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Abstract

Ensemble techniques have been successfully applied in the context of supervised learning to
increase the accuracy and stability of classification. Recently, analogous techniques for cluster
analysis have been suggested. Research has demonstrated that, by combining a collection of dis-
similar clusterings, an improved solution can be obtained. In this paper, we examine the potential
of applying ensemble clustering techniques with a focus on the area of medical diagnostics. We
present several ensemble generation and integration strategies, and evaluate each approach on a
number of synthetic and real-world datasets. In addition, we show that diversity among ensemble
members is necessary, but not sufficient to yield an improved solution without the selection of an
appropriate integration method.

1. Introduction

Current electronic repositories, especially in medical domains, contain vast amounts of informa-
tion. Knowledge discovery and data mining methods have been applied to discover patterns and
relations in these complex datasets. Of these, cluster analysis is one of the most important ap-
proaches. Unsupervised learning procedures may be distinguished from other data mining tasks by
the unavailability of predefined class labels that partition data. The goal of a clustering algorithm is
to expose the underlying structure of the data by uncovering the “natural” groupings of samples.

In the past, cluster analysis in areas such as medical diagnostics has often involved the repeated
execution of a clustering procedure, followed by the manual selection of an individual solution that
maximises a user-defined criterion. However, rather than merely selecting a “winning” partition,
recent work has shown that combining the strengths of an ensemble of clusterings can often yield
better results. Ensemble techniques have been successfully applied in supervised learning to im-
prove the accuracy and stability of classification algorithms [2, 12]. However, only recently have
attempts been made to apply analogous techniques to domains where class information is unavail-
able. This research has focused on exploiting the additional information provided by a collection
of diverse clusterings to generate a superior partition of the data [7, 10].

In this paper, we evaluate the potential of applying ensemble techniques to several problems
of medical diagnostics. We discuss a variety of ensemble generation strategies and integration
schemes, and suggest an optimal set of parameters for each of the datasets under consideration. In
addition, we examine the role that diversity plays in producing a successful ensemble.

In Section 2 we introduce the design issues that must be addressed when creating an ensemble
clustering. Empirical results, based on the application of these techniques to both medical and



synthetic datasets, are provided in Section 3. Finally, in Section 4 we conclude and suggest possible
directions for future research.

2. Ensemble Design

Ensemble techniques require three key issues to be addressed. Firstly, how does one generate a
collection of base clusterings from which the ensemble is composed? Secondly, how many cluster-
ings are required to give a stable accurate solution? Thirdly, how does one combine the ensemble
members to produce the final partition? In this section we present an overview of ensemble gen-
eration techniques that have been proposed in the recent literature, and discuss suitable integration
schemes.

2.1. Ensemble Generation

It has been demonstrated [8] that classifier ensembles are most successful when constructed
from a set of predictors whose errors occur in different parts of the data space. Diversity is often
introduced artificially to improve the output of an ensemble. In cluster analysis, the results of a
given algorithm over many iterations are typically very similar. If all ensemble members agree on
how a dataset should be partitioned, aggregating the clusterings will show no improvement over
any of the constituent members.

Several approaches comparable to those used in supervised learning have been proposed to in-
troduce artificial instabilities in clustering algorithms. These generators yield different clusterings
of the same data, thereby improving the quality and robustness of ensemble output. In this paper,
we have empirically examined the following ensemble generation methods:

e Plain. A simple approach to producing a collection of ensemble members is to rely solely
on some stochastic element in the base clustering algorithm to provide diversity, such as the
selection of random initial clusters irmeans.

e Random-kThe output of clustering algorithms such as standangeans is dependent on the
initial choice of the number of clusteks This has been exploited as a source of ensemble
diversity by generating clusterings using randomly selected value$rofm a user-specified
interval [7]. In our experiments, we used the raf@e: + 10], wherek is the natural number
of clusters for a given dataset.

e Random-k+.1t has been shown that a collection of clusterings generated at a much higher
resolution than the value @f used for the final partition can provide better results [4]. This
generation method is the samerasdom-Kk but with the intervalk, k + 30].

e Bagging.A common solution to the lack of diversity in classifier ensembles is to train indi-
vidual predictors on random subsamples of the data, as in bagging. An analogous method for
ensemble clustering was suggested in [9], where subsets of the original data are produced by
randomly selecting instances with replacement.

e Random subspacinginstability can also be introduced to an ensemble by ensuring that
individual members have only a partial view of each data point. A simple approach that
has been used in classifier ensembles to accomplish this task is random subspacing [5]. This
method is also suitable for ensembles in unsupervised learning, where each base clustering is
generated on a randomly selected subset of the original dimensions.

e Random projectionAnother effective ensemble creation method was proposed in [11], in-
volving the generation of a set of dissimilar clusterings by randomly projecting the data onto



a lower dimensional subspace. Each ensemble member is produced by transforming the orig-
inal n x d dataset to a reduced set @fnew dimensions, based on a randomly generated
transformation matrix. In the experiments discussed in this paper, the vallidasfeach
ensemble member was randomly selected from the intérya.

¢ Heterogeneous ensemblés.homogeneousnsembles, members are created using repeated
runs of a single base clustering algorithm. As an alternatieégrogeneousnsembles may
be employed, where diversity is induced by allowing each base clustering to be generated
using a different algorithm.

Another design consideration in ensemble clustering is the choice of one or more base clustering
algorithms that will be used to produce each individual partition. In our experiments, we employed
standardc-meansk-medoids and a fast “weak clustering” technique, whiecentroids are chosen
at random and the remaining instances are assigned to the cluster with the nearest centroid. Unlike
k-means and-medoids, no subsequent attempt is made here to improve the partition, resulting in
a highly unstable solution.

2.2. Ensemble Integration

Once a collection of diverse base clusterings has been generated, the partitions should be aggre-
gated to produce a single solution. An intuitive ensemble integration method is to use the informa-
tion provided by the different clusterings to determine the level of association between each pair of
instances in the dataset [7]. The fundamental assumption here is that points occuring in the same
“natural” cluster will be frequently assigned to the same cluster across the base clusterings.

Thisco-occurrencapproach resembles the majority voting schemes commonly used in classifier
ensembles. For each base clustering, a pair of instances occurring in the same cluster signifies
a “vote” for the pair being co-located in the final partition. The collection of base clusterings
can effectively be mapped torax n co-occurrence matrixwhere each celli, j) represents the
number of times that the pair of instances, z;) has been assigned to the same cluster. These
values are divided by the total number of ensemble memdets produce a normalized matrix
suitable for subsequent meta-clustering using a standard distance-based algorithm. In the literature,
agglomerative hierarchical schemes have been commonly used for this purpose [7, 11]. In our
experiments, we apply the following hierarchical clustering algorithms: single-linkage, complete-
linkage and average-linkage.

3. Experimental Results and Discussion

In order to evaluate the ensemble strategies described in Section 2, experiments were conducted
on two synthetic datasets and six benchmark real-world datasets from the UCI repository [1]. We
examined all possible combinations of base clustering algorithms, generation techniques and meta-
level clustering algorithms enumerated previously. For each datasetpibecurrenceapproach
was used as an integration function, where the final number of clustess set to the known
number of clusters for the dataset.

3.1. Evaluation of Ensemble Performance

In unsupervised learning there is no definitive measure of accuracy, making the task of eval-
uating any ensemble clustering technique non-trivial. Many clustering performance measures are
parametric and therefore favour bell-shaped distributions, making them inappropriate for the task of
ensemble evaluation. However, in cases where the annotated class labels or generative data models



are available, external evaluation criteria may provide an effective means of assessing the quality
of a partition. These measures determine how closely a clustering procedure’s output corresponds
to the known natural groupings in the data according to knowledge unavailable to the clustering
algorithm itself. To evaluate the ensemble strategies describe previously, we use two such criteria.
In the Jaccard indeX6], which has been applied to assess the similarity between different par-
titions of the same dataset, the level of agreement between a set of clas€larelsa clustering
result K is determined by the number of pairs of points assigned to the same cluster in both parti-

tions: a

a+b+c (1)
whereq denotes the number of pairs of points with the same labél and assigned to the same
cluster in K, b denotes the number of pairs with the same label, but in different clusters and
denotes the number of pairs in the same cluster, but with different class labels. The index produces
aresultin the rang@, 1], where a value of 1.0 indicates th@tand K~ are identical.

The second criterion is asccuracyscore that uses external class information, which is similar
to the mis-assignment rate described in [11]. By finding the optimal correspondence between a
dataset’s annotated class labels and the clusters in an ensemble partition, a performance measure
may be derived that reflects the proportion of instances that were correctly assigned.

J(C,K) =

Table 1. Summaries and optimal ensemble parameters for each dataset.

Dataset | Inst. Feat. k| N | Base Generator  Linkage Jaccard Accur
2spirals | 212 2 2| 1000 | k-medoids random-k+ single | 1.000 1.000
halfrings | 600 3 2| 500 | weak plain single 1.000 1.000
breast 277 51 2| 1000| k-means random-k+ complete 0.586  0.762
diabetes | 768 8 2| 2000 | heterogen. plain averageg 0.545 0.675
heart 270 13 2| 2000 | weak plain single 0.503 0.600
iris 150 4 3| 3000 | k-medoids random-k  single | 0.776  0.893
liver 345 7 2| 2000 | weak plain single 0.511 0.585
lymph 148 18 4| 2000| k-medoids subspacing average 0.477 0.615
thyroid | 215 5 3| 2000 | k-means bagging single | 0.630 0.793

In Table 1 basic properties of the datasets under consideration are summarised, together with
optimal ensemble parameters and evaluation results. A minimum number of ensemble members
N required to give a stable solution is also suggested for each dataset. In experiments performed
over 30 trials, ensembles with the specified parameters consistently yielded results superior to those
produced by single independent runs of individual clustering algorithms. When compared with the
output of a singlék-means algorithm, the increaseadncuracyvalues ranged from 0.0023 on the
thyroid dataset to 0.4528 on the 2spirals dataset. Improvements were also evident in the Jaccard
values, with increases ranging from 0.0680 on the thyroid dataset to 0.6669 on the 2spirals dataset.

3.2. Evaluation of Ensemble Diversity

In supervised learning, it has been observed [3, 12] that the success of an ensemble technique
depends not only on the presence of a diverse set of base classifiers, but also on the ability of the
meta-level classifier to exploit the resulting diversity. To assess the relationship between methods
for creating ensemble members and diversity, we examined the amount of disagreement resulting
from each of the generation techniques and base clustering algorithms considered previously. To
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quantify diversity, we use a non-pairwise entropy measure based on that proposed for classifier
ensembles [12]. The diversity for a datasenahstances is given by the expression

n n
divent = —>—— D > —(pijlogapij + (1 — pij) logs (1 = pij)) 2
n(n —1) i=1 j=i+1
wherep;; represents the proportion of times the pointeindz; are co-located in the same cluster.

In each case, we examined the amount of disagreement between 1000 base clusterings, averaged
across the datasets. Figure 1 shows a comparison of the level of diversity produced by each en-
semble generator and the average performance of ensembles utilising the technique. In Figure 2
we show a comparison of base clustering algorithms. Note, that while weak-clustering only shows
small improvements when averaging across the datasets, it proved to be the optimal choice for the
base algorithm on several datasets. Since it provides a high level of diversity, it may be used with a
“plain” generation technique, making it less computationally expensive than the other methods.

Both Figures 1 and 2 indicate that, while combining the output of multiple clusterers is useful
only if there is disagreement between the partitions they produce, diversity alone is not sufficient
to yield an improved solution. Rather, the choice of a suitable meta-level clustering algorithm
appears to greatly dictate the success of an ensemble. Figure 3 shows that, in our studies, single-
linkage gave the best average performance across the datasets. For practical applications, each of



the meta-clustering algorithms could be applied, with the best partition selected by employing a
“supra-consensus” function, such as that suggested in [10].

4. Conclusion

In this paper, we discussed ensemble clustering and conducted a series of experiments on syn-
thetic and real-world datasets, examining a range strategies for generating and integrating the en-
sembles. We also suggested an optimal configuration for each dataset that resulted in consistent
improvements over single independent runs of individual clustering algorithms.

We have demonstrated that ensemble clustering offers considerable potential to improve our abil-
ity to identify the underlying structure of both artificial and real datasets in unsupervised scenarios.
However, it is apparent from our results that the ability to exploit this potential relies to a great
extent on making several important design decisions relating to the choice of base clustering algo-
rithm, generation technique, number of ensemble members and final meta-clustering algorithm. In
addition, we have observed that diversity among ensemble members is necessary, but not sufficient
to yield an improved solution without the selection of an effective integration scheme.

Future research could consider other combination strategies that may be more successful in ex-
ploiting diversity. Alternative methods of quantifying diversity could also be investigated, such as
pairwise or variance-based measures. An important aspect of ensemble clustering that remains to
be explored is the relationship between the various measures of ensemble performance and the ac-
curacy of its constituent members, which could provide further insight into the process of selecting
appropriate ensemble parameters.
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