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Abstract

The eponential growth of the Internet and the increasing demands put upon Web
servers has creaed the neal for a scdable dustered Web servers. In this paper we
attempt to analyse the important issues fadng the implementor of a dustered Web
server. The issues of TCP handoff problems, dynamicaly generated Web documents
and how a Digstributed Shared Memory paradigm might be used to optimise a
clustered Web server.

We aalyse severa clustered Web server architedures, and use traces from Web
servers in a smulation of several of the Web server architedures to further examine
the cating strategies of those achitedures. Finally some recommendations are put
forth for further research into areas that have been identified as criticd to clustered
Web servers.
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1 Introduction

In this paper an evaluation of Cadiing Strategies in the context of a dustered Web
server will be examined. Of particular interest is how a dustered Web server using
Distributed Shared Memory (DSM) can take advantage of the bemfits of the DSM.

Cade replacement agorithms will be eplored first of al, and then the

examination will expand to severa clustered Web server architedures.

The achitedure of a dustered Web server will be laid out, and the pros and cons of
the different approades will be weighed up The dustered Web server
architedures that will be examined in detall are the Harvard Array of Clustered
Computers (HACC), Locdity-Aware Request Distribution (LARD), Client-Aware
Protocol (CAP), Parallel Pull-Based LRU and Weighted Round-Robin.

A smulation of LARD, PPBL and RR will be reviewed, and the results of this
simulation will alow us to gain a better knowledge of what the key areas that neal
to be focused upon in desgning aclusteredWeb Server.

2 Stateof the Art overview

2.1 Web Server Caching Strategies

Cadhing has proved to be an easy and inexpensive way to make the WWW work
faster. Web objeds such as HTML documents, images, and multimedia dips can
be catbed in order to improve the response time observed by the Web “surfer”.
Cadhes can be used at threedifferent levels of atypicd journey of a Web document
from Web server to client: at the Web server itsdlf (in the form of a main-memory
cade), somewhere dong the server to client path (in a proxy cadie) or at the client

(abuilt-in browser cade).

The main-memory cade is of utmost importance to the overal performance of a
Web server. It is naturdly this area of the Web cading domain that interests us,

and it is this that we will nhow procee to investigate further. The performance of



the Web server can be increased if requested documents are caded, as this will

reduce response time and dso decrease erver load.

Many existing Web servers (e.g. NCSA and Apade) rely on the underlying file
system buffer of the operating system to cade recantly accessed documents. This
means that a request for a file will i nvolve the operating system buffer copying the
contents of the file to the Web server’s buffer. This means that we are dendant on
the file systems cadiing, which may not be the best option for Web cading. A
better solution is to use adedicaed document cade with a more dficient cading
policy (as regards to the particular neals of the web) than that used by the file
system.

Data cading in databases and file systems has been the subjed of a huge anount
of reseach. However the dstrategies employed for Web server cading must
necessrily be different to those employed in database and file system cading, as
the traditional cade policies that perform well in database and file systems do not

perform well for the web.

This is due to severa key differences in web cading and traditional paging
problems. First, web cading is variable sized cading. Web documents vary
dramaticdly in size depending on the information they cary (text, image, video,
etc). Web servers aways real and cade aitire files, whereas file systems and
databases ded with fixed blocks of data. Second, cading is not obligatory in Web
servers. A file system or database dways places requested data blocks in the cate,
but a Web server cade manager will not chose to add a document to its cade if
this will be detrimental to the performance of the cade. Thirdly, there ae no
correlated re-reals or sequential scans in Web workloads. A Web user will not re-
read the same document in a short space at least from the perspedive of the Web
server- al such re-readswill be handled by the Web browser.

These differences demonstrate the differences between traditional cading and the
requirements for Web cading. We can see that a single request for a Web

document is not a good reason for the catie manager to include it in the cabe, as



one accss does not mean that this document will be accesd again in the nea
future. A good cade manager nedls to take these fadors into acount. It should
aso be noted that Web servers typicdly ded with fewer data items than file
systems and databases do. The number of documents gored in a Web server rarely
exceals 100,000 whereas file systems and databases ded in millions of blocks.
This means that the Web cade manager can afford to kegy datistics on its
documents, to better evaluate which documents dould be in the cade in order to

improve the overall performance of the Web server.

It is adso useful to note the difference between a primary Web server and a proxy
server. A proxy server can be potentially drawing from the eaitire set of Web
documents available on the Web, whereas a primary Web server is deding with
much more restricted set of documents. A primary Web server will also have a
much more skewed access patterns- there will be amore limited set of popular
documents in a primary Web server. It should also be noted that the primary Web
server stores its document cade in main memory, and so the cading agorithm
employed cannot be too complex, or else the dficiency of the dgorithm and the
amount of main memory spaceit consumes will countermand the usefulness of a

main memory Web document cade.

The performance metric for Web cades can be ather a byte hit rate or a document
hit rate. The byte hit rate is the ratio of thenumber of bytes of data fetched from the
cade to the total number of bytes requested. The document hit rate is the fradion
of requests stisfied from the cade. In file system and database cades, these two
metrics were one and the same, as al data items have the same size The byte hit
rate is important for proxy cadies, as it refleas network bandwidth savings. For a
primary web server, the document hit rate is of more importance as it diredly
affeds the response time observed by clients. We will now examine some of the

more popular Web cadiing palicies.

2.1.1 Least Recently Used (LRU)
This policy is inherited dredly from file system cadiing. This policy ads upon the

premise that recetly accessed objeds are likely to be acessed again. Thus when a



new request is recaved, the least recently used document in the cade is removed.
While this policy works admirably for fixed-size paging, it has obvious failings
when applied to the Web cading domain. This policy ignores the very pertinent

issie of documentssze.

212 LRU-Size

This policy [ASAWF95 uses a @mbination of parameters to sded which
document to evict from a web cade. Here the largest documents are evicted from
the cabe first. When documents are of the same size the least recently used of
those documents is removed. This approacd does have the drawbadk of considering
one parameter first, and then the second. This means that a document that narrowly
“loses’ on the first parameter will aways be evicted, even if its sesond parameter is
much more in its favour. Using a logarithm of the first sorting key means that the
second sorting key is used more often. A variation on this policy which does this is
cdled LRU-(log, Size) [ASAWF95].

2.1.3 LRU-Min

This policy [ASAWF95] takes the size of the new document into acount when
evicting documents in the cate. This policy first chedks to seeif there ae awy
documents of size greaer than or equal to the incoming document. If there ae, one
of these is evicted by LRU order. Otherwise, all documents half the size or greder
are oonsidered, and one of more of them is evicted. Then all documents a quarter of
the size ae onsdered, until there is enough space for the incoming document.
This policy yields better cade performance, but is more CPU intensive than the

smpler LRU-Size

2.1.4 Least Frequently Used (LFU)

This policy uses the frequency of web documents requests to seled which
document to evict from the Web cade. The document that is accessed least
frequently is removed from the cade. Similar to LRU, this policy ignores the isue

of document sizes, which can lea to inefficient management of the web cade.
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2.1.5 Static Caching

In this policy [TRS97], the cade of web documents is only updated after a cetain
time. The update is done using the Web server’s log to dedde which documents
should be caded for the next period of time. No new documents can enter the
cade during that time period. This policy performs better than most policies given
a reasonably predictable flow of requests into the Web server, and has a very low
CPU overhead. However its gdatic nature mean that it is aways not a suitable

policy for Web servers.

2.1.6 Greedy Dual-Size (GDS)

This policy is based upon the LRU model. It has been proven to be online-optimal
[CI97]. This means that the GDS policy will perform at least as well as any other
online replacement algorithm. The results from [CI97] have shown it to outperform
existing replacament algorithms in many performance apeds, including hit ratios.
While this policy was introduced as a Web proxy cade replacanent policy, it can
be ealy adapted to Web server cades. As the policy fundamentaly uses a
cost/size ratio to determine the worth of a document, the maximum document hit
ratio can be adieved with this policy by simply setting the st of every document
to 1.

The Gready Dual Size works as follows. Each caded page has an asociated value
H. When a page is brought into the cade, H is %t to the st of bringing that page
into the cate. When a page is removed from the cate, the value of that page
(minH) is subtraded from al the remaining values of H in the cade. H is st of the
value of cost/size As this is a main memory Web server cade and not a Web
proxy cade, the ast of bringing al documents is st to 1. Therefore H is st to

l/size

2.2 Cachingin aClustered Web Server

In the ontext of a dustered Web server, we have to evaluate which of these
algorithms will be of most use. Policies which use predetermined fixed vaues
bemme much harder to implement in a dustered Web server, espedadly if the Web

server is to be scdable. These values have to be determined by running
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smulations, and then these values are strongly influential on the performance of
the Web cade. When we onsider that there will be some sort of distribution
policy in a dustered Web server, it can be observed that policies that depend on

static values or on complex cdculations are not suitable.

Ead node in a dustered Web server will have its own Web cade in main memory,
and ead of these cates will be managed by its own cade replacanent agorithm.
At this level, the most important fadors influencing the dwoice of cade
replacement algorithm are simplicity, performance (document hit ratios) and an
ability to adapt its cade in an online fashion. In a dustered Web server eat node
does not necessarily know the wmplete request stream being handled by the
cluster, it only handles what is sent to it. But in a duster it is crucial that the nodes

are able to adapt to changesin their request dreams.

Consider the scenario of a locdity based dstribution algorithm in a dustered Web
server. Requests of type A are sent to node a type B to node b and type C to node
c. Eadch of the nodes cades will adjust their cades to result in the highest
document hit ratio possble. Now consider that node abeames overloaded, either
through an increase in the anount of requests of type A being handled by the server
or by node a eperiencing a fault of some sort. Now nodes b and c will start to
recave requests of type g as the distribution policy attempts to compensate for the
overloaded node a If their cade replacement agorithms cannot quickly and
dynamicdly adapt to the change in the request stream they have been recaving, the

overall performanceof the cluster will suffer greatly.

This area of main memory cading replacanent algorithms $ould not be ignored
in the cmntext of clustered web servers. The cading replaceament algorithm chosen
to manage the badk end nodes of the duster will have asignificant effed on the
document hit ratio. It was noted in [ASPO8] that using LRU instead of GDS as a
cade replacement agorithm lead to a 30% reduction in throughput results. An
interesting experiment would be to analyse the dfeds of including a cmbination
of online optimal agorithms and more static cade replacement policies, such as

Static Cading. However this hybrid approach would require a spedalized
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distribution policy, and as such is beyond the scope of this paper. It is likely that
such an approach would perform better than the goproacdes tested in this paper, but
a problem with such approaches would be a lack of easy scalahili ty.

2.3 Clustered Web Servers

The exponential growth of the Internet has creded the need for more and faster
Web servers cgpable of serving over 100 million Internet users. In the past the only
solution for scding server cgpadty has been to replacethe old server with a bigger,
faster server. This g/stem has the disadvantage of being very costly in that the
investment in the old server is completely wasted once an upgade is nealed. It is
in this gtuation that a dustered Web server is commercialy a more viable
approad, and imminently more scdable. Rather than replaang the old server, we
simply add more nodes to our clustered Web server as demand for the Web service

increases.

There ae many possble gproadies to clustering a Web server. The first
requirement that all clustered Web servers must med is that the duster must be
transparent to client browers- i.e. web browsers are unaware of the server cluster;
the duster must behave in the same manner as a single-server Web server from the
point of view of the web browser. Equally, transparency is important for the Web
server technology. Early commercia cluster-based Web servers such as Zeus and
Inkotmi [F97] did not make the dustering technology transparent to the Web server
software. They had an indissoluble whole rather than the layered architedure used
in fully transparent clustering. This means that the system neels $edalized
software throughout, and this increases the mst and complexity of the system.
While these tedhnologies outperform traditional single-server Web servers, they are

generaly dependant on proprietary software.

Most of the reseach examined in this paper is concerned with clustering techniques
that are not only transparent to the Web client, but also to the Web server, as most
Web servers do not have awy in-built clustering capabilities. We will now examine
severa high-level views of basic duster architedures and their pros and cons. The

terms used for defining the three separate types of clustering are taken from
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[SGROQ]. These types are layer four switching with layer two padket forwarding
(L4/2), layer four switching with layer three padket forwarding (L4/3) and layer
seven (L7) switching with either layer two padket forwarding (L7/2) or layer three
padcket forwarding (L7/3). These terms refer to which techniques by which the
cluster nodes are tied together. In a L4/2 cluster, for example, every node is
identicd above (OSI) layer two.

Every type of cluster deploys a dispatcher, to which al conredions to the Web
server are initially sent. The servers appea to be asingle-server becaise of this
dispatcher. The dispatcher can either be aswitch, where it processes incoming data
only, or a gateway, where it processng both incoming and outgoing data. Each
server will be employing stand-alone Web server software and nead not be avare

of the states of other server nodes, as Web requests saveno stateinformation.

2.3.1 Layer 4/2 Clustering

In L4/2 clustering, the network-layer addressis dared by the dispatcher and all of
the servers in the pool through the use of primary and secondary IP addresses. Al
the servers in the duster pool have the duster addressas a secondary address This
cluster addressis the primary address of the dispatcher. All incoming requests for
the duster addressare addessed to thedispatcher atlayer two.

When the dispatcher recaves a TCP/IP connedion initiation request, the dispatcher
seleds a target from the poal of servers to serve the request. This is done by some
type of load sharing algorithm, usualy a derivative of round-robin (Weighted
round-robin, WRR). The dispatcher then updates its tables © that future padets
arriving from that connedion will be rewritten with the layer two address of the
chosen server. The original TCP/IP connedion initiation request is then placel

badk onto the network with the rewritten layer two address
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replies

requests
=——>| Dispatcher

€

replies
Figure 1- Traffic Flow in a L4/2 Cluster

The advantage of L4/2 clustering is that due to the network address of the server
being identicd to that that the dient originaly sent its request to, that server can
reply diredly to the dient. Therefore the dispatcher only processs the incoming
data strean, which in Web traffic between client and server, is a small proportion
of the total communicaion between client and server. The dispatcher also does not
have to recomputed IP chedksums in software becaise only layer two parameters
are modified. The drawbad is that al the nodes must have a dired physicd
connedion to the dispatcher, due to layer two frame addressng. This is usually not

aproblem, as serversin aclustertend to be am ahigh -speed LAN.

L4/2 clustering is primarily limited in scdability by network bandwidth and by the
dispatchers rate of processng requests, as these ae the only part of the transadion
that are acually exeauted on the dispatcher, which is the potential bottlened in this
architedure. There ae plenty of examples of this clustering tedhnique in the
marketplace examples being ONE-IP [D97] and eNetwork Dispatcher by IBM
[HO99].

2.3.2 Layer 4/3 Clustering

L4/3 clustering dightly predates L4/2 methods. In this architedure, every server in
the duster has its own unique IP address All requests ent to the duster are
addressed to the dispatchers IP address As above, the dispatcher deddes upon a

15



server to processrequests for a new connedion through a load balancing algorithm.
The dispatcher then rewrites the servers IP address into the padket, and sends it
badk out onto the network. However the dispatcher will also have to recompute any
integrity chedksthat will be affected, such as CRCand padket chedksums.

When the dispatcher recaves a padket that is not a connedion initiation, it smply
inserts the new |P addressinto the padket, recomputes affeded integrity cheds and
resends out the padket. However padkets snt from the servers in the poal to the
client must aso travel through the dispatcher in this architedure. The dispatcher
will rewrite the source aldress to its own address and recomputes the integrity

codes before forwarding the padket to the dient.

Server 1
regquests
€—>| Djspatcher
replies
Server n

Figure 2- Traffic Flow in a L4/3 Cluster

It can been observed that L4/3 clustering will perform worse than L4/2 clustering,
given the alded workload imposed upon the dispatcher in L4/3 clustering. Thus the
dispatcher beaomes much more of a bottlened, due to the increased demandson its
services by the duster. Examples of L4/3 clustering are Magicrouter [APB96] and

LocdDireaor from Cisco Systems.

2.3.3 Layer 7 Clustering
The aeaof L7 clustering is one in which a grea ded of reseach is currently
ongoing. These dustering techniques use information contained in the OSI layer

seven (application layer) to augment L4/2 or L4/3 dspatching. This is known as

16



content-based dspatching since it works based on the wntent of the dient request.
It is in this area of clustering that both Locdity-Aware Request Distribution
(LARD) [AP8] and Paralel Pull-Based LRU (PPBL) [CO01] fall. Both of these
clustering architedures make use of a TCP handoff, an areathat must be examined
further before examining LARD and PFBL in more cefall.

From the introduction to the aeaof clustering techniques above, we can see that
L7 clustering offers the most potential improvements into the performance of a
clustered Web server. Content-based dispatching can be used to increase cade hits
on the servers, and thus improve the overal performance of the duster. L7
clustering will still be based upon either L4/3 or L4/2 tedhniques, but the alded
complexity of content-based dspatching is compensated by the individual servers
in the duster pool getting more requests that they can serve straight out of their

main memory cades.

2.4 TCP Handoff Protocol

When a dispatcher begins to examine incoming requests for content, in order to
make locdity-aware asgnments based on that information, we encounter some
problems that WRR avoids by simply assgning requests to the least loaded nodes,
irrespedive of the mntent of that request. This is becaise in order to insped the
contents of a request, a TCP connedion must be established with the dient prior to
assgning that request to a badk-end server. Thisistrue for any service (like HTTP)
that depends upon a connedion-oriented transport protocol like TCP.

In order to circumvent this problem, a technique such as TCP handoff must be
used. If a TCP handoff is not employed, then we revert to a Situation such as that
observed in L4/3 clustering tedhniques. At best we will have TCP splicing
[CRS99], where the data forwarding at the dispatcher node is done in the operating
system kernel. While this is an improvement on doing the relaying on a user-level
application, it still means that all badk-end servers must send their responses to
requests through the dispatcher. The TCP handoff medianism allows the badk-end
servers to respond dredly to the dients without passng through the dispatcher.

We will now examine a TCP handoff protocol in more cefall .
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In [APS28] a TCP Connedion Handoff protocol is introduced. The protocol is
transparent to the dients and also to the server applications running on the badk-
end server. Once a onredion is handed off to a badk-end, incoming traffic on that

connedion (mostly ACK padkets) is forwarded by a forwarding module locaed at

the bottom of the dispatcher’s protocol stad.

1 Conn reqT l

TCP/IP TCP/IP TCP/IP

A A
Handoff

Forward

reply

ak

Figure 3 - TCP Connection Handoff

A typicd connedion scenario is.
1) A client connedsto the dispatcher with arequest for aweb document.
2) The dispatcher at the front-end accepts the @nnedion, examines the
request, and then hands off that connedion to a suitable bad-end server.
3) The badk-end server takes over the established connedion.
4) The badk-end server replies diredly to the dient.

The dispatcher must still forward all packets coming alongthat conrection to the back-end
server, but with this handdf having accurred the dispatcher no longer needs to forward the
back-ends responses, as the back-end can now reply directly to the client.

241 TCP Handoff Protocol Problems

The problem with the TCP Handoff Protocol as outlined above is that for every
connedion to the duster, the dispatcher must effedively seridlise the state of the
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existing TCP connredion, and then instantiate aTCP connedion with that state on
the gpropriate badk-end server. This amount of work, coupled with forwarding all
current connedion padkets to the badk-end serving that connedion and making
deasions on which badk-end to assgn new connedions to, mean that the
dispatcher in this enario could well quickly become abottlened in the dustered

Web server asthe amount of badk-ends in the cluster increass.

Experiments were caried out in [ASDZ0Q] to investigate the scdability of the TCP
handoff protocol described above. Their results $iow that this architedure does not
scde well beyond four cluster nodes. This is obviously not an acceptable limit for a
scdable dustered Web server. This problem cannot be eaily overcome by smply
adding more front-end dspatchers. Adding more dispatchers will introduce load
balancing problems on the front-end dispatchers, and secondly most content-aware
distribution strategies (like LARD) nead centralized control for their distribution

policies.

[ASDZ00] goes on to suggest a scdable solution to the problems associated with
handing off TCP connedions. Examining the dispatcher more thoroughly, we can
seethat it isin fad doing two services: 1) dispatching the requests to the badk-end
servers, and 2) interfaang with the dient connedion and handing off these
connedions to the badk-end nodes. 1) can be dealy termed the dispatcher, as this
is the task that implements the request distribution strategy. 2) can be termed the
distributor; it is essentialy handling the TCP handoffs.

As noted in [ASDZ0Q], it is this distributor that is restricting the scdability of the
cluster, by creding a bottlenedk at the front-end node. If this distributor can be
assgned to the badk-end servers, then the bottlenedk of the front-end node is
solved. Their experimental results $ow that the processng overheal for handling a
typicd TCP handoff is nealy 300usec whereas the dispatcher only requires
0.8usec Thus distributing the distributor over the badk-end nodes will resolve the
bottlenedk at the front-end of the duster. Their experimental results $ow that a
centralised dspatcher implementing the LARD policy can service up to 50,000

connedionsgseaond on a 300Mhz Pentium Il madhine. This is over an order of
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magnitude greder than the onrediong/secnd performance of clusters
implementing a TCP splicing or handoff architedure & defined in the previous

sedion.

Server

Distributor

Switch

Dispatcher

Server

Distributor

Figure 4- A distributed Distributor Design

As we can seefrom the achiteaure suggested in [ASDZ00Q], the dlocaion of the
various parts of the dustered Web server has changed. We now have a switch
accepting requests from clients. This is a layer 4 switch, and can thus be ascdable
hardware based switch product. Note that this svitch behaweslike thefront end of a
WRR clustered Web server, dl it does it distribute requests to badk-end servers
based on layer 4 information. Therefore & this gage no TCP connedions neel to
be establi shed.

As ead conredion is a mmpletely separate antity, every connedion can be
distributed as appropriate for load balancing measures. Once the badk-end server
recaves a onredion request, it behaves acording to the original TCP handoff
protocol, once the destination of the @nnedion has been determined by the
centralised dispatcher. This has the alded advantage that roughly 1/k™ (where k is
the total amount of nodes in the duster) of all requests will not need to have aTCP
handoff operation, asthey will be at the bad-end assgned to them.

In this cluster architedure, atypicd connedion scenario would look like this:

1) The dient uses TCP/IP to conned to the dhosen distributor (chosen by the

switch)
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2) The distributor component accepts the TCP conredion, and parses the
clientsrequest.

3) The distributor contads the dispatcher to lean which badk-end will serve
the request.

4) The distributor hands off the TCP connedion to the gpropriate badk-end
server.

5) The server takes over the connedion, and replies diredly to the dient.

6) The switch is notified of the handoff, and any subsequent TCP
adknowledgements are forwarded dredly to the gpropriate badk-end

server.

This proposed architedure solves the bottlened problem we observed above, when
the dispatcher and dstributor are both located on the front-end of the duster. This
architedure is a reasonable one for any content-based dstribution algorithm, where
the TCP handoff problem neads to be aldressed. It also has the alvantage of being
imminently scdable, as eat of its components is replicable, apart from the
dispatcher component. However further on in this paper we will examine PFBL,
which proposes a distributed dispatcher, and the implications of this will have to be
evaluated in the context of the proposedarchitecure proposedabove.

2.5 Clustered Web Server Architectures

25.1 Waeighted Round-Robin (WRR)

This is the commonly used dstribution policy used by state-of-the-art commercial
clustered Web servers. The front-end dispatcher in this architedure is smply a
Layer 4 switch that distributes requests to the badk-end nodes based purely on load
balancing requirements. The dgorithm used is a improved variant of Round-Robin,
where the weighting is determined by such fadors as current CPU load and dsk
reading adivity, current connedions to eaty node and other fadors that vary
depending its weighting policies. The front-end dspatcher acdhieves good load
balancing and low idle time rates on the badk-end servers. However, as the front-
end dspatcher does not open a wnnedion to the dient, it cannot make request-
based dedsions. This means that the TCP handoff problem savoided, but at a cost.
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Before as3gning requests to badk-end servers, the front-end dspatcher must have a
dynamicdly evaluated weight associated with ead badk-end server that is
proportional to the server load state. This weight is re-evaluated periodicdly. The
three main fadors that are taken into acount are the loads on CPU, disk and
network resources. Typicd measures to estimate the load are the number of adive
processes on the server, mean disk response time and hit latency time, that isto say
the average time eab request is taking on to complete on that server. These aethe

fadorsthat aWRR cluster takes into ac@unt while calculating | oad balancing.

WRR clusters have avery high cade missratio, as locdity is ignored by the front-
end dspatcher. This means that the throughput of the duster is limited by disk
accesses, caused by cade misses. The dfedive size of the duster cade is that of a
single node in the duster, independent of the number of nodes in the duster. Thisis
becaise eat cade is completely independent of every other cade in the duster,
and no attempts are made by the duster to improve the hit rate in these badk-end
cades. This has the interesting result of the size of eat node's cade being a key

parameter in how the cluster performs.

The WRR cluster architedure is easlly scdable, being bound only by the speed of
the switch at the front-end dispatcher of the node. Another interesting problem
would be when services other than static Web document requests are required. |If
the duster is offering dynamicdly generated Web documents, or services sich as
streaming video, the usefulness of the WRR clustered Web server becomes limited.
Without a priori knowledge of the type of request issued, intelligent dedsions
about which node to assgn this request to cannot be made. Thus gedalized nodes
that are dedicaed to a cetain type of request are of limited use in this environment,
as they will be used in a inefficient way (i.e. switch assgns request to badk-end
node, which then communicaes with the spedalised service provider, and relays
the output of that service provider to its client. As the uses of the Web server
bemme more diversified, and more services are being offered to clients, it can be
foreseen that the WRR approadc can ke lessuseful. However it must be noted that
the WRR clustering approadh is a robust, imminently scdable gproad, limited
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only by the capabilities of the front-end dspatcher, that will always provide evenly
balanced response timesto all client requeststo the cluster.

2.5.2 Harvard Array of Clustered Computers (HACC)

The HACC represents an approadc to a dustered Web server [ZBCS99]. We will
explore the achitedure of this g/stem, and examine its advantages and drawbadks.
The HACC cluster is designed to caer for locdity enhancement, aiming to improve
the relative size of the dustered Web cade (by locdising requests to badk-end
nodes that have dready served requests of this nature), load balancing and ease of
scdability.

The HACC system employs a “Smart Router” at the front end of the duster. This
Smart Router replaces the Layer 4 switch that would be used in aWRR approad to
a dustered Web server. This Smart Router in their implementation can be seen to
equate to a front end consisting of a centralised dspatcher and dstributor. The
Smart Router can be divided into two layers, the High Smart Router (HSR) and the
Low Smart Router (LSR). The LSR equates to the low-level kernel resident part of
the system, while the HSR represents the high-level applicaion layer dedsion
making part of the system. This is intended to separate medhanism (LSR) from
policy (HSR).

The LSR is responsible for TCP/IP conredion set up and termination, for
forwarding requests to badk-end servers and for forwarding documents badk to the
clients from these badk-end servers. The LSR module can be dealy equated with
the distributor module defined in the sedion above. This module is primarily
concerned with performance as it is on the aiticd path of every request handled
by the duster, and if its performance is not satisfadory, then this module will

quickly become abottlernedk for the system.

In their design, the LSR is implemented as a Windows NT device driver that
attadhes to the top of the TCP transport driver. The LSR listens on the well-known
Web server port for connedion requests. When a wnnedion request is receved,
the URL is extraded from the connedion request, and pased upto the HSR. The

23



L SR then enqueues al data from the incoming connedion and waits for the HSR to
indicae which node to forward this data to. The LSR will continue to ferry data
badk and forth between the dient and the target badk-end server until the

connedion is closed.

The duties of the HSR mean it can be identified as a dispatcher. It is responsible for
monitoring the state of the document store and the state of the badk-end serversin
the system. It uses this information to make dedsions about how to distribute
requests over the HACC cluster. In [ZBCS99] they have implemented two
dispatcher algorithms, one designed to handle requests for static files and one for
the document store used by Lotus Domino, which is intended to represent an
instance of a Web Applicaion Server (WAS), which generate documents on the fly

and require agrea ded of compute power on the back-end servers.

The HSR will assgn requests to badk-end servers in a locdity-aware fashion,
attempting to improve the overall performance of the duster by doing so. In the
case of datic files, this is smply a matter of seleding the server that has been
assgned the task of serving requests for that document. In the cae of WAS type
requests, the issle is more complex. For Lotus Domino requests, assumptions can
be made aout the request. Lotus Domino requests contain both a Notes Objed and
arequested adion in the URL. The HSR thus attempts to forward requeststo back-

end servers based on these two parameters.

Load balancing is also caried out by the HSR module. It colleds load statistics
from ead badk-end server at periodic intervals. In their prototype the performance
metrics utilised are CPU utilisation and bytes transferred to/from disk per second.
When the HSR recaves requests for data & yet unassgned to a spedafic badk-end,
it assgns them to the least loaded badk-end. The HSR also attempts to offload a
proportion of the documents of an overloaded node onto the least loaded node
when such a situation occurs. This is cdculated by the load of the overloaded badk-

end server excealing that of the least loaded server by acertan amount.
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HACC clams to a more scdable duster architedure than LARD, which we will
examine later in this paper. It clams to be dle to handle WAS type requests, and
S0 is more suited to a Situation where dynamic requests are generated in the system.
Thisis true to a cetan extent. There ae severa disadvantages to this g/stem that

we will now explore.

As we eplored ealier, in a scdable dustered Web server, the front-end
dispatcher/distributor module can easly be overloaded with work, and become a
criticd bottlened to the system. This is certainly the cae in the HACC design. As
the results of [ASDZ0Q] show, this architedure will quickly read its limit of
throughputs per second, as the Smart Router becomes a bottlenedk for the duster.
This was e to occur with only four badk-end servers, and adding more badk-end
servers does not increase the throughput of the duster. However, asis suggested in
[ASDZ0Q], the distributor (LSR) could be distributed over the badk-end servers,
thus freang upthis bottlened.

The isaue of WAS requests and static requests is explored in this architedure. The
authors identify that it is a non-trivial task to determine how to combine aset of
performance statistics into a single metric that refleds a badk-end server’s red load
in the context of WAS requests. This problem becomes more wmplicaed when a
cluster is deding with a variety of requests for static and dynamic documents. In
their design, the HSR appeas to handle one type of documents, or the other. The
problem is that requests for dynamicdly generated documents cannot be ealy

partitioned for locdity of referenceas static dacuments can.

Dynamic requests can only sometimes offer the dispatcher information that can be
used to make antent aware distribution dedsions. The problem is that it is a very
broad areg and every type of WAS will have different request types, and these will
not necessarily be interpretable by a dispatcher in any useful, content-aware way.
The HACC system suggests dedicaing badk-end servers to these type of WAS,
which are CPU intensive. For example in one of their scenarios the trace file

procesed contains a mixture of satic file axd ASP requests. They suggest
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separating ASP requests from static requests, and sending them to different back-

end servers.

Their results sow that their architedureis mostsuited to deding with requests of a
dynamic nature, largely because the overhead of the Smart Router is not as much of
an issie when the requests incur a CPU compute on the badk-end servers. Their
architedure does not appea to be satisfadorily scdable, espedally when a mixture
of dynamic and static requests are considered. The solution they suggest for this
scenario is at best an ad-hoc solution, and while it would work, would require
much experimentation on the duster to achieve the gpropriate balance of back-end

serversthat can handle ether static or dynamic requests.

The HACC cluster architedure thus has introduced some interesting problems into
the aeaof clustered Web servers. We can seethat the issue of dynamic requests,
and how to handle them is a non-trivial one. We have seen that dynamic requests
bring an interesting problem to content-aware distribution policies. If the WAS
requiring dynamic requests can provide information that the distribution policy can
interpret from the URL of such requests, then it can make some dtempt to
distribute the requests in a locdity-aware way. However this information is not
aways available. Possble solutions to the problem appea to be ather to have
dedicated badk-end servers to ded with these type of requests or to alow all back-

end serversto handle these requests.

2.5.3 Client-Aware Digpatching Algorithm (CAP)

The Client-Aware Policy (CAP) is a dispatching policy motivated by a desire to
improve load sharing in Web clusters that provide multiple services sich as datic,
dynamic and seaure information [CCO1]. This is an interesting approach to deding
with the problem of diverse services being offered by a dustered Web server, and

isworth looking into in some detail .
The authors of [CCO1] argue that as the heterogeneity and complexity of services

and applicaions provide by Web stes continuously increases, so too must the

clustered Web server adapt to ded with these increasing demands. They argue that
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content-aware dispatching policies that wish to handle requests in a heterogeneous
and dynamic system require expensive mecdhanisms for monitoring and evaluating
the load on ead badk-end server, as they gather results, combine them into
meaningful measurements and make red-time dedsions based on these

measurements. They propose a dispatching policy based only on client requests.

The dient-aware policy depends upon classfying incoming requests. In [CCO1]
they classfy Web servicesinto four caegories.

Web publishing: Sites that provide static information and dynamic services that do
not intensively use server resources. The content of dynamic requests is not known
at the instant of a request, but the results are generated from database queries
whose arguments are known beforehand.

Web transadion: Sites that provide dynamic content generated from possbly
complex database queries. This is a disk bound service a it makes extensive use of
disk resources.

Web commerce Sits that provide static, dynamic and seaure information. Seaurity
may be necessry, and so use of the S protocol is expeded. Web commerce
services are disk and/or CPU intensive.

Web multimedia: Sites providing streaming audio and video services. These
services are not considered in the paper as these services are mostly offered by

speaalised servers and network connedions.

The basic idea behind CAP is that athough the dispatcher cannot estimate the
predse anount of time arequest will take, espedally when requests are of a disk-
bound or CPU intensive nature, it can distinguish the dass of the request, and its
impad on Web server resources. CAP classfies the &ove dassficaion into four
clases. static and lightly dynamic Web services (N), disk bound services (DB),
CPU bound (CB) and dsk and CPU bound (DCB). The dispatcher recgnises
incoming requests as belonging to one of the dasses above (as this policy is a
content-aware policy), and maintains a drcular list of assgnments for ead class
The dispatcher thus works in a Round Robin fashion, attempting to keep the loads
of the badk-end servers balanced by assgning requests of the various classs to the

bad-end nodesin acircular fashion.
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This is an interesting approac to the problem of dynamic and varied Web services
being provided by a dustered Web server. CAP attempts to balance the load over
the badk-end nodes in a more intelligent, proadive (rather than the readive
approach taken in WRR for example) manner. CAP has the alvantage of not
requiring hard tuning of parameters required by most dynamic policies. As we
argued above, this is a valid dfficulty faang implementations of clustered Web
servers. A cluster where a cetral dispatcher makes load balancing dedsions based
on parameters colleded from the badk-end servers at regular intervals, and attempts
to exploit locdity in its cluster by partitioning the work set, will encounter red
problems when Web services that demand high CPU and dsk adivity are
introduced. The problem is such policies will require ahigh amount of tuning of
parameters to be ale to work corredly. The CAP system does not require this,

oncethe requests have been classfied corredly.

A drawbadk of this g/stem is that requests that normally could be dedt with
quickly will not, in a system employing CAP. This is becaise CAP is grongly
concerned with load balancing, and while it is a content-aware policy, it chooses to
not use this information to its full potential. Clustered Web servers employing CAP
will have to ded with the TCP handoff problem, and the alditional overhead that
adds to the system. CAP can be more equated with WRR than other content-aware
distribution strategies in fad. While CAP incurs the penalties involved in a Layer 7
dispatcher, it only concerns itself with load balancing. While WRR does this in a
reacive fashion, CAP uses classficaions of requests to attempt to balance the
loads of the badk-end nodes in a proadive manner. While the CAP introduces osme
interesting issues into the aeaof digpatching polices, it is doubtful whether this is

the “silver bullet” to a dustered Web server providing mutiple Web services.

2.5.4 Locality-Aware Request Distribution (LARD)

The locdity-aware request distribution (LARD) strategy [AP 8] examined below
is a form of content-based request distribution, focusing on improved cade hits
amongst the badk-end servers in the dustered Web server. The motivation behind

this drategy was a determination to creade a ontent-aware distribution strategy,
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that took into acount the service/content requested and the arrent load on the
badk-end servers when dedding which badk-end to alocae agiven request to. This
strategy is smilar to the HACC dispatching strategy discussed above, however the
algorithms employed for attempting load balancing and dispatching techniques are
not as dependent upon commercial products for measuring load balancing. The
challenges identified by the authors were aeding a strategy that smultaneously
achieve load-balancing and high cade hit rates on the badk-ends, and the aedion
of a protocol that alows the front-end dispatcher to hand off established client
connedions to a badk-end server. The secondary of these dhallenges (TCP handoff)
has been explored above, and the distributed architedure suggested in [ASDZ00Q]
was designed with LARD in mind.

The aithors of LARD adknowledge the nedal for clustered Web servers to be
cgpable of representing a cabe that is greaer than that on ead of the badk-end's
main memory cade. This is becaise & the demands of what a Web server can do
increase, so to do the demands on the cading of that Web server. Round-robin
distribution effedively limits the duster’s working set to that that can fit into a
single main memory cade. With LARD the effedive cabte size gproades the
sum of the badk-end's cade sizes. Thus adding extra badk-end servers to a duster
of this nature can effedively increase the working set of that cluster as well as

acommodating increased traffic (by having additional CPU power).

AAAA —> |BadkENd

AACAABCB —> [Front Eng

CBCB —> |Ba&kEnd

Fiaure 5- Localitv-Aware Reauest Distribution

The basic LARD agorithm works as follows. The dispatcher maintains a one-to-
one mapping of targets to badk-end servers. When a request comes in for a new
target, it is assgned to the least loaded node in the duster. Load in LARD is
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measured by the anount of current connedions to a badk-end server that have not
yet been completed. This is quite asmple method of measuring load in the badk-
end servers, but has the alvantage of not requiring many CPU cdculations to
collea and compute. Servers with idle CPU time will tend to have adive
connedions approacing zero, while overloaded servers will have an increasing
amount of adive @nnedions. By monitoring the number of adive cnnedionsto a
badk-end server the dispatcher can estimate the relative load on a badk-end without
having to communicae explicitly with the badk-end servers. This is in contrast
with WRR and the HACC system, where the front-end dispatcher regularly polls
the badk-end nodes for data in order to compute the relative loads on those badk-

ends.

LARD partitions the working set as requests are aitered into the duster,
dynamicdly distributing the this working set over the badk-end nodes. LARD ams
to only reasggn targets when there ae badk-ends going idle while other badk-ends
bemme overloaded. Re-assgnment will naturaly result in cade misses on the new
node, and so re-assgnment should not be done to balance out temporary load
imbalances. Tow IS defined as the load (number of connedions) below which a
badk-end is likely to have idle resources. Trign is defined as the load above which a
badk-end is likely to cause substantial delays in serving requests. Once abadk-end
reates 2Trigh a target will automaticdly be dlocaed to a lesser loaded badk-end,

even if no badk-end has aload of lessthan T qy.

The front-end also limits the amount of conredions allowed concurrently in the
cluster, so as to prevent the duster from behaving like WRR as the load on all
nodes rises towards 2Thgh. TO avoid this, LARD limits the total sum of connedions
to the value of S, where S= (n-1) * Thigh + Tiow —1. N being the number of bad-end
server nodes in the duster. Setting S to this value means that at most n-2 nodes can
have aload >= Trgn, While no node has a value lessthan Tiow. S @so ensures that
enough conredions are amitted to ensure that al n badk-ends can have aload
greaer than Tiow, and still have room for limited imbalance between the badk-ends
(and therefore avoiding continual re-assgnment of targets on “overloaded” back-

ends).
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Basic LARD can be improved by using replicaion. Replicaion is desirable to
adlow the duster to assgn more than one bad-end to be served for popular
requests. LARD with replicaion differs from basic LARD as follows. The front-
end dispatcher maintains a mapping of a target to a set of badk-end servers.
Requests are passd to the least loaded badk-end in that set. When a load imbalance
occurs the dispatcher cheds to see if the requested documents srver set has
changed recently (within t seconds). If it has, the dispatcher seleds a lightly loaded
badk-end and adds it to the rver set of thattarget. If the server sethas not changed
recently (within t seoonds) and has multiple servers, then the dispatcher removes a
badk-end server from the server set of that target. This ensures that a arget thatwas

popular in the past but is not anymoreis not served by severa badk-ends.

[APS28] provides results that show considerable performance improvement on
state-of-the-art WRR. The adtieved throughput with a working set that does not fit
into a single badk-end’s main memory cade with LARD exceals that of WRR by
afador of two to four. It must be noted however that all these results are delivered
from tests with static documents. The performance of LARD with dynamic
requests was not tested in their test bed. In tests against CAP [CCO1] using traces
containing 20% dynamic documents, the LARD policy falls 16 to 21% short of the
performance of CAP. This is not surprising, considering that the LARD policy asiit
stands makes no red attempt to ded with dynamic documents, which will i ncrease
the load of a badk-end server dramaticdly, without this becoming apparent to the
load balancing attempts of the front-end dispatcher. This is becaise the loads are
measured by the anount of adive mnnedions to ead badk-end, and does not take

into acount that some of these requestsmight be of a dynamic nature.

Asis suggested in [ZBCS99], LARD might be ale to handle dynamic requestsin a
more satisfadory way if weighting was given to the dynamic requests, so that a
badk-end node serving dynamic requests will show this in its weighted load. This
methodology would however mean that extensive testing and fine tuning would
have to be done to determine how much weighting should be given to ead type of

dynamic requests, as is argued in [AP8]. Perhaps a LARD-driven cluster serving
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both dynamic and static requests would ned to have its badk-end nodes partitioned
into sets that serve static requests and sets that serve dynamic requests. However
more reseach is nealed into the nature of dynamic requests, and to what extent
dynamic requests can also be cabedle before the isaue of clustered Web servers
serving offering traditional static Web documents and the more diverse aray of
services on offer from Web Applicaion Services (WAS) can be aldressed more
fully.

255 Paralld Pull-Based LRU (PPBL)

The PPBL request distribution algorithm suggested in [COl1] is an interesting
variation on the dustered Web server architedures suggested above. Wherees all
the distribution algorithms explored so far are push-based algorithms, PPBL (asits
name sugeests) is a pull-based dstribution agorithm. The logic behind this
deasion is an attempt to distribute the dispatcher over all nodes, and by doing so to
relieve the front-end of this task. The reason that this approad is justified in [CO1]
is that the achitedure of their cluster is based upon a Distributed Shared Memory
(DSM) system using a Scdable Coherent Interface (SCI) memory mapped
network. This DSM should be utilised by PPBL in order to improve the dedsion
making and gererd overdl performance of the distributed dispatcher.

The PPBL dispatching agorithm introduces sveral new fedures not yet seen in
the Web server clusters investigated above. While the achitedure proposed in
[CO1] is designed for a dustered Web proxy cade, its architecure is equally valid
for a dustered Web Server. This is mainly due to the fad that the gproach
suggested is a smplistic one, and thus did not neead to be optimised for a Web
proxy cade environment. While the designers of the system envisaged the system
compressng and uncompressng files before sending them to the dients, this
scenario is not implemented in their prototype, and therefore their results are
equally valid for a dustered Web server as they are for a Web proxy cade. As we
have outlined above, the performance of the duster’'s total cade is of vita
significance of the performance of the dustered Web server as a whole, and so the

architeaure they have put forward isjust asvalid for use in a clustered Web server.
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The achitedure of the system is quite asimple one. The task of the front-end has
been once ayain reduced. Now that the job of dispatching is going to be distributed
over the badk-end servers, the task of the front-end is much reduced. If we employ
the scdable achitedure suggested in [ASDZO0Q], then the front-end is also not
responsible for the distributor tasks. Therefore in this architedure, it is anticipated
that thefront-end will not become abottle-nedk for the system.

The system consists of a front-end and badk-end nodes as usua. The front-end
manages an incoming queue of requests, and the badk-end nodes eadh have a
sedion of the working set of documents that they own in a URL table and a LRU
cade of these documents. The URL table mnsists of the names of the documents
that the badk-end owns, and a threedot LRU providing the identifier of the last
nodes that served thisrequest (cdled its serving LRU).

Incoming requests to the duster go through a front-end as normal. The task of the
front-end is to insert the requests into an incoming queue. The badk-ends sach
this incoming queue for requests that are not yet found. The bad-end performs a
seach of its URL list to chedk if it owns it or not. This each is done in LRU
order. If a badk-end node does own the request, then it updates the incoming
request queue entry with its node identifier. At this point the badk-end node has
signalled to the front-end that it is handling this request, so the request is then
added to the work quete of that badk-end node.

If arequest is not found to be in the aurrent contents of any badk-end nodes, then
the front-end chooses the least loaded node, and assgns the request to that badk-
end node. That node then updetes its URL table acordingly. A Status table is also
maintained, containing the aurrent loads of all the badk-end nodes. This is regularly
upceted by the badk-end nodes. In the PPBL system, load is estimated by the
amount of data it still hasto serve. The least loaded node is the one with the lowest

amount of datato serve.

If a badk-end has found that it owns arequest, but is overloaded (acrding to some
static threshold), then the node to which this request will be passd is determined
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from the URL table entries serving LRU. If this is empty, then the least loaded
node is chosen and added to the serving LRU. If the badk-end is the least loaded
node in the duster, then it keegps the request. Each node’s main memory cade is
run by the LRU cade replacament algorithm. This is an asped of this architedure
that could be eaily enhanced by using Greedy Dua Size or another of the more
optimised versions of LRU, and thisis adnowledged by the authors of this paper.

The implementation of this architedure involves a grea ded of synchronisation
between the dispatcher modules on the badk-end nodes and the front-end. This is
done through a producer/consumer model using the distributed locks provided by
the DSM and its components. The incoming queue smply resides in the DSM, and
is thus accessd quckly and easly by al nodes in the duster. Each client
connedion is handled by a dedicated thread in the front-end.

Every incoming queue entry has one start and one end lock. The request is first put
in the queue. Then the start lock is released to make the badkends gart the lookup.
Then the dedicaed thread waits for the end lock for lookup completion. Thisis the
rendezvous with the badk-end nodes. If none of the badk-ends clam the request,
then it is added to the least loaded node & mentioned above. Once the request has
either been clamed or assgned, then the request can be removed from the

incoming quete.

The badkend process can adso be multithreaded to alow multiple lookups. The
lookup thread first waits for a request to become available (the cnsumer waits for
the producer). Then the thread performs the lookup, and if it is found, the thread
inserts its node identifier in the incoming queue request, to acknowledge this. The

end of the lookupis dgnified by releaang theend lock.

This is the basic implementation of the achitedure. The aithors suggest further
improvements to optimise the performance of the dgorithm. A completion queue
and index table ae alded to the front-end. The completion queue has the same
number of entries as the incoming queue. When a badk-end has chedked with a

request i in the incoming queue, it performs an atomic fetch and increment on
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completion queue i. If this value is equal to the number of badk-end nodes minus
one, then this node was the last node to lookup that request, and then it is only the
duty of this node to release the end lock. This processwill reduce the number of

locksrequired to be released per incoming queue request.

The index table is used to solve the lookup starting problem in the saturated case. If
there ae more requests to ched in the incoming queue, then there is no need for
eadt thread to wait for the start lock to be released. Therefore eab node indicaes
which is the next request it is going to tred, including the front end. If the index of
the badk-end node is greaer than the front-ends index, this means that it must block

and wait for anew request to beinsertedinto thei ncoming quete.

The PPBL system can be defined as a @mntent-aware gproad to clustered Web
servers. In contrast to the centralised dspatchers we have encountered in every
other system so far examined, we here have a distributed dspatcher. The TCP
handoff problem is not explored in detail in this paper, apart from commenting that
the SCI architedure could be used to improve the performance of this protocol. The
TCP handoff remains an isuue that PPBL has to ded with, as the contents of
requests are examined before adedsion is made & to which server node will ded
with that request. Therefore we can asume that an approach smilar to that
suggested in [ASDZO00] will be taken, with distributed dstributors as well as
dispatchers being implemented in the system.

The isaue of load balancing has also been examined by this approadh. It can be seen
to be more of a reacive gproac to load balancing, rather than the proadive
attempts made by LARD, for example. However, it is interesting to note that the
load balancing evaluation is carried out on the badk-end node in question, which is
something that does not occur in any of the other systems. This has the alvantage
of while il being a readive system, it is imagined that overloading will be
deteded qucker in this gystem. This is because while other systems use atimer to
collea load information from the badk-end nodes, here it is the badk-end node itself

that determines when it is overloaded.
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[CO1] produces me ealy results of the PPBL system. They report a steady
increase in the throughput per second as the number of nodes in the system
increases. However this paper does not measure the document hit rate adieved in

this system, a measurement that is vital in an efficient Web server.

2.6 Distributed Shared Memory Based Clustered Web
Servers

The past decale has e a two-order-of-magnitude increase in processor spedl,
and only a two-fold increase in disk access time. The gap between disk and
processor speals has been stedlily increasing, and will continue to do so. There
have been sgnificant improvements in the network speeds of Networks of
Workstations (NOWS). This means that the network is now considerably faster
than disk for transferring data to and from main memory, a performance
enhancement due primarily to the fad that remote-memory accesss avoid the

expensive seek and rotational latencies associated with disk access[F96].

In a Web server, the disk accesstimes are reduced by the use of an efficient cade.
In a dustered Web server, the Web cade bemmes a distributed and perhaps
partitioned objed, depending on the design of the dustered Web server. The
amount of requests for Web documents that involve adisk accesscould be reduced
by having a more globaly-aware cate management system. In most current
clustered Web servers once arequest readies a node, that node relies lely on its
own cade to provide it with as efficient as possble aperformance that reduces the
disk accesstimes to the dsolute minimum. However, a duster utilising a global
shared memory model could well improve on the performance of its nodes by
taking advantage of the benefits that the shared memory model provides by
fetching a document stored in a remote node's cade rather than fetching it from
disk.

The shared memory model that we will be examining is Kaffemik [AWCJCO(Q].

Kaffemik is a distributed Java virtual macdiine (JVM) that runs on a duster of
workstations interconneded by a Scdable Coherent Interface (SCI) [IEEEQJ].
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Kaffemik is based upon a small areanetwork using a Single Address Space(SAS)
system to support a shared objed space This provides us with a dustered
architedure that will support remote accees to other nodes. [CKP9g
demonstrates that a page wuld be accesd over 50 times faster from remote
memory than from a locd disk. As Kaffemik is implemented on SCIOS/SCIFS
[KHCP99], thisisasignificant and interesting statistic.

3 Simulation design and requirements

We have examined some dustered Web server architedures. Most of them are not
designed for a duster employing a shared memory model. PPBL is the exception
here, as it is designed spedficdly for such an architedure, and indeed takes
advantage of spedfic services provided by the API of the system it is implemented
on to improve performance These improvements are mostly involved with
synchronisation, and not with utilising remote nodes to provide the duster with a

more intelli gent, globally-aware cating dgorithm.

A smulation was required to examine the behaviour of clustered Web server
architedures, and to examine the behaviour more spedficdly of the cades in the
cluster. The achitedures that we dedded to smulate were PFBL, LARD and a
smple RR approach. PPBL was sleded becaise it is an architedure that is
designed for a shared memory environment, LARD because it outperforms most
other clustered Web server architedures [AP®8], and a RR system to ad as a
benchmark for the other two architedures. We ae not interested in adieving a
redistic throughput of requests per second, but rather on examining whether the
Distributed Shared Memory (DSM) architedure is a useful one for implementing a
clustered Web server.

In al of the achitedures we have eamined, there has been no attempt at
managing the “global” cadhe in any way. That is to say that when a node deddes to
processa request for a document, the fetching of that document is done ather from
the node’'s cade or from a locd disk. Eadch cade is locd and ignorant of the

contents of the other cadies in the duster. This ignoranceis justified by LARD and
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PPBL by taking advantage of content of requests before dlocaing them to nodes.
Therefore anode’'s cade is Dlely interested in a sub-set of the total working set of
that Web server. Seen in this way, it does not seean necessary to increase the
complexity of the cadie management algorithm by attempting to have a more

cooperative approac to the management of the cabeson the cluster.

The aux of the problem is whether a DSM based cluster architecdure could benefit
from a more globally-aware cating strategy, given the grea optimisations that can
be gained from using remote memory accesinsteal of disk access To dedde upon
this, a smulation to examine the performance of the node’'s cadies and amount of
disk acessin a dustered Web server will be implemented. This smulation will
provide us with statistics from which we can determine whether a globally-aware

cading strategy would be of benefit to aclusteredWebserver usng aDSM.

Another possble benefit of a DSM-based clustered Web server is that not all nodes
neeal to have the entire working set of the Web server in their locd disk space As
long as one node on the duster has a @wpy of a document on disk, then any node
can request and read this document into their own cade without too much delay.
As the working set of a Web server can be quite large, this could provide auseful

serviceto the dustered Web server asawhole.

4 Simulation implementation

The simulation has been implemented in the Java programming language. All the
constructs used in creaing smulations of LARD, PPBL and RR have been ether
been huilt from scratch or utilising existing constructs from the Java API. The
primary objedive of this smulation is to observe the behaviour of the adiesin the
three achitedures, and whether any of these designs would be suitable for

implementing a clustered Web serving using a DSM architedure.
This smulation model is attempting to investigate cate performances on the

nodes in the duster. Therefore the overall throughput per semnds adiieved in the

simulation is not of interest to us. This gatistic would be of interest in a prototype
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environment, where Web server applications would be running on the nodes of the
cluster. In this smulation, the nodes only ched to seeif the document requested is
in the cate. We ae dso not concerned with the TCP Handoff problem in our
simulation, as there ae no red requests (and therefore no attempted connedions) to
our simulation. The smulation uses a Web trace to provide a redistic list of
requests that would be put to a Web server, and the performance of the cates in
the clustered Web server is then doserved.

The basic processthat runs is as follows. A trace(as discussed below in Sedion 5)
is processed and transformed into a file of Request objeds. Thisfileisinput as a
strean of objeds that is recaved by the Fr ont End of the cluster. The Fr ont End
implements a distribution agorithm as a thread, cdled Di stri bAl go. The
Di stri bAl go deddes which Node recaves the Request. The Request is
passd to the NodeManager in charge of that request, who will i n turn passit on
to the Node. Each Node in turn implements a Cachi ngAl go, which aso runs as
a thread on that Node. The Cachi ngAl go is the cate replacement agorithm.
Every Node also contains a Cache, which contains a list of the arrent documents
stored, and also a St at sQbj ect for ead document that has been requested at
that node. The St at sObj ect contains information such as how many times that
document has been requested, and how many times it was in the cate when
requested (e.g. acachehit).
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Figure 6- Basic Simulation Design

The basic architedure of the duster is represented by a Fr ont End through which
al Request s are processed. The number of Nodes in the duster is configurable
asisthe size of the Cache on ead of the Nodes. In our simulation, the amount of
nodes contained in the duster varies from two up to sixteen. The cade sizes have
been kept constant throughout the smulations at IM. As we will seethis produces
a smal aggregate cade size for the whole duster as compared to the total size of
the working set (see the Sedion 5 for more details), espedaly when the duster
contains a low amount of nodes. The small cade sizes will mean that the cades
will be put under a grea ded of demand, as the small cade atempts to handle the

large amount of diverse requests comingintoit.

4.1 RR Simulation

The first smulation that was implemented was the RR distribution architecure,
using the GDS cadie replacement agorithm on ead node. This architedure was
relatively smple to implement. The FrontEnd implemented the
RRDi st ri bAl go. This distribution algorithm smply assgned Request objeds
as they arrived in the Fr ont End in a round robin fashion. The NodeManager
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passs the Request to the Node, where the GDSAI go deades which document
nedls to be replacal from the cade by popping the first GDSobj ect (or if the
document is drealy in the cade, then its GDSobjed is removed) from the
PriorityQueue, and then that GDSobject is replacal into the
PriorityQueue at the gpropriate point depending on the \dlue of the objed, as
cdculated acmrding to the GDS formula exploredin Sedion 2.1.6

NodeM anager
FrontEnd -
requests GDSCadingAlgo
Squess ) gAlg
RRDistribAlgo
NodeM anager

Node Cadche

GDSCadingAlgo

Figure 7- Round Robin Architecture

4.2 LARD Simulation

The LARD simulation demanded a more complex implementation than RR. This is
becaise of the load balancing measurements needed to run LARD succesdully. As
before, the Fr ont End accepts Request objeds. However asead Request isa
separate wnnedion, the number of connedions s limited to S as mentioned above
(see Sedion 2.5.4). The LARD algorithm chedks to see which Node has bean
assgned this Request . If this Request has not been requested before, then it is
assgned to the leat loaded node. This is determined from the
Least LoadedQueue. The Least LoadedQueue is a sorted list containing the
load balancing information about al the nodes in the duster (current connedions to
ead node- in other words, al the Request objeds that have yet to be processed
on that particular Node). Once the Request has been assgned a Node it is
passed onto that node's NodeManager. Eadh NodeManager contains a

Connecti onQueue, an AddThread and a RenobveThread. The
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Connect i onQueue isthelist of requests that this node hasyet to process When
the AddThr ead inserts a new Request into the Connecti onQueue, the
Least LoadedQueue isupdated to refled this.

Requests
& NodeM anager
AddThread
FronteEnd \ 4 / ZI
LARDalgo 4 / Y
/ Conredion Node
checks updat Queue
¥ j v / GDSCachingAlgo
L eastL oadedQueue RemoveThread / Cache

Figure 8- LARD Architecture

The RenopveThread takes out the firt Request objed from the
Connecti onQueue as they are procesed by the node's cade replacanent
algorithm (this is GDS in the cae of LARD). As eat Request is processd by
the Cache, the relevant statistica information is inserted into that document’s
St at sCbj ect .

The difficulty in implementing this s/stem is configuring the @rred values for
Thigh and Tiow. If these figures are too low, then LARD becmes WRR, and if they
are too high, then the system allows nodes to be overloaded while other nodes in
the duster remain idle. These figures have to be ajusted to the LARD
implementation by trial and error, and depend upon the performance of the system
they are a part of. It is aso necessary to keg a wunt of the total current
connedions in the system. This information needs to be acorate and upto-date, as
the system ceases to accet connedions when the upper limit of Sisreadched. In our
simulation, this information was retrieved by polling the Least LoadedQueue.

In a more redistic implementation of the LARD architedure, ead node will know
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how many connedions it has open, and this information should be ealy accessble
by the LARD algorithm.

4.3 PPBL Simulation

This gmulation was the most difficult to implement. There is necessarily a lot of
synchronisation involved in this architedure due to the distributed Dispatcher
module. While this g/nchronisation utili ses the DSM’s g/nchronisation protocols in
[CO1], in this smulation none of these methods are avallable. As g/nchronisation
in Java is done through the basic technique of aayuiring and releasing of monitors,
this added a lot of complexity to the smulation model. The PFBL smulation
findly produced was not an optima implementation. However, the model did
avoid dealock, and so while dow, it still produced valid results, in that the
distributed Dispatcher did dspatch requests to the gpropriate nodes, as %t forth in
[CO1].

Requests
NodeManager
\ 2
FrontEnd PPBLalgo WorkQueue » DoWork
‘!‘ |
AddFactory Node ‘1‘
AddWork
l l A LRUCachingAlgo
IncomingTable
AddRequest Cache
AddRequﬂ CheckWork
RemoveEmpty

Fiaure 9- Parallel Pull-Based LRU Architecture
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In the PPBL simulation, new Request objeds are sent by the Fr ont End to the
AddFact ory. Here eab request is inserted into an AddRequest threal, and
this thread is put into the | ncom ngTabl e. Thistable will contain alist of adive
threads awaiting to be assgned to the gpropriate node. The | ncom ngTabl e is
periodicdly scanned by eadh NodeManager 's CheckWor k thread. Thisthread is
woken up evey time a new AddRequest thread is inserted into the
| ncom ngTabl e. If CheckWbr k remgnises a AddRequest as a request for
which it is responsible, it claims the request by inserting its node identifier into the
| ncom ngTabl e entry. This will alow the AddRequest threa to die, asit is
no

longer neaded. If the AddRequest contains arequest that isnot yet assgned, then
once d CheckWor k threals have examined it, it will assgn this Request to the
leasst loaded (in other words, to the top of the stadk) node in the
Least LoadedQueue. Then next time the CheckWor k thread examines this
entry

to seeif it is completed or not, it will seethat this Request has been assgned to

itsNode, and it will passthat Request aong.

The | ncom ngTabl e adso has a RenoveEnpt y thread running. This thread
adivates after a cetan number of entries have been inserted into the
| ncom ngTabl e. This thread will order the AddFact ory and CheckWbr k
threads to lock. When al those threals have locked, the RenoveEnpt y thread
will scan through the | ncom ngTabl e and remove antries that have been either
clamed by CheckWbr k threals or have been assgned to a Node and this has
been remgnised by the gpropriate CheckWor k thread. The AddThr ead in
charge of the entry will have drealy died as its duties have been completed. Once
the RenoveEnpt y threal has finished with the | ncom ngTabl e, it wakes all
the threads waiting on the st op lock of the | ncom ngTabl e, and goes bad to
deep.

Once the CheckWrk thread has clamed a Request from the
| ncom ngTabl e, it passes it onto the NodeManager. The NodeManager
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then inserts it into the Wor kQueue, and updites the load on this node acordingly.
The load information in the PFBL simulation is based upon the tota size of
Request objeds 4gill to be served by this Node. This is the total size of all
requests that are in the Wor kQueue. Each NodeManager also has a DoWor k
thread running. This thread is woken when new work is inserted into the
Wor kQueue. The DoWbr k thread pases the Request onto the LRUal go
thread, which is the cate replacenent algorithm used in PPBL. The
St at sObj ect for that document isthen updated.

This PPBL smulation is omewhat smplified from the implementation put forth in
[CO1]. However these smplificaions have not affeded the dispatching algorithm
of PPBL at all, but are more smplifications in the optimisations suggested in [CO1]
to do with synchronisation. As was suggested in [CO1], we envisage that in order to
build an efficient and scdable gplicaion, a good knowledge of the medhanisms

involved in the middleware of the DSM system isnecesary.

5 Web traces, examination of input and statistics

Tracedriven simulation is used to evauate the performance adieved with LARD,
PPBL and RR. The workload for our simulations was drawn from empirica traces,
obtained from accesslogs a two Web servers [WLO01]. The first traceis cdled the
EPA tracein the rest of this paper. This is the accaeslog of a day at a busy EPA
WWW Server. The seoond traceis cdled the SDSC trace This is the accsslog of
a day a abusy San Diego Supercomputing Centre Web server. The distribution of
requests in the traces can be seen in Fig 10 and 11 In ead graph the x-axis
(“Times Requested”’) represents the number of times that a cetain document was
requested by the trace and the y-axis (“Total Documents’) represents the total
number of documents that were requested x times. In the EPA trace atotal of 242
documents were accesd more than 20 times, and in the SDSC trace 208

documents were accesed more than 50 times.
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Figure 11 SDSC Trace Topology

The EPA tracehad a total of 44159requests, which acounted for a set of 4860
documents. The total size of al 4860 abcuments (the working set) requested in the
tracewas 248V. The SDSC tracehad atotal of 63080requests, acounting for a set
of 1864documents. The totd size of the 1864 documents was 102M.

By using two traces with different charaderistics we will get a good ideaof how
the smulated clustered Web servers will ad in general. The traces provide the
time, name and size in bytes of every request. This information is transformed into
astream of Request objeds containing the relevant name, time of the request and
the size of the request, that the simulation will process CGI scripts were removed
from the tracebefore processng, as these dynamic requests would skew the results
of our smulation. This is because they require CPU time from the Web server, and
this cannot be smulated satisfadorily in our smulation. Any unique URL requests
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are dso removed from the trace (URLs with a “?” in them for example, which are

suppying parametersfor the Web server to ac upon).

6 Evaluation of results

The simulations cdculate the percentage of cade misses. In a Web server, these
cade misses will result in a disk access As expeded, the RR cade performance
deteriorates as the number of nodes increases. This is consistent with results found
in other smulations [ AP8]. LARD aso performs as predicted in [AP2§],
although the performance of LARD in the EPA tracedoes not improve & much as
expeded with the increasing numnber of nodes. Overal however, the LARD

simulation can be seen to behave asexpecied.
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Figure 12- SDSC % Cache Misses

The PPBL simulation performs amost as well as LARD, and as the number of
nodes increases the percentage of cade misses of PPBL approades that of LARD.
It should also be noted that PFBL was implemented with the sub-optimal LRU
cade replacament strategy, as put forth in [CO1]. It is expeded that implementing
Paralel Pull-Based Grealy Dua Size (PPB-GDS) will further improve the cabe
hit rate.

These preliminary results $ow that both LARD and PPBL can achieve ahighly
satisfadory cade hit ratio. Load balancing in the three smulations can be seen in
figure 14. This graph shows the anount of requests processed per nodefor the EPA

tracegiven a duster of 8 nodes. The load balance for RR is perfed, as thisis the

47



only requirement of this Request dispatching agorithm. LARD has reasonable load
balancing, as load balancing is a requirement of the system. It can be seen however
that the load balancing of PPBL is quite skewed, with node 1 in the duster having
recaved only 3140 requests, and node 8 6649requests. This can be explained by
the gproad taken to load balancing in PPBL. While it is interesting that the load
balancing dedsion is made by the node when it recaves its request, and thus it can
push that request onto another node if it feds it is overloaded, we do not have the
centralised load balancing of either RR or LARD. LARD aso has the alded
advantage of being able to limit the anount of connedions in the duster at one
time, a restriction that might also benefit the performance of PFBL. However in a
redistic implementation of LARD, an examination on whether the limit placed
upon the total connedions alowed in the duster at one time restricts the
performance of the duster, and is therefore enforcing load balancing at the cost of
throughput. The results of [AP28] would indicate that this is not the case.
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Figure 13 EPA % Cache Misses
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7 Conclusions

By smulating a dustered Web server we have leant a grea ded about the issues
that govern this area While the smulation does not indicae a gred ded of
difference between the PFBL and LARD strategies in terms of measured results,
their approaches to the achitedure of ther clustered Web servers do show the
differences in the two systems. While PPBL is designed with a DSM model in
mind, it does introduced a grea ded of complexity into the design and
implementation of the dustered Web server. Lets first look at the aeas of clustered
Web serversthat need to be focused upon when desgning such a system.

An areathat needs more reseach is dynamicdly creaed Web documents and Web
Applicaion Servers. This domain nealds more reseach into how a dustered Web
server can optimise the performance of the services it offers. One gproad is to
partition the nodes of the duster into spedalist service providers. For this enario,
a ontent-aware dispatching algorithm is crucial. It is in this areathat the WRR
approad to clustered Web servers falls far short of the content-aware gproades.
At the moment, a WRR cluster cannot ded with a variety of services offered in a
satisfadory way, unless an approad like CAP is taken, but that approach
necessarily involves content-aware dedsions. Another approach to optimising the
performance of dynamic and spedalised services is to examine how these services

can be caded in a useful fashion. This approach will require more reseacch into the
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posshilities of cading dynamic services and perhaps the partitioning of these

servicesto enhancethelr locdity.

One aeathat is not exploited fully in [CO1] is the posshilities that a DSM offers to
a dustered Web server in terms of cading. If remote nodes can store data in their
main memory and have that data accesble 50 times quicker than a locd disk
access then perhaps the @ncept of cading in a DSM cluster neals to be re-
addressed. It might be feasible to have a global cade manager, who isin charge of
the contents of the cades of all nodes. This might allow the dustered Web server
designer to present an aggregrate duster cade that performs better than the current
system of isolated cades, which have improved performance through the use of
locdity-aware dedsion-making in the dispatcher. One possble achitedure wuld
be using a RR approach with a cate that attempts to aggregate dl the cades into
one globa cade, and therefore improves the cate performance on a per node
basis while still gaining the benefits of WRR, which are excdlent load-balancing
and the ladk of a TCP Handoff. Another possble improvement might be to utilise
remote-node main memory as much as possble in a DSM-based clustered Web
server. LARD or PPBL would have to be aljusted to achieve this, but this does not
sean to be too much of a diange. The isaue of looking for a document remotely
will only redly occour when a request is svapped to another node becaise of
excessve demand for that document causing it to be replicaed (a “hot” document)
or becaise anode in the duster is either overloaded or too idle. In either of these
cases it would be feasible to try and fetch the document from the old serving node’s

cade rather than to accessit from disk.

PPBL has put forth the ideaof a distributed dspatcher. It has been seen in [CO1]
and in simulating PPBL here that increasing the number of nodes in the duster also
increases the number of members in the dedsion-making of the distributed
dispatcher. This is attempted to be solved in [CO1] through extensive use of the
middleware that the dustered Web server is overlaying. However in [ASDZ0(Q] it is
argued that a centralised dspatcher is cgpable of up to 50,000 conredions a
second. That is far beyond any throughput adchieved in the dustered Web servers
examined in this paper. It would appea that the added complexity and performance
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doubts over a distributed dispatcher would argue ajainst this approad, espeaally
if the Web server will employ a distributed dstributor approach to the TCP
Handoff problem.

In conclusion we have esaluated the Cading strategies for clustered Web servers.
We have explored in detalls svera clustered Web server architedures, such as
WRR, HACC and CAP. A simulation was run to examine in more detail the dfeds
on ead individual node's cades, in the mntext of LARD, PPBL and RR as a
benchmark for the other two agorithms. We have pinpointed several key issies in
the aeaof clustered Web servers within the context of a DSM system. These issues
neeal to be reseached in more detall before aly implementation of a dustered Web
server using the Kaffemik system should be attempted.
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