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Abstract. Recent research has shown the integration of multiple classifiers to 
be one of the most important directions in machine learning and data mining. It 
was shown that, for an ensemble to be successful, it should consist of accurate 
and diverse base classifiers. However, it is also important that the integration 
procedure in the ensemble should properly utilize the ensemble diversity. In this 
paper, we present an algorithm for the dynamic integration of classifiers in the 
space of extracted features (FEDIC). It is based on the technique of dynamic 
integration, in which local accuracy estimates are calculated for each base 
classifier of an ensemble, in the neighborhood of a new instance to be 
processed. Generally, the whole space of original features is used to find the 
neighborhood of a new instance for local accuracy estimates in dynamic 
integration. In this paper, we propose to use feature extraction in order to cope 
with the curse of dimensionality in the dynamic integration of classifiers. We 
consider classical principal component analysis and two eigenvector-based 
supervised feature extraction methods that take into account class information. 
Experimental results show that, on some data sets, the use of FEDIC leads to 
significantly higher ensemble accuracies than the use of plain dynamic 
integration in the space of original features. As a rule, FEDIC outperforms plain 
dynamic integration on data sets, on which both dynamic integration works (it 
outperforms static integration), and considered feature extraction techniques are 
able to successfully extract relevant features. 

1 Introduction 

Knowledge discovery in databases (KDD) is a combination of data warehousing, 
decision support, and data mining that indicates an innovative approach to 
information management. KDD is an emerging area that considers the process of 
finding previously unknown and potentially interesting patterns and relations in large 
databases [7]. Current electronic data repositories are growing quickly and contain 
huge amount of data from commercial, scientific, and other domain areas. The 
capabilities for collecting and storing all kinds of data totally exceed the abilities to 



analyze, summarize, and extract knowledge from this data. Numerous data mining 
methods have recently been developed to extract knowledge from these large 
databases. Selection of the most appropriate data-mining method or a group of the 
most appropriate methods is usually not straightforward. Often the method selection 
is done statically for all new instances of the domain area without analyzing each 
particular new instance. Usually better data mining results can be achieved if the 
method selection is done dynamically taking into account characteristics of each new 
instance. 

Recent research has proved the benefits of the use of ensembles of base classifiers 
for classification problems [6]. The challenge of integrating base classifiers is to 
decide which of them to select or how to combine their classifications to the final 
classification. 

In many real-world applications, numerous features are used in an attempt to 
ensure accurate classification. If all those features are used to build up classifiers, then 
they operate in high dimensions, and the learning process becomes computationally 
and analytically complicated. For instance, many classification techniques are based 
on Bayes decision theory or on nearest neighbor search, which suffer from the so-
called “curse of dimensionality” [4] due to the drastic rise of computational 
complexity and classification error in high dimensions [9]. Hence, there is a need to 
reduce the dimensionality of the feature space before classification. According to the 
adopted strategy dimensionality reduction techniques are divided into feature 
selection and feature transformation (also called feature discovery). The variants of 
the last one are feature extraction and feature construction. The key difference 
between feature selection and feature transformation is that during the first process 
only a subset of original features is selected while the second approach is based on a 
generation of completely new features; feature construction implies discovering 
missing information about the relationships among features by inferring or creating 
additional features [14]. Feature extraction is a dimensionality reduction technique 
that extracts a subset of new features from the original set of features by means of 
some functional mapping keeping as much information in the data as possible [8].  

In this paper, we consider the use of feature extraction in order to cope with the 
curse of dimensionality in the dynamic integration of classifiers. We propose the 
FEDIC (Feature Extraction for Dynamic Integration of Classifiers) algorithm, which 
combines the dynamic selection and dynamic voting integration techniques (DS and 
DV) with the conventional Principal Component Analysis (PCA) and two supervised 
eigenvector-based approaches (that use the within- and between-class covariance 
matrices). The first eigenvector-based approach is parametric, and the other one is 
nonparametric. Both these take class information into account when extracting 
features in contrast to PCA [8, 10].   

Our main hypothesis is that with data sets, where feature extraction improves 
classification accuracy when employing a single classifier (such as kNN or Naïve 
Bayes), it will also improve classification accuracy when a dynamic integration 
approach is employed. Conversely, with data sets, where feature extraction decreases 
(or has no effect) classification accuracy with the use of a single classifier, then 
feature extraction will also decrease (or will have no effect) classification accuracy 
when employing a dynamic integration approach. 



      

In the next section the dynamic integration of classifiers is discussed. Section 3 
briefly considers PCA-based feature extraction techniques with respect to 
classification problems. In Section 4 we consider the FEDIC algorithm, which 
performs the dynamic integration of classifiers in the transformed space. In Section 5 
experiments conducted on a number of data sets from the UCI machine learning 
repository are described, and the results of the FEDIC algorithm are analyzed and 
compared to the results of both the static and dynamic selection techniques shown in 
the nontransformed space. 

2 Dynamic Integration of Classifiers 

Recently the integration of classifiers has been under active research in machine 
learning, and different approaches have been considered [6]. The integration of an 
ensemble of classifiers has been shown to yield higher accuracy than the most 
accurate base classifier alone in different real-world problems. The two main 
approaches to integration are: first, the combination approach, where base classifiers 
produce their classifications and the final result is composed using those 
classifications, and second, the selection approach, where one of the classifiers is 
selected and the final result is the result produced by it. 

The most popular and simplest method of combining classifiers is voting (also 
called majority voting and Select All Majority, SAM) [3]. In this simple method, the 
classification produced by a base classifier is considered as a vote for a particular 
class value, and the class value with the most votes is selected as the final 
classification. Weighted voting (WV) [3] and stacked generalization [25] are 
examples of more sophisticated combining methods.  

One very popular but simple selection approach is CVM (Cross-Validation 
Majority) [12], which estimates the accuracy of each base classifier using cross-
validation and selects a classifier with the highest accuracy.  

CVM is an example of a static selection method that selects one base classifier for 
the whole data space. More sophisticated combining and selection methods use the 
estimates of the local accuracy of the base classifiers or meta-level classifiers, which 
predict the correctness of base classifiers for a new instance [15, 16]. These more 
sophisticated selection methods are called dynamic selection methods. 

In [20] a dynamic approach that estimates the local accuracy of each base classifier 
by analyzing the accuracies of the base classifiers in near-by instances was elaborated. 
Instead of training a meta-level classifier that will derive the final classification using 
the classifications of the base classifiers as in stacked generalization, a meta-level 
classifier that will estimate the local errors of the base classifiers for each new 
instance and then use these errors to derive the final classification is trained. To 
predict the errors of base classifiers, the weighted nearest neighbor classification 
(WNN) is used [1].  

The dynamic integration technique contains two main phases [19]. First, at the 
learning phase, the training set is partitioned into folds. The cross-validation 
technique is used to estimate the errors of base classifiers on the training set and a 
meta-level training set is formed. It contains all the attributes of the training instances 



and the estimates of the errors of base classifiers on those instances. Second, at the 
application phase, a combining classifier is used to predict the performance of each 
base classifier for a new instance.  

Two different functions implementing the application phase were considered in 
[19]: dynamic selection (DS) and dynamic voting (DV). At the application phase, DS 
selects a classifier with the least predicted classification error using the WNN 
procedure. DV uses the local errors as weights for the base classifiers. Then, weighted 
voting is used to produce the final classification. 

3 Feature Extraction for Classification 

Feature extraction for classification is a search among all possible transformations for 
the best one, which preserves class separability as much as possible in the space with 
the lowest possible dimensionality [2, 8]. In other words, we are interested in finding 
a projection w: 

xwy T= , (1) 

where y is a 1'×p  transformed data point, w is a 'pp ×  transformation matrix, and x is 

a 1×p  original data point. 

In [18] it was shown that the conventional PCA [10, 23] transforms the original set 
of features into a smaller subset of linear combinations that account for most of the 
variance of the original set. Although it is still probably the most popular feature 
extraction technique, it has a serious drawback, giving high weights to features with 
higher variabilities, irrespective of whether they are useful for classification or not. 
This may give rise to the situation where the chosen principal component corresponds 
to an attribute with the highest variability but has no discriminating power. 

The usual approach to overcome this problem is to use some class separability 
criterion, e.g. the criteria defined in Fisher linear discriminant analysis, and based on 
the family of functions of scatter matrices:  
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where SB is the between-class covariance matrix that shows the scatter of the expected 
vectors around the mixture mean, and SW is the within-class covariance, that shows 
the scatter of samples around their respective class expected vectors. 

A number of other criteria were proposed in [8]. Both parametric and 
nonparametric approaches optimize the criterion (2) by the use of the simultaneous 
diagonalization algorithm [8]: 

1. Transformation of X to Y: XΦΛY T1/2−= , where Λ  and Φ  are the 
eigenvalues and eigenvectors matrices of 

WS .  

2. Computation of BS  in the obtained Y space. 

3. Selection of m eigenvectors of 
BS , 

mψψ ,...,1
, which correspond to the m 

largest eigenvalues. 



      

4. Finally, new feature space YΨZ T
m= , where ],...,[ 1 mψψΨ = , can be 

obtained. 
It should be noticed that there is a fundamental problem with the parametric nature 

of the covariance matrices. The rank of the SB is at most the number of classes-1, and 
hence no more than this number of new features can be obtained. 

The nonparametric method overcomes this problem by trying to increase the 
number of degrees of freedom in the between-class covariance matrix, measuring the 
between-class covariances on a local basis. The k-nearest neighbor (kNN) technique 
is used for this purpose. 

The algorithm for nonparametric feature extraction is the same as for the 
parametric extraction. Simultaneous diagonalization is used as well, and the only 
difference is in calculating the between-class covariance matrix. In the nonparametric 
case the between-class covariance matrix is calculated as the scatter of the samples 
around the expected vectors of other classes’ instances in the neighborhood. Two 
parameters (nNN and α ) are used to assign more weight to those elements of the 
matrix, which involve instances lying near the class boundaries and thus being more 
important for classification. In [8] the parameter α  was set to 1 and nNN to 3, but 
without any strict justification. In [20] it was shown that these parameters have 
different optimal values for each data set. 

4 Dynamic Integration of Classifiers with Instance Space 
Transformation 

In order to address the curse of dimensionality in the dynamic integration of 
classifiers, we propose the FEDIC (Feature Extraction for Dynamic Integration of 
Classifiers) algorithm that first performs feature extraction and then uses a dynamic 
scheme to integrate classifiers. 

4.1 Scheme of the FEDIC algorithm 

In Figure 1, a scheme that illustrates the components of the FEDIC approach is 
presented. The FEDIC learning model consists of five phases: the training of the base 
classifiers phase, the feature extraction phase (FE), the dynamic integration phase 
(DIC), the model validation phase, and the model testing phase. The model is built 
using a wrapper approach [11] where the variable parameters in FE and DIC can be 
adjusted to improve performance as measured at the model validation phase in an 
iterative manner. These parameters include the threshold value that is related to the 
amount of covered variance by the first principal components and thus defines the 
number of output features in the transformed space (it is set up for each feature 
extraction method); the optimal values of α  and nNN parameters (as described in 
Section 3) in the nonparametric feature extraction technique and the number of 
nearest neighbors in DIC as described later. 
 
 



 

Fig. 1.  Scheme of the FEDIC approach 

In the next subsections we consider the training, feature extraction and dynamic 
integration of classifiers phases of the FEDIC algorithm. 

4.2 The training of the base classifiers phase 

The training phase begins with preprocessing which includes categorical features’ 
binarization. Each categorical feature is replaced with a redundant set of binary 
features, each corresponding to a value of the original feature. An ensemble of 
classifiers is built from the pre-processed training data as shown in Figure 2. The 
training set T is partitioned into v folds. Then, cross-validation is used to estimate the 
errors of the base classifiers Ej (x

*) on the training set and the meta-level training set 
T* is formed. It contains the attributes of the training instances xi and the estimates of 
the errors of the base classifiers on those instances Ej(x

*). The learning phase 
continues with training the base classifiers Cj on the whole training set. 
 
_________________________________________________________ 

T  training set 
Ti  i-th fold of the training set 
T*  meta-level training set 
c(x) classification of instance x 
C  set of base classifiers 
Cj  j-th base classifier 
Cj(x) prediction of Cj on instance x 
Ej(x) estimation of error of Cj on instance x 
E error matrix 
m  number of base classifiers 



      

 
procedure training_phase(T,C) 
 begin {fill in the meta-level training set T*} 
  partition T into v folds 
  loop for Ti ⊂ T, i v= 1, . . . ,  
   loop for j from 1 to m 
    train(Cj,T-Ti) 
   loop for x ∈ Ti 
    loop for j from 1 to m 
     compare Cj(x) with c(x) and derive Ej(x) 
   collect (E1(x),...,Em(x)) into E 
  T*=T|E 
  loop for j from 1 to m 
   train(Cj,T) 
 end 
_________________________________________________________ 

Fig. 2. The training phase 

4.3 The feature extraction phase 

During this phase, feature extraction techniques are applied to the meta-level training 
set T* to produce transformed meta-data with a reduced number of features. The 
pseudo-code of this process is shown in Figure 3. The formed meta-level data set is 
the input for the FE module where one of the three functions used: (1) PCA_FE that 
implements conventional PCA, (2) Par_FE that implements parametric feature 
extraction, or (3) NPar_FE that implements nonparametric feature extraction. The 
function getYspace is used to calculate an intermediate transformed space needed for 
the parametric and nonparametric approaches. 
_________________________________________________________ 

T*, T*’   meta-level and transformed meta-level data sets 
S, Sb, Sw total, between- and within-class covariance 

matrices 
m mean vector 
Y intermediate transformed space 
Λ , Φ  eigenvalues and eigenvectors matrices 
threshold the amount of variance in the selected PCs 
function PCA_FE(T*,threshold) returns T*’ 
begin 
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end 



function Par_FE(T*,threshold) returns T*’ 
begin 

Y← getYspace(T) 
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function NPar_FE(T*,threshold, kNN, alpha) returns T*’ 
begin 
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end 
function getYspace(T*) returns Y 
begin  
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end 
________________________________________________________ 

Fig. 3. The feature extraction phase 

4.3 The dynamic integration phase 

The transformed meta-data T*’ is the input for the DIC module where the application 
phase of the dynamic integration process is performed - the combining classifier is 
used to predict the performance of each base classifier for a new instance. Either the 
function DS_application_phase or the function DV_application_phase  (Figure 4) is 



      

used for this purpose. Both functions begin with finding in the training set T*’ a 
nearest neighborhood NN of the test instance x transformed with the corresponding 
transformation matrix calculated at the FE phase. The first function 
DS_application_phase implements Dynamic Selection. In the DS application phase 
the classification error Ej

* is predicted for each base classifier Cj using the WNN 
procedure and a classifier with the lowest error (with the least global error in the case 
of ties) is selected to make the final classification. The second function 
DV_application_phase implements Dynamic Voting. In the DV application phase 
each base classifier Cj receives a weight Wj that depends on the local classifier’s 
performance, and the final classification is conducted by voting classifier predictions 
Cj(x) with their weights Wj. For both functions the size of the set NN is an adjustable 
parameter. 

_________________________________________________________ 

x’ an instance x transformed with PPCA, PNPar or PNPar 

W  vector of weights for base classifiers 
T*’ transformed meta-level training set 
E*

j(x) prediction of error of Cj on instance x 

function DS_application_phase(T*’,C,x)returns class of x 
 begin 
  NN=FindNeighborhood(T*’,x’,nn) 
  loop for j from 1 to m 

   )(
1

1

*
ii NNj

nn

i
NNj EW

nn
E x⋅∑←

=
 {WNN estimation} 

  *minarg j
j

El ←  {number of cl-er with min. *
jE } 

  {with the least global error in the case of ties} 
  return Cj(x) 
 end 

function DV_application_phase(T*’,C,x)returns class of x 
 begin 
  NN=FindNeighborhood(T*’,x’,nn) 
  loop for j from 1 to m 

   )(
1

1
1

ii NNj

nn

i
NNj EW

nn
W x⋅∑−←

=
 {WNN estimation} 

  return Weighted_Voting(W,C1(x),...,Cm(x)) 
 end 
_________________________________________________________ 

Fig. 4. The dynamic integration phase 

 
 

We do not devote a separate subsection to the model validation and model 
evaluation phases since they are performed in a straightforward manner. At the 
validation phase, the performance of the given model with the given parameter 
settings on an independent validation data set is tested. The given model, its 
parameter settings and performance are recorded. And at the final evaluation phase, 



the best model from the number of obtained models is selected. This model is the one 
with optimal parameters settings as based on the validation results.  The selected 
model is then tested with a test data set. 

In the next section we consider our experiments where we analyzed and compared 
the feature-extraction techniques described above. 

5 Experimental Studies 

We conducted the experiments on 20 data sets with different characteristics taken   
from the UCI machine learning repository [5]. The main characteristics of the data 
sets, which include the name of a data set, the number of instances included in a data 
set, the number of different classes of instances, and the numbers of different types of 
features (categorical and numerical) included in the instances were presented in [21]. 
In [22] results of experiments with feature subset selection techniques with the 
dynamic selection of classifiers using these data sets were presented. 

For each data set 70 test runs were made. In each test run a data set was first split 
into the training set, the validation set, and the test set by stratified random sampling. 
Each time 60 percent of the instances were included in the training set. The other 40 
percent were divided into two sets of approximately equal size (the validation and test 
sets). The validation set was used in the iterative refinement of the ensemble. The test 
set was used for the final estimation of the ensemble accuracy. 

To construct ensembles of base classifiers we have used the EFS_SBC (Ensemble 
Feature Selection for the Simple Bayesian Classification) algorithm, introduced in 
[20]. Initial base classifiers were built using the Naïve Bayes on the training set and 
later refined using a hill-climbing cycle on the validation data set. The size of 
ensemble was selected to be equal to 25. It was shown that the biggest gain is 
achieved already with this number of base classifiers [2]. The diversity coefficient α  
was selected as it was recommended in [20] for each data set. 

At each run of the algorithm, we collected accuracies for the four types of 
integration of the base classifiers: Static Selection (SS), Weighted Voting (WV), 
Dynamic Selection (DS), and Dynamic Voting (DV). In dynamic integration, the 
number of nearest neighbors for the local accuracy estimates was pre-selected from 

the set of six values: 1, 3, 7, 15, 31, 63 ( 6,...,1,12 =− nn ), for each data set separately. 
Heterogeneous Euclidean-Overlap Metric (HEOM) [24] was used for calculation of 
the distances in dynamic integration. 

A multiplicative factor of 1 was used for the Laplace correction in simple Bayes. 
Numeric features were discretized into ten equal-length intervals (or one per observed 
value, whichever was less). Software for the experiments was implemented using the 
MLC++ machine learning library [13]. 

In Section 6 the results of dynamic integration with feature extraction using FEDIC 
are compared with the results when no feature extraction was used, and dynamic 
integration was therefore carried out in the space of original features. 



      

6 Results and Discussions 

The  basic  results  of   the  experiments   are   presented   in  Table 1.   The   average 
classification accuracies of the 3-NN classifier (3-nearest neighbor search) are given 
for the three feature extraction techniques, namely PCA, parametric (Par) and 
nonparametric (NPar) approaches. Additionally, classification accuracy for the 
situation without feature extraction (Plain) is also shown. Then, in the same order, 
accuracies for the FEDIC approaches averaged over dynamic selection and dynamic 
voting schemes are presented. The last column contains classification accuracies for 
the static integration of classifiers (SIC) averaged over static selection and weighted 
voting. Each row of the table corresponds to a single data set. The last row includes 
the results averaged over all the data sets. 

From Table 1 one can see that the nonparametric approach has the best accuracy on 
average both with the base classifier and with the dynamic integration scenarios. 
Although the parametric approach has extracted the least number of features, and it 
has been the least time-consuming approach, its performance has been unstable. The 
parametric approach has rather weak results on the Glass, Monk-1, and Tic data sets 
in comparison to the other feature extraction approaches. The scenario with 
parametric feature extraction has the worst average accuracy. 

Table 1. Results of the experiments 

3-NN Classifier FEDIC SIC Data set 
PCA Par NPar Plain PCA Par Npar Plain Plain 

Balance .827 .893 .863 .834 .896 .897 .896 .896 .896 
Breast .721 .676 .676 .724 .747 .731 .747 .744 .744 
Car .824 .968 .964 .806 .920 .941 .942 .911 .863 
Diabetes .730 .725 .722 .730 .762 .761 .761 .761 .761 
Glass .659 .577 .598 .664 .674 .603 .621 .679 .623 
Heart .777 .806 .706 .790 .839 .838 .839 .839 .839 
Ionospher .872 .843 .844 .849 .920 .915 .917 .918 .916 
Iris .963 .980 .980 .955 .933 .940 .935 .941 .929 
LED .646 .630 .635 .667 .745 .744 .744 .744 .751 
LED17 .395 .493 .467 .378 .690 .690 .690 .690 .690 
Liver .664 .612 .604 .616 .635 .621 .623 .625 .615 
Lymph .813 .832 .827 .814 .830 .828 .830 .830 .824 
Monk-1 .767 .687 .952 .758 .838 .709 .942 .832 .746 
Monk-2 .717 .654 .962 .504 .665 .663 .672 .665 .664 
Monk-3 .939 .990 .990 .843 .975 .985 .987 .984 .971 
Thyroid .921 .942 .933 .938 .958 .951 .955 .961 .953 
Tic .971 .977 .984 .684 .964 .783 .895 .930 .730 
Vehicle .753 .752 .778 .694 .700 .657 .704 .664 .603 
Voting .923 .949 .946 .921 .953 .945 .949 .953 .951 
Zoo .937 .885 .888 .932 .960 .959 .959 .960 .948 
Avg .801 .803 .824 .766 .820 .805 .822 .815 .796 
 



The nonparametric approach extracts more features due to its nonparametric nature, 
and still it was less time-consuming than the PCA and Plain classification. We should 
also point out that feature extraction speeds up dynamic integration in the same way 
as feature extraction speeds up a single classifier. This is as one could expect, since 
nearest-neighbor search for the prediction of local accuracies is the most time-
consuming part of the application phase in dynamic integration, and it uses the same 
feature space as a single nearest-neighbor classifier does. Moreover, the two nearest-
neighbor search processes (in dynamic integration and in a base classifier) are 
completely identical, and differ only in the number of nearest neighbors used to 
define the neighborhood. 

The results of Table 1 show that, in some cases, dynamic integration in the space of 
extracted features results in significantly higher accuracies than dynamic integration 
in the space of original features. This is the situation with the Car, Liver, Monk-1, 
Monk-2, Tic-Tac-Toe and Vehicle data sets. For these data sets we have pairwise 
compared each FEDIC technique with the others and with static integration using the 
paired Student t-test with the 0.95 level of significance. Results of the comparison are 
given in Table 2. Columns 2-6 of the table contain the results of comparing a 
technique corresponding to the row of a cell with a technique corresponding to the 
column, using the paired t-test. Each cell contains win/tie/loss information according 
to the t-test. For example, PCA has 3 wins against the parametric extraction, 1 draw 
and 1 loss on 5 data sets. 

Table 2. Results of the paired t-test (win/tie/loss information) for data sets, on which FEDIC 
outperforms plain dynamic integration 

 
There is an important trend in the results – the FEDIC algorithm outperforms dynamic 
integration on plain features only on those data sets, on which feature extraction for 
classification with a single classifier provides better results than the classification on 
the plain features. If we analyze this correlation further, we will come to the 
conclusion that feature extraction influences the accuracy of dynamic integration to a 
similar extent as feature extraction influences the accuracy of base classifiers. This 
trend supports our expectations about the behavior of the FEDIC algorithm.  

The reason for that behavior is that both the meta-level learning process in 
dynamic integration, and the base learning process in base classifiers use the same 
feature space. Though, it is necessary to note, that the output values are still different 
in those learning tasks (these are local classification errors and the classes themselves 
correspondingly). Thus, the feature space is the same, and the output values to be 
predicted are different. This justifies that the influence of feature extraction on the 
accuracy of dynamic integration in comparison with the influence on the accuracy of 
a single classifier is still different to a certain degree. 

 PCA Parametric Nonparam. Plain SIC 
PCA  3/1/1 2/0/3 4/1/0 4/1/0 
Parametric 1/1/3  0/2/3 2/2/1 3/1/1 
Nonparam. 3/0/2 3/2/0  4/1/0 5/0/0 
Plain 0/1/4 1/2/2 0/1/4  1/3/1 
SIC 0/1/4 1/1/3 0/0/5 1/3/1  



      

In Figure 5 we summarize the accuracy results obtained on those data sets where at 
least some FEDIC-based technique (with PCA, parametric or nonparametric feature 
extraction) significantly outperforms the dynamic integration of classifiers on plain 
feature sets and the averaged results. It can be seen from the histogram that the 
nonparametric FEDIC shows the best accuracy on average of all the techniques 
considered.  FEDIC and plain dynamic integration on average show almost the same 
results although we have to point out that this has happened due to the very unstable 
behavior of the parametric approach. The dynamic approaches significantly 
outperform the static ones.  

7 Conclusion 

Feature extraction as a dimensionality reduction technique helps to overcome the 
problems related to the “curse of dimensionality“ with respect to the dynamic 
integration of classifiers. The experiments showed that the DIC approaches based on 
the plain feature sets had worse results in comparison to the results obtained using the 
FEDIC algorithm. This supports the fact that dimensionality reduction can often 
enhance a classification model. 
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Fig. 5.  Classification accuracy for data sets, on which the FEDIC algorithm outperforms plain 
dynamic integration 

 



The results showed that the proposed FEDIC algorithm outperforms the dynamic 
schemes on plain features only on those data sets, on which feature extraction for 
classification with a single classifier provides better results than classification on plain 
features. When we analyzed this dependency further, we came to a conclusion that 
feature extraction influenced on the accuracy of dynamic integration in most cases in 
the same manner as feature extraction influenced on the accuracy of base classifiers. 

The nonparametric approach was the best on average; however, it is necessary to 
note that each feature extraction technique was significantly better than all the other 
techniques at least on one data set. Further research is needed to define the 
dependencies between the characteristics of a data set and the type and parameters of 
the feature extraction approach that best suits it. 

Some of the most important issues for future research to be raised by this work, 
include how the algorithm could automatically determine what transformation matrix 
should be chosen (i.e. what is the optimal feature extraction method) from the 
characteristics of the input data and what the optimal parameter settings for the 
selected feature extraction method should be. Also of interest is, how the most 
appropriate dynamic integration scheme could be automatically identified. 
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