calling the
lookup() function of the HTTPFrame attached to the root directory. This
lookup() function would cause the filter attached to the frame to be added to
its growing ‘list of filters’. Jigsaw will attempt to call all the lookup routines
of each filter in its list of filters. Since the root is a directory, the
lookupDirectory() routine is called. If the resource were a File, the lookupFile()
routine would be called. The LookupState object will have been updated
appropriately. This same sequence is repeated for all components of the path

until the components are exhausted. Using this scheme, by the time we have

41

cascaded to the target resource, we will have accumulated a list of filters; F1,
F2, F3. The “ingoing’ functions of F1, F2, and F3, will be fired, in that order. A
retrieval of the resource is then executed by calling a “perform’ routine and a
reply created, after which the outgoing() functions of F3, F2, and F1 are called,
in that order.

Figure 4-5, taken from the W3C site [LOOKUP], illustrates the lookup
described above. Notice how the lookup cascades down from the root
directory calling each frames lookup then the filter lookups. The diagram is a
simplification in that HTTPFrame2 would call the lookup of F1 and F2, and
HTTPFrame3 would call the lookup of F1, F2, and F3.

1 i

HTTPFramsl
Fl

lockup
E—— root 4 5
HTTPFramez
Fz
archiwves 7 g
3
HTTPFrame3
F3

e index.html

Figure 4-5 Jigsaw - Look-up Logic [LOOKUP]

Figure 4-6, also taken from the W3C consortium site [LOOKUP], shows
the perform algorithm. Although all frames have a perform function, only the
perform method of the frame attached to the target resource is called. The perform
method actually creates the reply once a document is found. Only one reply

is necessary for one request. All ingoingFilter functions will be called before

42

the perform method of the resources, and all outgoingFilter functions will be

called after.

ocntgoingFilter ingoingFilter
g g ‘x\ g g

HTTPFramel
Fl
root ingoingFilter
cutgoingFileer
ATTPFrameZ
Pz
) ingoingFilter
archives
ountgolngFilter
HTTFFrame3
F3
perform
i {\\ “x\Hh

Figure 4-6 Jigsaw - Perform Logic [LOOKUP]

4.7 Architecture.

The creation of Siblings involved a set of structural and operational
alterations to the Jigsaw distribution. The main design changes made to the
Jigsaw architecture are:

* Adding a new subsystem to characterise the platform of the request’s
client.

* Changing appropriate classes in the Jigsaw framework to enable
dissemination of platform information to both static retrieval and
dynamic page generation programs.

¢ Changing the control flow of request processing when intelligent
retrieval is required. This required the definition of two new classes,

AdaptorFrame and ReMapper.

43

* Adding a new class, RegenerativeFilter, to the Jigsaw class hierarchy,
which can automatically regenerate HTML files from specified XML

and XSL files on a specified time schedule.

4.7.1 Characterisation Subsystem

The purpose of this subsystem is to identify the platform of the client.
A critical issue in the design of this subsystem is that the method used to
identify the platform be easily changed. This was achieved by establishing an
abstract interface, PlatformFactory, which must be implemented by all concrete
Platform Factories. The Factory design pattern is a common design pattern
used to instantiate objects based on parameters or information supplied at
run-time [GAMMAU95]. Using a Factory pattern for platform discovery made
it easier to allow the encoding and plugging of new platform discovery
algorithms.

Subclasses of PlatformFactory could use any technique for platform
discovery including interpreting user-agent strings in the request or
Composite Capability /Personal Profile. It was decided to use the information
in the User-Agent string of the request to determine the platform type of the
client. This User-Agent string typically contains information on the client
browser and operating system and therefore is an indicator of the type of the
client device. A UserAgentFactory class was defined which implemented the
PlatformFactory interface and used the User-Agent string to search through a
catalogue of platforms stored in a PlatformCatalog object to find the most
suitable platform for that User-Agent String. A new class Platform was
defined which was able to store pertinent information about a platform such
as name, screen dimensions, and colour capability. Figure 4-7, below, shows

a UML static structure chart of the subsystem.

44

PiatformFactory
Logical View

+initialize()
+createPlatform() . Platform

‘F

UserdgentFactory

+initialize()
+createPlatform() : Platform

PlatformCatalog

-defaultPlatform : Platform

+search(UserAgentString : String) : Platform

+FlatformCatalog(platformyector | Vector, platformStrings - Hashtable, defString © String)

PlatformEntry

Platferm

FstringFragment ; String
Fplatform_ : Platform

+Flatform()

+Platform(name : String, user_agent : String, hpixels : int, vpixels ©int)
+zetUserAgent(s : String) © vaid
+getUserAgent() : String

+setName(s : String) : void

+getMame() : String

+setHPixels{HPixels : int) : void

+getHPixels() : int

+setColors(no_colors © int) : void

+getCalars() :int

+setGreyscale(greyScale boolean) : void
+isGreyScale() - boolean

+setProperty(name : String, value : Object) : void
+getProperty(name ; String) © Ohject
+delProperty(name : String) : void
+hasProperty(name : String) : hoolean
+getPropertyNames() : Enumeration
+HaString() © String

Figure 4-7 Characterisation Subsystem - Static Structure

4.7.2 Dissemination of Client Platform Information

It was important that the information derived about the client platform

during characterisation was made available to as much of the Jigsaw

infrastructure as possible. Since the Jigsaw Request class is used by all request

processing routines in Jigsaw, this was an ideal class to provide an accessor to

retrieve the Platform object associated with the request. It was decided that

during characterisation the Platform object would be bound to the Client object

and not the Request object. Jigsaw’s Client class definition was changed to

store a reference to a Platform object and an accessor that could return the

reference. All Requests have a reference to their Client object and therefore

would have access to the Client’s Platform object. This was done for efficiency

45

reasons. Jigsaw supports the connection-oriented request processing that is
possible with HTTP 1.1 [RFC1945RFC2068]. This means that the socket
connection to the client may be retained and reused after a request has been
processed, unlike HTTP 1.0. By associating the Platform with the Client it was
possible to run the characterisation routine only when a client connects rather
than with every new request. A simplified static structure diagram showing
the relationships between the Request, Client and Platform classes is shown in

Figure 4-8.

Request

-client : Client
+getPlatformi() . Platform

?

Client

-platform ;. Platform

Platform

+Platfarm()

+Platfarmi{name ; String, user_agent ; String, hpixels @ int, vpixels @ int)
+setlserAgent(s : String) © void

+getlserAgent() : String

+sethlame(s : String) - void

+getMame() . String

+setHPiIxels(HFxels | int) ;. woid

+getHPixels() : int

+setColors{no_calors : int) ; void

+getColors() : int

+setGreyScale(greyScale - hoolean) : vaid
+isGreyscale() - boolean

+setProperty(name ;. String, value © Object) : woid
+oetProperty(name : String) - Ohject
+delProperty(name : String) : void
+hasProperty(name - String) - hoalean
+getPropertyMames() : Enumeration

+toString() - String

Figure 4-8 Request Static Structure-Simplified

46

4.7.3 Request Processing

HTTP request processing was altered for the case where intelligent
retrieval was required. Siblings uses an advanced form of redirection to
accomplish intelligent retrieval. The Siblings framework allows a web-master
to associate a platform type with a directory, and every directory could have a
set of sibling directories that deal with the same content but with a different
presentation so that requests could be redirected to more appropriate
directories by comparing the platform type of the request and that of the
directory and its various sibling directories. The document name could also
be re-mapped to a different document name during the redirection process.
The altered flow of control for request processing with intelligent retrieval is

shown in Figure 4-9 on the following page.

It was decided to enable intelligent retrieval by deriving a new class,
AdaptorFrame, from HTTPFrame and defining a new class, ReMapper, as a base
class that can be subclassed to encode re-mapping logic. HTTPFrame was
chosen to be subclassed because HI'TPFrame already contains the logic to do a
look-up and perform for a standard HTTP request. AdaptorFrame will encode
the altered flow of control in Figure 4-9 through changes to the look-up and
perform routines. It was necessary to also add a reference to a ReMapper
object to the AdaptorFrame so that it could re-map file names during the
redirection process. ReMapper was designed as a very simple base class with a
narrow interface so that it could be easily subclassed when new re-mapping

logic was required.

47

Start

Determine Platform
of Fequest

que
Flatform=
Directory
tfor

Find Sibling
Directory

YES
irectory has NO
Femapper?
YES
Femap
Document
Mame ¥
| Fetrieve
> File
VES File Has
\Wgratur?
MO
File
Ot of Date? NG ul
YES
v v
Fegenerate Feturn
File File

Figure 4-9 Sibings: Intelligent Retrieval Request Processing

48

4.7.4 Automated Document Regeneration

A new class, RegenerativeFilter, derived from Jigsaw’s ResourceFilter,
was required which would store attributes for an XML source file name, an
XSL style sheet name, a string list of XSL parameters, and an integer for the
age in seconds of the target file that triggers a regeneration. It was decided
that a filter would be used for document regeneration instead of a frame
because it is typically easier for a user to configure filters and it meant that
only one method had to be implemented, the outgoing() method.

The RegenerativeFilter would compare the returned file’s date stamp to
determine if it is older than the maximum age. If it is older than the
maximum allowed age, the file will be recreated by using an XSLT processor
to transform an XML file into an HTML file using the specified XSL style

sheet.

4.8 Summary

This chapter presented the design for the Siblings Web Server
Framework. The assumptions and goals motivating the design decisions
were also listed. Since the Siblings Framework was intended from the outset
to be a set of enhancements to the Jigsaw Web Server, the design and
operation of the Jigsaw Web Server was also discussed. The next chapter will

discuss how the design was implemented.

49

5 Implementation

5.1 Introduction

Chapter 4 discussed the changes to the design of Jigsaw necessary to
achieve the goals of the framework. This chapter discusses how those design

changes were implemented in the context of a set of implementation goals.

5.2 Implementation Goals

The implementation goals of this thesis are:

* Implement server enhancements specified in Design for
characterisation, dissemination of platform information, adaptive
redirection, adaptive re-mapping, and automated document
regeneration.

* Enhancements are easily extended.

* Enhancements are pluggable at run-time where possible.

* Enhancements are configurable through the JIGADMIN GUI server
administration program where possible.

* Minimize changes of the interfaces of Jigsaw’s core classes.

5.3 Functional Changes

5.3.1 Platform Characterisation

Characterisation, with respect to the Siblings framework, is the
determination of the platform type and platform features to be associated
with a client request. This step is critical since the platform name is used to
redirect requests and platform features can be used by dynamic page routines
to produce customised output.

The functionality associated with characterisation was implemented
through the definition of an abstract PlatformFactory interface. Concrete

platform factories would be required to implement this interface. The Factory

50

design pattern is a common design pattern used to instantiate objects based
on parameters or information supplied at run-time [GAMMAU95].

The Jigsaw daemon, httpd.java, has been changed so that it will
dynamically load a subclass of a PlatformFactory, initialise that factory, and
then during request processing use the PlatformFactory to associate a Platform
object with the Client object associated with the incoming request. To improve
efficiency the association of a platform with a client is done when the client
connects.

Any subclass of PlatformFactory can be used to perform client
characterisation. This means that different approaches can be used to
characterise incoming requests (e.g. user-agent strings, Composite
Capability /Personal Profile). The implementation developed in this thesis
used the information in the User-Agent string of the HTTP request to
determine the platform type. The User-Agent string is sent with every request
from a browser and usually contains the name of the browser and optionally
the operating system of the client. A subclass of PlatformFactory,
UserAgentFactory, was implemented which loaded a PlatformCatalog object
with the platform information contained in an XML file.

An example of a such simple platform file is listed in Figure 5-1. In the
example file below there is a list of substrings that may be used to identify a
client as a Palmtop: “PalmOS”,”Palmscape”,”EPOC”. The User-Agent string
will be searched to determine whether it contains any of these strings. Also
note that the file specifies a default platform, “Desktop”. The file layout is not
RDF-compliant. Making this file RDF-compliant might be considered for

future work.

51

)) Dulﬂni-u‘\nn HE S I PN Aﬂt\y]t
<?xm version="1.0" encodi ng="UTF-8"?> Default
<PLATFCRV5 DEFAULT="Deskt op" > i 1t
<PLATFCRM NAME="Deskt op" > Platform

<HPI XELS VALUE="640"/>

<VPI XELS VALUE="480"/>
<COLORS VALUE="24"/>
<PROPERTY NAME="KEYBOARD' VALUE="TRUE'/>
</ PLATFORW>
<PLATFORM NAME=" Pal nt op" >
<HPI XELS VALUE="160"/>
<VPI XELS VALUE="160"/>
<COLORS VALUE="16"/>
<GREYSCALE/ >
<PROPERTY NAME="KEYBQARD' VALUE="FALSE"/ >
<USER- AGENT- STRI NGS>
<SUBSTRI NG TEXT="Pal n0S"/ >
<SUBSTRI NG TEXT="Pal nmscape"/ >
<SUBSTRI NG TEXT="EPCC'/ >
</ USER- ACENT- STRI NGS>
</ PLATFORW>
</ PLATFORVG>

Figure 5-1 platforms.xml Source

The PlatformCatalog class was designed and implemented to be
immutable. Immutable objects cannot be modified once they are instantiated
since they have no member functions that modify instance or class variables.
This means that they can be made thread-safe without employing
synchronization (which is CPU-intensive). This will make calls to the search
routine both thread-safe and efficient. UserAgentFactory returns references to
existing platform objects rather than creating a new Platform object for every
Client object. This was done to improve efficiency. If detailed information is
required about the individual client’s device a new Platform object would
have to be associated with every client.

A PlatformParser class was implemented to parse the XML file and
create a PlatformCatalog object. The PlatformParser class uses the standard SAX
parser that comes with the Jigsaw distribution. The UserAgentFactory uses this

PlatformParser to create a PlatformCatalog.

5.3.2 Disseminating Platform Information

Platform information determined during Platform characterisation

must be disseminated to the static page retrieval mechanisms and servlets.

52

This involved the definition of a new class Platform, and fundamental
changes to some of Jigsaw’s core classes. The Jigsaw Client class was altered
to store a reference to a Platform object. The appropriate Platform object
reference is assigned to a Client object when a client connects to the server.
Jigsaw Request objects have references to their Client object so that Platform
information is accessible to a Request indirectly through its referenced Client
object. It was decided to associate Platforms with the Client instead of directly
with a Request since this meant that for connection-oriented protocols such as
HTTP 1.1, the platform need only be determined when the client connects
instead of with every new request. The Request class was changed to include a
method, getPlatform(), which returns the request’s platform information as a

Platform object.

5.3.3 Adaptive Redirection

Adaptive redirection was achieved by implementing an AdaptorFrame
class. This class subclasses the standard HTTPFrame class that comes with the
Jigsaw distribution and changes the way a standard HTTP look-up and
perform is executed.

AdaptorFrames can be attached to any directory. They differ from
standard HTTPFrames in that they:

Store a list of Platform names permitted to access the directory.
» Store a list of Sibling strings with a format of
<PLATFORM_NAME> + ”?” + <DIRECTORY_NAME>
* During lookup and perform, compares the Request Platform Name to
the list of allowed Platform Names to determine whether to retrieve
the file from the directory or redirect the request to a sibling directory.
» Store a reference to a ReMapper subclass that can be used to remap the
request document name during redirection.

* Invoke the ReMapper subclass’s remapFileName during redirection.

53

Adaptive redirection is accomplished by a simple table search. The
platform name associated with the request is compared against the platform
names in the list of allowed platforms. If there is a match the file is retrieved.
If there is no match then the platform name associated with the request is
compared against the platform name component of the Sibling strings. If
there is a match then the request is redirected to that sibling directory, and if a
ReMapper class has been specified, the remapFileName method of the ReMapper

will be invoked to change the document name.

54

E':nf% Edit Resource Eq

Fesaource Help

rFrames
1 Palmtop

& [AdaptarFrame (frarme-0

- Attributes
Class: orgawacjinsaw frames. AdaptorFrame
platiorms Edit
methods Edit
Desktop? U senDeskiop
siblings Edit
FRmMapper ||:|rg.w3c.jigsaw.hﬁp.Deamanemap
Cormmit || Feset

Figure 5-2 Configuring an AdaptorFrame

5.3.4 Adaptive Re-mapping

Adaptive re-mapping was accomplished by encoding the AdaptorFrame
so that it could dynamically load a subclass of the ReMapper class, instantiate
an object of the class, then call the remapFileName method of that class during
redirection. If no ReMapper class was specified in the configuration of the
AdaptorFrame, then re-mapping would not be attempted. The AdaptorFrame

will provide a string representing the redirect path name, a string for the

55

original platform name and a string for the redirected platform name. The
information in these parameters allows the use of one class for an entire set of

sibling directories. The method signature for remapFileName is shown below:

public String remapFileName(String path,String CurrentPlatform,String OriginalPlatform)

Web site authors can provide re-mapping capabilities by subclassing

ReMapper and encoding re-mapping logic into the remapFileName function.

5.3.5 Automated Regeneration.

The Siblings architecture was designed to automatically regenerate
documents from their source XML and XSL files. This was done by
implementing a RegenerativeFilter as a subclass of a Jigsaw ResourceFilter. The
RegenerativeFilter takes as arguments the source XML file, the source XSL
tile, a list of parameters for the XSL style sheet, and a maximum age before
the file is regenerated. The RegenerativeFilter uses these parameters to invoke
an XSLT processor using these files and parameters. The XSLT processor

used was LotusXSL Release 1.0.1 from IBM.

56

Eéf’,i' Edit Rezource Eq

Fesource Help

rFrames
|j IRELAND _WEATHER htrnl

| @ [HTTPFrame (frame-0)
@ (] RegenerativeFilter ifr...

- Aftributes

Class: orgaw3dc.jigsaw filters. BegenerativeFilter
Identifier jframe-0

= 42 26

Last Modified

i Sep 2000

10 I

[|

(N CN N

xml-file |I3Z".jig5EI'-.-'-.-"I..Jig5a‘-.-‘-.-"l.JigSEIMWUSEHSDUFEEUFEEIH.}{ml

wsl-file }::Ijig5axnﬂ._lig5aw“l,_lig5amﬂ\f‘nﬁwﬂuser’LEnurceIpda_tnpic.}{sl

countryname=IRELAMND
featurename=\"EATHER
#sl-parameters Edit

T

R R

MaxAge (3600 =

Cormrmit I Heset

Figure 5-3 Configuring Automated Regeneration

5.4 Implementation Features and Discussion

Section 5.3, Functional Changes, presented how the functional changes
were implemented. The evaluation of how well these functional changes
perform is discussed in Chapter 6. The implementation satisfied most of the
implementation goals. The enhancements in this thesis are easily extended.
The newly defined classes typically have very narrow interfaces making them
easy to use and extend. The use of a Factory pattern for the Platform
characterisation means that the method of characterising clients can be

changed easily. The classes used in characterisation, adaptive redirection,

57

adaptive re-mapping and automated document regeneration are pluggable at
run-time since these classes are dynamically loaded. Most of the
enhancements can be configured from the JIGADMIN GUI. It is not possible
to specify the name of the PlatformFactory subclass from the JIGADMIN GUL
This could be a future enhancement. Unfortunately, it was not
considered practical to implement the functional enhancements to the server
without minor changes to two of Jigsaw’s core classes, the Request class and
the Client class. Only minor changes were required to these classes; the Client
class now had to reference and provide accessors to a Platform object, and an

accessor has been added to the Request class that returns its Platform type.

5.5 Summary

Chapters 5 presented a discussion of how the design described in
Chapter 4 was implemented. This was approached from the viewpoint of
major functional changes to the Jigsaw server. It was found that it was
possible to implement the design changes specified in Chapter 4 in
accordance with most of the implementation goals specified at the beginning
of this chapter. Minor changes were required to some of Jigsaw’s core classes,
however. The following chapter discusses how this implementation was

evaluated and presents a conclusion for the thesis.

58

6 Evaluation and Conclusions

6.1 Introduction

The preceding chapters presented a discussion of the design and
implementation of the Siblings Server Framework. This chapter provides an
evaluation of that implementation and conclusions for the thesis as a whole.
Suggestions for future work are also discussed.

The Siblings Server Framework was evaluated on the basis of the
design goals, the practicality of its use and its benefits or disadvantages with
respect to other approaches to adaptive delivery of content. Special
consideration will be given to the level of effort and level of skill needed to
implement a web site using the infrastructure, support for XML and XSL and
support for alternate site structures for different platforms. A proper
discussion of platform-adaptive architectures must also deal with the issue of
the interacting effects of device characteristics and user behaviour when using
the Web, since this could be the prime determinant of the effectiveness of any

adaptive web site.

6.2 Evaluation.

The main questions that must be answered in the evaluation are as
follows:
* Do the server enhancements work as intended?
* Isit practicable to implement web sites using this technology?
* What are the performance impacts of the different enhancements?
The approach used in the evaluation was as follows:
¢ Design and implement a non-trivial Web Site designed for viewing from
both Desktop and Palmtop client devices employing XML/XSL
technology for the generation of the HTML documents.

* Develop and run test suites to evaluate each server enhancement.

59

* Develop and run a test suite to compare speed of server function with and

without Siblings framework enhancements.

6.2.1 EireCan — A Case Study

EireCan, a sample web site was developed to demonstrate the use of
the major features of the server framework and investigate the level of effort
needed to implement a small web site so that it produces appropriate output
for both desktops and palmtops. EireCan is a mock web site devoted to
providing information about Ireland and Canada, with respect to travel,
geography, and news links. All content on the site is stored in 3 XML files
and all HTML on the site is generated from 4 XSL styles sheets. By using
parameters with two of the style sheets it is possible to create several target
HTML files by providing different parameters to the XSLT processor. There
is one XML file for the main site information, and one XML file that stores
statistics on each country; Ireland and Canada. The site also uses one servlet
to allow palmtops to retrieve detailed statistics about individual countries.
Another feature of the site is the use of automatic regeneration of HTML files
from XML data files and XSL style sheets. HTML files for weather in Ireland
and Canada are automatically regenerated if the server detects that the files

are beyond their maximum age (1 hour).

6.2.2 EireCan - Site Structure.

The EireCan site was implemented using a total of 4 directories; a
Palmtop directory to store palmtop-related HTML files, a Desktop directory
to store desktop-related HTML files, a Source directory to store the XML and
XSL files, and a Servlet directory to servlets. Jigsaw defaults to using the
‘Www’ subdirectory as the document root for its web server so that all these

directories must be descendants of the “‘Www’ directory.

60

6.2.3 EireCan — Source Directory

This directory stores the XML files for the encoding of site content and
XSL files to provide for the automated formatting of content for the specific
platforms. These files were used to create all the html files in the Desktop and
Palmtop directories. The major source files required for the site were
ircan.xml, eixml, ca.xml, dsk_country.xsl, pda_country.xsl, pda_topic.xsl,

dsk_topic.xsl and pda_links.xsl. These files are discussed below

ircan.xml

This is an XML file that stores site content in both long and short text
forms for most of the pages on the site. The file stores site content according
to topic, not page, and often has both long and short text on the topic. This
allows the XSL authors to selectively choose either short or long text when
creating an HTML page. ircan.xml also stores a collection of links identified by

country, area, and topic. A DTD for the file is shown in Figure 6-1.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! ELEMENT LI NK (#PCDATA) >

<I ATTLI ST LI NK

type (NEWSPAPER | TOURI SM #REQUI RED
country (CANADA | | RELAND) #REQUI RED
ar ea CDATA #REQUI RED

pl at f orm CDATA #REQUI RED

href CDATA #REQUI RED

name CDATA #| MPLI ED

>

<! ELEMENT LI NKS (LI NK+) >

<! ELEMENT LONG EMPTY>

<! ELEMENT P EMPTY>

<! ELEMENT SHORT EMPTY>

<! ELEMENT TEXT (#PCDATA | SHORT | LONG | P)*>
<! ELEMENT TOPI C (TEXT+) >

<I ATTLI ST TOPRPI C

nanme (OVERVI EW| TRAVEL) #REQUI RED
country (ALL | CANADA | | RELAND) #REQUI RED
>

<! ELEMENT VEBSI TE (TOPI C+, LI NKS)>

<I ATTLI ST WEBSI TE

name CDATA #REQUI RED

>

Figure 6-1 IRCAN DTD

61

Example content taken from ircan.xml is shown in Figure 6-2. Please
note that the “OVERVIEW” topic has two text sections, one labeled with a
<SHORT/> tag and another with a <LONG/> tag. The “WEATHER” topic has
only one text section and this section has been labeled with both a <LONG/>
and <SHORT/> tag.

Short and
Long Text

ERVI EW country="ALL">

This society is dedicated to bettering rel ati onshi ps between
Ireland and Canada. This site provides information and

news on lreland and Canada including nedia |inks, inportant
statistical and econonmic data and travel tips.

</ TEXT>

<TEXT>

<LONG >

This society is dedicated to bettering rel ati onshi ps between
Ireland and Canada. Many Irish have enigrated to Canada

over the last 200 years. The descendants of Irish settlers
represent a significant proportion of the population in several
areas of Canada. The two countries have al ways naintai ned

warm rel ations. Many Canadi an tourists visit Ireland every year,
a nunber that has been increasing steadily over the past decade.
<P/ >

Trade between the two countries in 1998 was approxi mately

1.5 Billion Canadian dollars or 750 million Irish punts.

This site provides information and news on Ireland and Canada
including nedia links, inportant statistical and econom c data and
travel tips.

</ TEXT>

</ TOPI C

<TOPI C name="WEATHER' country="| RELAND" >

<TEXT>

<SHORT/ >

<LONG >

Tenperature 18 Degrees Cel si us.

<P/ > Mbstly Sunny but sone cloud in

the eastern counties and overcast or rainy in Linerick, Galway, Myo
and Kerry.

</ TEXT>

</ TOPI C

Figure 6-2 IRCAN.XML Sample Mark-up

ei.xml,ca.xml
These files contain extensive statistics on the geography, economy, and
people of Ireland and Canada. The data was derived from the CIA World
Fact Book and is relatively current. Each file contains over 100 separate

elements with elements nested up to 4 levels deep.

62

dsk_country.xsl, pda_country.xsl

These XSL files provide formatting instructions for the presentation of
country data from either ei.xml or ca.xml for the desktop and palmtop
environments. Although ei.xml and ca.xml contain many elements with deep
nesting, the actual style sheets involved only elementary use of XSL.

pda_topic.xsl, dsk_topic.xsl

These parameterised XSL files provide formatting instructions for
individual topics in the ircan.xml file. It involved the use of more advanced
XSL formatting instructions. The wuse of parameters, such as
“countryname=IRELAND” and “topicname=TRAVEL”, allow the web master
to use the same style sheet and XML file to create a large number of HTML
tiles (e.g. potentially one HTML file for each topic in “ircan.xml”).

pda_links.xsl

This file was used to create a page of links for the palmtop platform.

6.2.4 EireCan — Look-and-Feel and Navigation

The EireCan site was designed with a different look and feel for the
palmtop-oriented and the desktop-oriented site. The desktop-oriented
documents generally have more text and typically have a sidebar with a list of
important links. The HTML pages with detailed information about each
country include map and flag graphics, and over 90 statistics grouped into 3
major categories. The palmtop-oriented HTML pages generally have shorter
text and no graphics. The pages displaying country statistical information
display only 12 statistics, but have a pop-up to query on another 10 statistics.
The palmtop-oriented pages link to a page of hot-links, links.html. The
desktop-oriented directory does not contain a links.html file. This is the only

structural difference between the directories.

63

The index page for the Palmtop is shown in Figure 6-3 below. It

displays brief text and a limited number of links to other pages in the Palmtop

directory, including a page designed solely to display the hot-links that are

shown in the side-bar of the Desktop index page. The user must scroll to

view the navigation links.

The

Figure 6-3 EireCan Palmtop Screen Shot

Desktop index page shown in Figure 6-4 has a sidebar of links and more

complete text.

EireCan Society-Desktop - Netscape

File Edit Wiew Go Communicator Help

| ¢ 2 A B . wWm S & O G

el Fanward Reload Home Search Metzcape Prink Security Shop Sifinm

? th Bookmarks & Location: |http:f’f’ch?E:BDD1 AU zer/Deskiop indes. hirml j @Y'W'hat's Related
EireCan Society-Desktop 7

IRELAND

Stafisfics OVERVIEW - ALL

World Fact Book

Info

Thiz society 15 dedicated to bettering relationships between Ireland and Canada. IMany Irish
Newspapers hawre emigrated to Canada over the last 200 years. The descendants of Trish settlers
Thelrish Times represent a significant proportion of the population in several areas of Canada. The two
countries have always maintained warm relations. Many Canadian tourists wisit Ireland every

Tourism : : :

Bord Failte/Tousiem Y&, 8 nutnber that has been increasing steaddly over the past decade. Trade between the

Lreland two countries sits at approzmately.. . This site prowides mformation and news on Ireland
and Canada mcluding media inks, important statistical and economic data and trawvel tips.

CANADA A g d Tk

e ssoeiated Links

Wotld Fact Book

Info | Home [Trawel in Ireland [Travel in Canada ['Weather in Ireland ["Weather in Canada |

MNewspapers

The Toronto Star
The Globe and M ail
The Mational Post

Towrism

Trwicem Manada

6.2.5 EireCan — Servlets

The EireCan site uses one servlet, Countrylnfo.class. This servlet was
intended to provide palmtop clients extra statistical data items about Ireland
and Canada primarily for the palmtop platform. The figure below shows a
palmtop screen that displays statistics on IRELAND with and without a pop-
up for extra features activated. Tapping the GO button would call the
Countrylnfo servlet sending a form parameter for country name (IRELAND)

and feature name (BIRTH RATE).

Figure 6-5 EireCan Palmtop Query Form

If the servlet is called from a palmtop browser it will reply with a
simple screen containing only the information for Ireland’s birth rate. If the
servlet is called from a desktop it will simply redirect the request to the
HTML file in the Desktop directory that contains statistics on Ireland, ei.html.
The servlet uses information about the platform that is contained in the
Request object to determine whether to create a palmtop-oriented response or

to redirect the request..

6.2.6 EireCan — Automated File Regeneration.

The EireCan site has pages on both the Desktop and Palmtop
directories that display the current weather in Ireland and Canada. The
information in these files is derived from elements in the ircan.xml file that are
identified by having a TOPIC name of “WEATHER”. It is reasonable to

assume that weather data might be updated on a regular schedule, perhaps

65

every hour or 24 hours. A RegenerativeFilter has been attached to the
HTTPFrame associated with the each of these weather-oriented files. The
RegenerativeFilter specifies the base XML file to use (ircan.xml), the XSL file for
formatting (pda_topic.xsl in the Palmtop directory and dsk_topic.xsl in the
Desktop directory), the necessary parameters for the XSL formatter, and a
MaxAge specification. The MaxAge specification indicates that when the
HTML file is older than a specified number of seconds it should be
regenerated. In our case, we have set the weather-related HTML files to be
regenerated if they are older than 3600 seconds (1 hour). The figure below
shows how the IRELAND_WEATHER.html file in the Palmtop directory is
configured in the JIGADMIN program.

66

Eéf’,i' Edit Rezource Eq

Fesource Help

rFrames

|j IRELAMD WEATHER html
| @ I HTTPFrame (frarme-0)
@ (] RegenerativeFilter ifr...

- Aftributes

Class: orgaw3dc.jigsaw filters. BegenerativeFilter
Identifier jframe-0

= 42 26

Last Modified

L)]
[|
R

i Sep 2000

xml-file |I3Z".jig5EI'-.-'-.-"I..Jig5a‘-.-‘-.-"l.JigSEIMWUSEHSDUFEEUFEEIH.}{ml i

wsl-file }::Ijig5axnﬂ._lig5aw“l,_lig5amﬂ\f‘nﬁwﬂuser’LEnurceIpda_tnpic.}{sl ,’ﬁj;

countryname=IRELAND i
featurename="WEATHER =
ssl-parameters Edit et

MaxAge (3600 =

Cormrmit I fH“esé;rf

Figure 6-6 Configuring Regenerated Files

6.2.7 EireCan — Adaptive Re-mapping.

The Siblings server framework allows web masters to use parallel
document hierarchies to customize the presentation of content for specific
device classes. Siblings allows for different site structures and navigation
through document name re-mapping. This is necessary because there might
not be a one to one correspondence between the documents in two sibling
directories. In EireCan, links.html in Palmtop directory has no analogue in the
Desktop directory. [links.html simply displays a list of important links that
relate to Ireland and Canada. Each major topic page in the Desktop directory

has a sidebar with important links, however. It would therefore be

67

appropriate to redirect Desktop-based requests for links.html in the Palmtop
directory to the index.html in the Desktop directory, since that file displays a
list of links. A Java class, DesktopRemap, was written that would intercept any
redirection of a request for links.html in the Palmtop directory by a Desktop
machine and re-map the name to index.html. The re-mapping method for the
DesktopRemap Java class was very simple to write since it involved encoding
one major decision in one method. A sample of the re-mapping code is

shown below:

public Sring renapH | eNane(Sring path, Sring QurrentM atform
Sring Qiginal Aatform)

Sring newPath = nul | ;
Sring filenane = extractH |eNane(path);
i f(Qurrent A atformequal s("Desktop") & Oigina P atformequal s("Pal ntop') &
fil enane. equal s("links.htnh")){
int lastSash = path.lastindex3('/’);
newPat h = pat h. substring(0, lastSash + 1) + "index. htn";

}

if(newPath !'=null)
return newkat h;

return pat h;

Figure 6-7 remapFileName example

More complex sites would probably need more complex re-mapping
logic but only necessitate the proper implementation of one function;

remapFileName in a class derived from the ReMapper class.

6.2.8 EireCan — Set-Up

The JigAdmin program was used to set-up EireCan as an adaptive web
site. This program is a GUI-based administration program. The steps in the

set-up are as follows.

68

» Attach AdaptorFrames to the Palmtop and Desktop directories and
specify the platforms allowed to access the directory, the sibling
directories and their respective platforms, and the name of the re-
mapping class.

* Attach a RegenerativeFilter to CANADA_WEATHER.html and
IRELAND_WEATHER.html in both the Palmtop and Desktop
directories. Provide the names of XML file (ircan.xml) and the
appropriate parameters and XSL style sheet name to the appropriate
text boxes of the Edit Resource form.

» Place the Countrylnfo.class servlet in the servlet directory

6.2.9 EireCan — Discussion

The EireCan web site demonstrated the use of all the major features of
the Sibling Framework. Although the web site was not very complex, it did
require slightly different navigation for the palmtop and desktop client and
there were significant differences in the content provided to clients on
different platforms. The site required the creation of two document sets, one
for palmtops and one for desktops, a simple Java class to handle file-name re-
mapping, and a servlet to handle country statistics queries from palmtops.
The parallel document sets were not difficult to create since all HTML pages
were developed from 3 XML files and 5 XSL style sheets. The creation of
content for EireCan would be more time-intensive than a non-adaptive site
since long and short text was often stored for the various topics. This
drawback would be more pronounced for larger sites. The level of effort to
create the presentation documents from content stored in XML should not
increase dramatically for larger sites if all pages are created from XSL style
sheets. The weather related HTML files were successfully recreated from
their respective XML and XSL files on the schedule prescribed. Once the
document sets, servlet and necessary ReMapper subclass were created the set-

up was quickly done.

69

6.3 A Critical Analysis

The Siblings Architecture was designed to provide platform-adaptive
delivery of site content through the implementation of intelligent retrieval
and the provision of client platform information to dynamic page routines.
Features of the architecture include the ability to allow different site
structures for different platforms, the ability to work with current standards
and the ability to work efficiently with small and medium-sized servers. The
success of the Siblings architecture and implementation, like any other
approach to adaptation, will depend on the efficacy of the adaptation, the
practicality of using the implementation, whether the elements of the
architecture are properly implemented, and the performance characteristics of

the implementation. These will be discussed in turn.

6.3.1 Efficacy of Adaptation

One of the main features of Siblings is the support for intelligent
retrieval of static pages based on the characterisation of the client platform.
The support for intelligent retrieval will allow for different site structures for
different platforms and for web masters to design page sets explicitly for
specific client device classes. The entire user interaction, including
navigational design, can be customised for the client device class instead of
simply making alterations to how the content is rendered. This contrasts with
the approaches that use an intermediate user-interface mark-up language.
Intermediate user-interface mark-up allow the web master to define a single
site structure with pages represented by an ‘abstract” interface. The abstract
interface will be rendered differently on different platforms either at the
server, client or using a proxy.

A web master might reasonably decide that different content displayed
in a different order and format is appropriate for different platforms. The
EireCan site contains XML data files with very detailed statistics about the
economy, geography, and people of Ireland and Canada. A map, a flag, and

approximately 90 different statistics are displayed under 3 categories

70

(Geography, People, Economy) for desktop clients. The page did not invoke
any querying facility because all content is available on the page. This format
has been used quite effectively at the CIA World Fact Book and its mirrors. A
web master designing for palmtop interaction might dispense with the
categories and design a page with only a small subset of the statistics that
would be considered most important and a pop-up that could access some of
the other statistics via a servlet on the server. This is not a case of
differentiated rendering but differentiated interaction and content. The Siblings
implementation was able to accommodate this differentiated interaction
successfully.

The use of intelligent retrieval and static pages will necessarily limit
the number of platform configurations that can be dealt with. The Siblings
framework achieves intelligent retrieval by characterising the request
according to its client device class and directing the request to the most
appropriate directory. Redirection based on client characterisation would not
be practical to fine-tune the output for the specific capabilities of an
individual client’s device if they differ from the standard device of that class.
It would not be possible to produce a page set for every possible
configuration of every platform.

Is the accommodation of a limited number of well-defined device
classes sufficient to achieve most of the benefits of platform adaptation? For
the two platforms discussed in this thesis there is already considerable
convergence in operating systems used, form factors, and device capabilities.
The desktop generally will have high resolution colour screens with good
audio and video capabilities. There is more variation in the capabilities of
palmtops, but convergence seems to be occurring in the palmtop platform as
well. The popularity of the palmtop platform is a relatively recent
phenomenon. There is no reason to believe that the form factors and
capabilities of this platform with respect to video and input would not
converge even further over time as it did with the desktop. Even allowing for

the current divergence in capabilities of palmtops, web masters could

71

accommodate most palmtops by maintaining a text-oriented palmtop
directory and a directory that allows for palmtops having colour graphics.
This would eliminate any need for CPU-intensive dynamic adaptation using

servlets or processes.

6.3.2 Practicality of Use

The practicality of using Siblings to create platform-adaptive web sites
will depend on both the level of effort and level of skill needed to create and
maintain the web site. Siblings supports the use of either dynamic page
creation (servlets) or static pages in creating platform-adaptive web sites.

The use of servlets will differ very little from standard servlet
programming except that the servlets are now provided with information
about the client’s platform. It will be the responsibility of the servlet to use
the platform information appropriately to create pages suitable for the client
platform. Java programmers writing servlets can access platform information
with a simple method call to the Request object.

The intelligent retrieval supported by Siblings assumes that parallel
document sets are used for the presentation of content for different platforms
types. Creating and maintaining a document set for each platform class
would be prohibitively time-consuming if it is not possible to automate the
generation and update of these parallel document sets. The use of XML and
XSL to create and maintain these documents sets makes this task practicable.
XSL style sheets allow for very sophisticated formatting of XML files. If the
XML file is designed carefully and we use parameterised style sheets we can
use the same XML file and XSL style sheet to create many HTML pages. In
the EireCan case study the XML file, ircan.xml, contained several TOPIC
elements, each with a name and country attribute. By applying different
parameters to the same XSL file, dsk_topic.xsl, it was possible to create all the
desktop-oriented HTML files except for the two files containing the detailed
statistics about Canada and Ireland. The number of different files that could

be created using ircan.xml and dsk_topic.xsl is only limited by the number of

72

TOPIC elements in ircan.xml. XSL allows us to select TOPIC elements for
formatting based on the values of the element’s attributes. For instance, we
could generate a file using the information in any topic that has a name of
“WEATHER” and a country of “IRELAND” by providing these attributes as
parameters to the “dsk_topic.xsl” style sheet. Theoretically one could generate
an entire web site from one XML file, one parameterised XSL style sheet, and
one script file to run the parameterised translations.

Maintaining consistency between the document sets in the face of
changes to the XML content files is also important. This can be automated by
using the standard MAKE utility available on a variety of operating systems.
MAKE is designed to detect files that are older than the files upon which they
depend and execute some type of command. It can be used to detect when an
HTML file is older than an XML or XSL file upon which it depends, and run
the XSLT processor to regenerate the HTML from the appropriate XSL and
XML files.

User-written Java classes derived from a base ReMapper class perform
the re-mapping of file names between sibling directories. Re-mapping in the
EireCan case study involved very simple decision-making. More complex re-
mapping schemes between sibling directories might be required for more
complex site structures. One possible approach to simplifying re-mapping is
to identify a limited number of ‘anchors’ in the various document hierarchies.
These act as targets for re-mapping and represent superior entry points into
the document hierarchy from the point of view of navigational choices.

In order to implement a non-trivial web site using Siblings, staff will be
required to be familiar with the JIGADMIN administration program and
understand the operation of the major classes added by the Siblings
architecture, the AdaptorFrame class, the ReMapper «class, and the
RegenerativeFilter. JIGADMIN uses a graphical user interface and was found
to be very easy to learn and use. Ideally all HTML will be generated through
the use of XML and XSL, thereby requiring expertise in these two areas.

Elementary Java skills will be required to encode the logic to re-map

73

document names between sibling directories. The use of Siblings would not

require ‘expert’ level skills in JAVA, XML or XSL.

6.3.3 System Testing

A suite of tests was run against the Siblings implementation to ensure
the major features executed as intended. The charts below summarize these
results. Assume that all request and response document names are pre-

pended by “User/”.

Request Client Re-Map Expected Status
Device Response
Palmtop/index.html Palmtop No Palmtop/index.html OK
Palmtop/index.html Desktop No Desktop/index.html OK
Palmtop/links.html Palmtop No Palmtop/links.html OK
Palmtop/links.html Desktop Yes Desktop/index.html OK
Desktop/index.html Desktop No Desktop/index.html OK
Desktop/index.html Palmtop No Palmtop/index.html OK
Palmtop/ggg.html Palmtop No File Not Found OK
Desktop/ggg.html Palmtop No File Not Found OK
Palmtop/ggg.html Desktop No File Not Found OK
Desktop/ggg.html Desktop No File Not Found OK

Table 6-1 Siblings Function Test Results

Automated regeneration was tested by requesting a file,
Desktop/CANADA_WEATHER.html, that had an attached RegenerativeFilter,
and comparing the file date stamp before and after the request was processed.
In Figure 6-2, notice how the first access forces a regeneration of the
CANADA_WEATHER.html file whereas the second one does not. The
RegenerativeFilter has been configured to regenerate files that are older than 1

hour (3600 seconds) old.

74

File Name Max Time File File
AGe | of Test Date Date
(Before) (After)
Desktop/CANADA_WEATHER.html | 3600 06/09/00 03/09/00 06/09/00
11:33 16:42 11:33
Desktop/CANADA_WEATHER.html | 3600 06/09/00 06/09/00 06/09/00
11:37 11:33 11:33

Table 6-2 Regeneration Test Results

6.3.4 Performance Testing

Preliminary performance tests were done on the Siblings architecture
under light load conditions. Further work is required for an accurate
assessment of the performance impacts of the Siblings enhancements under a
wide variety of conditions. These preliminary tests indicate that once
characterisation is performed, there are no significant performance differences
between a standard HTTP request and one that is processed using an
AdaptorFrame. This may be due to Jigsaw’s heavy use of caching. Attaching a
RegenerativeFilter to a file caused a significant decrease in performance even
when the file wasn’t regenerated. Performance with an attached

RegenerativeFilter was still significantly faster than invoking a servlet.

6.4 Future Work

This thesis was primarily a proof-of-concept for an adaptive web
server that would enable the use of intelligent retrieval in addition to dynamic
approaches to adaptivity. There are many features that can be added or
improved in the framework. Suggestions for future work are listed below:
¢ Implement a Platform Factory based on Composite Capability/Personal

Profile and /or Content Negotiation.

* Intensive testing of performance with and without Siblings enhancements.

75

Investigate the level of effort required to maintain as well as create a
platform-adaptive web site using the Siblings architecture, XML and XSL.
Investigate the optimisation of characterisation, redirection, and
regeneration.

Compare performance against other popular web servers and adaptive
implementations.

Determine the performance costs of the characterisation process.
Investigate implementing a larger, more complex web site using the
Siblings framework.

Change the Platforms configuration file so that it is RDF compliant.

6.5 Conclusions

The major conclusions can be drawn from the work in this thesis:
It is possible to implement a framework that meets the goals laid out in the
introduction. These goals included the; implementation of intelligent
retrieval; provision of platform information to dynamic page creation
programs and support for next generation document bases comprised of
XML and XSL.
It was practicable to implement smaller web sites that provide different
navigation and content for different client platforms by using the Siblings
framework with XML and XSL.
The framework provides a scalable approach to web site design by
enabling the choice of a dynamic approach to content delivery or through
pre-compiling the documents from XML and XSL and using static
retrieval.
The Jigsaw Server Architecture is easily extended and modified. Its object-
oriented design and unique way of handling the look-up of documents

allows enhancements to be implemented in a number of ways.

76

Bibliography

[ABRAMS1998]

[APION1999]

[BOSAK1999]

[BOSAK2000]

[CCPP1999]

[CETUSLINKS]

[DIGESTOR]

[EBXML]

[ECLIPTYC2000]

[GAMMA1995]

[GARSHOL]

[GASKIN2000]

UIML:An Appliance-Independent XML User Interface Language,
Abrams, Phanouriou, Batongbacal, Willams, Shuster
http://mww8.org/w8-papers/5h-hypertext-media/uiml/uiml.html

BUILDING THE MOBILE INTERNET

http:/ /www.apion-tss.com/CM /WhitePapers/wap_wp.html

XML and the Second-Generation Web, Jon Bosak, Tim Bray
http:/ /www.sciam.com/1999/0599issue /0599bosak.html

Grass-roots XML, Xtech 2000 Presentation, San Jose

http:/ /www.oasis-open.org/xtec/sld00000.htm

Composite Capability /Preference Profiles (CC/PP): A user side
framework for content negotiation. W3C Note 27 July 1999

http:/ /www.w3.org/TR/NOTE-CCPP/

Internet & Intranets: XML, DOM, XSL, RDF and related technologies

http:/ /www .cetus-links.org/oo_xmlhtml

Digestor: Device-Independent Access to the World Wide Web.

T. W. Bickmore and B. N. Schilit., Computer Networks And ISDN Systems,
Volume 29, Issue 8-13, pp. 1075-1082, September 1997

ebXML General Information

http://www.ebxml.org/geninfo.htm

Digital Plastic Product Page, Ecliptyc Systems.

http:/ /www.ecliptycsys.com/esimain /products.html

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides,

Design Patterns, Addison-Wesley, Reading, MA, 1995

How the web works: HTTP and CGI explained, Lars Marius Garshol
http:/ /www.stud.ifi.uio.no/~Imariusg/download/artikler/HTTP_tut.html

XML Comes Of Age, James E. Gaskin ,

77

[HOGAN]

[IBMXML]

[IDG1999]

[INSTONE]

[ITANALYSIS1999]

[[YENGAR]

[JIGSAW]

[KACIN1999]

[KRISH1999]

[LEM1999]

[LEVENTHAL1999a]

[LEVENTHAL1999b]

http://www.planetit.com/techcenters/docs/enterprise_apps/

product/PIT2000040650006
XML:The Foundation for the Future, Mike Hogan, OASIS

http:/ /www.oasis-open.org/html/xml_foundation_future. html

Introduction to XML (A Tutorial)

http:/ /www-4.ibm.com /software/developer /education/xmlintro/xmlintro.html

Be Inc. plans IPO, eyes Internet device market

http:/ /www.idenet.com/idens /1999 /05 /07 /BeIncPlansIPOEyesNet.shtml

Usable Web Website

http:/ /usableweb.com

http://www.it-analysis.com/99-11-10-3.html

Techniques for Designing High-Performance Web Sites,

Arun Iyengar, Jim Challenger, Daniel Dias, and Paul Dantzig
http:/ /www .research.ibm.com /people/i/iyengar/ieeeic/ieeeic.html
Jigsaw — The W3C’s Server

http://www.w3.org

Optimizing Web Pages for handheld devices,

PalmPower Magazine, February 1999

http:/ /www.palmpower.com/issuesprint/issue199902 /avantgotips.html
Key Differences between HTTP/1.0 and HTTP/1.1

Balachander Krishnamurthy Jeffrey C. Mogul David M. Kristol
http:/ /www.research.att.com/~bala/papers/hOvhl.html

Low End Mac,

http:/ /lowendmac.net/musings/g4vp3.shtml

Semantic Information Threatened by XSL Mike Leventhal

http:/ /www.xml.com/pub /1999 /05 /xsl /xslconsidered_4.html

XSL is an Ugly Difficult Language, Mike Leventhal

http: / /www.xml.com/pub /1999 /05 /xsl /xslconsidered_5.html

78

[LEVENTHAL1999¢]

[LOOKUP]

[MACKENZIEY7]

[MA2000]

[MSFTXML]

[ORACLE2000]

[PALM1995]

[PW1999]

[RFC1945]

[REC2068]

[RICHMOND2000]

[SIMT1999]

[SUNXML]

[THEVENIN1999]

[USEIT]

XSL has Set Back the Web at least 2 Years, Mike Leventhal

http:/ /www.xml.com/pub/1999/05/xsl/xslconsidered_6.html

Jigsaw Internal design of Jigsaw 2.0

http:/ /www.w3.org/Jigsaw /Doc/Programmer/design. html#lookup-algo

http:/ /foxglove.ccs.yorku.ca/faculty /academic/mack/GI97a.html

A Framework for Adaptive Content Delivery in Heterogeneous

Network Environments. Ma, Bedner, Chang, Kuchinsky, Zhang

http:/ /www .cooltown.hp.com/papers/MMCN2000.htm

XML Tutorial

http:/ /msdn.microsoft.com /xml/tutorial /default.asp

http:/ /technet.oracle.com/technetportaltogo /ptgpaper /ptgquote.htm

Palm Computing. (1995, January). Suddenly Newton understands

everything you write.

Pen Computing Magazine, p.9.

Technology Forecast: 1999 Canada,Price Waterhouse Coopers
http://www.pwcglobal.com/extweb/ncsurvres.nsf /DocID/8701704A6347F6498525671 AO06DFA2E# greater
rfc1945, Request for Comments: 1945,Hypertext Transfer Protocol -- HTTP /1.0

http:/ /www.w3.org/Protocols/rfc1945 / rfc1945

rfc2068, Request for Comments: 2068 ,Hypertext Transfer Protocol -- HTTP /1.1
http:/ /www.w3.org/Protocols/rfc2616/rfc2068.html

Introduction to XHTML, with eXamples Alan Richmond

http:/ /wdvl.com /Authoring /Languages/XML/XHTML/

http:/ /www.mercurycenter.com/svtech/news/indepth/april /hand041999.htm
http:/ /java.sun.com/xml/docs/tutorial /index.html

Adaptation and Plasticity of User Interfaces,

David Thevenin, Joelle Coutaz

http:/ /iihm.imag.fr /thevenin/papiers/I3Workshop99/13Workshop99.html

Jakob Nielsen’s Website

79

[WBP2000]

[WINOGRAD1999]

[XMLORG]

[YALE]

http://www.useit.com

Webopedia

http:/ /www.webopedia.com/

Towards a Human-Centred Interaction Architecture.
http://graphics.stanford.edu/projects/iwork/papers /humcent/
XML.ORG The XML Industry Portal

http://www.xml.org/

Web Style Guide

http://INFO.MED.YALE.EDU/caim/manual/contents.html

80

