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Abstract

Receant advances in computing device ad wirelesscommunication technologies are
enabling the widespread use of mobile computing devices. Mobile computing
presents many problems not encountered in a static computing environment. The
limited storage and processng power on the mobile device, the limited bandwidth
avail able on wirelessnetworks and the difficulties of locaing a mobile device mean
that mobile environments are more difficult to design distributed systems for than
fixed networks.

The Common Objed Request Broker Architedure (CORBA) is a standard for
building distributed objea-oriented applications. However the standard was designed
primarily for static environments and therefore does not addressthe problems
encountered by objeds residing on mobile devices. The Architedure for Location
Independent CORBA Environments (ALICE) adds support for such mobile objedsto
the CORBA standard. This projed examines how the mobili ty support provided by
ALICE can be gplied to distributed applicaions constructed using Java RMI.
Sedions of the ALICE architedure that were independent of CORBA were reused in
the design.

This dissertation outlines the design of the RMI spedfic components of the
architedure to replacethe CORBA spedfic components, and the completion of a Java
implementation of the ALICE component that provides sesson layer mobili ty
support. The completed set of components provides support for mobile RMI client
and server objedsthat can interad transparently with other RMI objeds. All of the
implementation was done in Java using Java sockets and RMI to comnmunicae acoss

the network.
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Chapter 1

| ntroduction

The atonishing rise of cdlular phone ownership worldwide and the crresponding
advances in mobile voice mmmunication technology has been mirrored by the alvent
of wirelessmobile cmmputing devices and the integration of wirelessnetworks with
the Internet. However, device mohility introduces problems that are not encountered
in a static computing environment and for this reason many distributed applicalions
designed primarily for fixed networks are not as effedive or indeed cannot function
normally at all when used in a mobil e setting. The opportunity therefore existsto
provide mobility support for many distributed applicaions to enable them to be
applied to a mobile environment. With this opportunity comes the dallenge of
designing for an environment that is much more complex and demanding than that
provided by conventional wired networks. This thesis describes how a distributed
objed technology, Sun Microsystem’'s Jva Remote Method Invocaion (RMI) [RMI
Spec‘00], can be gplied to a mobile environment based on the Architedure for
Location Independent CORBA Environments (ALICE) [Haahr *99] developed by
Trinity’ s Distributed Systems Group.

This chapter provides an introduction to the aeaof mobile computing,
followed by an overview of the main components of the design, ALICE and Java
RMI. The main goals and achievements of the projed are outlined as well as a brief

guide to the overall structure and format of the remainder of this dissertation.
1.1 Mobile Computing

Mobile mmputing devices are typicdly charaderised by a number of fadors. They
are mnstrained by portabili ty requirements to be small in terms of size and weight;
they are cgpable of conneding to a data network using some form of wireless
communicaion and they have limited computing resources compared to traditional
non-mobile cmputing devices sich as desktop Personal Computers (PC's). Typicd
examples of mobile computing devices are laptops, Personal Digital Assstants



(PDA’s) equipped with some form of infra-red or GSM transceiver, and Wireless
Applicaion Protocol (WAP) enabled mobile phones.

The birth of mobile computing has brought with it many advantages. The
ability to accessand share information such as persona files or web pages is a major
benefit in the modern work environment. There is a growing trend amongst
organisations to dffer their employees greaer freedom in terms of when and where
they do their work. No longer are people required to be sitting at their desks in their
officesin order to accmplish anything worthwhile. With a full mobile computing
infrastructure, work could be done when and where the worker wishes. This flexibili ty
is being enabled by the emergence of mobile computing as arobust and viable means
of doing work. Many organisations are now being transformed by the new business
opportunities presented by the new technology and many more will be aeded. It is
not difficult to seethat mobile computing will change not only the way we do
businesshbut ultimately, the way we live.

The continuing downward trend in the size and cost of microprocessors and
memory chips is enabling more powerful mobile devices but the fad remains that
they are still and perhaps always will be & a significant disadvantage when it comes
to display and input cgpabilities. The anergence of WAP technology, which has
brought Internet accessto digital mobile phone users, is naturally hampered by the
limitations on interadions due to the small size of the user interfaces, which were
primarily designed for inputting short strings of digits, and the limited bandwidth
offered by the network itself.

Idedly, the roaming user of a mobile computing devicewould be caable of
performing exadly the same cmputing operations as a user working at a desktop PC
while & the same time availi ng of the benefits of not being tethered to a particular
locaion. While a airsory glance d the device and communications technology
currently available seems to suggest that thisis quite feasible, the fad remains that
much of the software and hardware infrastructure that is used in a fixed network is
completely unsuited to supporting mobile devices.

For example, the transport protocol used to route data padkets around the
Internet, 1P, cannot dired network traffic to take acount of the change in locaion of
amobile device and neals sgnificant alterations in order to be ale to cope with this
(seeSedion 2.2). In fad, the mgjority of distributed application technologies were
designed for fully wired networks with completely stationary hosts and make no



attempt to addressmobili ty. Wirelesscommunication technologies themselves are
prone to interference range and bandwidth limitations and data has to be reformatted
in order to optimise use of the link e.g. Wireless Markup Language (WML) is
basicdly the HyperText Markup Language (HTML) reformatted for wireless
transmisson to mobile phones.

For these reasons, a mobile user is gill far behind the wired network user in
terms of computing cgpabilities and considerable work remains to be done to bridge
the gap. The ALICE projed aimsto narrow this gap by providing mohility support for
CORBA objeds. Such support is not addressed by current implementations of

CORBA, which were designed for static, fixed-network environments.

1.2 CORBA and ALICE

CORBA (Common Objed Request Broker Architedure) is a distributed objed
technology standard for creaing client — server applicaions. CORBA is objed
oriented so that a dient can cdl a method on aremote server objed with much the
same semantics as a cdl to amethod on alocd objed. The adual implementation of
the server is hidden from the dient and all i nteradions between the two are spedfied
by an interfacedefined in a language neutral format. An entity cdled an Objea
Request Broker (ORB) ads as a middeman between the two communicating parties
and provides rvices such as forwarding requests and responses between objeds and
providing clients with references to remote servers. CORBA relies on a spedfied
protocol known as GIOP (General Inter-ORB Protocol) as a means of transferring
method invocation requests and responses between clients and servers. 11 OP (Internet
Inter-ORB Protocol) is a mapping of the GIOP spedficaion onto TCP/IP.

The CORBA standard does not cater well for mobile dient or server objeds.
CORBA asaumes that servers do not change their location and that the transport
connedions that are used by 11OP do not bre&k frequently. Both of these asumptions
do not hold true in amobile ammputing environment. The ALICE [Hadr ‘99]
architedure was designed to addressthe limitationsin OMG’s CORBA standard that
constrains mobile CORBA objeds from operating as effedively as non-mobile
objeds. In the environment envisaged in ALICE, mobile devices hosting CORBA

objeds (mobile hosts) conned via wirelesslinks to mohility gateways, which have



wired connedions to a fixed network. These mobility gateways ad as bridges and
perform the tasks of forwarding CORBA requests to the mobile host from remote
hosts and returning replies and similarly forwarding requests from CORBA clientson
the mobile host to remote servers. Due to the range limitations of the wirelesslinks,
mobile hosts can change their point of connedion to the fixed network by changing
which gateway they are mnneded to.

To addressthe problems posed by mobility, ALICE introduces extensive
sesson layer mohility support and some support at the gplicaion layer. ALICE uses
aMohbility Layer that sits on top of the TCP/IP layer and monitors the transport
connedion between the mobile host and the gateway. If the mwnredionislost the
Mohbility Layer on the mobile host hides the broken connedion from the higher layers
and transparently reconneds to the gateway. The Mobile Layer also performs other
functions such as multiplexing all socket connedions over a single transport
connedion to make more dficient use of the limited bandwidth, cading of al data
sent pending acknowledgement and providing mobili ty information to higher layers.

ALICE also uses the SwizZing [1OP Layer (S/11OP) to perform address
trandation and request forwarding on |1 OP requests at the mobility gateway. The
S/11 OP layer on the mobile host alters the objed references used by clients to locate
the server so that the dientswill conned to the aurrent gateway instead. When the
gateway recaves an |l OP message from a dient it chedks the objed reference and
redireds the message to the wrred server objed on the mobile host. The S/I1 OP layer
also alows clients to be redireded to the new locaion of the mobile host after it has
changed mobility gateway.

ALICE therefore brings mobility support to CORBA objeds while & the same
time keeping the task of programming mobili ty cgpable goplicaions as transparent as
possble. In addition mobile CORBA objeds using ALICE are fully capable of

interading with existing ORB implementations.

1.3 JavaRMI

The Java Remote Method Invocaion (RMI) [RMI Spec*0Q] techrnology is, like

CORBA, designed to alow programmers to write distributed objed-oriented
applicaions. Whereas CORBA is a language independent spedficaion with many



varying implementations from different vendors, RMI is a 100% Java technology and
any interadion with non-Java aode must take placeusing the Java Native Interface
(INI). RMI integrates a distributed objed model with the locd Java objed model ina
natural way with afew exceptions to the semantics to make the difference between
remote and locd objed method invocaion obvious.

RMI makes extensive use of many of the capabili ties that make Java an
attradive doice of programming language in the first place For example, with an
entirely Java based system, Java objeds and classes can be moved from machine to
madhine to distribute where the ad¢ual work is performed. RMI alows for the transfer
of entire Java objeds not just smple data types between virtual machines as
parameters or results of remote method invocations. Programming solely in one
language dso grealy smplifies the task of the programmer. RMI also provides
distributed garbage wlledion and objea adivation medanisms.

RMI provides a smple naming service, the rmiregistry, which allows a dient
to obtain a server reference by spedfying a URL. RMI clients use proxies cdled
stubs, downloaded from the server host via aweb server, to communicae with the
remote server objed. This gub is responsible for the marshalling of datafrom the
client into aformat suitable for on-the-wire transmisson. At the server sdethereisa
corresponding skeleton, which unmarshall s parameters passed to it from the dient and
marshals data returned from the server. These stubs/skeletons effedively provide an
interfacebetween the gplicaion and the rest of the RMI system.

1.4 Project Goal

The @m of this projed was to design and build a system to alow RMI server and
client objedsto operate on mobile hosts and to interad with normal RMI objeds
without them being aware of the others mobili ty. The system should reuse a much of
the CORBA independent parts of the original ALICE architedure & possble. The
design should make use of the protocol independent ALICE Mobility Layer to
provide mobility support at alow level and then some means of addresstrandation
and request forwarding such as that done in the ALICE S/11 OP layer must be found.
Thetask of programming such mobile cgable gplicaions $ould be made & easy

and transparent to the programmer as possble.



The projed can be divided into two sedions. The first part was concerned with
completing the implementation of a Java version of the original Mobility Layer. The
seoond sedion dedt with RMI spedfic mobility support, effedively repladng the
S11 0P layer with ameans of providing the same functionality to RMI applications.

1.5 Overview of Design

Initially it was hoped to be ale to mimic the operation of the S/I1 OP layer with some
form of manipulation of RMI objed references. After much research and testing it
was dedded that although this worked well for 110P and CORBA objeds, it was not
an appropriate goproach for RMI. Instea it was dedded to perform the tasks of the
SN OP at the gplicaion layer using aform of objed delegation. Effedively all
mobile server objeds provide their current mobility gateway with code required to
perform the task of operating as a proxy for the mobile server. Remote hosts can
contad the gateway and communicae with the proxy, which will relay the dient
method invocations badk to the mobile server. The handoff performed in part by the
S11OP layer in the CORBA ALICE model isreplacead by an application level handoff
scheme in the RMI implementation.

The design required the cnstruction of RMI objedsto perform the role of
proxy, objedsto alow code to be exported to the gateways and for alowing
communicaion between gateways when handoff of the mobile host occurs. The
design and construction of this g/stem required much experienceto be gained in using
RMI, espedally its mobile mde fadlity, methods of locating objeds and parameter

passng routines.

1.6 Project Achievements

By the conclusion of this projed most of the major aims outlined in the projed goals
had been achieved. The Java Mobile Layer implementation was completed and
extensively tested using RMI. The proxy scheme to alow for mobile RMI servers was
designed and constructed and succesgully tested on top of the Mobile Layer. Sedions

of the design concerned with making the system nore transparent to a programmer



writing Mobile RMI applications, such as an automatic proxy code generator, remain

to be implemented.

1.7 Roadmap

The following is a brief introduction to the material covered in the rest of the chapters
of this disertation:

In Chapter 2 (State Of The Art) various projeds deding with aspeds of
mobile computing and other topics of relevanceto this projed are examined. In
Chapter 3 (Badkground) a more detailed discusson of the ALICE model and the Java
RMI distributed objed model is presented. Chapter 4 (Design) outlines the design for
the proxy objed scheme and explains how handoff and remote reference passng are
handled.

Chapter 5 (Implementation) explains how the objeds gedfied in the design
were anstructed along with various other implementation spedfic details. It also
detail s the continuation of the implementation of the Java Mobile Layer. Chapter 6
(Evaluation) provides a brief examination of the performance of the design in
comparison with non-mobile RMI and an analysis of the size of the ade used in the
design. Finally in Chapter 7 (Conclusions) the conclusions arrived at by the

completion of the projed are discussed.



Chapter 2

State Of The Art

This chapter provides an introduction to recent mobile computing projeds and other
topics of relevanceto this projed. An introduction to mobile networking and the
broad range of approaches that can ke used to build mobile systems and applicaions
is given first. Following this a number of current mobile computing designs are
discussed varying from network protocols that take acount of device mobility
(Mobile IP and Monarch), to client —server distributed objed systems for developing
mobility capable goplications (Rover), to systems for supporting data sharing amongst
mobile users (Bayou). Next a number of projeds addressng a key issue in mobile
computing, disconneded operation, are introduced. 1dedly, mobile devices that have
become disconneded from the network would be ale to provide the user with the
same computing capabilities as a fully conneded device Inredity thisis sldom
possble but the projeds discussed here look at ways to allow a user to continue
working without a permanent connedion to the network. Finally the Jini model is
examined. Jini [Venners ‘00] provides a runtime infrastructure that allows srvice
providersto offer their servicesto clients and for clientsto locate and use these

services without prior knowledge of the services existence or location.

2.1  Mobile Networking

Astednologicd advances continue goace the capability and avail abili ty of mobile
computing is growing and is enabling a new shift away from the traditional desktop
personal computer (PC) to a more portable, flexible and utimately more useful
computing resource. The combination of portable computing with wireless
communicaions is changing the way people think about computing and indeed about
how they work. It is now being redized that information processng does not have to
be limited to the time spent in front of a PC in the office but can be done & home, at
any officeor even in trangit. In order to enable this ‘nomadicity’ the infrastructure

must be put in placeto support mobile mmputing devices and mobile information



access The aility to automaticaly adjust all aspeds of the user’s computing,
communicaion and storage functionality in atransparent and integrated fashion is the
essnce of anomadic environment [Kleinrock ‘95]. For example it is desirable for a
mobil e device with several communication medhanisms to dynamicaly and
transparently choose the best one to use depending on avail able bandwidth, error
rates, cost etc.

Mobile mmputing suffers from constraints that are not experienced in afixed
desktop computing environment. These mnstraints, which are intrinsic to mobile
computing, are gradually being alleviated as technology advances but the fad remains
that mobile devices will never have the same performance and resource capabilities as
fixed devices. Due to the need to conserve weight, size and power, mobile devices are
resource poor compared to static devices hence haraderistics sich as processor
spead, main memory cgpadty, screen and dsk size ae limited. Unlike fixed network
connedions in general, mobile devices' network connedions may be variable in terms
of availability, reliability, performance and cgpadty. Wirelesstechnologiesin
particular suffer from interference and coverage restrictions. In addition, despite
advances in battery technology, the limited power sources used by mobile devices
must be taken into acmunt when devising new systems.

There ae severa important fadors that have to be addressed when designing
new mobile ammputing systems [Duchamp ‘92]. These include the nature of the
mobile device including its computing resources, size input and dsplay types, the
nature and type of available network connedions including reliability, cgpaaty,
quality etc. and the movement and data accespatterns of the people the systems are
being designed for.

One of the most vital questions is whether or not applicaions $ould be made
aware of their environment or whether they should be insulated from any
environmental details. The latter case implies that ordinary desktop applications
should be * mobile-transparent’, that is, they should be use&ble in a mobile
environment without modification and that the systems underlying the goplication
(such as distributed objed middeware) should take cae of all adaptation required to
acount for changes in location, connedion bandwidth etc. In the former case we
asaume that there is no system support and that all mobili ty adaptation is undertaken
by the gplicaions themselves. Such applications are termed ‘ mobile-aware’. In
between these two polesis what is known as applicaion aware alaptation [Satya ‘96,



which is charaderised by collaboration between the system and the gplication (see
Figure 2.1 below).

Applicaion-aware
(collaboration between system and application)

< >
Mobile-aware Applicaions Mobile-transparent Applicaions
(no system support) (no changes to applications)

Fig 2.1 Range of adaptation strategies

Systems can embody adaptation at many levels. Coda [Satya ‘96], which will
be discussed in more detail | ater, implements application-transparent adaptation in the
context of a distributed file system. Sincethe Posix interfaceis preserved, legacy
applicaions can run on Coda without the nead for any modifications. In contrast, the
Rover toolkit, which will also be examined, supports applicaion-aware aaptation
that is better suited to multimedia data such as eed and video. The resolution of
such data can be modified to make the best use of the limited avail able bandwidth on
awirelessconnedion while ill providing information to the mobile user e.g. a wlour
video signal might be downgraded to blad and white if the bandwidth is reduced due

to a wverage problem induced by the movement of the user.

2.2 M obile Networ king Architectures

2.2.1 Bayou

The Xerox PARC Bayou projed [Demers *94] is a system for supporting data sharing
among mobile users. The system was designed from the outset to run in a mobile
computing environment where the avail ability of connedions between machines and

the quality of those mnnedions can never be taken for granted. The designers

1C



identified the main charaderistic of such environments as being that machines may
become disconneded from other machines with which they wish to share data,
perhaps involuntarily, for indeterminable periods of time.

The Bayou architedure is based on alogicd divison between servers and
clients. However, unlike Coda where servers and clients are physicdly distinct
devices, aBayou server is any machine that can hold a wpy of a database (whichin
Bayou denotes any colledion of dataitems). Any macdine holding such a database
can servicereal and write requests from any client machines that are ale to
communicae with it. A Bayou server can ad as a server for some machines and can
also be a dient for other servers. The achitedure chosen for the system refleds the
fad that many mobile devices such as PDA’s have insufficient storage caadty to
hold all the data that their users wish to access

Bayou uses a read-any/write-any replicaion scheme, which means that any
user can read or write aty data objed in any copy of a database. The system attempts
to read consistency by means of a‘reconciliation’ process Updates are propagated to
another database wpy as ©on asa communicaion link beames avail able.
Periodicdly a server will seled another server with which to exchange writes  that
their two databases read consistency. Thisresultsin awedkly consistent replication
scheme that maximises data avail ability for the user but cannot guarantee ©rredness
[Terry *94].

If conflicts arise when updeting a data objed that has been concurrently
written to by two different clients (write-write @nflict) or which hes been updated
based on out-of-date data (stale updete), they will be deteded in an application
spedfic manner. Bayou also provides a mechanism for application-spedfic resolution
of conflicts by including a procedure cdled a‘mergeproc’ with al write operations.
This mergeproc is cdled in the event of awrite-write or stale update @nflict arising
and will then read the data mpy resident on the server where the @nflict occurred and
dedde how the conflict should be resolved. Mergeprocs provide an application
spedfic, flexible means of conflict resolution and may be aistomised to suit the

semantics of the goplication and the intended effed of the write operation.
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2.2.2 MobilelP

Conventional hierarchicd Internet protocols such as IP [ Tannenbaum *96] do not
cater for host mobility. Hierarchicd routing, in which the aldressis glit into a
network number and a host number, only allows padets snt to a mobile host to be
sent to its home network, even if the mobile host is not currently located there. To
caer for mobile hosts new protocols were designed which allowed padketsto read
these hosts regardlessof their location.

Mobile IP from the IETF is one such protocol [Perkins ‘94]. Using Mobile IP
eadt mobile host has a fixed home ayent which recaves all its padkets while it is not
conneded to the home network and forwards them on to the mobil e hosts current
location, given by its care-of-address This care of addressis the aldressof aforeign
agent on adifferent network that has agreed to provide such a serviceto the mobile
host. The foreign agent then relays registration requests and replies between the home
agent and the mobile host and decagsulates traffic from the home agent and forwards
it on to the mobile node. A procedure cdled agent discovery is used to find a willi ng
foreign agent. This can be adieved either by foreign agents advertising their presence
or by amobile host conneding dredly to a known foreign agent. When one has been
discovered the addressof the agent must be made known to the home agent so that
traffic can be redireded to the new location. The Mobile | P standard also addresses
the isaues of authenticaion of mobile host registrations with the home agent and IP

padket encgpsulation methods.

2.2.3 Monarch

The Monarch project at CMU has also dedt with routing protocols for mobile hosts,
spedficdly with optimising the IETF Mobile IP protocol in order to reduce latency
and congestion [Johnson *96]. In the original Mobile IP design, all padets destined
for the mobile node had to be routed through the home network and then tunnelled to
the foreign agent by the host home agent. This causes alot of overheal on the home
network and adds latency to the delivery processthat could be avoided.

To counter this the Monarch projed adds a number of extensions cdled
‘Route Optimisation’ to Mobile IP. These extensions provide ameans for the sender

of a padket to learn the mobile hosts' foreign address ® that it may send padkets

12



diredly to that location, bypassng the home network. The first padket is snt viathe
home ayent as per usual, but the home agent replies to the sender with the mobile
hosts current binding, which is then caded so that padkets may be sent diredly in the
future.

In order to allow padkets to read the mobile host after it has changed foreign
agent, the mobile host sends the previous foreign agent a binding updite, which
allows for padets arriving at the old agent to be rerouted to the new one. If the old
foreign agent recaves any padets for the mobile host, as well as forwarding them on
to the new locaion, it also sends a binding warning message to the home agent
requesting it to inform the crrespondent node of the new binding.

Another areabeing investigated by the Monarch projed is ad-hoc networking.
Thisis wirelessnetworking in areas where no normal network infrastructure is
avail able such as wildernessareas or where the infrastructure has been incagpadtated
such as disaster sites or war zones. In such situationsiit is desirable to be ale to set up
temporary ad-hoc networks without any central planning or administration. Due to the
short range of wirelesslinks, ad-hoc networks usually rely on participating hosts
forwarding padkets on behalf of other hosts.

Monarch uses a different type of routing protocol to the distance vedor or link
state routing implemented in other ad-hoc designs. This new routing protocol is caled
dynamic sourcerouting. In conventional sourcerouting a host sending a packet
determines the sequence of nodes that the padket must passthrough in order to read
the destination node. The sender lists the aldresses of these nodes in the header of the
padket. When ead node in the list recaves the padket it Simply sends the padket on to
the next node listed. In dynamic sourcerouting ead node maintains aroute cate
where it stores all routes it knows about. When it recaves a padet to send to another
node it first chedks the cade for aroute to that node and uses thisroute if it is found.
Otherwise aprocedure cdled route discovery isinitiated by means of which an
appropriate route can be found. Protocols are dso provided to allow for failure of
nodes along pre-existing routes.

The dynamic source routing protocol has now been implemented. Detail ed
simulations have shown that the protocol is able to provide routes that are on average
within afador of 1.01 of the optimal, showing that is $ould be &leto tradk the

movement of mobile hosts to a high degree
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In afurther Monarch projed an APl and a set of extensions to the Mobile P
protocol have been designed to provide notification to mobile-aware gplicaionson a
mobile host about the mnditions of the wirelessconnedion when it changes foreign
agents. The notification provides information, suppied by the foreign agent, about
connedion bandwidth, cost, error rate or latency in its locd network. This notificaion
isintegrated with the mobile host-foreign agent registration and can be performed at

little extra aost.

2.2.4 Rover

The Rover projed at MIT [Joseph ‘97] aimsto provide atoolkit to support the
development of both mobile-transparent and mobile-aware gplicaions. In contrast to
Coda which attempts to hide environmental considerations from the gplicaions,
Rover was designed to make environmental information avail able to applications and
involve them in the dedsion making process In this snse Rover can be seenasa
result of applying the end-to-end argument [Saltzer *84] to mobile gplications. Rover
provides an application-programming interfaceto allow mobile avare gplicationsto
be developed using common feaures and techniques.

In esence Rover is a dient-server distributed objed system in which servers
run on stationary hosts and clients can run on either stationary or mobile hosts.
Communicaion is supported by means of relocaable dynamic objeds (RDOs) and
gueued remote procedure cdl (QRPC). An RDO is an objed that can be transferred
from client to server and vice-versain order to minimise network communication in
the form of RPC cdls between the two. QRPC alows hosts to make non-blocking
remote procedure cdls during dsconnedion. These cdls are queued and then
resolved when reconnedion occurs.

When huilding a mobile-aware gplicaion with Rover the main task isto
define RDOs for the data manipulated by the goplication and the data units passed
between the dients and servers. The goplicaion must then be divided into client and
server sedions and methods to operate on the RDOs must be implemented. The
finished application should be able to import objeds onto the locd host, invoke
methods on these objeds, export logs of method invocations on those methods to the

server and then reconcil e these mpies with the mpies resident on the server. Rover
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Fig. 2.2 Rover Distributed Object Model
also allows applications to use polling or calbadk methods to determine the aurrent

state of the environment for its own dedsion-making or to display to a user.

By moving RDOs aaossthe network as required the goplication can control
exadly where computation will occur and so limit communication costs. For example,
aserver could migrate aGUI RDO to a dient. The adual code required to implement
the GUI is snall compared to the resulting data it produces, so this data will not have
to crossthe network. The locdly caced GUI RDO will also be ale to respond to
user interadion without generating network traffic.

Rover clients use QRPC to fetch RDOs from servers. When a QRPC isissued
it is gored in alocd log and control isimmediately returned to the issuing
applicaion. Callbads can be used to notify the gplication of the arival of the RDO
or dternatively the gplicaion can dock until it recevesthe RDO. If alocdly held
RDO isupdated it is marked as tentatively committed and the updates are propagated
to the server as on as possble using QRPC.

QRPCs can be delivered out of order depending on priorities and costs
asociated with the sending adion. Rover alows lit-phase QRPC operation, that is,
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if a mobile host sends a QRPC and subsequently becomes disconneded before
recaving areply, the replier will periodicdly try to contad the sender and deliver its
reply. This also alows request and response pairs to be sent over different
communicaion channels, which is a significant advantage in a mobile environment by
allowing communication to be direded over the most efficient, most available or
chegpest channel.

Rover applicaions can provide prioritised prefetch lists that the user can seled
to download RDOs prior to disconnedion for applicaions that are to be used while
disconneded. These lists are based on heuristic data cmpiled from knowledge of the
users previous adions. The doice of replicaed data consistency scheme is left to the
applicaion, sincethe requirements will vary dramaticdly depending on the given
applicaion. Rover does however provide support for primary-copy, tentative-update
optimistic consistency, which is considered the most appropriate for mobile
computing applicaions.

Extensions have been made to Rover to further increase the reliabili ty of
mobile-aware gplicaions built using the toolkit [Joseph ‘96]. The original Rover
failure model provided client-server message delivery guarantees and support for
client or communication failures but did not address ®rver failures. The extensions
alow for recverable server faults sich as power glitches but not repeaable or non-
recoverable failures. Recoverable failures are handled by such means as gable
message logging by the server, automatic server processrestart and programmer

suppied failure recovery procedures.

2.3 Disconnected Operation

2.3.1 Coda

The Coda file system [Kistler ‘93] developed at Carnegie Mellon University isa
dired descendant of the Andrew File System (AFS) [Mullender ‘93]. Coda atempts
to provide amuch more reliable and available file service than that provided by AFS.
Coda supports the integration of mobile cmputers with fixed file servers by means of

disconneded operation. This alows users to move between zones of connedion with
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the home network and zones where mnnedion to the home network is not posshble
and il continue accssng files that were real from the file servers.

Coda uses the same Venus — Vice (client — server) architedure & AFS. File
avail ability isincreased in Coda through server replicaion and disconneded client
operation. AFS clients can hold locd copies of an objed in a cate to save acces
time and network traffic. AFS uses pessmistic catie mnsistency that assumes that
objeds caded by a dient will be modified by another client aswell and so a
medhanism is provided that allows the server to contad a dient in the event of the
objed being updited elsewhere so that the dient can ‘revalidate’ its caded copy by
downloading the modified version from the server. This mechanism iscdled a
cdlbadk. Codaimplementsthe dient cading and server cdlbads that were the wre
of AFS. Aslong asthe dient remainsin contad with at least one server it operatesin
the conneded state, much the same a normal operation in AFS. When this
conredion islost the dient operates in the disconneded state.

Venus operates in one of threestates — hoarding, emulation and reintegration.
In the hoarding state Venus colleds data that it anticipates will be required if
disconnedion occurs. This hoarded information is gored in a priority based hoard
database (HDB). The HDB is periodicdly walked to determine which objeds sould
be retained in the cate and which should be discarded. An objed that has not
recently been read or written would be agood candidate for discarding.

In the anulation state Venus effedively mimics the server by allowing access
to caded objeds. All updatesto caded objeds are recrded in the replay log to be
replayed on reconnedion to the server. In the event of a cate missthe default
behaviour is for Venus to return an error code. When the mnnedion is re-established
the replay log is forwarded to the server where it is exeauted. Venus also updates its
cade ontentsto be cmnsistent with the servers.

In the event of a conflict (caused by separate writes to the same objed by
different holders of the objed) occurring during reintegration an application spedfic
resolver (ASR) is used to resolve the @nflict. An ASR provides the detail ed
applicaion spedfic knowledge required to distinguish between resolvable diff erences
and genuine inconsistencies. If the ASR is unable to reconcil e the differences then the
user is presented with a manual repair tool.

In more recent work on Coda [Satya ‘96] the concept of connedion has been

extended to include wegk conredivity. A weak connedion can take the form of a
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low-bandwidth connedion, an expensive network service (which can only be used
gparingly) or an intermittent connedion, which only lasts for a short time. A number
of modifications have been made to Coda to exploit wed connedivity.

One of the drawbadks of the original implementation of Coda was the large
amount of time required to revalidate a dients' caded cdlbads on recnnedion
when the network was dow. To reducethis time, volume version stamps were
introduced, which are analogous to the objed version stamps aready used ( avolume
being a wlledion of objeds). Whenever an objed in avolume is updated the volume
version stamp is updated in addition to the objed version stamp being incremented.
As part of the hoarding processV enus cades any required volume version stamps.
On remnnedion to the server Venus cheds its cated volume version stamps with
those on the server. If the stamps are the same then all caded objeds from that
volume ae dso unchanged. If not then ead caded objed from that volume must be
revalidated. Experiments have shown that this approach grealy reduces the average
time required for cade validation.

Trickle reintegration is another means of exploiting weg conredivity. Instead
of reintegrating all updates on full reconnedion to the server, updates are periodicaly
sent over the wed connedion while still not interfering with user adivities in the
foreground. Implementing trickle reintegration did however require significant
alterations to be made to the structure of Venus.

Wegk connedivity also provides the opportunity to implement user-asgsted
cade misshandling. At low bandwidths the user is given the option of fetching the
file, which would incur along wait, or of continuing without it. At high bandwidths
the file is fetched without prompting the user. In developing this approac the
designers incorporated a user patience model to balance between the two fadors, file
delay and user patience

Coda gpeasto work well in acalemic and reseach environments
[Satya ‘93] although it remains untested in other deployments. The hoarding strategy
used allows most disconneded sessons to complete without any cade misses,
although thisis due in part to the voluntary nature of the disconnedionsi.e. the
common case is for the user to shut down the madhine or disconned it after the
hoarding processhas caded enough objeds for disconneded use. Cadhe missesin
this case ae dso rarely fatal to the disconneded sesson and work can be @ntinued.

An involuntary disconnedion caused for example by a network failure may mean that
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the required objeds have not been caded and a catie missmay be more disruptive.
The performance of the system in the event of areintegration storm (alarge number
of clients trying to forward their replay logsto the server at the same time) following
aserver or network failure has yet to be established in the context of large dient
populations although several strategies have been proposed. One would be to have
ead client wait arandom amount of time before trying to contad the server again so

that the recnnedion of clientsis more spreal out.

2.3.2 Disconnected AFS

Whereas AFS works well in a normal desktop environment with fixed connedions,
when the network beames partitioned clients that have been isolated from the server
cannot propagate the dhanges they have made to caded objeds to the server and
hence make these changes known to the rest of the system. To overcome thisagroup
in the University of Michigan has modified the structure of the dient part of AFS
(Venus) to alow for disconneded operation [Huston ‘93]. Unlike in Coda where
extensive changes were made to both the AFS client and server structure, the
developers of Disconneded AFS dedded to limit any modificaions to the dient
structure so that existing AFS cdls could still be accesed. Unlike Coda and Ficus, the
developers considered only disconneded operation in their design, ignoring server
replication. The rationale behind this was that server replication is of no advantage in
nomadic computing due to the fad that a disconneded client cannot contad any
replicaof aserver.

The modifications to Venus were in essence (and much like Coda) altering the
cade manager to provide optimistic cate mnsistency rather that the pessmistic
approach taken by conventional AFS. Optimistic cade cnsistency works on the
premise that usually only asingle client updates a caded objed at any given time and
so the system is optimised to cater for this common case. When a Disconneded AFS
client is disconneded the user can still accessobjeds dored in the cade and all
mutable operations are logged and replayed at the server on reconnedion. On a cade
missan error code is returned to the cdling program. Unlike Coda, the user must
issiedi sconnect andr econnect commands manually. If on remnnedionit is

discovered that a conneded client is modifying the file concurrently then both
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versions are stored on the file server and the user is notified that a conflict has
occurred. The user must then resolve the conflict manually although, as of yet, no

toaols have been provided to allow the user to perform this resolution.

2.3.3 Disconnected NFS

A group working at the University of Washington took concepts from Coda and
extended them to produce amethodology for structuring client softwarein a
disconnedable file system [Fiuczynski ‘94]. This methodology was applied to a
disconnedable version of Sun’s Network File System (NFS). The notion of a dient —
agent — server (CAS) model for mobil e devices was defined. The ayent, resident on
the mobile device, operates in the mnneded or disconneded state and functions are
provided to switch context from one state to the other. In the mnneded state the agent
forwards all client requests to the server and gathers datato storein the cadeto be
used in event of disconnedion. When disconnedion occurs the agent cdls atransition
function to switch to the disconneded state and caded datais used to satisfy client
requests as far as possble.

Although the Disconneded NFS implementation contained no new concepts,
thiswork provided a well-structured approacdh to developing applications for
disconneded operation. Code for operation in the conneded and disconneded states
could be written separately and compartmentali sed, allowing for easy replacement
and easier coding, since eab component only has to ded with one given state. The
notion of transition functions also provided a means of isolating and locdising adions
concerned with moving between states. This model presents aflexible and elegant

technique for designing dsconnedable mobile goplicaions.

2.3.4 Laputa

The Laputa projed at Columbia University took a slightly different approad to file
cading than Coda s hoarding mechanism [ Skopp ‘93] and applied it to a software
development environment. This was based on the amncept of processcentred
environments in which complex rule sets are used to relate and order the different
files and tools used in a development task such as writing a program in C. Laputa

exploited these rules to automate the cading of objeds prior to disconnedion.
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Basicdly the user spedfies which tasks are to be undertaken while disconneded and
the system will then chain through the relevant rules and seled any objedsto be
caded. Although Laputa does not ded with such isaues as involuntary disconnedion
or we&k connedivity, it does provide an interesting take on intelli gent file prefetching

and cading.

2.3.5 Ficus

Ficus[Page ‘98] isamodular addition to the Unix kernel that provides a pea-to-pee
replicated file system, designed to be highly scdable and reliable. The basic concepts
behind Ficus, providing a network—transparent file system that supports partitioned
updates, are logicdly descended from the Locus [Walker *83] operating system. Ficus
shares many feaures with Coda such as optimistic replication, the primary difference
being that Ficus has a pea-to-peea structure unlike Coda s client-server arrangement.
Ficus allows updates to be made to a data objed provided that at least a single wpy of
it isavailable. A processcadled reconcili ation, analogous to Coda’ s reintegration state,
ensures that updates are propagated to any other replicas of the objed.

Although not primarily designed for disconneded operation, Ficus does
happen to work qute well in avoluntary disconneded mode [Heildemann 92]. As any
madhine running Ficusis able to provide afull file service, the disconneded madine
can operate @ normal in adisconneded mode and indeed Ficus makes no distinction
between disconneded and conneded states. With periodic connedionsto ather Ficus
madhines on the network, the disconneded node can propagate updates and reconcile
differences. This type of operation has been shown to work well, however the time
and network traffic required for reconcili ation works out to be quite expensive when
performed over a normal telephone line, as would be the cae in a“‘home use’

scenario.

2.4 The Jini Modédl

Jini [Edwards *99] from Sun Microsystems is a model for building dstributed systems
and is comprised of a set of protocols and fadlities to do this. Jini was designed to

provide an infrastructure that would support spontaneously creaed and self-heding
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communities of services. These services can consist of anything from adual hardware
devices such as anners or printers (and their attendant software) to purely software
services. Jini uses Jva & the common language of these communities and Java RMI
provides the default communicaion mecdhanism. ‘ Spontaneously creaed’ means that
services can appea and dsappea from the community fluidly and without any user
involvement. The term ‘self-heding’ means that the communities will be resilient to
changes in services, network topology and maciine aashes.

Jini can be thought of as athin layer of services built on top of, and using
Java, espedally Java RMI. Jini is perhaps best explained in terms of five mncepts that
together form the basis of the whole Jini ideaof spontaneously creaed,

administration-freenetworks of services. These five concepts are —

» Discovery
e Lookup
* Leang

¢ Remote Events
+ Transadions

Discovery
Jini services are grouped into ‘communities’. Communities usually consist of all Jini
services currently available on a given network subnet. In order to join this
community, when a Jini service starts it must contad alookup service which kegps
tradk of all currently available services. Note that the lookup serviceisitself a Jini
service When alookup service has been deteded, the prospedive mmmunity
member can step through a procedure cdled the join protocol to publishits own
serviceto the community. Jini supports sveral methods of discovering the lookup
service such as the Multicast Request Protocol, which is used by services when they
first become adive to announcetheir presenceto any lookup services in the vicinity
and the Unicast Discovery Protocol (UDP). UDP is used when there is aneed to
crede static connedions between two Jini services when one of the servicesin
guestion knows the name of the other service This form of discovery alows a service
to conned to alookup service on another network to publish its srvicethere.
When discovery has been completed the service doing the discovery will
recave an RMI stub (seeChapter 3.1) that can be used to talk to the lookup service

22



for the locd (default) community. The discovering service can then communicae

with the lookup service and negotiate the publishing of its srvice

L ookup

The Jini lookup services provide functionality not unlike that of a name server except
that they can be seached for more than just string names [Jini Spec‘00]. Each lookup
servicein al pradicdity containsalist of service names and corresponding objeds
that other members of the community can download in order to allow them to use that
service Lookup services can understand Java type semantics and therefore they can
be searched for objeds of different types of classes, superclasses, superinterfaces etc.
Clients downloading these ‘ proxy’ objeds need not know anything about the adual
implementation of the service only the interfacethat they know the service
implements. This sparation of the definition of the means of interadion with the
service and the acual implementation of that serviceis another magjor concept in the
Java RMI and Jini model.

When a ommunity member wishes to publish a serviceit cdls a method on
the proxy suppied by the lookup service upon discovery and provides its own proxy
objed as an argument. The publisher can supgy attribute objeds that describe the
service such as name, locaion, comments etc. The proxy objed supgied isa
seriadizable Java objed that provides clients with a downloadable front end that
allows them to accessthe service Thisis one of the key ideas in Jini, no spedalised
devicedrivers or software needsto be installed by clients as they can simply
download code to do this as and when they neeal to use the service The proxy objed
itself can be an RMI stub that communicates with the remote service, it may be an
objed that acdually provides all of the service functionality itself without any need for
aremote ‘back end’ or it could use some sort of private mmmunicaion protocol to
talk to the service such as when hardware devices are involved. The proxy contains a
referenceto the remote servicethat spedfies whereit can be cntaded i.e. a hosthame

and port number pairing.
Leasing

Leasing is the medhanism used by Jini to allow communities to be resilient and self-

heding in the event of sudden lossof services, network failures, machine aashes etc.
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Thisis avery important asped for any distributed system where small network and
other failures can very often cripple the entire system. As a muntermeasure ajainst
these problems Jni uses time-based resource reservation in which services are granted
gpacein alookup servicefor alimited period of time. These services must update
their leases if they wish to remain listed as adive services beyond the initial lease
period. Any servicethat is unable to renew its lease will eventualy be removed from

the lookup service and hence from use by the other members of the community.

Remote Events

Jini (in common with most of Java) uses the mncept of events to allow for
asynchronous notification. However, in distributed systems like Jini different types of
events, remote events, have to be designed for. Remote events are different from locd
events in many ways including dfficulty of delivery, difficulty of determining corred
delivery order and determining whether or not the event has been recaved.

Jini provides asingle interface RemoteEventListener (it hasasingle
method, notify()) for objeds that wish to listen for remote events and there is
only one type of event objed, RemoteEvent. Any Jini component that wishesto be
able to send events gedfies the conditions under which it will send them and
provides its own means for listenersto expressan interest in these events. Asall
events are Smply variants of RemoteEvent, Jini alowsthird parties to use, forward
or store these events without acually knowing what exadly they mean.

Jini takes the gproach that distributed systems designers must dedde
themselves what level of certainty they need in their applications that eventsthat are
sent will read their destinations. By using third party delegates, an applicaion can
store its messages for later referral or useif it fails sSmply by sending eventsto the
delegate, which then stores them persistently. These events can then be resent if their
target does not recave them. Designers can also plug a guaranteed delivery
component into their systems that listens for events and then continually resends them

to their targets until they are ad&nowledged.
Transactions

Partial fallure is a problem that occurs when only part of a distributed computation

succeals and the rest fails. This means that the distributed system has not progressed
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to the new state that it should bein but yet it cannot return to its the original state. To
addresspartia failures, distributed systems use a ©ncept known as transadions.
Transadions are ameans of grouping and managing the exeaution of related
operations D that either al or none of them are caried out. This ensures the system is
always in aknown and stable state. If one of the operations cannot complete then the
whole transadion is aborted and the system is returned to its original state.

Two-phase commit is a protocol commonly used to manage transadions. In
this protocol an entity cdled a Transadion Manager controls all operations that are
participants in the transadion. The manager tells the participants to enter a precommit
phase in which they ead cdculate their own hit of the overall result and then store
this temporarily. Each operation then informs the manager whether or not they have
been successul in doing this. If all the participants reply that their results have been
computed then the manager will send a commit message that tells ead participant to
make their changes permanent. If any participant tells the manager that its task has
failed then the manager will tell every participant to abort. They will then erase the
results they have just cadculated and return to the state they were in before the
operation started.

Jini, in fad, does not fully implement the two-phase commit protocol outlined
above. Jini providesaTransactionParticipant interfacethat ead participant
inaJini transadion must implement and this interfacehas the obvious ounding
methods prepare(), commit() and abort(). However, thisisjust aninterface
and the acual implementation of these methods is left to whoever is building the
system. Basicdly what Jini doesis ad as the transadion manager and will cdl these
methods on the participants as and when appropriate, rolling the participants bad or
forward depending on the replies it gets and cdling commit () and abort () when
it deddesit istheright time. What acually happens when these methods are acdually
cdled on the participantsis left up to the programmer. This alows the Jini designer to
add seaure transadions when he/she sees fit and to leare them out atogether if

circumstances do not require them.
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Chapter 3

Background

This chapter introduces the two main huilding blocks of this projed, Sun
Microsystems Jva Remote Method Invocation (RMI) technology and the
Architedure for Locaion Independent CORBA Environments (ALICE). Relevant
pointsin ead will be discussed including architedures, design feaures and

cgpabilities, and comparisons to related technologies.

3.1 RMI
3.1.1 Introduction to RM |

Java s platform independence and seaurity model combine to provide apowerful tool
for developing dstributed applications. Platform independence dispenses with the
need for different versions of code for different machine types or operating systems as
any platform that can provide aJVM can run Java de and Java' s eaurity model
enables code to be loaded remotely and be trusted not to ad maliciously. Together
these two cgpabili ties allow for network-mobility of Java code [Venners ‘00]. RMI
and objed serialization were developed to allow Java objeds to become network
mobile and to creae adistributed objed model that in essence dlows objedsin
different address pacesto communicae. By granting objeds the &bility to hold
references to objedsin other VMs (these will henceforth be cdled remote objeds),
to cdl methods on these remote objeds and to passparameters between themselves,
what is effedively creded is a distributed objed-oriented programming framework.

The designers of RMI identified several important goals for supporting
distributed objeds in Java [Wollrath *96] —

*» To support remote invocaion of Java objed methods in different

virtual macdines
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* To retain as much of the original non-distributed Java semantics as
possble while integrating the system into Javain a natural way

* To preserve the seaurity provided by the Java model

*  To make remotenessas £ by the RMI clients and servers as smple

as possble

3.1.2 Semantics of RM |

RMI makes extensive use of one of the fundamentals of Java objed-oriented
programming, the separation of interface ad implementation. In RMI, an objed that
will be cdled remotely must implement the Remote interface The syntax of a cdl to a
remote objed by a dient is exadly the same asthat of a cdl to alocd objed. The
client is programmed to the remote interfacenot to the implementation by the server
objed of that interface Therefore gart from the knowing that the interface
implements Remote and that a RemoteException may be raised duing aremote
method cdl, the whole RMI scheme is mostly transparent to the dient.

RMI has many similarities with the Java objed model including casting a
remote objed to any interfacesupported by the implementation and referencesto a
remote objed can be passed as arguments or returned as results in remote method
cdls. There ae some notable differences between the two models however, the dient
objeds can only ever interad with the interfaces to a server objed never with the
implementation itself, the semantics of parameter passng are dlightly different and
some of the methods provided by the Java objed classhave to be changed to take
remotenessinto acwunt.

An RMI server objed can either inherit from the RemoteServer classor the
UnicastRemoteObjed class Ead of these takes care of the processof exporting an
objed and readying it for cdls when their constructors are cdled. Obvioudly, the
server objed must implement the same interface & provided by the Remote interface
Before invoking a method on a remote objed a dient must first obtain areferenceto
that objed, thisis usually returned as aresult of a cd to the rmiregistry, asmple
bootstrap naming service provided by RMI (the stub which provides the means to
make the remote cdl will be discussed later). References to remote objeds are stored

and can be retrieved by using the URL-based interfacejava.rmi.Naming. This
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interface dows srversto register references to themselves and clients to obtain these
references by contading the registry on the host spedfied by a URL suppied to the
Naming.lookup(URL) method.

Callsby a dient are then performed in exadly the same manner and with the
same syntax as cdls on alocd objed. Parameters passed and arguments returned in
RMI cdls (apart from remote objeds) are passed by copy. This means the mntent of
the non-remote objed is copied before being passed on. Objeds other than Java
primitives and remote objeds must implement the Serializable interfaceif they are to
be passed. Remote objeds on the other hand are passed by reference meaning that the
stub for the objed is passed rather than the objed itself. Therefore the semantics of
RMI parameter passng is passby value in the ciommon case, and passby referencein
the remote cae. In the latter what adually happensisthat RMI passesthe cdling

objed a stub with which to communicae with the remote objed.

3.1.3 RMI Architecture

There aethreelayersin the RMI architedure — the stubs/skeletons layer, the remote

reference layer and the transport layer.

Client Applicaion Server
Level
Stub Skeleton
RMI
stem
RRL > RRL
Transport < q Transport

Figure3.1 RM1 Architecture
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Stub/Skeleton Layer

The Stub/Skeleton layer provides the interfacebetween the goplication layer that the
client and server reside in to talk to the rest of the RMI system. The dient usesthe
stub and the server uses the skeleton. The stub implements the same interface athe
server objed and is responsible for making cals to the remote objed by cdling the
remote reference layer, marshalling parameters passed to it from the goplicaioninto a
format suited to on-the-wire transmisgon (a processknown as pickling), and
unmarshalling any returned data.

Likewise the skeleton is responsible for unmarshalling any parameters passed
by the dient, passng these parameters bad to the goplicaion layer code and
marshalling any return values. Both stubs and skeletons are aitomaticaly produced

by running the rmic command.

Remote Reference Layer

The Remote Reference Layer deds with the spedfic invocation protocol chosen by
the remote objed and transfers data between the Transport and Stub/Skeleton layers.
The invocation protocol can be unicast (in the cae of the server objed being a
UnicastRemoteObjed), muliticast (which allows for replicaion of remote server
objeds) or some other replication pattern. The RRL consists of client and server
sedions, both of which use astream-oriented connedion abstradion to convey datato
the Transport layer. The Transport layer adually implements the mnnedions and

presents an interfaceto the RRL.

Transport Layer

The transport layer deds with the mecdhanics of transferring data between address
spaces - it makes connedionsto cther VMs, monitors the livenessof these
connedions, maintains alist of all remote objeds in the locd address pace listens
for incoming cdls and locates the dispatcher for the target of aremote cdl and passes
the connedion to this dispatcher.

The Transport layer uses the information contained in the remote reference
pas=d to it by the RRL to set up a mnnedion to the relevant remote aldress pace

The dient passes the server the objed 1D from the remote reference so the servers
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transport layer can tell which objed the dient wishesto conned to. Although the
default transport medium is TCP the RMISocketFatory interface #ows for custom
protocolsto be used, creaing a astom socket whenever RMI makes a cdl to the

fadory to obtain a new socket.

3.1.4 Basic RM| Operation

The standard format for client-server RMI applicaionsis $iown in the diagram below
[RMI Spec‘99].

rmiregistr
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--------- »  URL Protocol
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Figure 3.2 RMI Distributed Application

The remote method cdl proceads as follows:
* Theremote server objed starts and registers itself the rmiregistry on the locd

madine. The rmiregistry cheds that the Stub for the objed is available from
the web server pointed to by a adebase property suppied by the server.
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* The dient contads the rmiregistry on the servers machine and is returned a
referenceto the objed and the location of the Stub with which to contad it

with. The dient then downloads the Stub from the server.

* The dient then makes the method cdl on the server objed using the Stub,
passes any required parameters and the corresponding result data, if any, is

returned to the dient. The remote method invocation is then complete.

3.1.5 Serialization and Dynamic Code L oading

As mentioned previoudly, the adility for code and objeds to move between address
spaces is fundamental to the design and operation of RMI. Seriadization allows for the
member data of a Java objed to be turned into a steam of bytesto alow it to be
transmitted via TCP or whatever transport protocol is being used to another VM.
Any Java objed can be serialised aslong asit has a public, no-arguments constructor,
it implements the Serializable interfaceand it contains no references to any objeds
that aren’t themselves sridlizable.

What serialization provides is a means to transmit the member data of an
objea but thisis of little use without the acompanying classcode. The ade for the
objed cannot be transmitted by the same means © some other way must be found to
give cdlersthe implementation of a dass Thisis known as Dynamic Code Loading
and marks RMI out from other remote procedure cdl implementations.

Usually a Java goplicaion looks in its clasgath to find the implementations of
any classes it requires. In RMI any server that wishesto be ale to export code sets a
codebase property which istagged onto serialised objeds and indicates to clients
where a tassfile for the objed can be found. The cdebase generally pointsto a
diredory or Java achive (.JAR) file that is ®rviced by aHTTP server. Once a Gient
gets a serialized objed it will try to reconstitute it and when it can't find the dassin
its own clasgath it will download it from the codebase location.

A MarshalledObjed can represent a serialised objed by passng the objed to
be serialised to its constructor. MarshalledObjed provides a mnvenient means of
storing a serialised objed without having to recmnstitute it. MarshalledObjeds are
automaticdly annotated with the mdebase of the relevant implementation classes
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thereby providing a representation of everything a dient neals to know to be aleto
utili se the objed at alater stage.

Naturally the &bility to dynamicaly download code dso presents a seaurity
hazad, asthe dient nealsto be ale to trust the downloaded code not to do anything
malicious. In an applet environment, only allowing the gplet to conned to the
madhine it was downloaded from enforces a crude form of seaurity. Inthe Java 1.2
platform the seaurity cagpabili ties have been extensively expanded. Any pieceof RMI
code that wishes to download code must first set a seaurity manager. This manager
will control the behaviour of downloaded code acording to a set of seaurity
permisgons st in aspedal policy file and passed at runtime & a property to the
program. The policy file can give the manager exad instructions as to what the mde
can and can’'t do, what diredoriesit can access what remote macdiinesit can conned
to, etc. This provides the programmer with a very flexible and powerful means of

controlli ng the seaurity of networked applications.

3.1.6 Garbage Collection

In order to clean up remote objeds that are of no more use RMI employs areference
counting medanism. Put smply, the RMI runtime keeps count of all li ve references
to remote objeds within ead VM, every time alive referenceis encountered the
count is incremented and a message is ®ent to the server informing it that the objed
has been referenced. Any time that areferenceis discarded another message is ent to
the server informing it of the discard. There ae mmplex issues that must also be dedt
with regarding the timing and order of these messages to ensure that the objeds are
not prematurely garbage lleded.

When an remote objed is no longer referred it is marked as being a candidate
for colledion by the RMI runtime. Aslong as aremote or locd referenceto an objed
exists the objed is safe to use. The posshility of network partition occurring between
a dient and server means that areferenceto aremote objed may not aways refer to a
currently existing objed and an attempt to use such an objed will raise a

RemoteException.
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3.1.7 Activation

A distributed objed system can contain many thousands of remote objeds. If all of
these objeds were to remain persistently adive then it is obvious that valuable system
resources would be in continual use, even if no cdls were being made on the vast
majority of the objeds[RMI Spec‘99]. RMI givesthe distributed application
programmer the caability to deadivate objeds that may not be in use for long
periods of time and then adivate them when they are required.

Activation in RMI istaken care of by threemain components; an Activatable
objed, awrapper classaround this objed and the rmid adivation daemon. The
Activatable objed is much the same a a normal RMI remote server objed except that
it extends the java.rmi.Activatable dassand has a spedal two-argument constructor
that takes a MarshalledObjed and an Activationl D as arguments. The wrapper class
should be set up to inform the rmid what type of environment to run the objed in
when it isreadivated. The rmid will creae anew JVM as a dild processto run the
objed in when it deteds a cdl for it. The wrapper will at least dedare an
RMISearityManager to govern the seaurity properties of the VM the adivated
objed isrunning in.

Note that although the use of adivatable objeds can increase the performance
of alarge distributed objed system, care must be taken inits use to prevent system
resources being wasted by objeds being adivated and deadivated between closely
occurring method cals [Edwards *99]. Objeds that have been activated should remain
adive for a cetain period of time (perhaps cdculated from the average time between
objed method invocations) before being deadivated again to prevent the nealless
creaion of new JVMs. Activatable objeds can aso inform the rmid that they wish to
be automaticaly restarted whenever the rmid itself restarts. This allows for server
objeds to be brought badk on line quickly after a system reboaot.

3.1.8 RMI Protocol

RMI uses a simple on-the-wire protocol format; a dient sees an Input Stream and an
Output Stream, both being paired to a socket connedion to the server. Sincethe
stream connedions are paired there is little need for much header information in the
PDUs. When the first PDU is gnt over a mnnedion, a header indicaing the RMI
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Version and the spedfic protocol being used prefixes the message. The protocol can
either be the default Stream Protocol, the SingleOp Protocol or the Multiplex
Protocol. When the Stream Protocol is being used all messages after the first are sent
with no headers.

The SingleOp Protocol is used if the messages are being wrapped in HTTP
requests and interadions more complicated than a single request and response ae
impossble. Thisis commonly used to alow remote objed methods to be invoked by
clients residing behind afirewall. The Multiplex Protocol which is used when only
one of the endpoints can open a bi-dirediona TCP connedion and allows the two
endpoints to ead open multiple full-dupgex connedions to ead other. An instance of
such a situation would be an applet in which the seaurity manager prevents the
downloaded applet from creaing a server socket to the host it was downloaded from.
If the goplet was permitted to open a normal socket connedion to the host then
connedions could be multiplexed over this socket and the originating host could
invoke methods on any RMI objeds exported by the gplet [RMI Spec*‘99].

There ae threetypes of messages that can be sent from an Output Stream: an
RMI method cadl, a Ping to test a connection, and a Distributed Garbage Colledion
ACK that tellsthe VM in the server machine that remote objeds have been receved
by the dient asareturn value. There ae dso threetypes of Input messages. Call
Return, which is the return from a method invocation; HttpReturn, the same & Call
Return except it iswrapped in HTTP, and PingACK, the response to the Ping

message.

3.1.9 Comparison with CORBA

RMI isjust one of many distributed objed paradigms avail able, one of the most
popular rival technologies in use today is the Common Objed Request Broker
Architedure (CORBA) standard from the OMG. CORBA, like RMI, provides a
means for programmer to construct objed-oriented distributed applications, freeng
them from the responsibility of having to ded with low-level communicaion issues.
In contrast to the smple structure of RMI, the myriad of entities and services
available in CORBA makes it appea comparatively complicated.

Central to the design of CORBA is the Objed Request Broker (ORB), which

ads as an objed bus through which clients can interad with other remote or locd
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CORBA objeds. The ORB “isresponsible for al the medanisms required to find the
objed implementation for a request, to prepare an objed implementation to receve a
request, and to communicae the data making upthe request” [OMG ‘95]. The dient
uses the ORB to dbtain areferenceto a CORBA objed and then a dient can cdl
methods on that objed using either the Dynamic Invocation interfaceor an IDL stub.
The ORB conveys the request to the objed and returnsthe reply to the cdler. The
references to server objedsin CORBA are cdled Interoperable Objed References
(IORs). An IOR consists of a hostname and a port number where the dient can locae
the server objed, and also a spedal identifier cdled an objed key that uniquely

identifies the server objed at the given location.

{ Client } { Objed Implementation }

_ Objed
Dynamic IDL SIS DS Adaptor

Invocation Stubs

ORB
Interface

ORB Core

SIS = Static IDL Skeleton

DS = Dynamic Skeleton

Figure 3.3 Structure of ORB Interfaces

Asin RMI an (IDL) interfaceis completely independent of the adual
implementation of an objed. IDL allows objeds written in different languages to
interad with ead other, so the dient can server can be written in different languages.
When the IDL interfaceis compiled, information about it is gored in an Information
Repository (IR). Thisalows a dient to obtain runtime information about the interface
by querying the IR and use this information to dynamicaly invoke amethod on a
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remote objed by using the Dynamic Invocaion Interface The Dynamic Skeleton
Interfaceon the server side dlows a dient to invoke methods on a CORBA server
objed that has no knowledge aout the objed it isimplementing.

An entity cdled an Objed Adaptor sits on top of the ORB and conneds the
server objed to the ORB, providing services like method invocaion, mapping objed
references to implementations etc. As RMI uses the RMI Protocol as its underlying
remote protocol, CORBA uses the Internet Inter-ORB Protocol that runs over TCP/IP.
[ OP uses the Common Data Representation (CDR) scheme to transfer data types

aaossthe wire.

3.2ALICE

This sdion will look at the ALICE (Architedure for Locaion Independent CORBA
Environments) framework for providing mobility support for CORBA objedson
mobile devices. After a brief introduction to the topic amore detailed discusson of
relevant details such asthe ALICE software achitedure and the various layersin this

architedure will be presented.

3.2.1 Introduction to ALICE

ALICE isadesign to alow mobile computing devicesto cary CORBA server objeds
that can be invoked by both non-mobile and other mobile hosts with no knowledge of
the mohili ty of the server. Equally, client objeds on the mobile host can interad with
objeds on other hosts. One of the most important aspeds of ALICE isthat no
centralised register is used to tradk the aurrent location of mobile servers. ALICE
tadckles the problems associated with the mobility of CORBA objeds by using a
sesson layer approach with some goplication level support [Haar *99].

ALICE presumes a mobile environment such asthat shown in Figure 3.4.
Mobile hosts (MH) conned via wirelesslinks to Mobility Gateways (MG) which are
wired to the rest of the network. The mobile hosts can move between MGs, thereby
changing their point of connedion to the fixed network in a processknown as
handoff. The gateways perform the role of proxies by relaying communications from
the MH to the rest of the network and from remote hosts to the MH. The gateways
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also have the responsibility of carrying out CORBA spedfic duties such as address
trandation of IORs to acount for the mohility of server objeds.

MH
FH
MH | New P
. “~~._ Conrection 7
1 /
1 /
I| 3
‘.| MG
‘|| old
! Conrection
|
|
MG

FH

Figure 3.4 ALICE Environment

The general software achitedure of ALICE follows alayered approach with
different mobility problems being solved at different layers. As mentioned before,
ORBs generally use TCP/IP at the transport level, however TCP/IP connedions are

frequently unstable in a mobile environment and are subjed to being broken. Thiscan

result in data being lost and the dient and server states becoming inconsistent. To

addressthis problem ALICE introduces the Mobility Layer, which sits on top of
TCP/IP and hides broken connedions from the layers above it.

The 11 OP layer is a mobili ty-unaware part of the achitecure that implements
the minimum amount of ORB functionality to alow it to send and recave inter-ORB
messages. The foaotprint of the Il OP is designed to be & snall as posshle to cater for
the limited memory cgpadty on a mobile device The S/I1 OP (or SwizZing 11 OP)

Layer isthe mobility-aware component of the I1 OP layer and is used to perform
addresstrandation on CORBA I0ORs.
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Figure 3.5 ALICE Software Architecture

3.2.2 ALICE Mobile Layer

The Mobile Layer provides the low-level support services required to maintain
connedions in a mobile environment. Basicdly clients of the ML useit to creade what
they think to be normal TCP socket connedions. What isinstead produced isa
connedion to the airrent Mobility Gateway, which then conneds to the dients
desired communication endpoint using a normal socket connedion. Connedions from
the MH to the MG are multiplexed over a single transport connedion in order to
conserve the limited and expensive bandwidth avail able to a wirelessdevice and make
the tasks of handoff and connedion re-establishment easier. Connedion multiplexing
also makes the task of error corredion easier, afad that is vitally important in a
mobile environment where line quality is quite often poor. When the MH-MG
connedion is broken it is the task of the ML on the MH to re-establish it.

There aeindividual message types to indicate whether the MH wishes to
establish a cnnedion, shutdown a mwnnedion, send data, reconned after a breék, plus

corresponding adknowledgements for ead type. A speda header identifying the type
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of message, payload length, an identifier for the destination etc prefixes all data sent.
In addition to transparently re-establishing a broken connedion the ML must also
cade awy data sent and wait for an adknowledgement for this data. Data being sent is
first caded, along with the Logicad Conredion Identifier (LCID), a unique identifier
alocated to ead virtual connedion and the request identifier, which is used to
identify the a&knowledgement of a padket. To increase dficiency the ML will delay

opening a mnnedion for a socket until there is adual datato be sent or receved for it.

The Mobile Layer provides four main services to the layers above it [Haehr ‘99] —

* |t hides broken connedions by transparently restoring links when they are lost

» |t alows TCP ports on the MG to be dlocaed by the Il OP Layer to accept
incoming connedions

»  The S/I1OP layer usesit to obtain mohili ty information so that it can perform
addresstrandation and request forwarding

» |t performs handoff between MGs and tunnels existing connedions from the old

MG to the new one

3.2.3110P and S/I1OP Layers

[IOP Layer isan OMG defined standard that spedfies how inter-ORB messages
should be sent using a TCP/IP transport connedion. The I OP layer developed for
ALICE was designed to be as efficient as posshle and to have asmall memory
footprint to acoommodate the limitations of mobile devices. The API for the I1OP
Layer also hides alot of the complexity of the adual protocol from the goplication
programmer while still allowing for manipulation of relevant parameters when
required. The 11 OP Layer also allows the Mobile Layer to be plugged in and out
cleanly whenever mobility support is necessary or not.

The 11 OP Layer performs functions that are necessary for the [ OP layer to
operate arredly when server objeds are being used on the Mobile Host. As
explained in Chapter 3.1.9, Interoperable Objed References (IORs) are used in
CORBA to uniquely identify and locate aserver objed. An 1OR essentialy consists
of ahostname and port number to conned to the server objed at. Server objeds on

the MH will export an IOR that points to the MH. Since no remote host can diredly
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contad the MH thisisuseless To overcome this problem the S/11 OP layer on the MH
replaces the hostname with that of the arrent MG in an operation cdled ‘swizZing’.
The S/11 OP layer uses the Mobile Layer to obtain information about the MH’ s current
MG.

When aremote host receves the swizzled IOR and contads the MG the
S/ OP layer there will forward the request to the MH. When the MH changes it point
of connedion to the network to adifferent MG it must ‘reswizzle’ any IORsto point
to the new MG. The S/11 OP layer on the old MG will also change aty IORsiit holds
that pointed to the MH to now point to the new MG.

3.2.4 Handoff

The limited range of wirelesscommunicaion methods means that roaming mobile
hosts must change their mobility gateway at regular intervals. To do this the mobile
host will cause handoff to occur between the new gateway and the old one. The host
will send a Handoff Request message to the new MG stating the aldressof its last
MG and the identifiers of any logicd connedions that were in use [Haéhr ‘99]. The
new MG will then negotiate the handoff of ead of these logicd connedions from the
old MG. In doing thisthe mntents of eadt of the cades containing unadknowledged
data, adknowledgements recaved and any unsent data ae transferred to the new MG
and will be sent to the MH as oon asis appropriate. When the handoff procedure is
complete the old MG sends a Finished Handoff message to the new MG, which will
then send another Finished Handoff message to the ML on the mobile host.

Any transport connedions that were open between the old MG and remote
hosts will be tunnelled to the new MG for as long as they remain open. This leaves
open the posshility of the aedion of along chain of MGs ead tunnelling open
connedions to the next without having any knowledge of where the chain ends or any
means of shortening the chain. Hopefully, this $ould only prove to be the cae on

rare occasions.
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Chapter 4

Design

4.1 Overview

This chapter discusses a design for supporting mobile RMI clients and servers. The
design assumes that mobile hosts will communicae with remote hosts on awired
network via mobili ty gateways in the same manner as discussed for the ALICE
environment and use a much of the ALICE software achitedure ais appropriate.
This chapter looks at the differences between the addressng and naming schemesin
CORBA and RMI and examines how this affeds locating mobile server objedsin
Mobile RMI and the changes required in the overall ALICE architedure. An
application level solution to these problemsis introduced along with methods for
deding with passng references to remote objeds and performing handoff between

mobili ty gateways.

4.2 Comparison with Previous | mplementation

Asdiscussd in Chapter 3, RMI and CORBA have dissmilar means of locaing
remote objeds. One of the mgjor differencesis that in CORBA the programmer can
easlly manipulate the IORs used to locate remote server objedsto point to the
mobili ty gateway and can then have the S/11 OP layer there forward requests to the
mobile host. In RMI the equivalent to the IOR, the RemoteRef, cannot be aeded
independently of a remote objed, accessed or manipulated. This effedively means
that the ALICE method of redireding method invocaions from the gateway to the
mobile host cannot be used in the same way for RMI.

A number of approaches were considered to overcome the diff erences between
the RMI and CORBA addressng models. One was to use downloadable RMI socket
fadories which the dient would download from the gateway and which would creae

a socket connedion to the gateway on a known port. The gateway would then forward
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the cd to the mobile host by opening another socket aaossthe wirelesslink. There
are anumber of difficulties inherent in this approach.

Firstly, the rmiregistry on the gateway would still need to have aremote objed
registered in with it that implemented the server interfaceso some form of code
downloading as described in the next sedion would still have to occur. Secondly, the
gateway listening on the well-known port for client connedions would have to
intercept the first RMI cdl and change endpoint identifiers. In the reply to the first
RMI cdl by a dient the server spedfies an endpoint identifier (a hostname, port
number pairing) that it can seethe dient isusing to conned to it on. The dient can
use this information to determine its own hostname if it is unable to do so, perhaps
due to seaurity restrictions. The dient then responds with an endpoint identifier at
which it will accept connedions from the server. If cdls were tunnelled through the
gateway the first endpoint identifier would have to be danged to point to the mobile
server insteal of the gateway and the second would have to be dhanged so that the
returned endpoint pointed to the gateway instead of the remote host. These changes
could only be dfeded by dired manipulation of the incoming and outgoing byte
streams, asthereisno API to change RMI cdls.

Overall this design soon becamne overly complex and inelegant (with both
high-level application layer and very low-level transport layer components) and so it
was dedded to try a different approach. In the end it was dedded to ded with all of
the difficulties of addresstrandation and request forwarding at the gplicaion layer
instead of alower level in the protocol stadk. This eliminates the requirement for an
RMI version of the S/l OP layer, asthere will be no manipulation of RemoteRefs. So
instead of having the S/II OP layer on the gateway alter the RMI cdls and then
forward them to the server, proxy objeds on the gateway are used to effedively relay
the cdlsto the server and relay any responses bad to the dient. The updeting of the
RMI proxy stubs at the gateway to point to the new proxy on the new gateway to
which the server has moved mimics the ‘reswizzling’ of IORs on the old gateway that
occurs during handoff in CORBA ALICE.
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4.3 Mobile Host as Client

Consider an RMI client objed located on a mobile host interading with aremote
server via amohili ty gateway and with the support of the Mobility Layer (seeFigure
4.1 below).

Fixed Network RMI Server

RMI Client Q

Remote

Q Hog
Mobile Host
\ Mobility

GW

Figure4.1 Mobile RMI client connectsto remote RM|I server via M obility GW

In this case the Mohility Layer will provide dl the support necessary for the
mobile dient to interad transparently with the remote server. The ML will tunnel the
lookup requests, method invocaions and all other interadions initiated by the dient
with the server through the mobili ty gateway. Whenever the dient cdlsthe
RMI SocketFadory to produce a socket connedion to the server it will i nstead return a
referenceto avirtual socket to the dient. The dient has no ideathat this virtual socket
is conneded to anything but the addressit spedfied to the RMISocketFadory. When
the dient triesto send or recaeve aly data on the socket the ML will send a message to
the mohility gateway direding it to open a wnnedion to the original address pedfied
by the dient. Any data sent by the dient over the virtual connedion will be sent to the
mobili ty gateway and redireded from there to its intended target. Similarly, data
returned from the server to the gateway will be forwarded to the dient.

If the transport connedion between the mobile host and the gateway breaks at

any point then the ML on the mobile host will transparently reconned and any data
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lost during transmisson will be resent. If the mobile host hands off to another
gateway then any existing connedions to the remote server will be tunnelled between
the old and new gateways for aslong as they exist. The RMI stub for the remote
server objed held by the mobile dient is gill valid for making cdls through the new
gateway as the server host has not changed position. Therefore the ML provides all
the mohili ty support required for mobile RMI clients. One proviso is that the dient
does not passreferences to remote objeds as parameters to methods invoked on the
remote server. If the server then tries to invoke methods on these objeds then the
mobile host is effedively ading as a server itself. This introduces another set of
difficulties that will be discussed in the next sedion.

4.4 M obile Host as Server

When an RMI server islocaed on a mobile host the Mobility Layer will provide the
same low-level support as described ealier. However whereas the movement of a
mobile dient did not necesstate any mobility support apart from that supgied by the
ML, the ML on its own is not enough to support mobile RMI servers. In CORBA
ALICE the S/l OP Layer gave the required additional support. The differences
between the addressng schemes in CORBA and RMI mean that a similar approad is
not appropriate. As remote hosts cannot diredly contad a mobile server, all
communicaion must go through whichever mobility gateway the server is currently
conneded to. Sincethe dient cannot hold an RMI stub that refers to the mobile host
so it must instead hold a stub that refers to an objed on the gateway.

It isthe use of such a‘proxy’ objed that forms major part of the solution. The
mobile server gives the mde for the proxy to the airrent mobility gateway to usein
forwarding incoming cdls to the adual server on the mobile host. To provide the
services to the server objed to allow it to give the gateway the proxy and register it
there, a spedal remote objed cdled the GatewayRegistry is used. The server can
download the stub for this objed and cdl various methods on it to passthe proxy
classand associated parameters to the gateway. The proxy classis not adually passed
diredly to the gateway instead a spedal classcdled a Carrier classwhich implements

awell-known interfaceis passed. The GatewayRegistry creaes an instance of this
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Carrier classand cdls a method on it that downloads the Proxy class the interfaceit
implements and its RMI stub from the server and then instantiates the Proxy classand
registers it with the locd rmiregistry. The basic operation of the proxy schemeis
shown in Figure 4.2 below.

Mobile Host Mobility Gateway Remote Host
| |
| |
[ rmiregistry ] | rmiregistry |
| |
4 | : |
| N
1. | | I
| ! | 5.
4. |
| | I
| : |
| —
| GWRegistry |
3. | | Client
—1O |
| 4, A —T
Serverlmpl | Lo | 5.
i ImplProxy “~--- I

Figure 4.2 Procedure for passing Proxy Objects

The procedure follows the following steps:

1. Theserver objed, Serverlmpl, which implements the Server interface starts

exeaution on the mobile host and registersitself with the locd rmiregistry.

2. Serverlmpl contads the rmiregistry on the gateway and downloads the stub for
the GatewayRegistry.

3. Serverlmpl then cdls a method cdled register() on the GatewayRegistry
objed, passng as parameters the name of the Carrier classand the aldressof a

web server where it and al asciated classes can be found.
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4. The GatewayRegistry objed then downloads the Carrier, Proxy and Server
interface ¢asses from the mobile host and instantiates a Carrier objed. It then
cdls awell-known method on the Carrier objed, which creaes a new

ImplProxy objed and registersit with the loca rmiregistry.

5. A client objed located on aremote host can then contad the gateway’s
rmiregistry and obtain a stub for the ImplProxy objed. Invoking methods on
the ImplProxy objed will causeit to download the stub from the Serverlmpl
objed and forward the cdlsto it. Any data returned to the ImplProxy is then
returned dredly to the dient.

A number of other difficulties must be considered for full operation of the proxies.
Firstly, the stub for the ImplProxy objed (which was compiled on the mobile host) is
needed both to allow the ImplProxy to be registered on the gateway (the rmiregistry
chedks for the presence of stubs before it allows any bind(...) or rebind(...)
operations) and it is obviously needed so that clients can download it to talk to the
proxy. This gub is not implicitly downloaded with the dassfile for the ImplProxy as
it would be when a dient makes alookup cdl to an rmiregistry. Instead the stub must
be eplicitly downloaded by the Carrier objed from the same web server running on
the mobile host that the ImplProxy and Carrier classes were downloaded from.
Another problem occurs when an invocaion of aremote method on the server
returns areferenceto another remote objed. As discussd in Sedion 3.1.2, RMI
returns the stub for any remote objed returned from a remote method cdl. Returning
this gub to the dient viathe proxy is pointless as the dient cannot contad the mobile
host itself. What must happen instead is that the Serverlmpl must give the
GatewayRegistry not only a proxy classfor itself, but also proxy classes for any
remote objed type that it returnsin a method invocaion. When a method cdl on
Serverlmpl returns a referenceto aremote objed the ImplProxy can crede aproxy for
the returned objed and passthe stub returned from the mobile server to the newly
creaed proxy that it will then useto forward cdlsto the original remote objea on the
mobile host. The ImplProxy will then return a stub for this proxy objed to the dient
and the new proxy will relay any cdlsto the adual objed in the same manner as for

the ImplServer and ImplProxy objeds.
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4.5 Handoff

Much of the medhanics of the handoff processare taken care of by the Mobile Layer
with the adual server applicaion being unaware of any change in locaion. When the
mobile host moves to a new gateway any existing connedions between a dient and
the server will be tunnelled to the new gateway as discussed in Sedion 3.2.4.
Therefore any currently open connedions at the time of handoff will till be valid
even after the movement of the server. However sincethe old gateway can no longer
contad the mobile host, the Serverlmpl stub held by the ImplProxy objed on the old
gateway is no longer of any use and any new clients conneding to it will not have
their cdls forwarded. To overcome this a means of communicaion between the two
gateways has to be introduced. Thisis achieved by extending the functionality of the
RMI GatewayRegistry objeds held by the gateways.

To explain how handoff occursin the Mobile RMI model we will start by
asuming that the system (i.e. the mobile host, the mobili ty gateway and the remote
host) has been initialised so that the fixed client has downloaded the ImplProxy stub
and is able to cdl methods on the remote server objed on the mobile host viathe

ImplProxy. Handoff to a new mobility gateway is affeded as follows:

1. MH sends a Handoff Request message to the new MG and all existing server-
client connedions through the old gateway are tunnelled through the new
gateway. The MH downloads the stub for the GatewayRegistry objed from
the new gateway.

2. By cdling the register() method on the GatewayRegistry stub, the Carrier and
ImplProxy objeds and al associated classes and interfaces are uploaded to
the new MG. The Carrier objed is run and the ImplProxy objed isregistered
with the rmiregistry on the new MG.

3. MH cdlsthe method cdlOldMG(...) on the GatewayRegistry stub from the
new gateway. This causes the GatewayRegistry service on the new MG to
download the stub for the GatewayRegistry service from the old MG.

4. The new MG cdls handoff(...) on the GatewayRegistry stub from the old
MG. Thisforwards a cd to the method changeStuby(..) in the ImplProxy
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objed on the old MG, causing it to discard the stub it had previoudly (i.e.
before the handoff processhad begun) downloaded from the MH. The
ImplProxy replaces this gub with one that it downloads from the new MG.

Inthisway a‘chain’ of proxy objedsis st up between the MH and the RH. The
client applicaion on the RH, which is unaware of communicating with anything other
than the old *home’ MG, cdlsthe ImplProxy on the old MG. Thisin turn forwards the
cdl to the ImplProxy objed on the new ‘current’” MG. Lastly the new MG cdlsthe
adual Impl objed on the MH, which adually performs the service In the same way
datais returned through the proxies from the RH to the FC.

The cdl from the new MG to the old MG also causes the old MG to replace
the stub registered with the locd rmiregistry with that of the ImplProxy on the new
MG. In thisway any new clients accessng the old MGs rmiregistry will receve a
Stub to talk direaly to the new location of the ImplProxy instead of communicating
viathe old gateway. Also, whenever the mobile host changes gateway, al gateways
that it had previoudly registered its srver objed with must be notified of the dange
of locaion. Since d the gatewaysin the chain all the way bad to the original
gateway have the required GatewayRegistry stubs thisis just a matter of ead
Gateway making a cdl to the previous one and telling it the locaion of the new stub.

Another fador to consider isthe race ondition that occurs when the handoff
cdl from the new gateway reades the old gateway and a dient conneded to the old
gateway makes a cd on the ImplProxy objed. The cd on the proxy will have to be
suspended using alock on the ImplProxy objed until the stubs have been swapped.

4.6 Semantics of Proxy and Carrier Classes

The proxy and carier classes exported by the mobile server objed have ageneric
format. The only difference between proxy and carier objeds exported by servers
implementing dfferent remote interfaces is the name of the proxy and carier classes,
the name of the remote interfacethat the proxies implement, and the inclusion of
whatever methods the remote interfacespedfies. All of the rest of the adual code
including the padages imported, methods to download the required classes, register
the ImplProxy etc. are entirely generic. Asaresult of thisit is possble for both the

carier and proxy classsto be aitomaticdly generated (e.g. with a Perl script)
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provided the remote interface ad the carier and proxy classnames are suppied as

arguments.

4.7 Summary

In this chapter a design for allowing similar mobility for RMI clients and servers asis
currently afforded to CORBA servers using the ALICE architecure was outlined. The
differences between objed addressng in RMI and CORBA that necesstate aradicd
change in the ALICE architedure were outlined and an applicaion level solution
based on the use of proxy objeds was given along with schemes for allowing the
return of remote references from remote method invocaions, again based on proxy
objeds. A means of allowing handoff to occur between mobili ty gateways was then
described which allowed not only current clients of the server to continue making
cdls but alowed new clients contading the old gateway to be redireded by use of
RMI stubs, to the new gateway. Finally, the semantics of the carier and proxy classes
needed for the design were examined and it was concluded that they were very much

generic and as such were candidates for automatic generation.
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Chapter 5

| mplementation

This chapter discusses how the Java Mobility Layer was completed and how the
proxy objed design discussed in the previous chapter was implemented. Both of these
were completed and succesdully tested together. Additional work on making the
provision of mobility support more transparent to the programmer was not completed
although the issues involved were examined in detail. The dhapter starts by discussng
the structure of the Mohility Layer and the work that remained to make it fully
functional. Following this the RMI objeds used to implement the proxy scheme ae

closely examined.
5.1 Implementation Goals

The main aim of the implementation was to construct an RMI server cgpable of
residing on a mobile host and can interad with remote dients that have no knowledge
of its mohility. The server should be ale to perform handoff between mobili ty
gateways allowing it to change point of contad with the fixed network while & the
same time not disturbing any existing transport connedionsto clients and remaining
contadable to new clients. The Java Mobility Layer should provide the sesson layer
mobili ty support, re-establishing broken transport connedions, cading data,
connedion multiplexing etc. The goplication layer proxies on the gateways sould
forward RMI cdlsto the mobile server and the GatewayRegistry objeds sould
provide the medhanism for the gateways to communicate with ead other when
handoff occurs. The task of writing mobility cgpable RMI servers ould be made &
easy for the programmer as writing a normal RMI application. To achieve thisthe
tasks of producing proxy and carrier objeds for a mobile server should be aitomated
and the ade required to register the proxy with the gateway should be hidden behind
the ade that normally performs the RMI task of binding to the locd rmiregistry.
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5.2 Java Mobility L ayer

Java gplicaions cannot interfacewith the original ALICE Mobility Layer asit is
coded in C. There were two posshble ways to provide Java gplicaions with the same
mobili ty support that was afforded to C applications; one was to completely recode
the Mobility Layer in Java, and the other was to add a Java Native Interface’ glue
code’ layer to the existing C code. The first option was taken after it was redised that
the size and complexity of the glue aode would far outweigh the costs of afull Java
rewrite of the layer [Corbett ‘00]. At the start of this projed much of the Java
Mobility Layer had been coded but was not fully functional and still required
extensive debuggng.

5.2.1 Previous Work on the Java Mobility L ayer

The following is a brief description of the main classes used in the implementation of
the Java Mobility Layer.

M Socket

The MSocket is the virtual socket connedion that is returned to the RMI client when
the aedeSocket() method isinvoked on the RMISocketFadory. The MSocket has an
asociated MInputStream and MOutputStream, which are used to copy data to and
from the relevant cades when data is ent or recaved by the RMI application.

MHServerin
The MHServerin threal is responsible for listening on the transport connedion to the
mobili ty gateway for any new messages, interpreting the message and then writing

any contained datato a cade from where the data can be read by the MInputStream.

M H Server Out

The MHServerOut thread constantly chedks the output cades written to by the
MOutputStream for new data and if it finds any it writesit out to the gateway using
the M GatewayConnedion.
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M GatewayConnection

M GatewayConnedion represents the a¢ual transport connedion to the gateway and
itsinput and output streams are used by the MHServerOut and MHServerin threals to
send and recave messages. The MGatewayConnedion classalso monitors the state of

the transport connedion and re-establishesiit if it bre&ks.

M GSetup

Thisthrea initialises the Mobility Layer when the first cdl to creae asocket occurs.
It sets up the wnnedion to the gateway by instantiating the M GatewayConnedion
class sets up the SocketArray classand starts the MHServerln and MHServerOut
threals. After thisit creaes adummy socket that M Socket objeds conned to in order
to be aleto get their MInputStrean and MOutputStream objeds.

SocketArray
The SocketArray classcontains an array of al MSocket objeds that have been
credged.

Semaphore

The concurrent operation of the numerous threads used in the Mobility Layer is
controlled by extensive use of locking medchanisms. Since the synchronization
medhanisms used in Java ae different to those available in C/C++ aJava model of the
semaphore used in the original C Mobility Layer was implemented so the same form
of locking could be used. The resulting Semaphore dassprovided an objed to ad as
the lock and synchronised aaquire() and release() methods to obtain and release the
lock objed.

CachedData

All datathat is placed in any of the cadesis placal in a container classcdled
CadhedData. The dasscontains the ac¢ual data dong with the length of the data and a
unique identifier for the padket. Thisidentifier is used to locae the data and remove it
from the cate when an adknowledgement of its reception by the coommunicaing

party isreceved.
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Basic Operation of the M obility Layer

The basic operation of the Mobility layer isillustrated in Figure 5.1 below. When an
RMI application requires a socket it makes a aeaeSocket() cdl to the

RMI SocketFadory which will return a predetermined type of socket. In this case it
will return areferenceto an MSocket. If thisis the first MSocket to be aeded then
the MGSetup thread will first initialise the Mobility Layer and make the mnnedion to
the gateway by creding an instance of the M GatewayConnedion class The M Socket
will conned to the dummy socket provided by MGSetup. The goplication can then
write to the MOutputStream, which places the datain the cade from where the
MHServerOut thread will write it out over the mnnedion to the gateway. Data
returned from the gateway will be placed in a cate by the MHServerin thread from
where it will be read by the MinputStream and returned to the goplication.

Application
i Remote method invacation
RMI
¢ createSocket()
M Socket
Opens a virtual input and autput
stream
Mobility Layer v
MGSetup
| p| Caches
MHServerin MHServerOut
T MGatewayConrection |
¢ To Mobility Laver onMG

Figure 5.1 Normal operation of the Mobility Layer

53



5.2.2 Completion of Java Mobility L ayer

The components described in the previous dion had already been implemented but
had not been fully tested and debugged. Continuing work on the layer in this projed
succesgully completed the implementation and tested it using RMI applications.
Much of the debuggng concerned fixing small synchronisation problems with the
various cades used in the layer and their interadiion with the input and output
threads. Other work involved the aldition of a means of properly closing sockets, an
RMISocketFadory to return the mrred type of socket depending on whether the
socket target islocd or remote and a new scheme to assgn logicd connedion
identifiers to M Sockets to replacethe incorredly functioning original.

Also developed duing the murse of the projed was a skeleton Java mobili ty
gateway that mimicked the operation of the C gateway, acceting socket connedions
from the mobil e host, responding to messages with the arred adknowledgement,
relaying data to the remote host etc. The Java gateway was an invaluable tool for
debuggng the Mohility Layer. However the Java gateway did not perform al the
tasks of the C mobility gateway; all sockets creaed on the gateway to conned to the
mobile host were ordinary Java sockets not ALICE M Sockets. Further work is
required to integrate the Java Mobility Layer with the existing C mobility gateway

and to implement handoff.

5.3 RMI Mobility Proxy Objects

With the completion of the Java Mobility Layer the sesgon layer sedion of the
required mohility support was in place Next to be implemented were the RMI objeds
that would provide the goplication layer support for mobile RMI server objeds. These
objeds include the Proxy objeds that forward RMI cdlsto the mobile server from
their position on the mobili ty gateway; the GatewayRegistry objeds that the server
uses to passthe Carrier and Proxy objeds to the gateway and which provide the
means for gateways to communicate during handoff and the Carrier objeds which
alow the GatewayRegistry to interad with Proxy objeds which implement interfaces

unknown to it.

54



5.3.1 Overview of | mplementation

The design requires having RMI objeds on the mobile host and the gateway. The
RMI server objed resides on the mobile host, which also holds the ade for the
Carrier and Proxy classsin file diredories srviced by web servers  that they can
be downloaded by other machines. The Carrier classis basicdly awrapper classfor
the Proxy that is used to passthe Proxy classto the GatewayRegistry RMI objed on
the mohili ty gateway. Every mobility gateway contains one of these GatewayRegistry
RMI objeds that implement an interface(cdled Mobili tyRegistry) that is known to
the mobile host and henceit can invoke methods on it after downloading its gub. The
remote host holds a dient objed for the serviceimplemented by the remote server.

The mobile host and ead gateway must have rmiregistries operational at all times.

5.3.2 Classes and | nterfaces

The following are brief descriptions of the dasses and interfaces used in the

implementation of the proxy scheme.

Server Interface

Thisisthe interfacethat the server on the mobile host implements and is known to
both the remote server and the dient wishing to invoke methods of that interfaceon
the remote server objed. RMI requires that interfaces used by remote servers extend
the java.rmi.Remote dassand that ead method of aremote interfacededares a
java.rmi.RemoteException [RMI Spec'99]. For the purposes of this discusson a
server interface(seeFigure 5.2 below) cdled Arith is examined that defines asingle
method to add together two arrays supdied by the dient as parameters and returns the

resulting array.

public interface Arith extends java.rmi.Remote {
int [] add(int a[], int b[]) throws RemoteException;

Figure5.2 Arith interface

55



Carrier Interface

The carier classthat is exported to the mobility gateway by the server objed
implements the Carrier interface In this discusgon the carier classis cdled
ArithCarrier. This Carrier interfaceis known to the GatewayRegistry and is used to
forward cdls to the Proxy objed, which implements interfaces unknown to the
GatewayRegistry. The interfaceonly defines two methods — getHostURL (), which
returns the server location used as a unique identifier and pasdNewAddresy) that the
GatewayRegistry uses to passthe locaion of the Proxy stub on the new gateway to
the Proxy objed on the old gateway so it can change its gub.

public interface Carrier
pubTic String getHostURL();

public void passNewAddress(String newMGAddress) ;

Figure5.3 Carrier interface

M obilityRegistry

The MohilityRegistry interfaceis aremote interface that defines the interadions that
occur between the mobile server objed and the GatewayRegistry objed on the
gateway that implements the Mobili tyRegistry interface Threemethods are defined
by the interface— register(), cal OldMG() and handoff(). The mobile server cdls
register() when it first makes contad with a mobility gateway that it wishesto use and
pases as parameters to register() the location of the carier classcode to be
downloaded by the gateway, an rmi-formatted addresspointing to the mobile servers
RMI stub in the rmiregistry on the mobile host and the name of the carier class The
mobile server cdls cdlOldMG() on the Stub of the new GatewayRegistry objed when
it conneds to a new mobility gateway after leaving another. The server passs the
new GatewayRegistry objed the aldressof the last gateway the mobile host was
conneded to and the aldressfrom which the mobile server objeds RMI stub can be

downloaded. The new GatewayRegistry objed will then contad the gateway at the
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spedfied addressand download the stub for its GatewayRegistry objed and invoke
the handoff() method on it. Passed as parameters to handoff() are the aldresswhere
the new proxy objeds RMI stub can be found (i.e. the new gateways rmiregistry) and
the String serverURL that was passed to the new GatewayRegistry objed by the
mobile server when it cdled cdlOldMG(). The old GatewayRegistry objed usesthis
String to identify the wrred Carrier objed from an array of stored Carrier objeds.
The passNewAddresgserverURL) method will then be cdled on the Carrier objed
and thiswill i nturn cdl the dhangeStub(serverURL) method on the Proxy objed.

Ead of these methods returns a Boolean value & a signal of successor failure.

pubTic interface MobilityRegistry extends java.rmi.Remote

{

boolean register(string codelLocation,
String serverImplLocation, String className)
throws java.rmi.RemoteException;

booTean calloldMG(String oldMGAddress, String serverURL)
throws java.rmi.RemoteException;

boolean handoff(string serverURL, String newMGAddress)
throws java.rmi.RemoteException;

Figure 5.4 MobilityRegistry interface

Proxy Class

The proxy class here cdled ArithimplProxy, implements the @ove interface ad also
extends the UnicastRemoteObjed class $nceit must register itself with the

rmiregistry on the gateway. The ArithimplProxy class has one field, a RemoteStub
objed that represents the RMI stub that the Proxy uses to communicae with either the
server objed on the mobile host or another Proxy on a different gateway if the mobile
host has changed gateway sinceregistering the Proxy with the gateway it is located

on. The ArithimplProxy classdefines the method getInitial Stub(..) in which the stub
from the mobil e server objed is downloaded using the URL suppied to the Proxy
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from the Carrier objed and the method changeStub(..) which discards the old stub and
replaces it with the new one. changeStub(..) also replaces the stub registered in the
locd gateways rmiregistry with the Stub for the ArithlmplProxy on the new gateway.

ArithimplProxy

- remStub:; RemoteStub

+ ArithimplProxy (String);
+ add(int[], int[]): int []

+ getInitial Stub(String);

+ changeStub(String);

Figure 5.5 Classdiagram for ArithlmplProxy.

GatewayRegistry

The GatewayRegistry objed, resident on every mohility gateway, implementsthe
Mobili tyRegistry interface GatewayRegistry must also extend the
UnicastRemoteObjed classto alow remote method invocaions to be made on it.
GatewayRegistry maintains an array of all Carrier objeds registered at that gateway.
When a gateway invokes the handoff() method on the previous GatewayRegistry it
supgies a String representation of the adual location of the servers stubin the
rmiregistry on the mobile host (e.g. rmi://foo/ArithServer if the mobile host is cdled
foo and the mobile server objed has been bound in the rmiregistry with the name
‘ArithServer’). Sincethis addresscan only refer to a single server objed it can be
used to uniquely identify the arresponding Carrier objed for the server. The
GatewayRegistry usesit to locae the required Carrier objea from those stored in the

array.
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GatewayRegistry

- host: String
- carierArray[]: Carrier

- counter: int

+ GatewayRegistry ();

+ register (String, String, String): boolean
+ cdlOldMG (String, String): boolean

+ handoff (String, String): boolean

Figure 5.6 GatewayRegistry class diagram

Carrier Class

The dassthat implements the Carrier interfacein this example is cdled ArithCarrier.
It also implements the Runnable interfaceso that when the dassis downloaded by the
GatewayRegistry objea from the mobile host and instantiated, the run () method can
be cdled and the work of creding the ArithimplProxy objed and registering it with
the loca rmiregistry will be done inside the run () method. Also performed inside the
run () method is the downloading of the Stub classfor the ArithlmplProxy from the
mobile host. This Stub isrequired for the registration of the ArithlmplProxy objed
and is also required for handing to clients when they contad the rmiregistry on the
gateway. The server interface(Arithin this case) is aso required and so is
downloaded as well.

ArithCarrier

- host: String
- proxy: ArithimplProxy

+ ArithCarrier ();

+run ();

+ getHostURL (): String

+ pasdNewAddress(String);

Figure5.7 ArithCarrier classdiagram
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5.3.3 Handoff

The interadion diagram in Figure 5.8 below ill ustrates the ordering of the method

cdlsthat are made when the mobile server initiates the handoff procedure by

registering with the new gateway and cdling cdlOldMG() on its GatewayRegistry

objed. In the diagram Arithimpl is the server objed on the mobile host, GR2 isthe

GatewayRegistry objed on the new gateway, GR1 is the crresponding objed on the

old gateway, ArithCarrier isthe relevant carier objea on the old gateway, and

ArithimplProxy is the relevant proxy objed on the old gateway.

Arithimpl :

UnicastRemoteObject

GR2

GR2 .

3 atemayReqgistry 3 atewayRegistry

ArithC arrier :

Carrier

ArithlmplP roxy :
UnicastRemoteDbject

register()

calldldm G ()

|

handaff)

passMewlddress()

L

changeStub()

|
|
|
T
|
|
|

Figure 5.8 Methods and objectsinvoked during handoff

As handoff has not been implemented in the Mobility Layer yet the
cdlOldMG() method invocation hasto be atificially triggered. When handoff is
implemented at the lower levels then an upcdl to the goplicaion level should make

thiscdl instead.
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Chapter 6

Evaluation

This chapter briefly examines the performance of the Java Mobility Layer and RMI
Proxy scheme implemented in this projed and compares this to the performance of
normal RMI with no mobili ty support. The testsinvolved provided only provisional
and rough indications of the performance of the system as the lad of fully functional,

properly integrated mohility gateway software limited the validity of the results.

6.1 Code Size

Sincethe anount of memory on amobile deviceislimited it is desirable that the Java
Mobility classes take up aslittle space a possble. Figure 6.1 below details the size of
the aode for ead group of classes used in amobile RMI server. The ade sizegiven
for the second and third rows in the table refer to the size of the dassfiles for a server
implementing the Arith interfacespedfied in the previous chapter and its associated

carier and proxy classes.

Software Component Size of Code (kB)
Java Mobility Layer Classes 60
Java RMI Server & Stub/Skeleton 11
Proxy, Carrier & Stub/Skeleton 16
Total 87 kB

Figure 6.1 Java Code Size for Required Classes on M obile Host

Thetotal of 87 kB for all classes required to ad as a mobile RMI server is quite small
compared to the memory available on most PDAs avail able today. For example, the
Palm Pilot from Palm Inc. has 8 MB of memory while the basic model of Microsofts
H/PC comes with 16 MB.
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6.2 I nvocation Times

The purpose of these tests was to dbtain approximate results for the performance of
the Java Mobility Layer and RMI Proxy scheme. In all of the tests the mobile host
used was laptop using the Windows 98 operating system and equipped with a
WaveL AN wirelessLAN card. The mobility gateway was a desktop PC using Solaris
OS with awired LAN conredion.

Mobile Server Registration Time

The purpose of this test was to determine the average time taken for an RMI server
running on a mobile host to register its Proxy objed with a GatewayRegistry objed
on amohility gateway. Essentially what happens during the registration processis that
the server invokes a method on the GatewayRegistry objed which then downloads the
carier and proxy classes from the mobile host, instantiates them and registers the
proxy objed with the rmiregistry on the gateway.

The gateway software used was the skeleton Java gateway implementation
that allowed the mobile host to conned to the gateway using Mobility Layer sockets.
Any sockets creaed on the gateway to conned to the mobile host (such as when the
classfiles for the carier and proxy classes are downloaded by the GatewayRegistry
objed) were ordinary sockets that did not have Mohility Layer support. This was due
to the limited capabili ties of the skeleton gateway. The GatewayRegistry downloaded
atotal of 15KB of classfiles during the test, which was caried out atotal of 10
times. The average time taken for the entire registration processwas found to be 15

sewnds.

Remote M ethod Invocation Using Mobility Layer

In this test the performance of the Java Mobility Layer is examined by having a dient
on the mobile host invoke amethod on an RMI server objed resident on a remote
host. RMI isrun on top of the ML conneding to the same skeleton gateway as before.
The server and gateway were located on the same madhine. The method was invoked
100times and the arerage time for 1 method invocation was caculated. The test was
conducted for different message sizes (i.e. the parameters passed in the method
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invocation were thanged to give the desired message size). The results are shown in

Figure 6.2 below along with the crresponding times for invocaions made without

using the ML.
Message Size Invocaion Time with Invocaion Time
(bytes) ML (milli secs) without ML (milli secs)
8 1910 17
256 1930 21
384 1940 22
448 4730 42
512 4770 49
768 4810 49
1024 7600 51
1280 7730 52
1536 7820 56
1792 7850 60

Figure 6.2 Average method invocation times

Ascan be seen from the table aove the data cading, multiplexing and other
functions carried out by the Mobility Layer introduces much overhead to the process

of invoking a remote method
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Chapter 7

Conclusions

This chapter provides a brief description of the work completed during the course of
the projed. Remaining work on the implementation of the designislisted as well as

possble future mntinuations of work started in this projed.
7.1 Work Completed

The first mgjor sedion of work completed was the completion of the implementation
of the Java Mohility Layer. Thisrequired an in-depth knowledge of the ALICE
architedure and the corred operation of the different software cmponents of the
Mohbility Layer. A good understanding of the issues and techniques involved in
distributed socket programming and multithreading in Java was readed as well as an
appredation for the issues involved in designing dstributed systems cagpable of
supporting objea mohili ty.

In the second major part of the projed a system of proxy objeds to enable the
mobility of RMI server objeds was designed and implemented. This g/stem was then
tested and evaluated using the Java Mobile Layer and a basic Java implementation of
the original C/C++ mohility gateway. The end result of the implementation showed
that RMI server objeds on remote hosts could change mobili ty gateway and still have
methods invoked by remote hosts by relaying the invocaion through a proxy objed
on the mobility gateway.

Although the design worked, the significant diff erences between the
approadhes taken to remote objed locating and naming by RMI and CORBA meant
that major changes had to be made to the ALICE architedure to alow the same
mobility for RMI objeds. The work previously done by the S/I1 OP layer was insteal
performed by RMI objeds. The work provided a good introduction to the intricades
of programming with a distributed objea technology like RMI. Sample RMI
applicaions were @nstructed for testing with the Mobility Layer and the proxy
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system. The benefits and disadvantages of using RMI as opposed to CORBA were
also understood.

7.2 Remaining Work

The work remaining on this projed can be summarised as follows —

* The Java Mobile Layer must be integrated with the C/C++ ALICE mobili ty
gateway code. It is expeded that thiswill not involve significant code

changes.

* Anautomatic code generator, perhaps written as a Perl script, to producethe
Proxy and Carrier classes given the spedfication of the server interface ad
the desired names of the two classs. This $ould allow the programmer to
producethese dasses by a simple command such as the rmic command that

produces the RMI stub and skeleton classes.

* The modeto register the Proxy objed with the mobility gateway should be
hidden behind the Naming.bind(...) method in the Java source @de on the
mobile host to make producing mobile RMI server objeds easier for the

programmer.

* A race ondition occurs during the handoff procedure when the handoff()
method isinvoked on the GatewayRegistry objed on the old gateway and a
client conneded to that gateway tries to invoke amethod on the Proxy objed.
The Proxy should be locked as oon as the handoff() cadl isrecaved so that
the Stub can be hanged and the cdl can be redireded to the new Proxy objed

on the new mobility gateway.

» Handoff remains to be implemented both in the Java Mobility Layer and in the
C/C++ ALICE Mohility Layer.
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7.3 Future Work

An interesting posshility for future work in this areais the integration of the RMI
mobile proxy model with the Jini distributed computing infrastructure. Initial work on
integrating the two carried out during this projed showed that they worked well
together and no major changes have to be made to the proxy system architedure. The
biggest change is that the rmiregistry is replaced by a Jini lookup service and the
discovery and lookup processes are introduced. The Jini lookup service does provide
amore powerful means for locaing RMI objeds than that currently provided in the
proxy system by the rmiregistry. Further investigation of how Jini’ s fadlities for
remote events, leasing of services and distributed transadions affed the system would
also nedl to be caried out.
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