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ABSTRACT 
The term aspect-oriented programming (AOP) has come to describe 
the set of programming mechanisms developed specifically to 
express crosscutting concerns. Since crosscutting concerns cannot 
be properly modularized within object-oriented programming, they 
are expressed as aspects and are composed, or woven, with 
traditionally encapsulated functionality referred to as components. 

Many AOP models exist, but their implementations are typically 
coupled with a single language. To allow weaving of existing 
components with aspects written in the language of choice, AOP 
requires a language-independent tool. 

This paper presents Weave.NET, a load-time weaver that allows 
aspects and components to be written in a variety of languages and 
freely intermixed. Weave.NET relies on XML to specify aspect 
bindings and standardized Common Language Infrastructure to 
avoid coupling aspects or components with a particular language.  

By demonstrating language-independence, Weave.NET provides a 
migration path to the AOP paradigm by preserving existing 
developer knowledge, tools, and software components. The tool’s 
capabilities are demonstrated with logging aspects written in and 
applied to Visual Basic and C# components. 

Categories and Subject Descriptors 
D.3.2 [Programming Languages]: Language Classifications - 
Language Constructs and Features – multiparadigm languages; D.1 
[Software]: Programming Techniques – Aspect-Oriented 
Programming 

General Terms 
Design, Experimentation, Standardization, Languages. 

Keywords 
Aspect-oriented programming, Weave.NET, Common Language 
Infrastructure, language-independence. 

1. INTRODUCTION 
Crosscutting concerns are “properties or areas of interest” [8] that 
normally defy object-oriented (OO) modelling, because the 
deployment of functionality to support them does not align with the 

composition operations available in an object model [3]. Even 
conceptually simple crosscutting concerns, such as tracing during 
debugging and synchronization, lead to tangling, in which code 
statements addressing the crosscutting concern become interlaced 
with those addressing other concerns within the application. 
“To ameliorate this problem, AOP offers aspects: mechanisms 
beyond subroutines and inheritance for localizing the expression of 
a crosscutting concern.” [8] An aspect [15] provides a unit of 
encapsulation that couples the behaviour of a crosscutting concern 
with a join point specification that details where in component code 
the behaviour is to be applied. In the context of AOP, components 
[15] correspond to units of well-encapsulated behaviour be it source 
code or binaries. The aspects and components of an application are 
composed, or woven, to produce a single program. 
The principle AOP technologies [8], express a unique view of AOP 
in terms of their aspect model. The Demeter group [23] focuses on 
the succinct expression of object graph traversals to simplify 
programming concerns that crosscut object hierarchies. Multi-
Dimensional Separation of Concerns (MDSOC) research [33] 
breaks up the different concerns that an object must address into 
separate programming tasks by providing special composition 
operators that compose classes from a set of partially complete 
behaviours called hyperslices. The Composition Filters (CF) model 
[1] exposes message passing between objects for the purposes of 
writing behaviour that requires high level coordination amongst 
objects. Finally, the AspectJ project [13] augments the Java object 
model with an explicit aspect construct that provides mechanisms to 
specify and manipulate the control-flow of a program.  
Unfortunately, none of these AOP technologies is language 
independent, in that they do little to present their composition model 
as decoupled from source code, or demonstrate in their 
implementation strategies the ability to intermix aspects and 
components written in a variety of languages. AspectJ [14] views 
aspect and component implementation as a Java coding exercise. 
Aspects are only present in source code, and after compilation they 
are no longer discernable. Extending this aspect model to other 
languages is left to researchers outside the AspectJ team, and no 
provision is made to allow reuse of aspects across different 
languages. Demeter’s aspect model is based around object graph 
traversal, which exists in most, if not all, object models. The latest 
Demeter technology, DJ [22], focuses on supporting graph traversal 
within the context of Java. Although DJ is based on a library, it 
cannot be easily decoupled from Java. As with previous Demeter 
implementations [23], the work does not present evidence of 
allowing aspects written within one language to operate within the 
context of another. MDSOC’s hyperslice work focuses on software 
evolution. Its implementation focuses on binary composition [24], 
and in its current realisation, Hyper/J, composition is independent of 
source. However, composed behaviours must be written in Java, i.e. 
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aspect and component behaviour cannot be written in a variety of 
languages. The CF model is described in terms of how it is applied 
to an object model, but implementation strategies identified in [2] 
are compilers that address filters in one language or another. CF 
research does not look at how filters written in one language could 
be applied to objects of another. Moreover, use of a compiler 
implies that component source is required to affix filters correctly. 
The crux of the matter is that with some effort each aspect model 
could be interpreted as supporting language independence, but in 
practice none succeeds in making this mapping. 
The status quo of allowing AOP to be tied to a particular language is 
both paradoxical and wasteful. Speaking philosophically, the 
motivation of AOP should be to break the “tyranny of the dominant 
decomposition” paradigm [33] of a particular programming 
language. Producing a system in which aspects or components are 
all written in only one language would seem to reinforce this 
tyranny. Certainly, such an approach would do little to improve the 
reusability of aspects as compared to one in which aspects written in 
one language could be applied to code written in another. Reuse 
should not be viewed as a concern specifically of software 
components. Programmer knowledge needs to be preserved by 
allowing current skills to be reapplied in new paradigms. It would 
seem absurd that having mastered writing components in a particular 
language that this skill would be discarded. However, coupling 
implementation language with AOP composition does just that. The 
same is true of development tools for which current approaches 
provide no migration path to AOP. 
Weave.NET exploits the multi-language support of Microsoft’s 
Common Language Infrastructure (CLI) [7], developed for the .NET 
Framework, to provide a solution for these problems. Weave.NET is 
a language-independent aspect weaver that avoids coupling aspects 
or components with a particular language. Weave.NET performs 
binary-level composition according to an XML-based composition 
script, meaning that the composition specification is not written in 
terms of, or using extensions to, a particular programming language. 
The script is applied at load-time, well after component and aspect 
behaviour is compiled to binary form. As such, the weaver is 
oblivious as to the implementation language of these behaviours. 
The programming model of Weave.NET is derived from AspectJ 
and its architecture based on the CLI. The actual aspect model 
implemented in Weave.NET is a generalisation of that of AspectJ 
[34]. In particular, Weave.NET shares AspectJ’s join point model 
and aims to make available the same pointcut and advice 
abstractions. AspectJ uses pointcuts to specify sets of join points, 
where one of these sets constitutes a crosscut. Advice affects an 
application’s implementation by selecting behaviour that executes 
relative to, or instead of, the join points of a pointcut. Weave.NET 
supports both, albeit via an XML schema rather than the language 
extensions advocated by AspectJ. The format for binaries woven by 
Weave.NET is provided by the CLI. The CLI mandates that 
extender1 code generation tools target the CLI’s common 
intermediate language (CIL, or simply IL), which is analogous to 
Java byte-code. IL alone does not contain sufficient information to 
identify all join points, but with the CLI’s metadata standard [21] it 
is possible to do so without the need for the source code used to 
generate a type. Moreover, the CLI’s common type system (CTS) 

                                                                 
1 “Compilers that are designed to both produce and extend [a library 

consisting of CLS-compliant code] are referred to as ‘extenders’”[7] 

allows aspect behaviour written in any language to be applied to any 
type written in any other language. 
With a subset of advice and pointcut statements, Weave.NET has 
been able to demonstrate language-independent AOP. That is, we 
have been able to weave aspects whose behaviour is written in one 
language with components written in another. Specifically, test cases 
have involved applying logging aspects written in C# and Visual 
Basic to an I/O library written in C# and a client application of the 
I/O library written in Visual Basic. 
The rest of the paper is organized as follows. Section 2 explains the 
Weave.NET programming model. Section 3 relates elements of our 
aspect model to the corresponding CLI architectural element. 
Section 4 presents Weave.NET’s XML weaving specification 
schema. Section 5 discusses the weaver’s architecture. Section 6 
provides an initial assessment of Weave.NET’s language-
independence and performance. Section 7 discusses related work. 
Finally, section 8 concludes with a discussion of our findings and a 
roadmap to future work. 

2. PROGRAMMING MODEL 
The Weave.NET programming model addresses two issues: how to 
specify aspects, and what architecture is used to compose those 
aspects with components. We provide an introduction to both issues 
and then contrast the Weave.NET approach to aspect specification 
in AspectJ. 

2.1 Specifying Aspects 
Our aspect writing system is drawn from the experience of the 
AspectJ project, according to which “AO languages have three 
critical elements: a join point model, a means of identifying join 
points, and a means of affecting implementation at join points” [13]. 
For these three elements, it was convenient to draw on the semantics 
of AspectJ [34], since its model was well documented and, in our 
opinion, easy to grasp. Fortunately, this aspect model is sufficiently 
general that its join points can be identified in CLI types. The 
AspectJ pointcut language, including its primitive pointcut 
designators, is used to specify sets of join points. Manipulation at 
join points is conducted using its advice operators. 
AspectJ syntax allows aspects to contain the same members as Java 
classes in addition to a set of exclusively AO constructs, such as 
pointcuts and advice; however, Weave.NET keeps AO constructs 
separate. In Weave.NET the cross-cutting details of an aspect are 
written in an XML deployment script. Non-AO type members, and 
indeed the behaviour of aspect advice, are obtained from an existing 
type implementation.  
Weave.NET allows aspect behaviour and components to be 
implemented in any language that targets the CLI. Weave.NET 
places the declarative elements of an aspect in an XML file separate 
from source code. The declarative elements reference binaries that 
implement aspect behaviour, while the target components are 
specified when the Weave.NET API is called. Thus, aspect 
behaviour, as well as that of components, is compiled separately 
from the weaving process. The aspect programmer can then choose 
a suitable implementation language for aspect behaviour without 
affecting the ability to apply that behaviour in a crosscutting 
manner. 



2.2 Weaving Aspects 
At the centre of the composition architecture is the Weave.NET tool 
as shown in Figure 1. The input to Weave.NET is an existing CLI 
binary component, packaged as a .NET assembly, and an XML file 
containing the crosscutting specifications of an aspect. The 
behaviour of an aspect is provided separately in another assembly. 
Weave.NET recreates the input assembly, but in this new version 
join points are bound to behaviour in the aspect assembly as per the 
advice statements in the XML. Unlike .NET approaches that bind 
components and aspects via proxies [20, 30], Weave.NET modifies 
the CIL of the components to access aspect behaviour via method 
calls. As a result, clients of components are unaffected by weaving 
and weaving on call join points is fully supported. 

 
Figure 1 User-level view of weaving 

2.3 Contrasting Weave.NET and AspectJ 
Figures 2 and 3 contrast the approach to implementing a logging 
aspect in AspectJ and Weave.NET respectively. We start by 
explaining the aspect’s function using the AspectJ example, and 
then review the Weave.NET implementation looking for contrasts 
with the AspectJ approach. 
Broadly speaking, the logging aspect is meant to report the data 
being written to I/O by a terminal emulator package called tcdIO. 
This I/O library was developed for introductory OO and C# 
instruction [4], and is referred to in examples throughout this paper. 
In the AspectJ implementation of Figure 2, the body of an advice 
statement implements the aspect’s behaviour. Arrow 1 highlights 
how before advice references another member of the aspect type, 
LogWrite, to print data to the logging output. The before 
advice is applied to join points identified by the Write named 
pointcut, as indicated by arrow 2. Write specifies an intersection of 
execution join points specified with the execution and args 
primitive pointcut designators The execution designator 
identifies the output methods of a Terminal type, while the args 
designator selects from among these methods those that take a single 
argument2. args also exposes this parameter for manipulation by 
aspect advice. Among the join points selected is the execution of the 
WriteLine method as indicated by arrow 3. At compile time, 
AspectJ composes the aspect with component behaviour such that 
the execution of WriteLine initially transfers control to the before 
advice, as visualised by arrow 4. 
The Weave.NET aspect of Figure 3 has all the elements of the 
aspect of Figure 2, but in a slightly different form. The crosscutting 
details of a Weave.NET aspect are specified in XML. An abridged 
version of the XML for the logging aspect is shown on the right of 
Figure 3. The behaviour of an advice statement is contained in a 
type referenced by the XML, as shown by arrow 1a. The behaviour 
                                                                 
2 The object type has certain wildcard characteristics that allow it to 

match parameters of any type.[34] 

of a specific advice statement corresponds to methods within that 
type as shown by arrow 1b. In the current implementation of 
Weave.NET, advice statements reference named pointcuts rather 
than using primitive pointcut designators themselves. As such, the 
before advice references a named pointcut as shown by arrow 2. 
Finally, the XML primitive tags articulate the same 
specification as the primitive pointcut designators of Figure 2 as 
shown by arrow 3. The transfer of control from component to aspect 
that results from weaving is visualised by arrow 4. 

3. MAPPING THE ASPECT MODEL TO 
CLI 
The aspect model in Weave.NET is derived from that of AspectJ. In 
this section we summarize this model’s elements, and where 
possible, relate the elements to CLI architecture. 

3.1 Join Point Model 
The Weave.NET aspect model contains only dynamic join points. 
Dynamic join points are “well-defined points in the execution flow 
of the program” [13]. In contrast, static join points correspond to 
types to which new members can be added. The focus on dynamic 
join points stems from their identification as core to the AspectJ 
aspect model [13]. 
Dynamic join points are best understood by organising them into 
three categories: execution join points, call join points and field 
access join points. This organisation is show in Table 1. AspectJ 
documentation [34] provides a better characterisation of specific 
join point types. 
 

Join point category Join point types 
Execution Method execution 

Initializer execution 
Constructor execution 
Static initializer execution 
Handler execution 
Object initialization 

Call Method call 
Constructor call 
Object pre-initialization 

Field access Field reference 
Field assignment 

Table 1 Categorization of dynamic join points 
 
Execution join points roughly correspond to the execution of a 
block of code, as opposed to a call or dispatch to that block. In the 
simplest case, the block may correspond to the body of a method. 
However, finer distinctions exist when it comes to the execution of 
exception handlers and the sequence of constructor executions and 
data member initializations during object creation. 

 



 

 
 
 

Figure 3 Weave.NET equivalent of Figure 2 
 

 
Weave.NET execution join points correspond to blocks of CIL. In a 
.NET assembly, IL code is located on a method by method basis. 
The assembly’s metadata identifies which block of IL code 
corresponds to which method signature. This is true for constructors 
as well, since constructor bodies are modelled as methods with 
special names, such as .ctor in case of an instance constructor, 
and with certain metadata flags used to distinguish them from other 
methods. 

Fine grained join points are resolved by closer inspection of the 
implementation of the method body. In the case of exception 
handlers, extra metadata tables associated with the method’s code 
identify blocks of exception handling code. For execution join 
points related to object instantiation, it is necessary to examine the 
IL at the start of the constructor to distinguish constructor execution 
from object initialization. This is because data member initialization 
and flow of control between different constructors in a class’ 

Figure 2 Interpretation of an AspectJ aspect. 



inheritance hierarchy is written explicitly into each constructor 
method. 

 
Figure 4 An execution join point 

To clarify the concept of execution join points, the example in 
Figure 4 shows C# source code and corresponding IL of an 
execution join point in the tcdIO library. The start and end of the 
execution join point are identified relative to the CIL with embedded 
comments in bold font. 
Call join points are present on the calling side of a method 
invocation or when the new operator is called for object 
construction. These points are observed as IL opcodes of type 
InlineMethod. These opcodes indicate the target method with a 
metadata token. Using this token, it is possible to lookup the 
signature of the method being called. The signature also indicates 
where on the stack the call context is located. Constructors present a 
special case. They may be accessed as part of a call join point, for 
instance as part of a new operation, or they can be accessed as part 
of an execution join point, for instance via this() and super() 
calls in Java. Fortunately, these two cases are distinguished by the 
opcode used to access the constructor, which is NewObj in the case 
of a constructor call join point. 
Revisiting the example in Figure 4, we can identify two call join 
points. In Figure 5, we highlight the call join point for the 
invocation of the WriteLine method in bold font. 

 
Figure 5 A call join point 

The final category of join point is that of field access, which 
corresponds to a read or write access to a data member, or field in 
CLI terminology. These join points do not include final fields, 
i.e. constant fields emitted as literals in IL. These join points are 
observed as special IL opcodes used to access static and non-static 
fields. These opcodes are associated with a metadata token 
identifying the signature of the field being accessed. 

3.2 Identifying Join Points 
To a large extent, the point of our aspect model is to allow succinct 
identification of join points and expose portions of their execution 
context. To do so, we adopt AspectJ’s pointcut mechanism and its 
join point selection operators, called primitive pointcut designators, 
used to specify pointcuts. A pointcut selects from among all the join 
points in a component those that are relevant to a particular crosscut. 
To do so it relies on primitive pointcut designators that select from 
certain join point types, as defined by that designator, those whose 
metadata description matches the designator’s argument. Thus, this 
argument is usually a signature or type pattern, depending on the 
designator. Finally, several designators can be used together with 
logical operators that take the union or intersection of their join 
point sets. 
Designators can be broken into three categories according to the 
argument that they take. Table 2 identifies designators that identify 
join points in control flow directly from signatures or type patterns 
associated with the source of these join points. Table 3 identifies 
designators that identify join points relative to those of another 
pointcut. Finally, Table 4 identifies designators that select join 
points according to objects and arguments used in the execution 
context of the join point. These designators can also be used to 
expose the join point’s execution context to the aspect. 
 

Table 2 Designators specified with a signature or type pattern. 
 

Table 3 Designators specified with a pointcut. 
 
 

Designator Joint points selected 
call(Signature) Method and constructor calls. 
execution(Signature) Method and constructor execution. 
initialization 
   (Signature) 

Object initializer execution. 

get(Signature) Field reference. 
set(Signature) Field assignment. 
handler(TypePattern) Exception handler execution. 
staticinitialization 
   (TypePattern) 

Static initializer execution. 

within(TypePattern) All join points defined by the selected 
type. 

withincode 
  (Signature) 

All join points defined within method or 
constructor matching declarations 

Designator Joint points selected 
cflow(pointcut) All join points encountered during the 

execution of join points identified by the 
pointcut. 

cflowbelow( 
    pointcut) 

Identical to cflow, but does not include the 
join points identified by the pointcut 
argument. 



Designator Joint points selected 
this( 
  TypePattern or Id) 

Join points in which the object bound to 
this is an instance of a particular type. 

target( 
  TypePattern or Id) 

Join points in which the object on 
which a call or field operation is applied 
to is an instance of a particular type. 

args( 
  TypePattern or Id, 
  ...) 

Join points where there are arguments 
whose types match those listed by the 
designator. 

Table 4 Designators that can expose execution context. 
In the case of signatures and type patterns, Weave.NET supports 
both name-based crosscutting and property-based crosscutting [13]. 
Name-based crosscutting corresponds to the literal expression of 
signatures and type patterns. Thus, with name-based crosscutting the 
signatures and type patterns used in a pointcut must match those of 
the targeted join points exactly. The CLI provides the 
System.Reflection API to access this data. Property-based 
crosscutting exploits wildcards to partially specify designator 
arguments. In property-based crosscutting, the signatures and type 
patterns used in a pointcut correspond to regular expressions. 
Fortunately, the CLI supplies a library to support regular expression 
use that greatly simplifies resolving these wildcards. 
Pointcuts imply a traversal of all join points in the targeted source 
code. The CLI provides limited tools for directly accessing 
metadata, but none for accessing IL directly. Fortunately, there is a 
performance-conscious library called CLIFile Reader [5] that allows 
direct access to IL streams. 

3.3 Modifying Join Point Behaviour 
Weave.NET specifies aspect intersession in join points in terms of 
advice constructs described by AspectJ [14]. An advice statement 
specifies how to execute behaviour relative to, or rather than join 
points, in a pointcut. In principle there are three kinds of advice. 
Before advice executes just before the join point. After advice 
executes after the join point. Finally, around advice executes in 
place of the join point, but retains the capability to activate the join 
point. 
There are three conditions for the execution of after advice 
depending on whether a join point completes normally or as part of 
an exception throw. These three categories are named accordingly as 
after returning, after throwing, and after advice depending on 
whether the join point returns normally, on account of a throw or 
due to either. Another difference between these is what variables in 
the execution context of a join point may be exposed. In after 
advice, the return type is not known. In contrast, after returning 
advice can expose the declared return type or an object reference to 
it. Likewise, after throwing advice can expose the thrown object. 
Code generation in the .NET Framework is supported by the 
System.Refleciton.Emit API, but strictly speaking this API 
is not supposed to support the modification of existing .NET 
assemblies [25]. Weave.NET work on code generation indicates the 
current limitation is due to difficulties accessing method IL as a 
stream. Using the CLIFile Reader library, sufficient detail can be 
obtained to create an assembly at runtime, i.e. a dynamic assembly, 
based on an existing persistent assembly. 

4. XML SPECIFICATION 
The XML schema used in Weave.NET [19] was developed from a 
BNF grammar extracted from the Language Semantics Appendix of 

the AspectJ programming guide [34], and implemented in the W3C 
XML Schema Language [9]. The appendix was chosen as the 
specification for AspectJ for its easy to digest descriptions and 
supporting examples. However, the difficulty of specifying a 
language in a non-rigorous manner emerged when some unexpected 
contradictions in the language semantics3 were discovered. 
Concentrating on consistency with language syntax, rather than 
usability, resulted in an overly verbose XML schema. Recall how 
the aspect in Figure 2 was so much more compact than the abridged 
Weave.NET version in Figure 3. 
As much as possible, the schema exploits the validation capabilities 
of W3C Schema. First, aspects are expressed mainly in terms of 
XML tags rather than XML tag attributes. The organisation of the 
tags and their contents are defined by complex types that can then 
validate the grammar of user aspects. Naturally, some tags such as 
identifiers and type patterns must contain data. These tags are 
described with simple types whose data is limited according to 
regular expressions. This removes the need to support a great deal of 
error checking in the weaver itself.  
As observed in Figure 3, binding to aspect behaviour is done by 
name. The aspect’s implementation type is selected by naming the 
implementation class and the containing assembly. The 
implementation type is selected on an aspect-wide basis to simplify 
aspect instantiation to a matter of instantiation of the implementing 
class. Binding advice to implementing behaviour is done by having 
the XML advice description select the method implementing the 
required behaviour. This method’s parameter list must match the 
advice’s typed formal parameters. Typed formal parameters 
correspond to the list of declarations for variables bound to 
execution context in a named pointcut and advice statement [34]. 
Admittedly, this is a simplification of the AspectJ model as it does 
not provide advice with access to metadata objects describing the 
join point execution context. However convenient to aspect writers, 
reflective access to join point context is not core to AOP, and thus 
not crucial at Weave.NET’s current stage of development.  

5. WEAVER IMPLEMENTATION 
Weave.NET is an aspect weaver implemented as a .NET 
component. Its weaving interface accepts as input a reference to a 
component assembly and to an XML document that contains the 
specification for an aspect. The result of calling this interface is a 
new version of the component assembly that is bound to aspect 
behaviour at the IL level. 
The weaver implementation has two subsystems: code generation 
and aspect modelling. The aspect modelling system is responsible 
for interpreting the XML aspect specification, modelling aspects in 
terms of their pointcuts and advice, and detecting whether join 
points match any aspect advice. The code generation system is 
responsible for converting an existing assembly to a dynamic 
assembly and instantiating objects to represent join points. The 
bridge between these two systems is the JoinPoint class 

                                                                 
3 In the context of a type pattern [34]:  “There is a special type name, *, 

which is also a type pattern. * picks out all types, including primitive 
types.  So call(void foo(*))picks out all call join points to void 
methods named foo, taking one argument of any type.”  But in the next 
paragraph “The * wildcard matches zero or more characters”.  In this 
case , call(void foo(*))picks out all call join points to void 
methods named foo, taking one or zero arguments of any type.” 



hierarchy. Instances of this hierarchy encapsulate join point details 
for examination by the aspect modelling system. They also provide 
code generation capabilities for embedding advice for use by the 
code generation system. In this section we will review the code 
generation system and examine how it interacts with JoinPoint 
objects. Next, we will review the aspect modelling system, and 
examine how it too interacts with JoinPoint objects. 

5.1 Code Generation Architecture 
The code generation system creates a dynamic assembly, i.e. a 
System.Reflection.Emit object hierarchy, corresponding to 
the assembly targeted for weaving. Were it not for the modifications 
specified by the aspect, this hierarchy would be emitted as a new, 
but functionally identical assembly. However, as per the aspect, 
there will be some differences. The principle classes used by the 
Emit library to model a dynamic assembly are shown in Figure 6. 
Here, a module corresponds to a physical file. Thus, an assembly 
can span files. Types and their constituent members are contained in 
one module or another. 
The System.Reflection API has been suggested as a tool for 
introspecting on existing assemblies [30], but, as noted previously, 
this API lacks the ability to directly access the IL stream. Without 
access to IL it is impossible to expose call join points, so the code 
generation system bypasses the convenience of the Reflection 
library and examines the assembly metadata directly with the 
CLIFile Reader API [5]. The CLIFile Reader library provides 
abstractions to access intra-method details such as the IL stream and 
exception handling table. Directly accessing the file was considered, 
but CLIFile Reader provides decompression, metadata table 
modelling and greatly simplifies resolving cross-references within 
table entries. 

 
Figure 6 Dynamic assembly as modelled by Emit library. 

The major drawback with using CLIFile Reader is that the metadata 
in a .NET assembly is organised on a module basis. That is, type 
members are keyed with module-wide identifiers that do not 
immediately identify their containing type. In contrast, the Emit 
library expects a type to directly reference its constituents. To bridge 
these two views, we introduce wrappers for each object class in the 
Emit library hierarchy to provide both views, as shown in Figure 7. 

 
Figure 7 Resolving Emit object hierarchy and CLI metadata 

indexing. 
In this system, conversion to a dynamic assembly requires a 
complete traversal of the CIL of every method. This traversal gives 
the code generation system an opportunity to expose supported join 
points. The join points are modelled by the class hierarchy defined 
in Figure 8, where JoinPoint and JoinPointMethodSig are 
abstract classes. Currently, Weave.NET only exposes call and 
execution join points. 
As far as code generation is concerned, JoinPoint classes embed 
aspect advice by marshalling parameters and then calling the method 
that implements aspect advice. Embedding is requested by the code 
generation system before and after it emits the code corresponding 
to the join point. Separate classes are required to model each join 
point type as the opcodes required for marshalling parameters vary 
according to join point type. 

 
Figure 8 JoinPoint class hierarchy. 

Aspect instances are associated with class objects through a field 
added during code generation. Proper instantiation of aspect 
instances requires advance knowledge of which component types 
are associated with which aspect instances. Our single-pass weaver 
cannot determine this information in advance, which leads to the 
addition of potentially unused fields corresponding to aspect 
instances. Thus, our work on aspect instantiation is incomplete. 

5.2 Aspect Modelling Architecture 
Aspect modelling is first activated in order to validate the aspect’s 
XML and then convert it into the object hierarchy shown at  
the top of Figure 9. The .NET Framework provides the 
System.Xml library for modelling XML documents and 
System.Xml.Schema for modelling XML Schemas specifically. 
These APIs provide support for XML validation and W3C DOM 
[11] access for navigating the XML document. Specifically, the 
DOM API builds a navigable object graph corresponding to the 



XML file. References to nodes in this graph, rather than copies of 
their data, are stored by the objects of classes in portion 1 of Figure 
9. 
An Aspect class object stores details that are static with respect to 
the advice and named pointcuts such as a reference to the type 
implementing advice behaviour. Specialisations of the Advice 
class exist for each kind of advice. Having the ability to modify 
existing assemblies allows all types of advice to be supported. 
However, the around advice is more reminiscent of method 
intersession in reflective programming and well supported in that 
domain by, for instance, the Iguana model [27]. As a consequence, 
in Weave.NET’s current implementation, we have chosen to focus 
on before and after advice. With respect to the three kinds of after 
advice, code generation techniques allow any of these options. 
However, for an initial implementation, supporting returning after 
advice is sufficient as it can be expected that most methods complete 
normally, and that experimentation with after advice in general is 
most interesting when it is possible to act on the result of the join 
point. Regardless of whether they are named or not, all pointcuts are 
modelled as named pointcuts. NamedPointcut objects retain a 
reference to the XML element corresponding to the root of the 
pointcut description. The named pointcut also references its typed 
formal parameters. These correspond to the context variables that 
the pointcut exposes to advice. 
The bottom portion of Figure 9 is instantiated by the code 
generation system whenever a join point is identified. The 
JoinPoint object contains the join point’s signature and 
references to ContextVar objects describing the variables in the 
context of the join point. These variables are the parameters used to 
activate the join point as opposed to the set of all accessible 
variables within the scope of the join point. 
The centre of Figure 9 arises when an Aspect object is asked to 
generate a PointcutBinding object for a particular join point. 
This involves the Aspect object traversing its list of named 
pointcuts asking each to determine if the join point is selected by its 
pointcut declaration. Matching with named pointcuts, rather than 
advice, reduces the maximum number of pointcut traversals to one, 
since multiple advice statements can reference the same named 
pointcut. The PointcutBinding object produced is used by the 
join point to determine which advice statements to apply and which 
context variables correspond to each typed formal parameter in the 
pointcut. Currently, the typed formal parameters in the advice 
method must match the type and order of those in the named 
pointcut. 
For the purposes of prototyping, the most obvious designators to 
support would be the execution and call pointcut designators, 
as they are simple to conceptualize and are used in API 
programming. In terms of complexity, execution and call map 
directly to a particular type of join point, whereas other pointcut 
designators, such as within, select groups of join points that span 
the three categories of join points. With respect to APIs, the ability 
to capture execution join points in an API’s implementation and call 
join points during its use allows interesting tests to be formulated to 
demonstrate Weave.NET, as we will see in section 6. As far as 
implementation is concerned, execution and call designators 
can be identified by signature alone. In contrast, cflow pointcuts 
must track the stack at runtime to determine when they have 
returned to their starting point. 

  
Figure 9 Aspect modelling and join point matching architecture. 
 
As far as context exposure is concerned, our prototype focuses on 
the args designator, because it provides quite a bit of detail on the 
context in which a join point is called. For completeness, our system 
also allows a typed formal parameter to be bound to the value 
returned by after-returning advice. 

6. INITIAL ASSESSMENT 
Our initial assessment examines two areas of interest to potential 
users of Weave.NET. Since the focus of our tool is language 
independence, our first assessment examines the application of 
aspect behaviour, written in different languages, to components, 
again written in different languages. Next, our performance analysis 
examines the practicality of Weave.NET aspects in terms of their 
ability to implement crosscutting concerns and the load-time and 
runtime overheads they introduce into an application. 

6.1 Cross Language Weaving 
To demonstrate cross language weaving, we formulated two 
crosscutting scenarios and implemented them with aspect behaviour 
written in two languages, for a total of four instances of weaving. 
These test cases are captured in Figure 10. 
In the first scenario, an execution primitive pointcut designator 
is used to perform service-side engineering in the tcdIO library. 
The term service-side engineering captures the modification of the 
capabilities of an API. In this scenario, tcdIO is modified to log 
the use of its output methods, which, in a broader context, can be 
useful during teaching laboratories for diagnosis of student problems 
as well as grading during student demonstrations. 



 
Figure 10 Language-independence test cases 

 
In this test, the modified tcdIO library is created at runtime by calls 
to the Weave.NET API and this modified library is used by a test 
suite. Normally, tcdIO would be tested by a test suite that 
exercises each of its I/O calls. That test suite has its own entry point 
in the form of a public static method called Main. In our test, we 
modify the entry point to the test suite to be a different version of 
Main that first calls the weaver to apply the logging aspect to the 
tcdIO library and then passes control to the Main of the original 
test suite. The parameters to the weaving API are the target 
assembly, its location, the XML file detailing the aspect to be 
applied, and the location of this XML file. When control is passed to 
the test suite, the presence of logging calls indicates that the weaving 
was successful. 
The test is formulated twice. In the first instance, the aspect 
behaviour is written in C#. This test is analogous to application of 
the aspect described in Figure 3. In the second instance, the aspect 
behaviour is written in the Visual Basic of Figure 11. 

 
Figure 11 Simple logging implemented with Visual Basic 

In our second crosscutting specification, we perform client-side 
engineering on a test suite for tcdIO. The term client-side 
engineering captures the modification of the way in which 
assemblies call an API. Specifically, call primitive pointcut 
designators are used to apply logging advice to calls to tcdIO 
during testing. Such logging functionality is suited to the automation 
of assignment grading, where we wish to standardize input to 
student assignments or verify the results in an automated fashion. 
The test procedure is the same used when we attempted service-side 
engineering, albeit with the test suite targeted for weaving rather 
than the tcdIO library. Again, this test is performed in two 
instances where the language implementing the logging 
functionality is varied between C# and Visual Basic. These tests are 
captured in the composition ovals in the lower half of Figure 10. 
The figure accurately describes the aspect functionality in the second 
scenario as being reused from the first scenario. 
The exact procedure of the test involved calling the weaving API 
with the location of the XML document and the component 
assembly. While not cited, the aspect behaviour had to be available 
at weave time in order to properly generate the woven component. 

Based on this testing, two recommendations were made. A metadata 
object describing the join point context would make the logging 
capabilities more interesting by allowing them to report which 
methods they were bound to. Also, the weaver needs to implement 
the full XML schema. At present, the weaver lacks the ability to 
distinguish join points by accessibility. As a consequence, logging 
in the first scenario reports the execution of private methods with 
signatures matching the pointcut specification, but whose execution 
is of no real interest. This issue will be addressed as we continue 
development on Weave.NET. 

6.2 Performance 
Our examination of performance focuses on establishing the 
practicality of Weave.NET. This assessment starts by asking what 
problems Weave.NET aspects can in theory solve. Having 
investigated its potential for improving programming, we look at 
whether applications that make use of Weave.NET will face 
unreasonable execution time overheads. 
AOP in general has been justified through its ability to improve 
performance and at the same time address program complexity by 
reducing the number of lines of code [15], and these goals are met 
by Weave.NET. Weave.NET addresses tangling in a similar manner 
to AspectJ and can thus be expected to have a similar effect on the 
number of lines of code in an application. Indeed, this is confirmed 
when we compare the number of lines of code required to 
implement the components of Figure 10 with logging to the number 
of lines of code that Weave.NET requires to implement the same 
functionality. This comparison is shown in Table 5, which provides 
the source code line count for implementing component and aspect 
behaviour separately and for a new implementation in which the two 
are combined or tangled. The separately compiled versions 
correspond to the source code base when Weave.NET is used, while 
the tangled versions correspond to when it is not used. In Table 5, 
the aspect behaviour contributes 8 lines of source to the untangled 
implementations. This line count is on the code size of the Visual 
Basic implementation. Unfortunately, our comparison is somewhat 
naïve as the Weave.NET source code size does not take into account 
the XML specification of the logging aspect. 

Table 5 Comparison of lines of source code in test components 
before and after logging calls added manually. 

As far as improving application performance by making aspects 
available, the tool being used is less of an issue as compared to the 
AOP constructs available and their usefulness. Currently 
Weave.NET supports a subset of the dynamic crosscutting 
constructs of AspectJ. Due to type checking, the current design fails 
to support introduction statements required to support static 
crosscutting. The full set of dynamic crosscutting constructs 
specified, as well as their Weave.NET support, is documented in 
Tables 6, 7 and 8. Although the current implementation is limited, 
the underlying design and schema used by Weave.NET should be 
sufficient to fully support the full set of dynamic crosscutting 
operators. Thus, the ability of Weave.NET aspects to improve 
application performance is comparable to the ability of AspectJ to 
do the same. 

Component targeted 
for logging 

Lines of source in 
untangled version 

Lines of source in 
tangled version 

tcdIO test suite  90 141 

tcdIO library  361 394 



Pointcut designators Supported? 
Call Yes 
Execution Yes 
Get No 
Set No 
Handler No 
Initialization No 
Staticinitialization No 
Within Yes 
Withincode No 
Cflow No 
Cflowbelow No 
This Yes 
Args Yes 
Target No 

Table 6 Primitive pointcut designator support currently 
implemented in Weave.NET. 

Advice Supported? 
Before Yes 
Around No 
After Yes 
After returning Yes 
After throw No 

Table 7 Advice support currently implemented in Weave.NET. 

Aspect Instantiation Supported? 
Singleton Yes 
Perthis No 
Pertarget No 
Percflow No 
Percflowbelow No 

Table 8 Aspect instantiation support currently implemented in 
Weave.NET. 

Where Weave.NET distinguishes itself from AspectJ is in the use of 
load-time weaving. By weaving at load-time, Weave.NET 
introduces application overhead not present when AspectJ 
applications execute. To put this overhead into perspective, we have 
devised a simple test to relate the time required to weave with 
Weave.NET to that required by AspectJ to weave pre-runtime. 
Although AspectJ is known as a source-level weaver, the most 
recent release makes available byte-code weaving so that byte-code 
in existing .jar files can be targeted. While it still appears that 
source is required for the aspect, the byte-code level component 
weaving is not unlike the task carried out by Weave.NET. So, we 
have taken a Java version of tcdIO, very similar in design to the 
.NET version, and measured the amount of time required for 
AspectJ to weave logging into the Java based tcdIO binary. 
Logging was also added to a Java port of the tcdIO test suite.  

A side by side comparison of weaving times required by 
Weave.NET and AspectJ is shown in Table 9 and Weave.NET 
compares favourably. The times were recorded during trials on a 1.7 
GHz Pentium 4 based PC with 512 MB of RAM running 
WindowsXP. Weave.NET ran in the .NET Framework, version 
1.1.4322, while AspectJ ran in J2RE version 1.4.2. Weaving was 
launched from a command shell, and a mean average taken of the 
three best trials among five tests. In examining the results, it should 
be pointed out that the AspectJ aspect differed from that used by 

Weave.NET in the number of pointcuts required to specify logging. 
In the CLI, an object reference can be obtained for any type, 
including what Java terms primitive types. Thus, the primitive 
pointcut args(Object) matches all methods with a single 
parameter in Weave.NET, but in AspectJ it does not include 
methods whose single parameter is a primitive type. 
The execution times in Table 9 indicate that Weave.NET weave 
time is not unreasonable with respect to that of AspectJ. However, it 
should be pointed out that the test was performed on a very small 
component. Moreover, the version of Weave.NET tested may 
benefit from supporting a smaller set of join point types and 
primitive pointcut designators than AspectJ. Finally, AspectJ’s 
weaving appears to scale better than that of Weave.NET as its weave 
time increases more slowly as the size of the component being 
woven increases. 

Table 9 Load-time overhead Weave.NET compared to similar 
weaving in AspectJ (time in milliseconds). 

Finally, we would look for Weave.NET to not introduce any run-
time overheard. Beyond aspect instantiation, the current 
implementation does not introduce any runtime structures. This will 
change as support is added to allow reflection on join point context 
and to allow control flow pointcuts that must dynamically track 
execution context. So, after accounting for the load-time weaving, 
Weave.NET overhead should be zero. This is worth verifying, as 
performance has been a major problem for other technologies that in 
some sense intercede in normal program execution. For instance, the 
runtime reflective programming tool IguanaJ initially reported that 
object instantiation time increased by 25 times when the object’s 
class was targeted for intercession. [26]. Table 10 provides a 
comparison of the execution of tcdIO and its test suite with 
logging added by Weave.NET in the first case and added with 
manual embedded method calls in the second case. The test platform 
and procedure for collecting results here is the same as for the 
previous test. The results indicate that Weave.NET introduces no 
appreciable increase in runtime overhead in this case. 

Table 10 Comparison execution time of Weave.NET and 
manually written logging (time in milliseconds). 

7. RELATED WORK 
The AOSD community website (http://www.aosd.net) provides links 
to several other AOSD tools and languages, both supported and 
experimental, as well as a host of AOSD methodologies. Among 
these are the long standing AOP technologies, MDSOC [24], 
Demeter [22], Composition Filters model [2] and AspectJ [14], 
examined when section 1 established an absence of language-
independence in AOP technology. 
The use of XML in Weave.NET contrasts with previous approaches 
that have used CLI custom attributes in expressing crosscutting. The 
work on WrapperAssistent [30] has succeeded in providing an 
aspect-specific language for expressing fault tolerance, which is 
implemented with an aspect specific weaver. Join points are 

Weaving task Weaving time for 
Weave.NET 

Weaving time for 
AspectJ 

tcdIO weaving 502.5 3568 

test suite weaving 365.8 2967 

Weave.NET woven logging Manually introduced logging  
380.145 381.116 



identified by embedding declarative statements in the component 
code, which is a matter of great debate within the AO community. 
Depending on the importance placed on making join points 
oblivious to aspects [10], such annotations would be less preferable 
to an approach that required no modification of the component code. 
In a more recent version of WrapperAssistent, named Loom.NET 
[29], join point selection has become a GUI activity and support has 
been added for the aspect specific templates mechanism first 
described in [30]. Aspect specific templates provide a way to write 
proxies using macros that map to declarative elements in the 
component being proxied. The code surrounding these macros is 
C#. So, while a component written in any language can be targeted, 
the aspects must be written in C#. As part of Loom.NET work a 
dynamic library has emerged [31] that provides a mechanism for 
weaving aspects at runtime time on an object by object basis. The 
aspect model is reminiscent of composition filters in that method 
calls to the woven object are delegated to an aspect instance. By 
using only CLI elements, the dynamic system should theoretically 
allow aspects written in any language to be applied to components 
written in any language, but cross language support has not been 
verified. 
The use of XML to specify aspects is not without precedence. 
CLAW [20] and AOP# [32] each present a strategy for language-
independence that relies on XML to specify the crosscutting 
elements of an aspect. CLAW explores weaving using a profiling 
interface specific to the .NET Framework in order to build dynamic 
proxies for aspect weaving. Although CLAW promises to be 
language-independent, it lacks an aspect model to dictate how join 
points are selected or manipulated. For instance, there is no XML 
schema defined for describing aspects. AOP# presents the concept 
of aspectual polymorphism in which the implementation used for an 
aspect bound to an object will vary according to the context in 
which the object is used. Another interesting property is the ability 
for aspects to specify requirements in the form of methods that target 
components must support. These requirements are mapped to 
elements of the component in an XML script. Most recently, the 
project has changed name to AOP.NET [28], and produced a 
composition library that exploits the .NET Framework’s profiling 
interface; however an implementation of the aspect model has yet to 
emerge. 
Work on AspectC# [16] predates that of Weave.NET. AspectC# 
provides an aspect model for C# in which weaving is specified in 
XML to avoid extending language syntax. The weaving mechanism 
works by manipulating an abstract syntax tree (AST) representation 
generated from component source. However, this AST cannot 
currently model all languages that target the CLI. Continuing work 
on AspectC# centres on plans to adopt the Weave.NET XML 
schema for specifying aspect composition. 
The code modification mechanism of Weave.NET is explored in the 
domain of byte-code instrumentation, which has been exploited by 
JMangler [17] [18] to provide an AOP composition mechanism that 
allows aspect users to avoid conflicts during composition of 
independently developed aspects. JMangler allows transformations 
to be written in XML for Java by supplying a new implementation 
of the class loader. 
Load-time instrumentation was explored at the same time in Binary 
Component Adaptation (BCA) [12] and JOIE [6]. BCA allows 
adaptation of component interfaces in Java to simplify component 
integration in light of evolving component interfaces. With respect 

to AOP, BCA is a language specific solution to the interface 
evolution crosscutting concern. JOIE characterises the concept of 
load-time transformation in the context of a transformation library 
that is analogous to the Emit API of the CLI summarized in Figure 
6. 

8. CONCLUSION AND FUTURE WORK 
The purpose of Weave.NET is to make AOP language independent 
in so far as the behaviour of aspects and the components to which 
they are applied can be written in any language. In contrast to 
previous efforts, Weave.NET allows aspect writers to choose the 
language in which they implement aspect behaviour. More 
importantly, Weave.NET allows existing code to be targeted by 
aspects, regardless of implementation language, broadening the set 
of components to which AOP can be applied. As a result, 
programmers can avoid discarding their existing skills in order to 
adopt the AOP paradigm. 
This paper describes the operation of Weave.NET from a 
programmer’s point of view, and provides details on the underlying 
aspect model. The aspect model is drawn from AspectJ, while 
language interoperability is based on the Common Language 
Infrastructure (CLI) designed for the .NET Framework. The aspect 
programmer is responsible for implementing aspect behaviour in the 
language of their choice and generating the corresponding binary 
component. The crosscutting statements of the aspect are written 
with an XML script based on the syntax of AspectJ, and they apply 
behaviour from the aspect’s binary component. The schema for this 
script is rigorously specified in W3C XML Schema language. The 
weaver is implemented with two subsystems, one responsible for 
code generation and the other for aspect modelling. Interchange 
between the two systems is achieved using objects that model join 
points in terms of the details required to match join points to 
crosscutting statements in an aspect and the code generation 
capabilities required to compose join points with aspect behaviour. 
Language-independence was verified in service-side and client-side 
engineering scenarios. Specifically, logging, written in C# and 
Visual Basic code, was added to the execution of methods in an I/O 
package written in C# and to calls to this API by a test suite written 
in Visual Basic. Weave.NET’s CLI focus is shared by other 
technologies, but these do not match its language-independence 
capabilities. Neither do the implementations of other popular aspect 
models. 
Future work in Weave.NET will involve broadening its crosscutting 
capabilities and reflection support to allow for more interesting 
aspect behaviour. While the aspect XML schema is complete, the 
full set of primitive pointcut designators and advice statements are 
not supported, which limits the effectiveness of our aspects. For 
example, our initial assessment noted proper logging requires 
signature specification be broadened to include accessibility 
modifiers. Also, testing indicates the need to make available a 
metadata object to provide aspects with reflective access to the join 
point’s execution context. 
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