A Gereric Architectureto Control Jini
Sarvices over the Internet

Brian McSweeaney

A dissertation submitted to the University of Dublin,
in partial fulfilment of the requirements for the degree of
Master of Sciencein Computer Science

September 2001

Dedaration

| dedare that the work de<cribed in this dissertation is, except where
otherwise stated, entirely my own work and has not been submitted as an
exercise for adegreeat thisor any other university.

Brian McSweeney
14" September 2001

Permission to lend and/or copy

| agreethat Trinity College Library may lend or copy this dissertation
upon request.

Brian McSweeney
14" September 2001

Abstrad

Digtributed computer systems have brought many advantages over traditional
centralised systems. However these systems have innate complications such as partial
failure, ladk of system wide knowledge, concurrency etc. Programming environments
for these systems have typically been few and have often failed to adequately address,
or even ignored, the asciated complications of distributed systems. Sun
MicroSystems Jini technology [Jini Spec ‘99] is a new distributed systems
programming tednology where programmers write software & Jini services. It
provides the mechanisms by which programmers can try to manage these distributed

systems complicaions.

This dissertation aims to address three isaues currently restricting the widespread

adoption of Jini technology.

= Firstly, the usage of Jini has initially been restricted to Locd Area Network
(LAN) environments. This thesis addresses this issue by describing a generic

architecure o allow Jini servicesto be accessed and controll ed over the Internet.

= Seowndly, the core Jini technology installation files necessitate over 3MB of
memory, thus impeding Jini services on devices of limited memory capacity. This
thesis investigates how Jini services can include devices of limited memory

cgpability and de<cribes the implementation of sucha srvice.

= Finaly, the implementation of a Jini client for a specific service airrently
necessitates providing the client with information about the service in advance
This is a significant restriction on Jini technology in that ead service writer must
provide its own client implementation for that service This thesis describes and
implements a method by which clients can control Jini services without any

knowledge of them, thus providing asingle Jini client to all services.

Acknowledgements

| would like to thank my supervisors Alexis Donnelly and Simon Dobson for their
interest, enthusiasm and guidance throughout the curse of this projed. | would also
like to thank all my friends, family and classmates for their friendship, support and

help during theyear.

Contents

1 INTRODUCTION ..ottt ettt eeean e 1
1.1 DISTRIBUTED SYSTEMS. . .eiiiittuueaeeeittinnaasaeeseeetinnnaaeeeeessinaaesaaaeeessnnnaaeees 2
1.2 JINI TECHNOLOGY ..tuuieeieeiiiineeeeeeetttes s e e e eeeatsi s e eeeeesssnaaessaeseeessnnaeeeeennes 3
1.3 PROJECT GOALS....cutuueeeetiiitiaaeeeeeeetattia s e e e e eetta s e e e e e eatbaas e e e e eeesbn e eeeeesnns 4
1.4 OVERVIEW OF DESIGN .. .ciiiitiiieeiiiiiiiae e e eeeeeeetiis s e e e e eestin s e e e e eeneeessnnnaeeeeenes 5
1.5 PROJECT ACHIEVEMENTS...ccctuuuieeeeiitiinaeeseeenneesnnnnaeeeeesnnnnneeesessennssnnneeeseeed
1.6 ROADMAP ...ttt e ettt e e e e e et e et eaeaaees 7

2 BACKGROUND —JINI TECHNOLOGY ...oouiiiiiiiiiiiiiie et 9
2.1 NETWORK SETUPitiittiiieeeiittiia e e e e eeaeettia s e e e e eeatn s e e e e e eeeeattn e e e e eeesnnnnns 9
2.2 BASICJINI SERVICE ARCHITECTUREccctttuiieeeeeittineeeeeeseeesiinnaeeseennnnnaeeens 10
2.3 SERVICE DESIGN CHOICESciivtiiiieeeeeeiiiiiaeeeeeeeeeeii e e e e eeeti e e e s eeeeeennnnnns 10
2.4 JINI SERVICE FUNCTIONSttiiieeieetiise e e e eeetitis e e e e e et s e e e e eeebsen s e e e e eeeen 12
2.5 JINICLIENT FUNCTIONS ... eitiiitiieeeeeeeetia s ee e e e e e et e e e e eentn e e e e aeaeennnnnn s 15
2.6 ADVANCED JINI CONCEPTS iiitiitiieeeeeeeiiin s aseeeeeeeatai s e e e eeeabsnaaeeaeeneennnns 18

2.6.1 ReMOIE EVENLS......coeeiiii et e e e 18
2.6.2 Distributed TransaCtionS...........covveiiiiiiiiiee e 19

3 STATE OF THE ART oottt 21

3.1 DISTRIBUTED PROGRAMMING TECHNOLOGIES.......ccvvvunieeeeeeiiinnneenaeeeeennnnnns 21
3.1.1 Remote MethodInvocation (RMI).........cccovviiiiiiiiiiiiiiiee e, 21
3.1.2 Comnon Objed Request Broker Architedure (CORBA)...................... 22
3.1.3 EnterpriseJavaBeans (EJB)........ccccovvuiiiiiiiiiiiiieee e 23

3.2 WEB SERVICE TECHNOLOGIES.cuuuuieeeteeiiinseeeeeeeeestinaeeeeeesninaaeeeeenennens 24
3.2.1 Smple Objed AccessProtocol (SOAP)cccvvviieeiiiieeeeeeeeeee e 24
3.2.2 Univeasal Discription Discovery andIntegration (UDDI) 24

3.3 SPONTANEOUS NETWORKING TECHNOLOGIES.......cuuiieiiririiinaeeeeeennnennnaeenns 26
3.3.1 Univesal PlugandPlay (UPNP)ccccouiiiiiiii e 26
332 SEHULALION. ..ceeeieiie et 27

3.4 RELATED JINI RESEARCH PROJECTS ...cccvviiiieiiiiiiiiie e eeeeeeei e 27
3.4.1 The SOAP-UDDI Projeaccuuuuiiiieiiiiiiiieeeeeeee et eeeee 28
3.4.2 TheSurogae ArChitEAUIeoeeeieiiiiiie et 28
3.4.3 TheServiceUser InterfaceProjedoevieevieiiiiiniienieecceiiie e 30

A DESIGN Lttt 33

4.1 CONTROL OF JINI SERVICESOVER THE INTERNETcvvuiieiiiiiiine e eeeeveeniiinnes 33
4.1.1 AWebBridging Architedure............coooevivii i 33
4.1.2 Refledion—A Generic Jini Clentcooeuuiiiiiiiiiiiiiiei e 35

4.2 LIMITED MEMORY CAPABLE DEVICESASJINI SERVICES......ccvvuiieeeieeiiinnnnne. 38
4.2.1 AThinProxy Architedureto Control A Lego Robd..............cceevvnneenns 39
4.2.2 AccessngCORBASarvicesfromJini ClientS.........ccoevvveviiiiieeiiiennnnn. 40

5 IMPLEMENTATION ..ottt 41
5.1 IMPLEMENTING THE WEB BRIDGING ARCHITECTUREcceevviiineeeeeeeiiinannns 41

51.1 A SOAP Jini Client/Web Bridgecccuvviiiiiiiiiiiiiieee e 41
51.2 AServiet Jini Client/Web Bridge.........ccccvvviiviiviiiiiiiiieiieeeeeeeii 44

5.1.3 Implementing A Generic Jini Client with Reflection............................ 45

5.2 IMPLEMENTING LIMITED MEMORY DEVICESASJINI SERVICES.........ceeeeeenenn 46
5.2.1 Implementinga Lego Roba Jini Service..........coeveeveiveeviiiieeeeeenn AT
5.2.2 Implementing a Jini/CORBA SEIVICE........cccvvviiiiiiiiie e, 48

B CONCLUSIONS. . ..ottt eree et e e e e e as 50
6.1 GOALSACHIEVED AND COMPLETED WORKcoiiiiieeeiiiiieieeeeiiiieeeeceeeieeeiieees 50
6.2 FUTUREWORKcceiiiiiiiiiiieeiiiiiii ettt e e e e e e e e e eaaaaeaeeeeeeaeeeeennnnnnnes 52

7 BIBLIOGRAPHY ..ottt e e e e e a e e e e e e e e e e e e eeeeaaanes 53

8 APPENDIX L .ottt a e e e e e 56
8.1 JINIWEB SERVICES SYSTEM ...iieiiiiiiiieeeeieieittinannetesn s s e e e e e e e e e aeeeaenaeaeees 56

VI

Table Of Figures

2.1
2.2
2.3
2.4
3.1
3.2
3.3
4.1
4.2
4.3
4.4
8.1
8.2
8.3
8.4
8.5

BASsIC JINI SERVICE ARCHITECTURE

JINI DESIGN PATTERN ONE

JINI DESIGN PATTERN TwWO

JINI DESIGN PATTERN THREE

JAVA 2 ENTERPRISE EDITION TECHNOLOGY OVERVIEW

WEB SERVICES PROTOCOL STACK

THE SURROGATE ARCHITECTURE

WEB BRIDGING ARCHITECTURE

GENERIC CLIENT ARCHITECTURE

THIN PROXY ARCHITECTURE TO CONTROL LEGO MINDSTORMS ROBOT
JINI CORBA ARCHITECTURE

JINI WEB SERVICES SYSTEM START

STAGE 1: THE SERVICES ARE DISCOVERED AND LISTED

STAGE 2: THE INTERFACES ARE LISTED

STAGE 3: THE METHODS SUPPORTED ARE LISTED

STAGE 4: THE RESULTS ARE DISPLAYED AND THE SERVICE IS OFFERED AGAIN

VI

10
10
22
24
28
34
36
38
39
55
56
57
58
58

Chapter 1

1 Introduction

The exponentid growth of the Internet has been acampanied by technologies thatare
designed to make distributed systems programming easier. However, fundamental
reseach in this area [Tanenbaum ‘95] concludes that distributed systems are
inherently unreliable and distributed programming is complex. Jini technology [Jini
Spec ‘99 is a new tedinology designed by Sun Microsystems that is aimed at
addressing these difficulties. It takes the new programming paradigm approach of
forcing programmers to design their software systems as Jini services which must
adknowledge and acount for the difficulties and inherent unreliability of distributed

computing.

However the aloption of Jini technology has been mnot as widespread as initially

hoped. There are threemain factors that may have hampered Jini’s proliferation.
1 Firstly, the usage of Jini hasinitially been restricted to LAN environments.

2 Semndly, in order to be &le to run a Jini service on a specific madine, that
machine must have a least 3 MB of available memory to ingtall the cre Jini

technology files, thus further restricting Jini’ s adoption.

3 Finally, in order to be ale to utilise adini service, a client must be provided with
information about the service a& compile time. In this current situation, it is
impossible to have ageneric Jini client that can access all Jini services, which
would be desirable in certain circumstances (discussed in section 3.4.3). Jini
clients can currently only access srvices which are written before the client, and

which it has information about a compile time.

Thisthesis aims to addressall threefadors. In addressing the first and third point, the
thesis designs and implements a generic achitedure to allow Jini services to be
accessed and controlled via the Internet without any need for information about the
service & compile time. To address the second point, it investigates how these
services can include devices of limited memory capability. It designs and implements
such a service using a Lego Mindstorms robot. It also designs and implements an
architedure to allow such other services, written in languages other than Java, to be
accessed from Jini clients using the Common Objed Request Broker Architecure
(CORBA).

This chapter provides an introduction to the aeaof distributed computing, followed
by an overview of Jini technology. The main projed goals, design and achievements
are then outlined and finally a synopsis of the structure of the remainder of this

dissertation is provided.
1.1 Distributed Systems

“A digtributed system is a colledion of independent computers that appear to the
users of the sytem as asingle mnputer” [Tanenbaum ‘95]. The growth of distributed
systems over traditional centralised systems has been a trend in the computer industry
sincethe late eighties which can be explained by the advantages of the former systems
over the latter. These alvantages include abetter price/performance ratio, increased
spedl, the inherent distribution of some gplicaions, reliability and the ability to add

computing power in smdl i ncrements.

However, design of distributed systems has led to the identification of the following
seven asociated fallacies. the network is reliable; latency is zero; bandwidth is
infinite; the network is aure; topology doesn’'t change; there is one alministrator;
transport cost is zero. [Deutsch]. The goal of distributed programming paradigms and
technologies is to make it easier to program systems in which processes on different
machines communicate with each other. Unfortunately however, the airrent
distributed object programming technologies such as Java RMI, CORBA, DCOM and
EJB fail to adequately address these seven fallacies. Their architedures gloss over

issues such as partial failure and don't providea model to the programmer as to how a
digtributed software system should behave when communicaion between its
components fails. Compounding these problems is the fad that distributed agorithms
are inherently complex due to concurrency, partial failure, ladk of global knowledge

and performance and scaling issues.

Jini technology takes a new approac to distributed systems programming. The Jini
model tries to ease the aministration burden of distributed systems by allowing
software network services to just “plug and work”. There should be no neal to edit
configuration files. The software (or hardware) service, once dsarted, should
automatically and seamlessly be &le to be found by clients. Jini does this via
“gpontaneous networking” whereby the services announce themselves to the network
and clients automatically find them. Jini also supports redundant infrastructure and
changes in the network topology in a seamless manner. Furthermore, by making the
programmers of Jini services acknowledge and ded with the inherent unreliability of
distributed systems, communities of Jini services become self-healing. Given time the
system will repair damage to itself. The cre parts of the Jini technology model that

enable these feaures are the topic of the next sedion.
1.2 Jini Technology

Three main components of the Jini technology enable Jini services and clients to

spontaneously communicate, with limited need for administration.

1) A Lookup Service — this is esentially a meta-service or naming service which
keeps tradk of all existing Jini services on the network. It is similar in function to
the RMI registry, the Corba naming service d€c. Sun Microsystems default

implementation of this lookup service is named Reggie.

2) Discovery — in order for services to be ale to register themselves with a lookup
service, they initially send multicast messages out on the network searching for
one. To discover available services, clients must also do the same. This processis

known as discovery. This has the advantage that neither services or clients need to

be avare of the locaion of a lookup service in advance Moreover, this system
enables sveral lookup services to be run independently on a network for fault

tolerance purposes.

3) Proxy objeds — clients use services through proxy objects which they download
from the lookup service These proxy objeds provide the ade neaded to invoke a
particular service. The proxy objeds are what the Jini services register with the
lookup service There ae several design decisions left to the programmer as to
how the proxy object should behave, essentially whether it should be afat or thin
proxy. These design decisions are dependent on the specific service and are
discussed in sedion 2.3.

Furthermore, being built around current Java technology, Jini technology relies
heavily on Java s ability to move ade from one machine to another to enable atruly
de-centralised system. It builds on Java's concurrency class libraries to provide
distributed transadion services and although not limited to RMI, it uses RMI to alow

servicesto be invoked between machines
1.3 Projeda Goals

This projed tries to addressthe threefadors outlined in the introduction as restricting
the growth of Jini technology. With this in mind, the project hastwo distinct ams.

Firstly, to design and build a system to allow Jini services to be controlled over the
Internet. This addresses the first factor identified as restricting Jini’s proliferation. A
further enhancement of this system would be to enable the client to be generic, i.e.
allowing a human user to control all Jini services as they bemme available even
though the client knows nothing about them at compil e time. This addresses the third

facor identified asrestricting Jini’ s proliferation.

Seoondly, to investigate how these services can include devices of limited memory
cgpability. This will address the second fador identified as restricting Jini’s

proliferation.

Therefore the projed can be divided into two dstinct sedions. The first sedion
involves researching, designing and building the generic architedure to control Jini
services over the Internet. The second sedion deals with researching and enabling

limited memory capable devicesto be run as Jini services.

1.4 Overview of Design

There ae two dstinct sedions of design. Firstly the design of the achitecture to
control Jini services samlessly over the Internet and secondly the design to control

devices of limited capability. These sedions are dealt with conseautively.

Initially it was hoped to be ale to control Jini services over the Internet using applets
by allowing the gplet to download a service's proxy objed and diredly contad the
service's machine. However, on closer examination and much research several
problems were identified with this scenario. Firstly, for this scenario to be efficient the
client would have to install the @re Jini files. Secondly, if the proxy objed used RMI
to talk bad to its srvice then the gplet would have to use RMI over HyperText
Transfer Protocol (HTTP). This slution was cited as not working at the time of
writing this thesis [Li ‘00]. Finally, depending on firewall configurations it may be

impossible for aclient to accessa serviceif that serviceis behindthe firewall.

A “Web Bridging Architecure” was designed to overcome the problems of RMI over
HTTP, firewall s and distribution of client files (shown in figure 4.1). This design adds
an extra level of indirection to the standard Jini architecture (shown in figure 2.1).
This extra level of indiredion is undesirable but necessary. In the normal Jini
scenario, the Jini client contads the Jini service's machine diredly without any
problem. This is because they are both within the LAN. In the modified architecture,
the client is outside the LAN on the Internet. Rather than the client diredly contading
the Jini service’'s machine, it contacts a bridge which, which in turn contacts the
service' s machine and passes on any client requests. A bridging architecure where the
bridge ads @ the Jini client obviatesthe need for any Internet clients to install the Jini
core files, allowing the bridge to do al the Jini work of discovering and invoking

services. Furthermore, a client using a browser on the Internet is unlikely to be ale to

acces the service's machine if that machine is within a LAN unless firewall
restrictions are relaxed. Finally the bridging architedure dlows any services which
are based on RMI to be dfedively invoked since the bridge will be within the LAN

and can use RMI directly.

The remaining question was choice of technology to implement the Web Bridging
Architedure. An emerging Jini community project [Harrison ‘01] suggested a solution
using the Simple Objea Access Protocol (SOAP) and so a SOAP client and bridge
was investigated and built. However while successfully controlling Jini devices over
the Internet, many of the same problems remained. For example the client, while not
needing to install the Jini core files, would ill need to install core SOAP files and
Extensible Markup Language (XML) parsing files and the service client. Furthermore,
using SOAP means that the dient cannot use astandard web browser client. These
constraints definitely do not alow a generic seamless architedure to control Jini
services over the Internet. Therefore athird architedure of a series of servlets using
reflection in a modified servlet engine was designed and built. This has the alvantage
of allowing the clients to access the services without any pre-configuration or

install ation of files, and using any standard web browser.

The second sedion of the design involved investigating an architedure to control
devices of limited cgpacity via Jini services, it soon became evident that exadly such
an architedure was under construction by the Jini community. This architedure is
known as the Surrogate Architedure [Surrogate Spec*‘01] and is explained in detail in
sedion 3.4.2. There was little point in attempting to design any other architedure &
the community processdesigning the Surrogate Architedure is large, experienced and
in the process of adopting this architedure. A device on which to implement the
Surrogate Architedure was purchased —namely, A Lego Mindstorms robot. The robot
only has 32K of RAM and therefore is totally incapable of installing the Jini core files

and seamed a perfect candidate to attempt to implement the Surrogate Architecture.

Unfortunately it became evident that the Mindstorms robot would be unable to
implement the Surrogate Architecure without writing and downloading rew firmware
to the computer in the robot. The reasons for this are discussed in sedion 3.4.2.

Writing and downloading new firmware was beyond the scope of the projed,

therefore it was decided to design a service that controlled the device & a Jini service
yet unfortunately would not conform to the Surrogate Architedure. A main web site
resource for programmers of the Mindstorm system [Nelson 01] indentified a 100%
Java API built by Dario Laverde to control the Mindstorm robot. It was dedded to
design the robot Jini service by utili sing this padkage. In effed, a madcine caable of
running the Jini core files would have to act as a proxy to the robot, invoking the
methods from the pre-written padage. In order for this to be done remotely, the

service would be built on RMI.

An architedure to alow CORBA services to be accesed from Jini clients was also
designed and built. This enables Jini clients to access ®rvices written in languages
other than Java. Because of its significant memory requirements, Java is not generally
used as a programming language for devices of limited memory capacity. Allowing
Jini clients to invoke services written in other languages should aid in their ability to

access services on limited devices.
1.5 Projed Achievements

The majority of the aims outlined in the projed goals have been achieved. A system
has been designed and built to allow Jini services to be controlled over the Internet.
Furthermore, this system provides a generic client where it is not necessary to know
anything in advance &out the services available, or how to use them. A service
controlling a device of limited cgpadty has also been creaed. However, although a
generic achitedure for this was investigated and identified, it was not possible to
implement this architecure for reasons discussed in sedion 3.4.2. An architedure to
allow CORBA services to be accesed from Jini clients was also designed and built.
This should aid in the ability of Jini clients to access ®rvices on limited devices by

allowing them to invoke services written in other languages.

1.6 Roadmap

A synopsis of the material covered in the rest of the dapters of this dissertation

follows:

In Chapter 2 (Badground) a more detail ed discussion of the Jini model is presented.
In Chapter 3 (State of the Art) other distributed programming technologies are
discussed and their relationship with Jini examined. Alternative “spontaneous
networking” tedhnologies are also discussed and other current relevant Jini research
are examined. Chapter 4 (Design) outlines the achitecure to control Jini services
over the Internet and explains how refledion is used to obviate the need for client
programs to be awvare of services' interfaces in order to control them. The
identification and design of an architecure used to control devices of limited capacity
as Jini services isalso presented asisthe architecture o enable CORBA servicesto be

accesed from Jini clients.

Chapter 5 (Implementation) explains how the achitedures gedfied in the design
were ongructed along with various other implementation specific details. It also
discusses problems encountered with trying to implement the achitedure identified to
control devices of limited cgpadty and the alternative goproach taken. Finally in
Chapter 6 (Conclusions) the conclusions arrived at by the completion of the projea

are discussed and possible future work is outli ned.

Chapter 2

2 Background — Jini Tednology

This chapter describes in detail the primary elements of Sun Microsystems Jini
technology, the cre technology on which this thesis is based. The purpose of the
chapter is to familiarise the reader with the cantral concepts of the technology.
Following a brief explanation of how to set up a Jini network, writing a Jini serviceis
discussed. This begins with the identification and discusson of three Jini service
design choices which have been identified through experience writing Jini services
and from synthesis of the literature [Edwards ‘01] [Newmarch ‘00]. A more technicd
discussion on the re elements of the Jini APl version 1.1 used to create aJini
service then follows. This is then repeaed for a Jini client. These sedions include
discussion and explanation of the key Jini concepts of “Discovery”, “Lookup
Services” and “Leasing’. The chapter finishes with discussion of the two advanced

core Jini concepts — Remote Events and Distributed Transadions.

2.1 Network Setup

The latest version of the Jini technology (version 1.1) may be downloaded from the
Sun Microsystems web-site [Jini technology ‘01]. The Jini binary files are slightly
larger than 3MB. Every machine that is to partake in the Jini network direaly must
install these files (note - machines using a proxy or bridging architecure & described
previously need not ingtall these files). At least one machine on the Jini network must
run a “lookup service”, or LUS The wre Jini download comes with a default
implementation of a LUS named Reggie and comes with instructions to start Reggie.
In order to run Reggie abasic HTTP server must be run on the same machine in order
to export proxy objedsto clients. An RMI adivation daemon must also be run on the
same machine so as the proxy objeds can be adivated only when they are needed.

Thankfully, the Jini download has asimple HTTP server and RMI daemon provided.

2.2 Badsc Jini ServiceArchitedure

There ae three steps to use a Jdini service in a standard Jini service achitedure.
Firstly, the service must locate and register its srvice proxy objed with a lookup
service. To do this the service must run a small HTTP server to export the proxy
objed. Secondly the client must locate the lookup service and seach for the relevant
service. It then downloads the proxy objed. The find step is when the client uses the
proxy objed to contact and invoke the service This interadion can be seen in figure

2.1
Lookup Service

P

1. Service exports 2. Client downloads
proxy proxy

Service Client
< 2. Client uses proxy to
contact/invoke service

Figure 2.1 —Basic Jini ServiceArchitedure

2.3 Service Design Choices

The scenario outlined previously is the most common Jini service design. However
three distinct design choices based on the type of service have been identified from
fusion of the literature and experience writing Jini services. Each of the design

choices relate to the implementation of the proxy objed.

The first choice is where the aitire service is run in the client Java virtual macdine
and thus the client never contacts the service exporter machine. In fact this is just
dynamic code downloading and will rarely be used. This “fat proxy” scenario can be

seen infigure 2.2.

10

Lookup Service

1. Service exports 2. Client downloads
standal one service entire service
Service Client

3. Client runs entire
service locally

Figure 2.2 —Jini Design Pattern 1

The second choice uses a thin proxy objed, which just passes on methods from the
client to the server. This scenario is applicable when all the processing must be run on
the server machine. A standard way to implement this is using Java RMI where the
service exports the RMI stub as the proxy objed. This “thin proxy” scenario can be

seen infigure 2.3

Lookup Service
1. Service exports 2. Client downloads
RMI stub RMI stub
Service Client

3. Client uses RM|I
RMI <
skeleton stub to invoke service

Figure 2.3 —Jini Design Pattern 2

11

The final scenario is where the processing is divided between both the server and the
client. Inthis scenario the proxy objed can contad the rver via any protocol such as
setting up socketsor using HTTP. However it also does ome processing on the client

Javavirtual machine. Thisscenario can ke sen in figure 2.4.

Lookup Service

ol

1. Service exports 2. Client downloads
proxy object proxy object

Service Client

3. Client initiates
‘
local and remote
processng Performs local
processng

Figure 2.4 —Jini Design Pattern 3

2.4 Jini Service Functions

All Jini services must describe their service, discover one or more lookup services and
register their proxy objed, which contains their service description, with the lookup
services discovered. As of Jini version 1.1 this process has been dramatically
simplified by providing a utility classnamed LookupDi scover yManager to take
cae of the discovery processand a utility classnamed Joi nManager to perform the
registration process With these two classes the mgjority of the standard Jini work for
the service developer isgrealy simplified. In fad, the whole processcan now occur in
a single line of code. A more indepth technical overview of these two utility classes

now follows.

We shall firstly examinethe Joi nManager class. The classhastwo constructors.

The first is used when the service is new and has not been previously registered with a

12

lookup service The seaond is used when the lookup service has registered the service

at some ealier timeand hasreturned a servicelD to the service

public class Joi nManager {
publ i ¢ Joi nManager (Cbj ect obj,
Entry[] attrSets,
Servi cel DLi st ener cal | back
Di scover yManagenent
di scover Myr,
LeaseRenewal Manager
| easeMyr)
t hrows | OExcepti on;

publ i ¢ Joi nManager (Cbj ect obj,

Entry[] attrSets,
Servi cel D servicel D,
Di scover yManagenent

di scover Myr,
LeaseRenewal Manager

| easeMyr)
t hrows | OExcepti on;

The first parameter in the @nstructor is the adual proxy object to be registered. The
send parameter is an array of objeds that implement the Ent ry interfaceand are
used to describe the service. The third parameter is either the Ser vi cel D if it is
known or an object that implements the Ser vi cel DLi st ener if it is not known.
The fourth parameter is an objed that implements the Di scover yManagemnent
interface In faa the other utility class LookupDi scover yManager adually
implements this interfaceand an objed of it will usually be passed in here. The final

parameter isaLeaseRenewal Manager object.

The ideaof leases is key to Jini and is the mechanism by which Jini networks become

self-healing and need reduced administration. When a service registers its proxy

13

objea with the lookup service it requests an object which implements the Lease
interface This is equivalent to a promise from the lookup service to keep the proxy
objed registered for the duration of the lease objed returned. This lease objed will
have to be renewed by the service before it expires for the proxy objed to maintain its
registration in the lookup service and for the service to thus gill be available. The

LeaseRenewal Manager objed handlesthese issues for the service

The other utility class mentioned, LookupDi scover yManager, manages all
discovery related issies on behalf of either a service or a dient. A service or client
that wants to contact lookup services whose locations are known to it can use this

class “unicast” facilities (i.e. contact them direadly), yet also use whatever lookup

services it can find by multicast discovery.

public class LookupDi scoveryManager inplenents

Di scover yManagenent ,

Di scover yGr oupManagenent ,

Di scoveryLocat or Managenent {

publ i c Joi nManager(String[] groups,
LookupLocator[] | ocator,
Di scoveryLi stener |istener)

t hrows | OExcepti on;

The first parameter is an array of Strings that identify what types of lookup services
we want to locate. Some lookup services may be based on organisational departments,
others may be open to the puldicc. By passing in the onsant
LookupDi scovery. ALL_GROUPS here we would seach for al available lookup
services. The semnd parameter is an array of LookupLocat or objeds. A serviceor
client that wants to contact lookup services whose locaions are known to it can use
this class “unicast” fadlities by creaing LookupLocat er objeds for ead known
lookup service aldress The final parameter is an objed that implements the
Di scoveryLi st ener interface Thisobjed provides methods that determine what

to do when alookup service has been discovered.

14

The following code fragment illustrates these concepts:

try {
Joi nManager joi nMgr = new
Joi nManager (proxy, attrSets, this, null,

nul 1);

}
catch(1l Oexception ex) {

ex. printStackTrace();

}

It can be seen that by providing nul | as the final two parameters creates default
LookupDi scover yManager and LeaseRenewal Manager objeds
respedively. In the @ove fragment of code pr oxy is the service's proxy objed
which is creaed ealier. attr Set s is an array of objeds implementing the Entry

interface, describing the service.

2.5 Jini Client Functions

All Jini clients also go through a standard set of steps. They must also discover one or
more lookup services, seach that lookup service for the type of service they require
and only then can they use the service As with services, the discovery of lookup
services can be simplified for clients by using the utility class
LookupDi scoveryManager previously discussed. A utility class named
Servi ceDi scover yManager is used to aid client side seaching and is to the

client developer asthe Joi nManager isto the service developer.

public class ServiceD scoveryManager{
publ i ¢ ServiceDi scover yManager
(Di scoveryManagenent Di scoveryMr,
LeaseRenewal Manager | easeMyr)

t hrows | OExcepti on;

15

The class has a single @nstructor that takes an object that implements the
Di scover yManagenent interface Again, the objea usually passed here is an
instance of the LookupDi scover yManager class which will indicate whether the
client wants to use multicast seaching for lookup services, unicast seaching for
lookup services or both. The semnd parameter is an instance of the

LeaseRenewal Manager class.

Once the Ser vi ceDi scover yManager has been creaed, and lookup services
have been locaed, those lookup services are typically seached by clients for services
that they are interested in. The Ser vi ceDi scover yManager classprovides four

lookup methods to smplify this process

Servicelten[] |ookup(ServiceTenplate tnpl, int
m nMat ches, int maxMatches,
ServiceltenFilter filter, long
wai t Dur) ;

Servicelten[] |ookup(ServiceTenplate tnpl,
i nt maxMat ches,

ServiceltenFilter filter);

Servi celtem | ookup(Servi ceTenpl ate tnpl,

ServiceltenFilter filter);

Servi celtem | ookup(Servi ceTenpl ate tnpl,
ServiceltenFilter filter, long
wai t Dur) ;

In each case the method returns either a Ser vi cel t emobjed or an array of such
objeds. This objed contains the services' proxy objed and descriptions about the
service. In eat case also, the dient must passa Ser vi ceTenpl at e object as a
parameter. This objed determines what type of services the client wishes to seach

for. The Ser vi ceTenpl at e objed is constructed in away so as to match some or

16

al services based on the dient’s needs. One of the parameters in constructing a
Servi ceTenpl at e objed is an array of Cl ass objeds of interfaces. Thus only
services implementing these interfaces will be found. In this way, the client needs to
know of the interfaces in advance The other parameters relate to the number of
matches that should be returned and the amount of time that should be taken to match

aservice

The following code fragment illustrates these ncepts. Firstly, the
Servi ceDi scover yManager objed is creaed. If nul | is passed as the two
parameters of the ServiceD scoveryManager congructor, default

LookupDi scover yManager and LeaseRenewal Manager objedsare created.

try{
Servi ceDi scover yManager sdm = new

Servi ceDi scoveryManager (nul |, nul l);
}
catch(l Oexception ex){
ex. print StackTrace();

Then we specify the types of services we ae seaching for by credaing a

Servi ceTenpl at e objed.

Class [] types = new
Cl ass[] {Speci ficServicelnterface. cl ass};
Servi ceTenpl ate tenplate = new Servi ceTenpl ate(nul |,
types, null);

Serviceltem found = null;

Finally we try to find a service implementing the specified interface.

try {
found = sdm | ookup(tenplate, null, 30000);

17

catch (Exception ex){

ex. printStackTrace();

Oncea matching proxy objectis returned to the Ser vi cel t em it istrivial to invoke

the services of the proxy objed.

i f(found!=null){
Speci ficServicelnterface jiniService =
(Speci ficServicelnterface) found. service;
/lcall the nmethod now
Ji ni Service. arbitraryMet hod();

2.6 Advanced Jini Concepts

Threemain Jini concepts have been discussed so far:

= Discovery —both muticast and unicast discovery of lookup services.
= Using Lookup Services —

Services publishing their proxies,

Clients searchingfor services

= Leasing—used by sewicesto confirm their avail ability

However there ae two further concepts that are not necessary for many Jini services

but are ill core o Jini technology. These are:

= Remote Events

« Distributed Transactions
2.6.1 Remote Events

Jini uses events to perform asynchronous notifications of state changes just like Java.

However the difference is that the Java event model was designed for delivering

18

asynchronous notifications within a single Java virtual machine whereas the Jini event
model deliverseventsin adistributed environment. For example, a client may want to
know if a service that it is interested in has changed in some way. It is up to the

service to deliver events to the client notifying him/her of this change.

Any client who wantsto be notified of these changesin services will have to register a
listener for this service. This is done via the Renot eEvent Li st ener interface
which hes a noti fy() method that services can invoke. The Jini event class is

called Renot eEvent and all remote events must use or subclass this class

Remote events raise many problems that local events do not such as order of delivery

and partial-failure. Jini leaves the handling of these issues up to the service

programmers, who must decide if they need to try to re-send the remote events in the

case of partial-failure and determining if clients need to receve theeventsin the order

they were sent.

2.6.2 Distributed Transactions

Transadions are a fundamental concept in distributed systems. They are used to group

several distinct operations together, so as they all ocaur as a single operation. They

provide the ACID properties to data manipulations:

= Atomicity —ether al of the transaction’s operationssuccea, or they al fail.

= Consistency — atransadion is a rrect transformation of the system state. This
means that after the transadion completes, the system should be in a consistent,
understandable state.

= Isolation — partial effedsof one transadion are nat visible to other transadions

= Durability —the effects of acommitted transaction are permanent.

19

In pradice transadions implement a protocol known as the two-phase comnit
protocol. In this protocol, al participants in a transadion are asked to prepare to
commit to the transadion in a primary pre-commit phase. They each exeaute their
own individual part of the transadion here and store the results in a temporary
manner. If all respond that they are prepared to go ahead, theneach participant is told
to commit (i.e. exeaute) in a secondary stage. The commit effedively says that they
must ead make their temporary data dhanges permanent. This decision is final and
even if a participant should fail before it can commit, it must do so when it restarts.
However, if any participant should reply with an abart during the primary phase then
each participant is told to abort and the whole transaction is thus aborted. Throughout
this procedure a cetra entity is the destination for receiving of abort or commit
messages. This entity is the transaction manager. It deddes, based on all the messages

it receives, asto whether or not the transadion should go ahea.

In Jini an objea which implementsthe Tr ansact i onManager interface is used to
manage the two-phase commit protocol. Sun Microsystems have provided a default
transadion manager that implements this interface It is a Jini service and is named
mahal 0. For an objed to be aparticipant in a transadion it must implement the
TransactionPartici pant interface This interface provides abort,

pr epar e and conm t methods which are invoked by the transaction manager.

The processfor creding a transadion is as follows. Firstly a TransadionManager is
locaed uwsing the normal discovery process Then the programmer credes a
Transaction objed wusng the TransactionFactory class This
Transacti on objed’s operaions are then defined, i.e. the programmer decides
what isto comprise the transadion. The Tr ansact i on object is then passed to the
TransadionManager who exeautes it to the standards of the two-phase commit
protocol. Note that it is left up to the programmer to determine what adions each of

the participants must take in their part of the transaction

20

Chapter 3

3 State Of The Art

This chapter provides an introduction to technologies and reseach related to Jini and
this dissertation. It is divided into four sections. The first sedion discusses the
distributed programming technologies of RMI, CORBA and Enterprise Java Beans
(EJB) adong with their rdationship to Jini. The second section introduces the new web
technology combination of SOAP and Universal Description Discovery and
Integration (UDDI). SOAP is a more recent distributed programming technology that
concentrates on web services. UDDI is atechnology that aims to be the Y ellow Pages
of web services. The relationship of these technologies to Jini is examined. The third
sedion deals with two aternative technologies which, like Jini, are amed to
“gpontaneously network” devices — Universal Plug and Play (UPnP) and Salutation.
Finally, a number of fundamental reseach projeds in the aeaof Jini that are relevant

to the work in this dissertation are presented.

3.1 Distributed Programming Tednologies

3.1.1 Remote Method Invocation (RM1)

RMI [RMI Spec ‘00 techrnology is a distributed oljed tedchnology enabling
programmers to write distributed objed-oriented applicaions. Remote Method
Invocaion (RMI) technology is entirely implemented in the Java language. The
technology allows clients to invoke methods on objeds which reside on a remote
server, as if they were invocaions on a local object. A naming service, similar in
function to Jini’s lookup service, is provided called the rmiregistry. This ads as an
information repository storing the locaion of all the distributed objeds. Servers
register their objeds with this registry and provide an HTTP server whereby clients
can obtain remote references for these objeds. Remote references are known as client

stubs and can be located by the clients by contading the rmiregistry and seaching for

21

the service The URL locaing the remote reference is then passed badk to the client
who thus obtains the stub. This gub is responsible for the marshalling, or gathering
and transforming of data from the client into a valid format for transmisgon. A
corresponding skdeton resides on the server, which unmarshall s data from the client

and marshals responses badk to the client.

Jini services, especially those with a thin proxy object, are often kuilt using RMI as
both tednologies are written in the Java language. However, Jini provides
spontaneous networking associated with its discovery protocols. It also reveals to the
programmer a technology which was used behind the scenes in RMI — leasing.

Leasing isthe enabling technology for Jini’ s self-healing mechanisms.

3.1.2 Common Objed Request Broker Architedure (CORBA)

CORBA (Common Objed Request Broker Architedure) is, like RMI, a distributed
objeds technology. Using CORBA, a client can cdl a method on an objed residing
on a remote server, as if it were alling a method on a local objed. Like RMI,
interadion between the client and the server is gecified by an interface However in
CORBA, this interface is written in a language neutral InterfaceDefinition Language
(IDL). The infrastructure to handle the dnal passing of requests from the client to the
server and its responses is hidden from the client. It consists of an Object Request
Broker (ORB) residing on the client machine and another one residing on the server.
The two ORBs communicate using a standard protocol known as General Inter-ORB
Protocol (GIOP). This protocol allows ORBs from different vendors to communicate.
The Internet Inter-ORB Protocol (I10OP) is a mapping of the GIOP specification for
Transport Control Protocol/Internet Protocol (TCP/IP) networks.

The alvantage of CORBA over other distributed technologies is that it is language
neutral. CORBA objeds may be written in many languages e.g. Java, C and C++.
However, unlike RMI and Jini, CORBA objects are not mobile. They can only
execute in a single machine whereas RMI and Jini objeds and their data may be
moved from one machine to another and exeauted there. There is significant value in
allowing CORBA objeds to be accesd from Jini clients. CORBA’s language

22

neutrality is a significant advantage in distributed systems, especially in services of
limited memory capability. A bridging architedure to enable this is described in
sedion 4.2.2.

3.1.3 Enterprise JavaBeans (EJB)

Sun Microsystems has built an infrastructure to allow programmers develop server
side Java programs. This infrastructure is called the “Java 2 Enterprise Edition” or
J2EE. EJB is one aped of the J2EE architedure. The relevant technologies and their

relationship with each other can be seen in figure 3.1.

Client Side Server Side Server Side |
Presentation Presentation BusinessLogic ! Hardware

Applicaions Web EJB i

Server Container | 1

Browser i

Desktop .
Applicaion

AL

Figure 3.1 — Java 2 Enterprise Edition Tednology Overview

EJBs are meant to contain the server side businesslogic. They do have similarities to
Jini however in that EJB is another distributed programming technology, providing
the notion of services on the network. EJBs often reside in different areas on the
network and can aacess other network services via RMI over 110OP. Using 11OP adds
the promise of CORBA interoperability and thus communication with languages other
than Java. EJBs could be exposed as Jini services and thus be dynamically discovered
once run. In fact work is being done arrently to investigate the integration of these

two technologies [EnterpriseWeb ‘01].

23

3.2 Web Service Tednologies

3.2.1 Simple Objea AccessProtocol (SOAP)

SOAP is an XML based protocol used to alow distributed software gplicaions to
communicaeviaHTTP [SOAP Spec. ‘'00]. Becaiseitis over HTTP, SOAP messages
have the avantage (if you are not a system administrator) of being allowed hy
firewalls over the standard web server port 80. SOAP essntially allows Remote
Procedure Call (RPC) to run over HTTP. The SOAP protocol consists of threeparts:

= an envelope describing what is in a message, who and how to processit;
= aserialization mechanism for exchanging appli cation defined datatypes,

= aconvention for invoking remote procedure calls andresponses.

SOAP is a protocol specification headed by Microsoft and IBM, and submitted to the
World Wide Web Consortium (W3C). SOAP is designed to be simple and therefore
doesn’t contain much of the functionality of other distributed objed technologies such

as:

= Disgtributed garbage cdl edion
= Message batching

= Passing objects-by-reference
= Activation

SOAP is a protocol specification and is therefore not tied to any one programming

language. There ae implementations of the SOAP protocol in many languages
including Java, C++, Visual Basic, Perl and Python.

3.2.2 Universal Discription Discovery and Integration (UDDI)

UDDI is a multi-vendor initiative aimed to be a Yellow-Pages type directory of

businesses’ services on the web. An XML file alled the “business registration” is

24

used to describe abusiness entity and its web services in UDDI. This XML file

consists of threeconceptual components [UDDI *0Q]:

= “white pages’ which consist of addresses, contact names and numbers etc.

= “yellow pages’ which consist of industrial caegorisations based on standard
taxonomies

= “green pages’ which consist of the technical information about the services that

are exposed by the busness

These business registration XML files are registered in a puldic UDDI business
registry on the web. IBM and Microsoft currently run public UDDI registries on their

web sites.

The UDDI businessregistry can be used to search for businesses in a specific industry
caegory and seewhat web services they offer. It can also be used to determine the

technicd detail s of how that web serviceis provided in order to invoke the service

The web services that businesses register in the UDDI registries are normally
implemented in SOAP. The interadion of these protocols can be seen in figure 3.2
[UDDI ‘0(Q].

Universal Service Interop. Protocols
(As yet undefined)

Universal Description Discovery and
Integration (UDDI)

Simple Object AccessProtocol
(SOAP)

Extensible Markup Language
(XML)

Common Internet Protocols
(HTTP, TCP/IP)

Figure 3.2 —Web ServicesProtocol Stack

Interoperability Stack

Perhaps not surprisingly, UDDI is an indwstry initiative led by many of the same

companiesthat are promoting SOAP.

25

The combination of SOAP and UDDI aimsto be akey tool in the future of Business-
to-Businesstedhnologies and web services. Their relevance to this dissertation is that
SOAP and UDDI are possible technologies that could be used to expose Jini LAN

based services as services on the Internet, which isthe first aim of this dissertation.

3.3 Spontaneous Networking Tednologies

When Jini technology was initially released, a lot of the marketing hype explained Jini
asatednology that would allow spontaneous networking of home devices. This hype
has not been lived upto, largely becaise of the memory constraints of home devices.
As much of the reseach in this areahas shown, Jini is adually a powerful software
solution that doesn't have to be device e@ntric & al. However, several other
technologies were also creaed and marketed as <lutions for the spontaneous
networking of home devices. This sdion describes two of them — UPnP and
Salutation.

3.3.1 Universal Plug and Play (UPNnP)

UPnP is a technology from a onsortium led by Microsoft [UPnP]. It is ®en as
networking extension of Microsoft’s Plug and Play technology. UPNnP concentrates on
the TCP/IP protocol stadk. It defines additions to the lower levels of the protocol

stack, which can be implemented by device manufacturers.

Like Jini, UPnP implements the ideaof discovery. It uses a protocol known as Simple
Service Discovery Protocol (SSDP) that enables devices to announce their presenceto
the network as well as discover available devices. Note that the enphasis in UPnP is
on hardware devices, whereas Jini emphasises srvices — both software ad hardware.
Discovery in UPnP can work with a lookup service, like in Jini, or without one. Again
like in Jini, discovery is based on the device sending multicast messages announcing

its presence.
One innovative aped of UPNP is self-configuration. This allows devices that cannot

be allocaed IP addresses dynamically, because of a lack of any DHCP server, to use a
protocol called AutolP. AutolP alocates an IP address for the device from a pre-

26

assigned range of IP addresses. However these aldresses are not valid Internet
routable aldresses and are used only for the surrounding network of UPnP devices.
Therefore if a DHCP server bemmes available & any time, it will change the IP

addressof the device into avalid Internet routable one.

While UPnP has the badcing of Microsoft and many device manufadurers, it is avery
different technology offering to Jini. It does not offer a cmprehensive programming
API like Jini and is aimed completely at seamlessly and spontaneously networking

devicestogether whereas Jini isaimed at services, be they hardware or software.
3.3.2 Salutation

Salutation [Salutation] is another discovery and spontaneous networking (known to
Salutation as “Find and Bind’ networking) technology from a mnsortium of computer
indwstry companies and acalemics. It is based on reseach on intelligent agents. A
devicetalks diredly to a Salutation Manager (SLM), which may be in the same device
or located remotely. Salutation assumes that this SLM is known to the device in
advance The SLMs then ad on behalf of the device discovering and coordinating
with each other using Sun Microsystems Open Network Computing Remote
Procedure Call (ONC RFC).

Salutation and UPnP are aimed specifically at dynamically networking hardware
devices. Jini provides far more than just the capability of dynamically networking
devices. Essentially it provides the caability of dynamically networking software.
Furthermore Jini has developed a strong software development community [Jini

Community] dueto its extensive API.
3.4 Related Jini Research Projeds

The following sedion describes three research projeds of special relevance to this
dissertation. Thefirst, “The SOAP-UDDI Project”, is a project that addresses theassu
of how to access Jini services over the Internet. The secmnd, “The Surrogate
Architedure”, is a projed which addresses how to include devices of limited memory

cgoacity in Jini networks. The third, “The Service User InterfaceProject”, addresses

27

how Jini clients can invoke Jini services dynamically even if those services are not
known in advance These three projeds are especially relevant becaise they address
the three issues that were identified in the beginning of this dissertation as impeding
the proliferation of Jini technology.

341 TheSOAP-UDDI Projed

In sedion 3.2.2 SOAP was identified as a possible means of invoking Jini services
over the Internet. Furthermore, UDDI was discussed as a sort of Internet Yellow
Pages where these Jini services could be registered. In fad, this is exadly the aim of
the SOAP-UDDI projed [Harrison ‘01]. This research projed is very new, creded on
the 18" of June 2001 It was the initial impetus to this thesis' investigation of SOAP
as a means to accessing Jini services over the Internet. However, as sated previously,
using SOAP requires distribution of the SOAP and XML parser files to all the clients
for install ation. Furthermore, the necessty to parse XML on both the client and server
introduces noticeable reductions in operation speed. These inconveniences were found

to be major disadvantages to using SOAP to access Jini clients.

3.4.2 TheSurrogaeArchitedure

As stated previoudy, in order for a hardware or software component to participate in a
Jini network, it must be ale to run the cre Jini files which occupy over 3 MB of
memory. In addition it must be @le to download and exeaute dasses written in the
Java programming language and it may need the aility to export classes written in
Java so that they are available for downloading to a remote entity. For devices of
limited cgpacity which cannot med these «iteria, the use of a third party or proxy
which will perform these functions for the device is a solution. The Jini Surrogate
projed [Surrogate Spec. ‘01] has defined such a proxy architedure clled “The
Surrogate Architedure”. The achitedure specificaion is network and device
independent and preserves Jini's concepts of discovery, code downloading, and

leasing of distributed resources.

28

The basic components of the Surrogate Architedure ae shown in figure 3.3. The
proxy is a machine cgpable of participating in a Jini network diredly. It shall allocae
resources for the device in a framework known as the “Surrogate Host”. A
“Surrogate” is an object that represents, and allows control of, the device. Thisemay b

acolledion of Java software components and other resaurces.

Host Capable Madine
Surrogate Host
Jnl Host Resources
Network

Interconned

Surrogate < Protocol

Figure 3.3 —The Sur ogae Architecture

The Surrogate must be retrieved by the Host Capable Machine. This operation may be
a push (the device uploads the surrogate to the surrogate host) or a pull (the surrogate
host extracts the surrogate from the device or from some third perty). The
“Interconned Protocol” is the logical and physical connedion between the Surrogate
Host and the device. The Interconned must be specified for ead network protocol.
This has been done for the Internet Protocol [I nterconnea Protocol ‘01] and it isin the
processof being done for the Bluetooth network protocol and for Java smart-cards. It
is foreseen that the interconned for more network protocols shall be spedfied in the

future.

The Surrogate Architedure solves the second problem constraining the proliferation
of Jini technology identified in this dissertation — that of integrating device of limited
memory cgpacity into a Jini network. However, for the device of limited memory
cgpacity used in thisthesis (a Lego Mindstorms robot) using this architecure was not
possible. This was due to the fad that it is impossible to upload a surrogate from the
Mindstorms robot without re-writing its firmware, which was beyond the scope of the
projed. However the Surrogate Architecure is the generic way of solving the praile

of integrating devices of limited cgadty into a Jini network.

29

3.4.3 TheServiceUser Interface Projed

The Service User Interfaceproject [Venners ‘01] aims to standardise ways to attach
and use any kind of user interface (text-based, graphical, voice etc.) to Jini services.
Note the difference here between the interface that the service implements which
provides methods to the client to invoke on that service, and a user interfacewhich
may be graphical, voice dc. which allows control of the service The Service User
Interface projed is relevant to this dissertation in that it relates to the third problem
identified as restricting the proliferation of Jini technology, namely, if a client doesn’t
know the interfacethat the Jini service implements then there is no way for them to
work together programmatically. However, while this is a problem for an automated
client, it may not be aproblem for a dient used by a human. If an intuitive user
interface is provided then the human may still be ale to use the service There ae

four choices for providing the intelligent user interface

= The services proxy not only implements the interfacethat the service is driven
on, but also implementsthe user interface The proxy could therefore be asubclass
of JW ndowwhich could display acomplete user interface. However, if the client
doesn’'t have acessto the @rrect user interface classfiles it won't be @le to use
the user interface Furthermore, user interface @de bemmes entwined with

service code, which is undesirable from a design point of view.

= A better approach is that the service implements a separate interface eg.
“I nt er f aceabl e” which returns the GUI for the dient. Clients could specify
their type and the methods invoked through the | nt er f aceabl e interface
should return the gpropriate user interface However this prohibits the addition of

auser interfaceby the client after the service has been creaed.

= Another approach attaches user interfaces as attributes to the service's proxy
objed, by sub-classng the Ent ry interface Thus many user interfaces can be
provided, one for ead client type. However, if the client doesn’'t have the crrect
class files to use the user interfaceit is gill a problem. Furthermore, the user
interface will have to be serialised to transmit it. This is a serious limitation to the

user interface’ s capabilities.

30

A fourth approach attadhes not a user interface & an attribute to the service's
proxy objed, but an object that creaes a user interface This is a subtle but
important difference It provides sveral key benefits. As with the previous
approach it allows clients to attach new user interfaces that the service writer may
have omitted. It also allows clients to search for their appropriate user interface
However a major advantage is also that the user interfaceis instantiated on the
client Java virtual machine, rather than on the server one and then serialised. This
is a major advantage becaise instantiating swing components on the server side
normally gives them data references that reside on the server machine. When these
are serialised and sent to the client, they often won't work once de-serialised on

the client.

The Service User Interfaceproject and the Jini community have decided on the fourth

approach. It defines a standard way for user interface providers to asociate auser

interfacewith a Jini service by providing threeitems:

A Ul Descri ptor that describes the user interface and is attached as an
atribute o the service proxy

A user interface fadory” that will be instantiated on the client’s Jva virtual
machine to produce the user interface;

The user interface itself;

TheUl Descri pt or isthe most important of these. It contains the following items:

1. A “role”, which indicates how the user interface generated by the user interface

fadory will be used. A user interface returned by the fadory objed must

implement a specified role. For example, two roles currently defined are:

« M nU —foraservice's“man” user interface

= Adm nUl —for a user interfaceadministering the service

31

2. A “toolkit”, which defines the necessary padcages for the user interface Two
toolkits have been defined to date. One specifying the j avax. swi ng padkage
and another specifyingthej ava. awt packa@g.

3. A st of atributes that describes the user interface represented by the
Ul Descri ptor.

4. A factory, represented as a Mar shal | edCbj ect, which can be used to

instantiate the user interface

A client using the Service User InterfaceProject’s approach must use its padkages in
order to invoke the factory to create the gpropriate user interface However, the
Service User Interfaceis an evolving projed and at the time of this thesis it was not
standardised. Therefore afifth approach using Java's “Refledion” capabilities was
investigated.

Refledion is the aility to examine the type of an objed at run time. This obviates
compile-time type requirements, and enables us to cdl any method on any arbitrary
objea without having to know that objed’s type & compile time [Neward ‘00]. This
isan obvious solution to the problem of thedini client requiring the service's interface

in advance

This approach has the alvantage that the client doesn’t need to know of any non-
standard Java classes in order to use the Jini service Furthermore, it doesn’'t need to
know the interface that the service implements in advance Moreover, in order to
access Jini services via the Internet, this thesis takes the gproach of using servlets.
HTML isthus the graphical user interface For these reasons the Refledion approach
was used and not the Service User Interfaceapproach. However, once its padkages are
defined, due to its flexibility, the Service User Interfacewill undoubtedly become the
standard mechanism by which most human controlled clients will access srvices

from a multitude of devices.

32

Chapter 4

4 Design

As gated ealier, there ae two dstinct sedions of design. The first sedion deals with
the achitedure to control Jini services over the Internet, while also addressing the
guestion of how to make the client generic. This in essence tries to solve the first and
the third problem identified as impeding the growth of Jini technology — namely, how
to access Jini services over the Internet and, how to enable ageneric Jini client to
control Jini services without any advanced knowledge of them. Thus the first sedion
deals with the design of a generic Jini client to control Jini services over the Internet.
The seand sedion of the design deals with the @ntrol of devices of limited
cgpability as Jini services. This addresses the second problem identified as impeding
the growth of Jini tedhnology —that in order to partake in a Jini network, devices need
a least 3 MB of available memory to install the Jini software.

4.1 Control of Jini Servicesover the Internet

This dion is divided into two sub-sedions. The first sub-sedion describes the
problems associated with trying to access Jini services over the Internet and provides
the design of aweb kridging architedure & a solution to these problems. The second
sub-sedion discusses the necesdty for ageneric client and describes an addition to the

web kridging architedure, which uses reflection to create the generic client.
4.1.1 A Web Bridging Architedure

Asdescribed in sedion 2.2, in the normal Jini scenario, when both a dient and service
are within a LAN, the client downloads a “proxy object” which it can use to control
the service Initially it was hoped to be ale to continue to use this normal Jini
architedure to control Jini services over the Internet using applets by allowing the
applet to download a service's proxy objed and diredly contad the service's

machine.

33

However, when the client is outside the LAN this same interadion raises problems.
Firstly, the client would have to ingtall the cre Jini files. Moreover, the use of
multicast to dscover the lookup service canot be used. This however can be solved
by Jini’s unicast lookup facility where the client specifies a known IP address of a
lookup service Unfortunately there ae more serious problems. Even if the client
knows the IP address of the machine running the lookup service and uses Jini’s
unicast facilities to try to contact it, there it is unlikely to get through to it if that
machine is behind a firewall. If the firewall is configured to allow aceess to that
relevant port on the lookup service machine, then the client will be able to accessit
and download the proxy objed. However, in many cases the service will use the
seaond design pattern specified in sedion 2.3 in which case the proxy object will then
attempt to accessanother machine on which to run the service Again we cme acoss
the problem of accessto this machine if it is behind a firewall. We ae now in the
nasty position of having to open portsfor every machine we run a srvice on. Even if
this was attempted, the communication between the proxy objed and the service
badk-end will often use RMI. RMI dynamically allocaes port numbers when using
communicaion between clients and servers and thus trying to gve acessto these Jini
service badk-end machines using RMI would be equivalent to gving acaessto every

port on that machine.

One gproac to this problem is to try to tunnel RMI over HTTP. This involves
encapsulating the client RMI call in an HTTP ROST request and unpadking it on the
server side. However there is extensive negative experience with this on the RMI-
users mailing list. Furthermore, this issue has been raised previously as the Jini
community attempts to accessJini services over the Internet. Moreover, a the time of
writing, the RMI over HTTP solution was cited as not working [Li ‘01]. Even if this
solution became feasible, the client would still have to install the aore Jini technology

files in advance

The solution these this problems is to add an extra level of indiredion to the sandard

Jini architedure. This modified architedure can ke <en in figure 4.1

34

Lookup Service Firewall

/ Client/ Web
Bridge

o <« p| Internet
Jini _ «— ! Client
Service HTTP

Figure 4.1 —Web Bridging Architecture

The standard Jini client now bemmes a web lridge also, allowing a browser client to
invoke the Jini client facilities such as discovery, searching of the lookup service and
service invocations. While this design isn’t as simple and elegant as the standard Jini
architedure, it resolves all of the problems discussed ealier. The proxy objects can
accessthe service badk-end even if it is viaRMI seeing as the Jini client/web bridge is
still within the LAN. The main issue left to resolve is the type of “Jini client/web
bridge” tednology and thus Internet client to choose. Two dternative
implementations are discussed in sections 5.1.1 and 5.1.2. While this section has
identified an architedure to accessJini services over the Internet, it has not addressed
the question of providing a generic client for al services. The following section

provides an addition to the web bridging architecture that enables this.

412 Réfledion —A Generic Jini Client

As discussed in sedion 2.5, in the normal scenario for a Jini client, once the lookup
service has been found, it can be seached for services that implement a specific
interface Therefore, if the client is to seach for a specific type of service it must be
aware of that service's interface & compile time. A client can however seach for all
services available implementing any interface by passng null as a parameter in the
methods that seach the lookup service However, in order to invoke the methods, we

do normally need the interface the service implements at compile time.

35

In cases where the client is automated, this is not a problem becaise it doesn’'t make
sense for programmatic clients to invoke aservice they know nothing about. However
if there is human interacion with the client, it may be possible to provide the user
with enough information about the service d run time so as he/she can sensibly
invoke the service. This system would allow any new service to be accesed and
invoked by the generic client, without updating or modifying the client whatsoever.
Although the client knows nothing about the service it aims to extract enough
information about it at run-time, and provide this to the user, so as he/she @an make a

value judgement asto whether or not it makes sense to accessthe srvice

Java's “Refledion” capabilities allow us to discover the type of an object, the
interfaces it implements, and the mehods those interfaces define, when we recave the
objea at run time. These caabilities can be used to augment the web kridging
architedure. The four-stage generic client architedure using refledion is shown in

figure4.2.

36

Stage 1- Provide
Class names and
Descriptions of all
services

Stage 2- Provide
—» all interfaces for

user selects a| salected service
service

Stage 3- Provide
—»| all methods

user seI?cts defined in selected
an interface interface

Stage 4- Invoke
——»| the selected

user selects method and
amethod | retyrn result

Figure 4.2 —Generic Client Architedure

As the diagram shows, the first stage supgies all discovered services, their class
names and a description of each service The user then seleds a specific service that
he/she wishesto access This sledion is passed to the second stage, which provides a
list of all the interfaces supported by the seleded service The user then seleds a
specific interface This sledion is passed to the third stage, which provides a list of
all the methods defined by that interface The user then selects a method to invoke.
The method is invoked on the underlying serviceand the final stage shows the method
result. Detail s of the specific reflection cgpabilities used at ead stage ae described in
sedion 5.1.3 — Implementing a Generic Jini Client with Reflection.

37

4.2 Limited Memory Capable Devices as Jini Services

As discussed previously, more than 3 MB of memory is required to run Jini
technology natively on a device For many devices this is not possble. Sedion 3.4.2
describes an architedure (The Surrogate Architedure) in the processof being defined
by the Jini community to allow devices that cannot normally partake in a Jini network
because they cannot supdy 3 MB of memory, to partake in a Jini network using a
proxy architedure. The essence of this architedure is that another machine that can
supply the necessary memory will ad on behalf of, and communicate diredly with,
the limited cevice

The device of limited memory capability chosen to run as a Jini service and to
implement the Surrogate Architedure is the Lego Mindstorms robotic kit
[Mindstorms]. This idea of aLego Mindstorms robot as a Jini serviceisrelatively old.
Sun Microsystems showed a series of robots controlled as Jini services from palm
pilots at the JavaOne 1999 conference [JavaTanks ‘99]. Further literature is also
available [Jini and Lego ‘00], [Newmarch ‘00]. Unfortunately during the
implementation of the it became clea that the Mindstorms system cannot implement
the Surrogate Architecture for reasons ecified in sedion 3.4.2. However it can still
be antrolled by the general principal of the Surrogate Architedure — that a machine
with the necessary memory can communicate on its behalf within the Jini network and
communicae with it diredly using a private protocol. The next sedion discusses the

design of this system.

Most devices of limited capability currently do not run Java natively due to the
memory requirements of a Java virtual machine. Smaller virtual machines and new
smaller editions of the Java programming language ae aimed to change this situation,
but for the moment many limited memory devices will continue to run other less

memory intensive languages.
CORBA discussd in sedion 3.1.2, is a distributed objed technology that is language

independent. It allows a client written in one language to invoke methods in an objed

written in another language on a remote machine. If Jini clients could use CORBA as

38

a means to invoke services written in other languages it could pdentially give them
access to services written for limited memory devices. The final sedion discusses the

design of a Jini servicethat allows Jini clientsto accessCORBA services.

4.2.1 A Thin Proxy Architedureto Control A Lego Raobot

Three possible Jini service design patterns are discussed in sedion 2.3. The second
“thin proxy” pattern is applicable when most of the Jini service processing happens on
the server and the client just fires up this processing. As discussed in sedion 2.3, this
is often implemented using RMI where the client invokes methods on the RMI stub,

which are seamlesdy passed on to the RMI skeleton on the server for processing.

In the cae of controlling the Lego Mindstorms robot, an infra-red transmitter tower
may be atadched to a computer via the serial port. Commands may then be sent from
this computer over the transmitter tower to the Lego robot. In essence, that computer
ads as a base-tation for the robot. If we aeto provide a ©mputer program to control
the Lego robot as a Jini service, it is clea that most of the processing will occur on
this base-station computer. Therefore, the “thin proxy” service design pattern

described in sedion 2.3 is applicable. Thisarchitedure can be sen in figure 4.3.

Lookup Service

1) Service exports 2) Client downloads
RMI stub RMI stub
Jini Service Client
<
Pre-written 3) Client uses
Java RMI RMI stub to
API

Figure 4.3 —Thin Proxy Architecture to Control Lego Mindstorms Robot

39

The client invokes a method on the RMI stub which seamlessly invokes the method
on the server. The RMI skeleton uses a pre-written Java padkage [Laverde ‘99 to

send commands to the serial port and control the robot.

4.2.2 Accessing CORBA Servicesfrom Jini Clients

When invoking any servicein another technology from a Jini client, a Jini service that
is a client to the other tedhnology is written. We must however decide on the
applicable service design pattern, i.e. where the processing must occur — on the client,
the server or both (see sedion 2.3). In the cae of acessing a CORBA service, the
third design pattern can be used. Processing is both remote and local. Figure 4.3

shows this architedure.

Lookup Service Corba Service

ORB

1) Service 2) Client downloads

exports entire service
standalone 4) Client invokes
Service Client CORBA service
Jini
Service/Corba
Client 3)Service creates
ORB locally

Figure 4.4 —Jini CORBA Architecture

The Jini service is initially exported to the lookup service Once downloaded by the

client the service creaksan ORB locally and then contads the CORBA service.

This chapter has provided a design to control Jini services over the Internet and an
augmentation to this design to provide ageneric client for these Jini services. It has
also provided discusson and designs to enable devices of limited memory capacity to
partake within Jini networks. The next chapter deds with the implementation of these

designs.

40

Chapter 5

5 Implementation

This chapter isagain divided into two distinct sedions. The first sedion deals with the
implementation of the web kridging architedure described in sedion 4.1.1 used to
control Jini servicesover the Internet. It describes how to implement the web bridging
architedure using SOAP and using Java serviets. It aso describes the aspeds of
Java's refledion capabilities that allow us to create a generic client. The second
sedion deals with implementing limited memory devices as Jini services. It describes
the implementation of the Lego Mindstorms robot as a Jini service designed in
sedion 4.2.1 and then the implementation of the Jini/CORBA bridge service outlined
in sedion 4.2.2.

5.1 Implementing the Web Bridging Architedure

This sdion describes issues encountered while implementing the web bridging
architedure described in section 4.1.1 and in figure 4.1. The key implementation issue
here was what technology to use to expose Jini services to clients over the Internet.

Both a SOAP and a Java servlets version were implemented.

5.1.1 A SOAP Jini Client/Web Bridge

The SOAP-UDDI Jini research projed discussed in sedion 3.4.1 suggests using the
same web lridging architedure identified in the sedion 4.1.1 where the Jini

client/web kridge isa Jini client whose methods are exposedasa SOAP service

SOAP is an XML based distributed programming spedficaion. Implementations of
this gedficaion are available in many languages. Since Jini services and clients are
built in the Java programming language, an implementation of SOAP in Java is
necessary in order to expose the Jini services as SOAP services that cen be acessed

by SOAP clients over the Internet. Apache-SOAP is one such implementation and can

41

be downloaded from the Apache web site’. Apache SOAP can be used both as a
client-side library to invoke SOAP services avail able remotely, or as a server-side tool
to expose SOAP services. The wnfiguration of the client and server are both
documented with the Apache-SOAP download. From the server’s point of view,
among ather things, it neals a web application server that supports servlets and JSPs
(Java Server Pages). The Apache-Tomcat servlet engine was used for this purpose”.
The servlet engine, and the server-side Apache-SOAP installation resides on the
client/web bridge of the modified Jini web lkridging architecure in figure 4.1 in
sedion4.1.1.

In order to act as a Jini client and contact any Jini services on the LAN, three
modifications must be made to the Tomca servlet engine. Firstly, the Tomcat policy
file must allow acassto the rest of the network. Secondly the cre Jini technology
files must be included in Tomca’s classlibrary. Finally, Tomcat’s startup script must
be modified to include all the Apache-SOAP files. Once we set up the servlet engine
configured for Apadche-SOAP, we can register a Jini client as a SOAP service. The
process of registering a SOAP service is well documented in the Apache-SOAP

download.

The Jini client, once registered as a SOAP service aded as a means to control the
Lego Mindstorms robot via a SOAP client over the Internet. Once the Jini client is
initially invoked by a SOAP client, the network is sarched for a service
implementing a RobotInterface . This is the name of the interfacethat the Lego
robot service implements. Once aservice has been found, the SOAP client can move
the robot “forwards’, “badkwards’, “left” and “right” or tell the robot to “stop”. These
five coommands are the names of five methods that have been “exposed” as methods
that can be invoked by any SOAP client over the Internet. The Jini service that is
locaed adualy returns an RMI stub to the “Jini client/SOAP service”. Thus any
method invoked by the SOAP client on the Jini client/SOAP service adually invokes
the eguivalent method on the RMI skeleton residing on the Lego robot’s controlli ng

computer.

Y HTTP://xml.apache.org/soap/index.html
2 HTTP://jakarta.apache.org/tomcat/index.html

42

The SOAP client is also a Java class which uses the Apache-SOAP implementation
to create XML-based SOAP messages. The client acts in the following manner. It
must first be given the locaion of the SOAP service This is a two-part operation.
Firstly, the locaion of the Apache-SOAP server-tool used to expose the SOAP

services ishard coded into the client as a dva URL objed.

URL url= new URL
("HTTP://wilde.cs.tcd.ie :8080/soap/serviet/

rpcrouter”);

Within the Apache-SOAP server, our specific service is given a Uniform Resource
Name (URN). This must be supplied to the SOAP client also. The following code
snippet does this.

String urn = "urn :Client";

The SOAP message @an then be aeaed and the specific method it attempts to invoke
can be passed to it. In the code example below we ae trying to invoke the “forwards’
method.

Call call= new Call();
call.setTargetObjectURI(urn);

call.setMethodName(“forwards”);

The client can then attempt to make the call .

try {
Response response = callinvoke (url,),

Using SOAP, and the modified Jini web kridging architecture & the means of
invoking Jini services avoids the problems of firewalls and of needing to install the
core Jini technology files on the client. However in order to invoke Jini services via
SOAP over the Internet, the Internet client (or SOAP client) must still ingtall the

43

SOAP implementation files as well as an XML parser (Apache-Xerces was used in
this case®). Moreover, the SOAP client is invoked using a @mmand line interface
rather than via abrowser. Finally, the speal of a SOAP client-server interadion is
quite slow. Thisis due to the fad that XML has to be parsed both an the client and on

the server machines.

Only one Jini client/SOAP service was creaed due to the previously mentioned
problems with SOAP. No atempt to make the Jini client/SOAP service work for all
services using Java's reflection capabilities was made. The next sedion looks a a
faster alternative tedhnology, which obviates the need to distribute any files to the

Internet client.

5.1.2 A Servlet Jini Client/Web Bridge

The alvantages of using a series of Java servlets as the Jini “client/web kridge” are
manifold. Firstly, the speal advantages of serviets over SOAP is obtained, not only
because of the necessty of parsing XML at both the SOAP client and server, but also
because of the multi-threaded capabilities of servlets. Secondly, the aility to maintain
state between servlets is omething that is impossible with many implementations of
server-side SOAP tools. Furthermore, the obvious advantage of servlets over SOAP in
this situation is that the Internet client can be asimple HTML page thus not needing
any distribution or installation of client side files. Finally, using servlets allows easy,
clean use of Java's refledion cgpabilities to develop a generic Jini client that can
control all Jini services without any advanced knowledge of them.

While these capabilities can be used with a SOAP implementation in Java, the clean

well defined model for handling datatransfer between servlets simplifiesthis process

The Apache-Tomca servlet engine was again used as an application on which to
deploy and run the servlets. As in the previous SOAP service scenario, Tomca is
locaed on the client/web bridge machine in the web kridging architedure of sedion
4.1.1 and figure 4.1. In order to partake in the Jini network, i.e. discover any lookup

3 HTTP://xml.apache.org/xerces-j/index.html

44

services and download and run any Jini service's proxy objects, Tomca must be

modified as described in the previous section.

The following sedion discusses the use of refledion in the servliet web kridging
architedure o create a generdini client, which with human interadion, is capable of

controlling all Jini services without modification.

5.1.3 Implementing A Generic Jini Client with Reflection

Asdescribed previously, Java' s “Reflection” capabilities allow us to discover the type
of an objed, the interfaces it implements, and the methods those interfaces define,
when we receive the objed at run time. These cgabilities can be used to augment the
web lridging architedure o create a generdini client. This Jini client should be able

to accessall Jini services, even onesthat are created after the client hasbeen written.

The four-stage addition to the web kridging architedure used to create the generic
client is described in section 4.1.3 and figure 4.2. In fact, these four stages can be
cleanly implemented by providing four servlets which can passthe user’s choice d
eah stage © the nexservlet.

The first servlet once initiated, begins a seach of the LAN for any lookup services
and downloads all found services proxy objeds. The Jini utility classes
LookupDiscoveryManager and ServiceDiscoveryManager discus=d in
sedion 2.5 are heavily used to perform these functions. These objects are initially
downloaded as generic Java object instantiations. Using reflection we provide the
user with the class name of every proxy objed found. The Java “Class” class
which represents instances of Java classes running in an application, provides the

reflection capabilities to implement this.

Class cl= unknownService.getClass 0;

cl.getName();

45

In the first stage of the generic client, the user seleds which service he/she would like
to access This sledion is passed onto the semnd servlet. The second serviet then
displays the interfaces implemented by the seleded class. Again the Java “Class”

classcan be used to discover these interfaces at run-time using the following method

Class]] interfaces = cl.getinterfaces();

The user then seleds an interface and that seledion is passed to the third servlet. This
servlet shows all the methods defined by the selected interface Again the Java

“Class” class providesthe refledion capabil itiesto enable this:
Method[] methods = selectedinterface.getMethods();

Where selectedinterface is an instantiation of the Java “Class” class The
user seledsthe method that he/she would like to invoke and this is passed to the final
servlet. The method is then invoked on the underlying service, i.e. the service that

implements the seleded interface. This is done using the Java Method class

try {
ReturnValue = selected.invoke(unknownService,

null);

where selected is a Method objed and unknownService isthe underlying service
which isa Javaobject . The HTML pages returned to the user at eat stage can be
seen in Appendix 1.

5.2 Implementing Limited Memory Devicesas Jini Services

This ®dion is divided into two sub-sedions. The first describes the implementation
of the Lego Mindstorms robot as a Jini service and issues that arose during this
process The semnd sub-sedion describes the implementation of the Jini/CORBA

service and associated isaues.

46

5.2.1 Implementing a Lego Robot Jini Service

The thin proxy architedure defined in section 4.2.1 is implemented with the aid of
RMI. Firgtly, the interface which the service implements must extend
java.rmi.Remote in order for the service to be invoked remotely. The service
named Robotimpl implements this interface ad extends
java.rmi.UnicastRemoteObject . The service is then compiled using the

JavaRMI compiler to give the client stub and the server skeleton.

The service provides five methods. “forwards’, “backwards’, “left”, “right” and
“stop”. Eadh of these methods creates an array of bytes and passes these to the serial
port. Dario Laverde's Jhva padkage [Laverde ‘99 written specifically for
communicaion with the Lego Mindstorms robot tower is used to parse string
commands into these bytes arrays to be sent to the tower. In order to send messages
over the serial port the Java Communications extens on package must be downlcaded
from Sun Microsystems®. This is added to the Java run time environment of the

machine controlli ng the Lego robot.

Oncethe service has been written, another Javaclass is used to add descriptions of the
service, discover any lookup services on the network and register the service with
these lookup services. It is also responsible for renewing the service's lease with the
lookup service The server side Jini utility classes LookupDiscoveryManager

and JoinManager , which were discussed in sedion 2.4 — Jini Service Functions,

are the main classes used in this process

Because the service extends UnicastRemoteObject , when the service is being
registered with the lookup service, what actually gets registered is the client stub

class RMI doesthisat run time.

* HTTP://java.sun.com/products/javacomm/

a7

5.2.2 Implementing aJini/CORBA Service

The CORBA server to be accesed by the Jini client is based on the simple Hello
World CORBA service described in the Sun Microsystems Java tutorial®. For a brief
discussion on CORBA see sedion 3.1.2. A simple Interface Definition Language
(IDL) file was written and compiled using the idlj compiler that comes with the
download of the Java 2 SDK version 1.3 and later. The IDL file declares a module
and a single interface A method returning a string is contained within the interface
Once ompiled, the module translates into a java padkage. This padkage wontains Jva
versions of the IDL interfaceand methods. It also creates the server skeleton which
implements the Java interface and the client stub. Auxiliary CORBA specific Java

classs are also creaed.

The CORBA server isimplemented in Java also. This is purely for convenience Once
the achitedure works, it should be relatively easy to implement a server in another
language, or hook upto existing CORBA services. A CORBA server manages one or
more “servant” objeds which adually implement the service i.e. provide the
interfac€s methods. The server is also responsible for creaing an ORB and
conrecting the servant objects with it. It is also responsible for pubishing the
servant’s Interoperable Objed Reference (IOR). This is a reference to the servant
objea that is transparent between different ORBs. It contains the version of the
transport protocol (GIOP or 110OP for TCP/IP networks) that the server supports, the
IP addressand port number of the server and a key used to identify the servant objed
by the server. The server must pullish this 9 as the client can invoke the servant’s
methods. The server can puldish it in two ways, by using a CORBA name-service or
by physically transferring the file to the client. The server implemented used the
name-service that comes with the Java 2 SDK named tnameserv. The server then
waits for client requests through the ORB and on receiving them passes them to the

servant objeds.

® HT TP://web2.java.sun.com/docs/books/tutoriali dl /index.html

48

In order to accessthis CORBA server from a Jini client we must build a Jini service
which is also a CORBA client. This Jini service, named JiniCorbaService :
performs processing both locally (e.g. it must crede an ORB locally) and remotely
(e.g. it must contad the naming service and invoke aservant objed’s methods). The
Jini service implements an interface named JiniCorbalnterface that defines a
method that returns a string. The implementation of this method by the “Jini
servicel CORBA client”, invokes the remote CORBA servant's method. The Jini
service is registered with a lookup service using the utility classes
LookupDiscoverManager and JoinManager discussed in section 2.4 — Jini

Service Functions.

The first sedion of this chapter dedt with the implementation of the web kridging
architedure described in section 4.1.1 used to control Jini services over the Internet.
I mplementations in two technologies, SOAP and Java Servlets, were discussed. Java’'s
reflection cgpabilities used to create a generic client were dso discussed. The second
sedion of the dapter discussed implementing limited memory devices as Jini
services, specificdly in the ntext of a Lego Mindstorms robot and access to
CORBA services. The next sedion outlines the mnclusions reached, work
acomplished and goas adiieved duing the aurse of this project and discusses

possible further work.

49

Chapter 6

6 Conclusions

This chapter describes conclusions readed following the work done during the course
of this thesis. The first sedion re-iterates the initial projed goas and describes the
work done to try to achieve these goals. It also gives an evaluation of if, and how,
those goals were met. The second sedion describes possible future work and

improvements.

6.1 Goals Achieved and Completed Work

Threedistinct goals were outlined at the beginning of this dissertation:

1. This thesis aims to addressthe issue of Jini services being restricted to a LAN

environment.

This was achieved by designing and describing a generic architecdure to alow Jini
services to be accesd and controlled over the Internet — section 4.1.1 “A Web
Bridging Architedure”. This has been implemented using two technologies — Java
servletsand SOAP. A good understanding of both tedhnologies was gained in order to
implement these achitedures. Both technologies were used in conjunction with the
Tomcat version 3.2 servlet engine. Tomcat was run on Solaris © a basic knowledge
of Unix was also leaned. A thorough knowledge of the functions of Jini clients,
especially using the Jini 1.1 APl was also leaned. This includes issues of discovering

and searching of lookup services, aswell as invoking specific services.

2. This thesis aims to investigate how Jini services can include devices of limited

memory capability.

A generic solution to this problem was identified and reseached — that of the

Surrogate Architedure described in sedion 3.4.2. A device of limited memory

50

cgpability was acqquired and built to test this architedure —a Lego Mindstorms robot.
Unfortunately during the atempted implementation, for reasons explained in sedion
3.4.2, it became obvious that to implement the Surrogate Architedure using this
device the eigting firmware would have to be replacel. This was beyond the scope
of this projed. However, a “thin-proxy” service to control the Lego robot was
designed (sedion 4.2.1 —“A Thin Proxy Architedure to Control A Lego Robot”) and
implemented using RMI, which utilised the general principles of the Surrogate
Architedure. A good understanding of RMI was gained during this processas well as

abasic knowledge of programming a limited devicevia the srid port.

CORBA was identified as a key technology, which if bridged to Jini could allow
many more services, perhaps on devices of limited memory cgpability, to be accesd
from Jini clients. An architecure to enable this bridge was designed and described in
sedion 4.2.2 — “Accesing CORBA Services from Jini Clients’. A basic CORBA
server that returns a string was built in Java. A Jini service that acts as a CORBA
client was also built to allow aacess from a Jini client to the basic CORBA server. A

good knowledge of CORBA was achieved in order to implement this architecture.

A thorough understanding of the server side issues of a Jini network was leaned at
this stage of the thesis. Thisincludesissues of discovery, registering and leasing aJini

service with alookup service

3. This thesis aims to provide an architedure by which clients can control Jini
services without any previous knowledge of them, thus providing a single generic

Jini client to all services.

A project which goes sosme way to addressing this issue was identified and discussed
in sedion 3.4.3 — The Service User Interface Projed. This projed is dill in its ealy
stages and at the time of this thesis, had not become standardised. Furthermore, the
approach taken by the Service User InterfaceProjed was that the dient shoud use an
additional Service User Interface Project padkage. For these reasons, a different
approach using Java's “Reflection” capabilities was investigated. A generic client
architedure using Reflection was designed and described in sedion 4.1.3 -

“Reflection — A Generic Jini Client”. This architedure was successully implemented

51

using Java servlets and refledion. A good knowledge of Java's reflecion capabilities

was gained through this implementation.

A very good knowledge of designing and implementing distributed systems was
gained throughout this projed. The first and third goals outlined were adieved
completely. During the implementation it became gparent that it was impossible to
achieve the second goal generically. However, a limited memory cgpable device was
successully controlled as a Jini service A Jini service was also built that allows Jini
clients to access CORBA services. This may also smplify acaessfrom Jini clients to

devices of limited capacity.

6.2 Future Work

Future work on this projed could include the following:

= Register the SOAP service with a UDDI registry — the Jini client/SOAP service
could be registered with one of the puldic UDDI registries operated by Microsoft
and IBM.

= If the Service User Interface project becomes gandardised as a part of the Jini
technology, look at using this as an alternative to Java refledion in the generic Jini

servlet client.

= Augment the Jini servlet client to be updated of remote events occurring on

services.

= Investigate rewriting the Lego Mindstorms robot firmware in order to implement

the Surrogate Architecture.

52

7 Bibliography

[Ayers 99|

[Coulouris‘01]

[Deutsch]

[Edwards ‘01]

[EnterpriseWeb ‘01]

[Freeman ‘01]

[Harrison ‘01]

[I P Interconnect ‘01]

[JavaTanks ‘99|

Professional Java Server Programming, Danny Ayers et al.,
Wrox Press 1999

Distributed Systems Concepts and Design, George Coulouris,
Jean Dollimore, Tim Kindberg, Addison-Wesley, 2001

The Seven Fallacies of Distributed Computing, Peter Deutsch

Core Jini Second Edition, W. Keith Edwards, Prentice Hall,
Upper Saddle River, NJ, USA2001

EnterpriseWeb Projed,
HTTP://developer .jini.org/exchange/projeds/enterpriseweb,
Dr. Teddy Achaso, Bill Venners. July 2001

JavaSpaces Principles, Patterns, and Pradice Eric Freeman,
Suzanne Hupfer, Ken Arnold, Sun Microsystems, June 1999

Dave Harrison,
HTTP://developer.jini.org/exchange/projeds/soapuddi/, June
2001

Jini Technology IP Interconnea Spedficaion, Sun
Microsystems, HT TP://www.jini.org/standards/sa-ip.pdf ,
August 2001.

A Demonstration of JiniTM Tecdhnology and the K Virtual
Machine, Sun MicroSystems,
HTTP://developer.java.sun.com/developer/technical Articledjin
i/JavaT anks/Javatanks.html, September 1999

53

[Jini Spec ‘99

[Jini technology ‘01]

[Jini Community]

[Jini and Lego ‘00|

[Laverde ‘99

[Li *00]

[Mindstorms]

[Nelson ‘01]]

[Neward ‘00|

[Newmarch 00|

[RMI Spec ‘99

The Jini Specificaion, Ken Arnold, Bryan O’ Sullivan, Robert
W. Scheifler, Jim Waldo, Ann Wollrath, Prentice Hall, July
1999

HTTP://www.sun.com/jini

HTTP://developer.jini.org

Programming Lego Mindstorms Robots Using the Java
Communicaions APl and Jini Connedion Technology, Dario
Laverde,
HTTP.//servlet.java.sun.convjavaone/javaone2000pdfs/TS-
1326pdf, 2000

RCX Java API, Dario Laverde, HTTP://www.crynwr.com/lego-
robotics/, 1999

Professional Jini, Sing Li, Wrox Pressinc, August 200Q

Robotics Invention System 2.0, Lego,
HTTP://mindstorms.lego.com/products/ris/index.asp

HTTP://www.crynwr.com/lego-robotics

Java Server-Based Programming, Ted Neward, Manning
Publication Co., 200Q

A Programmer’s Guide to Jini Technologies, Jan Newmarch,
APress, November 200Q

Java Remote Method Invocaion Specification,

Revision 1.7, Java 2 SDK, Standard Edition, v1.3.0,
December 1999

54

[Salutation]

[SOAP Spec ‘00]

[Surrogate Spec‘01]

[Tanenbaum *95]

[Tannenbaum ‘ 96]

[UDDI '0Q]

[UPNP]

[Venners‘01]

[Vogel ‘9§

HTTP://www.salutation.org

Simple Object AccessProtocol version 1.1,
HTTP://www.w3.0rg/TR/SOAP/ , Don Box, David Ehnebuske,
Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Henrik
Frystyk Nielsen, Satish Thatte, Dave Winer, May 2000

The Jini Technology Surrogate Architedure Spedfication,
version 1.0 draft standard, Sun Microsystems,
HTTP://developer.jini.org/exchange/projeds/surrogate/sa.pdf,
July 2001

Distributed Operation Systems, Andrew S. Tanenbaum,
PrenticeHall, 1995

Computer Networks (3" Edition), Andrew Tannenbaum,
PrenticeHall, pp. 412-448

UDDI Tednicd White Paper, Aribalnc., Microsoft Corp.,
HTTP://www.udd.org/pubs/Iru_UDDI_Technical_White Pape
r.pdf , September 2000

HTTP://lwww.upnp.org

The ServiceUser InterfaceProjed, Bill Venners,
HTTP://developer.jini.org/exchange/projeds/serviceui/, 2001

Java Programming with CORBA, Seoond Edition, Andreas
Vogel, Keith Duddy, Wiley Press 1998

55

8 Appendix 1

8.1 Jini Web Services System

The following screen shots show the different stagesin the servlet implementation of
the generic client to control Jini services over the Internet using refledion.

- TCD Jini Web Services System - Metscape
File Edt “iew Go Communicator Help

Ay A A o W

Back Fomward FReload Home Search Metzcape

S & B

Frint Security Shop

#

J'Bnnkmalks \&. Locatinn:Ihttp:a’.n"wilde.cs.tcd.ie:SDSDa’iini.f'sewIet.n"FilstJiniServIet

j ™ what's Related

ﬁlnstanlMessage ‘wfebib ail Contact Feople Yellow Pages Dawsnload ['_‘i Charinels RealPlayer

> Computer Science Department [s4 ﬁ
JINT Trinity College Dublin
Sun's Jini Welcome to the Jini Web Services System i %9
Technology %
Start Jini Search
Submit |
[(== | |Document: Done

Figure 8.1 —Jini Web Services System Start

56

CD Jini Web Services System - Netscape

File Edt “iew Go Communicator Help

Computer Science Department |

Trinity College Dublin

Sun's Jini Welcome to the Jini Web Services System Lego Mindstorms
Technolozy Site

Jini service number 1

7 Check this button to control this service

class name: server JiniCorba=ervice

Jini service number 2

© Check this button to control this service

class name: Eobotlmpl Stub

net.jini.lookup.entry.Comment (comment=This service allows you to control a Lego robot
in the C3 departmwent, attached to PC 6395, using the
ROECOTINTERFACE)

net,jini. loockup.entry.Location(floor=Ground Floor,roow=G.30,building=0'Reilly Building)

Contral Selected Service |

Search Again |

Figure 8.2 —Stage 1. The Servicesare Discovered and Listed

57

Ll

TCD Jini Web Services System - Hetscape

File Edit Yiew Go Communicator Help

—
CL:% Computer Science Departmenl @
Jint Trinity College Dublin
Sun's Jini Welcome to the Jini Web Services System Legn Mindstorms
Technology Bite
By selecting an nterface, control the jin service : Robotlmpl Stub
FobotInterface [which contains the following methods
stop
left
right
hackwards
forwards
java.rmi. Remote & which contains the following methods
Subrnit |
=
= (== |Document: Dore 4

Figure 8.3 —Stage2: Thelnterfacesare Listed

58

CD Jini Web Services System - Metscape

File Edit “iew Go Communicator Help
b i A h -_/
= Computer Science Department faud
g-_?- P P ,{!
Jm Trinity College Dublin
Sun's Jini Welcome to the Jini Web Services System Lego Mindstorms
Technology Site

Te Contrel the Jid Service : Eobotlmpl Stub | select a method to involke fom interface | RobotInterface

stop O
left O
right &
backwards

forwards (%

Subrnit |

= ==

|Document: Done

To Control Jim Service : Robotlmpl Stub |, select a methed to mwoke from mnterface : RobotInterface

stop
left O
right o
backwards

forwards

. Computer Science Department ﬁ
Jint Trinity College Dublin
Zun's Jit Technology Welcome to the Jini Web Services System Lego Mindstorms Site
return type true

Submit |

Eil

|Decument: Done

=
=2 e B

Figure 8.5 —Stage 4: The Resultsare Displayed and the Serviceis Offered Again

59

