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1 Introduction

In [BS01] we presented some preliminary work describing reasoning about the
I/O-related properties of programs written in functional programming languages.
Only tentative conclusions could be drawn from that study because of the rela-
tively simple nature of the program being considered. The program considered
in this case study combines I/O and computation in essential and non-trivial
ways. The results were encouraging regarding the ease of reasoning about I/O
operations on functional languages, but more work was required. There are,
therefore, a number of issues to be addressed:

How do the reasoning techniques used in [BS01] scale when ap-
plied to more complex programs which perform I/O in unpredictable
ways?

Our aim is to reason about the side-effects of a program on its environment.
It is therefore an essential property of our reasoning system that it enables us
to discuss I/O actions in a functional program in terms of their side effects.
Since we are interested in both Haskell[HPJWe92] and Clean[PvE01] we require
I/O system models which can accommodate both languages. The apparent
differences between the two I/O systems raises another question:

Do the different I/O systems used by Haskell and Clean lead to
any significant differences in the proofs developed for each program,
and if so do these differences correspond to differences in ease of
reasoning?

2 Methodology

The aim of the case-study is to attempt to reason about a complex I/O ap-
plications in two different languages by building a practical simplification of
the workings of an operating system. The two specific languages, Haskell and
Clean, both have separate mechanisms for dealing with I/O. The two different
paradigms are as follows:
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• Uniqueness types: Referentially transparent side-effects are achieved by
extending the type-system so it handles uniqueness attributes. [PvE01].

• Monadic: Referentially transparent side-effects are achieved as a result of
embedding all side-effecting aspects of the language in a monad structure
[HPJWe92].

In order to carry out the case-study, the following steps were performed.

1. Create an informal description of the task to be performed by the program.

2. Develop and run real applications in the specified languages.

3. Develop a standardised I/O model, deciding upon what aspects of I/O are
considered important.

4. Encode the standardised I/O model within each language.

5. Re-write the programs so they operate in the semantic domain, with the
standardised I/O model.

6. State properties to be proven.

7. Attempt proofs.

3 An informal description of make

The task chosen to be performed was a simplified version of the standard pro-
gramming tool make [Fel79], which automates certain parts of program compi-
lation.
The essential features of make are:

1. It controls all necessary compilation to ensure that the most up-to-date
sources are used in the target program,

2. It ensures that no unnecessary compilations are performed where source
files have not changed.

The program’s input, commonly known as a “make-file”, contains all necessary
information about the file-names, the commands required to update the files,
and, for each file, a list of the other files on which it depends.
For this study we can observe that the I/O make performs is limited to:

1. Reading the description of the program dependencies from a text file (the
make-file),

2. Checking these dependencies against the filesystem to determine what
compilation work needs to be done,

3. Executing external commands as detailed in the make-file in order to bring
the target program up to date.
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The I/O performed in the first point is of little interest from a reasoning point of
view (being essentially a parsing problem) and so we consider our make program
only from the position where the dependencies have been read and examined.
These dependencies can be represented by a tree-like data structure where there
is a root node representing a goal (a file to be built) and a number of sub-trees
representing dependencies. Each node in the tree has an associated command
to be run when the goal at that node should be rebuilt. We can represent the
tree of dependencies as follows:

n ∈ Name = A?

c ∈ Command = A?

T ∈ Target = Target Name Command Target? | Leaf Name

This tree structure requires an additional pre-condition, before any reasonable
properties may be proven about it. These pre-conditions (and all other issues to
do with the make-file structure) are described in detail in proof section HL.2,
starting on page 11.
An imperative-style summary of how make behaves is as follows:

• Making (Leaf n): Check for the existence of n in the file-system. If it
doesn’t exist, abort the program with a run-time error. Otherwise, return,
doing nothing.

• Making (Target nm cmd deps): Rebuild deps, all recursive dependen-
cies. Then find the modification time of the newest file in all the depen-
dencies. If it is newer than the modification time of the file nm, rebuild
the file by running command cmd.

To further refine the above imperative description, we assume that make returns
a time-stamp representing the time-stamp of the newest file in its list of depen-
dencies. This value is found using the (informal) assumption that there are no
dependency cycles. The resultant informal specification is as follows:

• Making (Leaf nm): Check for the existence of nm in the file-system. If it
doesn’t exist, abort the program with a run-time error. Otherwise, return
the time-stamp associated with nm.

• Making (Target nm cmd deps): Rebuild deps, all recursive dependen-
cies, retaining all their returned time-stamps. If the newest of these times
is newer than the modification time of the file nm, then rebuild the file
by running command cmd. Either way, return the resultant modification
time of nm.

4 Real applications

Two fully working applications were written which implemented the above in-
formal description – one in Haskell, the other in Clean. They can be found in
Appendix B (Haskell), and Appendix C (Clean).
Each program was written with the idiom of the language, and, as a result, the
programs differed considerably. The most notable differences are as follows:
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• Execution of commands. In Haskell, the System library provides a sim-
ple exec function which executes a command. There is no such function
in Clean libraries, and an alternative had to be created.

• File-times. A specific FileTime data-type had to be constructed in
Clean, which is actually a pair containing a Date and a Time. In Haskell,
the standard EpochTime type sufficed.

• Writing to the console. In Clean, once the “standard output” has
been opened, it must be maintained as a separate entity throughout the
program.

• Handling of side-effects. As a result of the different paradigms used by
the two languages, the semantics of the side-effect handling are, of course,
notably different.

5 The I/O model

In order to attempt formal reasoning about the two programs it was necessary
to first create an I/O model in IVDM ([aA90], [Hug00]). In this model, all
unnecessary (or uninteresting) parts of the file-system and operating system
were removed. Essentially, this means that only the operations used by make
were included in the I/O system.
To facilitate the proofs we provide a model of I/O that covers all the operations
used by the make implementations.
Times can be represented as integers (from some suitable zero-moment).

t ∈ EpochTime = Z

Each file can have a time associated with it; we also provide a value to represent
the lack of a file time (associated with a missing file). We also represent names,
commands and the target dependency tree in the obvious way:

f ∈ FileTime = FileTime EpochTime |NoFileTime

The filesystem is represented as a map from (file)names to times. We can
represent the complete world that the program operates in as the product of a
filesystem and a universal clock:

φ ∈ FS = Name m→ EpochTime
W, (φ, τ) ∈ World = FS × EpochTime

The level of abstraction chosen for this case study is high enough to eliminate
any need to model the contents of files, or any filesystem operations other than
touching a file to update the modification time. This operation corresponds to
the notion of updating a file, without committing to any specific notion of what
the update involves. The operation will ensure that after the action the named
file exists with an “up to date” file time, regardless of the state of the file before
the action was performed.
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We provide an ordering on times where the “missing” time is older than all
other possible times, and times are ordered sequentially otherwise. This is a
convenient representation for make as it allows us to view missing files as being
older than all other files and therefore eternally out of date.

NoFileTime ¹ f = True

(FileTime t1) ¹ (FileTime t2) = t1 ≤ t2

We provide two operations on the filesystem. The first allows us to look up
the value associated with a given file name, which will be the files modification
time. We do not advance the clock in this operation.

getFileTime : Name →World → FileTime
getFileTime[n](φ, τ) =̂ n ∈ dom φ → FileTime φ(n) , NoFileTime

The second important operation is to execute command ‘cmd’. We assume here
that the execution of a command c with associated filename n will have exactly
the effect of updating the associated file date in the filesystem and advancing
the universal clock.

exec : Name → Command →World →World
exec n c (φ, τ) = (φ † {n 7→ τ + 1}), τ + 1)

This assumption allows us to reason effectively about the “exec” operation which
would otherwise be capable of performing any arbitrary transformation on the
world model. The intention of this definition of “exec” is to model a particular
case of program execution by make, which corresponds to running a simple
compiler. We use the operator †, called override, to introduce and replace
bindings in a map. The notation φ † {n 7→ α} indicates the map φ changed in
such a way that the value n is mapped to the value α, leaving all other values
untouched.
It is clear from this model that we are only interested in modelling “reasonable”
uses of make. This is because a full implementation of make (such as GNU
Make [SM00]) can contain arbitrary system commands, shell scripts and calls
to arbitrary programs which we do not attempt to model.

6 Encoding the semantic I/O models

Using the I/O model described above, the actual operating-system primitives
were replaced with their logical equivalents in the languages. In the proofs,
we use a natural semantics and apply re-write rules for reasoning about the
programs, and include functional descriptions of the I/O operations; in effect
the languages are expanded to include an explicit representation of the side
effects caused by the I/O system.
In [BS01] both functional programs were rewritten in a common syntax to fa-
cilitate a comparison of the reasoning steps in the proofs, and the proofs were
performed on that common syntax. This time we have chosen to work at a level
closer to the original languages since there is no clear advantage to syntactically
sugaring the programs into a neutral form in this case.
In Clean, the world is represented with the types:
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:: FS :== [(Name,EpochTime)]
:: World :== (FS,EpochTime)

Implementations of the I/O operations used in the program are provided in
terms of their effect on this World value. These implementations reflect the
embedding of the I/O model of §5 into the semantics of the language. Note that
in a Clean implementation the World value requires uniqueness attribution,
which is not required here since we are safely in the domain of the language
semantics. Indeed, the I/O model does not have a direct equivalent to this
attribute. We note, however, that the use of the World value remains single-
threaded.
In Haskell, the world is represented as follows:

type FS = [(Name,EpochTime)]
type World = (FS,EpochTime)

Because of the monadic style of I/O in Haskell, it was necessary to construct
a new (logical) monad, in the style of [Wad92], to take the place of Haskell’s
normal IO monad. This new monad includes an explicit representation of the
world in the program so that we can directly state the required properties.
The World type is defined as above, and the IO type is wrapped around it to
represent the I/O monad.

newtype IO a = IO (World -> (World, a))

The usual set of monadic operators (“bind”, “seq” and “return”) are provided,
along with rules for a de-sugaring of Haskell’s idiomatic do notation that will
allow the Haskell program to be rewritten in terms of this IO monad definition.
We introduce the usual set of map manipulation operations (such as override)
and give semantics to the necessary I/O operations, for instance:

exec nm cmd = IO (\(p,k) -> ((override nm (k+1) p, k+1),()))

This operation override corresponds to the † operator introduced earlier, and
indicates that in the map p, nm maps to a different value ((k+1) in this case).
The Haskell and Clean semantic models, along with all the proof conditions,
can be found in Appendices D and E respectively.

7 Properties Proven

There are six principal theorems relating to the implementation of make. Each
of these theorems is true under the simplifying assumptions of the I/O model
and program abstractions performed on the original programs.

• Theorem 1 states that files whose names do not appear in the make-file
will not have their modification times changed by running make.

• Theorem 2 states that directly after executing the command for a file,
that file will be newer than any other file in the file system.
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• Theorem 3 states that after executing make the modification time of a file
will be no earlier than it was before running make.

• Theorem 4 states that following an execution of make the topmost de-
pendency in the tree will be newer than all of the dependencies under
it.

• Theorem 5 states that if the top dependency in the tree has not changed
following an execution of make, then all of the dependencies under it will
also be unchanged,

• Theorem 6 states that following an execution of make that Theorem 4
holds recursively through the tree.

These are Theorems H.1 to H.6 (for Haskell) and C.1 to C.6 (for Clean). They
form the specification of make’s expected behaviour, and are the basis for our
choice of implementation.

8 The use of reasoning operators

In the Haskell proof, the use of the monadic operators (>>=, >> and return)
presents a problem. These operators are used to enforce the single threading of
the world value by disallowing any other function access of the explicit world
value.
This single threading is a necessary property of any implementation, but when
attempting to produce our proofs it is necessary to refer directly to that value
and inspect it. This is necessary because the properties that we wish to establish
via the proofs are properties of that world value, and it will be necessary to trace
the transformations applied to the world in order to verify that the property
holds.
One solution to this problem is to carefully unwrap the monadic value each
time the world must be inspected, and re-wrap it again before the next proof
step is taken. While possible, this approach requires an inconvenient degree of
mechanical work. Instead, we provide a number of new operators related to
the standard monadic combinators. These operators can be used to lift a world
value out of a monadic computation so that it can be inspected and manipulated
in a proof. The three most interesting of these operators are:

• >=>, called “after”, an operator which applies a monadic IO action to a
world value, effectively performing the requested action and producing a
new world. The function can be trivially defined:

(>=>) :: World -> (IO a) -> (World, a)
w >=> (IO f) = (f w)

• >->, called “world-after”, an operator which transforms a world value
using an I/O action. The result of this operation is a new world value
which represents the changes made.

(>->) :: World -> (IO a) -> World
w >-> act = fst (w >=> act)
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• >~>, called “value-after”, the corresponding operator to >->, which trans-
forms a value but does not retain the new world value that was produced.

(>~>) :: World -> (IO a) -> a
w >~> act = snd (w >=> act)

For this case-study it was noticed that, even when written entirely in the style
of the language, Clean’s ability to “split” the world was of little use – treating
the world as a single monolithic entity is quite adequate. For this reason, it
was decided, in the semantic model, also to adopt these operators, and re-write
the Clean functions with a type-signature style which would permit these same
operators to be used (a small change, which has little or no consequences).
The operators are defined as follows in Clean:

(>=>) infixl 9 :: World (World -> (World,a)) -> (World,a)
(>=>) w f = f w

(>->) infixl 9 :: World (World -> (World,a)) -> World
(>->) w f = fst (w >=> f)

(>~>) infixl 9 :: World (World -> (World,a)) -> a
(>~>) w f = snd (w >=> f)

Note that we can safely define and use these operators in our proof since we are
working with a type correct program, which is therefore safely single-threaded.
These operators would not be safe if added into a functional language, but are
appropriate for reasoning.
More information about these operators are to be found in proof sections HL.3
and CL.3, where a number of useful properties are proven about them.

9 General information on proofs

The proofs in this document are performed by manipulating/rewriting expres-
sions in an abstracted program language, using a natural deduction style.

9.1 Abstracted program notation

The notation used in the abstracted programs (and in the proofs) is kept as
similar as possible to that of the languages. Although we are really working in
the semantic domain, the original language syntax is retained for simplicity.
Extra notation is added for convenience when the existing syntax is either not
powerful enough, or its use would be cumbersome. There are two particular
examples of this:

• Sometimes, a FORALL is inserted where explicit universal quantification
is required for a particular variable. This usually occurs in inductive
hypotheses, in inductive proofs.

• Since Clean’s #-let notation can only be used in function definitions, it is
replaced with explicit let-before expressions using letbs.

9



9.2 Error-handling

Run-time errors which abort the program are, for the purposes of simplicity,
not being considered in this case-study. The abstracted model removes the
possibility of any abnormal program termination. This occurs in HL.3.1.2 and
CL.3.1.2.

9.3 Sets

At certain points throughout the proofs, it is useful to view a list with equality
defined over its elements as a set. As a result a small library of standard set
functions were defined especially for use in the proofs. These are documented
in Appendix A.

9.4 Haskell and Clean

As a result of the “reasoning operators”, many of the proofs are extremely
similar. It is recommended that the reader reads the Haskell proofs first, since
many Clean proofs refer directly to their Haskell counterparts.
The lemma/theorem naming schemes are as follows:

H Haskell Theorem
HL Haskell Lemma
C Clean Theorem

CL Clean Lemma

9.5 Variable naming policy

In general we try to keep to a consistent variable naming policy in the proofs:

t,t0,t1,t2 :: Target

ts,ts1 :: [Target]

n,n0,n1,n2 :: Name

ns,ns1 :: [Name]

w,w0,w1,w2 :: World

ws,ws1 :: [World]

m :: Command

f :: FileSystem

k,k1,k2 :: FileTime

ks,ks1 :: [FileTime]

p,p1 :: Arbitrary predicate or parameter
s1,s2,s3 :: [a]

If certain variable names appear, they will invariably mean the same type of
thing throughout the document. For example, a variable ws will almost always
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be the list of intermediate worlds returned from an invocation of the trace
function.

10 Haskell Make Proofs

The Haskell proofs begin here. This section is the main body of the document,
containing all the proofs for the Haskell version of make.

10.1 Directed Acyclic Graph Tree Proofs

Overview

This section describes the make-file structure used (DAG-Trees), the reasons
why that type of structure was so suitable, and a number of properties about
it.

• HL.2.3 shows that if a tree is a DAG-Tree, then so are all its subtrees.

• HL.2.8.1 shows how the top file in a DAG-Tree can’t occur anywhere else
at the same time – there are no cyclic dependencies.

• HL.2.12 shows some of special properties that arise when case-analysis is
performed on the possible ways two compatible trees can share informa-
tion.

• HL.2.13 is proof of the validity of a special type of induction over the
structure of DAG-Trees, used much later.

This section is self-contained, and is not actually required until much later on
in the proofs.

The requirements of a make-file structure

In order to reason about make it is necessary to create a structure which rep-
resents what one would consider to be a “normal” make-file. Here are five
statements which we believe capture what is and is not a make-file (at least for
the purposes of a case-study of this nature).

1. No file can depend on itself.

2. No sequence of files can cyclically depend on each other.

3. Multiple different files can depend on one file.

4. A target file cannot have multiple different (conflicting) commands to
update the target. (Similarly, the dependencies of a specific target are
constant – they don’t change arbitrarily through make-file)

5. Each make-file only has one single target on which no other file depends.
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1 and 2 are obvious. It is impossible to build any target if it is necessary for
that same target to have already been built. Points 1 and 2 suggest that there
must be some sense of ordering on the building of files.
Point 3 is a standard feature one would expect of make. An implementation of
make which didn’t permit this would most-likely be of limited practical use.
Point 4 is also quite acceptable – if the commands or dependencies associated
with a particular file were somehow ambiguously stated in the make-file, it would
lead to serious problems.
5, however, is somewhat less standard. Normal implementations of make (GNU
make, for example), permit multiple “top” targets. Nevertheless, this can be
assumed, for this case-study, to be just a convenient way of merging multiple
make-files into one.

Implementing a make-file data-structure

What is the best (functional) data-structure to use when representing a make-
file with the structure described above?
There are a number of possible solutions, but the one decided upon was a
tree structure with an added pre-condition. The tree structure of Target is as
follows:

data Target = Target Name Command [Target] | Leaf Name

It is a standard recursive data-type, and the recursive nature of it proved ideal
for reasoning, using inductive proofs.
This structure has a number of useful look-up functions defined, all of which
are commonly used throughout this document:

-- get the name of a target
name :: Target -> Name
name (Leaf n) = n
name (Target n _ _) = n

-- get the immediate descendants of a target
deps :: Target -> [Target]
deps (Leaf _) = []
deps (Target _ _ ts) = ts

-- get the command of a target
cmd :: Target -> Command
cmd (Leaf _) = ""
cmd (Target _ m _) = m

-- get all the descendant nodes of a node, including the node itself
alldeps :: Target -> [Target]
alldeps t = [t] ++ (concatMap alldeps (deps t))

Continuing with the discussion about the representation of make-files, this par-
ticular tree structure, however, only captures two of the five properties described
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above (numbers 3 and 5). There is a “top” target (the root of the tree), and
there is no problem having two different files depend on one. Additionally, we
can capture property 4 by adding the pre-condition isDAGT defined below.

isDAGT :: Target -> Bool
isDAGT t = prodall safe (alldeps t)

-- is (r a1 a2) true for all a’s in the given list.
prodall :: (a -> a -> Bool) -> [a] -> Bool
prodall r lst = and [r a1 a2 | a1 <- lst, a2 <- lst]

-- if the two names are the same, are the commands and
-- dependencies also the same?
safe :: Target -> Target -> Bool
safe t1 t2 =

((name t1)==(name t2)) ==>
((cmd t1)==(cmd t2) && (deps t1)==(deps t2))

(isDAGT t) effectively states that (safe t1 t2) is always true, where t1 and
t2 are any sub-targets in t (here, a sub-target of t could also be t itself.) What
(safe t1 t2) states, is that if the names of t1 and t2 are identical, then both
the commands and all the dependencies of t1 and t2 will also be identical.
Put together, (isDAGT t) states that if the name associated with a node is equal
in any two arbitrary sub-targets, then, although those two sub-trees might be
in different parts of the full tree, with different parent nodes etc., the nodes
themselves will still be indistinguishable. In other words, when the file is the
same, the command, and the dependencies will also be the same – Property 4.
Finally, to show that Properties 1 and 2 hold, it is first necessary to use the
assumption that infinite make-trees are ruled out in this case-study. It is shown
(in HL.2.8.1) that if any file was to, directly or indirectly, be dependent on
itself, then an infinite tree would result.
A type of tree with this pre-condition shall be known as a Directed Acyclic
Graph Tree (or DAG-Tree, for short). The reason for this choice is that once
the tree is finite, and there are no dependency loops, the dependency graph that
results is a directed acyclic graph.

Lemma HL.2.1

If relation r :: a -> a -> Bool yields True when applied to any pair of ele-
ments in set s, then it will also yield True when applied to any pair of elements
in any subset of s.

((prodall r s) && (s2 ‘subset‘ s)) ==> (prodall r s2)

Proof: Simple, using boolean and list properties.

Lemma HL.2.2

If t is a DAG-Tree, so are all its immediate descendants.
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(isDAGT t) ==> all isDAGT (deps t)

Proof: Application of HL.2.1 to the definition of isDAGT, and alldeps.
〈 assuming pre-condition 〉
(isDAGT t)
= 〈 isDAGT defn. 〉
(prodall safe (alldeps t))
= 〈 alldeps defn. 〉
(prodall safe ([t]++(concatMap alldeps (deps t))))
⇒ 〈 Adding additional fact, using set laws 〉
(prodall safe ([t]++(concatMap alldeps (deps t)))) &&

(all (\t1 ->
(alldeps t1) ‘subset‘ ([t]++(concatMap alldeps (deps t)))

) (deps t))
⇒ 〈 Applying HL.2.1, merging both expressions 〉
(all (\t1 -> prodall safe (alldeps t1)) (deps t))
= 〈 isDAGT defn. 〉
(all (\t1 -> isDAGT t1) (deps t))
= 〈 using currying, and adding pre-condition 〉
(isDAGT t) ==> (all isDAGT (deps t))

Lemma HL.2.3

If t is a DAG-Tree, so are all its recursive descendants.

(isDAGT t) ==> all isDAGT (alldeps t)

Proof: Simple, using HL.2.1 and HL.2.2

Lemma HL.2.4

Two targets are identical if and only if their recursive dependencies are also
identical.

(t0==t1) == ((alldeps t0) == (alldeps t1))

Proof:
〈 Left-to-right implication 〉

(t0==t1)
⇒ 〈 application 〉

((alldeps t0) == (alldeps t1))
〈 Right-to-left implication 〉

(alldeps t0)==(alldeps t1)
⇒ 〈 application 〉

(head (alldeps t0)) == (head (alldeps t1))
⇒ 〈 alldeps defn. 〉

(head (alldeps t0))==t0 && (head (alldeps t1))==t1
⇒ 〈 subs. 〉

(t1==t0)
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Definition of allnames functions

Sometimes it is necessary to retrieve from a target information about all the
names in that target. The allnames function does that, in very similar style
to the way alldeps retrieves all sub-targets (in fact, HL.2.11 shows just how
similar they are).
The allnames2 function is just slightly different, since it excludes the top file.
HL.2.5 shows the relationship of the two.

-- get all names of descendant nodes of a target, including
-- that node itself
allnames :: Target -> [Name]
allnames t = [name t]++(concatMap allnames (deps t))

-- get all names of descendant nodes in a target, excluding
-- that node itself
allnames2 :: Target -> [Name]
allnames2 t = (map name (deps t))++(concatMap allnames2 (deps t))

Lemma HL.2.5

The relationship between allnames and allnames2.

(allnames t) ‘setEq‘ ((name t):(allnames2 t))

Proof: Induction of target structure. In the inductive case, certain set axioms
must be used, showing that two lists in a different order are still the same sets.

Definition of couldBeDAGT

The function couldBeDAGT states that two targets could co-exist in different
parts of a larger DAG-Tree structure without conflicts – i.e. both targets are
themselves valid DAG-Trees, and all of their sub-targets are mutually compat-
ible.

-- if target t1 and t2 were "put together" they would make
-- a valid DAGTree
couldBeDAGT :: Target -> Target -> Bool
couldBeDAGT t1 t2 = prodall safe ((alldeps t1)++(alldeps t2))

When (couldBeDAGT t1 t2), it is sometimes said that t1 and t2 are Compat-
ible DAG-Trees.

Lemma HL.2.6

Some simple facts about couldBeDAGT.
Treated as relation, couldBeDAGT is symmetric.
(couldBeDAGT t1 t2) == (couldBeDAGT t2 t1)
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If a targets t1 and t2 could be successfully combined to make a DAG-Tree, then
t1 and t2 must be DAG-Trees already.
(couldBeDAGT t1 t2) ==> (isDAGT t1) && (isDAGT t2)

A target is compatible with itself if and only if it is itself a valid DAG-Tree.
(couldBeDAGT t1 t1) == (isDAGT t1)

If t is a DAG-Tree, then all its sub-trees are compatible DAG-Trees.
(isDAGT t) ==> (prodall couldBeDAGT (alldeps t))

Proof: All relatively simple (or obvious), using properties of string concatena-
tion, and boolean algebra.

Lemma HL.2.7

A target t0 is a recursive dependency of target t1 if and only if the recursive
dependencies of t0 is a proper subset of the recursive dependencies of t1.

(t0 ‘elem‘ alldeps t1) == ((alldeps t0) ‘psubset‘ (alldeps t1))

Proof: Split the equality of the form A = B into the form (A ⇒ B) ∧ (A ⇐
B). Proving the right-to-left implication is trivial. Showing the left-to-right
implication requires induction.

Lemma HL.2.8.1

If t is a DAG-Tree, the filename at the root will not appear anywhere else in
the tree.

(isDAGT t) ==>
all (\t1 -> (name t) ‘notElem‘ (allnames t1)) (deps t)

Proof:
For this case-study we state informally that infinite make-trees are disallowed.
The most sensible justification of this decision is that an infinite make-tree would
be of no practical use, since rebuilding the target would take infinitely long, and
it would be impossible to store such information on disc as a (normal) make-file.
To prove the above lemma, let us suppose that a tree t is a valid DAG-Tree, and
(name t) does reappear elsewhere in the tree. Since it is a valid DAG-Tree, if
two names appear twice, their dependencies will be equal. But, one dependency
is within the other – therefore the structure will be infinite, and, as a result,
disallowed.
An example of a DAG-Tree which is technically valid, but infinite, is:
let t = (Target n m [t,t])
in t
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Lemma HL.2.8.2

If t is a DAG-Tree, the filename at the root will not appear anywhere else in
the tree.

(isDAGT t) ==> (name t) ‘notElem‘ (allnames2 t)

Proof: Uses HL.2.8.1, showing how it relates to allnames2.

Lemma HL.2.10

If two targets could be merged to form a valid DAG-Tree, then the three state-
ments “the targets are identical”, “the targets have identical names”, and “the
dependencies of the targets are all equal” are logically equivalent.

(couldBeDAGT t1 t2) ==>
((t1==t2) == ((name t1)==(name t2))) &&
((t1==t2) == ((alldeps t1)==(alldeps t2)))

Proof: All relatively trivial.
〈 Assume pre-condition: 〉
(couldBeDAGT t1 t2)

= 〈 defn. 〉
(prodall safe ((alldeps t1)++(alldeps t2)))

⇒ 〈 prodall properties 〉
(safe t1 t2)

= 〈 safe defn. 〉
((name t1)==(name t2)) ==>

((cmd t1)==(cmd t2)) && (deps t1)==(deps t2)

⇒ 〈 Adding defn. of equality on targets 〉
((t1==t2)==((name t1)==(name t2) && (cmd t1)==(cmd t2)

&& (deps t1)&&(deps t2))) &&
(((name t1)==(name t2)) ==>

((cmd t1)==(cmd t2)) && (deps t1)==(deps t2))

⇒ 〈 substitution 〉
(t1==t2)==((name t1)==(name t2))

⇒ 〈 HL.2.4 〉
((t1==t2)==((name t1)==(name t2))) &&

((t1==t2)==((alldeps t1)==(alldeps t2))

⇒ 〈 adding pre-condition 〉
(couldBeDAGT t1 t2) ==>

((t1==t2)==((name t1)==(name t2))) &&
((t1==t2)==((alldeps t1)==(alldeps t2))

Lemma HL.2.11

(allnames t) == (map name (alldeps t))

Proof: Induction on target structure.
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Lemma HL.2.12.1

If t0 and t1 are compatible DAG-Trees, then any statement about the how the
sets (allnames t0) and (allnames t1) share information is logically equiv-
alent to the same statement made about the sharing of information between
(alldeps t0) and (alldeps t1).
Some examples are as follows:

(couldBeDAGT t0 t1) ==>
((allnames t0) ‘setEq‘ (allnames t1)) ==
((alldeps t0) ‘setEq‘ (alldeps t1))

(couldBeDAGT t0 t1) ==>
((allnames t0) ‘subset‘ (allnames t1)) ==
((alldeps t0) ‘subset‘ (alldeps t1))

(couldBeDAGT t0 t1) ==>
((allnames t0) ‘disjoint‘ (allnames t1)) ==
((alldeps t0) ‘disjoint‘ (alldeps t1))

Proof:
It can be seen from HL.2.11 that mapping the function name across every
element of (alldeps t) yields (allnames t). Since all statements about list or
set membership are based around the ability to compare elements, it it necessary
to show that this mapping preserves equality:

1. Will two identical elements of (alldeps t) be mapped onto two identical
elements of (allnames t)?

2. Will two different elements of (alldeps t) be mapped onto two different
elements of (allnames t)?

The first question is trivially true, because of the nature of function application.
Additionally, if we assume that t is a DAG-Tree, the second question is also
true, since (from HL.2.10) the equality of two elements of (alldeps t) is the
same thing as the equality of the two names.
Now, if (couldBeDAGT t0 t1), then (alldeps t0) and (alldeps t1) can be
effectively viewed just as subsets of (alldeps t2), where t2 is a DAG-Tree
containing t0 and t1. Therefore, the above lemma is true: any statement about
the overlapping of (alldeps t0) and (alldeps t1) is the same when talking
about (allnames t0) and (allnames t1), since member equality is preserved.

Definition of five tree cases

It is often advantageous, when working with DAG-Trees, to perform case-
analysis on the different ways two trees can share data. It turns out that the
most natural way of doing this is to use the five ways two sets can share infor-
mation.
It can be shown easily that if S and T are sets, then exactly one of the following
is true:
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S = T

S ⊂ T

S ⊃ T

S ∩ T = ∅
(S ∩ T 6= ∅) ∧ (S 6⊆ T ) ∧ (S 6⊇ T )

Therefore, if one assumes the existence of two targets, t0 and t1, and substitute
(allnames t0) and (allnames t1) for S and T , respectively, the following five
predicates take shape:

apartT, bwithinT, crushedT, dwithinT, equalT :: Target -> Target -> Bool
apartT t0 t1 = (allnames t0) ‘disjoint‘ (allnames t1)
bwithinT t0 t1 = (allnames t0) ‘psubset‘ (allnames t1)
crushedT t0 t1 =

(allnames t0) ‘notdisjoint‘ (allnames t1) &&
(not ((allnames t0) ‘subset‘ (allnames t1))) &&
(not ((allnames t1) ‘subset‘ (allnames t0)))

dwithinT t0 t1 = (allnames t1) ‘psubset‘ (allnames t0)
equalT t0 t1 = (allnames t0) ‘setEq‘ (allnames t1)

The following diagrams go some way towards explaining the rationale behind
the rather eclectic naming scheme:

• Apart No filenames are shared between the two targets.

t0 t1

• BWithin Target t0 is entirely within target t1.

t0

t1

• Crushed Some of t0 is in t1, and some of t1 is in t0.

t0 t1
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• DWithin Target t1 is entirely within target t0.

t1

t0

• Equal Both targets are identical. Everything is shared.

t0 t1

Lemma HL.2.12.2

If two trees are compatible DAG-Trees, the definitions of the five tree cases
are logically equivalent to the same statements where allnames is replaced by
alldeps.

(couldBeDAGT t0 t1) ==> (
(apartT t0 t1)==((alldeps t0) ‘disjoint‘ (alldeps t1)) &&
(bwithinT t0 t1)==((alldeps t0) ‘psubset‘ (alldeps t1)) &&
(crushedT t0 t1)==(
((alldeps t0) ‘notdisjoint‘ (alldeps t1)) &&
(not ((alldeps t0) ‘subset‘ (alldeps t1))) &&
(not ((alldeps t1) ‘subset‘ (alldeps t0)))) &&

(dwithinT t0 t1)==((alldeps t1) ‘psubset‘ (alldeps t0)) &&
(equalT t0 t1)==((alldeps t0) ‘setEq‘ (alldeps t1)))

Proof: A direct application of HL.2.12.1 to the five definitions.

Lemma HL.2.12.3

If t0 and t1 are compatible DAG-Trees, then performing case-analysis on four
of the five cases yields some additional facts of interest. These are stated below:

(couldBeDAGT t0 t1) ==> (
(bwithinT t0 t1 ==> (t0 ‘elem‘ (alldeps t1))) &&
(crushedT t0 t1 ==> (
((name t0) ‘notElem‘ (allnames t1)) &&
((name t1) ‘notElem‘ (allnames t0)) &&
(name t0 /= name t1))) &&

(dwithinT t0 t1 ==> (t1 ‘elem‘ (alldeps t0))) &&
(equalT t0 t1 ==> (t0==t1)))
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Proof: Perform case-analysis, and use additional lemmas to prove the specific
facts.
B-Within Case:

〈 B-Within defn. 〉
(allnames t0) ‘psubset‘ (allnames t1)

= 〈 using HL.2.12.2 〉
(alldeps t0) ‘psubset‘ (alldeps t1)

= 〈 alldeps defn. 〉
([t0]++(concatMap alldeps (deps t0))) ‘psubset‘ (alldeps t1)

⇒ 〈 set theory 〉
t0 ‘elem‘ (alldeps t1)

Crushed Case:

〈 Crushed defn. 〉
((allnames t0) ‘notdisjoint‘ (allnames t1)) &&
(not ((allnames t0) ‘subset‘ (allnames t1))) &&
(not ((allnames t1) ‘subset‘ (allnames t0)))

= 〈 if t2 and t3 are compatible DAG-Trees... 〉
(((name t2) ‘elem‘ (allnames t3)) ==>
((allnames t2) ‘subset‘ (allnames t3))) &&

⇒ 〈 therefore.. (using contrapositive) 〉
((name t0) ‘notElem‘ (allnames t1)) &&
((name t1) ‘notElem‘ (allnames t0))

⇒ 〈 using set theory 〉
((name t0) /= (name t1))

D-Within Case:

〈 D-Within defn. 〉
(allnames t1) ‘psubset‘ (allnames t0)

= 〈 using HL.2.12.2 〉
(alldeps t1) ‘psubset‘ (alldeps t0)

= 〈 alldeps defn. 〉
([t1]++(concatMap alldeps (deps t1))) ‘psubset‘ (alldeps t0)

⇒ 〈 set theory 〉
t1 ‘elem‘ (alldeps t0)

Equal Case:

〈 Equal defn. 〉
(allnames t0) ‘setEq‘ (allnames t1)

= 〈 using HL.2.12.2 〉
(alldeps t0) ‘setEq‘ (alldeps t1)

⇒ 〈 since, in each, the full trees (t0 and t1) are in both sets, they must be
identical 〉

t0==t1
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Lemma HL.2.13

Proof of the validity of a special form of induction over DAG-Trees.
This specific form of induction is used when proving a property about the in-
teraction of two compatible DAG-Trees. It is different to a normal structural
induction, where the induction is effectively an iterative process that eventually
terminates at a base case. Instead, the sub-targets of target t0 are continu-
ally examined recursively until either t0 is entirely inside t1 (“B-Within” or
“Equal”) or they are entirely outside each other (“Apart”). Target t1 remains
constant always.

p, bcase, icase :: Target -> Target -> Bool
bcase t0 t1 = (apartT t0 t1) || (bwithinT t0 t1) || (equalT t0 t1)
icase t0 t1 = (crushedT t0 t1) || (dwithinT t0 t1)

((couldBeDAGT t0 t1) && (bcase t0 t1) ==> (p t0 t1))
&&

((couldBeDAGT t0 t1) && (icase t0 t1) &&
(all (\t -> p t t1) (deps t0)) ==> (p t0 t1))
==> ((couldBeDAGT t0 t1) ==> (p t0 t1))

Proof: Structural induction over target t0.
Base Case: t0==(Leaf n)

〈 allnames2 defn. 〉
(allnames2 t0) == []

⇒ 〈 From set properties S 6⊂ ∅, S ∩ ∅ = ∅ 〉
(not (dwithinT t0 t1)) && (not (crushedT t0 t1))

⇒ 〈 icase defn. 〉
not (icase t0 t1)

⇒ 〈 HL.2.12, and bcase,icase defn. 〉
(couldBeDAGT t0 t1) ==> (bcase t0 t1)

〈 Assuming the following.. 〉
(couldBeDAGT t0 t1) && (bcase t0 t1) ==> (p t0 t1)

〈 infer 〉
(couldBeDAGT t0 t1) ==> (p t0 t1)

Inductive Case: t0==(Target n m ts)

〈 Inductive hypothesis 〉
(all (\t -> (couldBeDAGT t t1) ==> (p t t1)) ts)

If (bcase t0 t1)

〈 Assuming the following.. 〉
(couldBeDAGT t0 t1) && (bcase t0 t1) ==> (p t0 t1)

〈 infer 〉
(couldBeDAGT t0 t1) ==> (p t0 t1)

Else-If (not (bcase t0 t1))

〈 HL.2.12, and bcase, icase defn. 〉
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(couldBeDAGT t0 t1) ==> (icase t0 t1)

〈 also, by HL.2.6, and couldBeDAGT defn. 〉
(couldBeDAGT t0 t1) ==> (all (\t -> couldBeDAGT t t1) (deps t0))
(couldBeDAGT t0 t1) ==> (all (\t -> couldBeDAGT t t1) ts)

〈 With inductive hypothesis: 〉
(couldBeDAGT t0 t1) ==> (all (\t -> p t t1) ts)

〈 Then, from the following.. 〉
(couldBeDAGT t0 t1) && (icase t0 t1) &&

(all (\t -> p t t1) (deps t0)) ==> (p t0 t1)

〈 infer 〉
(couldBeDAGT t0 t1) ==> (p t0 t1)

10.2 Semantic Monad Proofs

Overview

This section deals with proofs relating to the reasoning operators >=>, >-> and
>~>, and the special trace function. These are all used to reason about all
monadic actions (in Haskell), and is the corner-stone of most of the Haskell
related I/O reasoning.

• HL.3.1 shows how the three operators behave under the monadic return
action.

• HL.3.2.1 to HL.3.2.3 show how the three operators interact with the
monadic operator >>. These are often used to “dissect” an imperative
style function into its constituent parts.

• HL.3.3 to HL.3.6 give important properties of the trace function. In
this document, the trace function is used almost exclusively for reasoning
about the update deps function defined later on.

Monad definition

Our IO monad is defined in the following way (the structure being similar to
that of [Wad92]):

newtype IO a = IO (World -> (World, a))

instance Monad IO where
return v = retf
where retf = IO (\w -> (w,v))

(IO f1) >>= ac2 = IO bindf
where

bindf w =
let (w1,v) = (f1 w)

(IO f2) = (ac2 v)
in (f2 w1)
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Reasoning operators definition

The three reasoning operators are defined as follows. >=> returns the world,
and return value after executing an action on a world. The >-> operator just
returns the world. The >~> operator, on the other hand, only returns the value.

infix 1 >=>, >~>
infixl 1 >->

(>=>) :: World -> (IO a) -> (World, a)
w >=> (IO f) = (f w)

(>->) :: World -> (IO a) -> World
w >-> act = fst (w >=> act)

(>~>) :: World -> (IO a) -> a
w >~> act = snd (w >=> act)

Lemma HL.3.1

(w >=> return x) == (w,x)

Proof: Function expansion and substitution.

(w >=> return x)

= 〈 return defn. 〉
w >=> (IO (\w -> (w,x)))

= 〈 >=> defn. 〉
(w,x)

Corollaries:

(w >-> return x) == w
(w >~> return x) == x

Lemma HL.3.2.1

(w >=> (a1 >> a2)) == ((w >-> a1) >=> a2)

Proof: Function expansion and substitution.

let a1 = (IO f1)
a2 = (IO f2)

〈 LHS 〉
w >=> (a1 >> a2))

= 〈 >> defn. 〉
w >=> (a1 >>= \_ -> a2)
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= 〈 a1,a2 expansion. 〉
w >=> ((IO f1) >>= \_ -> (IO f2))

= 〈 >>= defn., in new IO monad. 〉
w >=> (IO (\w -> f2 (fst (f1 w))))

= 〈 >=> defn. 〉
f2 (fst (f1 w))

〈 RHS 〉
(w >-> a1) >=> a2

= 〈 >-> defn. 〉
(fst (w >=> a1)) >=> a2

= 〈 >=> defn. 〉
(fst (f1 w)) >=> (IO f2)

= 〈 >=> defn. 〉
f2 (fst (f1 w))

= LHS

Lemma HL.3.2.2

>> is an associative dual of >->. (This terminology is taken from [BW82]).

(w >-> (a1 >> a2)) == ((w >-> a1) >-> a2)

Proof: Function expansion and substitution.
〈 LHS 〉
(w >-> (a1 >> a2))
= 〈 >=> defn. 〉
fst (w >=> (a1 >> a2))
= 〈 Apply HL.3.2.1 〉
fst ((w >-> a1) >=> a2)
= 〈 >-> defn. 〉
(w >-> a1) >-> a2
= RHS

Lemma HL.3.2.3

(w >~> (a1 >> a2)) == ((w >-> a1) >~> a2)

Proof: Function expansion and substitution.
〈 LHS 〉
(w >~> (a1 >> a2))
= 〈 >=> defn. 〉
snd (w >=> (a1 >> a2))
= 〈 Apply HL.3.2.1 〉
snd ((w >-> a1) >=> a2)
= 〈>~> defn.〉
(w >-> a1) >~> a2
= RHS
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trace definition

The trace function takes an action and a list of parameters and applies the
action sequentially to the world with the specific parameters, returning a list
containing all intermediate worlds (including the first, and last).
It shares special properties with the mapM function in Haskell, as can been seen
in HL.3.4.2

-- run mapM on a world, and return all intermediate worlds.
trace :: (a -> IO b) -> [a] -> World -> [World]
trace a [] w = [w]
trace a (p:ps) w = (w : (trace a ps (w >-> a p)))

Lemma HL.3.3

(length (trace a ps w)) == (length ps)+1

Proof: Induction on list of parameters.
Base Case: ps = []

〈 LHS: 〉
(length (trace a ps w))

= 〈 Replace ps. 〉
(length (trace a [] w))

= 〈 trace defn. 〉
(length [w])

= 〈 length defn. 〉
(length []) + 1

= 〈 replacing ps. 〉
(length ps)+1

= RHS
Inductive Case: ps = (p1:ps1)

〈 Inductive hypothesis: 〉
(length (trace a ps1 w1)) == (length ps1)+1

〈 LHS 〉
(length (trace a ps w))

= 〈 trace definition. 〉
(length (w:(trace a ps1 (w >-> a p1))))

= 〈 letting w1 = w >-> a p1. 〉
(length (w:(trace a ps1 w1)))

= 〈 using inductive hypothesis, algebra 〉
(length ps1)+2

= 〈 relationship of ps to ps1. 〉
(length ps)+1

= RHS
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Lemma HL.3.4.1

(head (trace a ps w)) == w

Proof: Trivial. (Expansion of trace function.)

Lemma HL.3.4.2

(last (trace a ps w)) == w >-> (mapM a ps)

Proof: Induction on list of targets.
Base Case: ps = []

〈 LHS: 〉
(last (trace a ps w))

= 〈 replacing ps. 〉
(last (trace a [] w))

= 〈 trace, last defns. 〉
w

= 〈 mapM property 〉
w >-> (mapM a [])

= 〈 re-introducing ps. 〉
w >-> (mapM a ps)

= RHS
Inductive Case: ps = (p1:ps1)

〈 Inductive hypothesis: 〉
(last (trace a ps1 w1)) == (w1 >-> mapM a ps1)

〈 LHS 〉
(last (trace a ps w))

= 〈 trace defn. 〉
(last (w:(trace a ps1 (w >-> a p1))))

= 〈 letting w1 = w >-> a p1. 〉
(last (w:(trace a ps1 w1)))

= 〈 last semantics. 〉
(last (trace a ps1 w1))

= 〈 using inductive hypothesis. 〉
(w1 >-> mapM a ps1)

= 〈 replacing w1. 〉
(w >-> a p1) >-> (mapM a ps1)

= 〈 Using HL.3.2.2 〉
(w >-> ((a p1) >> (mapM a ps1)))

= 〈 Rewriting using do-notation. 〉
(w >-> do x <- a p1

xs <- mapM a ps1
return (x:xs))

= 〈 mapM defn. 〉
(w >-> mapM a (p1:ps1))

= 〈 replacing ps. 〉
(w >-> mapM a ps)

= RHS
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Lemma HL.3.5

(i >= 0) && (i <= length ps) ==>
(trace a ps w)!!i == w >-> mapM a (take i ps)

Proof:
Base Case: i=0

〈 LHS 〉
(trace a ps w)!!0

= 〈 !!, trace defn. 〉
w

= 〈 mapM 〉
w >-> mapM a []

= 〈 trace defn. 〉
w >-> mapM a (take 0 ps)

= RHS
〈 adding pre-condition 〉

(i >= 0) && (i <= length ps) ==>
((trace a ps w)!!i ==(w >-> mapM a (take i ps)))

Inductive Case: i=j

〈 Inductive hypothesis: 〉
((j-1) >= 0) && ((j-1) <= length ps) ==>
(trace a ps w)!!(j-1) == w >-> mapM a (take (j-1) ps)

〈 LHS 〉
(trace a ps w)!!j

= 〈 trace properties. (HL.3.6) 〉
(trace a ps w)!!(j-1) >-> a (ps!!(j-1))

= 〈 From inductive hypothesis, assuming local pre-condition 〉
(w >-> mapM a (take (j-1) ps)) >-> a (ps!!(j-1))

= 〈 HL.3.2.2 〉
w >-> ((mapM a (take (j-1) ps)) >> a (ps!!(j-1)))

= 〈 mapM defn. 〉
w >-> mapM a (take j ps)

= RHS
〈 adding pre-condition 〉

(i >= 0) && (i <= length ps) ==>
((trace a ps w)!!i ==(w >-> mapM a (take i ps)))
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Lemma HL.3.6

The only difference between two adjacent worlds in a list returned by trace is
the execution of one command.

(i >= 0) && (i < length ps) ==>
((trace a ps w)!!i >-> a (ps!!i))
==((trace a ps w)!!(i+1))

Proof: Induction over the value of i.
Base case: i==0

〈 Expanding trace, and one of its recursive calls 〉
(trace a (p1:p2:ps1) w) ==
(w : (w >-> a p1) : (trace a ps1 ((w >-> a p1) >-> a p2)))

⇒ 〈 therefore.. 〉
((trace a (p1:p2:ps1) w)!!0 == w) &&
((trace a (p1:p2:ps1) w)!!1 == (w >-> a p1)) &&
(ps!!0 == p1)

⇒ 〈 introducing i, and letting ps equal (p1:p2:ps1). 〉
(i >= 0) && (i < length ps) ==>
((trace a ps w)!!i >-> a (ps!!i))
==((trace a ps w)!!(i+1))

Inductive case: i==j

〈 Inductive hypothesis 〉
(j-1 >= 0) && (j-1 < length ps1) ==>
((trace a ps1 w)!!(j-1) >-> a (ps1!!(j-1)))
==((trace a ps1 w)!!j)

⇒ 〈 list properties 〉
((trace a (p1:ps1) w)!!j >-> a ((p1:ps1)!!j))
==((trace a (p1:ps1) w)!!(j+1))

⇒ 〈 Let ps = p1:ps1 〉
(j >= 0) && (j < length ps) ==>
((trace a ps w)!!j >-> a (ps!!j))
==((trace a ps w)!!(j+1))

⇒ 〈 Re-introducing i, and pre-conditions 〉
(i >= 0) && (i < length ps) ==>
((trace a ps w)!!i >-> a (ps!!i))
==((trace a ps w)!!(i+1))

10.3 Basic I/O Model Proofs

Overview

This section proves many simple properties associated with the I/O primitives
getFileTime and exec, and from them proves some simple properties of make.
The last lemma in this section states the important property that if make pre-
condition pre make is true when making a target, it will be true for all recursive
calls to make.
In this section:
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• The definitions of all the main I/O primitives are given.

• HL.4.1.1 and HL.4.1.2 state that getting a file modification time and
making a leaf-node target don’t change the world.

• HL.4.1.3 is an essential property of make. It shows that the resultant
world after make is equal to the resultant world after all the dependencies
have been made, with the added possibility that the top file may or may
not have been rebuilt.

• HL.4.2.1 shows that if no file in the file-system is newer than that of the
clock, then this will also be true after running exec on a file.

• HL.4.4 is the most important proof in this section, and the last. It shows
that if the pre make pre-condition holds when making a particular target,
then it will hold for all recursive calls as well.

Definition of World

In this case-study, the world contains two things – a clock time, and a file-
system. The file-system itself is just modelled as a mapping from names to
time-stamps.

type EpochTime = Integer
type Name = FilePath
type FS = [(Name,EpochTime)]
type World = (FS,EpochTime)

The two I/O primitives have the following type signatures:

getFileTime :: Name -> IO2 FileTime
exec :: Name -> Command -> IO2 ()

Firstly, the type Command is just a string:

type Command = String

In the case-study, it is important to notice the distinction between the types
EpochTime and FileTime. The former is simply a number. The latter, however,
can represent either an EpochTime or no time at all.

data FileTime = FileTime EpochTime | NoFileTime

On top of the actual data-type definition, equality and ordering is also defined
on FileTimes. With regard to ordering, NoFileTime < (FileTime k).

instance Eq FileTime where
NoFileTime == NoFileTime = True
NoFileTime == _ = False
_ == NoFileTime = False
(FileTime t) == (FileTime s) = (t==s)
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instance Ord FileTime where
compare NoFileTime NoFileTime = EQ
compare NoFileTime _ = LT
compare _ NoFileTime = GT
compare (FileTime t) (FileTime s) = (compare t s)

Definition of getFileTime I/O primitive

The FileTime data-type is the return type of the getFileTime action, which
is defined as:

-- given a file name, return its modification time
getFileTime :: Name -> IO2 FileTime
getFileTime fn = IO2 (\(f,k) -> ((f,k), (td f)))

where
td f = case (lookup fn f) of

Nothing -> NoFileTime
(Just t) -> FileTime t

In the case that the file doesn’t exist, it will return NoFileTime.

Lemma HL.4.1.1

Getting the time of a file does not change the world.

(w >-> getFileTime n) == w

Proof: Trivial

Definition of make

The make call, around which the entire case-study is based, is now defined as
follows:

-- make the target, and return the modification time of the
-- newest file of all recursive dependencies.
make :: Target -> IO2 FileTime

Firstly, leaf-nodes cannot be built as such. If they exist, their time-stamp is
returned. Otherwise, a run-time error occurs.

make (Leaf nm) = do
mtime <- getFileTime nm
if (mtime==NoFileTime)
then error ("can’t make "++nm++"!")
else return mtime
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When building a target with dependencies, all the dependencies are updated,
returning their respective time-stamps. If the modification time of the top file
n is older than any dependency then it is necessary to rebuilt the top file. If
not, it just returns.

make (Target nm cmd depends) = do
-- get modification times of this file
mtime <- getFileTime nm
-- build and get the times of all children
ctimes <- update_deps depends
-- if its older than the newest child, rebuild, and return time
if (mtime <= (newest ctimes))
then do

exec nm cmd -- execute the command
getFileTime nm -- return the update time of the file

else
return mtime -- just return mtime

The function newest just finds the maximum time-stamp from a list of FileTime.

-- given a list of times, find the newest
newest :: [FileTime] -> FileTime
newest times = foldl max NoFileTime times

The update deps function makes a list of dependencies, returning their time-
stamps. Quite often, throughout the proof, update deps and mapM make are
freely interchanged.

-- update all the targets, returning all their times
update_deps :: [Target] -> IO2 [FileTime]
update_deps = mapM make

Lemma HL.4.1.2

Making a leaf-node target does not change the world.

(w >-> make (Leaf n)) == w

Proof:
〈 Definition of make on leaf targets 〉
(w >-> make (Leaf n)) ==

(w >-> do {
mtime <- getFileTime n;
if (mtime==NoFileTime)

then error ("can’t make "++n++"!")
else return mtime})

⇒ 〈 case in which exception occurs is ignored (see section 9.2) 〉
(w >-> make (Leaf n)) ==

(w >-> do {
mtime <- getFileTime n;
return mtime})
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= 〈 rearranging, according to laws of do-notation 〉
(w >-> make (Leaf n)) ==

(w >-> getFileTime n)

⇒ 〈 HL.4.1.1 〉
(w >-> make (Leaf n)) == w

Lemma HL.4.1.3

The world that results from making a non-leaf target is either a world with all
dependencies made, or a world with all dependencies made and the top file n
rebuilt.

((w >-> make (Target n m ts)) ==
(w >-> do {mapM make ts;exec n m}))

|| ((w >-> make (Target n m ts)) ==
(w >-> mapM make ts))

Proof: Analysis of make body, using HL.4.1.1.

〈 make defn. 〉
(w >-> make (Target n m ts)) ==

(w >-> do {
mtime <- getFileTime n;
ctimes <- update_deps ts;
if (mtime <= (newest ctimes))

then do {
exec n m;
getFileTime n}

else return mtime})

= 〈 Using HL.4.1.1 on first command, and expanding update deps defn. 〉
(w >-> make (Target n m ts)) ==

(w >-> do {
ctimes <- mapM make ts;
if ((w >~> getFileTime n) <= (newest ctimes))

then do {exec n m;getFileTime n}
else return mtime})

⇒ 〈 Splitting, based on result of if comparison 〉
((w >-> make (Target n m ts)) ==

(w >-> do {
ctimes <- mapM make ts;
exec n m;
getFileTime n}))

|| ((w >-> make (Target n m ts)) ==
(w >-> do {

ctimes <- mapM make ts;
return (w >~> getFileTime n)}))

= 〈 Removing unused return variable ctimes 〉
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((w >-> make (Target n m ts)) ==
(w >-> do {

mapM make ts;
exec n m;
getFileTime n}))

|| ((w >-> make (Target n m ts)) ==
(w >-> do {

mapM make ts;
return (w >~> getFileTime n)}))

= 〈 Rearranging, using HL.3.2.2 〉
((w >-> make (Target n m ts)) ==

((w >-> do {
mapM make ts;
exec n m;}) >-> (getFileTime n)))

|| ((w >-> make (Target n m ts)) ==
((w >-> mapM make ts)

>-> (return (w >~> getFileTime n))))
= 〈 Using HL.4.1.1 in first equality, and HL.3.1 in second equality. 〉
((w >-> make (Target n m ts)) ==

(w >-> do {mapM make ts;exec n m}))
|| ((w >-> make (Target n m ts)) ==

(w >-> mapM make ts))

Lemma HL.4.1.4

The value returned when a leaf node is built is equal to the time-stamp of the
leaf node.

(w >~> make (Leaf n)) == (w >~> getFileTime n)

Proof: Very similar to HL.4.1.2.

Lemma HL.4.1.5

The value returned when a leaf node is built will never be NoFileTime.

(w >~> make (Leaf n)) /= NoFileTime

Proof: Trivial

Definition of exec I/O primitive

The exec I/O action is really just “touch”, and the command is ignored alto-
gether in the semantic model (for reasons described in section 5). The clock
time is incremented, and the time-stamp associated with the file nm is changed
to be the value of that new clock time.

-- logically execute command ’cmd’.
exec :: Name -> Command -> IO2 ()
exec nm cmd = IO2 (\(f,k) -> ((override nm (k+1) f, k+1),()))
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Definition of clock newer

If the following predicate is true then no file in the file-system is newer than
the value of the clock. It also states that the clock-value is non-negative. The
clock newer predicate is half of the pre make pre-condition used later.

-- is every file in the filesystem no newer than the clock?
-- (clock-time is forced to be non-negative)
clock_newer :: World -> Bool
clock_newer (p,k) = (k >= (foldl max 0 (map snd p)))

Lemma HL.4.2.1

Presuming the clock-time in a world is as new as any file before rebuilding a
file, then it will be as new afterwards.

(clock_newer w) ==> (clock_newer (w >-> exec n m))

Proof: Examination of exec function.
〈 assuming pre-condition 〉
(clock_newer w)
= 〈 letting (f,k) = w. 〉
(clock_newer (f,k))
= 〈 expanding definition: 〉
(k >= (foldl max 0 (map snd f)))
⇒ 〈 override, max properties 〉
((k+1) == (foldl max 0 (map snd (override n (k+1) f))))
⇒ 〈 weakening the equality into an inequality 〉
(k+1) >= (foldl max 0 (map snd (override n (k+1) f)))
= 〈 clock newer defn. 〉
(clock_newer ((override n (k+1) f), k+1))
= 〈 exec defn. 〉
(clock_newer ((f,k) >-> exec n m))
〈 Reinstating w and adding pre-condition 〉
(clock_newer w) ==> (clock_newer (w >-> exec n m))

Lemma HL.4.3.1

If the clock is as new as every file in the world before making a target, the clock
will continue to be as new as every file afterwards.

(clock_newer w) ==> (clock_newer (w >-> make t))

Proof: Induction on structure of target t. In the inductive case, all the im-
plications of the recursive make-calls are chained together, to show that the
clock newer property holds after the recursive calls. Finally, using HL.4.2.1,
it is shown that the possible execution of an exec in the make body will not
affect the clock newer property.
Base case: t=(Leaf n)

〈 Assume pre-condition 〉
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(clock_newer w)
⇒ 〈 adding HL.4.1.2 〉

(clock_newer w) && ((w >-> make (Leaf n)) == w)
⇒ 〈 substitution 〉

(clock_newer (w >-> make (Leaf n)))
〈 add pre-condition and reinstate t 〉

(clock_newer w) ==> (clock_newer (w >-> make t))
Inductive case: t=(Target n m ts)

〈 Inductive hypothesis 〉
all (\t1 -> FORALL w1:
(clock_newer w1) ==> (clock_newer (w1 >-> make t1)))

ts
⇒ 〈 Instantiating w1 〉

all (\(t1,w1) ->
(clock_newer w1) ==> (clock_newer (w1 >-> make t1)))

(zip ts (trace make ts w))
⇒ 〈 Letting ws = trace make ts w 〉

all (\(t1,w1) ->
(clock_newer w1) ==> (clock_newer (w1 >-> make t1)))

(zip ts ws)
= 〈 rearranging according to trace properties 〉

all (\(w1,w2) ->
(clock_newer w1) ==> (clock_newer w2))

(zip ws (tail ws))
⇒ 〈 adding pre-condition 〉

(clock_newer w) &&
(all (\(w1,w2) ->

(clock_newer w1) ==> (clock_newer w2))
(zip ws (tail ws)))

= 〈 rewriting w 〉
(clock_newer (head ws)) &&
(all (\(w1,w2) ->

(clock_newer w1) ==> (clock_newer w2))
(zip ws (tail ws)))

⇒ 〈 chaining the implications 〉
(clock_newer (last ws))

= 〈 HL.3.4.2 〉
(clock_newer (w >-> mapM make ts))

⇒ 〈 from HL.4.2.1 〉
(clock_newer (w >-> mapM make ts)) &&
(clock_newer (w >-> do {mapM make ts;exec n m}))

⇒ 〈 adding HL.4.1.3 〉
(clock_newer (w >-> mapM make ts)) &&
(clock_newer (w >-> do {mapM make ts;exec n m}))
&&
(((w >-> make t) ==

(w >-> do {mapM make ts;exec n m}))
|| ((w >-> make t)==(w >-> mapM make ts)))

⇒ 〈 substitution 〉
(clock_newer (w >-> make t))

〈 add pre-condition 〉
(clock_newer w) ==> (clock_newer (w >-> make t))
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Lemma HL.4.3.2

If the clock newer predicate is true before making a sequence of targets, then
it will be true afterwards, and true for all intermediate worlds.

(clock_newer w) ==> (all clock_newer (trace make ts w))

Proof: Induction on the list of targets. In the inductive case, the most recent
clock newer fact is extracted from the list, and is used (via HL.4.3.1) to prove
the next one.
〈 The following stronger fact is proven: 〉
((clock_newer w) && (i>0) && (i <= (length ts)+1))

==> (all clock_newer (take i (trace make ts w)))

Base Case: i==1

〈 assuming one clock newer pre-condition 〉
(clock_newer w)

⇒ 〈 HL.3.4.1 〉
clock_newer (head (trace make ts w))

= 〈 take, all properties 〉
all clock_newer (take 1 (trace make ts w))

〈 adding pre-conditions, and introducing i. 〉
((clock_newer w) && (i>0) && (i <= (length ts)+1))
==> (all clock_newer (take i (trace make ts w)))

Inductive Case: i==j

〈 inductive hypothesis 〉
((clock_newer w) && ((j-1) > 0) && ((j-1) <= (length ts)+1))
==> (all clock_newer (take (j-1) (trace make ts w)))

⇒ 〈 Since local pre-conditions supersede the pre-conditions in inductive hy-
pothesis (j is at least 2, and at most (length ts)+1), the following is true. 〉

(all clock_newer (take (j-1) (trace make ts w)))

= 〈 Letting w = trace make ts w 〉
(all clock_newer (take (j-1) ws))

⇒ 〈 extracting a specific clock newer fact 〉
(all clock_newer (take (j-1) ws)) &&
(clock_newer (ws!!(j-2)))

⇒ 〈 using HL.4.3.1 〉
(all clock_newer (take (j-1) ws)) &&
(clock_newer (ws!!(j-2) >-> make (ts!!(j-1))))

⇒ 〈 and, adding trace property HL.3.6 〉
(all clock_newer (take (j-1) ws)) &&
(clock_newer (ws!!(j-2) >-> make (ts!!(j-1)))) &&
(((ws!!(j-2)) >-> make ts!!(j-2))==ws!!(j-1))

⇒ 〈 substitution 〉
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(all clock_newer (take (j-1) ws)) &&
(clock_newer (ws!!(j-1)))

= 〈 rearranging 〉
(all clock_newer (take j ws))

⇒ 〈 adding pre-condition and re-instating i 〉
((clock_newer w) && (i>0) && (i <= length ts))
==> (all clock_newer (take i (trace make ts w)))

End of Inductive Proof

〈 Let i = (length ts+1) 〉
((clock_newer w) &&
((length ts)+1 > 0) && ((length ts)+1 <= (length ts)+1))
==> (all clock_newer (take ((length ts)+1) (trace make ts w)))

⇒ 〈 rewriting 〉
((clock_newer w) ==>
(all clock_newer (trace make ts w)))

Definition of pre make

For almost all lemmas associated with properties of make from now on, it will
first be necessary for pre make to be true. The predicate says two things: Firstly,
in the world, no file is newer than the current value of the clock. Secondly, the
target being made is a DAG-Tree.

-- Make’s pre-condition
pre_make :: Target -> World -> Bool
pre_make t w = (clock_newer w) && (isDAGT t)

Lemma HL.4.4

If pre-make is true when calling make on a target, it guarantees that it will also
be true for all recursive make calls.

let t = (Target n m ts)
ws = trace make ts w

in (pre_make t w) ==>
all (\(t1,w1) -> pre_make t1 w1) (zip ts ws)

Proof: A combination of HL.2.2 and HL.4.3.2. HL.4.3.2 states that clock newer
holds for all recursive make calls. HL.2.2 states that if t is a DAG-Tree, all
its immediate dependencies are also DAG-Trees. The conjunction of this is
clock newer.
〈 Assume pre-condition holds. 〉
(pre_make t w)

⇒ 〈 expanding pre make defn. 〉
(clock_newer w) && (isDAGT t)

⇒ 〈 using HL.4.3.2 and HL.2.2 on the left and right-hand-side expressions
respectively 〉
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(all clock_newer ws) && (all isDAGT ts)

⇒ 〈 merge 〉
all (\(t1,w1) -> (clock_newer w1) && (isDAGT t1)) (zip ts ws)

= 〈 pre make defn. 〉
all (\(t1,w1) -> pre_make t1 w1) (zip ts ws)

= 〈 add pre-condition 〉
(pre_make t w) ==>

all (\(t1,w1) -> pre_make t1 w1) (zip ts ws)

10.4 General File-System Proofs

Overview

Most of the proofs in this section relate to simple high-level ways make interacts
with files in the file-system, generally touching the complexities of DAG-Trees
as little as possible at this early stage.
The most important parts are as follows:

• The introduction and use of the filesSame predicate for reasoning about
how a program alters the file-system.

• Theorem H.1 shows that if the name of a file doesn’t appear anywhere in
a target, then that file won’t have been touched after the target is rebuilt.

• Theorem H.2 is a general property of exec and getFileTime, showing
that after running exec, the file touched is newer than any other file in
the file-system.

• HL.5.5 is a small but important lemma, which states that the value re-
turned from make is always equal to the resultant time-stamp of the file
just built.

• Theorem H.3 is a powerful statement about how files are affected by make.
Either a file isn’t touched at all, or it is newer than the clock-time before
make was called.

Definition of filesSame

The fileSame predicate is quite simple. It states that for all the files in ns
they’re time-stamps are the same in w1 as they are in w2.

-- are files ’ns’ the same in two different worlds?
filesSame :: [Name] -> World -> World -> Bool
filesSame ns w1 w2 = all fileSame ns

where
fileSame n = (w1 >~> getFileTime n)==(w2 >~> getFileTime n)
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Lemma HL.5.1

The predicate stating whether the modification times of a particular set of
filenames differ between two worlds defines an equivalence relation on all worlds.
Symmetric

(filesSame ns w1 w2) == (filesSame ns w2 w1)

Reflexive

(filesSame ns w1 w1)

Transitive

((filesSame ns w1 w2) && (filesSame ns w2 w3)) ==> (filesSame ns w1 w3)

Proof: All trivial.

Lemma HL.5.2

If the files ns1 don’t change between two particular worlds, and the same is true
of files ns2, then the union of ns1 and ns2 won’t change between those worlds.

(filesSame ns1 w1 w2) && (filesSame ns2 w1 w2) ==>
(filesSame (ns1++ns2) w1 w2)

Proof: Easy. The filesSame function is defined as the conjunction of statements
about individual files, and (and (b1++b2)) == ((and b1) && (and b2)).

Lemma HL.5.3

If a file n is not a member of the set of all filenames in target t, then its
modification time will not change when t is being made.

(pre_make t w) && (n ‘notElem‘ (allnames t)) ==>
(filesSame [n] w (w >-> make t))

Proof: Structural induction on target t. The base case is easy. In the inductive
case, it is necessary to show (using the inductive hypothesis, and the transitivity
of the filesSame [n] relation (HL.5.1)) that the recursive make calls do not
change n. Finally, in the case that an exec occurs, we can show using the
pre-condition that the top file of t, (name t), is not equal to n.
Base Case: t = (Leaf n1)

〈 HL.4.1.2 〉
(w >-> make (Leaf n1)) == w

⇒ 〈 HL.5.1 (reflexivity of filesSame [n]) 〉
(filesSame [n] w (w >-> make (Leaf n1)))

⇒ 〈 adding pre-condition 〉
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(pre_make t w) && (n ‘notElem‘ (allnames t)) ==>
(filesSame [n] w (w >-> make t))

Inductive Case: t = (Target n1 m ts)

〈 Inductive hypothesis 〉
(all (\t1 -> FORALL w1: (pre_make t1 w1) && (n ‘notElem‘ (allnames t1))
==> (filesSame [n] w1 (w1 >-> make t1))) ts)

⇒ 〈 Firstly, let ws = trace make ts w. Then, instantiating all w1 in the
inductive hypothesis 〉

all (\(t1,w1) -> (pre_make t1 w1) &&
(n ‘notElem‘ (allnames t1))

==> (filesSame [n] w1 (w1 >-> make t1))) (zip ts ws)

⇒ 〈 Assuming local pre make pre-condition, and using HL.4.4 〉
all (\(t1,w1) -> (n ‘notElem‘ (allnames t1))

==> (filesSame [n] w1 (w1 >-> make t1))) (zip ts ws)

⇒ 〈 Also, since ((allnames t1) ‘subset‘ (allnames t)), assuming the sec-
ond local pre-condition yields: 〉

all (\(t1,w1) -> (filesSame [n] w1 (w1 >-> make t1)))
(zip ts ws)

= 〈 rewriting 〉
all (\(w1,w2) -> filesSame [n] w1 w2)) (zip ws (tail ws))

⇒ 〈 Since filesSame is an equivalence relation (HL.5.1), and fst (ws!!i)
== snd (ws!!(i-1)): 〉

(filesSame [n] w (last ws))

= 〈 HL.3.4.2 〉
(filesSame [n] w (w >-> update_deps ts))

⇒ 〈 Adding make defn., from HL.4.1.3 〉
((w >-> make (Target n m ts)) ==
(w >-> do {mapM make ts;exec n m})

|| ((w >-> make (Target n m ts)) ==
(w >-> mapM make ts)))

&& (filesSame [n] w (w >-> mapM make ts))

If exec occurs:

〈 removing other expression 〉
(w >-> make t) ==

(w >-> do {mapM make ts;exec n1 m})
&& (filesSame [n] w (w >-> mapM make ts))

⇒ 〈 and, since from initial filesSame pre-condition, n/=n1 〉
(w >-> make t) ==

(w >-> do {mapM make ts;exec n1 m})
&& (filesSame [n] w (w >-> mapM make ts))
&& (filesSame [n] (w >-> mapM make ts)

(w >-> do {mapM make ts;exec n1 m}))

⇒ 〈 substitution 〉
(filesSame [n] w (w >-> make t))
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If no exec occurs:

〈 removing other expression 〉
(w >-> make t) == (w >-> mapM make ts)
&& (filesSame [n] w (w >-> mapM make ts))

⇒ 〈 substitution 〉
(filesSame [n] (w >-> make t))

End-If

〈 Adding assumed pre-conditions 〉
(pre_make t w) && (n ‘notElem‘ (allnames t)) ==>
(filesSame [n] w (w >-> make t))

Theorem H.1

If no file in a set of files ns is a member of the set of all filenames in target t,
then the modification times of the files ns will not have changed after making
t.

(pre_make t w) && (ns ‘disjoint‘ (allnames t))
==> (filesSame ns w (w >-> make t))

Proof: A direct consequence of HL.5.3. Lemma HL.5.2 is applied directly –
any list of files can be represented as the concatenation of a number of one-
element lists.

Lemma HL.5.4

A non-constructive definition of the clock_newer pre-condition.

(clock_newer (f,k)) ==> ((f,k) >~> getFileTime n) <= (FileTime k)

Proof: Relatively straight-forward. The clock newer pre-condition states a fact
about all files – this lemma takes an arbitrary file n and removes any information
stated about other files.
Case: (lookup n f) == Nothing

〈 getFileTime defn. 〉
((f,k) >~> getFileTime n) ==
(case (lookup n f) of

Nothing -> NoFileTime
(Just t) -> FileTime t)

= 〈 rewriting 〉
((f,k) >~> getFileTime n) == NoFileTime

⇒ 〈 defn. of < on FileTimes. 〉
((f,k) >~> getFileTime n) < (FileTime _)

⇒ 〈 instantiating 〉
((f,k) >~> getFileTime n) < (FileTime k)
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⇒ 〈 adding pre-condition 〉
(clock_newer (f,k)) ==>
((f,k) >~> getFileTime n) <= (FileTime k)

Case: (lookup n f) == (Just k1)

〈 assume (clock newer (f,k)). 〉
(clock_newer (f,k)) && (lookup n f)==(Just k1)

= 〈 clock newer defn. 〉
(k >= (foldl max 0 (map snd f))) && (lookup n f)==(Just k1)

⇒ 〈 Using max and lookup defns. 〉
(k >= k1) && (lookup n f)==(Just k1)

⇒ 〈 getFileTime defn. 〉
(k >= k1) && ((f,k) >~> getFileTime n)==(FileTime k1)

⇒ 〈 FileTime comparison 〉
((f,k) >~> getFileTime n) <= (FileTime k)

〈 adding pre-condition. 〉
(clock_newer (f,k)) ==>
((f,k) >~> getFileTime n) <= (FileTime k)

Theorem H.2

Directly after “executing” (or touching) a file, that file will be newer than any
other file in the filesystem.

(clock_newer w) && (n/=n1) ==>
((w >~> do {exec n m; getFileTime n}) >
(w >~> do {exec n m; getFileTime n1}))

Proof: Using HL.5.4, and properties of exec, it can be shown that the time-
stamp of n1 afterwards is less than or equal to the value of the clock beforehand.
Also, again from properties of exec, the timestamp of n is greater than the value
of the clock beforehand. Therefore the n’s time-stamp is greater than that of
n1.

let (f,k) = w

〈 assuming pre-condition 〉
(clock_newer w) && (n/=n1)

⇒ 〈 using HL.5.4 〉
(w >~> getFileTime n1)<=(FileTime k) && (n/=n1)

⇒ 〈 exec properties, since n/=n1 〉
(w >~> getFileTime n1)<=(FileTime k) &&
(filesSame [n1] w (w >-> exec n m))

= 〈 filesSame defn. 〉
(w >~> getFileTime n1)<=(FileTime k) &&
(w >~> getFileTime n1) == (w >-> (exec n m)) >~> getFileTime n1
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⇒ 〈 equality 〉
(((w >-> exec n m) >~> getFileTime n1)
<= (FileTime (snd w))

= 〈 Let w1 = (w >-> exec n m) 〉
(w1 >~> getFileTime n1) <= (FileTime k)

⇒ 〈 exec property 〉
((w1 >~> getFileTime n1) <= (FileTime k))
&& (FileTime ((snd w1)-1))==(FileTime k)
&& (w1 >~> getFileTime n)==(FileTime (snd w1))

⇒ 〈 equality 〉
((w1 >~> getFileTime n1) <= (FileTime ((snd w1)-1)))
&& (w1 >~> getFileTime n)==(FileTime (snd w1))

⇒ 〈 algebra 〉
((w1 >~> getFileTime n1) < (FileTime (snd w1)))
&& (w1 >~> getFileTime n)==(FileTime (snd w1))

⇒ 〈 equality 〉
((w1 >~> getFileTime n1) < (w1 >~> getFileTime n))

= 〈 rewriting w1 〉
(((w >-> exec n m) >~> getFileTime n1) <
((w >-> exec n m) >~> getFileTime n))

= 〈 using HL.3.2.3 〉
((w >~> do {exec n m; getFileTime n1}) <
(w >~> do {exec n m; getFileTime n}))

〈 adding pre-condition 〉
(clock_newer w) (n/=n1) ==>

((w >~> do {exec n m; getFileTime n}) >
(w >~> do {exec n m; getFileTime n1}))

Lemma HL.5.5

The time-stamp returned after making t is always equal to the resultant modi-
fication time of t’s root filename.

(pre_make t w) ==>
(w >~> do {make t;getFileTime (name t)}) == (w >~> make t)

Proof: Case analysis on target. The leaf case is easy. In the non-leaf case,
case-analysis is performed on the if expression. If the exec takes place, then it
is obvious from exec and return semantics that the two values are the same. If
not, it must be shown that the value mtime in the make body is still the correct
time associated with top file after all the sub-targets are made. Since this is the
value eventually returned, it will represent the actual time of the file n.
Leaf case: t = (Leaf n)

〈 HL.4.1.4 〉
(w >~> make (Leaf n)) == (w >~> getFileTime n)
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⇒ 〈 therefore, because getFileTime does not change the world (HL.4.1.1): 〉
(w >~> do {make t;getFileTime (name t)})==(w >~> make t)

〈 and, adding pre-condition: 〉
(pre_make t w) ==>
(w >~> do {make t;getFileTime (name t)}) == (w >~> make t)

Non-Leaf case: t = (Target n m ts)

〈 make defn. 〉
(w >=> make t) ==
(w >=> do {

mtime <- getFileTime n;
ctimes <- update_deps ts;
if (mtime <= newest ctimes)

then do {exec n m; getFileTime n}
else return mtime})

= 〈 since getFileTime is idempotent (HL.4.1.1): 〉
(w >=> make t) ==
(w >=> do {

ctimes <- update_deps ts;
if ((w >~> getFileTime n) <= newest ctimes)

then do {exec n m; getFileTime n}
else return (w >~> getFileTime n)})

= 〈 monad laws, and HL.3.2.1 〉
(w >=> make t) ==
((w >-> update_deps ts) >=> do {

if ((w >~> getFileTime n) <=
newest (w >~> update_deps ts))

then do {exec n m; getFileTime n}
else return (w >~> getFileTime n)})

If (mtime <= newest ctimes):
(w >=> make t) ==

((w >-> update_deps ts) >=>
do {exec n m; getFileTime n})

= 〈 HL.3.2.1 〉
(w >=> make t) ==

(w >=> do {
update_deps ts;
exec n m; getFileTime n})

⇒ 〈 because getFileTime is an idempotent action (HL.4.1.1) 〉
(w >~> make t) == ((w >=> make t) >~> getFileTime n)

= 〈 HL.3.2.3 〉
(w >~> make t) == (w >~> do {make t; getFileTime (name t)})

If (mtime > newest ctimes):
(w >=> make t) ==

((w >-> update_deps ts) >=>
return (w >~> getFileTime n))

⇒ 〈 because t is a DAG-Tree, using HL.2.8.1 〉
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(w >=> make t) ==
((w >-> mapM make ts) >=>

return (w >~> getFileTime n))
&& all (\t1 -> n ‘notElem‘ (allnames t1)) ts

⇒ 〈 HL.5.3, applied to all recursive makes: 〉
(w >=> make t) ==

((w >-> mapM make ts) >=>
return (w >~> getFileTime n))

&& all (\(w1,w2) -> filesSame [n] w1 w2)
(zip (trace make ts w)

(tail (trace make ts w)))

⇒ 〈 HL.5.1, HL.3.4.2 〉
(w >=> make t) ==

((w >-> mapM make ts) >=>
return (w >~> getFileTime n))

&& (filesSame [n] w (w >-> mapM make ts))

⇒ 〈 filesSame defn. 〉
(w >=> make t) ==

((w >-> mapM make ts) >~> getFileTime n)

⇒ 〈 since getFileTime is idempotent (HL.4.1.1) 〉
(w >~> make t) == (w >~> do {make t; getFileTime (name t)})

End-If

〈 .. and adding pre-condition: 〉
(pre_make t w) ==>
(w >~> do {make t; getFileTime (name t);}) == (w >~> make t)

Lemma HL.5.6

After calling make, files only get newer or don’t change - they don’t get older.

(pre_make t w) ==>
(w >~> getFileTime n) <=
(w >~> do {make t w; getFileTime n})

Proof: Induction on target.

Lemma HL.5.7

After running make, the clock only gets newer or stays the same.

(pre_make t w) ==> (snd w)<=(snd (w >-> make t))

Proof: Induction on target.
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Theorem H.3

After running make, either the modification time of a file hasn’t changed, or it
is greater than the clock-time before running make.

(pre_make t w) ==>
let k = w >~> do {make t; getFileTime n}
in (k == w >~> getFileTime n) || (k > (FileTime (snd w)))

Proof:
Induction on the target structure. The base case is straight-forward.
The inductive case first deals with the inductive hypothesis, then case analysis
is performed on whether the arbitrary file n is or is not touched by recursive
make calls. If it is, it can be shown with HL.5.6 and HL.5.7 that will be newer
than the clock before running make. If it isn’t, then it hasn’t changed. The
disjuntion of these two possibilities yields the first part of the proof.
After making the sub-targets, it’s possible an exec will have taken place. If it
has, then once again, either n will stay the same or it’s value will be greater
than that of the clock before running make.
Base Case: t = (Leaf n1)

〈 HL.4.1.2 〉
(w >-> make (Leaf n1)) == w

⇒ 〈 function application 〉
((w >-> make t) >~> getFileTime n) == (w >~> getFileTime n)

= 〈 HL.3.2.1 〉
(w >~> do {make t; getFileTime n}) == (w >~> getFileTime n)

⇒ 〈 using conjunction, and adding pre-condition: 〉
(pre_make t w) ==>

let k = w >~> do {make t; getFileTime n}
in (k == w >~> getFileTime n) || (k > (FileTime (snd w)))

Inductive Case: t = (Target n1 m1 ts)

〈 Inductive hypothesis: 〉
all (\t1 -> FORALL w1: (pre_make t1 w1) ==>
let k1 = w1 >~> do {make t1; getFileTime n}
in (k1 == w1 >~> getFileTime n) || (k1 > (FileTime (snd w1)))

) ts

⇒ 〈 Letting ws = trace make ts w, 〉
all (\(t1,w1) -> (pre_make t1 w1) ==>
let k1 = w1 >~> do {make t1; getFileTime n}
in (k1 == w1 >~> getFileTime n) || (k1 > (FileTime (snd w1)))

) (zip ts ws)

⇒ 〈 Assuming (pre make t w) pre-condition, and using HL.4.4: 〉
all (\(t1,w1) ->
let k1 = w1 >~> do {make t1; getFileTime n}
in (k1 == w1 >~> getFileTime n) || (k1 > (FileTime (snd w1)))

) (zip ts ws)
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= 〈 Or, alternatively, using HL.3.6 〉
all (\(t1,w1,w2) -> (w2 >~> getFileTime n)==(w1 >~> getFileTime n)
|| (w2 >~> getFileTime n)>(FileTime (snd w1))

) (zip3 ts ws (tail ws))

If file n is touched:

〈 Let i be a number such that making target ts!!i causes the modification
time of file n to be changed. Using the inductive hypothesis, this means, firstly,
that: 〉

(ws!!(i+1) >~> getFileTime n)>(FileTime (snd (ws!!i)))

〈 Secondly, using HL.5.7, we can show: 〉
all (\(w1,w2) ->

(FileTime (snd w1)) <= (FileTime (snd w2))
) (take (i-1) (zip ws (tail ws)))

⇒ 〈 algebra 〉
(FileTime (snd (ws!!i))) >= (FileTime (snd w))

〈 Thirdly, applying HL.5.6 (and HL.4.4): 〉
all (\(w1,w2) ->

(w1 >~> getFileTime n) <= (w2 >~> getFileTime n))
) (drop (i+1) (zip ws (tail ws)))

⇒ 〈 using algebra 〉
(ws!!(i+1) >~> getFileTime n) <= ((last ws) >~> getFileTime n)

〈 So, using the following three proven facts: 〉
(FileTime (snd (ws!!i))) >= (FileTime (snd w))
(ws!!(i+1) >~> getFileTime n)>(FileTime (snd (ws!!i)))
(ws!!(i+1) >~> getFileTime n) <= ((last ws) >~> getFileTime n)

〈 infer 〉
((last ws) >~> getFileTime n) > (FileTime (snd w))

= 〈 HL.3.4.2, update deps defn. 〉
((w >-> update_deps ts) >~> getFileTime n) > (FileTime (snd w))

If file n is not touched:

〈 No number i exists, as in the previous section, so the modification time never
changes. 〉

all (\(w1,w2) ->
(w1 >~> getFileTime n) == (w2 >~> getFileTime n)

) (zip ws (tail ws))

⇒ 〈 equality 〉
((head ws) >~> getFileTime n) ==

((last ws) >~> getFileTime n)

= 〈 HL.3.4.1, HL.3.4.2 〉
(w >~> getFileTime n)==

((w >-> update_deps ts) >~> getFileTime n)

If-lifting, this yields
let w’ = (w >-> update_deps ts)
in (w’ >~> getFileTime n) > (FileTime (snd w))

|| (w >~> getFileTime n)==(w’ >~> getFileTime n)
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〈 After running update deps, the file n1 may or may not be touched: 〉
If n1 is not touched:

w’ == (w >-> make t)

⇒ 〈 rearranging 〉
let k = w >~> do {make t; getFileTime n}
in (k == w >~> getFileTime n) || (k > (FileTime (snd w)))

If n1 is touched, but n1/=n:

filesSame [n] w’ (w >-> make t)

= 〈 filesSame defn. 〉
(w’ >~> getFileTime n) == ((w >-> make t) >~> getFileTime n)

⇒ 〈 rearranging: 〉
let k = w >~> do {make t; getFileTime n}
in (k == w >~> getFileTime n) || (k > (FileTime (snd w)))

If n1 is touched, and n1==n:

(w >-> make t) == (w’ >-> exec n1 m1)

⇒ 〈 exec defn. 〉
((w >-> make t) >~> getFileTime n)==

(FileTime (snd (w >-> make t)))
&& (FileTime (snd (w >-> make t))) > (FileTime (snd w’))

〈 And, using the following previously proven fact: 〉
(FileTime (snd w’)) <= (FileTime (snd w))

〈 infer 〉
((w >-> make t) >~> getFileTime n) > (FileTime (snd w))

⇒ 〈 adding disjunction and rearranging 〉
let k = w >~> do {make t; getFileTime n}
in (k == w >~> getFileTime n) || (k > (FileTime (snd w)))

If-Lifting, and adding pre-condition:

(pre_make t w) ==>
let k = w >~> do {make t; getFileTime n}
in (k == w >~> getFileTime n) || (k > (FileTime (snd w)))

10.5 Make “newest dep” Proofs

Overview

This section introduces the newest dep function, and then proceeds to prove
that after make is called, the time-stamp associated with the top file in a target
is always newer than all the files anywhere else in the tree (Theorem H.4).
The proof of Theorem H.4 is huge – lemmas HL.6.3.1, HL.6.3.2 and HL.6.4,
all large and cumbersome, are required to bootstrap the inductive proof of
Theorem H.4.
Apart from that main proof (which is the longest and most difficult in the
document), there is little else of interest in this section.
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Definition of newest dep

The newest dep function returns the newest time associated with every depen-
dency of a target (excluding the target itself).

-- get the newest time of the *dependencies* of the target.
newest_dep :: World -> Target -> FileTime
newest_dep w t =

newest (map (\n -> w >~> getFileTime n) (allnames2 t))

Lemma HL.6.1

A useful fact about newest_dep.

(newest_dep t w) ==
(newest (map (\t1 -> newest
[w >~> getFileTime (name t1), newest_dep t1 w]) (deps t)))

Proof: Function expansion and substitution.

Lemma HL.6.2

If, after making a target, the head file is newer than all sub-targets, and that
same head-file was never touched at all, then none of the files associated with
the sub-targets will have been touched either.

let w1 = w >-> make t
in

(pre_make t w) && (filesSame [name t] w w1)
&& (w1 >~> getFileTime (name t)) > (newest_dep t w1)
==> (filesSame (allnames t) w w1)

Proof: The top file after running make must not be greater than the value of the
clock before running make, from the clock newer pre-condition in pre make.
H.3 states that all the files in the target after running make either haven’t
changed, or are greater than the clock before running make. However, the
latter is impossible, since the top file is newer than all the other files in the
target. Therefore, no files in the target can have changed.
〈 First, the filesSame pre-condition states the following. (1) 〉
(w >~> getFileTime (name t)) == (w1 >~> getFileTime (name t))

〈 Secondly, the clock newer pre-condition implies 〉
(clock_newer w)

⇒ 〈 HL.5.4. (2) 〉
(w >~> getFileTime (name t)) <= (FileTime (snd w))

〈 Thirdly, the third pre-condition is.. 〉
(w1 >~> getFileTime (name t)) > (newest_dep t w1)

= 〈 newest dep defn. 〉
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w1 >~> getFileTime (name t)) >
(newest [w1 >~> getFileTime n | n <- allnames2 t])

= 〈 rearranging according to newest properties. (3) 〉
all (\n -> (w1 >~> getFileTime (name t)) >

(w1 >~> getFileTime n)) (allnames2 t)

〈 Merging (1), (2) and (3). 〉
all (\n -> (FileTime (snd w)) > (w1 >~> getFileTime n))

(allnames2 t)

⇒ 〈 H.3 〉
all (\n -> (w >~> getFileTime n)) > (w1 >~> getFileTime n))

(allnames2 t)

= 〈 filesSame defn. 〉
(filesSame (allnames2 t) w w1)

⇒ 〈 and, since (name t) doesn’t change either, 〉
(filesSame (allnames t) w w1)

Lemma HL.6.3.1

At any stage during the making of a sequence of sub-targets, the value of the
newest time-stamp returned from the making of all preceding targets is equal to
the newest of the time-stamps of the top files in each of the preceding targets.
(Assuming that after running make, the time returned is newer than the time-
stamp of all the target’s dependencies.)

let t = (Target n m ts)
ks = w >~> mapM make ts
ws = trace make ts w

in
(pre_make t w) && (i >= 0) && (i <= length ts)

&& (all (\(t1,w1,k1) -> k1 > newest_dep t1 w1)
(take i (zip3 ts (tail ws) ks)))

==> (newest (take i ks))==(newest [(ws!!i) >~>
getFileTime (name t1) | t1 <- (take i ts)])

Proof: Induction on list of sub-targets. The base case is quite simple. The
inductive case requires the use of algebraic properties of max to split a single
newest expression into a “nested” newest expression. Each individual inner
expression is then converted to a simpler form, and then the nested expression
is folded down to a single non-nested one. The conversion that takes place
internally is somewhat technical, but it is logically sound.
Base case:i==0

〈 newest defn. 〉
(newest []) == NoFileTime

⇒ 〈 trivial equality 〉
(newest []) == (newest [])

⇒ 〈 introducing values for two []s. 〉
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(newest (take 0 ks))==(newest [(ws!!0) >~>
getFileTime (name t1) | t1 <- (take 0 ts)])

⇒ 〈 adding pre-conditions 〉
(pre_make t w) && (i >= 0) && (i <= length ts)

&& (all (\(t1,w1,k1) -> k1 > newest_dep t1 w1)
(take i (zip3 ts (tail ws) ks)))

==>
(newest (take i ks))==(newest [(ws!!i) >~>
getFileTime (name t1) | t1 <- take i ts ])

Inductive case:i==j

〈 Inductive hypothesis: 〉
(pre_make t w) && (j-1 >= 0) && (j-1 <= (length ts))
&& (all (\(t1,w1,k1) -> k1 > newest_dep t1 w1)

(take (j-1) (zip3 ts (tail ws) ks)))
==>
(newest (take (j-1) ks))==(newest [(ws!!(j-1)) >~>

getFileTime (name t1) | t1 <- (take (j-1) ts)]))

〈 Assume pre-conditions, which supersede inductive hypothesis pre-conditions,
yielding 〉

(newest (take (j-1) ks))==(newest [(ws!!(j-1)) >~>
getFileTime (name t1) | t1 <- (take (j-1) ts)]))

&& ((ks!!(j-1)) > newest_dep (ts!!(j-1)) (ws!!j))

⇒ 〈 Adding fact, from HL.5.5 〉
(newest (take (j-1) ks))==(newest [(ws!!(j-1)) >~>
getFileTime (name t1) | t1 <- (take (j-1) ts)]))

&& (ks!!(j-1) == (ws!!j) >~> getFileTime (name (ts!!(j-1))))
&& ((ks!!(j-1)) > newest_dep (ts!!(j-1)) (ws!!j))

⇒ 〈 combining two max expressions 〉
(newest (take j ks))==(newest [(ws!!(j-1)) >~>
getFileTime (name t1) | t1 <- (take (j-1) ts)]++
[(ws!!j) >~> getFileTime (name (ts!!(j-1))]))

&& ((ks!!(j-1)) > newest_dep (ts!!(j-1)) (ws!!j))

〈 Now, assuming implicitly that the inequality at the bottom of the above
statement holds, proceed to show that the left-to-right equality which we desire
to prove is indeed correct. 〉
(newest (take j ks))

= 〈 from equality above 〉
(newest [(ws!!(j-1)) >~>

getFileTime (name t1) | t1 <- (take (j-1) ts)]++
[(ws!!j) >~> getFileTime (name (ts!!(j-1))]))

= 〈 using commutative/idempotent properties of max 〉
newest [

newest [(ws!!(j-1)) >~> getFileTime (name t1),
(ws!!j) >~> getFileTime (name (ts!!(j-1)))]

| t1 <- (take (j-1) ts)
]
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〈 To perform the next (crucial) step, it is necessary to perform case-analysis on
the different ways the two different files can interact. Firstly, define four new
variables: 〉

let t2 = (ts!!(j-1))
k2 = (ws!!j) >~> getFileTime (name t2)
k1old = (w1!!(j-1)) >~> getFileTime (name t1)
k1new = (w1!!j) >~> getFileTime (name t1)

〈 The following is clearly true from HL.5.6: 〉
k1old <= k1new

Case: (name t1)==(name t2)

〈 since it’s the exact same file: 〉
(k1old <= k1new) && (k1new==k2) && (k1old <= k2)

⇒ 〈 k1old is no greater than any other value 〉
(newest [k1old,k2]) == (newest [k1new,k2])

Case: (name t1) ‘elem‘ (allnames2 t2)

〈 since, from assumption, k2 is newer than all its dependencies: 〉
(k1old <= k1new) && (k2 > k1new)

⇒ 〈 k2 is definitely greater than all values 〉
(newest [k1old,k2]) == (newest [k1new,k2])

Case: (name t1) ‘notElem‘ (allnames t2)

〈 (name t1) is not touched at all, so, from HL.5.3: 〉
(k1old==k1new)

⇒ 〈 therefore, trivially: 〉
newest [k1old,k2]) == (newest [k1new,k2])

End of case-analysis.

〈 The following has been shown: 〉
newest [(ws!!(j-1)) >~> getFileTime (name t1),

(ws!!j) >~> getFileTime (name (ts!!(j-1)))]
==
newest [(ws!!j) >~> getFileTime (name t1),

(ws!!j) >~> getFileTime (name (ts!!(j-1)))]

〈 So, the previous expression... 〉
newest [

newest [(ws!!(j-1)) >~> getFileTime (name t1),
(ws!!j) >~> getFileTime (name (ts!!(j-1)))]

| t1 <- (take (j-1) ts)
]

= 〈 .. by simple substitution 〉
newest [

newest [(ws!!j) >~> getFileTime (name t1),
(ws!!j) >~> getFileTime (name (ts!!(j-1)))]

| t1 <- (take (j-1) ts)
]
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= 〈 rearranging according to max properties 〉
newest [

(ws!!j) >~> getFileTime (name t1) | t1 <- (take j ts)
]

〈 Now, the following equality has been fully proven: 〉
newest (take j ks)) ==

newest [(ws!!j) >~> getFileTime (name t1)
| t1 <- (take j ts)]

〈 Finally, to conclude, substitute i for j, and reinstate all assumed pre-conditions:
〉
(pre_make t w) && (i >= 0) && (i <= length ts)

&& (all (\(t1,w1,k1) -> k1 > newest_dep t1 w1)
(take i (zip3 ts (tail ws) ks)))

==>
newest (take i ks)) == newest [(ws!!i) >~>

getFileTime (name t1) | t1 <- (take i ts)]

Lemma HL.6.3.2

After running make on a sequence of targets, the time-stamp associated with
the newest top file of all the targets will be equal to the time-stamp of the
newest file anywhere in the targets (including all dependencies). (This is under
the assumption that directly after running make on a target, the top file of the
target is newer than all dependencies of that target. This is proven later in
Theorem H.4.)

let t = (Target n m ts)
ws = trace make ts w

in
(pre_make t w) && (i >= 0) && (i <= length ts)

&& (all (\(t1,w1) -> (w1 >~> getFileTime (name t1))
> newest_dep t1 w1) (take i (zip ts (tail ws))))

==> ((newest [ws!!i >~> getFileTime (name t1)
| t1 <- (take i ts)])

>= (newest [newest_dep t1 ws!!i
| t1 <- (take i ts)]))

Proof: Induction on the list of sub-targets. The base case is pretty simple. The
inductive case, however, requires case analysis. If the top file of the new sub-
target to have been made has not been changed, then, since it is newer than all
its dependencies, then all its dependencies haven’t changed either. If, however,
the top file of the new sub-target has been changed, then using H.3 it can be
shown that the time associated with the top-file of the new sub-target will be
newer than everything. The specific aspects of these two facts can be generalised
by an inequality – that inequality is the goal of this proof.
Base case: i==0

〈 newest defn. 〉
(newest []) == NoFileTime
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⇒ 〈 trivial equality 〉
(newest []) == (newest [])

⇒ 〈 introducing values for two []s. 〉
((newest [ws!!i >~> getFileTime (name t1)

| t1 <- (take 0 ts)])
>= (newest [newest_dep t1 ws!!i

| t1 <- (take 0 ts)]))

⇒ 〈 and, adding pre-conditions: 〉
(pre_make t w) && (i >= 1) && (i <= length ts)

&& (all (\(t1,w1) -> (w1 >~> getFileTime (name t1))
> newest_dep t1 w1) (take i (zip ts (tail ws))))

==> ((newest [ws!!i >~> getFileTime (name t1)
| t1 <- (take i ts)])

>= (newest [newest_dep t1 ws!!i
| t1 <- (take i ts)]))

Inductive Case: i==j

〈 Inductive hypothesis 〉
(pre_make t w) && (j-1 >= 1) && (j-1 <= length ts)

&& (all (\(t1,w1) -> (w1 >~> getFileTime (name t1))
> newest_dep t1 w1) (take (j-1) (zip ts (tail ws))))

==> ((newest [ws!!(j-1) >~> getFileTime (name t1)
| t1 <- (take (j-1) ts)])

>= (newest [newest_dep t1 ws!!(j-1)
| t1 <- (take (j-1) ts)]))

⇒ 〈 Assuming pre-conditions, and merging with inductive hypothesis 〉
(pre_make t w) &&

(newest [ws!!(j-1) >~> getFileTime (name t1)
| t1 <- (take (j-1) ts)])

>= (newest [newest_dep t1 ws!!(j-1)
| t1 <- (take (j-1) ts)])

&& (w!!j >~> getFileTime (name ts!!(j-1))) >
(newest_dep ts!!(j-1) w!!j)

⇒ 〈 Changing pre make slightly using HL.4.4. 〉
(pre_make ts!!(j-1) ws!!(j-1)) &&

(newest [ws!!(j-1) >~> getFileTime (name t1)
| t1 <- (take (j-1) ts)])

>= (newest [newest_dep t1 ws!!(j-1)
| t1 <- (take (j-1) ts)])

&& (w!!j >~> getFileTime (name ts!!(j-1))) >
(newest_dep ts!!(j-1) w!!j)

〈 For simplicity, we define some new variables as follows: 〉
let ts1 = (take (j-1) ts)

t2 = (ts!!(j-1))
w0 = ws!!(j-1)
w1 = ws!!j

〈 The statement above then becomes: 〉
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(pre_make t2 w0)
&& (newest [w0 >~> getFileTime (name t1) | t1 <- ts1])

>= (newest [newest_dep t1 w0 | t1 <- ts1])
&& (w1 >~> getFileTime (name t2)) > (newest_dep t2 w1)

If (filesSame [name t2] w0 w1):

〈 Since it is known that: 〉
(pre_make t2 w0) && (filesSame [name t2] w0 w1) &&
(w1 >~> getFileTime (name t2)) > (newest_dep t2 w1)

⇒ 〈 HL.6.2 〉
(filesSame (allnames t2) w0 w1)

〈 Adding fact based on H.1 〉
(filesSame (allnames t2) w0 w1) &&
(filesSame ((allnames (Target n m ts1))

\\\ (allnames t2)) w0 w1)

= 〈 merging, using HL.5.2 〉
(filesSame ((allnames t2)++(allnames (Target n m ts1)))
w0 w1)

〈 Clearly, no files change at all between w0 and w1. Therefore, the previously
proven fact 〉

(newest [w0 >~> getFileTime (name t1) | t1 <- ts1])
>= (newest [newest_dep t1 w0 | t1 <- ts1])

&& (w1 >~> getFileTime (name t2)) > (newest_dep t2 w1)

⇒ 〈 from filesSame property 〉
(newest [w1 >~> getFileTime (name t1) | t1 <- ts1])

>= (newest [newest_dep t1 w1 | t1 <- ts1])
&& (w1 >~> getFileTime (name t2)) > (newest_dep t2 w1)

⇒ 〈 merge both inequalities 〉
(newest [w1 >~> getFileTime (name t1) | t1 <- ts1++[t2]])

>= (newest [newest_dep t1 w1 | t1 <- ts1++[t2]])

If (not (filesSame [name t2] w0 w1)):

〈 Define three more variables as follows: 〉
ns1 = (allnames (Target n m ts1))
ns2 = (allnames t2)
ns3 = ns1 \\\ ns2

〈 From H.1. (1) 〉
(filesSame ns3 w0 w1)

〈 And, from H.3. (2) 〉
(w1 >~> getFileTime (name t2)) > (FileTime (snd w0))

〈 and, since (clock newer w0) (3) 〉
(FileTime (snd w0)) >=

(newest [w0 >~> getFileTime (name t1) | t1 <- ts1])
&& (FileTime (snd w0)) >=

newest [newest_dep t1 w0 | t1 <- ts1])

〈 putting (1), (2) and (3) together: 〉
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(w1 >~> getFileTime (name t2)) >
(newest [w1 >~> getFileTime n1 | n1 <- ns3)

〈 and, adding the already proven fact: 〉
(w1 >~> getFileTime (name t2)) >
(newest [w1 >~> getFileTime n1 | n1 <- ns3)

&& (w1 >~> getFileTime (name t2)) > (newest_dep t2 w1)

= 〈 And, using newest dep defn., the second expression changes 〉
(w1 >~> getFileTime (name t2)) >
(newest [w1 >~> getFileTime n1 | n1 <- ns3)

&& (w1 >~> getFileTime (name t2)) >
(newest (map (\n1 -> w1 >~> getFileTime n1)
(allnames2 t2)))

⇒ 〈 since (allnames t2) is just (name t2) and (allnames2 t2) together.
(HL.2.5) 〉

(w1 >~> getFileTime (name t2)) >
(newest [w1 >~> getFileTime n1 | n1 <- ns3)

&& (w1 >~> getFileTime (name t2)) >
(newest [w1 >~> getFileTime n1 | n1 <- ns2)

= 〈 merging 〉
(w1 >~> getFileTime (name t2)) >=
(newest [w1 >~> getFileTime n1 | n1 <- ns2++ns3)

〈 The time associated with (name t2) is at least as new as every other file.
Therefore, the following holds trivially: 〉

(newest [w1 >~> getFileTime (name t1) | t1 <- ts1++[t2]])
>= (newest [newest_dep t1 w1 | t1 <- ts1++[t2]])

End-If

〈 Removing all new variables, the following fact has been proven: 〉
(newest [(ws!!j) >~> getFileTime (name t1)

| t1 <- (take (j-1) ts)++[ts!!(j-1)]])
>= (newest [newest_dep t1 ws!!j

| t1 <- (take (j-1) ts)++[ts!!(j-1)]])

= 〈 take defn. 〉
(newest [(ws!!j) >~> getFileTime (name t1)

| t1 <- take j ts]])
>= (newest [newest_dep t1 ws!!j

| t1 <- take j ts]])

⇒ 〈 Adding pre-conditions, and replacing i 〉
(pre_make t w) && (i >= 1) && (i <= length ts)

&& (all (\(t1,w1) -> (w1 >~> getFileTime (name t1))
> newest_dep t1 w1) (take i (zip ts (tail ws))))

==> ((newest [ws!!i >~> getFileTime (name t1)
| t1 <- (take i ts)])

>= (newest [newest_dep t1 ws!!i
| t1 <- (take i ts)]))
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Lemma HL.6.4

After making a sequence of sub-targets, the newest value of all time-stamps
returned by make will equal the time-stamp of the newest file of all of t’s de-
pendencies. (Assuming that after each recursive make call, the time-stamp
returned is newer than the time-stamp associated with any of that sub-target’s
dependencies – this is proven later in Theorem H.4)

let t = (Target n m ts)
ks = w >~> mapM make ts
ws = trace make ts w

in
(pre_make t w)

&& (all (\(t1,w1,k1) -> k1 > newest_dep t1 w1)
(zip3 ts (tail ws) ks))

==> (newest ks)==(newest_dep t (last ws))

Proof: A merging of HL.6.3.1 and HL.6.3.2. The former compares the re-
turned time-stamps to the actual times associated with the top files of each
sub-target. The latter compares those actual times with the times of all depen-
dencies of the sub-targets in the form of an inequality – one which can easily
be changed into an equality. This lemma, through simple equality substitution,
removes the intermediate step.
〈 Firstly, taking HL.6.3.1: 〉
(pre_make t w) && (i >= 1) && (i <= length ts)

&& (all (\(t1,w1,k1) -> k1 > newest_dep t1 w1)
(take i (zip3 ts (tail ws) ks)))

==> (newest (take i ks))==(newest [(ws!!i) >~>
getFileTime (name t1) | t1 <- (take i ts)])

⇒ 〈 Letting i = length ts, and using known facts about lengths of ks, ts
and ws. 〉
(pre_make t w) &&

&& (all (\(t1,w1,k1) -> k1 > newest_dep t1 w1)
(zip3 ts (tail ws) ks))

==> (newest ks)==(newest
[(last ws) >~> getFileTime (name t1) | t1 <- ts])

⇒ 〈 and, assuming the (same) pre-conditions in the local proof: (1) 〉
(newest ks) ==

(newest[(last ws) >~> getFileTime (name t1) | t1 <- ts])

〈 Next, take HL.6.3.2: 〉
(pre_make t w) && (i >= 1) && (i <= length ts)

&& (all (\(t1,w1) -> (w1 >~> getFileTime (name t1))
> newest_dep t1 w1) (take i (zip ts (tail ws))))

==> ((newest [ws!!i >~> getFileTime (name t1)
| t1 <- (take i ts)])

>= (newest [newest_dep t1 ws!!i
| t1 <- (take i ts)]))

⇒ 〈 Instanciating i as (length ts) 〉
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(pre_make t w)
&& (all (\(t1,w1) -> (w1 >~> getFileTime (name t1))
> newest_dep t1 w1) (zip ts (tail ws)))

==> ((newest [(last ws) >~> getFileTime (name t1)
| t1 <- ts])

>= (newest [newest_dep t1 (last ws)
| t1 <- ts]))

⇒ 〈 Assuming (local) pre-conditions, and applying HL.5.5 so them so that the
pre-conditions to the above fact are met 〉
(newest [(last ws) >~> getFileTime (name t1)

| t1 <- ts])
>= (newest [newest_dep t1 (last ws) | t1 <- ts])

⇒ 〈 changing the RHS of the inequality to make it a simple equality. 〉
(newest [(last ws) >~> getFileTime (name t1)

| t1 <- ts])
== (newest [

(newest [newest_dep t1 (last ws) | t1 <- ts]),
(newest [(last ws) >~> getFileTime (name t1)

| t1 <- ts])
])

= 〈 applying HL.6.1. (2) 〉
(newest [(last ws) >~> getFileTime (name t1) | t1 <- ts]) ==

(newest_dep t (last ws))

〈 Combining (1) and (2): 〉
(newest ks) == (newest_dep t (last ws))

⇒ 〈 Adding pre-condition. 〉
(pre_make t w)

&& (all (\(t1,w1,k1) -> k1 > newest_dep t1 w1)
(zip3 ts (tail ws) ks))

==> (newest ks)==(newest_dep t (last ws))

Theorem H.4

After calling make on a target t, the returned time-stamp will be newer than
any of t’s dependencies.

(pre_make t w) ==>
let (w2,k) = w >=> make t
in k > (newest_dep t w2)

Proof: Induction on target structure. It has been shown (in HL.6.4) that
assuming certain pre-conditions, through analysing the time-stamps returned
from all recursive make calls, we can determine the age of the most recently
changed file anywhere in all the dependencies. Using this we can prove, in the
inductive case, that if the top file in t isn’t newer than its dependencies, then
an exec will take place to make it so.
Base case: t=(Leaf n)

〈 HL.4.1.5 〉
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((w >~> make t)/=NoFileTime)

〈 And, for all worlds w1, 〉
(newest_dep t w1) == NoFileTime

〈 merging the two facts together 〉
((w >~> make t) > (newest_dep t w1))

⇒ 〈 instantiating w1 〉
(w >~> make t) > (newest_dep t (w >-> make t))

= 〈 rearranging, and adding pre-condition: 〉
(pre_make t w) ==>

let (w2,k) = w >=> make t
in k > (newest_dep t w2)

Inductive case: t=(Target n m ts)

〈 Inductive hypothesis 〉
all (\t1 -> FORALL w1: (pre_make t1 w1) ==>

(w1 >~> make t1) > (newest_dep t1 (w1 >-> make t1))) ts

〈 Now, define two new variables: 〉
ws = trace make ts w
ks = w >~> mapM make

〈 instantiate w1 in inductive hypothesis 〉
all (\(t1,w1) -> (pre_make t1 w1) ==>

(w1 >~> make t1) > (newest_dep t1 (w1 >-> make t1)))
(zip ts ws)

⇒ 〈 Using HL.4.4, and assuming local pre make pre-condition 〉
all (\(t1,w1) -> (w1 >~> make t1) >

(newest_dep t1 (w1 >-> make t1))) (zip ts ws)

= 〈 Introducing ks 〉
all (\(t1,w1,k1) ->

k1 > (newest_dep t1 (w1 >-> make t1))) (zip ts ws ks)

= 〈 rewriting, using HL.3.6 〉
all (\(t1,w1,k1) -> k1 > (newest_dep t1 w1))

(zip ts (tail ws) ks)

⇒ 〈 HL.6.4 〉
(newest ks)==(newest_dep t (last ws))

⇒ 〈 adding in the final make definition 〉
(w >=> make t) ==

(w >=> do {mtime <- getFileTime n;
ctimes <- update_deps ts;
if (mtime <= newest ctimes)

then do {exec n m; getFileTime n}
else return mtime})

&& (newest ks)==(newest_dep t (last ws))

= 〈 since getFileTime doesn’t change the world (HL.4.1.1). 〉
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(w >=> make t) ==
(w >=> do {ctimes <- update_deps ts;

if ((w >~> getFileTime n) <= newest ctimes)
then do {exec n m; getFileTime n}
else return (w >~> getFileTime n)})

&& (newest ks)==(newest_dep t (last ws))

= 〈 update deps, ks defn. 〉
(w >=> make t) ==

((last ws) >=> do {
if ((w >~> getFileTime n) <= newest ks)
then do {exec n m; getFileTime n}
else return (w >~> getFileTime n)})

&& (newest ks)==(newest_dep t (last ws))

= 〈 replacing newest ks. 〉
(w >=> make t) ==

((last ws) >=> do {
if ((w >~> getFileTime n) <= (newest_dep t (last ws)))

then do {exec n m; getFileTime n}
else return (w >~> getFileTime n)})

= 〈 using HL.5.1, HL.2.8.1 〉
(w >=> make t) ==

((last ws) >=> do {
if (((last ws) >~> getFileTime n)

<= (newest_dep t (last ws)))
then do {exec n m; getFileTime n}
else return ((last ws) >~> getFileTime n)})

If some dependency is as new as n:
(w >=> make t) ==
((last ws) >=> do {exec n m; getFileTime n})

〈 The following two facts are known (HL.2.8.1, HL.4.4): 〉
(all (\n1 -> n1/=n) (allnames2 t)) && (clock_newer (last ws))

⇒ 〈 Therefore, from H.2 〉
all (\n1 -> (last ws) >~> do {exec n m; getFileTime n} >

(last ws) >~> do {exec n m; getFileTime n1})
(allnames2 t)

⇒ 〈 rearranging 〉
(last ws) >~> do {exec n m; getFileTime n} >
(newest [(last ws) >~> {exec n m; getFileTime n1}

| n1 <- allnames2 t])

= 〈 newest dep defn. 〉
(last ws) >~> do {exec n m; getFileTime n} >
(newest_dep t ((last ws) >-> exec n m))

= 〈 monad and getFileTime properties 〉
((last ws) >~> do {exec n m;getFileTime n}) >
(newest_dep t ((last ws) >-> do {exec n m; getFileTime n}))

= 〈 rewriting in terms of w, make and t 〉
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(w >~> make t) > (newest_dep t (w >-> make t))

If n is newer than all dependencies:

(w >=> make t)==
((last ws) >=> return ((last ws) >~> getFileTime n))

&& ((last ws) >~> getFileTime n) > (newest_dep t (last ws))

= 〈 splitting first equality in two 〉
(w >-> make t)==(last ws)
&& (w >~> make t)==((last ws) >~> getFileTime n)
&& ((last ws) >~> getFileTime n) > (newest_dep t (last ws))

⇒ 〈 rearranging 〉
(w >~> make t) > (newest_dep t (w >-> make t))

End-If

〈 Adding pre-condition 〉
(pre_make t w) ==>

let (w2,k) = w >=> make t
in (k > newest_dep t w2)

10.6 Make “deps older” Proofs

Overview

This section takes Theorem H.4 and uses it to prove the final more fundamental
facts about make.
The important lemmas and theorems are as follows:

• Theorem H.5 takes HL.6.2, and, using Theorem H.4, shows a standard
fact about make.

• Lemma HL.7.3, proven using DAG-Tree Induction (HL.2.13), is ex-
tremely important. It states that if two targets are compatible, and both
are rebuilt in succession, then the files shared by the two targets will not
be touched during the second make.

• Theorem H.6 applies HL.7.3 recursively, showing eventually that after
running make every file in a target is newer than all its dependencies.

Theorem H.6 is the last theorem to be proven, and says the most about the
expected behaviour of make. However, with a little thought, it can be seen that
Lemma HL.7.3 has proven another essential make property:
Since every sub-target in a DAG-Tree is compatible with one another (HL.2.6),
the building of a target is really just the sequential building of the sub-targets.
Therefore, it can be seen that no single file will ever be built more than once.
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Definition of deps older

The deps older predicate states that every file in a target is newer than all
its dependencies. It is defined as a recursive statement about newest dep, and
that recursive definition works perfectly with the inductive proofs in HL.7.3,
and H.6.

-- are all targets newer than their dependencies?
deps_older :: World -> Target -> Bool
deps_older w (Leaf n) = True
deps_older w t@(Target n m ts) =

((w >~> getFileTime n) > (newest_dep w t)) &&
(all (deps_older w) ts)

Theorem H.5

After making a target, if the head-file was never touched at all, then none of
the files associated with the sub-targets will have been touched either.

let w1 = w >-> make t
in

(pre_make t w) && (filesSame [name t] w w1)
==> (filesSame (allnames t) w w1)

Proof: A merging of H.4 and HL.6.2. All the hard work here is effectively
done in HL.6.2, but this time around, a fact which had to be assumed as a
pre-condition, has been proven (in H.4) to actually always be true.
〈 Assuming pre make pre-condition, from H.4 〉
((w >~> make t) > newest_dep t (w >-> make t))
= 〈 From HL.5.5 〉
((w >~> do {make t; getFileTime (name t)})

> newest_dep t (w >-> make t))
= 〈 introducing variable w1 〉
let w1 = w >-> make t
in ((w1 >~> getFileTime (name t)) > newest_dep t w1)
⇒ 〈 Applying HL.6.2 〉
let w1 = w >-> make t
in

(pre_make t w) && (filesSame [name t] w w1)
==> (filesSame (allnames t) w w1)

Lemma HL.7.1

If every file in target t is newer than all its dependencies, then all the files in t
will be unchanged after t is made.

(pre_make t w) && (deps_older w t) ==>
(filesSame (allnames t) w (w >-> make t))

Proof: Induction on the target, using HL.6.4.
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Lemma HL.7.1.2

If every file in target t is newer than all its dependencies, then no file anywhere
will be changed after the making t.

(pre_make t w) && (deps_older w t) ==>
(filesSame ns w (w >-> make t))

Proof: Combining HL.7.1, and H.1 (all the filenames in ns are either in
(allnames t) or they aren’t.)

Lemma HL.7.1.3

If every file in target t0 is newer than all its dependencies, t0 and t1 are
compatible DAG-Trees, and t1 is a sub-target of t0, then every file in t1 will
also be newer than all its dependencies.

(couldBeDAGT t0 t1) && (deps_older w t0) && (t1 ‘elem‘ alldeps t0)
==> (deps_older w t1)

Proof: DAG-Tree induction. In the base case, if t0 and t1 are “Apart” or
“B-Within”, then t1 is not a sub-target of t0, so the pre-condition fails. If they
are “Equal”, then it is trivially true. In the inductive case, from the inductive
hypothesis (using the recursive definition of deps older), the sub-targets of t0
will also have the deps older property true of them. Since (name t0) is not in
t1, the property will remain true.

Lemma HL.7.2

If target t1 is compatible with target t, and each file in t1 is newer than all its
dependencies, then after making t, all the files in t1 will remain unchanged.

(pre_make t w) && (couldBeDAGT t t1) && (deps_older w t1)
==> (filesSame (allnames t1) w (w >-> make t))

Proof: DAG-Tree-Induction (HL.2.13). The base case shows that (1) if t1 is
inside t (“equal”, “b-within”) then files will not have changed (using HL.7.1.3),
and (2) if t1 is totally outside t (“apart”) then files will not have changed, using
H.1. The inductive case, using the inductive hypothesis, shows that the files
won’t have changed during recursive calls. Then, since the top file (name t)
cannot be inside t1, even if (name t) is rebuilt using an exec then no files in
t1 will have changed.
〈 First, define the predicate we wish to prove: 〉
let p =

(\t0 t1 -> FORALL w: (pre_make t0 w) &&
(couldBeDAGT t0 t1) && (deps_older w t1)
==> (filesSame (allnames t1) w (w >-> make t0)))

Base case:
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(apartT t0 t1) || (equalT t0 t1) || (bwithinT t0 t1)

〈 Firstly, from H.1: 〉
(apartT t0 t1) ==> (filesSame (allnames t1) w (w >-> make t0))

〈 Also, since 〉
((equalT t0 t1) || (bwithinT t0 t1)) ==> (t1 ‘elem‘ alldeps t0)

⇒ 〈 because of deps older pre-condition, using Lemma HL.7.1.3 〉
((equalT t0 t1) || (bwithinT t0 t1)) ==> (deps_older w t0)

⇒ 〈 HL.7.1 〉
((equalT t0 t1) || (bwithinT t0 t1)) ==>
(filesSame (allnames t1) w (w >-> make t0))

〈 Put together, adding pre-conditions: 〉
(couldBeDAGT t0 t1) &&
((apartT t0 t1) || (equalT t0 t1) || (bwithinT t0 t1))
==> (p t0 t1)

Inductive case:
(crushedT t0 t1) || (dwithinT t0 t1)

⇒ 〈 From HL.2.12.2 and HL.2.12.3, this implies the following fact: 〉
(name t0) ‘notElem‘ (allnames t1)

〈 The above fact will be used later. For the moment, concentrate on assumed
inductive hypothesis: 〉

(all (\t -> p t t1) (deps t0))

= 〈 expanding p. 〉
(all (\t -> FORALL w1: (pre_make t w1) &&
(couldBeDAGT t t1) && (deps_older w1 t)
==> (filesSame (allnames t1) w1 (w1 >-> make t)))

(deps t0))

〈 Explicitly adding assumed (local) pre-conditions: 〉
(pre_make t0 w) && (couldBeDAGT t0 t1) && (deps_older w t1)
&& (all (\t -> FORALL w1: (pre_make t w1) &&
(couldBeDAGT t t1) && (deps_older w1 t)
==> (filesSame (allnames t1) w1 (w1 >-> make t)))

(deps t0))

⇒ 〈 Let ws = (trace make (deps t0) w). 〉
(pre_make t0 w) && (couldBeDAGT t0 t1) && (deps_older w t1)
&& (all (\(t,w1) -> (pre_make t w1) &&
(couldBeDAGT t t1) && (deps_older w1 t)
==> (filesSame (allnames t1) w1 (w1 >-> make t)))

(zip (deps t0) ws))

⇒ 〈 applying HL.4.4, all recursive pre makes vanish 〉
(pre_make t0 w) && (couldBeDAGT t0 t1) && (deps_older w t1)
&& (all (\(t,w1) ->
(couldBeDAGT t t1) && (deps_older w1 t)
==> (filesSame (allnames t1) w1 (w1 >-> make t)))

(zip (deps t0) ws))
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⇒ 〈 using HL.2.6, and through recursive nature of deps older defn., all re-
cursive pre-conditions vanish 〉

(pre_make t0 w) && (couldBeDAGT t0 t1) && (deps_older w t1)
&& (all (\(t,w1) ->
(filesSame (allnames t1) w1 (w1 >-> make t))

(zip (deps t0) ws)))

= 〈 rewriting, using HL.3.6 〉
(pre_make t0 w) && (couldBeDAGT t0 t1) && (deps_older w t1)
&& (all (\(w1,w2) -> (filesSame (allnames t1) w1 w2))
(zip ws (tail ws)))

⇒ 〈 HL.5.1, and HL.3.4.2 〉
(filesSame (allnames t1) w (w >-> mapM make (deps t0)))

⇒ 〈 adding HL.4.1.3 〉
((w >-> make t0) == (w >-> mapM make (deps t0)) ||
(w >-> make t0) ==

(w >-> do {mapM make (deps t0);
exec (name t0 ) (cmd t0)}))

&& (filesSame (allnames t1) w (w >-> mapM make (deps t0)))

If exec doesn’t take place:

〈 removing exec part 〉
(w >-> make t0) == (w >-> mapM make (deps t0))

&& (filesSame (allnames t1) w (w >-> mapM make (deps t0)))

⇒ 〈 substitution 〉
(filesSame (allnames t1) w (w >-> make t0))

Else-If exec does take place:

〈 removing non-exec section, and adding initial assumed fact (from outer case-
analysis) 〉

((w >-> make t0) ==
(w >-> do {mapM make (deps t0);

exec (name t0 ) (cmd t0);}))
&& (filesSame (allnames t1) w (w >-> mapM make (deps t0)))
&& ((name t0) ‘notElem‘ (allnames t1))

⇒ 〈 exec property, guaranteed since execing t0 won’t touch t1’s files. 〉
((w >-> make t0) ==

(w >-> do {mapM make (deps t0);
exec (name t0 ) (cmd t0);}))

&& (filesSame (allnames t1) w (w >-> mapM make (deps t0)))
&& (filesSame (allnames t1)

(w >-> mapM make (deps t0))
(w >-> do {mapM make (deps t0); exec (name t0) (cmd t0)}))

⇒ 〈 merging both filesSame clauses using HL.5.1 〉
((w >-> make t0) ==

(w >-> do {mapM make (deps t0);
exec (name t0 ) (cmd t0)}))

&& (filesSame (allnames t1) w
(w >-> do {mapM make (deps t0); exec (name t0) (cmd t0)}))
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⇒ 〈 substitution 〉
(filesSame (allnames t1) w (w >-> make t0))

End-If

〈 adding all assumed pre-conditions 〉
(couldBeDAGT t0 t1) && (all (\t -> p t t1) (deps t0)) &&
((crushedT t0 t1) || (dwithinT t0 t1))
==> (p t0 t1)

End of Inductive Proof

〈 Merging these two statements using HL.2.13: 〉
(couldBeDAGT t t1) ==> (p t t1)

⇒ 〈 expanding p 〉
(couldBeDAGT t t1) ==> ((pre_make t w) &&
(couldBeDAGT t t1) && (deps_older w t1)
==> (filesSame (allnames t1) w (w >-> make t)))

= 〈 rearranging 〉
(pre_make t w) && (couldBeDAGT t t1) && (deps_older w t1)
==> (filesSame (allnames t1) w (w >-> make t)))

Lemma HL.7.3

If the files in target t are the same in two different worlds, then the ’deps older-
ness’ of the target will not change between the two worlds.

(filesSame (allnames t) w1 w2) ==>
(deps_older w1 t) == (deps_older w2 t)

Proof: Simple induction on target.

Lemma HL.7.4

Assuming pre-conditions hold, and sub-target t0 is fully ordered, then after
calling make on t1, the target t0 will still have its dependencies ordered.

LET t = (Target n m [t0,t1])
w1 = w >-> make t1

IN (pre_make t w) && (deps_older w t0) && (deps_older w1 t1)
==> (deps_older w1 t0)

Proof: Relatively trivial – HL.7.2 does all the hard work. The reason t0’s
dependencies are still ordered is because no files anywhere in t0 have been
changed.
〈 First, assume always that the three pre-conditions hold 〉

(pre_make t w) && (deps_older w t0) && (deps_older w1 t1)
⇒ 〈 expanding the pre make properties 〉

(pre_make t1 w) && (couldBeDAGT t0 t1) &&
(deps_older w t0) && (deps_older w1 t1)

⇒ 〈 apply HL.7.2 〉
(filesSame (allnames t0) w w1) && (deps_older w t0)

⇒ 〈 apply HL.7.3 〉
(deps_older w1 t0)
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Theorem H.6

After making any target, each file in that target will be newer than its depen-
dencies.

(pre_make t w) ==> (deps_older (w >-> make t) t)

Proof: Induction on target. In the inductive case, the “uninteresting” parts
of the make body are taken out, and we are left with a statement about the
execution of the recursive make calls. By proving another stronger fact (by
induction), using HL.7.4 in the (inner) inductive step, the proof of the theorem
is completed.
Base case: t = (Leaf n)

〈 From deps older defn. 〉
(deps_older _ (Leaf n)) == True

⇒ 〈 trivially 〉
(pre_make t w) ==> (deps_older (w >-> make t) t)

Inductive Case: t = (Target n m ts)

〈 Inductive hypothesis 〉
all (\t1 -> FORALL w1:
(pre_make t1 w1) ==> deps_older (w1 >-> make t1) t1) ts

〈 Instantiate all the intermediate worlds with a new variable ws. 〉
ws = trace make ts w

〈 Rewriting the inductive hypothesis: 〉
all (\(t1,w1) -> (pre_make t1 w1) ==>
deps_older (w1 >-> make t1) t1) (zip ts ws)

⇒ 〈 Assuming pre make pre-condition and using HL.4.4 〉
all (\(t1,w1) -> deps_older (w1 >-> make t1) t1)
(zip ts ws)

= 〈 From trace defn. 〉
all (\(t1,w2) -> deps_older w2 t1) (zip ts (tail ws))

〈 The above expression becomes the refined inductive hypothesis used later in
the proof. For now, define wf to be the final world which make returns. 〉

wf = (w >-> make t)

〈 Since, from HL.5.5, we know 〉
(wf >~> getFileTime n) == (w >~> make t)

〈 And, from H.5, we know 〉
(w >~> make t) > (newest_dep wf t)

⇒ 〈 Merging these together: 〉
(wf >~> getFileTime n) > (newest_dep wf t)

⇒ 〈 Adding the deps older definition. 〉
((wf >~> getFileTime n) > (newest_dep wf t)) &&
(deps_older wf t) ==
((wf >~> getFileTime n) > (newest_dep wf t) &&

(all (deps_older wf) ts))
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⇒ 〈 rearranging 〉
(all (deps_older wf) ts) ==> (deps_older wf t)

〈 The main proof obligation now becomes (all (deps older wf) ts). Now,
examine the possible worlds that result from running make. (HL.4.1.3) 〉

(wf == (w >-> update_deps ts)) ||
(wf == (w >-> do {update_deps ts; exec n m;}))

= 〈 rewriting using ws. 〉
(wf == (last ws)) || (wf == ((last ws) >-> exec n m))

⇒ 〈 Since the only difference between wf and (last ws) is that an exec may
have taken place, and (from HL.2.8.1), it is known that n is not in any sub-
targets, 〉

all (\t1 -> n ‘notElem‘ (allnames t1)) ts

⇒ 〈 therefore, from exec properties 〉
all (\t1 -> filesSame (allnames t1) wf (last ws)) ts

⇒ 〈 Using HL.7.3 〉
(all (deps_older (last ws)) ts) ==> (all (deps_older wf) ts)

〈 Therefore, the proof obligation becomes (all (deps older (last ws)) ts).
To prove this, it is necessary to prove a stronger fact in the process, namely: 〉

((i >=0) && (i <= length ts)) ==>
all (deps_older (ws!!i)) (take i ts))

Base case: i==0

(take i ts) == []

⇒ 〈 all defn. 〉
all f (take i ts) == True

⇒ 〈 instantiating f 〉
all (deps_older (ws!!i)) (take i ts)

Inductive Case: i==k

〈 Inductive hypothesis (1) 〉
((k-1 >= 0) && (k-1 <= length ts)) ==>

all (deps_older (ws!!(k-1))) (take (k-1) ts))

〈 First, examine the pre-condition properties. From HL.2.6: 〉
(and [couldBeDAGT t0 t1 | t0 <- ts, t1 <- ts])

⇒ 〈 merging with clock newer property 〉
and [pre_make (Target n m [t0,t1]) (ws!!(k-1))

| t0 <- ts, t1 <- ts]

⇒ 〈 filtering unwanted targets. (2) 〉
all (\t0 -> pre_make (Target n m [t0,(ts!!k)]) ws!!(k-1))

(take (k-1) ts)

〈 Also, from the (outer) inductive assumption: 〉
(deps_older (ws!!(k-1) >-> make (ts!!(k-1)))) ts!!(k-1))

〈 trace property of ws 〉
(deps_older (ws!!k) (ts!!(k-1)))
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⇒ 〈 Trivially, this becomes. (3) 〉
all (\t0 -> deps_older (ws!!k) (ts!!(k-1)))

(take (k-1) ts)

〈 Using (1), (2) and (3), and HL.7.4, this yields 〉
(k-1 >= 0) && (k-1 <= length ts) ==>

all (deps_older (ws!!k)) (take (k-1) ts)

⇒ 〈 since it has been proven that (deps older (ws!!k) (ts!!(k-1))), (and
previous pre-condition is superseded by new one.) 〉

(k >= 0) && (k <= length ts) ==>
all (deps_older (ws!!k)) (take k ts)

⇒ 〈 substituting i==k. 〉
(i >= 0) && (i <= length ts) ==>

all (deps_older (ws!!i)) (take i ts)

End of Inductive Proof.

〈 Finally, letting i=(length ts) 〉
(length ts >= 0) && (length ts <= length ts) ==>
all (deps_older (ws!!(length ts)))

(take (length ts) ts)

〈 removing true pre-condition, and adding trace properties: 〉
(all (deps_older (ws!!(length ts)))
(take i (length ts))) &&

ws!!(length ts)==(last ws) &&
(take (length ts) ts)==ts

⇒ 〈 substitution 〉
(all (deps_older (last ws)) ts)

⇒ 〈 and, as shown earlier, this yields 〉
(deps_older (w >-> make t) t)

〈 and, adding pre-condition: 〉
(pre_make t w) ==> (deps_older (w >-> make t) t)

11 Clean Proofs

We present the Clean proofs in the same style as the Haskell proofs already
seen. In many cases we will find that proofs for the Clean programs are either
identical or only trivially different to the corresponding Haskell proofs. In those
cases we have chosen not to present the Clean proofs in detail, but to refer
to the corresponding Haskell proofs instead. To make it easier to locate the
corresponding proofs we have chosen to use the same numbering scheme for
these proofs – this has sometimes occasioned a gap in the numbering of the
Clean proofs, where a lemma related to the Haskell I/O system was not required.

Lemma CL.2.1

((prodall r s) && (subset s2 s) ==> (prodall r s2)

Proof: trivial

70



Lemma CL.2.2

(isDAGT t) ==> all isDAGT (deps t)

Proof: see Lemma HL.2.2

Proofs Lemma CL.2.3 to Lemma CL.2.13 are identical to the corresponding
Haskell proofs, and are omitted here in the interests of brevity.
There are no proofs numbered Lemma CL.3.1 to Lemma CL.3.2. In order to
obtain consistent numbering across the Clean and Haskell proofs we resume the
numbering at proof Lemma CL.3.3

trace definition

trace :: (a World -> (a,World)) [a] World -> [World]
trace f [] w = [w]
trace f [p:ps] w = [w : trace a ps (w >-> a p))

Lemma CL.3.3

length (trace a ps w) == (length ps)+1

Proof: induction on a list of parameters. Base case: ps = []
〈 LHS: 〉

length (trace a ps w)

=〈 replace ps 〉
length (trace a [] w)

=〈 trace defn. 〉
length [w]

=〈 length defn 〉
length [] + 1

=〈 reintroducing ps 〉
length ps + 1

Inductive case: ps = [p1:ps1]
〈 Inductive hypothesis 〉

(length (trace a ps1 w1)) = (length ps1)+1

〈 LHS 〉
length (trace a ps w)

=〈 trace definition 〉
length [w: trace a ps1 (w >-> a ps)]

=〈 Letting w1 = w >-> a p1 〉
length [w:trace a ps1 w1]

=〈 Using inductive hypothesis, algebra 〉
length ps1 + 2

=〈 relationship of ps to ps1 〉
length ps + 1
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Lemma CL.3.4.1

head (trace a ps w) == w

Proof: Trivial (Expension of trace function)

Lemma CL.4.1.1

(w >-> getFileTime n)==w

Proof: Trivial

Lemma CL.4.1.2

(w >-> make (Leaf n)) == w

Proof:
〈 Definition of make on leaves, defn. >-> 〉

w >-> make (Leaf n) == fst
letb (w,time) <- getFileTime n w in
if (time==NoFileTime) (error "Can’t make "+++n+++"!")

(w,mtime)

⇒〈 Leaf nodes exist (by precondition - see section 9.2) 〉
w >-> make (Leaf n) == fst

letb (w,time) = getFileTime n w in
(w,time)

=〈 eliminating letb 〉
w >-> make (Leaf n) == fst (getFileTime n w)

⇒〈 Lemma CL.4.1.1 〉
w >-> make (Leaf n) == w

Lemma CL.4.1.3

((w >-> make (Target n m ts)) ==
w >-> \w -> letb (w,_) = update_deps ts w in exec n w)
|| ((w >-> make (Target n m ts)) == w >-> \w -> update_deps ts w)

Proof: analysis of make body, and Lemma CL.4.1.1
〈 make definition, >-> definition 〉
w >-> make (Target n m ts) ==

fst (letb (w,times) = update_deps ts w in
letb (w,time) = getFileTime n w in
if (time <= maxList times)

(getFileTime n (fst (exec n m w)))
(w,time))

〈 Case analysis: time ≤ maxList times 〉
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w >-> make (Target n m ts) ==
fst (letb (w,times) = update_deps ts w in

letb (w,time) = getFileTime n w in
((fst (exec exec n m w)),
(snd (getFileTime n (fst (exec n m w))))))

=〈 Lemma CL.3.1.1 〉
w >-> make (Target n m ts) ==

(letb (w,times) = update_deps ts w in
(exec n m w))

=〈 definition of >->; introduce lambda expression 〉
w >-> make (Target n m ts) ==

w >-> \w -> (letb (w,times) = update_deps ts w in
(exec n m w))

〈 Case analysis: time > maxList times 〉
w >-> make (Target n m ts) ==

fst (letb (w,times) = update_deps ts w in
letb (w,time) = getFileTime n w in
(w,time))

=〈 expanding letb 〉
w >-> make (Target n m ts) ==

fst (letb (w,times) = update_deps ts w in
getFileTime n w)

⇒〈 Lemma CL.4.1.1, introducing lambda expression and >-> 〉
w >-> make (Target n m ts) == w >-> \w -> (update_deps ts w)

⇒〈 Uniting cases using || 〉
((w >-> make (Target n m ts)) ==

w >-> \w -> letb (w,_) = update_deps ts w in
exec n m w)

|| ((w >-> make (Target n m ts)) ==
w >-> \w -> update_deps ts w)

The proofs for lemmas Lemma CL.4.1.4 to Lemma CL.5.1 are all identical
to the correspondingly numbered Haskell proofs, and are omitted here in the
interests of brevity.

Lemma CL.5.1

filesSame defines an equivalence relation. Proof: see Lemma HL.5.1

Lemma CL.5.1

(filesSame ns1 w1 w2) && (filesSame ns2 w1 w2) ==>
(filesSame (ns1++ns2) w1 w2

Proof: see Lemma HL.5.1
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Lemma CL.5.3

(pre_make t w) && (notElem n (allnames t)) ==>
(filesSame [n] w (w >-> make t))

Proof: Structural induction on t. Base case: t = (Leaf n1)
〈 Lemma CL.3.1.2 〉

(w >-> make (Leaf n1)) == w

⇒〈 Lemma HL.5.1 (reflexivity of filesSame) 〉
(filesSame [n] w (w >-> make (Leaf n1)))

⇒〈 Adding pre-condition 〉
(pre_make t w) && (notElem n (allnames t)) ==>
(filesSame [n] w (w >-> make t))

Inductive case: t = (Target n1 m ts)
〈 Inductive hypothesis 〉

(all (\t1 -> FORALL w1: (pre_make t1 w1) && (notElem n (allnames t1))
==> (filesSame [n] w1 (w1 >-> make t1))) ts)

⇒〈 Firstly, let ws = trace make ts w, then instantiate all w1 in inductive hy-
pothesis 〉
all (\(t1,w1) -> (pre_make t1 w1) && (notElem n (allnames t1))

==> (filesSame [n] w1 (w1 >-> make t))) (zip ts ws)

⇒〈 assuming local pre make and Lemma CL.3.4 〉
all (\(t1,w1) -> (notElem n (allnames t1))

==> (filesSame [n] w1 (w1 >-> make t1))) (zip ts ws)

⇒〈 Since subset (allnames t1) (allnames t), assuming precondition 〉
all (\(t1,w1) -> filesSame [n] w1 (w1 >-> make t1))) (zip ts ws)

=〈 rewriting 〉
all (\(w1,w2) -> filesSame [n] w1 w2)) (zip ws (tail ws))

⇒〈 since filesSame is an equivalence relation (Lemma CL.5.1) and fst (w1!!i)
== snd (ws!!(i-1)) 〉
filesSame [n] w (last ws)

=〈 by definition of make 〉
(filesSame [n] w (w >-> update_deps ts))

⇒〈 adding make definition from Lemma CL.3.1.3 〉
((w >-> make (Target n m ts)) ==

w >-> \w -> letb (w,_) = update_deps ts w in
getFileTime n (fst (exec n m w)))

|| ((w >-> make (Target n m ts)) ==
w >-> \w -> update_deps ts w)

&& (filesSame [n] w (w >-> \w -> update_deps ts w))

If exec occurs:
〈 Removing other expression 〉
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((w >-> make (Target n m ts)) ==
w >-> \w -> letb (w,_) = update_deps ts w in

getFileTime n (fst (exec n m w)))
&& (filesSame [n] w (w >-> \w -> update_deps ts w))

⇒〈 and, since from initial filesSame pre-condition, n 6=n1 〉
((w >-> make (Target n m ts)) ==

w >-> \w -> letb (w,_) = update_deps ts w in
exec n m w)

&& (filesSame [n] w (w >-> \w -> update_deps ts w))
&& (filesSame [n] (w >-> \w -> update_deps ts w)

(w >-> \w -> letb (w,_) = update_deps ts w in exec n m w))

⇒〈 Lemma HL.5.1 〉
(filesSame [n] w (w >-> make t))

If no exec occurs:
〈 removing other expression 〉

((w >-> make (Target n m ts)) == w >-> \w -> update_deps ts w)
&& (filesSame [n] w (w >-> \w -> update_deps ts w))

⇒〈 Substitution 〉
(filesSame [n] (w >-> make t))

End-If
〈 Adding assumed pre-conditions 〉

(pre_make t w) && (notElem n (allnames t)) ==>
(filesSame [n] w (w >-> make t))

Theorem C.1

(pre_make t w) && (disjoint ns (allnames t)) ==>
(filesSame [n] w (w >-> make t))

A consequence of Lemma CL.5.3; see Theorem H.1

Lemma CL.5.4

(clock_newer (f,k)) ==> ((f,k) >~> getFileTime n) <= (FileTime k)

Proof: see Lemma HL.5.4 for approach

Theorem C.2

(clock_newer w) && (n <> n1) ==>
((w >~> (w,time) = exec n m w in getFileTime n w) >
(w >~> (w,time) = exec n m w in getFileTime n1 w))

Proof: See Theorem H.2 for explanation of approach.

let (f,k) = w
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〈 assuming pre-condition 〉
(clock_newer w) && (n <> n1)

⇒〈 Using Lemma HL.5.4 〉
(w >~> getFileTime n1) <= (FileTime k) && (n <> n1)

⇒〈 exec properties, since n<>n1 〉
(w >~> getFileTime n1) <= (FileTime k) &&
(filesSame [n1] w (w >-> exec n m))

⇒〈 filesSame defn. 〉
(w >~> getFileTime n1) <= (FileTime k) &&
(w >~> getFileTime n1) == (w >-> (exec n m)) >~> getFileTime n1

⇒〈 equality 〉
(((w >-> exec n m) >~> getFileTime n1)
<= (FileTime (snd w)))

=〈 Let w1 = (w >-> exec n m) 〉
(w1 >~> getFileTime n1) <= (FileTime k)

⇒〈 exec property 〉
((w1 >~> getFileTime n1) <= (FileTime k))
&& (FileTime ((snd w1)-1))==(FileTime k)
&& (w1 >~> getFileTime n) ==(FileTime (snd w1))

⇒〈 equality 〉
((w1 >~> getFileTime n1) <= (FileTime ((snd w1)-1)))
&& (w1 >~> getFileTime n)==(FileTime (snd w1))

⇒〈 algebra 〉
((w1 >~> getFileTime n1) < (FileTime (snd w1)))
&& (w1 >~> getFileTime n)==(FileTime (snd w1))

⇒〈 equality 〉
((w1 >~> getFileTime n1) < (w1 >~> getFileTime n))

⇒〈 Rewriting w1 〉
(((w >-> exec n m) >~> getFileTime n1) <
((w >-> exec n m) >~> getFileTime n))

⇒〈 Introducing local bindings for time and w 〉
((w >~> (w,time) = exec n m w in getFileTime n w) >
(w >~> (w,time) = exec n m w in getFileTime n1 w))

⇒〈 Adding pre-condition 〉
(clock_newer w) && (n <> n1) ==>
((w >~> (w,time) = exec n m w in getFileTime n w) >
(w >~> (w,time) = exec n m w in getFileTime n1 w))
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Lemma CL.5.5

(pre_make t w) ==>
((w >-> make t) >~> getFileTime n) == (w >~> make t)

Proof: Case analysis on target
Leaf case: t = Leaf n
〈 CL.3.1.4 〉
(w >~> make (Leaf n)) == (w >~> getFileTime n)

⇒〈 therefore, because of Lemma CL.4.1.1 〉
((w >-> make t) >~> getFileTime n) == (w >~> make t)

=〈 adding pre-condition 〉
(pre_make t w) ==>

((w >-> make t) >~> getFileTime n) == (w >~> make t)

Non-Leaf case: t = (Target n m ts)
〈 make defn. 〉
(w >~> make t) == (w >~> \w->

letb (w,times) = update_deps ts w in
letb (w,time) = getFileTime n w in
if (time <= maxList times)

(getFileTime n (fst (exec n c w)))
(w,time))

⇒〈 Lemma CL.4.1.1 〉
(w >~> make t) == (w >~> \w->

letb (w,times) = update_deps ts w1 in
if ((w >~> getFileTime n) <= maxList times)

(getFileTime n (fst (exec n c w)))
(getFileTime n w))

Case analysis: time <= maxList times
〈 Dropping other branch 〉
(w >~> make t) == (w >~> \w->

letb (w,times) = update_deps ts w1 in
getFileTime n (fst (exec n c w)))

⇒〈 Lemma CL.4.1.1 〉
(w >-> make t) == (w >-> \w->

letb (w,times) = update_deps ts w1 in
getFileTime n (fst (exec n c w))) &&

((w >-> make t) >~> getFileTime n) == ((w >-> (\w->
letb (w,times) = update_deps ts w1 in
getFileTime n (fst (exec n c w))))

>~> getFileTime n)

⇒〈 substitution 〉
((w >-> make t) >~> getFileTime n) == (w >~> make t)

Case: time > maxList times
〈 Dropping other branch 〉
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(w >~> make t) == (w >~> \w->
letb (w,times) = update_deps ts w1 in
getFileTime n w)

⇒〈 Lemma CL.4.1.1 〉
(w >-> make t) == (w >-> \w->

letb (w,times) = update_deps ts w1 in
getFileTime n w) &&

((w >-> make t) >~> getFileTime n) == (w >-> (\w->
letb (w,times) = update_deps ts w1 in
getFileTime n w))

>~> getFileTime n)

⇒〈 substitution 〉
((w >-> make t) >~> getFileTime n) == (w >~> make t)

End-If
〈 Adding pre-condition 〉
(pre_make t w) ==>

((w >-> make t) >~> getFileTime n) == (w >~> make t)

Lemmas Lemma CL.5.6 and Lemma CL.5.7 are identical to the correspond-
ingly numbered Haskell proofs and are omitted here.

Theorem C.3

(pre_make t w) ==>
let (k = w >~> \w -> letb (w,time) = make t w in getFileTime n w) in

( k == w >~> getFileTime n) || (k > (FileTime (snd w)))

Proof: Induction on the target structure. See Theorem H.3 for discussion.
Base case: t = Leaf n1
〈 CL.4.1.2 〉
(w >-> make (Leaf n1)) == w

⇒〈 Application 〉
((w >-> make t) >~> getFileTime n) == (w >~> getFileTime n)

⇒〈 Rewriting 〉
( w >~> \w -> letb (w,time) = make t w in getFileTime n w)
== (w >~> getFileTime n)

⇒〈 Conjunction and adding pre-condition 〉
(pre_make t w) ==>

let (k = w >~> \w -> letb (w,time) = make t w in getFileTime n w) in
( k == w >~> getFileTime n) || (k > (FileTime (snd w)))

Inductive case: t = (Target n1 m1 ts)
〈 Inductive Hypothesis: 〉
all (\t1 -> FORALL w1: (pre_make t1 w1) ==>

let k1 = w1 >~> (\w -> letb (w,time) = make t1 w in getFileTime n w) in
(k1 == w1 >~> getFileTime n) || (k1 > (FileTime (snd w1)))) ts
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⇒〈 Letting ws = trace make ts w 〉
all (\(t1,w1) -> (pre_make t1 w1) ==>

let k1 = w1 >~> \w -> (letb (w,time) = make t1 w in getFileTime n w) in
(k1 == w1) >~> getFileTime n) || (k1 > (FileTime (snd w1))) (zip ts ws)

⇒〈 Assuming pre make t w pre-condition, and using Lemma CL.3.4 〉
all (\(t1,w1) ->

let k1 = w1 >~> \w -> (letb (w,time) = make t1 w in getFileTime n w) in
(k1 == w1) >~> getFileTime n) || (k1 > (FileTime (snd w1)))

If file n is touched

(ws!!(i+1) >~> getFileTime n)>(FileTime (snd (ws!!i)))

〈 Secondly, using Lemma CL.5.7 we can show: 〉
all (\(w1,w2)-> (FileTime (snd w2)) <= (FileTime (snd w2)))

(take i-1) (zip ws (tail ws)))

⇒〈 algebra 〉
(FileTime (snd (ws!!i))) >= (FileTime (snd w))

〈 Thirdly, applying Lemma CL.5.6 and Lemma CL.3.4 〉
all (\(w1,w2) -> (w1 >~> getFileTime n) <= (w2 >~> getFileTime n))

(drop (i+1) (zip ws (tail ws)))

⇒〈 Algebra: 〉
(ws!!(i+1)>~>getFileTime n)<=((last ws)>~>getFileTime n)

〈 So, using these three facts: 〉
(FileTime (snd (ws!!i))) >= (FileTime (snd w))
(ws!!(i+1) >~> getFileTime n) > (FileTime (snd (ws!!i)))
(ws!!(i+1) >~> getFileTime n) <= ((last ws) >~> getFileTime n)

〈 we infer 〉
((last ws) >~> getFileTime n) > (FileTime (snd w))

=〈 By definition of update deps 〉
((w >-> update_deps ts) >~> getFileTime n) > (FileTime (snd w))

If file n is not touched

all (\(w1,w2)-> (w1 >~> getFileTime n)
== (w2 >~> getFileTime n)) (zip ws (tail ws))

⇒〈 equality 〉
((head ws)>~>getFileTime n)==((last ws) >~> getFileTime n)

=〈 rewriting 〉
(w >~> getFileTime n)==((w >-> update_deps ts) >~> getFileTime n)

Unifying steps gives:

let w’ = (w >-> update_deps ts) in
(w’ >~> getFileTime n) > (FileTime (snd w))

||(w >~> getFileTime n)==(w’ >~> getFileTime n)

If n1 is not touched:
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w’ == (w>->make t)

⇒〈 rewriting 〉
let k = w >~>

(\w -> letb (w,time) = make t w in getFileTime n) in
(k == w >~> getFileTime n) || (k > (FileTime (snd w)))

If n1 is touched, but n1 6=n:
filesSame [n] w’ (w >-> make t)

=〈 filesSame defn. 〉
(w’ >~> getFileTime n) == ((w >-> make t) >~> getFileTime n)

⇒〈 rearranging 〉
let k = w >~>

(\w -> letb (w,time) = make t w in getFileTime n w) in
(k== w >~> getFileTime n)||(k > (FileTime (snd w)))

If n1 is touched, and n1==n2:
(w >-> make t) == (w’ >-> exec n1 m1)

⇒〈 exec definition 〉
((w >-> make t) >~> getFileTime n) ==

(FileTime (snd (w >-> make t))) &&
(FileTime (snd (w>->make t)))>(FileTime(snd w’))

〈 And, using the following previously proven fact: 〉
(FileTime (snd w’)) <= (FileTime (snd w))

〈 we infer: 〉
((w >-> make t) >~> getFileTime n) > (FileTime (snd w))

⇒〈 Adding disjunction and rearranging: 〉
let k = w >~>

(\w -> letb (w,time) = make t w in getFileTime n w) in
(k == w >~> getFileTime n) || (k > (FileTime (snd w)))

Adding pre-condition:
(pre_make t w)==>

let k = w >~> (\w -> letb (w,time) = make t w in getFileTime n w) in
(k == w >~> getFileTime n) || (k > (FileTime (snd w)))

Lemma CL.6.1

(newest_dep t w) == (maxList (map (\t1 -> newest
[w >~> getFileDate (name t1), newest_dep t1 w]) (deps t)))

Proof: Function expansion and substitution

Lemma CL.6.2

let w1 = w >-> make t in
(pre_make t w) && (filesSame [name t] w w1)

&& (w1 >~> getFileTime (name t)) -> (newest_dep t w1)
==> (filesSame (allnames t) w w1)

Proof: See Lemma HL.6.2
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Lemma CL.6.3.1

let t = (Target n m ts)
ks = w >~> update_deps ts
ws = trace make ts w

in
(pre_make t w) && (i >= 0) && (i <= length ts)
&& (all (\(t1,w1,k1) -> k1 > newest_dep t1 w1)

(take i (zip3 ts (tail ws) ks))
==> (maxList (take i ks)) ==

(newest [(ws!!i) >~> getFileTime (name t1) \\ t1 <- (take i ts)])

Proof: See Lemma HL.6.3.1 for approach, noting that update_deps ts = mapM make ts
in that proof.

Lemma CL.6.3.2

let t = (Target n m ts)
ws = trace make ts w

in
(pre_make t w) && (i >= 0) && (i <= length ts)

&& (all (\(t1,w1) -> (w1 >~> getFileTime (name t1))
> newest_dep t1 w1) (take i (zip ts (tail ws))))

==> ((maxList [ws!!i >~> getFileTime (name t1) \\ t1 <- (take i ts)])
>= (maxList [newest_dep t1 ws!!i \\ t1<-(take i ts)])

Proof: See Lemma HL.6.3.2

Lemma CL.6.4

let t = (Target n m ts)
ks = w >~> update_deps ts
ws = trace make ts w

in
(pre_make t w)

&& (all (\(t1,w1,k1) -> k1 > newest_dep t1 w1)
(zip3 ts (tail ws) ks)) ==> (newest ks)==(newest_dep t (last ws))

Proof: See Lemma HL.6.4 for approach, noting that update_deps ts = mapM make ts
in that proof.

Theorem C.4

(pre_make t w)==> let (w2,k) = w >=> make t in k>(newest_dep t w2)

Proof: Induction on target structure.
Base case: t = (Leaf n)
Identical to Theorem H.4.
Inductive case: t = (Target n m ts)
〈 Inductive hypothesis: 〉
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all (\t1 -> FORALL w1: (pre_make t1 w1) ==>
(w1 >~> make t1) > (newest_dep t1 (w1 >-> make t1))) ts

〈 Define two new variables: 〉
ws = trace make ts w
ks = w >~> update_deps ts

〈 instantiate w1 in ind. hyp. 〉
all (\(t1,w1) -> (pre_make t1 w2) ==>
(w1 >~> make t1) > (newest_dep t1 (w1 >-> make t1))) (zip ts ws)

⇒〈 Using Lemma CL.4.4 and assuming local pre make: 〉
all (\(t1,w1) -> (w1 >~> make t1) >

(newest_dep t1 (w1 >-> make t1))) (zip ts ws)

=〈 Introducing ks 〉
all (\(t1,w1,k1) -> k1 > (newest_dep t1 (w1 >-> make t1)))

(zip ts ws ks)

=〈 Rewriting 〉
all (\(t1,w1,k1) -> k1 > (newest_dep t1 w1)) (zip ts (tail ws) ks)

⇒〈 Lemma CL.6.4 〉
(maxList ks) == (newest_dep t (last ws))

⇒〈 Definition of make 〉
(w >=> make t) ==

(w >=> \w -> letb (w,times) = update_deps ts w in
letb (w,time) = getFileTime n w in
if (time <= maxList times)

(getFileTime n (fst (exec n c w)))
(w,time))

&& (maxList ks)==(newest_dep t (last ws))

=〈 update deps, ks defn 〉
(w >=> make t) ==

(w >=> \w -> letb (times,w) = update_deps ts w in
if ((w >~>getFileTime n w) <= maxList times)

(exec n c w) (w>~>getFileTime n,w))
&& (maxList ks)==(newest_dep t (last ws))

=〈 defns. of update deps and ks 〉
(w >=> make t) ==

((last ws) >=> \w -> if ((w >~> getFileTime n)<=maxList ks)
(letb (w,_) = exec n m w in getFileTime n w)
(getFileTime n w))

&& (maxList ks)==(newest_dep t (last ws))

=〈 Replacing maxList ks 〉
(w >=> make t) ==

((last ws) >=> \w -> if ((w >~> getFileTime n)<=(newest_dep t (last ws))
(letb (w,_) = exec n m w in getFileTime n w)
(getFileTime n w))

&& (maxList ks)==(newest_dep t (last ws))

82



⇒〈 Using Lemma CL.5.1 and Lemma CL.2.8.1, rewriting lambda expr. 〉
(w >=> make t) ==

((last ws) >=> if (((last ws) >~> getFileTime n)<=(newest_dep t (last ws))
(letb (w,_) = exec n m w in getFileTime n w)

(getFileTime n w))
&& (maxList ks)==(newest_dep t (last ws))

Cases: if some dependency is as new as n:
(w >=> make t) == ((last ws)>=> \w -> letb (w,_) = exec n m

in getFileTime n w)

〈 The following two facts are known from Lemma CL.4.8.1 and Lemma CL.3.4
〉
(all (\n1 -> n1<>n) (allnames2 t)) && (clock_newer (last ws))

⇒〈 Therefore, from Theorem C.2 〉
all (n1 -> (last ws) >~>

(\w -> letb (w,_) = exec n m w in getFileTime n w) >
(last ws) >~>
(\w -> letb (w,_) = exec n m w in getFileTime n1 w))

(allnames2 t)

⇒〈 Rearranging 〉
(last ws) >~> (\w -> letb (w,_) = exec n m w in getFileTime n w) >

(maxList [(last ws) >~>
(\w -> letb (w,_) = exec n m w

in getFileTime n1 w) \\ n1 <- allnames2 t])

=〈 newest dep definition 〉
(last ws) >~> (\w -> letb (w,_) = exec n m w in getFileTime n w) >

(newest_dep t ((last ws) >-> exec n m))

=〈 getFileTime properties 〉
(last ws) >~> (\w -> letb (w,_) = exec n m w in getFileTime n w) >

(newest_dep t ((last ws) >->
(\w -> letb (w,_) = exec n m w in getFileTime n w)))

⇒〈 rewriting using defns of w, make and t 〉
(w >~> make t) > (newest_dep t (w >-> make t))

If n is newer than all dependencies:
(w >=> make t) ==
((last ws) >=> \w -> (last ws) >~> getFileTime n)

&& ((last ws) >~> getFileTime n) > (newest_dep t (last ws))

=〈 Splitting the first equality in two 〉
(w >-> make t) == (last ws)
&& (w >~> make t) == (last ws) >~> getFileTime n)
&& ((last ws) >~> getFileTime n) > (newest_dep t (last ws))

⇒〈 Rearranging: 〉
(w >~> make t) > (newest_dep t (w >-> make t))

End-if 〈 Adding pre-condition 〉
(pre_make t w) ==> let (w2,k) = w >=> make t in

(k > newest_dep t w2)
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Theorem C.5

let w1 = w >-> make t in
(pre_make t w) && (filesSame [name t] w w1)
==> (filesSame (allnames t) w w1)

Proof: See Theorem H.5.
The final lemmas, numbered Lemma CL.7.1.1 to Lemma CL.7.4 are all essen-
tially identical to the correspondingly numbered Haskell proofs, and are omitted
here. It is worth including the statement of the property of Lemma CL.7.2 as
it differs slightly from the Haskell formulation:

Lemma CL.7.2

(pre_make t w) && (couldBeDAGT t t1) && (deps_older w t1)
==> (filesSame (allnames t1) w (w >-> make t))

Proof: See Lemma HL.7.2 for approach, noting that update_deps ts = mapM make ts.

A Set Properties

Overview

Sometimes is is useful to think of standard functional lists with an equality
relation defined on them as sets instead. The Haskell List library has some
support for this but it was necessary to build some operations that treat lists
specifically as if they were sets. This is the same with Clean.
One specific example is that of the list-difference operator \\. The standard
implementation of this in Haskell doesn’t work for lists with duplicate elements,
so a new \\\ operator had to be defined.
No facts were actually proven about these new operations, but we are convinced
that the lemmas shown are indeed true.

Haskell Set functions

disjoint, notdisjoint :: Eq a => [a] -> [a] -> Bool
disjoint l1 l2 = (l1 ‘intersect‘ l2) == []
notdisjoint l1 l2 = not (l1 ‘disjoint‘ l2)

-- subset and proper-subset operators
subset, psubset :: Eq a => [a] -> [a] -> Bool
subset [] s2 = True
subset (i1:s1) s2 = (i1 ‘elem‘ s2) && (s1 ‘subset‘ s2)
psubset s1 s2 = (s1 ‘subset‘ s2) && (not (s2 ‘subset‘ s1))

-- Set equality
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setEq :: Eq a => [a] -> [a] -> Bool
setEq [] [] = True
setEq [] _ = False
setEq _ [] = False
setEq (x:xs) xs1 =

if (x ‘elem‘ xs1)
then setEq (filter (/= x) xs) (filter (/= x) xs1)
else False

infix 5 \\\
-- set difference operator
(\\\) :: Eq a => [a] -> [a] -> [a]
(\\\) s1 [] = s1
(\\\) s1 (i2:s2) = (prune s1) \\\ (prune s2)

where prune = filter (/= i2)

Clean Set functions

disjoint l1 l2 = intersect l1 l2 == []

intersect [] ys = []
intersect [x:xs] ys | isMember x ys = [x: intersect xs ys]

| otherwise = intersect xs ys

notdisjoint l1 l2 = not (disjoint l1 l2)

subset [] s2 = True
subset [i1:s1] s2 = (isMember i1 s2) && (subset s1 s2)

psubset s1 s2 = subset s1 s2 && (not (subset s2 s1))

setEq [] [] = True
setEq [] _ = False
setEq _ [] = False
setEq [x:xs] xs1 =

if (isMember x xs1)
(setEq (filter (\x1 = x1 <> x) xs)

(filter (\x1 = x1 <> x) xs1))
(False)

(\\\) infix 5 :: [a] [a] -> [a] | == a
(\\\) s1 [] = s1
(\\\) s1 [i2:s2] = (prune s1) \\\ (prune s2)

where prune = filter (\i1 = i1 <> i2)

Lemma HL.1.1, CL.1.1

Set equality, setEq, is an equivalence relation.
Reflexivity
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(setEq s1 s2)

Symmetry

(setEq s1 s2) == (setEq s2 s1)

Transitivity

(setEq s1 s2) && (setEq s2 s3) ==> (setEq s1 s3)

Lemma HL.1.2, CL.1.2

(setEq s1 (reverse s1))

Lemma HL.1.3

(setEq s1 (nub s1))

Lemma CL.1.3

(setEq s1 (removeDup s1))

Lemma HL.1.4

(setEq s1 s2) ==> ((elem e s1) == (elem e s2))

Lemma CL.1.4

(setEq s1 s2) ==> ((isMember e s1) == (isMember e s2))

Lemma HL.1.5, CL.1.6

(subset s1 s2) && (subset s1 s2) ==> (setEq s1 s2)

Lemma HL.1.6, CL.1.6

If binary operation op forms a commutative, idempotent monoid with identity
i, then if two sets are equal (under setEq) then folding them with op will yield
the same result.

(FORALL e1,e2: ((op e1 e2)==(op e2 e1)) && ((op e1 e1)==e1)
&& ((op i e1)==e1)) && (setEq s1 s2)
==> (foldl op i s1) == (foldl op i s2)

Lemma HL.1.7, CL.1.7

(setEq s1 s2) && (setEq s3 s4) ==> (setEq (s1++s3) (s2++s4))
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B Working Haskell Make Code

module HaskMake where
import System
import Posix

data FileTime = FileTime EpochTime | NoFileTime
type Name = FilePath
type Command = String
data Target = Target Name Command [Target] | Leaf Name

instance Eq FileTime where
NoFileTime == NoFileTime = True
NoFileTime == _ = False
_ == NoFileTime = False
(FileTime t) == (FileTime s) = (t==s)

instance Ord FileTime where
compare NoFileTime NoFileTime = EQ
compare NoFileTime _ = LT
compare _ NoFileTime = GT
compare (FileTime t) (FileTime s) = (compare t s)

testTarg = Target "a.out" "gcc prog.c intpair.o" [
Leaf "prog.c",
Target "intpair.o" "gcc -c intpair.c" [
Leaf "intpair.h",
Leaf "intpair.c"]]

-- given a file name, return its modification time
getFileTime :: Name -> IO FileTime
getFileTime fn =

catch
(do

flst <- Posix.getFileStatus fn
return (FileTime (modificationTime flst)))

(\ex -> return NoFileTime)

-- execute command ’cmd’. ’nm’ is unused here.
exec :: Name -> Command -> IO ()
exec nm cmd = do

putStrLn ("Running \""++cmd++"\"..")
exitc <- system cmd
return ()

-- make the target, and return the modification time of the
-- newest file of all recursive dependencies.
make :: Target -> IO FileTime
make (Leaf nm) = do
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mtime <- getFileTime nm
if (mtime==NoFileTime)
then error ("can’t make "++nm++"!")
else return mtime

make (Target nm cmd depends) = do
-- get modification times of this file
mtime <- getFileTime nm
-- build and get the times of all children
ctimes <- update_deps depends
-- if its older than the newest child, rebuild, and return time
if (mtime <= (newest ctimes))
then do

exec nm cmd -- execute the command
getFileTime nm -- return the update time of the file

else
return mtime -- just return mtime

-- given a list of times, find the newest
newest :: [FileTime] -> FileTime
newest times = foldl max NoFileTime times

-- update all the targets, returning all their times
update_deps :: [Target] -> IO [FileTime]
update_deps = mapM make

C Working Clean Make Code

module cm

import StdEnv, StdLibMisc, Directory, StdTime

// Types for Make
:: Name :== String
:: Target = Target Name Command [Target]

| Leaf Name
:: Makefile :== [Target]

// Type to assist in implementation
:: *WorldState :== (*File,*World)

// Make the default target, which is the head of the list
make_main :: Makefile *WorldState -> *WorldState
make_main [t:_] w # (_, _, (f,w)) = make t w

= (f, w)

// Recursively build a specific target
make :: Target *WorldState -> (Bool, FileTime, *WorldState)
make (Leaf n) (f,w)
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# (t, w) = filedate n w
| t==NoFileTime =
(False, NoFileTime,

(f<<<("***No rule to make target "+++n),w))
| otherwise = (True, t, (f,w))

make (Target n c deps) (f,w)
# (ok, times,(f,w)) = update_deps deps (f,w)
| not ok = (False, NoFileTime, (f,w))
# (this_time,w) = filedate n w
| up_to_date this_time times = (True, this_time,(f,w))
# (err, newTime, f, w) = execute_command c f w
| isErr err = (False, NoFileTime, (f<<<errmsg n err,w))
| otherwise = (True,newTime,(f,w))
where

up_to_date _ [] = False
up_to_date t l = t > (maxList l)
isErr ExecErrorNone = False
isErr _ = True
errmsg nam err =

"*** ["+++n+++"] Error "+++(toString err)+++"\n"

// Make all the dependencies listed and return their updated times
update_deps :: [Target] *WorldState -> (Bool, [FileTime], *WorldState)
update_deps [] w = (True, [],w)
update_deps [x:xs] w # (ok, t,w) = make x w

| not ok = (False, [], w)
# (ok, ts,w) = update_deps xs w
| not ok = (False, [],w)
| otherwise = (True, [t:ts], w)

//
// Sample data:
//
TestData = [ Target "a.out" "gcc f1.o f2.o -o a.out" [

Target "f1.o" "gcc -c f1.c" [
Leaf "f1.c", Leaf "f2.h"

],
Target "f2.o" "gcc -c f2.c" [

Leaf "f2.c", Leaf "f2.h", Target "fred" "fail" []
]

]]

// Implementation

Start w # (f,w) = (make_main TestData (stdio w))
= snd (fclose f w)

// Useful utilities.
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:: ExecError = ExecErrorNone
| ExecErrorCode Int

:: FileTime = NoFileTime
| FileTime (Date,Time)

:: Command :== String

// Execute command, with command echoing.
execute_command :: Command *File *World ->

(ExecError, FileTime, *File, *World)
execute_command cmd f w

# (ok_code, w) = exec cmd w
# (ts,w) = now w
= (mkErr ok_code, ts, f <<< cmd <<< ’\n’, w)

where mkErr 0 = ExecErrorNone
mkErr n = ExecErrorCode n

// Integer is the return code of the command that was run
exec :: !Command *World -> (Int,*World)
exec c w = c_exec_cmd c w

// Current system data and time (as a FileTime)
now :: *World -> (FileTime, *World)
now w # (t,w) = getCurrentTime w

# (d,w) = getCurrentDate w
= (FileTime (d,t), w)

// Utilities
// Current date and time of a named file, as a FileTime. Aborts
// on errors except for missing file type errors, which generate
// NoFileTime instead. Not sure what errors they could be, but we
// catch them anyway.
filedate :: !String !*World -> (FileTime,*World)
filedate n w # ((ok,p),w) = pd_StringToPath n w

| not ok = (NoFileTime,w)
# ((err,inf),w) = getFileInfo p w
| exists err = (FileTime inf.pi_fileInfo.lastModified, w)
| errorfree err = (NoFileTime,w)
| otherwise = abort ("Error getting time of "+++n)
where

errorfree NoDirError = True
errorfree DoesntExist = True
errorfree _ = False
exists DoesntExist = False
exists _ = True

// Ordering on dates and times. NoFileTime is older than
// everything except another NoFileTime.
instance < FileTime
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where
(<) _ NoFileTime = False
(<) NoFileTime _ = True
(<) (FileTime (d1,t1)) (FileTime (d2,t2))

| d1.year < d2.year = True
| d1.year > d2.year = False
| d1.month < d2.month = True
| d1.month > d2.month = False
| d1.day < d2.day = True
| d1.day > d2.day = False
| t1.hours < t2.hours = True
| t1.hours > t2.hours = False
| t1.minutes < t2.minutes = True
| t1.minutes > t2.minutes = False
| t1.seconds < t2.seconds = True
| otherwise = False

instance == FileTime
where

(==) NoFileTime NoFileTime = True
(==) (FileTime (d1,t1)) (FileTime (d2,t2)) = d1==d2 && t1==t2
(==) _ _ = False

instance == Time
where

(==) t1 t2 =
t1.hours == t2.hours &&
t1.minutes == t2.minutes &&
t1.seconds == t2.seconds

instance == Date
where

(==) d1 d2 =
d1.year == d2.year &&
d1.month == d2.month &&
d1.day == d2.day

instance toString ExecError
where

toString ExecErrorNone = "0"
toString (ExecErrorCode n) = toString n

We provide a definition for exec in terms of a C function, referred to as
c_exec_cmd in the source. This function can be provided through Clean’s for-
eign language call facility in terms of the appropriate system library function
(exec or system, for instance).

D Haskell Semantic Model

module HaskMakeMProof where
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import System
import List
import Maybe

type EpochTime = Integer

data FileTime = FileTime EpochTime | NoFileTime
deriving Show

type Name = FilePath
type Command = String
data Target = Target Name Command [Target] | Leaf Name

deriving Eq

type FS = [(Name,EpochTime)]
type World = (FS,EpochTime)

instance Eq FileTime where
NoFileTime == NoFileTime = True
NoFileTime == _ = False
_ == NoFileTime = False
(FileTime t) == (FileTime s) = (t==s)

instance Ord FileTime where
compare NoFileTime NoFileTime = EQ
compare NoFileTime _ = LT
compare _ NoFileTime = GT
compare (FileTime t) (FileTime s) = (compare t s)

----------------------------------------------
----- IO2 monad definition and operators -----
----------------------------------------------

newtype IO2 a = IO2 (World -> (World, a))

instance Monad IO2 where
return v = retf
where retf = IO2 (\w -> (w,v))

(IO2 f1) >>= ac2 = IO2 bindf
where

bindf w =
let (w1,v) = (f1 w)

(IO2 f2) = (ac2 v)
in (f2 w1)

infix 1 >=>, >~>
infixl 1 >->

(>=>) :: World -> (IO2 a) -> (World, a)
w >=> (IO2 f) = (f w)
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(>->) :: World -> (IO2 a) -> World
w >-> act = fst (w >=> act)

(>~>) :: World -> (IO2 a) -> a
w >~> act = snd (w >=> act)

--------------------------------------------
----- The two primitive actions on IO2 -----
--------------------------------------------

-- given a file name, return its modification time
getFileTime :: Name -> IO2 FileTime
getFileTime fn = IO2 (\(f,k) -> ((f,k), (td f)))

where
td f = case (lookup fn f) of

Nothing -> NoFileTime
(Just t) -> FileTime t

-- logically execute command ’cmd’.
exec :: Name -> Command -> IO2 ()
exec nm cmd = IO2 (\(f,k) -> ((override nm (k+1) f, k+1),()))

-----------------------------------------------------------------
----- The rest of "make", identical to the working version ------
-----------------------------------------------------------------

-- make the target, and return the modification time of the
-- newest file of all recursive dependencies.
make :: Target -> IO2 FileTime
make (Leaf nm) = do

mtime <- getFileTime nm
if (mtime==NoFileTime)
then error ("can’t make "++nm++"!")
else return mtime

make (Target nm cmd depends) = do
-- get modification times of this file
mtime <- getFileTime nm
-- build and get the times of all children
ctimes <- update_deps depends
-- if its older than the newest child, rebuild, and return time
if (mtime <= (newest ctimes))
then do

exec nm cmd -- execute the command
getFileTime nm -- return the update time of the file

else
return mtime -- just return mtime

-- given a list of times, find the newest
newest :: [FileTime] -> FileTime
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newest times = foldl max NoFileTime times

-- update all the targets, returning all their times
update_deps :: [Target] -> IO2 [FileTime]
update_deps = mapM make

--------------------------------------------------------
----- Additional functions for getting target info -----
--------------------------------------------------------

-- get the name of a target
name :: Target -> Name
name (Leaf n) = n
name (Target n _ _) = n

-- get the immediate descendants of a target
deps :: Target -> [Target]
deps (Leaf _) = []
deps (Target _ _ ts) = ts

-- get the command of a target
cmd :: Target -> Command
cmd (Leaf _) = ""
cmd (Target _ m _) = m

-- get all the descendant nodes of a node, including the node itself
alldeps :: Target -> [Target]
alldeps t = [t] ++ (concatMap alldeps (deps t))

-- get all names of descendant nodes of a target, including
-- that node itself
allnames :: Target -> [Name]
allnames t = [name t]++(concatMap allnames (deps t))

-- get all names of descendant nodes in a target, excluding
-- that node itself
allnames2 :: Target -> [Name]
allnames2 t = (map name (deps t))++(concatMap allnames2 (deps t))

isSubTreeOf :: Target -> Target -> Bool
isSubTreeOf t t1 = t ‘elem‘ alldeps t1

-----------------------------
----- Proof Expressions -----
-----------------------------

-- Make’s pre-condition
pre_make :: Target -> World -> Bool
pre_make t w = (clock_newer w) && (isDAGT t)
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-- is every file in the filesystem no newer than the clock?
-- (clock-time is forced to be non-negative)
clock_newer :: World -> Bool
clock_newer (p,k) = (k >= (foldl max 0 (map snd p)))

-- are all targets newer than their dependencies?
deps_older :: World -> Target -> Bool
deps_older w (Leaf n) = True
deps_older w t@(Target n m ts) =

((w >~> getFileTime n) > (newest_dep w t)) &&
(all (deps_older w) ts)

-- get the newest time of the *dependencies* of the target.
newest_dep :: World -> Target -> FileTime
newest_dep w t =

newest (map (\n -> w >~> getFileTime n) (allnames2 t))

override :: Eq a => a -> b -> [(a,b)] -> [(a,b)]
override a b [] = [(a,b)]
override a b ((a’,b’):m1)

| a’==a = (a,b):m1
| otherwise = (a’,b’):(override a b m1)

disjoint, notdisjoint :: Eq a => [a] -> [a] -> Bool
disjoint l1 l2 = (l1 ‘intersect‘ l2) == []
notdisjoint l1 l2 = not (l1 ‘disjoint‘ l2)

-- subset and proper-subset operators
subset, psubset :: Eq a => [a] -> [a] -> Bool
subset [] s2 = True
subset (i1:s1) s2 = (i1 ‘elem‘ s2) && (s1 ‘subset‘ s2)
psubset s1 s2 = (s1 ‘subset‘ s2) && (not (s2 ‘subset‘ s1))

-- Set equality
setEq :: Eq a => [a] -> [a] -> Bool
setEq [] [] = True
setEq [] _ = False
setEq _ [] = False
setEq (x:xs) xs1 =

if (x ‘elem‘ xs1)
then setEq (filter (/= x) xs) (filter (/= x) xs1)
else False

infix 5 \\\
-- set difference operator
(\\\) :: Eq a => [a] -> [a] -> [a]
(\\\) s1 [] = s1
(\\\) s1 (i2:s2) = (prune s1) \\\ (prune s2)

where prune = filter (/= i2)
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infixr 1 ==>
(==>) :: Bool -> Bool -> Bool
a ==> b = (not a) || b

isDAGT :: Target -> Bool
isDAGT t = prodall safe (alldeps t)

-- is (r a1 a2) true for all a’s in the given list.
prodall :: (a -> a -> Bool) -> [a] -> Bool
prodall r lst = and [r a1 a2 | a1 <- lst, a2 <- lst]

-- if the two names are the same, are the commands and
-- dependencies also the same?
safe :: Target -> Target -> Bool
safe t1 t2 =

((name t1)==(name t2)) ==>
((cmd t1)==(cmd t2) && (deps t1)==(deps t2))

-- if (couldBeDAGT t0 t1), then they’re exactly one of the following.
apartT, bwithinT, crushedT, dwithinT, equalT :: Target -> Target -> Bool
apartT t0 t1 = (allnames t0) ‘disjoint‘ (allnames t1)
bwithinT t0 t1 = (allnames t0) ‘psubset‘ (allnames t1)
crushedT t0 t1 =

(allnames t0) ‘notdisjoint‘ (allnames t1) &&
(not ((allnames t0) ‘subset‘ (allnames t1))) &&
(not ((allnames t1) ‘subset‘ (allnames t0)))

dwithinT t0 t1 = (allnames t1) ‘psubset‘ (allnames t0)
equalT t0 t1 = (allnames t0) ‘setEq‘ (allnames t1)

-- if target t1 and t2 were "put together" they would make a valid DAGT
couldBeDAGT :: Target -> Target -> Bool
couldBeDAGT t1 t2 = prodall safe ((alldeps t1) ++ (alldeps t2))

-- are files ’ns’ the same in two different worlds?
filesSame :: [Name] -> World -> World -> Bool
filesSame ns w1 w2 = all fileSame ns

where
fileSame n = (w1 >~> getFileTime n)==(w2 >~> getFileTime n)

-- run mapM on a world, and return all intermediate worlds.
trace :: (a -> IO2 b) -> [a] -> World -> [World]
trace a [] w = [w]
trace a (p:ps) w = (w : (trace a ps (w >-> a p)))

-----------------------
----- Test values -----
-----------------------
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testTarg :: Target
testTarg = Target "a.out" "gcc prog.c intpair.o" [

Leaf "prog.c",
Target "intpair.o" "gcc -c intpair.c" [
Leaf "intpair.h",
Leaf "intpair.c"]]

testWorld :: World
testWorld = ([("prog.c",2),("intpair.h",3),("intpair.c",4)], 6)

E Clean Semantic Model

module cm_abstr
import StdEnv

:: EpochTime :== Int

:: FileTime = FileTime EpochTime
| NoFileTime

:: Name :== String
:: Command :== String
:: Target = Target Name Command [Target]

| Leaf Name

:: FS :== [(Name,EpochTime)]
:: World2 :== (FS,EpochTime)

:: Nil = Nil

instance == FileTime where
(==) NoFileTime NoFileTime = True
(==) NoFileTime _ = False
(==) _ NoFileTime = False
(==) (FileTime t) (FileTime s) = t==s

instance < FileTime where
(<) NoFileTime NoFileTime = True
(<) NoFileTime _ = False
(<) _ NoFileTime = False
(<) (FileTime t) (FileTime s) = t<s

(>=>) infixl 9 :: World2 (World2 -> (World2,a)) -> (World2,a)
(>=>) w f = f w
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(>->) infixl 9 :: World2 (World2 -> (World2,a)) -> World2
(>->) w f = fst (w >=> f)

(>~>) infixl 9 :: World2 (World2 -> (World2,a)) -> a
(>~>) w f = snd (w >=> f)

testTarg = Target "a.out" "gcc prog.c intpair.o" [
Leaf "prog.c",
Target "intpair.o" "gcc -c intpair.c" [
Leaf "intpair.h",
Leaf "intpair.c"]]

testWorld = ([("prog.c",2),("intpair.h",3),("intpair.c",4)], 6)

//
// IO Primitives
//
getFileTime :: Name World2 -> (World2,FileTime)
getFileTime n (fs,k) = ((fs,k),lookup n fs)

where lookup n [] = NoFileTime
lookup n [(fn,t):xs] | n==fn = FileTime t

| otherwise = lookup n xs

exec :: Name Command World2 -> (World2,Nil)
exec nm cmd (fs,k) = ((override nm (k+1) fs, k+1), Nil)

where override a b [] = [(a,b)]
override a b [(c,d):xs] | a==c = [(a,b):xs]

| otherwise = [(c,d):override a b xs]

make :: Target World2 -> (World2, FileTime)
make (Leaf n) w = make‘ (getFileTime n w)

where make‘ (w,NoFileTime) = abort ("No rule to make file "+++n)
make‘ (w,FileTime t) = (w,FileTime t)

make (Target n c depends) w
# (w,times) = update_deps depends w
# (w,this_time) = getFileTime n w
| this_time <= (maxList times) = getFileTime n (fst (exec n c w))
| otherwise = (w,this_time)

update_deps :: [Target] World2 -> (World2,[FileTime])
update_deps [] w = (w,[])
update_deps [x:xs] w # (w,n) = make x w

# (w,ts) = update_deps xs w
= (w,[t:ts])

//
// Functions for proofs, etc.
//

name :: Target -> Name
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name (Leaf n) = n
name (Target n _ _) = n

deps :: Target -> [Target]
deps (Leaf _) = []
deps (Target _ _ d) = d

cmd :: Target -> Command
cmd (Leaf _) = ""
cmd (Target _ m _) = m

// Needed for removeDup
instance == Target where

(==) (Leaf n1) (Leaf n2) = n1==n2
(==) (Target n1 c1 ts1) (Target n2 c2 ts2) =

(n1==n2) && (c1==c2) && (ts1==ts2)
(==) _ _ = False

alldeps :: Target -> [Target]
alldeps t = [t]++(concat (map alldeps (deps t)))

where concat = foldr (++) []

allnames :: Target -> [Name]
allnames t = [name t]++(concat (map allnames (deps t)))

where concat = foldr (++) []

allnames2 :: Target -> [Name]
allnames2 t =

((map name (deps t)) ++ (concat (map allnames2 (deps t))))
where concat = foldr (++) []

isSubTreeOf :: Target Target -> Bool
isSubTreeOf t1 t2 = isMember t1 (alldeps t2)

// "Proof" expressions

pre_make :: Target World2 -> Bool
pre_make t w = (clock_newer w) && (isDAGT t)

clock_newer :: World2 -> Bool
clock_newer (fs,k) = k > (foldl max 0 (map snd fs))

deps_older :: World2 Target -> Bool
deps_older w (Leaf n) = True
deps_older w (Target n m ts) =

((w >~> getFileTime n) > (newest_dep w (Target n m ts))
&& (all (deps_older w) ts))

newest_dep :: World2 Target -> FileTime
newest_dep w t =
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maxList (map (\n -> w >~> getFileTime n) (allnames2 t))

//disjoint :: [a] [a] -> Bool
disjoint l1 l2 = intersect l1 l2 == []

//intersect :: [a] [a] -> [a]
intersect [] ys = []
intersect [x:xs] ys | isMember x ys = [x: intersect xs ys]

| otherwise = intersect xs ys

notdisjoint l1 l2 = not (disjoint l1 l2)

subset [] s2 = True
subset [i1:s1] s2 = (isMember i1 s2) && (subset s1 s2)

psubset s1 s2 = subset s1 s2 && (not (subset s2 s1))

//setEq :: [a] [a] -> Bool | == a
setEq [] [] = True
setEq [] _ = False
setEq _ [] = False
setEq [x:xs] xs1 =

if (isMember x xs1)
(setEq (filter (\x1 = x1 <> x) xs)

(filter (\x1 = x1 <> x) xs1))
(False)

(\\\) infix 5 :: [a] [a] -> [a] | == a
(\\\) s1 [] = s1
(\\\) s1 [i2:s2] = (prune s1) \\\ (prune s2)

where prune = filter (\i1 = i1 <> i2)

(==>) infixr 1 :: Bool Bool -> Bool
(==>) a b = (not a)||b

isDAGT :: Target -> Bool
isDAGT t = prodall safe (alldeps t)

prodall :: (a a -> Bool) [a] -> Bool
prodall r lst = and [r a1 a2 \\ a1 <- lst, a2 <- lst]

safe :: Target Target -> Bool
safe t1 t2 =

((name t1) == (name t2)) ==>
(((deps t1)==(deps t2)) && (cmd t1)==(cmd t2))

apartT t0 t1 = disjoint (allnames t0) (allnames t1)

bwithinT t0 t1 = psubset (allnames t0) (allnames t1)
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crushedT t0 t1 = (notdisjoint (allnames t0) (allnames t1))
&& (not (subset (allnames t0) (allnames t1)))
&& (not (subset (allnames t1) (allnames t0)))

dwithinT t0 t1 = psubset (allnames t1) (allnames t0)

equalT t0 t1 = (allnames t0)==(allnames t1)

couldBeDAGT :: Target Target -> Bool
couldBeDAGT t1 t2 =

prodall safe ((alldeps t1)++(alldeps t2))

filesSame :: [Name] World2 World2 -> Bool
filesSame ns w1 w2 = all fileSame ns

where fileSame n = (w1 >~> getFileTime n)==(w2 >~> getFileTime n)

trace :: (a World2 -> (World2,b)) [a] World2 -> [World2]
trace a [] w = [w]
trace a [p:ps] w = [w : (trace a ps (w >-> a p))]

//Start = trace make [testTarg,testTarg,testTarg] testWorld
Start = testWorld >-> make testTarg
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