
The problem of concept drift: definitions and related work

Alexey Tsymbal
Department of Computer Science
Trinity College Dublin, Ireland

tsymbalo@tcd.ie

April 29, 2004

Abstract

In the real world concepts are often not stable but change with time. Typical examples
of this are weather prediction rules and customers’ preferences. The underlying data
distribution may change as well. Often these changes make the model built on old data
inconsistent with the new data, and regular updating of the model is necessary. This
problem, known as concept drift, complicates the task of learning a model from data
and requires special approaches, different from commonly used techniques, which
treat arriving instances as equally important contributors to the final concept. This
paper considers different types of concept drift, peculiarities of the problem, and gives
a critical review of existing approaches to the problem.

1. Definitions and peculiarities of the problem

A difficult problem with learning in many real-world domains is that the concept of
interest may depend on some hidden context, not given explicitly in the form of pre-
dictive features. A typical example is weather prediction rules that may vary radically
with the season. Another example is the patterns of customers’ buying preferences that
may change with time, depending on the current day of the week, availability of alter-
natives, inflation rate, etc. Often the cause of change is hidden, not known a priori,
making the learning task more complicated. Changes in the hidden context can induce
more or less radical changes in the target concept, which is generally known as con-
cept drift (Widmer and Kubat, 1996). An effective learner should be able to track such
changes and to quickly adapt to them.

A difficult problem in handling concept drift is distinguishing between true concept
drift and noise. Some algorithms may overreact to noise, erroneously interpreting it as
concept drift, while others may be highly robust to noise, adjusting to the changes too
slowly. An ideal learner should combine robustness to noise and sensitivity to concept
drift (Widmer and Kubat, 1996).

In many domains, hidden contexts may be expected to recur. Recurring contexts
may be due to cyclic phenomena, such as seasons of the year or may be associated
with irregular phenomena, such as inflation rates or market mood (Harries and Sam-
mut, 1998). In such domains, in order to adapt more quickly to concept drift, concept

descriptions may be saved so that they could be reexamined and reused later. Not
many learners are able to deal with recurring contexts. Those which can include
FLORA3 (Widmer and Kubat, 1993), PECS (Salganicoff, 1997), SPLICE (Harries
and Sammut, 1998), Local Weights and Batch Selection (Klinkenberg, 2004).

Thus, an ideal concept drift handling system should be able to: (1) quickly adapt to
concept drift; (2) be robust to noise and distinguish it from concept drift; and (3) rec-
ognize and treat recurring contexts.

2. Types of concept drift

Two kinds of concept drift that may occur in the real world are normally distinguished
in the literature: (1) sudden (abrupt, instantaneous), and (2) gradual concept drift. For
example, someone graduating from college might suddenly have completely different
monetary concerns, whereas a slowly wearing piece of factory equipment might cause
a gradual change in the quality of output parts (Stanley, 2003). Stanley (2003) divides
gradual drift further into moderate and slow drifts, depending on the rate of the
changes.

Hidden changes in context may not only be a cause of a change of target concept,
but may also cause a change of the underlying data distribution. Even if the target
concept remains the same, and it is only the data distribution that changes, this may
often lead to the necessity of revising the current model, as the model’s error may no
longer be acceptable with the new data distribution. The necessity in the change of
current model due to the change of data distribution is called virtual concept drift
(Widmer and Kubat, 1993). Virtual concept drift and real concept drift often occur
together. Virtual concept drift alone may occur, e.g. in the case of spam categoriza-
tion. While our understanding of an unwanted message may remain the same over a
relatively long period of time, the relative frequency of different types of spam may
change drastically with time. In (Salganicoff, 1997) virtual concept drift is referred to
as sampling shift, and real concept drift is referred to as concept shift. From the prac-
tical point of view it is not important, what kind of concept drift occurs, real or virtual,
or both. In all cases the current model needs to be changed.

3. Systems for handling concept drift

Probably the first systems capable of handling concept drift were STAGGER
(Schlimmer and Granger, 1986), FLORA (Widmer and Kubat, 1996), and IB3 (Aha et
al., 1991). Three approaches to handling concept drift can be distinguished in the
available systems: (1) instance selection; (2) instance weighting; and (3) ensemble
learning (or learning with multiple concept descriptions).

In instance selection, the goal is to select instances relevant to the current concept.
The most common concept drift handling technique is based on instance selection and
consists in generalizing from a window that moves over recently arrived instances and
uses the learnt concepts for prediction only in the immediate future. Examples of win-
dow-based algorithms include the FLORA family of algorithms (Widmer and Kubat,
1996), FRANN (Kubat and Widmer, 1994), and Time-Windowed Forgetting, TMF

(Salganicoff, 1997). Some algorithms use a window of fixed size, while others use
heuristics to adjust the window size to the current extent of concept drift, e.g. “Adap-
tive Size” (Klinkenberg, 2004), and FLORA2 (Widmer and Kubat, 1996). Many case-
base editing strategies in case-based reasoning that delete noisy, irrelevant and redun-
dant cases are also a form of instance selection (Cunningham et al., 2003). Batch Se-
lection of Klinkenberg (2004) may be considered as instance selection as well. Groups
of instances (“batches”) are considered to be relevant to the target concept if they are
well classified by the current model.

Instance weighting uses the ability of some learning algorithms such as Support
Vector Machines (SVMs) to process weighted instances (Klinkenberg, 2004). In-
stances can be weighted according to their age, and their competence with regard to
the current concept. Klinkenberg (2004) shows in his experiments that instance
weighting techniques handle concept drift worse than analogous instance selection
techniques, which is probably due to overfitting the data.

Ensemble learning maintains a set of concept descriptions, predictions of which are
combined using voting or weighted voting, or the most relevant description is se-
lected. The first concept drift handling system STAGGER (Schlimmer and Granger,
1986) maintains a set of concept descriptions, which are originally features them-
selves, and more complicated concept descriptions are then produced iteratively using
feature construction, the best of which are selected according to their relevance to the
current data. Conceptual clustering of Harries and Sammut (1998) identifies stable
hidden contexts by clustering the instances assuming that similarity of context is re-
flected by the degree to which instances are well classified by the same concept. A set
of models is constructed then on the identified clusters. Street and Kim (2001) and
Wang et al. (2001) suggest that simply dividing the data into sequential chunks of
fixed size and building an ensemble on those chunks may be effective for handling
concept drift. Stanley (2003) and Kolter and Maloof (2003) build ensembles of classi-
fiers of different “age” so that each of the base classifiers sees the latest instances. All
incremental ensemble approaches use some criteria to dynamically delete, reactivate,
or create new ensemble members, which are normally based on the base models’ con-
sistency with the current data.

4. Base learning algorithms for handling concept drift

Many learning algorithms were used for base models in systems handling concept
drift. These include rule-based learning (Schlimmer and Granger, 1986; Widmer and
Kubat, 1993, 1996; Wang et al., 2003), decision trees, including their incremental
versions (Harries and Sammut, 1998; Hulten et al., 2001; Street and Kim, 2001;
Kolter and Maloof, 2003; Stanley, 2003; Wang et al., 2003), Naïve Bayes (Kolter and
Maloof, 2003; Wang et al., 2003), SVMs (Klinkenberg, 2004), Radial Basis Functions
- networks (Kubat and Widmer, 1994), and instance-based learning (Aha et al., 1991;
Salganicoff, 1997; Cunningham et al., 2003).

A problem with many global eager learners (if they are not able to update their lo-
cal parts incrementally when needed) is their inability to adapt to local concept drift.
In the real world, concept drift may often be local, e.g. only particular types of spam

may change with time, while the others could remain the same. In the case of local
concept drift, many global models are discarded simply because their accuracy on the
current data falls, even if they still could be good experts in the stable parts of the
data. In contrast to this, lazy learning is able to adapt well to local concept drift due to
its local nature.

The advantages of lazy learning for handling concept drift were discussed in (Cun-
ningham et al., 2003). First, lazy learning performs well with disjoint concepts, such
as spam, which consists of many different sub-types; second, case-bases in lazy learn-
ing are easy to update, e.g. when new types of spam appear; and third, lazy learning
allows easy sharing of knowledge for particular types of problems making easier
maintaining multiple potentially distributed case-bases. Instance-based learning is
sometimes criticized in that, as non-parametric learning, it needs relatively more in-
stances to get high classification accuracy (Widmer and Kubat, 1996). However, often
it is not a problem in practice, as enough instances are available.

The first instance-based technique capable of handling concept drift is IB3 (Aha et
al., 1991). For each case, IB3 calculates the percentage of correct classification at-
tempts and compares it with its class’s frequency to determine which cases to keep,
discarding noisy and outdated cases. IB3 was criticized as it is able to adapt to gradual
concept drifts only, and its adaptation is relatively slow (Widmer and Kubat, 1996).
Local Weighted Forgetting (LWF) of Salganicoff (1997) deactivates old instances,
but only when similar new instances appear. Prediction Error Context Switching
(PECS) is similar to LWF, but it takes into account the classification accuracy of an
instance also, and is able to store instances for further reactivating (Salganicoff, 1997).
PECS and LWF were shown to perform better than a simple window-based technique
TWF, and PECS was the best technique overall.

5. Datasets for testing systems handling concept drift

The most popular benchmark data for testing concept drift handling systems is rep-

resented by the STAGGER concepts (Schlimmer and Granger, 1986) including three
simple Boolean concepts of three features taking on three feature values each. It was
used to test most of the systems: (Schlimmer and Granger, 1986; Widmer and Kubat,
1993, 1996; Kubat and Widmer, 1994; Harries and Sammut, 1998; Stanley, 2003;
Kolter and Maloof, 2003). Another popular benchmark problem is represented by a
moving hyperplane (Hulten et al., 2001; Street and Kim, 2001; Kolter and Maloof,
2003; Wang et al., 2003). The STAGGER and Hyperplane problems allow controlling
the type and rate of concept drift, context recurrence, presence of noise, and irrelevant
attributes. However, they do not allow checking the algorithms’ scalability to large
problems, which is important as concept drift mostly occurs in big amounts of data
arriving in the form of stream. Some real-world problems were used to test concept
drift handling systems as well: flight simulator data (Harries and Sammut, 1998), Web
page access data (Hulten et al., 2001), the Text Retrieval Conference (TREC) data
(Lanquillon, 1999; Klinkenberg, 2004), credit card fraud data (Wang et al., 2003),
breast cancer, anonymous Web browsing, and US Census Bureau data (Street and
Kim, 2001), and e-mail data (Cunningham et al., 2003). An important problem with

most of the real-world data sets is that there is little concept drift in them, or concept
drift is introduced artificially, e.g. by restricting the subset of relevant topics for each
particular period of time in the TREC data (Lanquillon, 1999; Klinkenberg, 2004).

6. Theoretical results in handling concept drift

The task of learning drifting concepts has also been studied in computational learn-

ing theory. Usually some restrictions are imposed on the type of admissible concept
changes to make some proofs about the learnability of drifting concepts, e.g. by limit-
ing the rate or the extent of drift. In particular, Kuh et al. (1991) determine a maximal
frequency of concept changes (rate of drift) that is acceptable by any learner, which
implies a lower bound for the size of a window for drifting concepts to be learnable.
Hembold and Long (1994) establish bounds on the extent of drift that can be tolerated
assuming possibly permanent but very slow drift, where extent is defined as the prob-
ability that two successive concepts disagree on a random instance. They also show
that it is sufficient for a learner to see a fixed number of the most recent instances (a
window). These results are similar to the lower bound of Kuh et al. In practice, how-
ever, it usually cannot be guaranteed that these restrictions hold true. Also the large
window sizes in the theoretical bounds would be impractical to employ.

7. Incremental (online) learning versus batch learning

Most of the algorithms for handling concept drift consider incremental (online)

learning environments as opposed to batch learning. While batch systems learn by
examining a large collection of instances at once and forming a single model, incre-
mental systems evolve and update a model as new instances are processed. Incre-
mental learning is more suited for the task of handling concept drift, as in the real life
data often needs to be processed in an online manner, each time after a new portion of
the data arrives. This is caused by the fact that data in many current data processing
systems is organized in the form of a data stream rather than a static data repository,
reflecting the natural flow of data (Street and Kim, 2001; Wang et al., 2003; Hulten
and Spencer, 2003).

Batch concept drift learning was considered for the sake of simplicity in (Harries et
al., 1998; Klinkenberg, 2004). Klinkenberg (2004) discusses how these algorithms can
be turned into incremental, in particular, for SVMs.

8. Criteria for updating the current model

Many algorithms for handling concept drift employ regular model updates as new

data arrive. However, this can be too costly as the amount of arriving data may be
overwhelming, and, for some applications such as spam categorization, user feedback
is needed for labeling the data, which also requires time and other resources. A way to
overcome this problem is to detect changes and adapt the model only if inevitable.
Several criteria (so called “ triggers”) were proposed in the literature. Lanquillon
(1999) suggests two criteria for detecting changes without user feedback. The first

criterion is based on the average confidence in correct prediction of the model on new
instances, and the second one observes the fraction of instances for which the confi-
dence is below a given threshold. However, Lanquillon concludes that in real-world
applications changes are usually much slower and less radical than those detected with
the criteria and therefore more difficult to detect. Leake and Wilson (1999) suggest
two similar criteria specific to case-based reasoning: (1) problem-solution regularity,
and (2) problem-distribution regularity, which represent how well similarity in solu-
tions is reflected by similarity in cases (problems), and coverage of the learning task
by the case base. Although these criteria may be good measures of quality of a case-
base, it is not easy to apply them in practice as triggers for model updating because the
drift rate and the level of noise may vary drastically with time.

Conclusions
The problem of concept drift is of increasing importance to machine learning and data
mining as more and more data is organized in the form of data streams rather than
static databases, and it is rather unusual that concepts and data distribution stay stable
over long period of time.

To summarize, three basic approaches to handling concept drift can be distin-
guished: instance selection, instance weighting, and ensemble learning. An important
problem with most of the real-world datasets in existing experimental investigations is
that there is little concept drift in them, or concept drift is introduced artificially. Real
data including different types of concept drift are needed to experiment with proposed
approaches to validate them and check their robustness to the change of different data
characteristics and, in particular, their scalability. An important part of the research on
concept drift is developing criteria for detecting crucial changes that allow adapting
the model only if inevitable. Currently suggested “triggers” are not robust to different
types of concept drift and different levels of noise, and more research is needed in this
direction.

Acknowledgements. I am thankful to Prof. Pádraig Cunningham, Sarah Jane Delany
and Deirdre Hogan of Department of Computer Science, Trinity College Dublin, Ire-
land, and Prof. Seppo Puuronen and Mykola Pechenizkiy of Department of Computer
Science and Information Systems, University of Jyväskylä, Finland for discussions
and comments on early versions of this paper. This material is based upon works sup-
ported by the Science Foundation Ireland under Grant No. S.F.I.-02IN.1I111.

References

1. Aha D.W., Kibler D., Albert M.K., Instance-based learning algorithms, Machine Learning, 6
(1), 1991, 37-66.

2. Cunningham P., Nowlan N., Delany S.J., Haahr M., A case-based approach to spam filtering
that can track concept drift, Proc. ICCBR-2003 Workshop on Long-Lived CBR Systems,
2003.

3. Harries M., Sammut C., Horn K., Extracting hidden context, Machine Learning, 32(2),
1998, 101-126.

4. Hulten G., Spencer L., Domingos P., Mining time-changing data streams, Proc. 7th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining KDD-2001, ACM Press,
2001, 97-106.

5. Kolter J.Z., Maloof M.A., Dynamic weighted majority: a new ensemble method for tracking
concept drift, 3rd IEEE Int. Conf. on Data Mining ICDM-2003, IEEE CS Press, 2003, 123-
130.

6. Kubat M., Widmer G., Adapting to drift in continuous domains, Tech. Report ÖFAI-TR-94-
27, Austrian Research Institute for Artificial Intelligence, Vienna, 1994.

7. Lanquillon C., Renz I., Adaptive information filtering: detecting changes in text streams,
Proc. 8th Int. Conf. on Information and Knowledge Management CIKM-1999, ACM Press,
1999, 538-544.

8. Leake D.B., Wilson D.C., When experience is wrong: examining CBR for changing tasks
and environments, Proc. 3rd Int. Conf. on Case-Based Reasoning ICCBR-1999, Springer-
Verlag, Lecture Notes in Computer Science 1650, 1999, 218-232.

9. Salganicoff M., Tolerating concept and sampling shift in lazy learning using prediction error
context switching, AI Review, Special Issue on Lazy Learning, 11 (1-5), 1997, 133-155.

10. Schlimmer J.C., Granger R.H., Incremental learning from noisy data, Machine Learning,
1(3), 1986, 317-354.

11. Stanley K.O., Learning concept drift with a committee of decision trees, Tech. Report UT-
AI-TR-03-302, Department of Computer Sciences, University of Texas at Austin, USA,
2003.

12. Street W., Kim Y., A streaming ensemble algorithm (SEA) for large-scale classification,
Proc. 7th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining KDD-2001,
ACM Press, 2001, 377-382.

13. Wang H., Fan W., Yu P.S., Han J., Mining concept-drifting data streams using ensemble
classifiers, Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining
KDD-2003, ACM Press, 2003, 226-235.

14. Widmer G., Kubat M., Effective learning in dynamic environments by explicit context
tracking, Proc. 6th European Conf. on Machine Learning ECML-1993, Springer-Verlag,
Lecture Notes in Computer Science 667, 1993, 227-243.

15. Widmer G., Kubat M., Learning in the presence of concept drift and hidden contexts, Ma-
chine Learning, 23 (1), 1996, 69-101.

16. Klinkenberg R., Learning drifting concepts: example selection vs.
example weighting, Intelligent Data Analysis, Special Issue on
Incremental Learning Systems Capable of Dealing with Concept Drift, 8 (3), 2004 (to ap-
pear).

17. Helmbold D.P., Long P.M., Tracking drifting concepts by minimizing disagreements,
Machine Learning, 14(1), 1994, 27-45.

18. Kuh A., Petsche T., Rivest R.L., Learning time-varying concepts, Advances in Neural
Information Processing Systems (NIPS) 3, Morgan Kaufmann, 1991, 183-189.

