
Dynamic Integration of Classifiers in the Space of
Principal Components

Alexey Tsymbal1, Mykola Pechenizkiy2, Seppo Puuronen2, David W. Patterson3

1Dept. of Computer Science, Trinity College Dublin, Dublin, Ireland
alexey.tsymbal@cs.tcd.ie

2Dept. of Computer Science and Information Systems, University of Jyväskylä,
Jyväskylä, Finland

{mpechen, sepi}@cs.jyu.fi
3Northern Ireland Knowledge Engineering Laboratory, University of Ulster, U.K.

wd.patterson@ulst.ac.uk

Abstract. Recent research has shown the integration of multiple classifiers to
be one of the most important directions in machine learning and data mining. It
was shown that, for an ensemble to be successful, it should consist of accurate
and diverse base classifiers. However, it is also important that the integration
procedure in the ensemble should properly utilize the ensemble diversity. In this
paper, we present an algorithm for the dynamic integration of classifiers in the
space of extracted features (FEDIC). It is based on the technique of dynamic
integration, in which local accuracy estimates are calculated for each base
classifier of an ensemble, in the neighborhood of a new instance to be
processed. Generally, the whole space of original features is used to find the
neighborhood of a new instance for local accuracy estimates in dynamic
integration. In this paper, we propose to use feature extraction in order to cope
with the curse of dimensionality in the dynamic integration of classifiers. We
consider classical principal component analysis and two eigenvector-based
supervised feature extraction methods that take into account class information.
Experimental results show that, on some data sets, the use of FEDIC leads to
significantly higher ensemble accuracies than the use of plain dynamic
integration in the space of original features. As a rule, FEDIC outperforms plain
dynamic integration on data sets, on which both dynamic integration works (it
outperforms static integration), and considered feature extraction techniques are
able to successfully extract relevant features.

1 Introduction

Knowledge discovery in databases (KDD) is a combination of data warehousing,
decision support, and data mining that indicates an innovative approach to
information management. KDD is an emerging area that considers the process of
finding previously unknown and potentially interesting patterns and relations in large
databases [7]. Current electronic data repositories are growing quickly and contain
huge amount of data from commercial, scientific, and other domain areas. The
capabilities for collecting and storing all kinds of data totally exceed the abilities to

analyze, summarize, and extract knowledge from this data. Numerous data mining
methods have recently been developed to extract knowledge from these large
databases. Selection of the most appropriate data-mining method or a group of the
most appropriate methods is usually not straightforward. Often the method selection
is done statically for all new instances of the domain area without analyzing each
particular new instance. Usually better data mining results can be achieved if the
method selection is done dynamically taking into account characteristics of each new
instance.

Recent research has proved the benefits of the use of ensembles of base classifiers
for classification problems [6]. The challenge of integrating base classifiers is to
decide which of them to select or how to combine their classifications to the final
classification.

In many real-world applications, numerous features are used in an attempt to
ensure accurate classification. If all those features are used to build up classifiers, then
they operate in high dimensions, and the learning process becomes computationally
and analytically complicated. For instance, many classification techniques are based
on Bayes decision theory or on nearest neighbor search, which suffer from the so-
called “curse of dimensionality” [4] due to the drastic rise of computational
complexity and classification error in high dimensions [9]. Hence, there is a need to
reduce the dimensionality of the feature space before classification. According to the
adopted strategy dimensionality reduction techniques are divided into feature
selection and feature transformation (also called feature discovery). The variants of
the last one are feature extraction and feature construction. The key difference
between feature selection and feature transformation is that during the first process
only a subset of original features is selected while the second approach is based on a
generation of completely new features; feature construction implies discovering
missing information about the relationships among features by inferring or creating
additional features [14]. Feature extraction is a dimensionality reduction technique
that extracts a subset of new features from the original set of features by means of
some functional mapping keeping as much information in the data as possible [8].

In this paper, we consider the use of feature extraction in order to cope with the
curse of dimensionality in the dynamic integration of classifiers. We propose the
FEDIC (Feature Extraction for Dynamic Integration of Classifiers) algorithm, which
combines the dynamic selection and dynamic voting integration techniques (DS and
DV) with the conventional Principal Component Analysis (PCA) and two supervised
eigenvector-based approaches (that use the within- and between-class covariance
matrices). The first eigenvector-based approach is parametric, and the other one is
nonparametric. Both these take class information into account when extracting
features in contrast to PCA [8, 10].

Our main hypothesis is that with data sets, where feature extraction improves
classification accuracy when employing a single classifier (such as kNN or Naïve
Bayes), it will also improve classification accuracy when a dynamic integration
approach is employed. Conversely, with data sets, where feature extraction decreases
(or has no effect) classification accuracy with the use of a single classifier, then
feature extraction will also decrease (or will have no effect) classification accuracy
when employing a dynamic integration approach.

In the next section the dynamic integration of classifiers is discussed. Section 3
briefly considers PCA-based feature extraction techniques with respect to
classification problems. In Section 4 we consider the FEDIC algorithm, which
performs the dynamic integration of classifiers in the transformed space. In Section 5
experiments conducted on a number of data sets from the UCI machine learning
repository are described, and the results of the FEDIC algorithm are analyzed and
compared to the results of both the static and dynamic selection techniques shown in
the nontransformed space.

2 Dynamic Integration of Classifiers

Recently the integration of classifiers has been under active research in machine
learning, and different approaches have been considered [6]. The integration of an
ensemble of classifiers has been shown to yield higher accuracy than the most
accurate base classifier alone in different real-world problems. The two main
approaches to integration are: first, the combination approach, where base classifiers
produce their classifications and the final result is composed using those
classifications, and second, the selection approach, where one of the classifiers is
selected and the final result is the result produced by it.

The most popular and simplest method of combining classifiers is voting (also
called majority voting and Select All Majority, SAM) [3]. In this simple method, the
classification produced by a base classifier is considered as a vote for a particular
class value, and the class value with the most votes is selected as the final
classification. Weighted voting (WV) [3] and stacked generalization [25] are
examples of more sophisticated combining methods.

One very popular but simple selection approach is CVM (Cross-Validation
Majority) [12], which estimates the accuracy of each base classifier using cross-
validation and selects a classifier with the highest accuracy.

CVM is an example of a static selection method that selects one base classifier for
the whole data space. More sophisticated combining and selection methods use the
estimates of the local accuracy of the base classifiers or meta-level classifiers, which
predict the correctness of base classifiers for a new instance [15, 16]. These more
sophisticated selection methods are called dynamic selection methods.

In [20] a dynamic approach that estimates the local accuracy of each base classifier
by analyzing the accuracies of the base classifiers in near-by instances was elaborated.
Instead of training a meta-level classifier that will derive the final classification using
the classifications of the base classifiers as in stacked generalization, a meta-level
classifier that will estimate the local errors of the base classifiers for each new
instance and then use these errors to derive the final classification is trained. To
predict the errors of base classifiers, the weighted nearest neighbor classification
(WNN) is used [1].

The dynamic integration technique contains two main phases [19]. First, at the
learning phase, the training set is partitioned into folds. The cross-validation
technique is used to estimate the errors of base classifiers on the training set and a
meta-level training set is formed. It contains all the attributes of the training instances

and the estimates of the errors of base classifiers on those instances. Second, at the
application phase, a combining classifier is used to predict the performance of each
base classifier for a new instance.

Two different functions implementing the application phase were considered in
[19]: dynamic selection (DS) and dynamic voting (DV). At the application phase, DS
selects a classifier with the least predicted classification error using the WNN
procedure. DV uses the local errors as weights for the base classifiers. Then, weighted
voting is used to produce the final classification.

3 Feature Extraction for Classification

Feature extraction for classification is a search among all possible transformations for
the best one, which preserves class separability as much as possible in the space with
the lowest possible dimensionality [2, 8]. In other words, we are interested in finding
a projection w:

xwy T= , (1)

where y is a 1'×p transformed data point, w is a 'pp × transformation matrix, and x is

a 1×p original data point.

In [18] it was shown that the conventional PCA [10, 23] transforms the original set
of features into a smaller subset of linear combinations that account for most of the
variance of the original set. Although it is still probably the most popular feature
extraction technique, it has a serious drawback, giving high weights to features with
higher variabilities, irrespective of whether they are useful for classification or not.
This may give rise to the situation where the chosen principal component corresponds
to an attribute with the highest variability but has no discriminating power.

The usual approach to overcome this problem is to use some class separability
criterion, e.g. the criteria defined in Fisher linear discriminant analysis, and based on
the family of functions of scatter matrices:

wSw

wSw
w

W
T

B
T

J =)(, (2)

where SB is the between-class covariance matrix that shows the scatter of the expected
vectors around the mixture mean, and SW is the within-class covariance, that shows
the scatter of samples around their respective class expected vectors.

A number of other criteria were proposed in [8]. Both parametric and
nonparametric approaches optimize the criterion (2) by the use of the simultaneous
diagonalization algorithm [8]:

1. Transformation of X to Y: XΦΛY T1/2−= , where Λ and Φ are the
eigenvalues and eigenvectors matrices of

WS .

2. Computation of BS in the obtained Y space.

3. Selection of m eigenvectors of
BS ,

mψψ ,...,1
, which correspond to the m

largest eigenvalues.

4. Finally, new feature space YΨZ T
m= , where],...,[1 mψψΨ = , can be

obtained.
It should be noticed that there is a fundamental problem with the parametric nature

of the covariance matrices. The rank of the SB is at most the number of classes-1, and
hence no more than this number of new features can be obtained.

The nonparametric method overcomes this problem by trying to increase the
number of degrees of freedom in the between-class covariance matrix, measuring the
between-class covariances on a local basis. The k-nearest neighbor (kNN) technique
is used for this purpose.

The algorithm for nonparametric feature extraction is the same as for the
parametric extraction. Simultaneous diagonalization is used as well, and the only
difference is in calculating the between-class covariance matrix. In the nonparametric
case the between-class covariance matrix is calculated as the scatter of the samples
around the expected vectors of other classes’ instances in the neighborhood. Two
parameters (nNN and α) are used to assign more weight to those elements of the
matrix, which involve instances lying near the class boundaries and thus being more
important for classification. In [8] the parameter α was set to 1 and nNN to 3, but
without any strict justification. In [20] it was shown that these parameters have
different optimal values for each data set.

4 Dynamic Integration of Classifiers with Instance Space
Transformation

In order to address the curse of dimensionality in the dynamic integration of
classifiers, we propose the FEDIC (Feature Extraction for Dynamic Integration of
Classifiers) algorithm that first performs feature extraction and then uses a dynamic
scheme to integrate classifiers.

4.1 Scheme of the FEDIC algorithm

In Figure 1, a scheme that illustrates the components of the FEDIC approach is
presented. The FEDIC learning model consists of five phases: the training of the base
classifiers phase, the feature extraction phase (FE), the dynamic integration phase
(DIC), the model validation phase, and the model testing phase. The model is built
using a wrapper approach [11] where the variable parameters in FE and DIC can be
adjusted to improve performance as measured at the model validation phase in an
iterative manner. These parameters include the threshold value that is related to the
amount of covered variance by the first principal components and thus defines the
number of output features in the transformed space (it is set up for each feature
extraction method); the optimal values of α and nNN parameters (as described in
Section 3) in the nonparametric feature extraction technique and the number of
nearest neighbors in DIC as described later.

Fig. 1. Scheme of the FEDIC approach

In the next subsections we consider the training, feature extraction and dynamic
integration of classifiers phases of the FEDIC algorithm.

4.2 The training of the base classifiers phase

The training phase begins with preprocessing which includes categorical features’
binarization. Each categorical feature is replaced with a redundant set of binary
features, each corresponding to a value of the original feature. An ensemble of
classifiers is built from the pre-processed training data as shown in Figure 2. The
training set T is partitioned into v folds. Then, cross-validation is used to estimate the
errors of the base classifiers Ej (x

*) on the training set and the meta-level training set
T* is formed. It contains the attributes of the training instances xi and the estimates of
the errors of the base classifiers on those instances Ej(x

*). The learning phase
continues with training the base classifiers Cj on the whole training set.

T training set
Ti i-th fold of the training set
T* meta-level training set
c(x) classification of instance x
C set of base classifiers
Cj j-th base classifier
Cj(x) prediction of Cj on instance x
Ej(x) estimation of error of Cj on instance x
E error matrix
m number of base classifiers

procedure training_phase(T,C)
 begin {fill in the meta-level training set T*}
 partition T into v folds
 loop for Ti ⊂ T, i v= 1, . . . ,
 loop for j from 1 to m
 train(Cj,T-Ti)
 loop for x ∈ Ti
 loop for j from 1 to m
 compare Cj(x) with c(x) and derive Ej(x)
 collect (E1(x),...,Em(x)) into E
 T*=T|E
 loop for j from 1 to m
 train(Cj,T)
 end

Fig. 2. The training phase

4.3 The feature extraction phase

During this phase, feature extraction techniques are applied to the meta-level training
set T* to produce transformed meta-data with a reduced number of features. The
pseudo-code of this process is shown in Figure 3. The formed meta-level data set is
the input for the FE module where one of the three functions used: (1) PCA_FE that
implements conventional PCA, (2) Par_FE that implements parametric feature
extraction, or (3) NPar_FE that implements nonparametric feature extraction. The
function getYspace is used to calculate an intermediate transformed space needed for
the parametric and nonparametric approaches.

T*, T*’ meta-level and transformed meta-level data sets
S, Sb, Sw total, between- and within-class covariance

matrices
m mean vector
Y intermediate transformed space
Λ , Φ eigenvalues and eigenvectors matrices
threshold the amount of variance in the selected PCs
function PCA_FE(T*,threshold) returns T*’
begin

∑
=

−−←
n

i

T
ii

1

))((mxmxS

)eigs(SΦΛ, ← {the eigensystem decomposition}

PCAP ← formPPCA(threshold, Λ , Φ)

 {forms the transformation matrix}

return ETPT PCA
* |' ←

end

function Par_FE(T*,threshold) returns T*’
begin

Y← getYspace(T)

Tii
c

i
iB n))(()()(

1

mmmmS −−←∑
=

{computing of Sb in the Y

space}

)eigs(BSΦΛ, ←

ParP ← formPPar(threshold, Λ , Φ)

return YPT*
Par←' |E

end

function NPar_FE(T*,threshold, kNN, alpha) returns T*’
begin

Y← getYspace(T*)

∑
=

←
c

j

j
nNN

i
k

j
nNN

i
kj

ik

d

d
w

1

)()(

)()(

),(

)},({min

xx

xx

α

α

∑∑∑
≠
===

−−←
c

ij
j

Tj
ik

i
k

j
ik

i
k

n

k
ik

c

i
iB

i

wn
1

)(
*

)()(
*

)(

11

))((mxmxS

)eigs(BSΦΛ, ←

NParP ←formPNPar(threshold, Λ , Φ)

return YPT*
NPar←' |E

end
function getYspace(T*) returns Y
begin

∑∑
==

−−←
in

j

Tii
j

ii
j

c

i
iW n

1

)()()()(

1

))((mxmxS

)eigs(wSΦΛ, ←

return XΦΛY T1/2−←
end
__

Fig. 3. The feature extraction phase

4.3 The dynamic integration phase

The transformed meta-data T*’ is the input for the DIC module where the application
phase of the dynamic integration process is performed - the combining classifier is
used to predict the performance of each base classifier for a new instance. Either the
function DS_application_phase or the function DV_application_phase (Figure 4) is

used for this purpose. Both functions begin with finding in the training set T*’ a
nearest neighborhood NN of the test instance x transformed with the corresponding
transformation matrix calculated at the FE phase. The first function
DS_application_phase implements Dynamic Selection. In the DS application phase
the classification error Ej

* is predicted for each base classifier Cj using the WNN
procedure and a classifier with the lowest error (with the least global error in the case
of ties) is selected to make the final classification. The second function
DV_application_phase implements Dynamic Voting. In the DV application phase
each base classifier Cj receives a weight Wj that depends on the local classifier’s
performance, and the final classification is conducted by voting classifier predictions
Cj(x) with their weights Wj. For both functions the size of the set NN is an adjustable
parameter.

x’ an instance x transformed with PPCA, PNPar or PNPar

W vector of weights for base classifiers
T*’ transformed meta-level training set
E*

j(x) prediction of error of Cj on instance x

function DS_application_phase(T*’,C,x)returns class of x
 begin
 NN=FindNeighborhood(T*’,x’,nn)
 loop for j from 1 to m

)(
1

1

*
ii NNj

nn

i
NNj EW

nn
E x⋅∑←

=
 {WNN estimation}

 *minarg j
j

El ← {number of cl-er with min. *
jE }

 {with the least global error in the case of ties}
 return Cj(x)
 end

function DV_application_phase(T*’,C,x)returns class of x
 begin
 NN=FindNeighborhood(T*’,x’,nn)
 loop for j from 1 to m

)(
1

1
1

ii NNj

nn

i
NNj EW

nn
W x⋅∑−←

=
 {WNN estimation}

 return Weighted_Voting(W,C1(x),...,Cm(x))
 end

Fig. 4. The dynamic integration phase

We do not devote a separate subsection to the model validation and model
evaluation phases since they are performed in a straightforward manner. At the
validation phase, the performance of the given model with the given parameter
settings on an independent validation data set is tested. The given model, its
parameter settings and performance are recorded. And at the final evaluation phase,

the best model from the number of obtained models is selected. This model is the one
with optimal parameters settings as based on the validation results. The selected
model is then tested with a test data set.

In the next section we consider our experiments where we analyzed and compared
the feature-extraction techniques described above.

5 Experimental Studies

We conducted the experiments on 20 data sets with different characteristics taken
from the UCI machine learning repository [5]. The main characteristics of the data
sets, which include the name of a data set, the number of instances included in a data
set, the number of different classes of instances, and the numbers of different types of
features (categorical and numerical) included in the instances were presented in [21].
In [22] results of experiments with feature subset selection techniques with the
dynamic selection of classifiers using these data sets were presented.

For each data set 70 test runs were made. In each test run a data set was first split
into the training set, the validation set, and the test set by stratified random sampling.
Each time 60 percent of the instances were included in the training set. The other 40
percent were divided into two sets of approximately equal size (the validation and test
sets). The validation set was used in the iterative refinement of the ensemble. The test
set was used for the final estimation of the ensemble accuracy.

To construct ensembles of base classifiers we have used the EFS_SBC (Ensemble
Feature Selection for the Simple Bayesian Classification) algorithm, introduced in
[20]. Initial base classifiers were built using the Naïve Bayes on the training set and
later refined using a hill-climbing cycle on the validation data set. The size of
ensemble was selected to be equal to 25. It was shown that the biggest gain is
achieved already with this number of base classifiers [2]. The diversity coefficient α
was selected as it was recommended in [20] for each data set.

At each run of the algorithm, we collected accuracies for the four types of
integration of the base classifiers: Static Selection (SS), Weighted Voting (WV),
Dynamic Selection (DS), and Dynamic Voting (DV). In dynamic integration, the
number of nearest neighbors for the local accuracy estimates was pre-selected from

the set of six values: 1, 3, 7, 15, 31, 63 (6,...,1,12 =− nn), for each data set separately.
Heterogeneous Euclidean-Overlap Metric (HEOM) [24] was used for calculation of
the distances in dynamic integration.

A multiplicative factor of 1 was used for the Laplace correction in simple Bayes.
Numeric features were discretized into ten equal-length intervals (or one per observed
value, whichever was less). Software for the experiments was implemented using the
MLC++ machine learning library [13].

In Section 6 the results of dynamic integration with feature extraction using FEDIC
are compared with the results when no feature extraction was used, and dynamic
integration was therefore carried out in the space of original features.

6 Results and Discussions

The basic results of the experiments are presented in Table 1. The average
classification accuracies of the 3-NN classifier (3-nearest neighbor search) are given
for the three feature extraction techniques, namely PCA, parametric (Par) and
nonparametric (NPar) approaches. Additionally, classification accuracy for the
situation without feature extraction (Plain) is also shown. Then, in the same order,
accuracies for the FEDIC approaches averaged over dynamic selection and dynamic
voting schemes are presented. The last column contains classification accuracies for
the static integration of classifiers (SIC) averaged over static selection and weighted
voting. Each row of the table corresponds to a single data set. The last row includes
the results averaged over all the data sets.

From Table 1 one can see that the nonparametric approach has the best accuracy on
average both with the base classifier and with the dynamic integration scenarios.
Although the parametric approach has extracted the least number of features, and it
has been the least time-consuming approach, its performance has been unstable. The
parametric approach has rather weak results on the Glass, Monk-1, and Tic data sets
in comparison to the other feature extraction approaches. The scenario with
parametric feature extraction has the worst average accuracy.

Table 1. Results of the experiments

3-NN Classifier FEDIC SIC Data set
PCA Par NPar Plain PCA Par Npar Plain Plain

Balance .827 .893 .863 .834 .896 .897 .896 .896 .896
Breast .721 .676 .676 .724 .747 .731 .747 .744 .744
Car .824 .968 .964 .806 .920 .941 .942 .911 .863
Diabetes .730 .725 .722 .730 .762 .761 .761 .761 .761
Glass .659 .577 .598 .664 .674 .603 .621 .679 .623
Heart .777 .806 .706 .790 .839 .838 .839 .839 .839
Ionospher .872 .843 .844 .849 .920 .915 .917 .918 .916
Iris .963 .980 .980 .955 .933 .940 .935 .941 .929
LED .646 .630 .635 .667 .745 .744 .744 .744 .751
LED17 .395 .493 .467 .378 .690 .690 .690 .690 .690
Liver .664 .612 .604 .616 .635 .621 .623 .625 .615
Lymph .813 .832 .827 .814 .830 .828 .830 .830 .824
Monk-1 .767 .687 .952 .758 .838 .709 .942 .832 .746
Monk-2 .717 .654 .962 .504 .665 .663 .672 .665 .664
Monk-3 .939 .990 .990 .843 .975 .985 .987 .984 .971
Thyroid .921 .942 .933 .938 .958 .951 .955 .961 .953
Tic .971 .977 .984 .684 .964 .783 .895 .930 .730
Vehicle .753 .752 .778 .694 .700 .657 .704 .664 .603
Voting .923 .949 .946 .921 .953 .945 .949 .953 .951
Zoo .937 .885 .888 .932 .960 .959 .959 .960 .948
Avg .801 .803 .824 .766 .820 .805 .822 .815 .796

The nonparametric approach extracts more features due to its nonparametric nature,
and still it was less time-consuming than the PCA and Plain classification. We should
also point out that feature extraction speeds up dynamic integration in the same way
as feature extraction speeds up a single classifier. This is as one could expect, since
nearest-neighbor search for the prediction of local accuracies is the most time-
consuming part of the application phase in dynamic integration, and it uses the same
feature space as a single nearest-neighbor classifier does. Moreover, the two nearest-
neighbor search processes (in dynamic integration and in a base classifier) are
completely identical, and differ only in the number of nearest neighbors used to
define the neighborhood.

The results of Table 1 show that, in some cases, dynamic integration in the space of
extracted features results in significantly higher accuracies than dynamic integration
in the space of original features. This is the situation with the Car, Liver, Monk-1,
Monk-2, Tic-Tac-Toe and Vehicle data sets. For these data sets we have pairwise
compared each FEDIC technique with the others and with static integration using the
paired Student t-test with the 0.95 level of significance. Results of the comparison are
given in Table 2. Columns 2-6 of the table contain the results of comparing a
technique corresponding to the row of a cell with a technique corresponding to the
column, using the paired t-test. Each cell contains win/tie/loss information according
to the t-test. For example, PCA has 3 wins against the parametric extraction, 1 draw
and 1 loss on 5 data sets.

Table 2. Results of the paired t-test (win/tie/loss information) for data sets, on which FEDIC
outperforms plain dynamic integration

There is an important trend in the results – the FEDIC algorithm outperforms dynamic
integration on plain features only on those data sets, on which feature extraction for
classification with a single classifier provides better results than the classification on
the plain features. If we analyze this correlation further, we will come to the
conclusion that feature extraction influences the accuracy of dynamic integration to a
similar extent as feature extraction influences the accuracy of base classifiers. This
trend supports our expectations about the behavior of the FEDIC algorithm.

The reason for that behavior is that both the meta-level learning process in
dynamic integration, and the base learning process in base classifiers use the same
feature space. Though, it is necessary to note, that the output values are still different
in those learning tasks (these are local classification errors and the classes themselves
correspondingly). Thus, the feature space is the same, and the output values to be
predicted are different. This justifies that the influence of feature extraction on the
accuracy of dynamic integration in comparison with the influence on the accuracy of
a single classifier is still different to a certain degree.

 PCA Parametric Nonparam. Plain SIC
PCA 3/1/1 2/0/3 4/1/0 4/1/0
Parametric 1/1/3 0/2/3 2/2/1 3/1/1
Nonparam. 3/0/2 3/2/0 4/1/0 5/0/0
Plain 0/1/4 1/2/2 0/1/4 1/3/1
SIC 0/1/4 1/1/3 0/0/5 1/3/1

In Figure 5 we summarize the accuracy results obtained on those data sets where at
least some FEDIC-based technique (with PCA, parametric or nonparametric feature
extraction) significantly outperforms the dynamic integration of classifiers on plain
feature sets and the averaged results. It can be seen from the histogram that the
nonparametric FEDIC shows the best accuracy on average of all the techniques
considered. FEDIC and plain dynamic integration on average show almost the same
results although we have to point out that this has happened due to the very unstable
behavior of the parametric approach. The dynamic approaches significantly
outperform the static ones.

7 Conclusion

Feature extraction as a dimensionality reduction technique helps to overcome the
problems related to the “curse of dimensionality“ with respect to the dynamic
integration of classifiers. The experiments showed that the DIC approaches based on
the plain feature sets had worse results in comparison to the results obtained using the
FEDIC algorithm. This supports the fact that dimensionality reduction can often
enhance a classification model.

0.550

0.600

0.650

0.700

0.750

0.800

0.850

0.900

0.950

1.000

Car Liver Monk-1 Monk-2 Tic Vehicle average

SIC

DIC_Plain

FEDIC_PCA

FEDIC_Par

FEDIC_NPar

Fig. 5. Classification accuracy for data sets, on which the FEDIC algorithm outperforms plain
dynamic integration

The results showed that the proposed FEDIC algorithm outperforms the dynamic
schemes on plain features only on those data sets, on which feature extraction for
classification with a single classifier provides better results than classification on plain
features. When we analyzed this dependency further, we came to a conclusion that
feature extraction influenced on the accuracy of dynamic integration in most cases in
the same manner as feature extraction influenced on the accuracy of base classifiers.

The nonparametric approach was the best on average; however, it is necessary to
note that each feature extraction technique was significantly better than all the other
techniques at least on one data set. Further research is needed to define the
dependencies between the characteristics of a data set and the type and parameters of
the feature extraction approach that best suits it.

Some of the most important issues for future research to be raised by this work,
include how the algorithm could automatically determine what transformation matrix
should be chosen (i.e. what is the optimal feature extraction method) from the
characteristics of the input data and what the optimal parameter settings for the
selected feature extraction method should be. Also of interest is, how the most
appropriate dynamic integration scheme could be automatically identified.

Acknowledgments: This research is partly supported by Science Foundation Ireland
and COMAS Graduate School of the University of Jyväskylä, Finland. We would like
to thank the UCI ML repository of databases, domain theories and data generators for
the data sets, and the MLC++ library for the source code used in this study.

References

1. Aivazyan, S.A. Applied statistics: classification and dimension reduction. Finance and
Statistics, Moscow (1989).

2. Aladjem, M. Parametric and nonparametric linear mappings of multidimensional data.
Pattern Recognition, Vol.24(6) (1991), pp. 543-553.

3. Bauer, E., Kohavi, R. An empirical comparison of voting classification algorithms:
bagging, boosting, and variants. Machine Learning, Vol. 36, Nos. 1,2 (1999) 105-139.

4. Bellman, R., Adaptive Control Processes: A Guided Tour, Princeton University Press
(1961).

5. Blake, C.L., Merz, C.J. UCI repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/ MLRepository.html]. Dept. of Information and Computer
Science, University of California, Irvine, CA (1998).

6. Dietterich, T.G. Machine learning research: four current directions. AI Magazine 18(4)
(1997) 97-136.

7. Fayyad U.M. Data Mining and Knowledge Discovery: Making Sense Out of Data,
IEEE Expert, Vol. 11, No. 5, Oct. (1996) pp. 20-25

8. Fukunaga, K. Introduction to statistical pattern recognition. Academic Press, London
(1999).

9. Hall, M.A. Correlation-based feature selection of discrete and numeric class machine
learning. In Proc. Int. Conf. On Machine Learning (ICML-2000), San Francisco, CA.
Morgan Kaufmann, San Francisco, CA (2000) 359-366.

10. Jolliffe, I.T. Principal Component Analysis. Springer, New York, NY. (1986).

11. Kohavi, R. Wrappers for performance enhancement and oblivious decision graphs. Dept. of
Computer Science, Stanford University, Stanford, USA. PhD Thesis (1995).

12. Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model
selection. In C.Mellish (ed.), Proc. 14th Int. Joint Conf. on Artificial Intelligence IJCAI-95.
Morgan Kaufmann, San Francisco, CA (1995) 1137-1145.

13. Kohavi, R., Sommerfield, D., Dougherty, J. Data mining using MLC++: a machine learning
library in C++. In M.G.Radle (ed.) Proc. 8th IEEE Conf. on Tools with Artificial
Intelligence. IEEE CS Press, Los Alamitos, CA (1996) 234-245.

14. Liu H. Feature Extraction, Construction and Selection: A Data Mining Perspective, ISBN
0-7923-8196-3, Kluwer Academic Publishers (1998).

15. Merz, C.J. Dynamical selection of learning algorithms. In D.Fisher, H.-J.Lenz (eds.),
Learning from data, artificial intelligence and statistics, Springer-Verlag, NY (1996).

16. Merz, C.J. Using correspondence analysis to combine classifiers. Machine Learning 36(1-
2) (1999) 33-58.

17. Opitz, D. & Maclin, D. Popular ensemble methods: an empirical study. Journal of Artificial
Intelligence Research 11 (1999), 169-198.

18. Oza, N.C., Tumer, K. Dimensionality reduction through classifier ensembles. Technical
report NASA-ARC-IC-1999-124, Computational Sciences Division, NASA Ames
Research Center, Moffett Field, CA (1999).

19. Puuronen, S., Terziyan, V., Tsymbal, A. A dynamic integration algorithm for an ensemble
of classifiers. In Z.W. Ras, A. Skowron (eds.), Foundations of Intelligent Systems:
ISMIS’99, Lecture Notes in AI, Vol. 1609, Springer-Verlag, Warsaw (1999) 592-600.

20. Tsymbal, A., Puuronen, S., Patterson, D. Ensemble feature selection with the simple
Bayesian classification. Information Fusion, Special Issue “Fusion of Multiple Classifiers”,
Elsevier Science (2003) (to appear).

21. Tsymbal A., Puuronen S., Pechenizkiy M., Baumgarten M., Patterson D. Eigenvector-based
feature extraction for classification. In Proc. 15th Int. FLAIRS Conference on Artificial
Intelligence, Pensacola, FL, USA, AAAI Press (2002) 354-358.

22. Tsymbal A., Puuronen S., Skrypnyk I. Ensemble feature selection with dynamic integration
of classifiers. In Int. ICSC Congress on Computational Intelligence Methods and
Applications CIMA’2001, Bangor, Wales, U.K (2001).

23. William D.R., Goldstein M. Multivariate Analysis. Methods and Applications. ISBN 0-
471-08317-8, John Wiley & Sons (1984), 587 p.

24. Wilson, D.R. & Martinez, T.R. Improved heterogeneous distance functions. Journal of
Artificial Intelligence Research 6(1) (1997), 1-34

25. Wolpert, D. Stacked Generalization. Neural Networks, Vol. 5 (1992) 241-259.

