

Mobility and Java RMI

Thomas Wall

A dissertation submitted to the University of Dublin,
in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science

September 2000

 II

Declaration

I declare that the work described in this dissertation is, except
where otherwise stated, entirely my own work and has not been
submitted as an exercise for a degree at this or any other
university.

Thomas Wall
 14th September 2000

Permission to lend and/or copy

I agree that Trinity College Library may lend or copy this
dissertation upon request.

Thomas Wall
14th September 2000

 II I

Abstract

Recent advances in computing device and wireless communication technologies are

enabling the widespread use of mobile computing devices. Mobile computing

presents many problems not encountered in a static computing environment. The

limited storage and processing power on the mobile device, the limited bandwidth

available on wireless networks and the difficulties of locating a mobile device mean

that mobile environments are more difficult to design distributed systems for than

fixed networks.

 The Common Object Request Broker Architecture (CORBA) is a standard for

building distributed object-oriented applications. However the standard was designed

primarily for static environments and therefore does not address the problems

encountered by objects residing on mobile devices. The Architecture for Location

Independent CORBA Environments (ALICE) adds support for such mobile objects to

the CORBA standard. This project examines how the mobili ty support provided by

ALICE can be applied to distributed applications constructed using Java RMI.

Sections of the ALICE architecture that were independent of CORBA were reused in

the design.

This dissertation outlines the design of the RMI specific components of the

architecture to replace the CORBA specific components, and the completion of a Java

implementation of the ALICE component that provides session layer mobili ty

support. The completed set of components provides support for mobile RMI client

and server objects that can interact transparently with other RMI objects. All of the

implementation was done in Java using Java sockets and RMI to communicate across

the network.

 IV

Acknowledgements

I would like to thank my supervisors Vinny Cahill and Mads Haahr for their endless

patience and guidance throughout the course of this project. I would also like to thank

all my friends, family and classmates for their friendship, support and help during the

year.

 V

� � ��������	�

��������� �
����� � ������� � ! �#"%$ &(')�+*-, ���� . !�/
0%13242 *�5 27698:!�; <��� < = >@?(> 0%�A8 B��� B C D-��E)�-F�' G �(>9� H���IH / ?J��DK?��+�KL / M N ��O@��,#* P��� P C D-��E)�-F�' 2 F-Q#����?��-"%�-*�')O P���IR 0 ��>S5#"J>S$ R
T U ��V%��W X Y Z [
W \ ���]
.���� � ������� � ^ �K' L_��D�`-�+*-, a.�� . � ������� � ^ �K' L_��D�`-�+*-, 2 D-F�Q�� ')�-F�')&�D��-O �cb.�� .d�� 1 >@e-��& �cb
.�� .d�. � ������� � 8fC �c.
.�� .d�< � ��*�>SD-F�Q �c.
.�� .d�B 0 ��?��-D �cB
.�� < N ��O@F���*�*-��FK')�-5 / $ ��DK>@')�+��* �cP.�� <d�� ! ��5�> �cg
.�� <d�. N ��O@F���*�*-��FK')�-5 2ihkj �cg
.�� <d�< N ��O@F���*�*-��FK')�-5 ^lhJj .#b
.�� <d�B 6 >S$ &�' > .#b
.�� <d�H h �+F-&#O .i�
.�� B = �+*-� � �#5���� .i�
m n Vo��prqd�s�t
l��	 u�v
<���� = >@?(> 0%�A8 .�H<����(�� 8 *K')D-�#5#&�F�')���#* w � 0%�x8 .#P
<����(�. j �-"J>9*K')�+F-O / M 0%�x8 .�R
<����(�< 0%�A8�2 D�F-Q#� ')��FK')&#D-� .#a
<����(�B 1 >SO@�+F 0%�x8J/ $ �-D�>@')�+��* <#b
<����(�H j �-D�� >9� ��yz>@')�+��* 2 *-5 N e-*K>S"%�+F ! ��5#� 6 ��>S5��+*-, <i�
<����(�P G >SD-��>S,�� ! �#� � �-F�')���#* <#.
<����(�R / �KE)�-F�' 2 FK')� ?(>@')�+��* <#<
<����(�a 0%�A8kC D��(')�#F-�#� <#<

 VI

<����(�g ! ��"%${>9D-�+O@��* | � ')Q !l/}0%1�2 <#B
<�� . 27698:!�; <#P<�� .d�� 8 *K')D-�#5#&�F�')���#* w � 2i698f!l; <#P
<�� .d�. 27698:!�;~� ������� � ' e 6 >�e���D <#a
<�� .d�< 8f8:/
C4��jl��8:8f/
Cx6 >�e���D-O <#g
<�� .d�B � >S*-5#��MKM B#b

� � W%��� q%� ���
B���� / ?J��DK?��+�KL Bi�B�� . ! ��"%${>9D-�+O@��* | � ')Q C D��K?����#&#O 8 "%$ � �-"%��*K' >@')�+�#* Bi�B�� < � ������� � � ��O�' 2 O ! � �+�-*�' B#<B�� B � ������� � � ��O�' 2 O j �-DK?���D B#BB��IH � >S*-5#��MKM B�RB�� P j �-"J>9*K')�+F-O / M C D��(��e 2 *-5 ! >SD�D-�+�-D ! �{>SO@O@��O B#a
� � �A��� W � W%����V%��� ��� �o�
H#��� 8 "%$ � �-"%�-*�' >@')�+��* G �(>9� O H�bH#� . = >@? > � ������� � ' e 6 >@e-�-D H��H#� .d�� C D-��?J�+�#&�O | �#D-` / * w Q�� = >@?(> �A6 H�B
H#� .d�. ! ��"%$ � ��')���#* / M = >@?(> �x6 H�B
H#� < 0%�A8k� �#�-�+� � ' e C D��(��e / �KE)�-F�')O H�BH#� <d�� / ?J��DK?��+�KL / M 8 "%$ � ��"%�-*K' >�')���#* H#H
H#� <d�. ! �{>SO@O@��O 2 *�5 8 *�')�-D�M�>SF��-O H#H
H#� <d�< � >S*-5#��MKM P#b

� � � V �
�V%�����t� � �
P���� ! ��5#� j �+y�� Pi�P�� . 8 *K?���F�>@')�+��* w �+"%�-O P#.
� � �t��� �
���������� � �
R#��� | �#D-` ! �#"%$ � �K')�-5 P#BR#� . 0 ��"J>S��*���*�, | �#D-` P�HR#� < h &�')&#D-� | �#D-` P#P

n ��� � ���}qd�oV � [}� � �

 VII

.���� 0 >S*-,#� / M 2 5�>S${' >@')�+�#* j ')DK>@')��,��+�-O �cb.�� . 0 �(?���D N �+O�')D-�+�-&�')�-5 / ��E)�-FK' � ��5#�-� ��H<���� 0%�x8�2 D-F�Q�� ')�-F�')&�D�� .#a<�� . 0%�x8kN ��O�')D-�+�-&�')�-5 2 $ $ � ��F�>@')�+��* <#b<�� < j ')D-&#FK')&#D-� / M /
0%1�8 *�')�-D-Mz>SF��-O <�H<�� B 2i698f!l;�; *K?��+D-�#*-"%��*K' <�R<��IH 2i698f!l;�j ��Mz' L7>SD�� 2 D�F-Q#� ')��FK')&#D-� <#aB���� � �#�-�+� � 0%�x8J! � �+�-*�' ! �#*-*-��FK')O w � 0 ��"%�(')� 0%�A8kj �-D�?J��D B#<B�� . C D���F��-5#&�D�� h �#D C >9O@O@� *-, C D-���-e / �KE)��FK')O B�HH#��� ^ �#D-"J>9� / $ �-D�>@')���#* / M w Q�� � ������� � ' e 6 >�e���D H�<H#� . 2 D�� ')Q 8 *K')��D-Mz>SF-� H#HH#� < ! >9D-D-�+�-D 8 *K')��D-Mz>SF-� H�PH#� B � �#�-�+� � ' e 0 �-,#�+O�')DKe 8 *K')��D-Mz>SF-� H#RH#�IH ! �{>9O@O N � >S,#DK>S" h �#D 2 D�� ')Q 8 "%$ � C D-���-e H�aH#� P G >@')��L7>@e 0 �-,#��O�')DKe ! �{>SO@O N � >9,�D�>S" H�gH#�IR 2 D�� ')Q ! >9D-D-�+�-D ! �{>SO�O N � >S,�D�>S" H�gH#� a � ��')Q��#5�O 2 *-5 / �KE)��FK')O 8 *K?���`��-5 N &#D-�+*-, � >S*-5#�#M�M P#bP���� = >@?(> ! �#5#� j ��yK� Pi�P�� . 2 ?��-D�>S,#� � ��')Q��#5 8 *K?���F�>@')�+��* w �+"%�-O P#<

 VII I

 1

Chapter 1

Introduction

The astonishing rise of cellular phone ownership worldwide and the corresponding

advances in mobile voice communication technology has been mirrored by the advent

of wireless mobile computing devices and the integration of wireless networks with

the Internet. However, device mobili ty introduces problems that are not encountered

in a static computing environment and for this reason many distributed applications

designed primarily for fixed networks are not as effective or indeed cannot function

normally at all when used in a mobile setting. The opportunity therefore exists to

provide mobili ty support for many distributed applications to enable them to be

applied to a mobile environment. With this opportunity comes the challenge of

designing for an environment that is much more complex and demanding than that

provided by conventional wired networks. This thesis describes how a distributed

object technology, Sun Microsystem’s Java Remote Method Invocation (RMI) [RMI

Spec ‘00], can be applied to a mobile environment based on the Architecture for

Location Independent CORBA Environments (ALICE) [Haahr ‘99] developed by

Trinity’s Distributed Systems Group.

 This chapter provides an introduction to the area of mobile computing,

followed by an overview of the main components of the design, ALICE and Java

RMI. The main goals and achievements of the project are outlined as well as a brief

guide to the overall structure and format of the remainder of this dissertation.

1.1 Mobile Computing

Mobile computing devices are typically characterised by a number of factors. They

are constrained by portabili ty requirements to be small in terms of size and weight;

they are capable of connecting to a data network using some form of wireless

communication and they have limited computing resources compared to traditional

non-mobile computing devices such as desktop Personal Computers (PC’s). Typical

examples of mobile computing devices are laptops, Personal Digital Assistants

 2

(PDA’s) equipped with some form of infra-red or GSM transceiver, and Wireless

Application Protocol (WAP) enabled mobile phones.

The birth of mobile computing has brought with it many advantages. The

abili ty to access and share information such as personal files or web pages is a major

benefit in the modern work environment. There is a growing trend amongst

organisations to offer their employees greater freedom in terms of when and where

they do their work. No longer are people required to be sitting at their desks in their

offices in order to accomplish anything worthwhile. With a full mobile computing

infrastructure, work could be done when and where the worker wishes. This flexibili ty

is being enabled by the emergence of mobile computing as a robust and viable means

of doing work. Many organisations are now being transformed by the new business

opportunities presented by the new technology and many more will be created. It is

not diff icult to see that mobile computing will change not only the way we do

business but ultimately, the way we live.

The continuing downward trend in the size and cost of microprocessors and

memory chips is enabling more powerful mobile devices but the fact remains that

they are still and perhaps always will be at a significant disadvantage when it comes

to display and input capabili ties. The emergence of WAP technology, which has

brought Internet access to digital mobile phone users, is naturally hampered by the

limitations on interactions due to the small size of the user interfaces, which were

primarily designed for inputting short strings of digits, and the limited bandwidth

offered by the network itself.

 Ideally, the roaming user of a mobile computing device would be capable of

performing exactly the same computing operations as a user working at a desktop PC

while at the same time availi ng of the benefits of not being tethered to a particular

location. While a cursory glance at the device and communications technology

currently available seems to suggest that this is quite feasible, the fact remains that

much of the software and hardware infrastructure that is used in a fixed network is

completely unsuited to supporting mobile devices.

For example, the transport protocol used to route data packets around the

Internet, IP, cannot direct network traffic to take account of the change in location of

a mobile device and needs significant alterations in order to be able to cope with this

(see Section 2.2). In fact, the majority of distributed application technologies were

designed for fully wired networks with completely stationary hosts and make no

 3

attempt to address mobili ty. Wireless communication technologies themselves are

prone to interference, range and bandwidth limitations and data has to be reformatted

in order to optimise use of the link e.g. Wireless Markup Language (WML) is

basically the HyperText Markup Language (HTML) reformatted for wireless

transmission to mobile phones.

For these reasons, a mobile user is still far behind the wired network user in

terms of computing capabili ties and considerable work remains to be done to bridge

the gap. The ALICE project aims to narrow this gap by providing mobili ty support for

CORBA objects. Such support is not addressed by current implementations of

CORBA, which were designed for static, fixed-network environments.

1.2 CORBA and ALICE

CORBA (Common Object Request Broker Architecture) is a distributed object

technology standard for creating client – server applications. CORBA is object

oriented so that a client can call a method on a remote server object with much the

same semantics as a call to a method on a local object. The actual implementation of

the server is hidden from the client and all interactions between the two are specified

by an interface defined in a language neutral format. An entity called an Object

Request Broker (ORB) acts as a middleman between the two communicating parties

and provides services such as forwarding requests and responses between objects and

providing clients with references to remote servers. CORBA relies on a specified

protocol known as GIOP (General Inter-ORB Protocol) as a means of transferring

method invocation requests and responses between clients and servers. IIOP (Internet

Inter-ORB Protocol) is a mapping of the GIOP specification onto TCP/IP.

 The CORBA standard does not cater well for mobile client or server objects.

CORBA assumes that servers do not change their location and that the transport

connections that are used by IIOP do not break frequently. Both of these assumptions

do not hold true in a mobile computing environment. The ALICE [Haahr ‘99]

architecture was designed to address the limitations in OMG’s CORBA standard that

constrains mobile CORBA objects from operating as effectively as non-mobile

objects. In the environment envisaged in ALICE, mobile devices hosting CORBA

objects (mobile hosts) connect via wireless links to mobili ty gateways, which have

 4

wired connections to a fixed network. These mobili ty gateways act as bridges and

perform the tasks of forwarding CORBA requests to the mobile host from remote

hosts and returning replies and similarly forwarding requests from CORBA clients on

the mobile host to remote servers. Due to the range limitations of the wireless links,

mobile hosts can change their point of connection to the fixed network by changing

which gateway they are connected to.

 To address the problems posed by mobili ty, ALICE introduces extensive

session layer mobili ty support and some support at the application layer. ALICE uses

a Mobili ty Layer that sits on top of the TCP/IP layer and monitors the transport

connection between the mobile host and the gateway. If the connection is lost the

Mobili ty Layer on the mobile host hides the broken connection from the higher layers

and transparently reconnects to the gateway. The Mobile Layer also performs other

functions such as multiplexing all socket connections over a single transport

connection to make more efficient use of the limited bandwidth, caching of all data

sent pending acknowledgement and providing mobili ty information to higher layers.

 ALICE also uses the Swizzling IIOP Layer (S/IIOP) to perform address

translation and request forwarding on IIOP requests at the mobili ty gateway. The

S/IIOP layer on the mobile host alters the object references used by clients to locate

the server so that the clients will connect to the current gateway instead. When the

gateway receives an IIOP message from a client it checks the object reference and

redirects the message to the correct server object on the mobile host. The S/IIOP layer

also allows clients to be redirected to the new location of the mobile host after it has

changed mobili ty gateway.

 ALICE therefore brings mobility support to CORBA objects while at the same

time keeping the task of programming mobili ty capable applications as transparent as

possible. In addition mobile CORBA objects using ALICE are fully capable of

interacting with existing ORB implementations.

1.3 Java RMI

The Java Remote Method Invocation (RMI) [RMI Spec ‘00] technology is, like

CORBA, designed to allow programmers to write distributed object-oriented

applications. Whereas CORBA is a language independent specification with many

 5

varying implementations from different vendors, RMI is a 100% Java technology and

any interaction with non-Java code must take place using the Java Native Interface

(JNI). RMI integrates a distributed object model with the local Java object model in a

natural way with a few exceptions to the semantics to make the difference between

remote and local object method invocation obvious.

RMI makes extensive use of many of the capabili ties that make Java an

attractive choice of programming language in the first place. For example, with an

entirely Java based system, Java objects and classes can be moved from machine to

machine to distribute where the actual work is performed. RMI allows for the transfer

of entire Java objects not just simple data types between virtual machines as

parameters or results of remote method invocations. Programming solely in one

language also greatly simplifies the task of the programmer. RMI also provides

distributed garbage collection and object activation mechanisms.

 RMI provides a simple naming service, the rmiregistry, which allows a client

to obtain a server reference by specifying a URL. RMI clients use proxies called

stubs, downloaded from the server host via a web server, to communicate with the

remote server object. This stub is responsible for the marshalli ng of data from the

client into a format suitable for on-the-wire transmission. At the server side there is a

corresponding skeleton, which unmarshalls parameters passed to it from the client and

marshals data returned from the server. These stubs/skeletons effectively provide an

interface between the application and the rest of the RMI system.

1.4 Project Goal

The aim of this project was to design and build a system to allow RMI server and

client objects to operate on mobile hosts and to interact with normal RMI objects

without them being aware of the others mobili ty. The system should reuse as much of

the CORBA independent parts of the original ALICE architecture as possible. The

design should make use of the protocol independent ALICE Mobility Layer to

provide mobili ty support at a low level and then some means of address translation

and request forwarding such as that done in the ALICE S/IIOP layer must be found.

The task of programming such mobile capable applications should be made as easy

and transparent to the programmer as possible.

 6

 The project can be divided into two sections. The first part was concerned with

completing the implementation of a Java version of the original Mobili ty Layer. The

second section dealt with RMI specific mobili ty support, effectively replacing the

S/IIOP layer with a means of providing the same functionality to RMI applications.

1.5 Overview of Design

Initially it was hoped to be able to mimic the operation of the S/IIOP layer with some

form of manipulation of RMI object references. After much research and testing it

was decided that although this worked well for IIOP and CORBA objects, it was not

an appropriate approach for RMI. Instead it was decided to perform the tasks of the

S/IIOP at the application layer using a form of object delegation. Effectively all

mobile server objects provide their current mobili ty gateway with code required to

perform the task of operating as a proxy for the mobile server. Remote hosts can

contact the gateway and communicate with the proxy, which will relay the client

method invocations back to the mobile server. The handoff performed in part by the

S/IIOP layer in the CORBA ALICE model is replaced by an application level handoff

scheme in the RMI implementation.

 The design required the construction of RMI objects to perform the role of

proxy, objects to allow code to be exported to the gateways and for allowing

communication between gateways when handoff of the mobile host occurs. The

design and construction of this system required much experience to be gained in using

RMI, especially its mobile code facili ty, methods of locating objects and parameter

passing routines.

1.6 Project Achievements

By the conclusion of this project most of the major aims outlined in the project goals

had been achieved. The Java Mobile Layer implementation was completed and

extensively tested using RMI. The proxy scheme to allow for mobile RMI servers was

designed and constructed and successfully tested on top of the Mobile Layer. Sections

of the design concerned with making the system more transparent to a programmer

 7

writing Mobile RMI applications, such as an automatic proxy code generator, remain

to be implemented.

1.7 Roadmap

The following is a brief introduction to the material covered in the rest of the chapters

of this dissertation:

In Chapter 2 (State Of The Art) various projects dealing with aspects of

mobile computing and other topics of relevance to this project are examined. In

Chapter 3 (Background) a more detailed discussion of the ALICE model and the Java

RMI distributed object model is presented. Chapter 4 (Design) outlines the design for

the proxy object scheme and explains how handoff and remote reference passing are

handled.

Chapter 5 (Implementation) explains how the objects specified in the design

were constructed along with various other implementation specific details. It also

details the continuation of the implementation of the Java Mobile Layer. Chapter 6

(Evaluation) provides a brief examination of the performance of the design in

comparison with non-mobile RMI and an analysis of the size of the code used in the

design. Finally in Chapter 7 (Conclusions) the conclusions arrived at by the

completion of the project are discussed.

 8

Chapter 2

State Of The Art

This chapter provides an introduction to recent mobile computing projects and other

topics of relevance to this project. An introduction to mobile networking and the

broad range of approaches that can be used to build mobile systems and applications

is given first. Following this a number of current mobile computing designs are

discussed varying from network protocols that take account of device mobili ty

(Mobile IP and Monarch), to client –server distributed object systems for developing

mobili ty capable applications (Rover), to systems for supporting data sharing amongst

mobile users (Bayou). Next a number of projects addressing a key issue in mobile

computing, disconnected operation, are introduced. Ideally, mobile devices that have

become disconnected from the network would be able to provide the user with the

same computing capabili ties as a fully connected device. In reality this is seldom

possible but the projects discussed here look at ways to allow a user to continue

working without a permanent connection to the network. Finally the Jini model is

examined. Jini [Venners ‘00] provides a runtime infrastructure that allows service

providers to offer their services to clients and for clients to locate and use these

services without prior knowledge of the services existence or location.

2.1 Mobile Networking

As technological advances continue apace, the capabili ty and availabili ty of mobile

computing is growing and is enabling a new shift away from the traditional desktop

personal computer (PC) to a more portable, flexible and ultimately more useful

computing resource. The combination of portable computing with wireless

communications is changing the way people think about computing and indeed about

how they work. It is now being realized that information processing does not have to

be limited to the time spent in front of a PC in the office but can be done at home, at

any office or even in transit. In order to enable this ‘nomadicity’ the infrastructure

must be put in place to support mobile computing devices and mobile information

 9

access. The abili ty to automatically adjust all aspects of the user’s computing,

communication and storage functionality in a transparent and integrated fashion is the

essence of a nomadic environment [Kleinrock ‘95]. For example it is desirable for a

mobile device with several communication mechanisms to dynamically and

transparently choose the best one to use depending on available bandwidth, error

rates, cost etc.

Mobile computing suffers from constraints that are not experienced in a fixed

desktop computing environment. These constraints, which are intrinsic to mobile

computing, are gradually being alleviated as technology advances but the fact remains

that mobile devices will never have the same performance and resource capabili ties as

fixed devices. Due to the need to conserve weight, size and power, mobile devices are

resource poor compared to static devices hence characteristics such as processor

speed, main memory capacity, screen and disk size are limited. Unlike fixed network

connections in general, mobile devices’ network connections may be variable in terms

of availabili ty, reliabili ty, performance and capacity. Wireless technologies in

particular suffer from interference and coverage restrictions. In addition, despite

advances in battery technology, the limited power sources used by mobile devices

must be taken into account when devising new systems.

There are several important factors that have to be addressed when designing

new mobile computing systems [Duchamp ‘92]. These include the nature of the

mobile device including its computing resources, size, input and display types; the

nature and type of available network connections including reliabili ty, capacity,

quality etc. and the movement and data access patterns of the people the systems are

being designed for.

One of the most vital questions is whether or not applications should be made

aware of their environment or whether they should be insulated from any

environmental details. The latter case implies that ordinary desktop applications

should be ‘mobile-transparent’ , that is, they should be useable in a mobile

environment without modification and that the systems underlying the application

(such as distributed object middleware) should take care of all adaptation required to

account for changes in location, connection bandwidth etc. In the former case we

assume that there is no system support and that all mobili ty adaptation is undertaken

by the applications themselves. Such applications are termed ‘mobile-aware’ . In

between these two poles is what is known as application aware adaptation [Satya ‘96],

 10

which is characterised by collaboration between the system and the application (see

Figure 2.1 below).

Systems can embody adaptation at many levels. Coda [Satya ‘96], which will

be discussed in more detail later, implements application-transparent adaptation in the

context of a distributed file system. Since the Posix interface is preserved, legacy

applications can run on Coda without the need for any modifications. In contrast, the

Rover toolkit, which will also be examined, supports application-aware adaptation

that is better suited to multimedia data such as speech and video. The resolution of

such data can be modified to make the best use of the limited available bandwidth on

a wireless connection while still providing information to the mobile user e.g. a colour

video signal might be downgraded to black and white if the bandwidth is reduced due

to a coverage problem induced by the movement of the user.

2.2 Mobile Networking Architectures

2.2.1 Bayou

The Xerox PARC Bayou project [Demers ‘94] is a system for supporting data sharing

among mobile users. The system was designed from the outset to run in a mobile

computing environment where the availabili ty of connections between machines and

the quality of those connections can never be taken for granted. The designers

Mobile-aware Applications
(no system support)

Mobile-transparent Applications
(no changes to applications)

Application-aware
(collaboration between system and application)

Fig 2.1 Range of adaptation strategies

 11

identified the main characteristic of such environments as being that machines may

become disconnected from other machines with which they wish to share data,

perhaps involuntarily, for indeterminable periods of time.

The Bayou architecture is based on a logical division between servers and

clients. However, unlike Coda where servers and clients are physically distinct

devices, a Bayou server is any machine that can hold a copy of a database (which in

Bayou denotes any collection of data items). Any machine holding such a database

can service read and write requests from any client machines that are able to

communicate with it. A Bayou server can act as a server for some machines and can

also be a client for other servers. The architecture chosen for the system reflects the

fact that many mobile devices such as PDA’s have insufficient storage capacity to

hold all the data that their users wish to access.

Bayou uses a read-any/write-any replication scheme, which means that any

user can read or write any data object in any copy of a database. The system attempts

to reach consistency by means of a ‘ reconcili ation’ process. Updates are propagated to

another database copy as soon as a communication link becomes available.

Periodically a server will select another server with which to exchange writes so that

their two databases reach consistency. This results in a weakly consistent replication

scheme that maximises data availabili ty for the user but cannot guarantee correctness

[Terry ‘94].

If conflicts arise when updating a data object that has been concurrently

written to by two different clients (write-write conflict) or which has been updated

based on out-of-date data (stale update), they will be detected in an application

specific manner. Bayou also provides a mechanism for application-specific resolution

of conflicts by including a procedure called a ‘mergeproc’ with all write operations.

This mergeproc is called in the event of a write-write or stale update conflict arising

and will then read the data copy resident on the server where the conflict occurred and

decide how the conflict should be resolved. Mergeprocs provide an application

specific, flexible means of conflict resolution and may be customised to suit the

semantics of the application and the intended effect of the write operation.

 12

2.2.2 Mobile IP

Conventional hierarchical Internet protocols such as IP [Tannenbaum ‘96] do not

cater for host mobili ty. Hierarchical routing, in which the address is split into a

network number and a host number, only allows packets sent to a mobile host to be

sent to its home network, even if the mobile host is not currently located there. To

cater for mobile hosts new protocols were designed which allowed packets to reach

these hosts regardless of their location.

 Mobile IP from the IETF is one such protocol [Perkins ‘94]. Using Mobile IP

each mobile host has a fixed home agent which receives all i ts packets while it is not

connected to the home network and forwards them on to the mobile hosts current

location, given by its care-of-address. This care of address is the address of a foreign

agent on a different network that has agreed to provide such a service to the mobile

host. The foreign agent then relays registration requests and replies between the home

agent and the mobile host and decapsulates traffic from the home agent and forwards

it on to the mobile node. A procedure called agent discovery is used to find a willi ng

foreign agent. This can be achieved either by foreign agents advertising their presence

or by a mobile host connecting directly to a known foreign agent. When one has been

discovered the address of the agent must be made known to the home agent so that

traffic can be redirected to the new location. The Mobile IP standard also addresses

the issues of authentication of mobile host registrations with the home agent and IP

packet encapsulation methods.

2.2.3 Monarch

The Monarch project at CMU has also dealt with routing protocols for mobile hosts,

specifically with optimising the IETF Mobile IP protocol in order to reduce latency

and congestion [Johnson ‘96]. In the original Mobile IP design, all packets destined

for the mobile node had to be routed through the home network and then tunnelled to

the foreign agent by the host home agent. This causes a lot of overhead on the home

network and adds latency to the delivery process that could be avoided.

 To counter this the Monarch project adds a number of extensions called

‘Route Optimisation’ to Mobile IP. These extensions provide a means for the sender

of a packet to learn the mobile hosts’ foreign address so that it may send packets

 13

directly to that location, bypassing the home network. The first packet is sent via the

home agent as per usual, but the home agent replies to the sender with the mobile

hosts current binding, which is then cached so that packets may be sent directly in the

future.

 In order to allow packets to reach the mobile host after it has changed foreign

agent, the mobile host sends the previous foreign agent a binding update, which

allows for packets arriving at the old agent to be rerouted to the new one. If the old

foreign agent receives any packets for the mobile host, as well as forwarding them on

to the new location, it also sends a binding warning message to the home agent

requesting it to inform the correspondent node of the new binding.

 Another area being investigated by the Monarch project is ad-hoc networking.

This is wireless networking in areas where no normal network infrastructure is

available such as wilderness areas or where the infrastructure has been incapacitated

such as disaster sites or war zones. In such situations it is desirable to be able to set up

temporary ad-hoc networks without any central planning or administration. Due to the

short range of wireless links, ad-hoc networks usually rely on participating hosts

forwarding packets on behalf of other hosts.

 Monarch uses a different type of routing protocol to the distance vector or link

state routing implemented in other ad-hoc designs. This new routing protocol is called

dynamic source routing. In conventional source routing a host sending a packet

determines the sequence of nodes that the packet must pass through in order to reach

the destination node. The sender lists the addresses of these nodes in the header of the

packet. When each node in the list receives the packet it simply sends the packet on to

the next node listed. In dynamic source routing each node maintains a route cache

where it stores all routes it knows about. When it receives a packet to send to another

node it first checks the cache for a route to that node and uses this route if it is found.

Otherwise a procedure called route discovery is initiated by means of which an

appropriate route can be found. Protocols are also provided to allow for failure of

nodes along pre-existing routes.

 The dynamic source routing protocol has now been implemented. Detailed

simulations have shown that the protocol is able to provide routes that are on average

within a factor of 1.01 of the optimal, showing that is should be able to track the

movement of mobile hosts to a high degree.

 14

 In a further Monarch project an API and a set of extensions to the Mobile IP

protocol have been designed to provide notification to mobile-aware applications on a

mobile host about the conditions of the wireless connection when it changes foreign

agents. The notification provides information, supplied by the foreign agent, about

connection bandwidth, cost, error rate or latency in its local network. This notification

is integrated with the mobile host-foreign agent registration and can be performed at

little extra cost.

2.2.4 Rover

The Rover project at MIT [Joseph ‘97] aims to provide a toolkit to support the

development of both mobile-transparent and mobile-aware applications. In contrast to

Coda which attempts to hide environmental considerations from the applications,

Rover was designed to make environmental information available to applications and

involve them in the decision making process. In this sense Rover can be seen as a

result of applying the end-to-end argument [Saltzer ‘84] to mobile applications. Rover

provides an application-programming interface to allow mobile aware applications to

be developed using common features and techniques.

 In essence Rover is a client-server distributed object system in which servers

run on stationary hosts and clients can run on either stationary or mobile hosts.

Communication is supported by means of relocatable dynamic objects (RDOs) and

queued remote procedure call (QRPC). An RDO is an object that can be transferred

from client to server and vice-versa in order to minimise network communication in

the form of RPC calls between the two. QRPC allows hosts to make non-blocking

remote procedure calls during disconnection. These calls are queued and then

resolved when reconnection occurs.

 When building a mobile-aware application with Rover the main task is to

define RDOs for the data manipulated by the application and the data units passed

between the clients and servers. The application must then be divided into client and

server sections and methods to operate on the RDOs must be implemented. The

finished application should be able to import objects onto the local host, invoke

methods on these objects, export logs of method invocations on those methods to the

server and then reconcile these copies with the copies resident on the server. Rover

 15

also allows applications to use polli ng or callback methods to determine the current

state of the environment for its own decision-making or to display to a user.

 By moving RDOs across the network as required the application can control

exactly where computation will occur and so limit communication costs. For example,

a server could migrate a GUI RDO to a client. The actual code required to implement

the GUI is small compared to the resulting data it produces, so this data will not have

to cross the network. The locally cached GUI RDO will also be able to respond to

user interaction without generating network traffic.

Rover clients use QRPC to fetch RDOs from servers. When a QRPC is issued

it is stored in a local log and control is immediately returned to the issuing

application. Callbacks can be used to notify the application of the arrival of the RDO

or alternatively the application can block until i t receives the RDO. If a locally held

RDO is updated it is marked as tentatively committed and the updates are propagated

to the server as soon as possible using QRPC.

 QRPCs can be delivered out of order depending on priorities and costs

associated with the sending action. Rover allows split-phase QRPC operation, that is,

Client
Application

Client
Application

Access Manager on mobile host

QRPC Log

Network
Scheduler

Object Cache

Server

1. Fetch RDO

2. RDO

3. Export RDO

4. RDOs

 Server Application

Object Conflict?

Modify/Resolve

Fig. 2.2 Rover Distributed Object Model

 16

if a mobile host sends a QRPC and subsequently becomes disconnected before

receiving a reply, the replier will periodically try to contact the sender and deliver its

reply. This also allows request and response pairs to be sent over different

communication channels, which is a significant advantage in a mobile environment by

allowing communication to be directed over the most efficient, most available or

cheapest channel.

 Rover applications can provide prioritised prefetch lists that the user can select

to download RDOs prior to disconnection for applications that are to be used while

disconnected. These lists are based on heuristic data compiled from knowledge of the

users previous actions. The choice of replicated data consistency scheme is left to the

application, since the requirements will vary dramatically depending on the given

application. Rover does however provide support for primary-copy, tentative-update

optimistic consistency, which is considered the most appropriate for mobile

computing applications.

 Extensions have been made to Rover to further increase the reliabili ty of

mobile-aware applications built using the toolkit [Joseph ‘96]. The original Rover

failure model provided client-server message delivery guarantees and support for

client or communication failures but did not address server failures. The extensions

allow for recoverable server faults such as power glitches but not repeatable or non-

recoverable failures. Recoverable failures are handled by such means as stable

message logging by the server, automatic server process restart and programmer

supplied failure recovery procedures.

2.3 Disconnected Operation

2.3.1 Coda

The Coda file system [Kistler ‘93] developed at Carnegie Mellon University is a

direct descendant of the Andrew File System (AFS) [Mullender ‘93]. Coda attempts

to provide a much more reliable and available file service than that provided by AFS.

Coda supports the integration of mobile computers with fixed file servers by means of

disconnected operation. This allows users to move between zones of connection with

 17

the home network and zones where connection to the home network is not possible

and still continue accessing files that were read from the file servers.

 Coda uses the same Venus – Vice (client – server) architecture as AFS. File

availabili ty is increased in Coda through server replication and disconnected client

operation. AFS clients can hold local copies of an object in a cache to save access

time and network traffic. AFS uses pessimistic cache consistency that assumes that

objects cached by a client will be modified by another client as well and so a

mechanism is provided that allows the server to contact a client in the event of the

object being updated elsewhere so that the client can ‘ revalidate’ its cached copy by

downloading the modified version from the server. This mechanism is called a

callback. Coda implements the client caching and server callbacks that were the core

of AFS. As long as the client remains in contact with at least one server it operates in

the connected state, much the same as normal operation in AFS. When this

connection is lost the client operates in the disconnected state.

 Venus operates in one of three states – hoarding, emulation and reintegration.

In the hoarding state Venus collects data that it anticipates will be required if

disconnection occurs. This hoarded information is stored in a priority based hoard

database (HDB). The HDB is periodically walked to determine which objects should

be retained in the cache and which should be discarded. An object that has not

recently been read or written would be a good candidate for discarding.

 In the emulation state Venus effectively mimics the server by allowing access

to cached objects. All updates to cached objects are recorded in the replay log to be

replayed on reconnection to the server. In the event of a cache miss the default

behaviour is for Venus to return an error code. When the connection is re-established

the replay log is forwarded to the server where it is executed. Venus also updates its

cache contents to be consistent with the servers.

 In the event of a conflict (caused by separate writes to the same object by

different holders of the object) occurring during reintegration an application specific

resolver (ASR) is used to resolve the conflict. An ASR provides the detailed

application specific knowledge required to distinguish between resolvable differences

and genuine inconsistencies. If the ASR is unable to reconcile the differences then the

user is presented with a manual repair tool.

 In more recent work on Coda [Satya ‘96] the concept of connection has been

extended to include weak connectivity. A weak connection can take the form of a

 18

low-bandwidth connection, an expensive network service (which can only be used

sparingly) or an intermittent connection, which only lasts for a short time. A number

of modifications have been made to Coda to exploit weak connectivity.

 One of the drawbacks of the original implementation of Coda was the large

amount of time required to revalidate a clients’ cached callbacks on reconnection

when the network was slow. To reduce this time, volume version stamps were

introduced, which are analogous to the object version stamps already used (avolume

being a collection of objects). Whenever an object in a volume is updated the volume

version stamp is updated in addition to the object version stamp being incremented.

As part of the hoarding process Venus caches any required volume version stamps.

On reconnection to the server Venus checks its cached volume version stamps with

those on the server. If the stamps are the same then all cached objects from that

volume are also unchanged. If not then each cached object from that volume must be

revalidated. Experiments have shown that this approach greatly reduces the average

time required for cache validation.

 Trickle reintegration is another means of exploiting weak connectivity. Instead

of reintegrating all updates on full reconnection to the server, updates are periodically

sent over the weak connection while still not interfering with user activities in the

foreground. Implementing trickle reintegration did however require significant

alterations to be made to the structure of Venus.

 Weak connectivity also provides the opportunity to implement user-assisted

cache miss handling. At low bandwidths the user is given the option of fetching the

file, which would incur a long wait, or of continuing without it. At high bandwidths

the file is fetched without prompting the user. In developing this approach the

designers incorporated a user patience model to balance between the two factors, file

delay and user patience.

 Coda appears to work well in academic and research environments

[Satya ‘93] although it remains untested in other deployments. The hoarding strategy

used allows most disconnected sessions to complete without any cache misses,

although this is due in part to the voluntary nature of the disconnections i.e. the

common case is for the user to shut down the machine or disconnect it after the

hoarding process has cached enough objects for disconnected use. Cache misses in

this case are also rarely fatal to the disconnected session and work can be continued.

An involuntary disconnection caused for example by a network failure may mean that

 19

the required objects have not been cached and a cache miss may be more disruptive.

The performance of the system in the event of a reintegration storm (a large number

of clients trying to forward their replay logs to the server at the same time) following

a server or network failure has yet to be established in the context of large client

populations although several strategies have been proposed. One would be to have

each client wait a random amount of time before trying to contact the server again so

that the reconnection of clients is more spread out.

2.3.2 Disconnected AFS

Whereas AFS works well in a normal desktop environment with fixed connections,

when the network becomes partitioned clients that have been isolated from the server

cannot propagate the changes they have made to cached objects to the server and

hence make these changes known to the rest of the system. To overcome this a group

in the University of Michigan has modified the structure of the client part of AFS

(Venus) to allow for disconnected operation [Huston ‘93]. Unlike in Coda where

extensive changes were made to both the AFS client and server structure, the

developers of Disconnected AFS decided to limit any modifications to the client

structure so that existing AFS cells could still be accessed. Unlike Coda and Ficus, the

developers considered only disconnected operation in their design, ignoring server

replication. The rationale behind this was that server replication is of no advantage in

nomadic computing due to the fact that a disconnected client cannot contact any

replica of a server.

 The modifications to Venus were in essence (and much like Coda) altering the

cache manager to provide optimistic cache consistency rather that the pessimistic

approach taken by conventional AFS. Optimistic cache consistency works on the

premise that usually only a single client updates a cached object at any given time and

so the system is optimised to cater for this common case. When a Disconnected AFS

client is disconnected the user can still access objects stored in the cache and all

mutable operations are logged and replayed at the server on reconnection. On a cache

miss an error code is returned to the calli ng program. Unlike Coda, the user must

issue disconnect and reconnect commands manually. If on reconnection it is

discovered that a connected client is modifying the file concurrently then both

 20

versions are stored on the file server and the user is notified that a conflict has

occurred. The user must then resolve the conflict manually although, as of yet, no

tools have been provided to allow the user to perform this resolution.

2.3.3 Disconnected NFS

A group working at the University of Washington took concepts from Coda and

extended them to produce a methodology for structuring client software in a

disconnectable file system [Fiuczynski ‘94]. This methodology was applied to a

disconnectable version of Sun’s Network File System (NFS). The notion of a client –

agent – server (CAS) model for mobile devices was defined. The agent, resident on

the mobile device, operates in the connected or disconnected state and functions are

provided to switch context from one state to the other. In the connected state the agent

forwards all client requests to the server and gathers data to store in the cache to be

used in event of disconnection. When disconnection occurs the agent calls a transition

function to switch to the disconnected state and cached data is used to satisfy client

requests as far as possible.

 Although the Disconnected NFS implementation contained no new concepts,

this work provided a well-structured approach to developing applications for

disconnected operation. Code for operation in the connected and disconnected states

could be written separately and compartmentalised, allowing for easy replacement

and easier coding, since each component only has to deal with one given state. The

notion of transition functions also provided a means of isolating and localising actions

concerned with moving between states. This model presents a flexible and elegant

technique for designing disconnectable mobile applications.

2.3.4 Laputa

The Laputa project at Columbia University took a slightly different approach to file

caching than Coda’s hoarding mechanism [Skopp ‘93] and applied it to a software

development environment. This was based on the concept of process-centred

environments in which complex rule sets are used to relate and order the different

files and tools used in a development task such as writing a program in C. Laputa

exploited these rules to automate the caching of objects prior to disconnection.

 21

Basically the user specifies which tasks are to be undertaken while disconnected and

the system will then chain through the relevant rules and select any objects to be

cached. Although Laputa does not deal with such issues as involuntary disconnection

or weak connectivity, it does provide an interesting take on intelli gent file prefetching

and caching.

2.3.5 Ficus

Ficus [Page ‘98] is a modular addition to the Unix kernel that provides a peer-to-peer

replicated file system, designed to be highly scalable and reliable. The basic concepts

behind Ficus, providing a network–transparent file system that supports partitioned

updates, are logically descended from the Locus [Walker ‘83] operating system. Ficus

shares many features with Coda such as optimistic replication, the primary difference

being that Ficus has a peer-to-peer structure unlike Coda’s client-server arrangement.

Ficus allows updates to be made to a data object provided that at least a single copy of

it is available. A process called reconcili ation, analogous to Coda’s reintegration state,

ensures that updates are propagated to any other replicas of the object.

 Although not primarily designed for disconnected operation, Ficus does

happen to work quite well in a voluntary disconnected mode [Heidemann ‘92]. As any

machine running Ficus is able to provide a full file service, the disconnected machine

can operate as normal in a disconnected mode and indeed Ficus makes no distinction

between disconnected and connected states. With periodic connections to other Ficus

machines on the network, the disconnected node can propagate updates and reconcile

differences. This type of operation has been shown to work well, however the time

and network traffic required for reconcili ation works out to be quite expensive when

performed over a normal telephone line, as would be the case in a ‘home use’

scenario.

2.4 The Jini Model

Jini [Edwards ‘99] from Sun Microsystems is a model for building distributed systems

and is comprised of a set of protocols and facili ties to do this. Jini was designed to

provide an infrastructure that would support spontaneously created and self-healing

 22

communities of services. These services can consist of anything from actual hardware

devices such as scanners or printers (and their attendant software) to purely software

services. Jini uses Java as the common language of these communities and Java RMI

provides the default communication mechanism. ‘Spontaneously created’ means that

services can appear and disappear from the community fluidly and without any user

involvement. The term ‘self-healing’ means that the communities will be resili ent to

changes in services, network topology and machine crashes.

 Jini can be thought of as a thin layer of services built on top of, and using

Java, especially Java RMI. Jini is perhaps best explained in terms of five concepts that

together form the basis of the whole Jini idea of spontaneously created,

administration-free networks of services. These five concepts are –

• Discovery
• Lookup
• Leasing
• Remote Events
• Transactions

Discovery

Jini services are grouped into ‘communities’ . Communities usually consist of all Jini

services currently available on a given network subnet. In order to join this

community, when a Jini service starts it must contact a lookup service, which keeps

track of all currently available services. Note that the lookup service is itself a Jini

service. When a lookup service has been detected, the prospective community

member can step through a procedure called the join protocol to publish its own

service to the community. Jini supports several methods of discovering the lookup

service such as the Multicast Request Protocol, which is used by services when they

first become active to announce their presence to any lookup services in the vicinity

and the Unicast Discovery Protocol (UDP). UDP is used when there is a need to

create static connections between two Jini services when one of the services in

question knows the name of the other service. This form of discovery allows a service

to connect to a lookup service on another network to publish its service there.

 When discovery has been completed the service doing the discovery will

receive an RMI stub (see Chapter 3.1) that can be used to talk to the lookup service

 23

for the local (default) community. The discovering service can then communicate

with the lookup service and negotiate the publishing of its service.

Lookup

The Jini lookup services provide functionality not unlike that of a name server except

that they can be searched for more than just string names [Jini Spec ‘00]. Each lookup

service in all practicality contains a list of service names and corresponding objects

that other members of the community can download in order to allow them to use that

service. Lookup services can understand Java type semantics and therefore they can

be searched for objects of different types of classes, superclasses, superinterfaces etc.

Clients downloading these ‘proxy’ objects need not know anything about the actual

implementation of the service, only the interface that they know the service

implements. This separation of the definition of the means of interaction with the

service and the actual implementation of that service is another major concept in the

Java RMI and Jini model.

 When a community member wishes to publish a service it calls a method on

the proxy supplied by the lookup service upon discovery and provides its own proxy

object as an argument. The publisher can supply attribute objects that describe the

service such as name, location, comments etc. The proxy object supplied is a

serializable Java object that provides clients with a downloadable front end that

allows them to access the service. This is one of the key ideas in Jini, no specialised

device drivers or software needs to be installed by clients as they can simply

download code to do this as and when they need to use the service. The proxy object

itself can be an RMI stub that communicates with the remote service, it may be an

object that actually provides all of the service functionality itself without any need for

a remote ‘back end’ or it could use some sort of private communication protocol to

talk to the service such as when hardware devices are involved. The proxy contains a

reference to the remote service that specifies where it can be contacted i.e. a hostname

and port number pairing.

Leasing

Leasing is the mechanism used by Jini to allow communities to be resili ent and self-

healing in the event of sudden loss of services, network failures, machine crashes etc.

 24

This is a very important aspect for any distributed system where small network and

other failures can very often cripple the entire system. As a countermeasure against

these problems Jini uses time-based resource reservation in which services are granted

space in a lookup service for a limited period of time. These services must update

their leases if they wish to remain listed as active services beyond the initial lease

period. Any service that is unable to renew its lease will eventually be removed from

the lookup service and hence from use by the other members of the community.

Remote Events

Jini (in common with most of Java) uses the concept of events to allow for

asynchronous notification. However, in distributed systems like Jini different types of

events, remote events, have to be designed for. Remote events are different from local

events in many ways including difficulty of delivery, diff iculty of determining correct

delivery order and determining whether or not the event has been received.

 Jini provides a single interface, ���� l¡%¢%�¤£k¥l� ¦�§¤¨�©%ª�§%«�¦�«_¬ (it has a single

method, ­�®%¯�°%±�²�³#´) for objects that wish to listen for remote events and there is

only one type of event object, µ�¶�· ®%¯ ¶¤¸k¹l¶ ­�¯ . Any Jini component that wishes to be

able to send events specifies the conditions under which it will send them and

provides its own means for listeners to express an interest in these events. As all

events are simply variants of µ�¶�· ®%¯ ¶¤¸k¹l¶ ­�¯ , Jini allows third parties to use, forward

or store these events without actually knowing what exactly they mean.

 Jini takes the approach that distributed systems designers must decide

themselves what level of certainty they need in their applications that events that are

sent will reach their destinations. By using third party delegates, an application can

store its messages for later referral or use if it fails simply by sending events to the

delegate, which then stores them persistently. These events can then be resent if their

target does not receive them. Designers can also plug a guaranteed delivery

component into their systems that listens for events and then continually resends them

to their targets until they are acknowledged.

Transactions

Partial failure is a problem that occurs when only part of a distributed computation

succeeds and the rest fails. This means that the distributed system has not progressed

 25

to the new state that it should be in but yet it cannot return to its the original state. To

address partial failures, distributed systems use a concept known as transactions.

Transactions are a means of grouping and managing the execution of related

operations so that either all or none of them are carried out. This ensures the system is

always in a known and stable state. If one of the operations cannot complete then the

whole transaction is aborted and the system is returned to its original state.

 Two-phase commit is a protocol commonly used to manage transactions. In

this protocol an entity called a Transaction Manager controls all operations that are

participants in the transaction. The manager tells the participants to enter a precommit

phase in which they each calculate their own bit of the overall result and then store

this temporarily. Each operation then informs the manager whether or not they have

been successful in doing this. If all the participants reply that their results have been

computed then the manager will send a commit message that tells each participant to

make their changes permanent. If any participant tells the manager that its task has

failed then the manager will tell every participant to abort. They will then erase the

results they have just calculated and return to the state they were in before the

operation started.

 Jini, in fact, does not fully implement the two-phase commit protocol outlined

above. Jini provides a ºr»9¼�½%¾�¼�¿�À�Á�Â�½7Ãk¼_» Ä�Å%Æ%Å%Ç�È�É�Ä interface that each participant

in a Jini transaction must implement and this interface has the obvious sounding

methods Ç
Ê9Ë�Ç�È_Ê9Ë_Ì#Í , Æ�Î�Ï%Ï7Å�Ä_Ì#Í and Ð�Ñ�Ò_Ó9Ô_Õ#Ö . However, this is just an interface

and the actual implementation of these methods is left to whoever is building the

system. Basically what Jini does is act as the transaction manager and will call these

methods on the participants as and when appropriate, rolli ng the participants back or

forward depending on the replies it gets and calli ng ×�Ò�Ø%Ø7Ù�Ô Õ#Ö and Ð�Ñ�Ò_Ó9Ô_Õ#Ö when

it decides it is the right time. What actually happens when these methods are actually

called on the participants is left up to the programmer. This allows the Jini designer to

add secure transactions when he/she sees fit and to leave them out altogether if

circumstances do not require them.

 26

Chapter 3

Background

This chapter introduces the two main building blocks of this project, Sun

Microsystems Java Remote Method Invocation (RMI) technology and the

Architecture for Location Independent CORBA Environments (ALICE). Relevant

points in each will be discussed including architectures, design features and

capabili ties, and comparisons to related technologies.

3.1 RMI

3.1.1 Introduction to RMI

Java’s platform independence and security model combine to provide a powerful tool

for developing distributed applications. Platform independence dispenses with the

need for different versions of code for different machine types or operating systems as

any platform that can provide a JVM can run Java code and Java’s security model

enables code to be loaded remotely and be trusted not to act maliciously. Together

these two capabili ties allow for network-mobili ty of Java code [Venners ‘00]. RMI

and object serialization were developed to allow Java objects to become network

mobile and to create a distributed object model that in essence allows objects in

different address spaces to communicate. By granting objects the abili ty to hold

references to objects in other JVMs (these will henceforth be called remote objects),

to call methods on these remote objects and to pass parameters between themselves,

what is effectively created is a distributed object-oriented programming framework.

The designers of RMI identified several important goals for supporting

distributed objects in Java [Wollrath ‘96] –
Ú To support remote invocation of Java object methods in different

virtual machines

 27

Û To retain as much of the original non-distributed Java semantics as

possible while integrating the system into Java in a natural way
Û To preserve the security provided by the Java model
Û To make remoteness as seen by the RMI clients and servers as simple

as possible

3.1.2 Semantics of RMI

RMI makes extensive use of one of the fundamentals of Java object-oriented

programming, the separation of interface and implementation. In RMI, an object that

will be called remotely must implement the Remote interface. The syntax of a call to a

remote object by a client is exactly the same as that of a call to a local object. The

client is programmed to the remote interface not to the implementation by the server

object of that interface. Therefore apart from the knowing that the interface

implements Remote and that a RemoteException may be raised during a remote

method call, the whole RMI scheme is mostly transparent to the client.

 RMI has many similarities with the Java object model including casting a

remote object to any interface supported by the implementation and references to a

remote object can be passed as arguments or returned as results in remote method

calls. There are some notable differences between the two models however, the client

objects can only ever interact with the interfaces to a server object never with the

implementation itself, the semantics of parameter passing are slightly different and

some of the methods provided by the Java object class have to be changed to take

remoteness into account.

 An RMI server object can either inherit from the RemoteServer class or the

UnicastRemoteObject class. Each of these takes care of the process of exporting an

object and readying it for calls when their constructors are called. Obviously, the

server object must implement the same interface as provided by the Remote interface.

Before invoking a method on a remote object a client must first obtain a reference to

that object, this is usually returned as a result of a call to the rmiregistry, a simple

bootstrap naming service provided by RMI (the stub which provides the means to

make the remote call will be discussed later). References to remote objects are stored

and can be retrieved by using the URL-based interface java.rmi.Naming. This

 28

interface allows servers to register references to themselves and clients to obtain these

references by contacting the registry on the host specified by a URL supplied to the

Naming.lookup(URL) method.

Calls by a client are then performed in exactly the same manner and with the

same syntax as calls on a local object. Parameters passed and arguments returned in

RMI calls (apart from remote objects) are passed by copy. This means the content of

the non-remote object is copied before being passed on. Objects other than Java

primitives and remote objects must implement the Serializable interface if they are to

be passed. Remote objects on the other hand are passed by reference meaning that the

stub for the object is passed rather than the object itself. Therefore the semantics of

RMI parameter passing is pass by value in the common case, and pass by reference in

the remote case. In the latter what actually happens is that RMI passes the calli ng

object a stub with which to communicate with the remote object.

3.1.3 RMI Architecture

There are three layers in the RMI architecture – the stubs/skeletons layer, the remote

reference layer and the transport layer.

Figure 3.1 RMI Architecture

Client Server

Stub

RRL

Transport

Skeleton

Transport

RRL

Application
Level

RMI

System

 29

Stub/Skeleton Layer

The Stub/Skeleton layer provides the interface between the application layer that the

client and server reside in to talk to the rest of the RMI system. The client uses the

stub and the server uses the skeleton. The stub implements the same interface as the

server object and is responsible for making calls to the remote object by calli ng the

remote reference layer, marshalli ng parameters passed to it from the application into a

format suited to on-the-wire transmission (a process known as pickling), and

unmarshalli ng any returned data.

 Likewise the skeleton is responsible for unmarshalli ng any parameters passed

by the client, passing these parameters back to the application layer code and

marshalli ng any return values. Both stubs and skeletons are automatically produced

by running the rmic command.

Remote Reference Layer

The Remote Reference Layer deals with the specific invocation protocol chosen by

the remote object and transfers data between the Transport and Stub/Skeleton layers.

The invocation protocol can be unicast (in the case of the server object being a

UnicastRemoteObject), muliticast (which allows for replication of remote server

objects) or some other replication pattern. The RRL consists of client and server

sections, both of which use a stream-oriented connection abstraction to convey data to

the Transport layer. The Transport layer actually implements the connections and

presents an interface to the RRL.

Transport Layer

The transport layer deals with the mechanics of transferring data between address

spaces - it makes connections to other JVMs, monitors the liveness of these

connections, maintains a list of all remote objects in the local address space, listens

for incoming calls and locates the dispatcher for the target of a remote call and passes

the connection to this dispatcher.

 The Transport layer uses the information contained in the remote reference

passed to it by the RRL to set up a connection to the relevant remote address space.

The client passes the server the object ID from the remote reference so the servers

 30

transport layer can tell which object the client wishes to connect to. Although the

default transport medium is TCP the RMISocketFatory interface allows for custom

protocols to be used, creating a custom socket whenever RMI makes a call to the

factory to obtain a new socket.

3.1.4 Basic RMI Operation

The standard format for client-server RMI applications is shown in the diagram below

[RMI Spec ‘99].

Figure 3.2 RMI Distributed Application

The remote method call proceeds as follows:

Ü The remote server object starts and registers itself the rmiregistry on the local

machine. The rmiregistry checks that the Stub for the object is available from

the web server pointed to by a codebase property supplied by the server.

Client

Server

Web Server

 rmiregistry
RMI

URL Protocol

 31

Ý The client contacts the rmiregistry on the servers machine and is returned a

reference to the object and the location of the Stub with which to contact it

with. The client then downloads the Stub from the server.

Ý The client then makes the method call on the server object using the Stub,

passes any required parameters and the corresponding result data, if any, is

returned to the client. The remote method invocation is then complete.

3.1.5 Serialization and Dynamic Code Loading

As mentioned previously, the abili ty for code and objects to move between address

spaces is fundamental to the design and operation of RMI. Serialization allows for the

member data of a Java object to be turned into a steam of bytes to allow it to be

transmitted via TCP or whatever transport protocol is being used to another JVM.

Any Java object can be serialised as long as it has a public, no-arguments constructor,

it implements the Serializable interface and it contains no references to any objects

that aren’ t themselves serializable.

 What serialization provides is a means to transmit the member data of an

object but this is of little use without the accompanying class code. The code for the

object cannot be transmitted by the same means so some other way must be found to

give callers the implementation of a class. This is known as Dynamic Code Loading

and marks RMI out from other remote procedure call implementations.

 Usually a Java application looks in its classpath to find the implementations of

any classes it requires. In RMI any server that wishes to be able to export code sets a

codebase property which is tagged onto serialised objects and indicates to clients

where a class file for the object can be found. The codebase generally points to a

directory or Java archive (.JAR) file that is serviced by a HTTP server. Once a client

gets a serialized object it will try to reconstitute it and when it can’ t find the class in

its own classpath it will download it from the codebase location.

 A MarshalledObject can represent a serialised object by passing the object to

be serialised to its constructor. MarshalledObject provides a convenient means of

storing a serialised object without having to reconstitute it. MarshalledObjects are

automatically annotated with the codebase of the relevant implementation classes

 32

thereby providing a representation of everything a client needs to know to be able to

utili se the object at a later stage.

Naturally the abili ty to dynamically download code also presents a security

hazard, as the client needs to be able to trust the downloaded code not to do anything

malicious. In an applet environment, only allowing the applet to connect to the

machine it was downloaded from enforces a crude form of security. In the Java 1.2

platform the security capabili ties have been extensively expanded. Any piece of RMI

code that wishes to download code must first set a security manager. This manager

will control the behaviour of downloaded code according to a set of security

permissions set in a special policy file and passed at runtime as a property to the

program. The policy file can give the manager exact instructions as to what the code

can and can’t do, what directories it can access, what remote machines it can connect

to, etc. This provides the programmer with a very flexible and powerful means of

controlli ng the security of networked applications.

3.1.6 Garbage Collection

In order to clean up remote objects that are of no more use RMI employs a reference

counting mechanism. Put simply, the RMI runtime keeps count of all li ve references

to remote objects within each JVM, every time a live reference is encountered the

count is incremented and a message is sent to the server informing it that the object

has been referenced. Any time that a reference is discarded another message is sent to

the server informing it of the discard. There are complex issues that must also be dealt

with regarding the timing and order of these messages to ensure that the objects are

not prematurely garbage collected.

 When an remote object is no longer referred it is marked as being a candidate

for collection by the RMI runtime. As long as a remote or local reference to an object

exists the object is safe to use. The possibili ty of network partition occurring between

a client and server means that a reference to a remote object may not always refer to a

currently existing object and an attempt to use such an object will raise a

RemoteException.

 33

3.1.7 Activation

A distributed object system can contain many thousands of remote objects. If all of

these objects were to remain persistently active then it is obvious that valuable system

resources would be in continual use, even if no calls were being made on the vast

majority of the objects [RMI Spec ‘99]. RMI gives the distributed application

programmer the capabili ty to deactivate objects that may not be in use for long

periods of time and then activate them when they are required.

 Activation in RMI is taken care of by three main components; an Activatable

object, a wrapper class around this object and the rmid activation daemon. The

Activatable object is much the same as a normal RMI remote server object except that

it extends the java.rmi.Activatable class and has a special two-argument constructor

that takes a MarshalledObject and an ActivationID as arguments. The wrapper class

should be set up to inform the rmid what type of environment to run the object in

when it is reactivated. The rmid will create a new JVM as a child process to run the

object in when it detects a call for it. The wrapper will at least declare an

RMISecurityManager to govern the security properties of the JVM the activated

object is running in.

 Note that although the use of activatable objects can increase the performance

of a large distributed object system, care must be taken in its use to prevent system

resources being wasted by objects being activated and deactivated between closely

occurring method calls [Edwards ‘99]. Objects that have been activated should remain

active for a certain period of time (perhaps calculated from the average time between

object method invocations) before being deactivated again to prevent the needless

creation of new JVMs. Activatable objects can also inform the rmid that they wish to

be automatically restarted whenever the rmid itself restarts. This allows for server

objects to be brought back on line quickly after a system reboot.

3.1.8 RMI Protocol

RMI uses a simple on-the-wire protocol format; a client sees an Input Stream and an

Output Stream, both being paired to a socket connection to the server. Since the

stream connections are paired there is little need for much header information in the

PDUs. When the first PDU is sent over a connection, a header indicating the RMI

 34

Version and the specific protocol being used prefixes the message. The protocol can

either be the default Stream Protocol, the SingleOp Protocol or the Multiplex

Protocol. When the Stream Protocol is being used all messages after the first are sent

with no headers.

The SingleOp Protocol is used if the messages are being wrapped in HTTP

requests and interactions more complicated than a single request and response are

impossible. This is commonly used to allow remote object methods to be invoked by

clients residing behind a firewall. The Multiplex Protocol which is used when only

one of the endpoints can open a bi-directional TCP connection and allows the two

endpoints to each open multiple full-duplex connections to each other. An instance of

such a situation would be an applet in which the security manager prevents the

downloaded applet from creating a server socket to the host it was downloaded from.

If the applet was permitted to open a normal socket connection to the host then

connections could be multiplexed over this socket and the originating host could

invoke methods on any RMI objects exported by the applet [RMI Spec ‘99].

There are three types of messages that can be sent from an Output Stream: an

RMI method call, a Ping to test a connection, and a Distributed Garbage Collection

ACK that tells the JVM in the server machine that remote objects have been received

by the client as a return value. There are also three types of Input messages: Call

Return, which is the return from a method invocation; HttpReturn, the same as Call

Return except it is wrapped in HTTP, and PingACK, the response to the Ping

message.

3.1.9 Comparison with CORBA

RMI is just one of many distributed object paradigms available, one of the most

popular rival technologies in use today is the Common Object Request Broker

Architecture (CORBA) standard from the OMG. CORBA, like RMI, provides a

means for programmer to construct object-oriented distributed applications, freeing

them from the responsibili ty of having to deal with low-level communication issues.

In contrast to the simple structure of RMI, the myriad of entities and services

available in CORBA makes it appear comparatively complicated.

Central to the design of CORBA is the Object Request Broker (ORB), which

acts as an object bus through which clients can interact with other remote or local

 35

CORBA objects. The ORB “is responsible for all the mechanisms required to find the

object implementation for a request, to prepare an object implementation to receive a

request, and to communicate the data making up the request” [OMG ‘95]. The client

uses the ORB to obtain a reference to a CORBA object and then a client can call

methods on that object using either the Dynamic Invocation interface or an IDL stub.

The ORB conveys the request to the object and returns the reply to the caller. The

references to server objects in CORBA are called Interoperable Object References

(IORs). An IOR consists of a hostname and a port number where the client can locate

the server object, and also a special identifier called an object key that uniquely

identifies the server object at the given location.

Figure 3.3 Structure of ORB Interfaces

As in RMI an (IDL) interface is completely independent of the actual

implementation of an object. IDL allows objects written in different languages to

interact with each other, so the client can server can be written in different languages.

When the IDL interface is compiled, information about it is stored in an Information

Repository (IR). This allows a client to obtain runtime information about the interface

by querying the IR and use this information to dynamically invoke a method on a

Object
Adaptor

Client Object Implementation

Dynamic
Invocation

 IDL
 Stubs

 ORB
 Interface

SIS

DS

 ORB Core

SIS = Static IDL Skeleton

DS = Dynamic Skeleton

 36

remote object by using the Dynamic Invocation Interface. The Dynamic Skeleton

Interface on the server side allows a client to invoke methods on a CORBA server

object that has no knowledge about the object it is implementing.

An entity called an Object Adaptor sits on top of the ORB and connects the

server object to the ORB, providing services like method invocation, mapping object

references to implementations etc. As RMI uses the RMI Protocol as its underlying

remote protocol, CORBA uses the Internet Inter-ORB Protocol that runs over TCP/IP.

IIOP uses the Common Data Representation (CDR) scheme to transfer data types

across the wire.

3.2 ALICE

This section will l ook at the ALICE (Architecture for Location Independent CORBA

Environments) framework for providing mobili ty support for CORBA objects on

mobile devices. After a brief introduction to the topic a more detailed discussion of

relevant details such as the ALICE software architecture and the various layers in this

architecture will be presented.

3.2.1 Introduction to ALICE

ALICE is a design to allow mobile computing devices to carry CORBA server objects

that can be invoked by both non-mobile and other mobile hosts with no knowledge of

the mobili ty of the server. Equally, client objects on the mobile host can interact with

objects on other hosts. One of the most important aspects of ALICE is that no

centralised register is used to track the current location of mobile servers. ALICE

tackles the problems associated with the mobili ty of CORBA objects by using a

session layer approach with some application level support [Haahr ‘99].

 ALICE presumes a mobile environment such as that shown in Figure 3.4.

Mobile hosts (MH) connect via wireless links to Mobili ty Gateways (MG) which are

wired to the rest of the network. The mobile hosts can move between MGs, thereby

changing their point of connection to the fixed network in a process known as

handoff. The gateways perform the role of proxies by relaying communications from

the MH to the rest of the network and from remote hosts to the MH. The gateways

 37

also have the responsibili ty of carrying out CORBA specific duties such as address

translation of IORs to account for the mobili ty of server objects.

Figure 3.4 ALICE Environment

The general software architecture of ALICE follows a layered approach with

different mobili ty problems being solved at different layers. As mentioned before,

ORBs generally use TCP/IP at the transport level, however TCP/IP connections are

frequently unstable in a mobile environment and are subject to being broken. This can

result in data being lost and the client and server states becoming inconsistent. To

address this problem ALICE introduces the Mobili ty Layer, which sits on top of

TCP/IP and hides broken connections from the layers above it.

The IIOP layer is a mobili ty-unaware part of the architecture that implements

the minimum amount of ORB functionality to allow it to send and receive inter-ORB

messages. The footprint of the IIOP is designed to be as small as possible to cater for

the limited memory capacity on a mobile device. The S/IIOP (or Swizzling IIOP)

Layer is the mobility-aware component of the IIOP layer and is used to perform

address translation on CORBA IORs.

Old
Connection

New
Connection

MH

 MG

FH

INTERNET

MH

 MG

 MG

FH

 38

Figure 3.5 ALICE Software Architecture

3.2.2 ALICE Mobile Layer

The Mobile Layer provides the low-level support services required to maintain

connections in a mobile environment. Basically clients of the ML use it to create what

they think to be normal TCP socket connections. What is instead produced is a

connection to the current Mobili ty Gateway, which then connects to the clients’

desired communication endpoint using a normal socket connection. Connections from

the MH to the MG are multiplexed over a single transport connection in order to

conserve the limited and expensive bandwidth available to a wireless device and make

the tasks of handoff and connection re-establishment easier. Connection multiplexing

also makes the task of error correction easier, a fact that is vitally important in a

mobile environment where line quality is quite often poor. When the MH-MG

connection is broken it is the task of the ML on the MH to re-establish it.

There are individual message types to indicate whether the MH wishes to

establish a connection, shutdown a connection, send data, reconnect after a break, plus

corresponding acknowledgements for each type. A special header identifying the type

Application

S/IIOP

Mobile Layer

TCP/IP

 IIOP

Application

S/IIOP IIOP

Mobile Layer

TCP/IP TCP/IP

ORB

Mobile Host Mobili ty Gateway Remote Host

Logical Data Flow

Physical Data Flow

 39

of message, payload length, an identifier for the destination etc prefixes all data sent.

In addition to transparently re-establishing a broken connection the ML must also

cache any data sent and wait for an acknowledgement for this data. Data being sent is

first cached, along with the Logical Connection Identifier (LCID), a unique identifier

allocated to each virtual connection and the request identifier, which is used to

identify the acknowledgement of a packet. To increase efficiency the ML will delay

opening a connection for a socket until there is actual data to be sent or received for it.

The Mobile Layer provides four main services to the layers above it [Haahr ‘99] –
 Þ It hides broken connections by transparently restoring links when they are lost

Þ It allows TCP ports on the MG to be allocated by the IIOP Layer to accept

incoming connections
Þ The S/IIOP layer uses it to obtain mobili ty information so that it can perform

address translation and request forwarding
Þ It performs handoff between MGs and tunnels existing connections from the old

MG to the new one

3.2.3 IIOP and S/IIOP Layers

IIOP Layer is an OMG defined standard that specifies how inter-ORB messages

should be sent using a TCP/IP transport connection. The IIOP layer developed for

ALICE was designed to be as efficient as possible and to have a small memory

footprint to accommodate the limitations of mobile devices. The API for the IIOP

Layer also hides a lot of the complexity of the actual protocol from the application

programmer while still allowing for manipulation of relevant parameters when

required. The IIOP Layer also allows the Mobile Layer to be plugged in and out

cleanly whenever mobili ty support is necessary or not.

 The IIOP Layer performs functions that are necessary for the IIOP layer to

operate correctly when server objects are being used on the Mobile Host. As

explained in Chapter 3.1.9, Interoperable Object References (IORs) are used in

CORBA to uniquely identify and locate a server object. An IOR essentially consists

of a hostname and port number to connect to the server object at. Server objects on

the MH will export an IOR that points to the MH. Since no remote host can directly

 40

contact the MH this is useless. To overcome this problem the S/IIOP layer on the MH

replaces the hostname with that of the current MG in an operation called ‘swizzling’ .

The S/IIOP layer uses the Mobile Layer to obtain information about the MH’s current

MG.

When a remote host receives the swizzled IOR and contacts the MG the

S/IIOP layer there will forward the request to the MH. When the MH changes it point

of connection to the network to a different MG it must ‘ reswizzle’ any IORs to point

to the new MG. The S/IIOP layer on the old MG will also change any IORs it holds

that pointed to the MH to now point to the new MG.

3.2.4 Handoff

The limited range of wireless communication methods means that roaming mobile

hosts must change their mobili ty gateway at regular intervals. To do this the mobile

host will cause handoff to occur between the new gateway and the old one. The host

will send a Handoff Request message to the new MG stating the address of its last

MG and the identifiers of any logical connections that were in use [Haahr ‘99]. The

new MG will then negotiate the handoff of each of these logical connections from the

old MG. In doing this the contents of each of the caches containing unacknowledged

data, acknowledgements received and any unsent data are transferred to the new MG

and will be sent to the MH as soon as is appropriate. When the handoff procedure is

complete the old MG sends a Finished Handoff message to the new MG, which will

then send another Finished Handoff message to the ML on the mobile host.

 Any transport connections that were open between the old MG and remote

hosts will be tunnelled to the new MG for as long as they remain open. This leaves

open the possibili ty of the creation of a long chain of MGs each tunnelli ng open

connections to the next without having any knowledge of where the chain ends or any

means of shortening the chain. Hopefully, this should only prove to be the case on

rare occasions.

 41

Chapter 4

Design

4.1 Overview

This chapter discusses a design for supporting mobile RMI clients and servers. The

design assumes that mobile hosts will communicate with remote hosts on a wired

network via mobili ty gateways in the same manner as discussed for the ALICE

environment and use as much of the ALICE software architecture as is appropriate.

This chapter looks at the differences between the addressing and naming schemes in

CORBA and RMI and examines how this affects locating mobile server objects in

Mobile RMI and the changes required in the overall ALICE architecture. An

application level solution to these problems is introduced along with methods for

dealing with passing references to remote objects and performing handoff between

mobili ty gateways.

4.2 Comparison with Previous Implementation

As discussed in Chapter 3, RMI and CORBA have dissimilar means of locating

remote objects. One of the major differences is that in CORBA the programmer can

easily manipulate the IORs used to locate remote server objects to point to the

mobili ty gateway and can then have the S/IIOP layer there forward requests to the

mobile host. In RMI the equivalent to the IOR, the RemoteRef, cannot be created

independently of a remote object, accessed or manipulated. This effectively means

that the ALICE method of redirecting method invocations from the gateway to the

mobile host cannot be used in the same way for RMI.

A number of approaches were considered to overcome the differences between

the RMI and CORBA addressing models. One was to use downloadable RMI socket

factories which the client would download from the gateway and which would create

a socket connection to the gateway on a known port. The gateway would then forward

 42

the call to the mobile host by opening another socket across the wireless link. There

are a number of diff iculties inherent in this approach.

Firstly, the rmiregistry on the gateway would still need to have a remote object

registered in with it that implemented the server interface so some form of code

downloading as described in the next section would still have to occur. Secondly, the

gateway listening on the well-known port for client connections would have to

intercept the first RMI call and change endpoint identifiers. In the reply to the first

RMI call by a client the server specifies an endpoint identifier (a hostname, port

number pairing) that it can see the client is using to connect to it on. The client can

use this information to determine its own hostname if it is unable to do so, perhaps

due to security restrictions. The client then responds with an endpoint identifier at

which it will accept connections from the server. If calls were tunnelled through the

gateway the first endpoint identifier would have to be changed to point to the mobile

server instead of the gateway and the second would have to be changed so that the

returned endpoint pointed to the gateway instead of the remote host. These changes

could only be affected by direct manipulation of the incoming and outgoing byte

streams, as there is no API to change RMI calls.

Overall this design soon became overly complex and inelegant (with both

high-level application layer and very low-level transport layer components) and so it

was decided to try a different approach. In the end it was decided to deal with all of

the difficulties of address translation and request forwarding at the application layer

instead of a lower level in the protocol stack. This eliminates the requirement for an

RMI version of the S/IIOP layer, as there will be no manipulation of RemoteRefs. So

instead of having the S/IIOP layer on the gateway alter the RMI calls and then

forward them to the server, proxy objects on the gateway are used to effectively relay

the calls to the server and relay any responses back to the client. The updating of the

RMI proxy stubs at the gateway to point to the new proxy on the new gateway to

which the server has moved mimics the ‘ reswizzling’ of IORs on the old gateway that

occurs during handoff in CORBA ALICE.

 43

4.3 Mobile Host as Client

Consider an RMI client object located on a mobile host interacting with a remote

server via a mobili ty gateway and with the support of the Mobili ty Layer (see Figure

4.1 below).

Figure 4.1 Mobile RMI client connects to remote RMI server via Mobility GW

 In this case the Mobili ty Layer will provide all the support necessary for the

mobile client to interact transparently with the remote server. The ML will tunnel the

lookup requests, method invocations and all other interactions initiated by the client

with the server through the mobili ty gateway. Whenever the client calls the

RMISocketFactory to produce a socket connection to the server it will i nstead return a

reference to a virtual socket to the client. The client has no idea that this virtual socket

is connected to anything but the address it specified to the RMISocketFactory. When

the client tries to send or receive any data on the socket the ML will send a message to

the mobili ty gateway directing it to open a connection to the original address specified

by the client. Any data sent by the client over the virtual connection will be sent to the

mobili ty gateway and redirected from there to its intended target. Similarly, data

returned from the server to the gateway will be forwarded to the client.

 If the transport connection between the mobile host and the gateway breaks at

any point then the ML on the mobile host will transparently reconnect and any data

Mobile Host

Remote
Host

Mobili ty
GW

RMI Client

RMI Server Fixed Network

 44

lost during transmission will be resent. If the mobile host hands off to another

gateway then any existing connections to the remote server will be tunnelled between

the old and new gateways for as long as they exist. The RMI stub for the remote

server object held by the mobile client is still valid for making calls through the new

gateway as the server host has not changed position. Therefore the ML provides all

the mobili ty support required for mobile RMI clients. One proviso is that the client

does not pass references to remote objects as parameters to methods invoked on the

remote server. If the server then tries to invoke methods on these objects then the

mobile host is effectively acting as a server itself. This introduces another set of

diff iculties that will be discussed in the next section.

4.4 Mobile Host as Server

When an RMI server is located on a mobile host the Mobili ty Layer will provide the

same low-level support as described earlier. However whereas the movement of a

mobile client did not necessitate any mobili ty support apart from that supplied by the

ML, the ML on its own is not enough to support mobile RMI servers. In CORBA

ALICE the S/IIOP Layer gave the required additional support. The differences

between the addressing schemes in CORBA and RMI mean that a similar approach is

not appropriate. As remote hosts cannot directly contact a mobile server, all

communication must go through whichever mobili ty gateway the server is currently

connected to. Since the client cannot hold an RMI stub that refers to the mobile host

so it must instead hold a stub that refers to an object on the gateway.

It is the use of such a ‘proxy’ object that forms major part of the solution. The

mobile server gives the code for the proxy to the current mobili ty gateway to use in

forwarding incoming calls to the actual server on the mobile host. To provide the

services to the server object to allow it to give the gateway the proxy and register it

there, a special remote object called the GatewayRegistry is used. The server can

download the stub for this object and call various methods on it to pass the proxy

class and associated parameters to the gateway. The proxy class is not actually passed

directly to the gateway instead a special class called a Carrier class which implements

a well-known interface is passed. The GatewayRegistry creates an instance of this

 45

Carrier class and calls a method on it that downloads the Proxy class, the interface it

implements and its RMI stub from the server and then instantiates the Proxy class and

registers it with the local rmiregistry. The basic operation of the proxy scheme is

shown in Figure 4.2 below.

Figure 4.2 Procedure for passing Proxy Objects

The procedure follows the following steps:

1. The server object, ServerImpl, which implements the Server interface, starts

execution on the mobile host and registers itself with the local rmiregistry.

2. ServerImpl contacts the rmiregistry on the gateway and downloads the stub for

the GatewayRegistry.

3. ServerImpl then calls a method called register() on the GatewayRegistry

object, passing as parameters the name of the Carrier class and the address of a

web server where it and all associated classes can be found.

5.

5.

3.

2.
1.

rmiregistry rmiregistry

ServerImpl

GWRegistry

ImplProxy

Client

Mobile Host Mobili ty Gateway Remote Host

4.

4.

 46

4. The GatewayRegistry object then downloads the Carrier, Proxy and Server

interface classes from the mobile host and instantiates a Carrier object. It then

calls a well-known method on the Carrier object, which creates a new

ImplProxy object and registers it with the local rmiregistry.

5. A client object located on a remote host can then contact the gateway’s

rmiregistry and obtain a stub for the ImplProxy object. Invoking methods on

the ImplProxy object will cause it to download the stub from the ServerImpl

object and forward the calls to it. Any data returned to the ImplProxy is then

returned directly to the client.

A number of other diff iculties must be considered for full operation of the proxies.

Firstly, the stub for the ImplProxy object (which was compiled on the mobile host) is

needed both to allow the ImplProxy to be registered on the gateway (the rmiregistry

checks for the presence of stubs before it allows any bind(…) or rebind(…)

operations) and it is obviously needed so that clients can download it to talk to the

proxy. This stub is not implicitly downloaded with the class file for the ImplProxy as

it would be when a client makes a lookup call to an rmiregistry. Instead the stub must

be explicitly downloaded by the Carrier object from the same web server running on

the mobile host that the ImplProxy and Carrier classes were downloaded from.

 Another problem occurs when an invocation of a remote method on the server

returns a reference to another remote object. As discussed in Section 3.1.2, RMI

returns the stub for any remote object returned from a remote method call. Returning

this stub to the client via the proxy is pointless, as the client cannot contact the mobile

host itself. What must happen instead is that the ServerImpl must give the

GatewayRegistry not only a proxy class for itself, but also proxy classes for any

remote object type that it returns in a method invocation. When a method call on

ServerImpl returns a reference to a remote object the ImplProxy can create a proxy for

the returned object and pass the stub returned from the mobile server to the newly

created proxy that it will then use to forward calls to the original remote object on the

mobile host. The ImplProxy will then return a stub for this proxy object to the client

and the new proxy will relay any calls to the actual object in the same manner as for

the ImplServer and ImplProxy objects.

 47

4.5 Handoff

Much of the mechanics of the handoff process are taken care of by the Mobile Layer

with the actual server application being unaware of any change in location. When the

mobile host moves to a new gateway any existing connections between a client and

the server will be tunnelled to the new gateway as discussed in Section 3.2.4.

Therefore any currently open connections at the time of handoff will still be valid

even after the movement of the server. However since the old gateway can no longer

contact the mobile host, the ServerImpl stub held by the ImplProxy object on the old

gateway is no longer of any use and any new clients connecting to it will not have

their calls forwarded. To overcome this a means of communication between the two

gateways has to be introduced. This is achieved by extending the functionality of the

RMI GatewayRegistry objects held by the gateways.

To explain how handoff occurs in the Mobile RMI model we will start by

assuming that the system (i.e. the mobile host, the mobili ty gateway and the remote

host) has been initialised so that the fixed client has downloaded the ImplProxy stub

and is able to call methods on the remote server object on the mobile host via the

ImplProxy. Handoff to a new mobili ty gateway is affected as follows:

1. MH sends a Handoff Request message to the new MG and all existing server-

client connections through the old gateway are tunnelled through the new

gateway. The MH downloads the stub for the GatewayRegistry object from

the new gateway.

2. By calli ng the register() method on the GatewayRegistry stub, the Carrier and

ImplProxy objects and all associated classes and interfaces are uploaded to

the new MG. The Carrier object is run and the ImplProxy object is registered

with the rmiregistry on the new MG.

3. MH calls the method callOldMG(…) on the GatewayRegistry stub from the

new gateway. This causes the GatewayRegistry service on the new MG to

download the stub for the GatewayRegistry service from the old MG.

4. The new MG calls handoff(…) on the GatewayRegistry stub from the old

MG. This forwards a call to the method changeStub(..) in the ImplProxy

 48

object on the old MG, causing it to discard the stub it had previously (i.e.

before the handoff process had begun) downloaded from the MH. The

ImplProxy replaces this stub with one that it downloads from the new MG.

In this way a ‘chain’ of proxy objects is set up between the MH and the RH. The

client application on the RH, which is unaware of communicating with anything other

than the old ‘home’ MG, calls the ImplProxy on the old MG. This in turn forwards the

call to the ImplProxy object on the new ‘current’ MG. Lastly the new MG calls the

actual Impl object on the MH, which actually performs the service. In the same way

data is returned through the proxies from the RH to the FC.

 The call from the new MG to the old MG also causes the old MG to replace

the stub registered with the local rmiregistry with that of the ImplProxy on the new

MG. In this way any new clients accessing the old MGs rmiregistry will receive a

Stub to talk directly to the new location of the ImplProxy instead of communicating

via the old gateway. Also, whenever the mobile host changes gateway, all gateways

that it had previously registered its server object with must be notified of the change

of location. Since all the gateways in the chain all the way back to the original

gateway have the required GatewayRegistry stubs this is just a matter of each

Gateway making a call to the previous one and telli ng it the location of the new stub.

 Another factor to consider is the race condition that occurs when the handoff

call from the new gateway reaches the old gateway and a client connected to the old

gateway makes a call on the ImplProxy object. The call on the proxy will have to be

suspended using a lock on the ImplProxy object until the stubs have been swapped.

4.6 Semantics of Proxy and Carrier Classes

The proxy and carrier classes exported by the mobile server object have a generic

format. The only difference between proxy and carrier objects exported by servers

implementing different remote interfaces is the name of the proxy and carrier classes,

the name of the remote interface that the proxies implement, and the inclusion of

whatever methods the remote interface specifies. All of the rest of the actual code

including the packages imported, methods to download the required classes, register

the ImplProxy etc. are entirely generic. As a result of this it is possible for both the

carrier and proxy classes to be automatically generated (e.g. with a Perl script)

 49

provided the remote interface and the carrier and proxy class names are supplied as

arguments.

4.7 Summary

In this chapter a design for allowing similar mobili ty for RMI clients and servers as is

currently afforded to CORBA servers using the ALICE architecture was outlined. The

differences between object addressing in RMI and CORBA that necessitate a radical

change in the ALICE architecture were outlined and an application level solution

based on the use of proxy objects was given along with schemes for allowing the

return of remote references from remote method invocations, again based on proxy

objects. A means of allowing handoff to occur between mobili ty gateways was then

described which allowed not only current clients of the server to continue making

calls but allowed new clients contacting the old gateway to be redirected by use of

RMI stubs, to the new gateway. Finally, the semantics of the carrier and proxy classes

needed for the design were examined and it was concluded that they were very much

generic and as such were candidates for automatic generation.

 50

Chapter 5

Implementation

This chapter discusses how the Java Mobili ty Layer was completed and how the

proxy object design discussed in the previous chapter was implemented. Both of these

were completed and successfully tested together. Additional work on making the

provision of mobili ty support more transparent to the programmer was not completed

although the issues involved were examined in detail. The chapter starts by discussing

the structure of the Mobili ty Layer and the work that remained to make it fully

functional. Following this the RMI objects used to implement the proxy scheme are

closely examined.

5.1 Implementation Goals

The main aim of the implementation was to construct an RMI server capable of

residing on a mobile host and can interact with remote clients that have no knowledge

of its mobili ty. The server should be able to perform handoff between mobili ty

gateways allowing it to change point of contact with the fixed network while at the

same time not disturbing any existing transport connections to clients and remaining

contactable to new clients. The Java Mobili ty Layer should provide the session layer

mobili ty support, re-establishing broken transport connections, caching data,

connection multiplexing etc. The application layer proxies on the gateways should

forward RMI calls to the mobile server and the GatewayRegistry objects should

provide the mechanism for the gateways to communicate with each other when

handoff occurs. The task of writing mobili ty capable RMI servers should be made as

easy for the programmer as writing a normal RMI application. To achieve this the

tasks of producing proxy and carrier objects for a mobile server should be automated

and the code required to register the proxy with the gateway should be hidden behind

the code that normally performs the RMI task of binding to the local rmiregistry.

 51

5.2 Java Mobility Layer

Java applications cannot interface with the original ALICE Mobili ty Layer as it is

coded in C. There were two possible ways to provide Java applications with the same

mobili ty support that was afforded to C applications; one was to completely recode

the Mobili ty Layer in Java, and the other was to add a Java Native Interface ‘glue

code’ layer to the existing C code. The first option was taken after it was realised that

the size and complexity of the glue code would far outweigh the costs of a full Java

rewrite of the layer [Corbett ‘00]. At the start of this project much of the Java

Mobili ty Layer had been coded but was not fully functional and still required

extensive debugging.

5.2.1 Previous Work on the Java Mobility Layer

The following is a brief description of the main classes used in the implementation of

the Java Mobili ty Layer.

MSocket

The MSocket is the virtual socket connection that is returned to the RMI client when

the createSocket() method is invoked on the RMISocketFactory. The MSocket has an

associated MInputStream and MOutputStream, which are used to copy data to and

from the relevant caches when data is sent or received by the RMI application.

MHServerIn

The MHServerIn thread is responsible for listening on the transport connection to the

mobili ty gateway for any new messages, interpreting the message and then writing

any contained data to a cache from where the data can be read by the MInputStream.

MHServerOut

The MHServerOut thread constantly checks the output caches written to by the

MOutputStream for new data and if it finds any it writes it out to the gateway using

the MGatewayConnection.

 52

MGatewayConnection

MGatewayConnection represents the actual transport connection to the gateway and

its input and output streams are used by the MHServerOut and MHServerIn threads to

send and receive messages. The MGatewayConnection class also monitors the state of

the transport connection and re-establishes it if it breaks.

MGSetup

This thread initialises the Mobili ty Layer when the first call to create a socket occurs.

It sets up the connection to the gateway by instantiating the MGatewayConnection

class, sets up the SocketArray class and starts the MHServerIn and MHServerOut

threads. After this it creates a dummy socket that MSocket objects connect to in order

to be able to get their MInputStream and MOutputStream objects.

SocketArray

The SocketArray class contains an array of all MSocket objects that have been

created.

Semaphore

The concurrent operation of the numerous threads used in the Mobili ty Layer is

controlled by extensive use of locking mechanisms. Since the synchronization

mechanisms used in Java are different to those available in C/C++ a Java model of the

semaphore used in the original C Mobili ty Layer was implemented so the same form

of locking could be used. The resulting Semaphore class provided an object to act as

the lock and synchronised acquire() and release() methods to obtain and release the

lock object.

CachedData

All data that is placed in any of the caches is placed in a container class called

CachedData. The class contains the actual data along with the length of the data and a

unique identifier for the packet. This identifier is used to locate the data and remove it

from the cache when an acknowledgement of its reception by the communicating

party is received.

 53

Basic Operation of the Mobility Layer

The basic operation of the Mobili ty layer is ill ustrated in Figure 5.1 below. When an

RMI application requires a socket it makes a createSocket() call to the

RMISocketFactory which will return a predetermined type of socket. In this case it

will return a reference to an MSocket. If this is the first MSocket to be created then

the MGSetup thread will first initialise the Mobili ty Layer and make the connection to

the gateway by creating an instance of the MGatewayConnection class. The MSocket

will connect to the dummy socket provided by MGSetup. The application can then

write to the MOutputStream, which places the data in the cache from where the

MHServerOut thread will write it out over the connection to the gateway. Data

returned from the gateway will be placed in a cache by the MHServerIn thread from

where it will be read by the MinputStream and returned to the application.

Application

RMI

MSocket

Remote method invocation

createSocket()

Opens a virtual input and output
stream

Mobili ty Layer
MGSetup

 Caches

MHServerOut MHServerIn

MGatewayConnection

To Mobili ty Layer on MG

Figure 5.1 Normal operation of the Mobility Layer

 54

5.2.2 Completion of Java Mobility Layer

The components described in the previous section had already been implemented but

had not been fully tested and debugged. Continuing work on the layer in this project

successfully completed the implementation and tested it using RMI applications.

Much of the debugging concerned fixing small synchronisation problems with the

various caches used in the layer and their interaction with the input and output

threads. Other work involved the addition of a means of properly closing sockets, an

RMISocketFactory to return the correct type of socket depending on whether the

socket target is local or remote and a new scheme to assign logical connection

identifiers to MSockets to replace the incorrectly functioning original.

Also developed during the course of the project was a skeleton Java mobili ty

gateway that mimicked the operation of the C gateway, accepting socket connections

from the mobile host, responding to messages with the correct acknowledgement,

relaying data to the remote host etc. The Java gateway was an invaluable tool for

debugging the Mobili ty Layer. However the Java gateway did not perform all the

tasks of the C mobili ty gateway; all sockets created on the gateway to connect to the

mobile host were ordinary Java sockets not ALICE MSockets. Further work is

required to integrate the Java Mobili ty Layer with the existing C mobili ty gateway

and to implement handoff.

5.3 RMI Mobility Proxy Objects

With the completion of the Java Mobili ty Layer the session layer section of the

required mobili ty support was in place. Next to be implemented were the RMI objects

that would provide the application layer support for mobile RMI server objects. These

objects include the Proxy objects that forward RMI calls to the mobile server from

their position on the mobili ty gateway; the GatewayRegistry objects that the server

uses to pass the Carrier and Proxy objects to the gateway and which provide the

means for gateways to communicate during handoff and the Carrier objects which

allow the GatewayRegistry to interact with Proxy objects which implement interfaces

unknown to it.

 55

5.3.1 Overview of Implementation

The design requires having RMI objects on the mobile host and the gateway. The

RMI server object resides on the mobile host, which also holds the code for the

Carrier and Proxy classes in file directories serviced by web servers so that they can

be downloaded by other machines. The Carrier class is basically a wrapper class for

the Proxy that is used to pass the Proxy class to the GatewayRegistry RMI object on

the mobili ty gateway. Every mobili ty gateway contains one of these GatewayRegistry

RMI objects that implement an interface (called Mobili tyRegistry) that is known to

the mobile host and hence it can invoke methods on it after downloading its stub. The

remote host holds a client object for the service implemented by the remote server.

The mobile host and each gateway must have rmiregistries operational at all times.

5.3.2 Classes and Interfaces

The following are brief descriptions of the classes and interfaces used in the

implementation of the proxy scheme.

Server Interface

This is the interface that the server on the mobile host implements and is known to

both the remote server and the client wishing to invoke methods of that interface on

the remote server object. RMI requires that interfaces used by remote servers extend

the java.rmi.Remote class and that each method of a remote interface declares a

java.rmi.RemoteException [RMI Spec ‘99]. For the purposes of this discussion a

server interface (see Figure 5.2 below) called Arith is examined that defines a single

method to add together two arrays supplied by the client as parameters and returns the

resulting array.

Figure 5.2 Arith interface

ß�à�á�â�ã�äåã�ækç�è¤é�ê�ë�äkèíì�é9ãkç�îïèJð�ç�è�ækñ�òôó�ë#õ%ë÷ö�é)ø%ã_öKùkèkø�ú�ç�è { û�ü3ýÿþ�����������û�üký���þ	��
 û�ü3ý
�}þ���� ý�������������������ý����! �"#��$3ý�û%�%ü�&
'

 56

Carrier Interface

The carrier class that is exported to the mobili ty gateway by the server object

implements the Carrier interface. In this discussion the carrier class is called

ArithCarrier. This Carrier interface is known to the GatewayRegistry and is used to

forward calls to the Proxy object, which implements interfaces unknown to the

GatewayRegistry. The interface only defines two methods – getHostURL(), which

returns the server location used as a unique identifier and passNewAddress() that the

GatewayRegistry uses to pass the location of the Proxy stub on the new gateway to

the Proxy object on the old gateway so it can change its stub.

Figure 5.3 Carrier interface

MobilityRegistry

The Mobili tyRegistry interface is a remote interface that defines the interactions that

occur between the mobile server object and the GatewayRegistry object on the

gateway that implements the Mobili tyRegistry interface. Three methods are defined

by the interface – register(), callOldMG() and handoff(). The mobile server calls

register() when it first makes contact with a mobili ty gateway that it wishes to use and

passes as parameters to register() the location of the carrier class code to be

downloaded by the gateway, an rmi-formatted address pointing to the mobile servers

RMI stub in the rmiregistry on the mobile host and the name of the carrier class. The

mobile server calls callOldMG() on the Stub of the new GatewayRegistry object when

it connects to a new mobili ty gateway after leaving another. The server passes the

new GatewayRegistry object the address of the last gateway the mobile host was

connected to and the address from which the mobile server objects RMI stub can be

downloaded. The new GatewayRegistry object will then contact the gateway at the

(�)�*,+�-�.�-,/#0�1�243,5�.#17685�2�2!-#192:
;�<�=,>�?�@�A�B�C!?�D#EFE�G�B�H#I�J#B�K�LNMPORQTS
U�V�W,X�Y�Z\[N]�Y#^
U�_�`�`#a�bdc�e�^�^�fgb�`�`9hji�k�f!Y�l#mnl#b!c8o,p�e�^�^�fgb�`�`#qTrs

 57

specified address and download the stub for its GatewayRegistry object and invoke

the handoff() method on it. Passed as parameters to handoff() are the address where

the new proxy objects RMI stub can be found (i.e. the new gateways’ rmiregistry) and

the String serverURL that was passed to the new GatewayRegistry object by the

mobile server when it called callOldMG(). The old GatewayRegistry object uses this

String to identify the correct Carrier object from an array of stored Carrier objects.

The passNewAddress(serverURL) method will then be called on the Carrier object

and this will i n turn call the changeStub(serverURL) method on the Proxy object.

Each of these methods returns a Boolean value as a signal of success or failure.

Figure 5.4 MobilityRegistry interface

Proxy Class

The proxy class, here called ArithImplProxy, implements the above interface and also

extends the UnicastRemoteObject class since it must register itself with the

rmiregistry on the gateway. The ArithImplProxy class has one field, a RemoteStub

object that represents the RMI stub that the Proxy uses to communicate with either the

server object on the mobile host or another Proxy on a different gateway if the mobile

host has changed gateway since registering the Proxy with the gateway it is located

on. The ArithImplProxy class defines the method getInitialStub(..) in which the stub

from the mobile server object is downloaded using the URL supplied to the Proxy

t�u,v�w�x�yFx�z#{�|�}g~���y#|�����v�x�w,x#{����#|,��x��#{�}��n|��N{,|�z#�������%���T�4}R��x�����|����N{�|
�

v%�,��w#|���z�}4|���x,�#{�|�}N�4�#{�}!x�z��
y%�N�,|8�!��y#�,{�x%��z���#�9�!���#�n�#�������9�!�%���� N¡!¢�£#¤��N�%¢���¥¦�#���!�����
£� #¤N���#§�¤��8��¨
��©P�R¢�ª���«�¤%��¤T¬4�R����¬�­�����¢N����®!¯�£#�������%¢���°

±%²,²�³#´�µ�¶F·#µ�³�³d¸�³#¹�º�»½¼j¾#¿�À!Á,¶#Â7²�³�¹�º�»�Ã�¹,¹�À4´�Ä�ÄÆÅÇ¾�¿�À4Á�¶�Â�Ä�´ÈÀÊÉN´�À�Ë�Ì�ÍdÎ
¿�ÏPÀR²�Ð�Ä�Ñ�µ%É�µTÒ4À Ó�Á�Ò�Ì�´�Ó�²N¿�´�Ô!Õ�·#´�Ö�¿�Á%²�¶�×

±%²,²�³#´�µ�¶FÏ#µ�¶#¹#²NØ�Ø�¼j¾�¿�À!Á�¶#ÂnÄ#´�À�ÉÈ´�À4Ë�Ì�Í½ÅÙ¾#¿�ÀdÁ�¶#Â
¶�´!Ð8º�»�ÃP¹�¹�À4´�Ä,Ä#Î
¿�ÏPÀR²�Ð�Ä�Ñ�µ%É�µTÒ4ÀRÓ�Á�Ò�Ì�´�Ó�²N¿�´�Ô!Õ�·#´�Ö�¿�Á%²�¶�×

Ú

 58

from the Carrier object and the method changeStub(..) which discards the old stub and

replaces it with the new one. changeStub(..) also replaces the stub registered in the

local gateways’ rmiregistry with the Stub for the ArithImplProxy on the new gateway.

Figure 5.5 Class diagram for ArithImplProxy.

GatewayRegistry

The GatewayRegistry object, resident on every mobili ty gateway, implements the

Mobili tyRegistry interface. GatewayRegistry must also extend the

UnicastRemoteObject class to allow remote method invocations to be made on it.

GatewayRegistry maintains an array of all Carrier objects registered at that gateway.

When a gateway invokes the handoff() method on the previous GatewayRegistry it

supplies a String representation of the actual location of the servers’ stub in the

rmiregistry on the mobile host (e.g. rmi://foo/ArithServer if the mobile host is called

foo and the mobile server object has been bound in the rmiregistry with the name

‘ArithServer’). Since this address can only refer to a single server object it can be

used to uniquely identify the corresponding Carrier object for the server. The

GatewayRegistry uses it to locate the required Carrier object from those stored in the

array.

ArithImplProxy

+ ArithImplProxy (String);
+ add(int[] , int[]) : int []
+ getInitialStub(String);
+ changeStub(String);

- remStub: RemoteStub

 59

Figure 5.6 GatewayRegistry class diagram

Carrier Class

The class that implements the Carrier interface in this example is called ArithCarrier.

It also implements the Runnable interface so that when the class is downloaded by the

GatewayRegistry object from the mobile host and instantiated, the run () method can

be called and the work of creating the ArithImplProxy object and registering it with

the local rmiregistry will be done inside the run () method. Also performed inside the

run () method is the downloading of the Stub class for the ArithImplProxy from the

mobile host. This Stub is required for the registration of the ArithImplProxy object

and is also required for handing to clients when they contact the rmiregistry on the

gateway. The server interface (Arith in this case) is also required and so is

downloaded as well.

Figure 5.7 ArithCarrier class diagram

GatewayRegistry

+ GatewayRegistry ();
+ register (String, String, String): boolean
+ callOldMG (String, String): boolean
+ handoff (String, String): boolean

- host: String

- carrierArray[] : Carrier

- counter: int

ArithCarrier

- host: String
- proxy: ArithImplProxy

+ ArithCarrier ();

+ run ();

+ getHostURL (): String

+ passNewAddress (String);

 60

5.3.3 Handoff

The interaction diagram in Figure 5.8 below ill ustrates the ordering of the method

calls that are made when the mobile server initiates the handoff procedure by

registering with the new gateway and calli ng callOldMG() on its GatewayRegistry

object. In the diagram ArithImpl is the server object on the mobile host, GR2 is the

GatewayRegistry object on the new gateway, GR1 is the corresponding object on the

old gateway, ArithCarrier is the relevant carrier object on the old gateway, and

ArithImplProxy is the relevant proxy object on the old gateway.

Figure 5.8 Methods and objects invoked during handoff

 As handoff has not been implemented in the Mobili ty Layer yet the

callOldMG() method invocation has to be artificially triggered. When handoff is

implemented at the lower levels then an upcall to the application level should make

this call instead.

 61

Chapter 6

Evaluation

This chapter briefly examines the performance of the Java Mobili ty Layer and RMI

Proxy scheme implemented in this project and compares this to the performance of

normal RMI with no mobili ty support. The tests involved provided only provisional

and rough indications of the performance of the system as the lack of fully functional,

properly integrated mobili ty gateway software limited the validity of the results.

6.1 Code Size

Since the amount of memory on a mobile device is limited it is desirable that the Java

Mobili ty classes take up as little space as possible. Figure 6.1 below details the size of

the code for each group of classes used in a mobile RMI server. The code size given

for the second and third rows in the table refer to the size of the class files for a server

implementing the Arith interface specified in the previous chapter and its associated

carrier and proxy classes.

Software Component Size of Code (kB)

Java Mobili ty Layer Classes 60

Java RMI Server & Stub/Skeleton 11

Proxy, Carrier & Stub/Skeleton 16

Total

87 kB

Figure 6.1 Java Code Size for Required Classes on Mobile Host

The total of 87 kB for all classes required to act as a mobile RMI server is quite small

compared to the memory available on most PDAs available today. For example, the

Palm Pilot from Palm Inc. has 8 MB of memory while the basic model of Microsofts’

H/PC comes with 16 MB.

 62

6.2 Invocation Times

The purpose of these tests was to obtain approximate results for the performance of

the Java Mobili ty Layer and RMI Proxy scheme. In all of the tests the mobile host

used was laptop using the Windows 98 operating system and equipped with a

WaveLAN wireless LAN card. The mobili ty gateway was a desktop PC using Solaris

OS with a wired LAN connection.

Mobile Server Registration Time

The purpose of this test was to determine the average time taken for an RMI server

running on a mobile host to register its Proxy object with a GatewayRegistry object

on a mobili ty gateway. Essentially what happens during the registration process is that

the server invokes a method on the GatewayRegistry object which then downloads the

carrier and proxy classes from the mobile host, instantiates them and registers the

proxy object with the rmiregistry on the gateway.

The gateway software used was the skeleton Java gateway implementation

that allowed the mobile host to connect to the gateway using Mobili ty Layer sockets.

Any sockets created on the gateway to connect to the mobile host (such as when the

class files for the carrier and proxy classes are downloaded by the GatewayRegistry

object) were ordinary sockets that did not have Mobili ty Layer support. This was due

to the limited capabili ties of the skeleton gateway. The GatewayRegistry downloaded

a total of 15 KB of class files during the test, which was carried out a total of 10

times. The average time taken for the entire registration process was found to be 15

seconds.

Remote Method Invocation Using Mobility Layer

In this test the performance of the Java Mobili ty Layer is examined by having a client

on the mobile host invoke a method on an RMI server object resident on a remote

host. RMI is run on top of the ML connecting to the same skeleton gateway as before.

The server and gateway were located on the same machine. The method was invoked

100 times and the average time for 1 method invocation was calculated. The test was

conducted for different message sizes (i.e. the parameters passed in the method

 63

invocation were changed to give the desired message size). The results are shown in

Figure 6.2 below along with the corresponding times for invocations made without

using the ML.

Message Size

(bytes)

Invocation Time with

ML (milli secs)

Invocation Time

without ML (milli secs)

8 1910 17

256 1930 21

384 1940 22

448 4730 42

512 4770 49

768 4810 49

1024 7600 51

1280 7730 52

1536 7820 56

1792 7850 60

Figure 6.2 Average method invocation times

As can be seen from the table above the data caching, multiplexing and other

functions carried out by the Mobili ty Layer introduces much overhead to the process

of invoking a remote method

 64

Chapter 7

Conclusions

This chapter provides a brief description of the work completed during the course of

the project. Remaining work on the implementation of the design is listed as well as

possible future continuations of work started in this project.

7.1 Work Completed

The first major section of work completed was the completion of the implementation

of the Java Mobili ty Layer. This required an in-depth knowledge of the ALICE

architecture and the correct operation of the different software components of the

Mobili ty Layer. A good understanding of the issues and techniques involved in

distributed socket programming and multithreading in Java was reached as well as an

appreciation for the issues involved in designing distributed systems capable of

supporting object mobili ty.

 In the second major part of the project a system of proxy objects to enable the

mobili ty of RMI server objects was designed and implemented. This system was then

tested and evaluated using the Java Mobile Layer and a basic Java implementation of

the original C/C++ mobili ty gateway. The end result of the implementation showed

that RMI server objects on remote hosts could change mobili ty gateway and still have

methods invoked by remote hosts by relaying the invocation through a proxy object

on the mobili ty gateway.

 Although the design worked, the significant differences between the

approaches taken to remote object locating and naming by RMI and CORBA meant

that major changes had to be made to the ALICE architecture to allow the same

mobili ty for RMI objects. The work previously done by the S/IIOP layer was instead

performed by RMI objects. The work provided a good introduction to the intricacies

of programming with a distributed object technology like RMI. Sample RMI

applications were constructed for testing with the Mobili ty Layer and the proxy

 65

system. The benefits and disadvantages of using RMI as opposed to CORBA were

also understood.

7.2 Remaining Work

The work remaining on this project can be summarised as follows –

Û The Java Mobile Layer must be integrated with the C/C++ ALICE mobili ty

gateway code. It is expected that this will not involve significant code

changes.

Û An automatic code generator, perhaps written as a Perl script, to produce the

Proxy and Carrier classes given the specification of the server interface and

the desired names of the two classes. This should allow the programmer to

produce these classes by a simple command such as the rmic command that

produces the RMI stub and skeleton classes.

Û The code to register the Proxy object with the mobili ty gateway should be

hidden behind the Naming.bind(…) method in the Java source code on the

mobile host to make producing mobile RMI server objects easier for the

programmer.

Û A race condition occurs during the handoff procedure when the handoff()

method is invoked on the GatewayRegistry object on the old gateway and a

client connected to that gateway tries to invoke a method on the Proxy object.

The Proxy should be locked as soon as the handoff() call is received so that

the Stub can be changed and the call can be redirected to the new Proxy object

on the new mobili ty gateway.

Û Handoff remains to be implemented both in the Java Mobili ty Layer and in the

C/C++ ALICE Mobili ty Layer.

 66

7.3 Future Work

An interesting possibili ty for future work in this area is the integration of the RMI

mobile proxy model with the Jini distributed computing infrastructure. Initial work on

integrating the two carried out during this project showed that they worked well

together and no major changes have to be made to the proxy system architecture. The

biggest change is that the rmiregistry is replaced by a Jini lookup service, and the

discovery and lookup processes are introduced. The Jini lookup service does provide

a more powerful means for locating RMI objects than that currently provided in the

proxy system by the rmiregistry. Further investigation of how Jini’s facili ties for

remote events, leasing of services and distributed transactions affect the system would

also need to be carried out.

 67

Bibliography

[Corbett ‘00] Feasibili ty Study of the Implementation of ALICE in a Jini -

based Environment, Mark Corbett, TCD Computer Science

Final Year Project Report, May 2000

[Duchamp ‘92] Issues in Wireless Mobile Computing, Dan Duchamp,

Proceedings of Third Workshop on Workstation Operating

Systems, IEEE, Key Biscayne Florida, April 1992

[Demers ‘94] Dealing with Tentative Data Values in Disconnected Work

Groups, M. M. Theimer, A. J. Demers, K. Petersen, M. J.

Spreitzer, D. B. Terry, and B. B. Welch, Proceedings of the

Workshop on Mobile Computing Systems and Applications,

Santa Cruz, California, December, pages 192-195, December

1994

[Edwards ‘99] Core Jini, W. Keith Edwards, Prentice Hall, Upper Saddle

River, NJ, USA, 1999

[Fiuczynski ‘94] Programming Methodology for Disconnected Operation,

Marc Fiuczynski, Univ. of Washington, ECOOP ’95, 1995

[Haahr ‘99] Supporting CORBA Applications in a Mobile Environment,

 Mads Haahr, Raymond Cunningham and Vinny Cahill ,

MobiCom '99: 5th International Conference on Mobile

Computing and Networking. Seattle, August 1999

[Heideman ‘92] Primarily Disconnected Operation: Experiences With Ficus

Heideman, Page, Guy, Popek

Second Workshop On Management Of Replicated Data, IEEE

November 1992.

 68

[Huston ‘93] Disconnected Operation for AFS (Andrew File System),

Huston, Honeyman, CITI, University of Michigan,

CITI Technical Report 93-3, June 18, 1993

[Jini Spec ‘00] The Jini Specification, Ken Arnold, Bryan O’Sulli van, Robert

W. Scheifler, Jim Waldo, Ann Wollrath, Prentice Hall, July

1999

[Johnson ‘96] Protocols For Adaptive Wireless and Mobile Networking,

David B. Johnson and David A. Maltz,

IEEE Personal Communications, 3(1):34-42,

February 1996

[Joseph ‘97] Mobile Computing with the Rover Toolkit

 Anthony D. Joseph, Joshua A.Tauber, M. Frans Kaashoek.

IEEE Trans. on Computers: Special issue on Mobile

Computing, 46(3), March 1997

[Joseph ‘96] Building Reliable Mobile-Aware Applications with the Rover

Toolkit, Anthony D. Joseph, M. Frans Kaashoek

ACM Wireless Networks, 1996

[Kistler ‘93] Disconnected Operation in a Distributed File System, J.J.

Kistler, PhD. Thesis, Dept. Of Computer Science, CMU

May 1993

[Kleinrock ‘95] Nomadic Computing - An Opportunity, Leonard Kleinrock,

ACM SIGCOM Computer Communication Review, pp. 36-40

[Mullender ‘93] Distributed File Systems (in "Distributed Systems"),

Satyanarayanan M., Distributed Systems, 2nd Ed., S.

Mullender ed., New York, NY, ACM Press, pp. 353-383

1993

 69

[Page ‘98] Primarily Disconnected Operation: Experiences With Ficus

Heideman, Page, Guy, Popek, Second Workshop On

Management Of Replicated Data, IEEE, November 1992

[Perkins ‘98] Mobile Networking Through Mobile IP,

 Charles E. Perkins,

 IEEE Internet Computing, January 1998

[RMI Spec ‘99] Java Remote Method Invocation Specification,

 Revision 1.7, Java 2 SDK, Standard Edition, v1.3.0,

 December 1999

[Saltzer ‘84] End-to-End Arguments In System Design, J. H. Saltzer, D. P.

Reed, and D. D. Clark, ACM Transactions on Computer

Systems, pages 277-288, 1984.

[Satya ‘96] Application-Aware Adaptation for Mobile Computing,

M. Satyanarayanan et al, Proceedings of the 6th ACM SIGOPS

September 1994

[Satya ‘96] Mobile Information Access, Mahadev Satyanarayanan, IEEE

Personal Communications, February 1996

[Satya ‘93] Disconnected Operation in a Distributed File System,

J.J. Kistler, PhD. Thesis, Dept. Of Computer Science, CMU

May, 1993

[Skopp ‘93] Disconnected Operation in a Multi-User Software Development

Environment, Skopp, Kaiser (Columbia Univ.)

[Tannenbaum ‘96] Computer Networks (3rd Edition), Andrew Tannenbaum,

Prentice Hall, pp. 412-448

 70

[Terry ‘94] The Bayou Architecture: Support for Data Sharing among

Mobile Users, Demers, Petersen, Spreitzer, Terry, Theimer,

Welch (PARC Xerox)

[Walker ‘83] The LOCUS Distributed Operating System, Bruce Walker,

Gerald Popek, Robert English, Charles Kline, and Greg Thiel.

Proceedings of the Ninth ACM Symposium on Operating

Systems Principles, pages 49-70, Bretton Woods, New

Hampshire, October 1983.

[Wollrath ‘96] A Distributed Object Model for the Java System, Ann

Wollrath, Roger Riggs and Jim Waldo. Proceedings of the

USENIX 1996 Conference on Object-Oriented Technologies

(COOTS), Toronto, Canada, June 1996

[Venners ‘99] Inside the Java 2 Virtual Machine, Bill Venners, McGraw-Hill

Professional PublishingÜ December 1999

