
A Generic Architecture to Control Jini
Services over the Internet

Brian McSweeney

A dissertation submitted to the University of Dublin,
in partial fulfilment of the requirements for the degree of

Master of Science in Computer Science

September 2001

II

Declaration

I declare that the work described in this dissertation is, except where
otherwise stated, entirely my own work and has not been submitted as an
exercise for a degree at this or any other university.

Brian McSweeney
14th September 2001

Permission to lend and/or copy

I agree that Trinity College Library may lend or copy this dissertation
upon request.

Brian McSweeney
14th September 2001

III

Abstract

Distributed computer systems have brought many advantages over traditional

centralised systems. However these systems have innate complications such as partial

failure, lack of system wide knowledge, concurrency etc. Programming environments

for these systems have typically been few and have often failed to adequately address,

or even ignored, the associated complications of distributed systems. Sun

MicroSystems’ Jini technology [Jini Spec ‘99] is a new distributed systems

programming technology where programmers write software as Jini services. It

provides the mechanisms by which programmers can try to manage these distributed

systems complications.

This dissertation aims to address three issues currently restricting the widespread

adoption of Jini technology.

� Firstly, the usage of Jini has initially been restricted to Local Area Network

(LAN) environments. This thesis addresses this issue by describing a generic

architecture to allow Jini services to be accessed and controlled over the Internet.

� Secondly, the core Jini technology installation files necessitate over 3MB of

memory, thus impeding Jini services on devices of limited memory capacity. This

thesis investigates how Jini services can include devices of limited memory

capability and describes the implementation of such a service.

� Finally, the implementation of a Jini client for a specific service currently

necessitates providing the client with information about the service in advance.

This is a significant restriction on Jini technology in that each service writer must

provide its own client implementation for that service. This thesis describes and

implements a method by which clients can control Jini services without any

knowledge of them, thus providing a single Jini client to all services.

IV

Acknowledgements

I would like to thank my supervisors Alexis Donnelly and Simon Dobson for their

interest, enthusiasm and guidance throughout the course of this project. I would also

like to thank all my friends, family and classmates for their friendship, support and

help during the year.

V

Contents

1 INTRODUCTION ...1

1.1 DISTRIBUTED SYSTEMS...2
1.2 JINI TECHNOLOGY...3
1.3 PROJECT GOALS..4
1.4 OVERVIEW OF DESIGN ..5
1.5 PROJECT ACHIEVEMENTS..7
1.6 ROADMAP ..7

2 BACKGROUND – JINI TECHNOLOGY ...9

2.1 NETWORK SETUP..9
2.2 BASIC JINI SERVICE ARCHITECTURE..10
2.3 SERVICE DESIGN CHOICES ..10
2.4 JINI SERVICE FUNCTIONS ..12
2.5 JINI CLIENT FUNCTIONS..15
2.6 ADVANCED JINI CONCEPTS ...18

2.6.1 Remote Events..18
2.6.2 Distributed Transactions..19

3 STATE OF THE ART ...21

3.1 DISTRIBUTED PROGRAMMING TECHNOLOGIES...21
3.1.1 Remote Method Invocation (RMI)...21
3.1.2 Common Object Request Broker Architecture (CORBA).......................22
3.1.3 Enterprise Java Beans (EJB)..23

3.2 WEB SERVICE TECHNOLOGIES...24
3.2.1 Simple Object Access Protocol (SOAP) ..24
3.2.2 Universal Discription Discovery and Integration (UDDI)24

3.3 SPONTANEOUS NETWORKING TECHNOLOGIES..26
3.3.1 Universal Plug and Play (UPnP) ..26
3.3.2 Salutation...27

3.4 RELATED JINI RESEARCH PROJECTS ..27
3.4.1 The SOAP-UDDI Project ...28
3.4.2 The Surrogate Architecture .. 28
3.4.3 The Service User Interface Project ...30

4 DESIGN ...33

4.1 CONTROL OF JINI SERVICES OVER THE INTERNET ...33
4.1.1 A Web Bridging Architecture..33
4.1.2 Reflection – A Generic Jini Client ..35

4.2 LIMITED MEMORY CAPABLE DEVICES AS JINI SERVICES................................38
4.2.1 A Thin Proxy Architecture to Control A Lego Robot39
4.2.2 Accessing CORBA Services from Jini Clients40

5 IMPLEMENTATION ...41

5.1 IMPLEMENTING THE WEB BRIDGING ARCHITECTURE41
5.1.1 A SOAP Jini Client/Web Bridge ...41
5.1.2 A Servlet Jini Client/Web Bridge..44

VI

5.1.3 Implementing A Generic Jini Client with Reflection..............................45
5.2 IMPLEMENTING LIMITED MEMORY DEVICES AS JINI SERVICES.......................46

5.2.1 Implementing a Lego Robot Jini Service...47
5.2.2 Implementing a Jini/CORBA Service..48

6 CONCLUSIONS..50

6.1 GOALS ACHIEVED AND COMPLETED WORK ...50
6.2 FUTURE WORK ...52

7 BIBLIOGRAPHY..53

8 APPENDIX 1 ... 56

8.1 JINI WEB SERVICES SYSTEM ...56

VII

Table Of Figures

2.1 BASIC JINI SERVICE ARCHITECTURE 9
2.2 JINI DESIGN PATTERN ONE 9
2.3 JINI DESIGN PATTERN TWO 10
2.4 JINI DESIGN PATTERN THREE 10
3.1 JAVA 2 ENTERPRISE EDITION TECHNOLOGY OVERVIEW 22
3.2 WEB SERVICES PROTOCOL STACK 24
3.3 THE SURROGATE ARCHITECTURE 28
4.1 WEB BRIDGING ARCHITECTURE 34
4.2 GENERIC CLIENT ARCHITECTURE 36
4.3 THIN PROXY ARCHITECTURE TO CONTROL LEGO MINDSTORMS ROBOT 38
4.4 JINI CORBA ARCHITECTURE 39
8.1 JINI WEB SERVICES SYSTEM START 55
8.2 STAGE 1: THE SERVICES ARE DISCOVERED AND LISTED 56
8.3 STAGE 2: THE INTERFACES ARE LISTED 57
8.4 STAGE 3: THE METHODS SUPPORTED ARE LISTED 58
8.5 STAGE 4: THE RESULTS ARE DISPLAYED AND THE SERVICE IS OFFERED AGAIN 58

1

Chapter 1

1 Introduction

The exponential growth of the Internet has been accompanied by technologies that are

designed to make distributed systems programming easier. However, fundamental

research in this area [Tanenbaum ‘95] concludes that distributed systems are

inherently unreliable and distributed programming is complex. Jini technology [Jini

Spec ‘99] is a new technology designed by Sun Microsystems that is aimed at

addressing these diff iculties. It takes the new programming paradigm approach of

forcing programmers to design their software systems as Jini services which must

acknowledge and account for the difficulties and inherent unreliabil ity of distributed

computing.

However the adoption of Jini technology has been not as widespread as initially

hoped. There are three main factors that may have hampered Jini’ s proliferation.

1 Firstly, the usage of Jini has initially been restricted to LAN environments.

2 Secondly, in order to be able to run a Jini service on a specific machine, that

machine must have at least 3 MB of available memory to install the core Jini

technology files, thus further restricting Jini’ s adoption.

3 Finally, in order to be able to utilise a Jini service, a client must be provided with

information about the service at compile time. In this current situation, it is

impossible to have a generic Jini client that can access all Jini services, which

would be desirable in certain circumstances (discussed in section 3.4.3). Jini

clients can currently only access services which are written before the client, and

which it has information about at compile time.

2

This thesis aims to address all three factors. In addressing the first and third point, the

thesis designs and implements a generic architecture to allow Jini services to be

accessed and controlled via the Internet without any need for information about the

service at compile time. To address the second point, it investigates how these

services can include devices of limited memory capabil ity. It designs and implements

such a service using a Lego Mindstorms robot. It also designs and implements an

architecture to allow such other services, written in languages other than Java, to be

accessed from Jini clients using the Common Object Request Broker Architecture

(CORBA).

This chapter provides an introduction to the area of distributed computing, followed

by an overview of Jini technology. The main project goals, design and achievements

are then outlined and finally a synopsis of the structure of the remainder of this

dissertation is provided.

1.1 Distr ibuted Systems

“A distributed system is a collection of independent computers that appear to the

users of the system as a single computer ” [Tanenbaum ‘95]. The growth of distributed

systems over traditional centralised systems has been a trend in the computer industry

since the late eighties which can be explained by the advantages of the former systems

over the latter. These advantages include a better price/performance ratio, increased

speed, the inherent distribution of some applications, reliabil ity and the ability to add

computing power in small i ncrements.

However, design of distributed systems has led to the identification of the following

seven associated fallacies: the network is reliable; latency is zero; bandwidth is

infinite; the network is secure; topology doesn’t change; there is one administrator;

transport cost is zero. [Deutsch]. The goal of distributed programming paradigms and

technologies is to make it easier to program systems in which processes on different

machines communicate with each other. Unfortunately however, the current

distributed object programming technologies such as Java RMI, CORBA, DCOM and

EJB fail to adequately address these seven fallacies. Their architectures gloss over

3

issues such as partial failure and don’t provide a model to the programmer as to how a

distributed software system should behave when communication between its

components fails. Compounding these problems is the fact that distributed algorithms

are inherently complex due to concurrency, partial failure, lack of global knowledge

and performance and scaling issues.

Jini technology takes a new approach to distributed systems programming. The Jini

model tries to ease the administration burden of distributed systems by allowing

software network services to just “plug and work” . There should be no need to edit

configuration files. The software (or hardware) service, once started, should

automatically and seamlessly be able to be found by clients. Jini does this via

“spontaneous networking” whereby the services announce themselves to the network

and clients automatically find them. Jini also supports redundant infrastructure and

changes in the network topology in a seamless manner. Furthermore, by making the

programmers of Jini services acknowledge and deal with the inherent unreliabil ity of

distributed systems, communities of Jini services become self-healing. Given time the

system will repair damage to itself. The core parts of the Jini technology model that

enable these features are the topic of the next section.

1.2 Jini Technology

Three main components of the Jini technology enable Jini services and clients to

spontaneously communicate, with limited need for administration.

1) A Lookup Service – this is essentially a meta-service or naming service which

keeps track of all existing Jini services on the network. It is similar in function to

the RMI registry, the Corba naming service etc. Sun Microsystems’ default

implementation of this lookup service is named Reggie.

2) Discovery – in order for services to be able to register themselves with a lookup

service, they initially send multicast messages out on the network searching for

one. To discover available services, clients must also do the same. This process is

known as discovery. This has the advantage that neither services or clients need to

4

be aware of the location of a lookup service in advance. Moreover, this system

enables several lookup services to be run independently on a network for fault

tolerance purposes.

3) Proxy objects – clients use services through proxy objects which they download

from the lookup service. These proxy objects provide the code needed to invoke a

particular service. The proxy objects are what the Jini services register with the

lookup service. There are several design decisions left to the programmer as to

how the proxy object should behave, essentially whether it should be a fat or thin

proxy. These design decisions are dependent on the specific service and are

discussed in section 2.3.

Furthermore, being built around current Java technology, Jini technology relies

heavily on Java’s ability to move code from one machine to another to enable a truly

de-centralised system. It builds on Java’s concurrency class libraries to provide

distributed transaction services and although not limited to RMI, it uses RMI to allow

services to be invoked between machines.

1.3 Project Goals

This project tries to address the three factors outlined in the introduction as restricting

the growth of Jini technology. With this in mind, the project has two distinct aims.

Firstly, to design and build a system to allow Jini services to be controlled over the

Internet. This addresses the first factor identified as restricting Jini’ s proliferation. A

further enhancement of this system would be to enable the client to be generic, i.e.

allowing a human user to control all Jini services as they become available even

though the client knows nothing about them at compile time. This addresses the third

factor identified as restricting Jini’ s proli feration.

Secondly, to investigate how these services can include devices of limited memory

capability. This will address the second factor identified as restricting Jini’ s

proli feration.

5

Therefore the project can be divided into two distinct sections. The first section

involves researching, designing and building the generic architecture to control Jini

services over the Internet. The second section deals with researching and enabling

limited memory capable devices to be run as Jini services.

1.4 Overview of Design

There are two distinct sections of design. Firstly the design of the architecture to

control Jini services seamlessly over the Internet and secondly the design to control

devices of limited capabil ity. These sections are dealt with consecutively.

Initially it was hoped to be able to control Jini services over the Internet using applets

by allowing the applet to download a service’s proxy object and directly contact the

service’s machine. However, on closer examination and much research several

problems were identified with this scenario. Firstly, for this scenario to be eff icient the

client would have to install the core Jini files. Secondly, if the proxy object used RMI

to talk back to its service then the applet would have to use RMI over HyperText

Transfer Protocol (HTTP). This solution was cited as not working at the time of

writing this thesis [Li ‘00]. Finally, depending on firewall configurations it may be

impossible for a client to access a service if that service is behind the firewall .

A “Web Bridging Architecture” was designed to overcome the problems of RMI over

HTTP, firewalls and distribution of client files (shown in figure 4.1). This design adds

an extra level of indirection to the standard Jini architecture (shown in figure 2.1).

This extra level of indirection is undesirable but necessary. In the normal Jini

scenario, the Jini client contacts the Jini service’s machine directly without any

problem. This is because they are both within the LAN. In the modified architecture,

the client is outside the LAN on the Internet. Rather than the client directly contacting

the Jini service’s machine, it contacts a bridge which, which in turn contacts the

service’s machine and passes on any client requests. A bridging architecture where the

bridge acts as the Jini client obviates the need for any Internet clients to install the Jini

core files, allowing the bridge to do all the Jini work of discovering and invoking

services. Furthermore, a cli ent using a browser on the Internet is unlikely to be able to

6

access the service’s machine if that machine is within a LAN unless firewall

restrictions are relaxed. Finally the bridging architecture allows any services which

are based on RMI to be effectively invoked since the bridge will be within the LAN

and can use RMI directly.

The remaining question was choice of technology to implement the Web Bridging

Architecture. An emerging Jini community project [Harrison ‘01] suggested a solution

using the Simple Object Access Protocol (SOAP) and so a SOAP client and bridge

was investigated and built. However while successfully controlling Jini devices over

the Internet, many of the same problems remained. For example the client, while not

needing to install the Jini core files, would still need to install core SOAP files and

Extensible Markup Language (XML) parsing files and the service client. Furthermore,

using SOAP means that the client cannot use a standard web browser client. These

constraints definitely do not allow a generic seamless architecture to control Jini

services over the Internet. Therefore a third architecture of a series of servlets using

reflection in a modified servlet engine was designed and built. This has the advantage

of allowing the clients to access the services without any pre-configuration or

installation of files, and using any standard web browser.

The second section of the design involved investigating an architecture to control

devices of limited capacity via Jini services, it soon became evident that exactly such

an architecture was under construction by the Jini community. This architecture is

known as the Surrogate Architecture [Surrogate Spec ‘01] and is explained in detail i n

section 3.4.2. There was little point in attempting to design any other architecture as

the community process designing the Surrogate Architecture is large, experienced and

in the process of adopting this architecture. A device on which to implement the

Surrogate Architecture was purchased – namely, A Lego Mindstorms robot. The robot

only has 32K of RAM and therefore is totally incapable of installing the Jini core files

and seemed a perfect candidate to attempt to implement the Surrogate Architecture.

Unfortunately it became evident that the Mindstorms robot would be unable to

implement the Surrogate Architecture without writing and downloading new firmware

to the computer in the robot. The reasons for this are discussed in section 3.4.2.

Writing and downloading new firmware was beyond the scope of the project,

7

therefore it was decided to design a service that controlled the device as a Jini service

yet unfortunately would not conform to the Surrogate Architecture. A main web site

resource for programmers of the Mindstorm system [Nelson 01] indentified a 100%

Java API built by Dario Laverde to control the Mindstorm robot. It was decided to

design the robot Jini service by utili sing this package. In effect, a machine capable of

running the Jini core files would have to act as a proxy to the robot, invoking the

methods from the pre-written package. In order for this to be done remotely, the

service would be built on RMI.

An architecture to allow CORBA services to be accessed from Jini clients was also

designed and built. This enables Jini clients to access services written in languages

other than Java. Because of its significant memory requirements, Java is not generally

used as a programming language for devices of limited memory capacity. Allowing

Jini clients to invoke services written in other languages should aid in their abil ity to

access services on limited devices.

1.5 Project Achievements

The majority of the aims outlined in the project goals have been achieved. A system

has been designed and built to allow Jini services to be controlled over the Internet.

Furthermore, this system provides a generic client where it is not necessary to know

anything in advance about the services available, or how to use them. A service

controlli ng a device of limited capacity has also been created. However, although a

generic architecture for this was investigated and identified, it was not possible to

implement this architecture for reasons discussed in section 3.4.2. An architecture to

allow CORBA services to be accessed from Jini clients was also designed and built.

This should aid in the abil ity of Jini clients to access services on limited devices by

allowing them to invoke services written in other languages.

1.6 Roadmap

A synopsis of the material covered in the rest of the chapters of this dissertation

follows:

8

In Chapter 2 (Background) a more detailed discussion of the Jini model is presented.

In Chapter 3 (State of the Art) other distributed programming technologies are

discussed and their relationship with Jini examined. Alternative “spontaneous

networking” technologies are also discussed and other current relevant Jini research

are examined. Chapter 4 (Design) outlines the architecture to control Jini services

over the Internet and explains how reflection is used to obviate the need for client

programs to be aware of services’ interfaces in order to control them. The

identification and design of an architecture used to control devices of limited capacity

as Jini services is also presented as is the architecture to enable CORBA services to be

accessed from Jini clients.

Chapter 5 (Implementation) explains how the architectures specified in the design

were constructed along with various other implementation specific details. It also

discusses problems encountered with trying to implement the architecture identified to

control devices of limited capacity and the alternative approach taken. Finally in

Chapter 6 (Conclusions) the conclusions arrived at by the completion of the project

are discussed and possible future work is outlined.

9

Chapter 2

2 Background – Jini Technology

This chapter describes in detail the primary elements of Sun Microsystems’ Jini

technology, the core technology on which this thesis is based. The purpose of the

chapter is to famil iarise the reader with the central concepts of the technology.

Following a brief explanation of how to set up a Jini network, writing a Jini service is

discussed. This begins with the identification and discussion of three Jini service

design choices which have been identified through experience writing Jini services

and from synthesis of the literature [Edwards ‘01] [Newmarch ‘00]. A more technical

discussion on the core elements of the Jini API version 1.1 used to create a Jini

service then follows. This is then repeated for a Jini client. These sections include

discussion and explanation of the key Jini concepts of “Discovery” , “Lookup

Services” and “Leasing” . The chapter finishes with discussion of the two advanced

core Jini concepts – Remote Events and Distributed Transactions.

2.1 Network Setup

The latest version of the Jini technology (version 1.1) may be downloaded from the

Sun Microsystems’ web-site [Jini technology ‘01]. The Jini binary files are slightly

larger than 3MB. Every machine that is to partake in the Jini network directly must

install these files (note - machines using a proxy or bridging architecture as described

previously need not install these files). At least one machine on the Jini network must

run a “lookup service”, or LUS. The core Jini download comes with a default

implementation of a LUS named Reggie and comes with instructions to start Reggie.

In order to run Reggie a basic HTTP server must be run on the same machine in order

to export proxy objects to clients. An RMI activation daemon must also be run on the

same machine so as the proxy objects can be activated only when they are needed.

Thankfully, the Jini download has a simple HTTP server and RMI daemon provided.

10

2.2 Basic Jini Service Architecture

There are three steps to use a Jini service in a standard Jini service architecture.

Firstly, the service must locate and register its service proxy object with a lookup

service. To do this the service must run a small HTTP server to export the proxy

object. Secondly the client must locate the lookup service and search for the relevant

service. It then downloads the proxy object. The final step is when the client uses the

proxy object to contact and invoke the service. This interaction can be seen in figure

2.1

2.3 Service Design Choices

The scenario outlined previously is the most common Jini service design. However

three distinct design choices based on the type of service have been identified from

fusion of the literature and experience writing Jini services. Each of the design

choices relate to the implementation of the proxy object.

The first choice is where the entire service is run in the client Java virtual machine

and thus the client never contacts the service exporter machine. In fact this is just

dynamic code downloading and will rarely be used. This “fat proxy” scenario can be

seen in figure 2.2.

Figure 2.1 – Basic Jini Service Architecture

Proxy

Service Client

Lookup Service

1. Service exports
proxy

2. Client downloads
proxy

2. Client uses proxy to
 contact/invoke service

Proxy

11

The second choice uses a thin proxy object, which just passes on methods from the

client to the server. This scenario is applicable when all the processing must be run on

the server machine. A standard way to implement this is using Java RMI where the

service exports the RMI stub as the proxy object. This “thin proxy” scenario can be

seen in figure 2.3

Figure 2.2 – Jini Design Pattern 1

Figure 2.3 – Jini Design Pattern 2

Proxy

Service Client

Lookup Service

1. Service exports
 standalone service

2. Client downloads
 entire service

Proxy

3. Client runs entire
service locall y

Proxy

Service Client

Lookup Service

1. Service exports
RMI stub

2. Client downloads
RMI stub

Proxy

3. Client uses RMI

stub to invoke service
RMI

skeleton

12

The final scenario is where the processing is divided between both the server and the

client. In this scenario the proxy object can contact the server via any protocol such as

setting up sockets or using HTTP. However it also does some processing on the client

Java virtual machine. This scenario can be seen in figure 2.4.

2.4 Jini Service Functions

All Jini services must describe their service, discover one or more lookup services and

register their proxy object, which contains their service description, with the lookup

services discovered. As of Jini version 1.1 this process has been dramatically

simpli fied by providing a utility class named LookupDiscoveryManager to take

care of the discovery process and a utility class named JoinManager to perform the

registration process. With these two classes the majority of the standard Jini work for

the service developer is greatly simplified. In fact, the whole process can now occur in

a single line of code. A more indepth technical overview of these two utility classes

now follows.

We shall firstly examine the JoinManager class. The class has two constructors.

The first is used when the service is new and has not been previously registered with a

Figure 2.4 – Jini Design Pattern 3

Proxy

Service Client

Lookup Service

1. Service exports
 proxy object

2. Client downloads
proxy object

Proxy

3. Client initiates

 local and remote
processing Performs local

processing

13

lookup service. The second is used when the lookup service has registered the service

at some earlier time and has returned a service ID to the service.

public class JoinManager {

 public JoinManager(Object obj,

 Entry[] attrSets,

 ServiceIDListener callback,

DiscoveryManagement

discoverMgr,

 LeaseRenewalManager

leaseMgr)

 throws IOException;

public JoinManager(Object obj,

 Entry[] attrSets,

 ServiceID serviceID,

 DiscoveryManagement

discoverMgr,

 LeaseRenewalManager

leaseMgr)

 throws IOException;

}

The first parameter in the constructor is the actual proxy object to be registered. The

second parameter is an array of objects that implement the Entry interface and are

used to describe the service. The third parameter is either the ServiceID if it is

known or an object that implements the ServiceIDListener if it is not known.

The fourth parameter is an object that implements the DiscoveryManagement

interface. In fact the other utility class LookupDiscoveryManager actually

implements this interface and an object of it will usually be passed in here. The final

parameter is a LeaseRenewalManager object.

The idea of leases is key to Jini and is the mechanism by which Jini networks become

self-healing and need reduced administration. When a service registers its proxy

14

object with the lookup service it requests an object which implements the Lease

interface. This is equivalent to a promise from the lookup service to keep the proxy

object registered for the duration of the lease object returned. This lease object will

have to be renewed by the service before it expires for the proxy object to maintain its

registration in the lookup service and for the service to thus still be available. The

LeaseRenewalManager object handles these issues for the service.

The other utility class mentioned, LookupDiscoveryManager, manages all

discovery related issues on behalf of either a service or a client. A service or client

that wants to contact lookup services whose locations are known to it can use this

class’ “unicast” facilities (i.e. contact them directly), yet also use whatever lookup

services it can find by multicast discovery.

public class LookupDiscoveryManager implements

DiscoveryManagement,

DiscoveryGroupManagement,

DiscoveryLocatorManagement {

 public JoinManager(String[] groups,

 LookupLocator[] locator,

 DiscoveryListener listener)

throws IOException;

}

The first parameter is an array of Strings that identify what types of lookup services

we want to locate. Some lookup services may be based on organisational departments,

others may be open to the public. By passing in the constant

LookupDiscovery.ALL_GROUPS here we would search for all available lookup

services. The second parameter is an array of LookupLocator objects. A service or

client that wants to contact lookup services whose locations are known to it can use

this class’ “unicast” facilities by creating LookupLocater objects for each known

lookup service address. The final parameter is an object that implements the

DiscoveryListener interface. This object provides methods that determine what

to do when a lookup service has been discovered.

15

The following code fragment illustrates these concepts:

try {

JoinManager joinMgr = new

JoinManager(proxy, attrSets, this, null,

null);

}

catch(IOException ex) {

ex.printStackTrace();

}

It can be seen that by providing null as the final two parameters creates default

LookupDiscoveryManager and LeaseRenewalManager objects

respectively. In the above fragment of code proxy is the service’s proxy object

which is created earlier. attrSets is an array of objects implementing the Entry

interface, describing the service.

2.5 Jini Client Functions

All Jini clients also go through a standard set of steps. They must also discover one or

more lookup services, search that lookup service for the type of service they require

and only then can they use the service. As with services, the discovery of lookup

services can be simpli fied for clients by using the utility class

LookupDiscoveryManager previously discussed. A utility class named

ServiceDiscoveryManager is used to aid client side searching and is to the

client developer as the JoinManager is to the service developer.

public class ServiceDiscoveryManager{

public ServiceDiscoveryManager

(DiscoveryManagement DiscoveryMgr,

LeaseRenewalManager leaseMgr)

throws IOException;

}

16

The class has a single constructor that takes an object that implements the

DiscoveryManagement interface. Again, the object usually passed here is an

instance of the LookupDiscoveryManager class which wil l indicate whether the

client wants to use multicast searching for lookup services, unicast searching for

lookup services or both. The second parameter is an instance of the

LeaseRenewalManager class.

Once the ServiceDiscoveryManager has been created, and lookup services

have been located, those lookup services are typically searched by clients for services

that they are interested in. The ServiceDiscoveryManager class provides four

lookup methods to simplify this process.

ServiceItem[] lookup(ServiceTemplate tmpl, int

minMatches, int maxMatches,

 ServiceItemFilter filter, long

waitDur);

ServiceItem[] lookup(ServiceTemplate tmpl,

int maxMatches,

ServiceItemFilter filter);

ServiceItem lookup(ServiceTemplate tmpl,

 ServiceItemFilter filter);

ServiceItem lookup(ServiceTemplate tmpl,

ServiceItemFilter filter, long

waitDur);

In each case the method returns either a ServiceItem object or an array of such

objects. This object contains the services’ proxy object and descriptions about the

service. In each case also, the client must pass a ServiceTemplate object as a

parameter. This object determines what type of services the client wishes to search

for. The ServiceTemplate object is constructed in a way so as to match some or

17

all services based on the client’s needs. One of the parameters in constructing a

ServiceTemplate object is an array of Class objects of interfaces. Thus only

services implementing these interfaces will be found. In this way, the client needs to

know of the interfaces in advance. The other parameters relate to the number of

matches that should be returned and the amount of time that should be taken to match

a service.

The following code fragment illustrates these concepts. Firstly, the

ServiceDiscoveryManager object is created. If null is passed as the two

parameters of the ServiceDiscoveryManager constructor, default

LookupDiscoveryManager and LeaseRenewalManager objects are created.

try{

ServiceDiscoveryManager sdm = new

ServiceDiscoveryManager(null,null);

}

catch(IOException ex){

ex.printStackTrace();

}

Then we specify the types of services we are searching for by creating a

ServiceTemplate object.

Class [] types = new

Class[]{SpecificServiceInterface.class};

ServiceTemplate template = new ServiceTemplate(null,

types, null);

ServiceItem found = null;

Finally we try to find a service implementing the specified interface.

try {

found = sdm.lookup(template, null, 30000);

}

18

catch (Exception ex){

ex.printStackTrace();

}

Once a matching proxy object is returned to the ServiceItem, it is trivial to invoke

the services of the proxy object.

if(found!=null){

SpecificServiceInterface jiniService =

(SpecificServiceInterface) found.service;

//call the method now

JiniService.arbitraryMethod();

}

2.6 Advanced Jini Concepts

Three main Jini concepts have been discussed so far:

� Discovery – both multicast and unicast discovery of lookup services.
� Using Lookup Services –

Services publishing their proxies;

Clients searching for services
� Leasing – used by services to confirm their availability

However there are two further concepts that are not necessary for many Jini services

but are still core to Jini technology. These are:

� Remote Events
� Distr ibuted Transactions

2.6.1 Remote Events

Jini uses events to perform asynchronous notifications of state changes just like Java.

However the difference is that the Java event model was designed for delivering

19

asynchronous notifications within a single Java virtual machine whereas the Jini event

model delivers events in a distributed environment. For example, a client may want to

know if a service that it is interested in has changed in some way. It is up to the

service to deliver events to the client notifying him/her of this change.

Any client who wants to be notified of these changes in services will have to register a

listener for this service. This is done via the RemoteEventListener interface

which has a notify() method that services can invoke. The Jini event class is

called RemoteEvent and all remote events must use or subclass this class.

Remote events raise many problems that local events do not such as order of delivery

and partial-failure. Jini leaves the handling of these issues up to the service

programmers, who must decide if they need to try to re-send the remote events in the

case of partial-failure and determining if clients need to receive the events in the order

they were sent.

2.6.2 Distr ibuted Transactions

Transactions are a fundamental concept in distributed systems. They are used to group

several distinct operations together, so as they all occur as a single operation. They

provide the ACID properties to data manipulations:

� Atomicity – either all of the transaction’s operations succeed, or they all fail.

� Consistency – a transaction is a correct transformation of the system state. This

means that after the transaction completes, the system should be in a consistent,

understandable state.

� Isolation – partial effects of one transaction are not visible to other transactions.

� Durability – the effects of a committed transaction are permanent.

20

In practice transactions implement a protocol known as the two-phase commit

protocol. In this protocol, all participants in a transaction are asked to prepare to

commit to the transaction in a primary pre-commit phase. They each execute their

own individual part of the transaction here and store the results in a temporary

manner. If all respond that they are prepared to go ahead, then each participant is told

to commit (i.e. execute) in a secondary stage. The commit effectively says that they

must each make their temporary data changes permanent. This decision is final and

even if a participant should fail before it can commit, it must do so when it restarts.

However, if any participant should reply with an abort during the primary phase then

each participant is told to abort and the whole transaction is thus aborted. Throughout

this procedure a central entity is the destination for receiving of abort or commit

messages. This entity is the transaction manager. It decides, based on all the messages

it receives, as to whether or not the transaction should go ahead.

In Jini an object which implements the TransactionManager interface is used to

manage the two-phase commit protocol. Sun Microsystems have provided a default

transaction manager that implements this interface. It is a Jini service and is named

mahalo. For an object to be a participant in a transaction it must implement the

TransactionParticipant interface. This interface provides abort,

prepare and commit methods which are invoked by the transaction manager.

The process for creating a transaction is as follows. Firstly a TransactionManager is

located using the normal discovery process. Then the programmer creates a

Transaction object using the TransactionFactory class. This

Transaction object’s operations are then defined, i.e. the programmer decides

what is to comprise the transaction. The Transaction object is then passed to the

TransactionManager who executes it to the standards of the two-phase commit

protocol. Note that it is left up to the programmer to determine what actions each of

the participants must take in their part of the transaction.

21

Chapter 3

3 State Of The Ar t

This chapter provides an introduction to technologies and research related to Jini and

this dissertation. It is divided into four sections. The first section discusses the

distributed programming technologies of RMI, CORBA and Enterprise Java Beans

(EJB) along with their relationship to Jini. The second section introduces the new web

technology combination of SOAP and Universal Description Discovery and

Integration (UDDI). SOAP is a more recent distributed programming technology that

concentrates on web services. UDDI is a technology that aims to be the Yellow Pages

of web services. The relationship of these technologies to Jini is examined. The third

section deals with two alternative technologies which, like Jini, are aimed to

“spontaneously network” devices – Universal Plug and Play (UPnP) and Salutation.

Finally, a number of fundamental research projects in the area of Jini that are relevant

to the work in this dissertation are presented.

3.1 Distr ibuted Programming Technologies

3.1.1 Remote Method Invocation (RMI)

RMI [RMI Spec ‘00] technology is a distributed object technology enabling

programmers to write distributed object-oriented applications. Remote Method

Invocation (RMI) technology is entirely implemented in the Java language. The

technology allows clients to invoke methods on objects which reside on a remote

server, as if they were invocations on a local object. A naming service, similar in

function to Jini’ s lookup service, is provided called the rmiregistry. This acts as an

information repository storing the location of all the distributed objects. Servers

register their objects with this registry and provide an HTTP server whereby clients

can obtain remote references for these objects. Remote references are known as client

stubs and can be located by the clients by contacting the rmiregistry and searching for

22

the service. The URL locating the remote reference is then passed back to the client

who thus obtains the stub. This stub is responsible for the marshalli ng, or gathering

and transforming of data from the client into a valid format for transmission. A

corresponding skeleton resides on the server, which unmarshalls data from the client

and marshals responses back to the client.

Jini services, especially those with a thin proxy object, are often built using RMI as

both technologies are written in the Java language. However, Jini provides

spontaneous networking associated with its discovery protocols. It also reveals to the

programmer a technology which was used behind the scenes in RMI – leasing.

Leasing is the enabling technology for Jini’ s self-healing mechanisms.

3.1.2 Common Object Request Broker Architecture (CORBA)

CORBA (Common Object Request Broker Architecture) is, like RMI, a distributed

objects technology. Using CORBA, a client can call a method on an object residing

on a remote server, as if it were calling a method on a local object. Like RMI,

interaction between the client and the server is specified by an interface. However in

CORBA, this interface is written in a language neutral Interface Definition Language

(IDL). The infrastructure to handle the actual passing of requests from the client to the

server and its responses is hidden from the client. It consists of an Object Request

Broker (ORB) residing on the client machine and another one residing on the server.

The two ORBs communicate using a standard protocol known as General Inter-ORB

Protocol (GIOP). This protocol allows ORBs from different vendors to communicate.

The Internet Inter-ORB Protocol (IIOP) is a mapping of the GIOP specification for

Transport Control Protocol/Internet Protocol (TCP/IP) networks.

The advantage of CORBA over other distributed technologies is that it is language

neutral. CORBA objects may be written in many languages e.g. Java, C and C++.

However, unlike RMI and Jini, CORBA objects are not mobile. They can only

execute in a single machine whereas RMI and Jini objects and their data may be

moved from one machine to another and executed there. There is significant value in

allowing CORBA objects to be accessed from Jini clients. CORBA’s language

23

neutrality is a significant advantage in distributed systems, especially in services of

limited memory capability. A bridging architecture to enable this is described in

section 4.2.2.

3.1.3 Enterprise Java Beans (EJB)

Sun Microsystems has built an infrastructure to allow programmers develop server

side Java programs. This infrastructure is called the “Java 2 Enterprise Edition” or

J2EE. EJB is one aspect of the J2EE architecture. The relevant technologies and their

relationship with each other can be seen in figure 3.1.

EJBs are meant to contain the server side business logic. They do have similarities to

Jini however in that EJB is another distributed programming technology, providing

the notion of services on the network. EJBs often reside in different areas on the

network and can access other network services via RMI over IIOP. Using IIOP adds

the promise of CORBA interoperability and thus communication with languages other

than Java. EJBs could be exposed as Jini services and thus be dynamically discovered

once run. In fact work is being done currently to investigate the integration of these

two technologies [EnterpriseWeb ‘01].

Figure 3.1 – Java 2 Enterpr ise Edition Technology Overview

Client Side
Presentation

Server Side
Presentation

Server Side
Business Logic

Hardware

Applications

HTML
LL

Browser

Applets

Desktop
Application

Web
Server

JSP

JSP

Servlet

EJB
Container

EJB

EJB

EJB

24

3.2 Web Service Technologies

3.2.1 Simple Object Access Protocol (SOAP)

SOAP is an XML based protocol used to allow distributed software applications to

communicate via HTTP [SOAP Spec. ‘00]. Because it is over HTTP, SOAP messages

have the advantage (if you are not a system administrator) of being allowed by

firewalls over the standard web server port 80. SOAP essentially allows Remote

Procedure Call (RPC) to run over HTTP. The SOAP protocol consists of three parts:

� an envelope describing what is in a message, who and how to process it;
� a serialization mechanism for exchanging application defined datatypes;
� a convention for invoking remote procedure calls and responses.

SOAP is a protocol specification headed by Microsoft and IBM, and submitted to the

World Wide Web Consortium (W3C). SOAP is designed to be simple and therefore

doesn’t contain much of the functionality of other distributed object technologies such

as:

� Distributed garbage coll ection
� Message batching
� Passing objects-by-reference
� Activation

SOAP is a protocol specification and is therefore not tied to any one programming

language. There are implementations of the SOAP protocol in many languages

including Java, C++, Visual Basic, Perl and Python.

3.2.2 Universal Discription Discovery and Integration (UDDI)

UDDI is a multi-vendor initiative aimed to be a Yellow-Pages type directory of

businesses’ services on the web. An XML file called the “business registration” is

25

used to describe a business entity and its web services in UDDI. This XML file

consists of three conceptual components [UDDI ‘00]:

� “white pages” which consist of addresses, contact names and numbers etc.
� “yellow pages” which consist of industrial categorisations based on standard

taxonomies
� “green pages” which consist of the technical information about the services that

are exposed by the business

These business registration XML files are registered in a public UDDI business

registry on the web. IBM and Microsoft currently run public UDDI registries on their

web sites.

The UDDI business registry can be used to search for businesses in a specific industry

category and see what web services they offer. It can also be used to determine the

technical details of how that web service is provided in order to invoke the service.

The web services that businesses register in the UDDI registries are normally

implemented in SOAP. The interaction of these protocols can be seen in figure 3.2

[UDDI ‘00].

Universal Service Interop. Protocols
(As yet undefined)

Universal Description Discovery and
Integration (UDDI)

Simple Object Access Protocol
(SOAP)

Extensible Markup Language
(XML)

In
te

ro
pe

ra
bi

lit
y

St
ac

k

Common Internet Protocols
(HTTP, TCP/IP)

Figure 3.2 – Web Services Protocol Stack

Perhaps not surprisingly, UDDI is an industry initiative led by many of the same

companies that are promoting SOAP.

26

The combination of SOAP and UDDI aims to be a key tool in the future of Business-

to-Business technologies and web services. Their relevance to this dissertation is that

SOAP and UDDI are possible technologies that could be used to expose Jini LAN

based services as services on the Internet, which is the first aim of this dissertation.

3.3 Spontaneous Networking Technologies

When Jini technology was initially released, a lot of the marketing hype explained Jini

as a technology that would allow spontaneous networking of home devices. This hype

has not been lived up to, largely because of the memory constraints of home devices.

As much of the research in this area has shown, Jini is actually a powerful software

solution that doesn’t have to be device centric at all. However, several other

technologies were also created and marketed as solutions for the spontaneous

networking of home devices. This section describes two of them – UPnP and

Salutation.

3.3.1 Universal Plug and Play (UPnP)

UPnP is a technology from a consortium led by Microsoft [UPnP]. It is seen as

networking extension of Microsoft’s Plug and Play technology. UPnP concentrates on

the TCP/IP protocol stack. It defines additions to the lower levels of the protocol

stack, which can be implemented by device manufacturers.

Like Jini, UPnP implements the idea of discovery. It uses a protocol known as Simple

Service Discovery Protocol (SSDP) that enables devices to announce their presence to

the network as well as discover available devices. Note that the emphasis in UPnP is

on hardware devices, whereas Jini emphasises services – both software and hardware.

Discovery in UPnP can work with a lookup service, like in Jini, or without one. Again

like in Jini, discovery is based on the device sending multicast messages announcing

its presence.

One innovative aspect of UPnP is self-configuration. This allows devices that cannot

be allocated IP addresses dynamically, because of a lack of any DHCP server, to use a

protocol called AutoIP. AutoIP allocates an IP address for the device from a pre-

27

assigned range of IP addresses. However these addresses are not valid Internet

routable addresses and are used only for the surrounding network of UPnP devices.

Therefore if a DHCP server becomes available at any time, it will change the IP

address of the device into a valid Internet routable one.

While UPnP has the backing of Microsoft and many device manufacturers, it is a very

different technology offering to Jini. It does not offer a comprehensive programming

API like Jini and is aimed completely at seamlessly and spontaneously networking

devices together whereas Jini is aimed at services, be they hardware or software.

3.3.2 Salutation

Salutation [Salutation] is another discovery and spontaneous networking (known to

Salutation as “Find and Bind” networking) technology from a consortium of computer

industry companies and academics. It is based on research on intelli gent agents. A

device talks directly to a Salutation Manager (SLM), which may be in the same device

or located remotely. Salutation assumes that this SLM is known to the device in

advance. The SLMs then act on behalf of the device, discovering and coordinating

with each other using Sun Microsystems' Open Network Computing Remote

Procedure Call (ONC RPC).

Salutation and UPnP are aimed specifically at dynamically networking hardware

devices. Jini provides far more than just the capability of dynamically networking

devices. Essentially it provides the capabil ity of dynamically networking software.

Furthermore Jini has developed a strong software development community [Jini

Community] due to its extensive API.

3.4 Related Jini Research Projects

The following section describes three research projects of special relevance to this

dissertation. The first, “The SOAP-UDDI Project”, is a project that addresses the issue

of how to access Jini services over the Internet. The second, “The Surrogate

Architecture”, is a project which addresses how to include devices of limited memory

capacity in Jini networks. The third, “The Service User Interface Project” , addresses

28

how Jini clients can invoke Jini services dynamically even if those services are not

known in advance. These three projects are especially relevant because they address

the three issues that were identified in the beginning of this dissertation as impeding

the proliferation of Jini technology.

3.4.1 The SOAP-UDDI Project

In section 3.2.2 SOAP was identified as a possible means of invoking Jini services

over the Internet. Furthermore, UDDI was discussed as a sort of Internet Yellow

Pages where these Jini services could be registered. In fact, this is exactly the aim of

the SOAP-UDDI project [Harrison ‘01]. This research project is very new, created on

the 18th of June 2001. It was the initial impetus to this thesis’ investigation of SOAP

as a means to accessing Jini services over the Internet. However, as stated previously,

using SOAP requires distribution of the SOAP and XML parser files to all the clients

for installation. Furthermore, the necessity to parse XML on both the client and server

introduces noticeable reductions in operation speed. These inconveniences were found

to be major disadvantages to using SOAP to access Jini clients.

3.4.2 The Surrogate Architecture

As stated previously, in order for a hardware or software component to participate in a

Jini network, it must be able to run the core Jini files which occupy over 3 MB of

memory. In addition it must be able to download and execute classes written in the

Java programming language and it may need the abil ity to export classes written in

Java so that they are available for downloading to a remote entity. For devices of

limited capacity which cannot meet these criteria, the use of a third party or proxy

which will perform these functions for the device is a solution. The Jini Surrogate

project [Surrogate Spec. ‘01] has defined such a proxy architecture called “The

Surrogate Architecture”. The architecture specification is network and device

independent and preserves Jini’ s concepts of discovery, code downloading, and

leasing of distributed resources.

29

The basic components of the Surrogate Architecture are shown in figure 3.3. The

proxy is a machine capable of participating in a Jini network directly. It shall allocate

resources for the device in a framework known as the “Surrogate Host” . A

“Surrogate” is an object that represents, and allows control of, the device. This may be

a collection of Java software components and other resources.

The Surrogate must be retrieved by the Host Capable Machine. This operation may be

a push (the device uploads the surrogate to the surrogate host) or a pull (the surrogate

host extracts the surrogate from the device or from some third party). The

“Interconnect Protocol” is the logical and physical connection between the Surrogate

Host and the device. The Interconnect must be specified for each network protocol.

This has been done for the Internet Protocol [Interconnect Protocol ‘01] and it is in the

process of being done for the Bluetooth network protocol and for Java smart-cards. It

is foreseen that the interconnect for more network protocols shall be specified in the

future.

The Surrogate Architecture solves the second problem constraining the proli feration

of Jini technology identified in this dissertation – that of integrating device of limited

memory capacity into a Jini network. However, for the device of limited memory

capacity used in this thesis (a Lego Mindstorms robot) using this architecture was not

possible. This was due to the fact that it is impossible to upload a surrogate from the

Mindstorms robot without re-writing its firmware, which was beyond the scope of the

project. However the Surrogate Architecture is the generic way of solving the problem

of integrating devices of limited capaci ty into a Jini network.

Figure 3.3 – The Surr ogate Architecture

Surrogate

Host Resources

Surrogate Host

Host Capable Machine

Device

Interconnect
Protocol

Jini
Network

30

3.4.3 The Service User Interface Project

The Service User Interface project [Venners ‘01] aims to standardise ways to attach

and use any kind of user interface (text-based, graphical, voice, etc.) to Jini services.

Note the difference here between the interface that the service implements which

provides methods to the client to invoke on that service, and a user interface which

may be graphical, voice etc. which allows control of the service. The Service User

Interface project is relevant to this dissertation in that it relates to the third problem

identified as restricting the proli feration of Jini technology, namely, if a client doesn’t

know the interface that the Jini service implements then there is no way for them to

work together programmatically. However, while this is a problem for an automated

client, it may not be a problem for a client used by a human. If an intuitive user

interface is provided then the human may still be able to use the service. There are

four choices for providing the intelligent user interface.

� The service’s proxy not only implements the interface that the service is driven

on, but also implements the user interface. The proxy could therefore be a subclass

of JWindow which could display a complete user interface. However, if the client

doesn’t have access to the correct user interface class files it won’t be able to use

the user interface. Furthermore, user interface code becomes entwined with

service code, which is undesirable from a design point of view.

� A better approach is that the service implements a separate interface e.g.

“Interfaceable” which returns the GUI for the client. Clients could specify

their type and the methods invoked through the Interfaceable interface

should return the appropriate user interface. However this prohibits the addition of

a user interface by the client after the service has been created.

� Another approach attaches user interfaces as attributes to the service’s proxy

object, by sub-classing the Entry interface. Thus many user interfaces can be

provided, one for each client type. However, if the client doesn’t have the correct

class files to use the user interface it is still a problem. Furthermore, the user

interface will have to be serialised to transmit it. This is a serious limitation to the

user interface’s capabilities.

31

� A fourth approach attaches not a user interface as an attribute to the service’s

proxy object, but an object that creates a user interface. This is a subtle but

important difference. It provides several key benefits. As with the previous

approach it allows clients to attach new user interfaces that the service writer may

have omitted. It also allows clients to search for their appropriate user interface.

However a major advantage is also that the user interface is instantiated on the

client Java virtual machine, rather than on the server one and then serialised. This

is a major advantage because instantiating swing components on the server side

normally gives them data references that reside on the server machine. When these

are serialised and sent to the client, they often won’t work once de-serialised on

the client.

The Service User Interface project and the Jini community have decided on the fourth

approach. It defines a standard way for user interface providers to associate a user

interface with a Jini service by providing three items:

� A UIDescriptor that describes the user interface, and is attached as an

attribute to the service proxy;
� A user interface “factory” that will be instantiated on the client’s Java virtual

machine to produce the user interface;
� The user interface itself;

The UIDescriptor is the most important of these. It contains the following items:

1. A “role”, which indicates how the user interface generated by the user interface

factory will be used. A user interface returned by the factory object must

implement a specified role. For example, two roles currently defined are:

� MainUI – for a service’s “main” user interface.
� AdminUI – for a user interface administering the service.

32

2. A “toolkit” , which defines the necessary packages for the user interface. Two

toolkits have been defined to date. One specifying the javax.swing package

and another specifying the java.awt package.

3. A set of attributes that describes the user interface represented by the

UIDescriptor.

4. A factory, represented as a MarshalledObject, which can be used to

instantiate the user interface.

A client using the Service User Interface Project’s approach must use its packages in

order to invoke the factory to create the appropriate user interface. However, the

Service User Interface is an evolving project and at the time of this thesis it was not

standardised. Therefore a fifth approach using Java’s “Reflection” capabil ities was

investigated.

Reflection is the abil ity to examine the type of an object at run time. This obviates

compile-time type requirements, and enables us to call any method on any arbitrary

object without having to know that object’s type at compile time [Neward ‘00]. This

is an obvious solution to the problem of the Jini client requiring the service’s interface

in advance.

This approach has the advantage that the client doesn’t need to know of any non-

standard Java classes in order to use the Jini service. Furthermore, it doesn’t need to

know the interface that the service implements in advance. Moreover, in order to

access Jini services via the Internet, this thesis takes the approach of using servlets.

HTML is thus the graphical user interface. For these reasons the Reflection approach

was used and not the Service User Interface approach. However, once its packages are

defined, due to its flexibil ity, the Service User Interface wil l undoubtedly become the

standard mechanism by which most human controlled clients will access services

from a multitude of devices.

33

Chapter 4

4 Design

As stated earlier, there are two distinct sections of design. The first section deals with

the architecture to control Jini services over the Internet, while also addressing the

question of how to make the client generic. This in essence tries to solve the first and

the third problem identified as impeding the growth of Jini technology – namely, how

to access Jini services over the Internet and, how to enable a generic Jini client to

control Jini services without any advanced knowledge of them. Thus the first section

deals with the design of a generic Jini client to control Jini services over the Internet.

The second section of the design deals with the control of devices of limited

capability as Jini services. This addresses the second problem identified as impeding

the growth of Jini technology – that in order to partake in a Jini network, devices need

at least 3 MB of available memory to install the Jini software.

4.1 Control of Jini Services over the Internet

This section is divided into two sub-sections. The first sub-section describes the

problems associated with trying to access Jini services over the Internet and provides

the design of a web bridging architecture as a solution to these problems. The second

sub-section discusses the necessity for a generic client and describes an addition to the

web bridging architecture, which uses reflection to create the generic client.

4.1.1 A Web Bridging Architecture

As described in section 2.2, in the normal Jini scenario, when both a client and service

are within a LAN, the client downloads a “proxy object” which it can use to control

the service. Initially it was hoped to be able to continue to use this normal Jini

architecture to control Jini services over the Internet using applets by allowing the

applet to download a service’s proxy object and directly contact the service’s

machine.

34

However, when the client is outside the LAN this same interaction raises problems.

Firstly, the client would have to install the core Jini files. Moreover, the use of

multicast to discover the lookup service cannot be used. This however can be solved

by Jini’ s unicast lookup facility where the client specifies a known IP address of a

lookup service. Unfortunately there are more serious problems. Even if the client

knows the IP address of the machine running the lookup service and uses Jini’ s

unicast facil ities to try to contact it, there it is unlikely to get through to it if that

machine is behind a firewall . If the firewall is configured to allow access to that

relevant port on the lookup service machine, then the client will be able to access it

and download the proxy object. However, in many cases the service wil l use the

second design pattern specified in section 2.3 in which case the proxy object will then

attempt to access another machine on which to run the service. Again we come across

the problem of access to this machine if it is behind a firewall. We are now in the

nasty position of having to open ports for every machine we run a service on. Even if

this was attempted, the communication between the proxy object and the service

back-end will often use RMI. RMI dynamically allocates port numbers when using

communication between clients and servers and thus trying to give access to these Jini

service back-end machines using RMI would be equivalent to giving access to every

port on that machine.

One approach to this problem is to try to tunnel RMI over HTTP. This involves

encapsulating the client RMI call in an HTTP POST request and unpacking it on the

server side. However there is extensive negative experience with this on the RMI-

users mail ing list. Furthermore, this issue has been raised previously as the Jini

community attempts to access Jini services over the Internet. Moreover, at the time of

writing, the RMI over HTTP solution was cited as not working [Li ‘01]. Even if this

solution became feasible, the client would still have to install the core Jini technology

files in advance.

The solution these this problems is to add an extra level of indirection to the standard

Jini architecture. This modified architecture can be seen in figure 4.1.

35

The standard Jini client now becomes a web bridge also, allowing a browser client to

invoke the Jini client facil ities such as discovery, searching of the lookup service and

service invocations. While this design isn’ t as simple and elegant as the standard Jini

architecture, it resolves all of the problems discussed earlier. The proxy objects can

access the service back-end even if it is via RMI seeing as the Jini client/web bridge is

still within the LAN. The main issue left to resolve is the type of “Jini client/web

bridge” technology and thus Internet client to choose. Two alternative

implementations are discussed in sections 5.1.1 and 5.1.2. While this section has

identified an architecture to access Jini services over the Internet, it has not addressed

the question of providing a generic client for all services. The following section

provides an addition to the web bridging architecture that enables this.

4.1.2 Reflection – A Generic Jini Client

As discussed in section 2.5, in the normal scenario for a Jini client, once the lookup

service has been found, it can be searched for services that implement a specific

interface. Therefore, if the client is to search for a specific type of service, it must be

aware of that service’s interface at compile time. A client can however search for all

services available implementing any interface by passing null as a parameter in the

methods that search the lookup service. However, in order to invoke the methods, we

do normally need the interface the service implements at compile time.

Figure 4.1 – Web Br idging Architecture

��� � �����
	��
���
��� � �����

������������� � �
� � � �

! � ���
� � �
� � � �

" #%$�&('

" #%$�&('
) ���*� � �����
��� � �����

+�,�,.-

/ � � ��0�1�� �

36

In cases where the client is automated, this is not a problem because it doesn’t make

sense for programmatic clients to invoke a service they know nothing about. However

if there is human interaction with the client, it may be possible to provide the user

with enough information about the service at run time so as he/she can sensibly

invoke the service. This system would allow any new service to be accessed and

invoked by the generic client, without updating or modifying the client whatsoever.

Although the client knows nothing about the service, it aims to extract enough

information about it at run-time, and provide this to the user, so as he/she can make a

value judgement as to whether or not it makes sense to access the service.

Java’s “Reflection” capabil ities allow us to discover the type of an object, the

interfaces it implements, and the methods those interfaces define, when we receive the

object at run time. These capabilities can be used to augment the web bridging

architecture. The four-stage generic client architecture using reflection is shown in

figure 4.2.

37

As the diagram shows, the first stage supplies all discovered services, their class

names and a description of each service. The user then selects a specific service that

he/she wishes to access. This selection is passed to the second stage, which provides a

list of all the interfaces supported by the selected service. The user then selects a

specific interface. This selection is passed to the third stage, which provides a list of

all the methods defined by that interface. The user then selects a method to invoke.

The method is invoked on the underlying service and the final stage shows the method

result. Details of the specific reflection capabil ities used at each stage are described in

section 5.1.3 – Implementing a Generic Jini Client with Reflection.

Figure 4.2 – Generic Client Architecture

� �*1���� ���.) � ����� �
�������(��� ��� �*���
� ����� � � 1����
� ��� ��� � � ��� � � �

� �*1����
	 � -�� ��� � ���
��� 1���� ��1 � ����1����
��
�������� ����� ������������ !
��
��#"�� �$
��

% �&��'�
)(�*,+��-��"�� .�

�� �� ���&
��-�-���/
����-���
��
�
��$�&
�.0��
��#"�� �$

% �&��'�
�1�*,+��-��"�� .�

�� �23
���4���.��
.�
���� ��
�.
� ����
�
��$�&
�.
� ���&
��-�-���$

5 ��
��6��
�
��$�����
��
��#"�� �$

5 ��
��6��
�
��$���
���)� ���&
��-�-���$

5 ��
��6��
�
��$���
�023
���4���.

38

4.2 Limited Memory Capable Devices as Jini Services

As discussed previously, more than 3 MB of memory is required to run Jini

technology natively on a device. For many devices this is not possible. Section 3.4.2

describes an architecture (The Surrogate Architecture) in the process of being defined

by the Jini community to allow devices that cannot normally partake in a Jini network

because they cannot supply 3 MB of memory, to partake in a Jini network using a

proxy architecture. The essence of this architecture is that another machine that can

supply the necessary memory wil l act on behalf of, and communicate directly with,

the limited device.

The device of limited memory capabil ity chosen to run as a Jini service and to

implement the Surrogate Architecture is the Lego Mindstorms robotic kit

[Mindstorms]. This idea of a Lego Mindstorms robot as a Jini service is relatively old.

Sun Microsystems showed a series of robots controlled as Jini services from palm

pilots at the JavaOne 1999 conference [JavaTanks ‘99]. Further literature is also

available [Jini and Lego ‘00], [Newmarch ‘00]. Unfortunately during the

implementation of the it became clear that the Mindstorms system cannot implement

the Surrogate Architecture for reasons specified in section 3.4.2. However it can still

be controlled by the general principal of the Surrogate Architecture – that a machine

with the necessary memory can communicate on its behalf within the Jini network and

communicate with it directly using a private protocol. The next section discusses the

design of this system.

Most devices of limited capability currently do not run Java natively due to the

memory requirements of a Java virtual machine. Smaller virtual machines and new

smaller editions of the Java programming language are aimed to change this situation,

but for the moment many limited memory devices will continue to run other less

memory intensive languages.

CORBA discussed in section 3.1.2, is a distributed object technology that is language

independent. It allows a client written in one language to invoke methods in an object

written in another language on a remote machine. If Jini clients could use CORBA as

39

a means to invoke services written in other languages it could potentially give them

access to services written for limited memory devices. The final section discusses the

design of a Jini service that allows Jini clients to access CORBA services.

4.2.1 A Thin Proxy Architecture to Control A Lego Robot

Three possible Jini service design patterns are discussed in section 2.3. The second

“thin proxy” pattern is applicable when most of the Jini service processing happens on

the server and the client just fires up this processing. As discussed in section 2.3, this

is often implemented using RMI where the client invokes methods on the RMI stub,

which are seamlessly passed on to the RMI skeleton on the server for processing.

In the case of controlling the Lego Mindstorms robot, an infra-red transmitter tower

may be attached to a computer via the serial port. Commands may then be sent from

this computer over the transmitter tower to the Lego robot. In essence, that computer

acts as a base-station for the robot. If we are to provide a computer program to control

the Lego robot as a Jini service, it is clear that most of the processing wil l occur on

this base-station computer. Therefore, the “thin proxy” service design pattern

described in section 2.3 is applicable. This architecture can be seen in figure 4.3.

Figure 4.3 – Thin Proxy Architecture to Control Lego M indstorms Robot

������� 5 � %
��#"�� �$

� �
����

�����
	��

����
������� ������	������ ���
���! "�#�%$�& ' �"(*) � ��+,� -��
./+�) ��0
-
����! �#�%$�&

1 �"(*) � ��+,�2$������
���! "�#�%$�&/���
� +,�
��3�� ��������� ���

�����
	��

4/� ��� %
��#"�� �$

������56./��� �6����+
7�0��
0

�8� +�-��#������9/�
:"�

���!
��3���) ������+

40

The client invokes a method on the RMI stub which seamlessly invokes the method

on the server. The RMI skeleton uses a pre-written Java package [Laverde ‘99] to

send commands to the serial port and control the robot.

4.2.2 Accessing CORBA Services from Jini Clients

When invoking any service in another technology from a Jini client, a Jini service that

is a client to the other technology is written. We must however decide on the

applicable service design pattern, i.e. where the processing must occur – on the client,

the server or both (see section 2.3). In the case of accessing a CORBA service, the

third design pattern can be used. Processing is both remote and local. Figure 4.3

shows this architecture.

The Jini service is initially exported to the lookup service. Once downloaded by the

client the service creates an ORB locally and then contacts the CORBA service.

This chapter has provided a design to control Jini services over the Internet and an

augmentation to this design to provide a generic client for these Jini services. It has

also provided discussion and designs to enable devices of limited memory capacity to

partake within Jini networks. The next chapter deals with the implementation of these

designs.

Figure 4.4 – Jini CORBA Architecture

4/� ���
%
��#"�� �$
 � � �������
� �
����

��� %
��#"�� �$

��������-���
���&����.��� ����

��
��#"�� �$

(�� � �
����6.��	�3�� ����.��

������ �-
���
��#"�� �/

� ������� %
��#"�� �$

 ���

	� � �
���� � ��"����$
��
��������� ��
��#"�� �$

������� 5 � %
��#"�� �$

�
������� ���

� �
����

�
������� ���
1�� %
��#"�� �$
 ���-
����&
��

����� ���$�� �

41

Chapter 5

5 Implementation

This chapter is again divided into two distinct sections. The first section deals with the

implementation of the web bridging architecture described in section 4.1.1 used to

control Jini services over the Internet. It describes how to implement the web bridging

architecture using SOAP and using Java servlets. It also describes the aspects of

Java’s reflection capabil ities that allow us to create a generic client. The second

section deals with implementing limited memory devices as Jini services. It describes

the implementation of the Lego Mindstorms robot as a Jini service, designed in

section 4.2.1 and then the implementation of the Jini/CORBA bridge service outlined

in section 4.2.2.

5.1 Implementing the Web Br idging Architecture

This section describes issues encountered while implementing the web bridging

architecture described in section 4.1.1 and in figure 4.1. The key implementation issue

here was what technology to use to expose Jini services to clients over the Internet.

Both a SOAP and a Java servlets version were implemented.

5.1.1 A SOAP Jini Client/Web Bridge

The SOAP-UDDI Jini research project discussed in section 3.4.1 suggests using the

same web bridging architecture identified in the section 4.1.1 where the Jini

client/web bridge is a Jini client whose methods are exposed as a SOAP service.

SOAP is an XML based distributed programming specification. Implementations of

this specification are available in many languages. Since Jini services and clients are

built in the Java programming language, an implementation of SOAP in Java is

necessary in order to expose the Jini services as SOAP services that can be accessed

by SOAP clients over the Internet. Apache-SOAP is one such implementation and can

42

be downloaded from the Apache web site1. Apache SOAP can be used both as a

client-side library to invoke SOAP services available remotely, or as a server-side tool

to expose SOAP services. The configuration of the client and server are both

documented with the Apache-SOAP download. From the server’s point of view,

among other things, it needs a web application server that supports servlets and JSPs

(Java Server Pages). The Apache-Tomcat servlet engine was used for this purpose2.

The servlet engine, and the server-side Apache-SOAP installation resides on the

client/web bridge of the modified Jini web bridging architecture in figure 4.1 in

section 4.1.1.

In order to act as a Jini client and contact any Jini services on the LAN, three

modifications must be made to the Tomcat servlet engine. Firstly, the Tomcat policy

file must allow access to the rest of the network. Secondly the core Jini technology

files must be included in Tomcat’s class library. Finally, Tomcat’s startup script must

be modified to include all the Apache-SOAP files. Once we set up the servlet engine

configured for Apache-SOAP, we can register a Jini client as a SOAP service. The

process of registering a SOAP service is well documented in the Apache-SOAP

download.

The Jini client, once registered as a SOAP service, acted as a means to control the

Lego Mindstorms robot via a SOAP client over the Internet. Once the Jini client is

initially invoked by a SOAP client, the network is searched for a service

implementing a RobotInterface . This is the name of the interface that the Lego

robot service implements. Once a service has been found, the SOAP client can move

the robot “forwards” , “backwards” , “ left” and “ right” or tell the robot to “stop” . These

five commands are the names of five methods that have been “exposed” as methods

that can be invoked by any SOAP client over the Internet. The Jini service that is

located actually returns an RMI stub to the “Jini client/SOAP service”. Thus any

method invoked by the SOAP client on the Jini client/SOAP service actually invokes

the equivalent method on the RMI skeleton residing on the Lego robot’s controlli ng

computer.

1 HTTP://xml.apache.org/soap/index.html
2 HTTP://jakarta.apache.org/tomcat/index.html

43

The SOAP client is also a Java class, which uses the Apache-SOAP implementation

to create XML-based SOAP messages. The client acts in the following manner. It

must first be given the location of the SOAP service. This is a two-part operation.

Firstly, the location of the Apache-SOAP server-tool used to expose the SOAP

services is hard coded into the cli ent as a Java URL object.

URL url = new URL

("HTTP://wilde.cs.tcd.ie :8080/soap/servlet/

rpcrouter");

Within the Apache-SOAP server, our specific service is given a Uniform Resource

Name (URN). This must be supplied to the SOAP client also. The following code

snippet does this.

String urn = " urn :Client";

The SOAP message can then be created and the specific method it attempts to invoke

can be passed to it. In the code example below we are trying to invoke the “forwards”

method.

Call call = new Call();

call.setTargetObjectURI(urn);

call.setMethodName(“forwards”);

The client can then attempt to make the call .

try {

Respon se response = call.invoke (url, “”);

}

Using SOAP, and the modified Jini web bridging architecture as the means of

invoking Jini services avoids the problems of firewalls and of needing to install the

core Jini technology files on the client. However in order to invoke Jini services via

SOAP over the Internet, the Internet client (or SOAP client) must still install the

44

SOAP implementation files as well as an XML parser (Apache-Xerces was used in

this case3). Moreover, the SOAP client is invoked using a command line interface

rather than via a browser. Finally, the speed of a SOAP client-server interaction is

quite slow. This is due to the fact that XML has to be parsed both on the client and on

the server machines.

Only one Jini client/SOAP service was created due to the previously mentioned

problems with SOAP. No attempt to make the Jini client/SOAP service work for all

services using Java’s reflection capabil ities was made. The next section looks at a

faster alternative technology, which obviates the need to distribute any files to the

Internet client.

5.1.2 A Servlet Jini Client/Web Bridge

The advantages of using a series of Java servlets as the Jini “client/web bridge” are

manifold. Firstly, the speed advantages of servlets over SOAP is obtained, not only

because of the necessity of parsing XML at both the SOAP client and server, but also

because of the multi-threaded capabilities of servlets. Secondly, the abil ity to maintain

state between servlets is something that is impossible with many implementations of

server-side SOAP tools. Furthermore, the obvious advantage of servlets over SOAP in

this situation is that the Internet client can be a simple HTML page thus not needing

any distribution or installation of client side files. Finally, using servlets allows easy,

clean use of Java’s reflection capabil ities to develop a generic Jini client that can

control all Jini services without any advanced knowledge of them.

While these capabil ities can be used with a SOAP implementation in Java, the clean

well defined model for handling data transfer between servlets simplifies this process.

The Apache-Tomcat servlet engine was again used as an application on which to

deploy and run the servlets. As in the previous SOAP service scenario, Tomcat is

located on the client/web bridge machine in the web bridging architecture of section

4.1.1 and figure 4.1. In order to partake in the Jini network, i.e. discover any lookup

3 HTTP://xml.apache.org/xerces-j/index.html

45

services and download and run any Jini service’s proxy objects, Tomcat must be

modified as described in the previous section.

The following section discusses the use of reflection in the servlet web bridging

architecture to create a generic Jini client, which with human interaction, is capable of

controlli ng all Jini services without modification.

5.1.3 Implementing A Generic Jini Client with Reflection

As described previously, Java’s “Reflection” capabili ties allow us to discover the type

of an object, the interfaces it implements, and the methods those interfaces define,

when we receive the object at run time. These capabil ities can be used to augment the

web bridging architecture to create a generic Jini client. This Jini client should be able

to access all Jini services, even ones that are created after the client has been written.

The four-stage addition to the web bridging architecture used to create the generic

client is described in section 4.1.3 and figure 4.2. In fact, these four stages can be

cleanly implemented by providing four servlets which can pass the user’s choice at

each stage to the next servlet.

The first servlet once initiated, begins a search of the LAN for any lookup services

and downloads all found services’ proxy objects. The Jini utility classes

LookupDiscoveryManager and ServiceDiscoveryManager discussed in

section 2.5 are heavily used to perform these functions. These objects are initially

downloaded as generic Java object instantiations. Using reflection we provide the

user with the class name of every proxy object found. The Java “Class” class,

which represents instances of Java classes running in an application, provides the

reflection capabilities to implement this.

Class cl = unknownService.getClass ();

cl.getName();

46

In the first stage of the generic client, the user selects which service he/she would like

to access. This selection is passed onto the second servlet. The second servlet then

displays the interfaces implemented by the selected class. Again the Java “Class”

class can be used to discover these interfaces at run-time using the following method

Class[] interfaces = cl.getInterfaces();

The user then selects an interface and that selection is passed to the third servlet. This

servlet shows all the methods defined by the selected interface. Again the Java

“Class” class provides the reflection capabil ities to enable this:

Method[] methods = selectedInterface.getMethods();

Where selectedInterface is an instantiation of the Java “Class” class. The

user selects the method that he/she would like to invoke and this is passed to the final

servlet. The method is then invoked on the underlying service, i.e. the service that

implements the selected interface. This is done using the Java Method class

try {

ReturnValue = selected.invoke(unknownService,

null);

 }

where selected is a Method object and unknownService is the underlying service

which is a Java object . The HTML pages returned to the user at each stage can be

seen in Appendix 1.

5.2 Implementing L imited Memory Devices as Jini Services

This section is divided into two sub-sections. The first describes the implementation

of the Lego Mindstorms robot as a Jini service and issues that arose during this

process. The second sub-section describes the implementation of the Jini/CORBA

service and associated issues.

47

5.2.1 Implementing a Lego Robot Jini Service

The thin proxy architecture defined in section 4.2.1 is implemented with the aid of

RMI. Firstly, the interface which the service implements must extend

java.rmi.Remote in order for the service to be invoked remotely. The service

named RobotImpl implements this interface and extends

java.rmi.UnicastRemoteObject . The service is then compiled using the

Java RMI compiler to give the client stub and the server skeleton.

The service provides five methods: “ forwards” , “backwards” , “ left” , “right” and

“stop”. Each of these methods creates an array of bytes and passes these to the serial

port. Dario Laverde’s Java package [Laverde ‘99] written specifically for

communication with the Lego Mindstorms robot tower is used to parse string

commands into these bytes arrays to be sent to the tower. In order to send messages

over the serial port the Java Communications extension package must be downloaded

from Sun Microsystems4. This is added to the Java run time environment of the

machine controlli ng the Lego robot.

Once the service has been written, another Java class is used to add descriptions of the

service, discover any lookup services on the network and register the service with

these lookup services. It is also responsible for renewing the service’s lease with the

lookup service. The server side Jini utility classes LookupDiscoveryManager

and JoinManager , which were discussed in section 2.4 – Jini Service Functions,

are the main classes used in this process.

Because the service extends UnicastRemoteObject , when the service is being

registered with the lookup service, what actually gets registered is the client stub

class. RMI does this at run time.

4 HTTP://java.sun.com/products/javacomm/

48

5.2.2 Implementing a Jini/CORBA Service

The CORBA server to be accessed by the Jini client is based on the simple Hello

World CORBA service described in the Sun Microsystems’ Java tutorial5. For a brief

discussion on CORBA see section 3.1.2. A simple Interface Definition Language

(IDL) file was written and compiled using the idlj compiler that comes with the

download of the Java 2 SDK version 1.3 and later. The IDL file declares a module

and a single interface. A method returning a string is contained within the interface.

Once compiled, the module translates into a java package. This package contains Java

versions of the IDL interface and methods. It also creates the server skeleton which

implements the Java interface and the client stub. Auxil iary CORBA specific Java

classes are also created.

The CORBA server is implemented in Java also. This is purely for convenience. Once

the architecture works, it should be relatively easy to implement a server in another

language, or hook up to existing CORBA services. A CORBA server manages one or

more “servant” objects which actually implement the service, i.e. provide the

interface’s methods. The server is also responsible for creating an ORB and

connecting the servant objects with it. It is also responsible for publishing the

servant’s Interoperable Object Reference (IOR). This is a reference to the servant

object that is transparent between different ORBs. It contains the version of the

transport protocol (GIOP or IIOP for TCP/IP networks) that the server supports, the

IP address and port number of the server and a key used to identify the servant object

by the server. The server must publish this so as the client can invoke the servant’s

methods. The server can publish it in two ways, by using a CORBA name-service or

by physically transferring the file to the client. The server implemented used the

name-service that comes with the Java 2 SDK named tnameserv. The server then

waits for client requests through the ORB and on receiving them passes them to the

servant objects.

5 HTTP://web2.java.sun.com/docs/books/tutorialidl/index.html

49

In order to access this CORBA server from a Jini client we must build a Jini service,

which is also a CORBA client. This Jini service, named JiniCorbaService ,

performs processing both locally (e.g. it must create an ORB locally) and remotely

(e.g. it must contact the naming service and invoke a servant object’s methods). The

Jini service implements an interface named JiniCorbaInterface that defines a

method that returns a string. The implementation of this method by the “Jini

service/CORBA client” , invokes the remote CORBA servant’s method. The Jini

service is registered with a lookup service using the utility classes

LookupDiscoverManager and JoinManager discussed in section 2.4 – Jini

Service Functions.

The first section of this chapter dealt with the implementation of the web bridging

architecture described in section 4.1.1 used to control Jini services over the Internet.

Implementations in two technologies, SOAP and Java Servlets, were discussed. Java’s

reflection capabilities used to create a generic client were also discussed. The second

section of the chapter discussed implementing limited memory devices as Jini

services, specifically in the context of a Lego Mindstorms robot and access to

CORBA services. The next section outlines the conclusions reached, work

accomplished and goals achieved during the course of this project and discusses

possible further work.

50

Chapter 6

6 Conclusions

This chapter describes conclusions reached following the work done during the course

of this thesis. The first section re-iterates the initial project goals and describes the

work done to try to achieve these goals. It also gives an evaluation of if, and how,

those goals were met. The second section describes possible future work and

improvements.

6.1 Goals Achieved and Completed Work

Three distinct goals were outlined at the beginning of this dissertation:

1. This thesis aims to address the issue of Jini services being restricted to a LAN

environment.

This was achieved by designing and describing a generic architecture to allow Jini

services to be accessed and controlled over the Internet – section 4.1.1 “A Web

Bridging Architecture”. This has been implemented using two technologies – Java

servlets and SOAP. A good understanding of both technologies was gained in order to

implement these architectures. Both technologies were used in conjunction with the

Tomcat version 3.2 servlet engine. Tomcat was run on Solaris so a basic knowledge

of Unix was also learned. A thorough knowledge of the functions of Jini clients,

especially using the Jini 1.1 API was also learned. This includes issues of discovering

and searching of lookup services, as well as invoking specific services.

2. This thesis aims to investigate how Jini services can include devices of limited

memory capability.

A generic solution to this problem was identified and researched – that of the

Surrogate Architecture described in section 3.4.2. A device of limited memory

51

capability was acquired and built to test this architecture – a Lego Mindstorms robot.

Unfortunately during the attempted implementation, for reasons explained in section

3.4.2, it became obvious that to implement the Surrogate Architecture using this

device, the existing firmware would have to be replaced. This was beyond the scope

of this project. However, a “thin-proxy” service to control the Lego robot was

designed (section 4.2.1 – “A Thin Proxy Architecture to Control A Lego Robot”) and

implemented using RMI, which utilised the general principles of the Surrogate

Architecture. A good understanding of RMI was gained during this process as well as

a basic knowledge of programming a limited device via the serial port.

CORBA was identified as a key technology, which if bridged to Jini could allow

many more services, perhaps on devices of limited memory capability, to be accessed

from Jini clients. An architecture to enable this bridge was designed and described in

section 4.2.2 – “Accessing CORBA Services from Jini Clients” . A basic CORBA

server that returns a string was built in Java. A Jini service that acts as a CORBA

client was also built to allow access from a Jini client to the basic CORBA server. A

good knowledge of CORBA was achieved in order to implement this architecture.

A thorough understanding of the server side issues of a Jini network was learned at

this stage of the thesis. This includes issues of discovery, registering and leasing a Jini

service with a lookup service.

3. This thesis aims to provide an architecture by which clients can control Jini

services without any previous knowledge of them, thus providing a single generic

Jini client to all services.

A project which goes some way to addressing this issue was identified and discussed

in section 3.4.3 – The Service User Interface Project. This project is still in its early

stages and at the time of this thesis, had not become standardised. Furthermore, the

approach taken by the Service User Interface Project was that the cli ent should use an

additional Service User Interface Project package. For these reasons, a different

approach using Java’s “Reflection” capabilities was investigated. A generic client

architecture using Reflection was designed and described in section 4.1.3 –

“Reflection – A Generic Jini Client” . This architecture was successfully implemented

52

using Java servlets and reflection. A good knowledge of Java’s reflection capabilities

was gained through this implementation.

A very good knowledge of designing and implementing distributed systems was

gained throughout this project. The first and third goals outlined were achieved

completely. During the implementation it became apparent that it was impossible to

achieve the second goal generically. However, a limited memory capable device was

successfully controlled as a Jini service. A Jini service was also built that allows Jini

clients to access CORBA services. This may also simpli fy access from Jini clients to

devices of limited capacity.

6.2 Future Work

Future work on this project could include the following:

� Register the SOAP service with a UDDI registry – the Jini client/SOAP service

could be registered with one of the public UDDI registries operated by Microsoft

and IBM.

� If the Service User Interface project becomes standardised as a part of the Jini

technology, look at using this as an alternative to Java reflection in the generic Jini

servlet client.

� Augment the Jini servlet client to be updated of remote events occurring on

services.

� Investigate rewriting the Lego Mindstorms robot firmware in order to implement

the Surrogate Architecture.

53

7 Bibliography

[Ayers ‘99] Professional Java Server Programming, Danny Ayers et al.,

Wrox Press, 1999.

[Coulouris ‘01] Distributed Systems Concepts and Design, George Coulouris,

Jean Dollimore, Tim Kindberg, Addison-Wesley, 2001.

[Deutsch] The Seven Fallacies of Distributed Computing, Peter Deutsch

[Edwards ‘01] Core Jini Second Edition, W. Keith Edwards, Prentice Hall ,

Upper Saddle River, NJ, USA, 2001

[EnterpriseWeb ‘01] EnterpriseWeb Project,

HTTP://developer.jini.org/exchange/projects/enterpriseweb,

 Dr. Teddy Achacoso, Bill Venners. July 2001.

[Freeman ‘01] JavaSpaces Principles, Patterns, and Practice, Eric Freeman,

Suzanne Hupfer, Ken Arnold, Sun Microsystems, June 1999.

[Harrison ‘01] Dave Harrison,

HTTP://developer.jini.org/exchange/projects/soapuddi/, June

2001

[IP Interconnect ‘01] Jini Technology IP Interconnect Specification, Sun

Microsystems, HTTP://www.jini.org/standards/sa-ip.pdf ,

August 2001.

[JavaTanks ‘99] A Demonstration of JiniTM Technology and the K Virtual

Machine, Sun MicroSystems,

HTTP://developer.java.sun.com/developer/technicalArticles/jin

i/JavaTanks/Javatanks.html, September 1999.

54

[Jini Spec ‘99] The Jini Specification, Ken Arnold, Bryan O’Sullivan, Robert

W. Scheifler, Jim Waldo, Ann Wollrath, Prentice Hall , July

1999

[Jini technology ‘01] HTTP://www.sun.com/jini

[Jini Community] HTTP://developer.jini.org

[Jini and Lego ‘00] Programming Lego Mindstorms Robots Using the Java

Communications API and Jini Connection Technology, Dario

Laverde,

HTTP://servlet.java.sun.com/javaone/javaone2000/pdfs/TS-

1326.pdf, 2000.

[Laverde ‘99] RCX Java API, Dario Laverde, HTTP://www.crynwr.com/lego-

robotics/, 1999.

[Li ‘00] Professional Jini, Sing Li, Wrox Press Inc, August 2000.

[Mindstorms] Robotics Invention System 2.0, Lego,

HTTP://mindstorms.lego.com/products/ris/index.asp

[Nelson ‘01] HTTP://www.crynwr.com/lego-robotics

[Neward ‘00] Java Server-Based Programming, Ted Neward, Manning

Publication Co., 2000.

[Newmarch ’00] A Programmer’s Guide to Jini Technologies, Jan Newmarch,

APress, November 2000.

[RMI Spec ‘99] Java Remote Method Invocation Specification,

Revision 1.7, Java 2 SDK, Standard Edition, v1.3.0,

December 1999.

55

[Salutation] HTTP://www.salutation.org

[SOAP Spec. ‘00] Simple Object Access Protocol version 1.1,

HTTP://www.w3.org/TR/SOAP/ , Don Box, David Ehnebuske,

Gopal Kakivaya, Andrew Layman, Noah Mendelsohn, Henrik

Frystyk Nielsen, Satish Thatte, Dave Winer, May 2000

 [Surrogate Spec ‘01] The Jini Technology Surrogate Architecture Specification,

version 1.0 draft standard, Sun Microsystems,

HTTP://developer.jini.org/exchange/projects/surrogate/sa.pdf,

July 2001

[Tanenbaum ‘95] Distributed Operation Systems, Andrew S. Tanenbaum,

Prentice Hall , 1995

[Tannenbaum ‘96] Computer Networks (3rd Edition), Andrew Tannenbaum,

Prentice Hall , pp. 412-448

[UDDI ‘00] UDDI Technical White Paper, Ariba Inc., Microsoft Corp.,

HTTP://www.uddi.org/pubs/Iru_UDDI_Technical_White_Pape

r.pdf , September 2000.

[UPnP] HTTP://www.upnp.org

[Venners ‘01] The Service User Interface Project, Bil l Venners,

HTTP://developer.jini.org/exchange/projects/serviceui/, 2001

[Vogel ‘98] Java Programming with CORBA, Second Edition, Andreas

Vogel, Keith Duddy, Wiley Press, 1998.

56

8 Appendix 1

8.1 Jini Web Services System

The following screen shots show the different stages in the servlet implementation of
the generic client to control Jini services over the Internet using reflection.

Figure 8.1 – Jini Web Services System Start

57

Figure 8.2 – Stage 1: The Services are Discovered and Listed

58

Figure 8.3 – Stage 2: The Interfaces are L isted

59

Figure 8.4 – Stage 3: The Methods Supported are L isted

Figure 8.5 – Stage 4: The Results are Displayed and the Service is Offered Again

