
 1

TOWARDS AN OPEN ARCHITECTURE FOR REAL-TIME
TRAFFIC INFORMATION MANAGEMENT

Mark Dineen, Dr. Vinny Cahill
Department of Computer Science, Trinity College Dublin, Ireland.
Phone: +353 1 608 1795
Fax: +353 1 677 2204
E-mail: mark_dineen@hotmail.com

ABSTRACT

Modern Urban Traffic Control (UTC) and traffic information systems create considerable
quantities of real-time data. Unfortunately, this data is then frequently discarded or stored in a
proprietary format that makes it difficult to use for purposes such as historical data analysis
or other end-user applications. This paper describes an open architecture for the management
of real-time traffic information that uses a three-tiered structure in conjunction with the
eXtensible Markup Language (XML) in order to allow traffic data to be stored and used by
any number of third party applications. An example of how the architecture was used in
conjunction with a SCATS UTC system to create Dublin’s online urban traffic congestion
map is also described in order to illustrate the effectiveness of this approach.

INTRODUCTION

Modern UTC and traffic information systems create considerable quantities of real-time data.
Unfortunately, this data is then frequently discarded or stored in a proprietary format that
makes it difficult to use for purposes such as historical data analysis or other additional end-
user applications. Such data could be put to additional use by extracting it from the
proprietary systems and converting it into a universal format that can then be used on as
many platforms, and by as many applications, as possible. Creating a standard architecture
for such a process also means that end-user applications can be developed that work with a
variety of different traffic information sources without having to reinvent the means by which
the lower level data is extracted.

This paper describes an open architecture for the management of real-time traffic information
that uses a three-tiered structure in combination with the eXtensible Markup Language
(XML) in order to allow traffic data from a variety of sources to be stored and used by any
number of third party applications. An example of how the architecture was used in
conjunction with a SCATS UTC system to create Dublin’s urban online traffic congestion
map is also described in order to illustrate the effectiveness of this approach.

The paper begins by describing the basic principles behind the open architecture itself. A
brief introduction to XML is provided along with the reasons as to why it was used as the
method of communication between the three tiers of the architecture. The rationale for using
three separate tiers and an explanation of each individual tier’s function is discussed. The
implementation of Dublin’s urban traffic congestion map using this three-tier architecture is

 2

TIER 1
(Data Extraction)

TIER 2
(Data Manipulation & Storage)

TIER 3
(Third-Party Applications)

XML

XML

then described. The implementation section begins with a brief overview of SCATS and goes
on to provide more in-depth details on how each of the tiers and the XML in-between them
was implemented. Finally, an evaluation is provided as to how the architecture performed
when used to create the congestion map and the future possibilities that exist for extending it.

ARCHITECTURE

The description of the open architecture is divided into two distinct sections. The first section
describes the three-tier architecture that contains the primary steps required in transferring the
road traffic data from a proprietary system to one that is open and can be used by external
applications. This section also explains how the three-tier architecture groups the steps
together to create a solution that is scalable. The second section deals with the
communication format that was chosen. The eXtensible Markup Language (XML) was
selected as it is an open specification that can be used on most platforms and is easily
customizable by means of Document Type Definitions (DTD’s).

THREE-TIER ARCHITECTURE

A three-tier design was devised in order to separate each of the three distinct processes that
need to be undertaken in the open architecture. Figure 1 shows the overall structure of the
three-tier architecture. The purpose of the first tier is to extract the relevant data from the
system collecting traffic information, e.g. SCATS, and to convert this data into an XML
document. The second tier is necessary to allow any intermediate calculations to be
performed on the data and, if so required, to store the information in a database. If necessary,
the second tier can collate data from a variety of sources as there is no limit to the number of
first tier processes that can be running simultaneously. After the second tier is finished
processing the data it passes on any data required by the third tier in the form of XML
documents. This final tier is where all the third-party applications can reside.

Figure 1. Three-Tier Architecture.

By taking this modular approach to the architectural design several advantages become
immediately obvious. First of all, the tiers are location transparent. This means that the
physical location of each individual tier is irrelevant as long as the XML files being produced

 3

are accessible (e.g. over the Internet). As an example you could have several traffic
monitoring systems running Tier 1 applications in different locations around a city. The
information from each of these sources could be collated by a central Tier 2 application
which creates XML documents that are published on the Internet and are accessible by third
party applications from anywhere in the world. The second advantage to this approach is that
each tier can be run concurrently so as to minimize the time taken for data to reach the end-
user applications. It should be noted however that if the tiers are to be run concurrently then a
file locking mechanism for the XML files has to be implemented. Failure to do this can result
in “dirty data”, i.e. the same XML file is being simultaneously read and overwritten by two
different processes. Some possible solutions to this problem are contained in the evaluation
section of this paper. Replication transparency is a third advantage. This means that any of
the processes can be replicated and run concurrently so as to provide redundancy in the case
of failure. Even if one tier fails completely the other tiers will continue to function normally
albeit with potentially old data. The architecture also allows for execution transparency. This
means that each tier can be run on different hardware and allocated suitable resources
according to its requirements. Alternatively, all three tiers can be run on the same platform if
so desired. This feature leads to a scaleable architecture as more resources or processes can
be added and removed to each tier as the workload changes. Finally, provided that the XML
interface between the tiers is not altered, the task of upgrading or changing any of the
individual processes is made relatively straightforward due to the modular nature of the
architecture.

XML

XML is a specification that was developed by the World-Wide Web Consortium [1] for
placing structured data into a text file. By using XML to create a structure for the data, files
can be produced that are easily generated and interpreted by different architectural layers.
The files are also unambiguous, and avoid problems such as lack of extensibility, lack of
support for internationalization, and platform-dependency. In appearance XML looks similar
to HTML as both specifications make use of tags (words bracketed by ‘<’ and ‘>’) and
attributes. HTML however, specifies what the tags mean (e.g. how the text will appear in a
browser) whereas XML uses the tags to delimit items of data and leaves the interpretation of
the tags entirely up to the application that reads the file. This allows designers to create their
own customized tags thus enabling the definition, transmission, validation and interpretation
of data between applications and organizations. A document that conforms to the XML
syntax rules (e.g. has no missing tags or attributes) is said to be “well-formed”. A document
that conforms to the XML syntax rules and follows the guidelines of a Document Type
Definition (DTD) that contains definitions of the customized tags is said to be “valid”.
Ensuring that an XML document is valid inherently carries out basic error checking.

In theory, any type of file protocol (e.g. ANSI text files) could have been used as the method
of communication between the architecture layers. There are several reasons however as to
why XML was chosen to form the basis of a communications language within the open
architecture. Access transparency is achieved as XML files can be retrieved using a unique
Internet address in precisely the same manner as HTML files. This property leads to location
transparency for the rest of the architecture as the individual tiers can now become location
independent. Just like HTML, a single XML file can be read concurrently by multiple clients
and as a result, the use of multiple end-user applications becomes possible. Several copies of
the same XML file can be produced and stored in different locations thus providing a

 4

measure of fault tolerance if required. By using a DTD in conjunction with the XML files it is
possible to create a standard that makes the type of data being transmitted easily identifiable
by both visual and automated inspection. As XML is a worldwide specification that is
supported by most software vendors the individual tiers are not tied to using any vendor-
specific software or hardware. Finally, and perhaps most importantly of all, additional tags
can be created at any stage in order to cope with new forms of traffic data.

TRAFFIC CONGESTION MAP

In order to gain further insights into the effectiveness of such an open architecture it was
decided to develop an end-user interface for a real-life example of a large-scale distributed
traffic system that produces high volumes of data. The example chosen was the city of
Dublin’s UTC system. This system, which is called the Sydney Coordinated Adaptive Traffic
System (SCATS), works by measuring real-time traffic flows through several hundred
junctions around the city. Using this information SCATS then automatically adjusts the
timing of the traffic lights at each intersection on a minute-by-minute basis. A World-Wide
Web based interface to the SCATS system was envisaged that could be used to provide the
public with real-time information on the current traffic conditions around Dublin city.

It was stipulated that there were three main objectives that any proposed implementation had
to be capable of fulfilling. The first of these was that the data from SCATS had to be
extracted and converted into a format that could be universally read and understood. The
second objective was that an algorithm had to be created and implemented that could take the
available data and generate a meaningful measure of road traffic congestion at any given
point in time. The third goal was to be able to present this large mass of data to a wide variety
of end-users in a manner that would be clear, meaningful and intuitive. As well as these three
objectives a number of constraints were placed on any proposed solution to ensure its future
viability. These constraints specified that the system had to be scalable, modular, easily
configurable, and could not interfere with the running of SCATS. Being scalable meant that
no constraints could be placed upon the number of intersections, end-users, or end-user
applications that the system could handle. Any proposed solution had to be modular to ensure
that the congestion algorithm could be changed at will, that a new version of SCATS could
be used without requiring a complete rewrite of all the code, and that extra applications could
be added with no difficulty. The solution had to include user-friendly configuration files to
allow changes to be made to the intersections and routes that were to be displayed. Finally,
for obvious reasons, any proposed solution could in no way interfere with the running of
SCATS itself, which meant that only existing interfaces to SCATS could be used. After
analysing these objectives and constraints it was decided that the proposed open architecture
would, in theory, be capable of meeting all of the above criteria.

SCATS

SCATS was first developed in the early 1970’s by the Department of Main Roads, New
South Wales, Australia [2] and was first installed in Dublin, Ireland in 1989. SCATS is an
adaptive UTC system. This means that it operates in real-time to adjust traffic signal timings
throughout the system. SCATS tries to optimize pedestrian, public transport and general
traffic flows throughout the network in response to any variations in traffic demand. At the
time of writing this paper there were a total of five hundred and seventeen signalized

 5

intersections throughout the Dublin area of which more than two hundred and sixty were
controlled by SCATS. Before the end of 2001 it was planned that the number of SCATS
controlled intersections would have been increased to nearly four hundred.

VAX
Management

Computer

Regional
Computer

Regional
Computer

Terminals

Local
Controller

Local
Controller

Local
Controller

Local
Controller

Figure 2. SCATS Physical Architecture.

Figure 2 illustrates the basic hierarchy of the SCATS system [3]. At each intersection there is
an inductive loop buried in the ground immediately before the stop-line of each of the main
traffic lanes. These inductive loops are connected to the local controller that is situated at the
intersection. The local controller is responsible for sending the data collected by the loops to
the regional computer, receiving the timing data for the lights back from the regional
computer, and implementing the light changes at the intersection.

In Dublin there are five regional computers. The purpose of each regional computer is to
analyze the traffic data from up to one hundred and twenty local controllers that are
geographically related. Three of the most fundamental values that are determined from the
loops in each lane include the original volume (VO), the degree of saturation (DS), and the
reconstituted volume (VK). Lowrie [2], details the algorithms used to calculate each of these
values. The regional computer assesses the data and calculates the most appropriate cycle
lengths, splits and offsets for each of the local controllers that are within its jurisdiction. The
results of these calculations are then implemented by each of the local controllers. The
purpose of the management computer is to provide centralised monitoring of system
performance and equipment status. It also provides for remote access to regional computers
by workstation operatives who can view the status of individual intersections through the
System Monitor (SM) display and can manually adjust the settings that are sent to the local
controllers.

IMPLEMENTATION OF THE DUBLIN TRAFFIC CONGESTION MAP

The open architecture implementation of the Dublin urban traffic congestion map was carried
out as shown in Figure 3. The diagram shows how information was collected from two
different sources in Tier 1. The reason for this was that the congestion algorithm required
data from both the SM display and the SYS.LX (configuration) files of SCATS. These two
data sources had to be accessed through two different methods. When this data reached the

 6

second tier it was collated and a congestion measure calculated which was then passed onto
separate end-user applications in the third tier.

Figure 3. Application of the Open Architecture to the Dublin Traffic Congestion Map.

XML

DTD’s had to be designed for every different type of XML file shown in Figure 3. As each
XML document is parsed it is checked against its corresponding DTD. If the format of the
XML document does not match that of the DTD then an error is flagged, or in the case of the
SAX parser that was used in this project, a Java run-time exception is thrown and caught.
Figure 4 shows the DTD and a sample extract from the corresponding XML file that was
passed between the Object Oriented (OO) Perl Script of Tier 1 and the SAX parser of Tier 2.
A separate XML file using the same DTD was created for each route. As can be seen from
Figure 4 the contents of the XML file are nearly self-explanatory due to the descriptive tags
that surround each piece of data.

 7

<!ELEMENT smData (routeNumber*, subsystem*) >
<!ELEMENT routeNumber (#PCDATA) >
<!ELEMENT subsystem (intersectionID*, time*,

 cycleLength*, recommendedCycleLength*,
 strategicApproach*) >
<!ELEMENT intersectionID (#PCDATA) >
<!ELEMENT time (#PCDATA) >
<!ELEMENT cycleLength (#PCDATA) >
<!ELEMENT recommendedCycleLength (#PCDATA) >
<!ELEMENT strategicApproach (saNumber*, smColumnData*)>
<!ELEMENT saNumber (#PCDATA) >
<!ELEMENT smColumnData (columnNumber, DS, VO, VK) >
<!ELEMENT columnNumber (#PCDATA) >
<!ELEMENT DS (#PCDATA) >
<!ELEMENT VO (#PCDATA) >
<!ELEMENT VK (#PCDATA) >

<?xml version="1.0" encoding='utf-8'?>
<!DOCTYPE smData SYSTEM "SMData.dtd">

<smData>
<routeNumber>1</routeNumber>
<subsystem>
<intersectionID>179</intersectionID>
<time>16:58</time>
<cycleLength>120</cycleLength>
<recommendedCycleLength>124
</recommendedCycleLength>
<strategicApproach>
<saNumber>53</saNumber>
<smColumnData>
<columnNumber>1</columnNumber>
<DS>113</DS>
<VO>19</VO>
<VK>26</VK>
</smColumnData>

. . .
</smColumnData>
</strategicApproach>
</subsystem>
</smData>

Figure 4. SmData.DTD (Left) and Extract From Corresponding XML File (Right).

Tier 1

The purpose of the first tier is to extract traffic information from multiple sources and pass
the data by means of XML to the second tier where it can be collated. In this specific
implementation there were two sources of data, the SM display for the real-time data and the
SYS.LX files for the intersection configuration information. It was decided that the best
method of interfacing with the SM display would be through the use of an automated telnet
session. The advantages of this were threefold:

1. A telnet session would appear to SCATS as just another user so the potential extra
load from polling the intersections would be within the SCATS design parameters.

2. Tier 1 would be treated as a standard user on SCATS therefore making it possible to
be assigned a very low level of SCATS privileges (i.e. read-only access). This greatly
decreases any potential security risks.

3. The data is extracted from SCATS in plain text using the SM display. Receiving the
data in plain text greatly simplifies any subsequent data manipulation that has to take
place.

It was decided to use an object oriented Perl script in Tier 1 as Perl contains some very
powerful string manipulation methods (e.g. regular expressions) that help to simplify the task
of removing the relevant data from an SM display. Another advantage of using Perl in Tier 1
is that most of the main methods needed to operate an automated telnet session (e.g. login
methods) already exist in an add-on module (telnet.pm) that is freely available on the
Internet. The script needed to be object oriented so as to simplify the task of organising such
large volumes of data.

A second Perl script (syslx2xml) was created in order to transfer data from the SCATS
SYS.LX files to Tier 2 which required this extra information for the congestion algorithm.
Each regional computer contains a separate SYS.LX file which contains the configuration
details for each intersection within that region. One XML file containing the information
from all the regional computers was then created and passed onto Tier 2.

 8

Tier 2

Tier 2 provides a solution for the second major objective (i.e. the implementation of a
congestion algorithm). At first glance a simpler and faster running architectural solution
might appear to be an amalgamation of Tiers 1 and 2 in the same application. There are three
main reasons as to why the middle tier works better when designed on its own as an
independent entity:

1. Security – the second tier acts a buffer between the first tier, which has access to
SCATS, and the third tier which can be situated on the Internet. From a SCATS
security standpoint it is much safer if the third tier cannot directly access the second
tier.

2. Modularity – it was a specified constraint that the congestion algorithm and the
SCATS data extractor be modular and easily swapped out if required. The existence
of a second tier makes this task considerably easier.

3. Scalability – if the load on either the first or the second tier becomes sufficiently large
then the two tiers can be placed on separate machines that have greater resources.

 This last point becomes even more pertinent as at some future stage the design envisaged the
addition of a database (greyed out in Figure 3) that would store and retrieve historical traffic
data. To have the data extraction routine, congestion algorithm and database interface all on
the same tier would inevitably lead to problems in scalability.
The purpose of the Simple API to XML (SAX) parser is to take the XML from Tier 1 as an
input, verify that it is valid, and place the data into an appropriate object model. It would have
been feasible to forgo the extra overhead that is involved in using the SAX parser by
implementing a customised parser. This was not done due to the excellent error handling
methods that already exist in SAX. Once the parser has translated the XML data into the
object model of Tier 2, the congestion algorithm produces the congestion measures for the
various intersections and this data is then converted into XML files that are passed onto the
third and final tier by means of placing them onto a web server. The congestion algorithm
produces a rating (in the range 0 – 6) of how congested the approaches to an intersection are.
This rating is displayed on the end-user congestion map as lines of varying colours.

Tier 3

The third tier satisfies the last objective, which was to provide a clear and meaningful user
interface. There were no major constraints placed upon the design of the third tier as the
applications on this level could potentially be run on any computer that has access to the
Internet. Figure 3 shows the two third tier applications that were implemented as part of this
project.

The first of these was the dynamic congestion map application. This client application, which
also functions as a Java applet, was designed to allow a user in any location (where Internet
access is available) to view all the extracted SCATS data and congestion measures in a
directional dynamic map format.

 9

Figure 5. Screenshot of the Dynamic Congestion Map.

Figure 5 shows a screenshot of the dynamic congestion map with the following circled
numbers serving to point out some of the features of the map:

1. Scrollbars used to navigate around different areas of the map.
2. Legend button used to display the map legend
3. Intersection name and number that the mouse is currently positioned over.
4. Coloured lines representing differing levels of congestion at intersections along

selected routes.
A user can obtain secondary information (e.g. DS, VO, VK, etc) on single lanes by clicking
on an intersection. This brings up a dialog box displaying the detailed information as shown
in Figure 6.

Figure 6. Pop-Up Dialog Box Showing Detailed Intersection Information.

The second application shown in Figure 7 is the static congestion map and routes application.
The purpose of this is to create static JPEG images of the dynamic map that are regularly
refreshed and made available for download on the web server for users that do not wish to
download the dynamic application or applet. Static graphics that show the congestion
information for each individual route are also provided (see Figure 8). It should be noticed

1

2

1

3

4

 10

that a time stamp is printed onto all the static images to ensure that the user knows when the
data was originally taken from SCATS and whether the images are up-to-date or not.

Figure 7. Static Image of Dublin City

Centre.

Figure 8. Stillorgan Static Route.

All of these images are then also placed on the web server where they are made available for
viewing. The biggest difference between these two applications is that the static congestion
map application runs locally within the control of Dublin Corporation whereas the dynamic
map can be run on any internal or external machine, provided an Internet connection is
available.

RELATED WORK

Before commencing this project a literature review was carried out in order to look at any
existing open architectures that were being used in the management of real-time traffic
information. During the course of this review very few examples of such architectures were
found in the literature. One such open architecture that does exist is the National
Transportation Communications for ITS Protocol (NTCIP). The purpose of NTCIP is to
provide a “family of communications standards for transmitting data and messages between
microcomputer control devices used in Intelligent Transportation Systems”[4]. The
objectives of this paper are considerably different from those of NTCIP, which aims to
provide in-depth details of everything from communication protocols to data object
specifications. In contrast, this paper merely seeks to illustrate an architectural approach that
can be used in traffic related projects that may have neither the resources, nor the desire, to
comply with the detailed standards laid out in NTCIP. In practical terms it was decided that
the CORBA-based NTCIP approach would not have been suitable for this type of project due
to the following reasons:

1. The steep learning curve involved in using CORBA and complying with the NTCIP
standards would have led to significantly slower development progress whereas all of
the software tools (Java, XML and Perl) used in this papers approach are already
familiar and well understood by many software developers.

2. Integrating the existing SCATS interface with the CORBA-based approach would
have involved far more complexity than a simple telnet session.

3. According to the NTCIP Guide [4] a CORBA-based NTCIP approach “may not be
suitable for near real-time applications and loosely coupled systems”.

 11

An alternative to the NTCIP approach is the Data Exchange in Abstract Syntax Notation
(DATEX-ASN) [5] that defines a standard format for traffic messages at a center-to-center
level. This standard was not investigated during the course of this project but some
interesting further work could involve integrating the DATEX-ASN standard with XML.

EVALUATION

In carrying out the implementation of the open architecture two practical limitations of the
design became apparent. Solutions to both of these limitations do exist however and can be
used, if necessary, as described in this section. The first limitation was performance, i.e. the
speed at which data could be transferred from Tier 1 through to Tier 3. As each Tier operates
independently the maximum possible delay is calculated by adding together the time it takes
for each loop to refresh its own data. In the Dublin traffic congestion map this amounted to
approximately fifty seconds. This delay was of little consequence due to the nature of the
third tier applications being used. If however, in a particular implementation, data delay was
of crucial importance then it would be possible to create multiple applications within every
tier, each of which would handle smaller parcels of work, e.g. a separate process could be
spawned to deal with each individual intersection.

The second restraint that should be noted is the issue of concurrency, or more specifically,
“dirty data”. Dirty data is what results when corrupted data is read from a file by one process
as a result of a second independent process performing a write operation on the same file, at
the same time as the first read operation is taking place. Dirty reads can potentially take place
at either of the two interfaces between the three tiers. If Tier 1 is writing an XML file while
Tier 2 is attempting to read from the same file then it is possible that Tier 2 will receive
corrupted data. Tier 3 can potentially receive corrupt data in exactly the same manner if Tier
2 is writing to a file while Tier 3 is reading from it. The three main traditional methods of
preventing this from taking place are file locking, shadow paging, and transactional
databases. For example, a file locking mechanism between Tiers 1 and 2 would mean that
before Tier 1 can begin writing to an XML file it has to first place a lock on it (providing
nothing is already accessing the file). This lock prevents Tier 2 from reading the file. Once
Tier 1 is finished writing to the file it can release the lock and let Tier 2 access the file once
more. The technique of shadow paging is where write operations are not performed on the
same file that read operations take place on. The file that the writing takes place on is known
as the shadow copy. Once the write operation has been completed on the shadow copy it is
renamed as the file that the read operations are to take place on. The final alternative, which
only works between the second and third tiers, is where a transactional database in the second
tier is used as a buffer. This means that instead of transferring information between the
second and third tiers using files, all the information is stored on a database. Any user or third
tier application that wishes to access the data would then have to make a request to the web
server which would in turn query the database and return the result. The advantage of using
this approach is that the transactional database ensures that a file or unit of data that is being
written to, cannot be read at the same time. The obvious disadvantage of such a system is the
additional overhead and extra level of indirection that is added to the data path. Interestingly,
none of these traditional solutions were implemented in the Dublin Traffic Congestion Map.
It was found that the parser generated an error if it attempted to read an XML file that was
being written to because the incomplete XML file would not match its corresponding DTD.
In the case of such an error being thrown and caught the parser would wait until the XML file
matched the DTD at which point the file is once again safe to read. This solution, though

 12

inelegant, was suitable for the purposes of a proof-of-concept and involved none of the
overheads of the other possible solutions.

CONCLUSIONS

This paper described an open architecture for real-time traffic information management that
is based upon a three-tiered structure that utilises XML as the communication protocol
between the tiers. An example of how such an architecture can be implemented and the
benefits it can provide were illustrated through the description of the online Dublin traffic
congestion map. The advantages of using a three-tiered architecture are that:

• The system becomes modular with well-defined interfaces so that maintenance and
upgrades are made substantially easier.

• Scalability is introduced throughout the system so that extra information sources and
end-user applications can be added at will.

• Security can be easily implemented between the tiers.
Using XML as the communications protocol means that valuable data is no longer locked
into a proprietary format, any number of third-party applications can be added and the
individual tiers gain location transparency. Another significant advantage of using XML is
that most modern development environments now provide support for XML as standard.

Some future third-tier applications that are being investigated include integrating a public bus
travel-time system with information from SCATS and a Wireless Application Protocol
(WAP) interface so that people can receive traffic information on their mobile phones.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the assistance of Dublin Corporation in allowing
Trinity College access to SCATS. Brendan O’Brien and Dave Traynor of Dublin
Corporation’s SCATS Development Unit offered expert knowledge of SCATS while the
Director of Traffic and Assistant City Manager, Owen Keegan provided support and funding
for the project.

REFERENCES

1 W3C Recommendation: Extensible Markup Language (XML) 1.0 (2nd edition 6 October
2000). Retrieved January 31st, 2001 from the World-Wide Web: http://www.w3.org/XML/
2 Lowrie P.R. (1982) The Sydney Co-ordinated Adaptive Traffic System – principles,
methodology, algorithms. Proc IEEE International Conference on Road Traffic Signalling,
London. pp 67-70.
3 Sims A.G. and Dobinson K.W. (1980) The Sydney Coordinated Adaptive Traffic (SCAT)
System Philosophy and Benefits. IEEE Transactions on Vehicular Technology, Vol. VT-29,
No.2. pp 130-137.
4 The NTCIP Guide. National Transportation Communications for ITS Protocol. (NTCIP
9001, v02.06 December 1999). Retrieved April 30th, 2001 from the World-Wide Web:
http://www.ntcip.org/
5 Transport Information and Control Systems – Data Interfaces between centers for transport
information and control systems – Part 2: DATEX-ASN (ISO/WD 14827-2)

	ABSTRACT
	INTRODUCTION
	ARCHITECTURE
	THREE-TIER ARCHITECTURE
	XML

	TRAFFIC CONGESTION MAP
	SCATS
	IMPLEMENTATION OF THE DUBLIN TRAFFIC CONGESTION MAP
	XML
	Tier 1
	Tier 2
	Tier 3

	RELATED WORK
	EVALUATION
	CONCLUSIONS
	ACKNOWLEDGEMENTS

