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Abstract

There are many problems that must be addressed when attempting to

enhance a particular middleware programming framework, in this case

Java RMI, to allow it operate effectively in a mobile environment.

The Architecture for Location Independent Computing Environments

provides for the addition of mobility to such a framework in a set of

reusable components. In this thesis I have outlined the problems that Java

RMI faces and have implemented the components to allow it operate under

mobile conditions.

Using a layered approach, I tackled common mobility issues like

disconnection, relocation and reference management with specific

reference to Sun Microsystems' implementation of Java RMI. I have

provided a detailed design and implementation written in Java while also

utilizing an enhanced version of the standard Berkeley sockets API with the

Java Native Interface. 

This updated API now facilitates the creation of mobile friendly RMI

applications and can be utilized with the maximum amount of transparency

available to the application programmer. The platform used to implement

the design was JBuilderX running on Fedora Core Linux.   
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CHAPTER 1

-

    INTRODUCTION

   1.1 Introduction

In the recent past, probably the biggest growth area for personal

computing has been that of mobile devices that provide functionality and

services combined with a simple user interface e.g. hand held telephones,

personal digital assistants (PDA's), pocket PC's and others.  

For the majority of these devices and others like personal computers and

workstations which are connected over wireless links, their connectivity to

services and other networks is based on the interoperability of the

underlying architecture that they are running on. This underlying

architecture is most commonly known as middleware, which can be defined

as: 

“Software that sits between two or more types of software and

translates information between them. Middleware can cover a broad

spectrum of software and generally sits between an application and

an operating system, a network operating system, or a database

management system.” [1]

Some examples of it are Java Remote Method Invocation [2] or the

Common Object Request Broker Architecture [3]. A common problem

associated with object oriented middleware frameworks is that they do not

provide for mobility comfortably. The frameworks were designed to operate

well in fixed networks but now the demand for mobility ensures that they

must be adapted to operate in such environments.
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This thesis will describe and implement, specifically for RMI, the

Architecture for Location Independent Computing Environments which

allows mobility to be added to any middleware framework that can support

some fundamental requirements, for example, operating over the

transmission control protocol specification [4]. 

This implementation of ALICE for RMI will demonstrate that the key

challenges of mobility like managing network connections over wireless

links, maintaining service for periods of disconnection and reconnecting to

the network are all transparently available to the application programmer

when using ALICE. The development of each layer is presented and an

evaluation is provided at the end of the project to judge the success of

ALICE in the RMI environment.

 1.2 Java RMI

The popularity of the Internet has seen many new technologies being

introduced to the software development community. One of the most

widely accepted and used languages which is still relatively new is Java. 

Java has become so popular for two simple reasons:

● It is a fully object oriented language and hence it fully complies with one

of todays most popular development models, object oriented design

(OOD).

● It is completely platform independent. When building a Java application,

the source code is compiled into bytecode and then a Virtual Machine

(JVM) on the host machine interprets this bytecode into native machine

code, hence allowing the code to run on any platform.

In terms of middleware development, Java also has a comprehensive API

known as remote method invocation. 
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This API allows a Java application to connect and invoke methods on

objects in a completely different address space or computer / device, over a

network. For a Java specific distributed system, RMI is arguably the most

suitable option for development as recommended by William Grosso in his

overview of the framework.

“Java RMI is a robust and effective way to build a distributed

framework in which all participating programs are running Java.” [5]. 

RMI programs communicate by attaining a reference to an object that has

been “exported” (made available for invocation). As Java is a fully object

oriented language, the usage of objects and classes is mandatory in its

development. When a program, which has implemented certain interfaces

that are required by RMI, attempts to invoke a method on a different

machine, it must get a reference to the (server) object via a number of

different ways. Once a reference is attained the client can proceed to

invoke methods on the server object , hence allowing middleware operation

to be achieved by the application programmer relatively simply.

1.3 ALICE Overview

Initially, the ALICE project was aimed at providing mobility features to the

Common Object Request Broker Architecture middleware framework.

The design attempted to address the most common problems that CORBA

and distributed object computing environments tended to endure,

especially considering that many were largely developed with fixed

networks in mind. The architecture is based on a stack design, not

dissimilar in appearance or inspection to that of the popular Internet

Protocol Stack [6]. There are six main components, each tackling different

mobility challenges, and each providing its own functionality and 

communication with its closest layers. 

3



Fig 1.1 ALICE Architecture for RMI 

● Application Layer – services defined by the programmer.

● Disconnected Operation Layer – long term disconnection management.

● Swizzling Layer – address management / redirection for mobile objects.

● Remote Invocation Protocol Layer – RMI invocations.

● Mobility Layer – connectivity management between MG and MH.

● Transport Layer – Bluetooth, Infrared, Serial Line etc...
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These six layers make up the abstract ALICE architecture and provide for

mobility support based on the many challenges presented in distributed

object environments. The main challenges that are addressed in this thesis

specifically relate to RMI and come under the areas of address

management during relocation of server objects, managing periods of

client or server disconnection (whether short or long) from the network,

socket relocation. 

The underlying concept of the architecture is to introduce a proxy known

as a mobility gateway (denoted onwards as MG) to manage connections

from a mobility host (denoted onwards as MH) which is typically in a

wireless, mobile environment.

Fig 1.2 The Mobile Environment

The MG controls all access from the MH to other elements in the network

and also processes invocations made on services offered on the MH, should

it be hosting any server applications. Essentially the MG acts as a proxy to

control the communications to and from the MH. This departs from the 

standard RMI client / server architecture but is necessary to aid the

mobility of MH's in a wireless environment as will be explained in future

chapters.                                             5



1.4 Project Objectives

The overall objective of the project is to allow Java RMI to operate

successfully in a mobile environment. This can be evaluated using different

criteria:

1. Maintaining Java RMI transparency. The application developer should be

able to create ALICE enabled applications with no difference or the least

amount of changes possible to the standard development procedure.

2. Integrating the ALICE mobility layer (denoted onwards as ML) into the

RMI runtime. This allows the ML to transparently manage connectivity

between the MG and ML, and is essential for mobile servers.

3. Implementation of the swizzling and disconnected operation layers.

These layers tackle the common problems associated with mobility and

are implemented specifically for RMI.  

1.5 Thesis Roadmap

Chapter 1 - Introduction

Introduction to the framework of RMI, what is it, how does it operate, and

also a brief explanation of ALICE. 

Chapter 2 – Java in a Mobile Environment

An analysis of current standards in middleware and how these relate to

RMI's operation. The chapter also gives a history of the area and  explains

some problems in the area and demonstrate some middleware systems.

Chapter 3 - State of the Art      

This will focus specifically on RMI related systems and developments. I will

explain some major research topics associated with RMI and how they

relate to RMI in an ALICE environment.
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Chapter 4 - Design

This contains an explanation of each layer in the architecture and of how it

is to be integrated with RMI to enable mobility. 

Chapter 5 - Implementation

This explains how I implemented the design described in the previous

chapter. It details classes, operations and code samples that demonstrate

how the design works in reality.

Chapter 6 - Evaluation

This chapter will give a discussion on the performance of the enhanced

architecture and how it compares to RMI in the standard format. I will

provide statistical analysis on round trip times for invocations and on the

code sizes for enhanced RMI.

Chapter 7 - Conclusion

This will give a discussion on the results of the evaluation and where the

future work lies in this area.
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CHAPTER 2

-

JAVA IN A MOBILE ENVIRONMENT

2.1 Introduction

This chapter will provide a brief history and understanding of the functions

performed by middleware in computing. I will look at the main challenges

facing the development of middleware software in today and give an

overview of the advancements that this area has made in recent times.

2.1.1 A Brief History

The term middleware first appeared in the 1980's to describe software that

managed network connectivity but did not come into full utilization until

the 1990's when network technology had achieved good reliability and

customization. By then it had evolved into a paradigm that allowed

distributed applications to be built and customized and the Internet

revolution in the late 1990's resulted in middleware being a core

requirement when offering new services and computing products.

Cronus [7] was one of the first main object oriented distributed middleware

systems in the early 1980's and this introduced the remote procedure call

(RPC)  paradigm to computing. Other similar systems introduced at the

time were Sun's Open Network Computing (ONC) and Apollo's Network

Computing System (NCS).

In 1989 the Object Management Group [8] was formed and was the largest

group dedicated to the development of middleware technology. Message

oriented middleware became a standard in the 1990's and HTTP allowed

for the operation of middleware easily with firewalls and the web.   
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2.1.2 Remote Procedure Call Middleware

Arguably the most used and well understood architecture in distributed

computing today is that of the client - server model. It is the bedrock of the

Internet revolution and is a well-defined method of efficient communication

between  machines across networks i.e. middleware. The basic premise is

of a client who requests, by means of a marshalled message, some type of

information from the server. To produce this information the server

executes a service of some kind and returns the result to the client in a

response message. The important idea of an interface is introduced here as

it is one that is commonplace in middleware systems. 

An interface is simply a formalized list of services that is provided by a

server and guarantees that a client can expect these services when

programming. In the remote procedure call framework, the client machine

invokes a service made available at the server and by doing this is placing

the idea of the interface at the core of the framework. This idea is now also

a fundamental one when speaking about CORBA and also Java RMI.  In

CORBA, the Interface Definition Language (IDL) ensures that the

specification of the services is provided and also combines this with the

idea of a “broker” to implement the client – server model. It is a non-

language specific middleware framework so it allows the integration of

various back-end systems.

Fig 2.1 CORBA Operation
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Now to look at the RMI model which is also a client – server one. The same

idea of defining and programming to the interface is present in RMI. The

server is a Java object which has implemented the methods specified in the

interface. For a client to get access to the server it must obtain a reference

to it, this is handled by the remote reference layer of the RMI framework.  

Stubs and skeletons are produced by the RMI compiler, rmic, and they

manage the actual invocations between clients and servers.

Fig 2.2 Java RMI Architecture

The concept of a remote procedure call has been used by all the major

software vendors in recent times and has allowed the distributed

computing environment to flourish, especially the world wide web.

2.1.3 Other Middleware Frameworks

There are many types of middleware frameworks that are very different

from RPC middleware. Some of these are message oriented middleware

(MOM) or event driven middleware. MOM has developed the concept of a

common communications mechanism allowing programs to exchange data

without knowing the basic primitives involved. The idea of a

communications bus is a central one in message based middleware. The

queuing system allows applications to run independently as the message 
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can be sent and the queuing system will ensure that it is delivered, even if

the sending application has no knowledge whether the receiver is active or

not at that time. This allows the communication to be synchronous or

asynchronous, which is the main difference from RPC based middleware.

An example of a message based middleware system is the Java Message

Service [9].

I have described one alternative area in the overall middleware domain but

this thesis will now focus on RPC based middleware operating in a mobile

environment and Java RMI in particular.

  

2.2 Middleware Challenges

The aim of any middleware system is to allow different applications to

communicate over a network transparently. As it is a layer of software

placed between the operating system and the application to facilitate

communication across many platforms, it therefore has inherent problems

that standalone applications will not incur. I will now outline some of the

major problems that object oriented middleware systems operating in

mobile environments face. The purpose of this list is to show the challenges

that the design and implementation of ALICE for RMI faces and how to

best tackle these problems.

2.2.1 Address Migration

The overall objective of the ALICE architecture is to enable mobility for

middleware frameworks which support basic requirements. One problem 

facing the standard RMI structure is that it strongly based on the client –

server architecture. 

To facilitate RMI with ALICE on a MH there needs to be a mechanism to

tackle the problem of when a MH moves between different MG's. If a 
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server resides on a MH connected to MG1, then after the MH moves to

MG2, the clients that have already invoked methods on the server will still

be pointing to MG1 as the most up to date gateway in the invocation

process. This gateway address will be old and there needs to be some

mechanism to address this problem. This is tackled by the S/RMIMG

component which is explained in chapter four. It facilitates the movement

of MH's between gateways and provides a forward pointer algorithm for

when invocations are made on servers that have since moved to a different

gateway.  

 

2.2.2 Disconnection

In any wireless network, a disconnection does not necessarily mean that an

error or fault has occurred in the network but only that a client or device

cannot at some time connect to a transmitting station or server.

It is important to categorize the different types of disconnections that can

occur so as to get a comprehensive understanding of the disconnection

area. In one sense, a user may choose to disconnect from the network 

because of battery levels or they may be approaching an unserviced area,

this is a voluntary one and can be preemptively handled by some type of

caching / saving mechanism. On the other hand, the most important area to

manage is when a disconnection occurs due to some failure in the

architecture, whether a hardware or transmission failure. This will occur

suddenly and unexpectedly and it is vital that the middleware has some

predictable response to ensure that the result is a valid state. 

In ALICE connectivity management is handled by the mobility layer which

implements a round robin reconnection algorithm, trying all transports in

turn to reconnect. This comprises of an attempted reconnection, which if

unsuccessful delays for a time k then attempts again with a different

transport mechanism. 
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When a disconnection occurs the data is queued by the ML for transmission

to the MLMH. Also the disconnected operation layer can handle caching of

RMI objects to ensure a cached version can be used when an invocation is

requested, this replica object is then reconciled with the actual server

object to provide genuine operation to facilitate operation in a

disconnected environment.

2.2.3 Device Constraints

As the beginning of the thesis, small hand held devices such as personal

digital assistants are listed as appropriate devices that are considered for

RMI in a mobile environment. These devices have many technical

requirements that a software component must meet in order to operate

properly in the context of the systems capabilities.

Many of these requirements are based on the typical amount of memory

available and the processor that the device in question uses. For example a

typical J2ME application which is using the CLDC profile (explained in

section 3.2.2) is designed to operate in an environment where there are

128KB of memory for running the KVM (k virtual machine, smaller version

of standard JVM) and 32KB of available memory available during the

running of the application for the allocation of objects. This is the standard

type of Java for use in the mobile phone environment and represents the

constraints that must be met for these target devices in mobile

environments.        
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CHAPTER 3

-

STATE OF THE ART

3.1 Introduction

This chapter will describe some popular RMI based technologies and how

they are mutating from the standard version of Sun's RMI to address

mobility challenges in different ways. 

3.2 Java for Wireless Devices (J2ME) 

The Java 2 Platform, Micro Edition, is a flexible platform for the

development of Java applications to run on resource constrained devices

such as mobile phones, PDA's and similar devices.

Like J2SE and J2EE it provides objected oriented development to

applications running on these devices, but also minimizing the resources

that it uses. It has a much smaller memory footprint on the target device,

usually operates in a battery powered environment and expects a small

processor. Its main drawback is that it does not support all the Java API's.

3.2.1 Architecture

The J2ME architecture is built from many configurations, profiles, and

optional packages that developers choose from. The developer combines

the configurations to match the resources of the device in question and

constructs a runtime environment that matches its requirements. Each

combination is optimized for the memory, processor, and I/O capabilities of

a related category of devices. The result is a common Java platform that

takes advantage of each type of device to provide maximum efficiency. 

14  



3.2.2 J2ME Profiles & Configurations

A configuration provides the basic set of libraries and virtual-machine

features that is needed in each implementation of a J2ME environment.

When built with one or more profiles, the Connected Limited Device

Configuration [10] gives developers a platform for creating applications for

many devices. It is the most basic layer of a J2ME application and the

profile for the target application is then placed on top of this layer.

Fig 3.1 CLDC Functionality                

A profile supports a smaller category of devices within the framework of a

chosen configuration. A common use is to combine CLDC with the Mobile

Information Device Profile (MIDP) to provide a complete Java application

environment for cell phones and other devices.

        Fig 3.2 J2ME Architecture              
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3.2.3 RMI Optional Package

As RMI was always an important feature of the standard Java products it

was expected that a version of it would be developed for J2ME, even when

device constraints like memory or processing power on phones or mobile

assistants is taken into place. This was achieved due to Java Specification

Requests JSR-000036 and JSR-000046 [11]. 

With the advent of the optional package, not only do desktop and server

systems, but now small handhold and embedded devices have

interoperability with J2SE RMI systems. The package is a subset of J2SE

RMI that can be used on devices that support the Connected Device

Configuration (CDC) and the Foundation Profile (FP). The package profile

supports the following minimum device capabilities:

● 2.5 MB minimum ROM available. 

● 1 MB minimum RAM available.

● TCP/IP connectivity to the network. 

This now allows for constrained devices like mobile phones to communicate

using RMI. For Sun Microsystems, the penetration that their Java games

now have in the mobile phone market will allow it now to combine these

games, based on J2ME, with other games, possibly over an RMI framework,

opening up a potentially lucrative market for mobile handset gaming.

3.2.4 RMI Remote Reference Layer

To invoke on a remote object in RMI, there is a standard infrastructure

available to attain object references. Firstly, the stub created by the object

must be attained using the standard lookup procedure, the rmiregistry.

This is a lookup server operating on port 1099 of all machines running it.

When the lookup() method is called on a registry object, the returned 
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object is of type Remote and is a stub object which acts as a proxy on the

client side and implements all the methods that the actual server does. To

now make an invocation, the client invokes on the stub which handles the

marshalling of parameters and transport layer, Java Remote Method

Protocol (JRMP).  

This stub of type Remote, contains a number of objects which are all used

to point to the correct object on the server machine. A RMI object when

exported is assigned an ObjID which points to the position of the object in

the server address space, it also contains a LiveRef object, which contains

a TCPEndPoint object which contains the IP address and port number of

the object. These are all unique to the server machine over time and are

used to allow the stub contact the actual server and differentiate between

objects of the same type on the server machine.

3.2.5 J2ME Restrictions

As I outlined in the project objectives section in chapter one, the main goal

was to develop a working implementation of ALICE for RMI. Due to this, I

chose to develop under the standard J2SE environment because of the full

gambit of API's available to that platform. If one wished to develop ALICE

for RMI under the J2ME architecture there would have to be some core 

Java programming constraints that must be met. These are:

● No Java Native Interface: A Java virtual machine supporting the CLDC

does not implement the Java Native Interface (JNI) primarily for security

reasons. Also, implementing JNI is considered expensive, given the

memory constraints of CLDC target devices. The mobility layer that I

was working with was implemented in C and so I would have been

unable to interface with it, in a J2ME environment.

● No reflection: Because reflection is not supported, there is also no

support for RMI or object serialization (but this is tackled by the new 
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RMI optional package for J2ME).

● No thread groups or daemon threads: While a Java virtual machine

supporting the CLDC implements multi-threading, it cannot support

thread groups or daemon threads. This can limit the implementation

style of the developer as the ALICE architecture is a design, not an

implementation, so the developer can choose to implement threading or

daemon groups as he pleases.

● Poor error handling: The CLDC defines only three error classes:

java.lang.Error, java.lang.OutOfMemoryError, and

java.lang.VirtualMachineError. Non-runtime errors are handled in a 

device-dependent manner that terminates the application or resets the

device. The latter option is unacceptable for a middleware environment

where maintainability and transparency are paramount, so for this

reason, J2ME was unsuitable for the ALICE implementation.

● No support for RMI Multiplexing: This represents a problem for the

RMI runtime as the sockets are multiplexed over existing connections.

To have to create new sockets for all would enforce a change on the

existing architecture of the runtime as in J2SE.    

● No support for JDK1.1 stub / skeletons: This removes the backward

compatibility of any RMI system built with this package.

 

3.3 Mobile RMI

In any typical mobile environment, the ability of the servers to move

around is critical, as periods of disconnection and other network related

problems can occur at any time. In these cases, the server must be able to

anticipate and respond to these failures sensibly. One of the problems

associated with this type of movement is the updating of server references

held by clients. 

In standard RMI, the sun.rmi.server.UnicastRef class contained in any

stub issued from the rmiregistry on the server, controls a method 

18



invocation from a client on the server object. So, if a mobile server were to

relocate from machine A to machine B, the previously issued stubs from

that server would now contain incorrect server references.

The key feature of MobileRMI is the automatic updating of remote

references to mobile objects, necessary to support remote method

invocation even in the presence of mobility. The extensions to Java RMI in

MobileRMI only effect the remote reference layer while they leave the

transport layer and bytecode generation process unchanged.

3.3.1 Embedding Mobility

The idea of code mobility is a central one to MobileRMI. One type of code

mobility paradigm is that of the mobile agent. A mobile agent is a program

that can, at a time of its own choosing, migrate to a different machine and

continue processing transparently.

There are many Java-based systems proposed in order to support code

mobility, Aglets [12] and Cougaar [13] for example. The Aglets Software

Development Kit is a framework and environment for researching and

developing mobile agents whereas Cougaar is a Java-based 

architecture for the construction of large-scale distributed agent-based

applications.

Both of these developments tackle the idea of mobility in their own ways

but MobileRMI has tackled the problem differently, by embedding it. The

idea is to embed mobility primitives into a particular programming

environment, Java RMI. It allows integration of mobility primitives with the

Java language and takes from Sumatra [14] the idea of interacting with

mobile objects by means of method invocation.
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3.3.2 Mobile RMI System

In Java RMI, the basic component of a remote object is the

java.rmi.server.UnicastRemoteObject (URO). This class is a remote

object implementation that uses a TCP based stream protocol for carrying

out method invocations from clients to servers and must be extended to

create a remote object. In MobileRMI, the URO is extended to create the

MobileUnicastRemoteObject (MURO) which can be moved across different

JVM's, and its remote references are updated according to its migration

path, so that clients holding a reference to it can continue to invoke

regardless of its current position.   

  

The MobileRMI systems allows a MURO to be created on a different JVM by

invoking the create() method, and a client can trigger the movement the

MURO by invoking the move() method on it. When a client or a MURO

itself invokes the move() method, it serializes itself and transfers the

bytestream to the receiver JVM, where it is made available for 

method invocations. If the relocation is successful then the remote

references are updated to the new location. From now on, new invocations

are executed in the new address space.

3.3.3 Remote Reference Updating

In order to preserve remote method invocation on a mobile server object, it

is vital to update all remote references held by clients which point to that

server. To achieve this, in MobileRMI, the sun.rmi.server.UnicastRef

class was extended to allow the operation of the move() method. After the

migration has completed successfully, the move() method then updates the

reference held on the client side. As soon as the migrated object has been

reconstructed properly, the 'Mobility Daemon' returns the new reference to

the UnicastRef, this ensures the process is completely transparent to the

application programmer.
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For clients that did not initiate the migration, their reference updating

takes place when they attempt an invocation on the now relocated object.

When the object migrates it leaves a dummy object in its place. The dummy

objects that are formed as an object migrates form a chain and each object

holds a reference to the next in the chain, following that chain, the objects

will eventually get their references updates to the now accurate location.

    

3.3.4 Using MobileRMI

When compiling the MURO class, it is only necessary to put the MobileRMI

package in the classpath. The stub compiler, rmic, can still be used but an

enhanced version of the rmiregistry must be used. So, MobileRMI doesn't

require modifications to the Java interpreter and so a programs' portability

remains intact.

3.4 Cajo 

This project is a free library enabling machine cooperation, both within,

and between Java applications [15]. It provides an easy-to-use and

understandable framework to simplify the use of RMI.

3.4.1 Operation

In standard Java RMI, a server object is exported by extending the

sun.rmi.server.UnicastRemoteObject class. This enables clients to

invoke methods on the object, assuming the server has registered with the

bootstrap rmiregistry. But in Cajo, every remotely available server in the

framework is known as an 'item'. Items can call other items, and an item

can also be called by others. A special type of item is known as a proxy,

these are items sent from one virtual machine, to execute in the context of

another. Proxies can also call, or be called, by other items and even by

other proxies.
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In the standard RMI framework, each remote object must have a unique

stub compiled for its callable methods. This can sometimes cause unwanted

overheads on the running program due to argument marshalling and only

works when method signatures / hashes are known at compile time. To

address this issue, the framework defines only one functional interface as

every item inherits the 'Invoke' interface. It defines a single method, to

represent all object methods; it accepts a method name, the arguments to

be provided to it, and the data to be returned: 

  

  Object invoke(String method, Object args);

To actually invoke upon an RMI remote object we must use the Remote

class which implements the invoke interface. The Remote class takes any

object, and places a remotely invokable wrapper around it. When remote

objects execute the invoke method, the wrapper uses reflection to find the

method on its internal object, and matches the method name and argument

types against those contained in the object. If it is found, it executes that

method, and returns the result, if any. If no matching method can be found

on the internal object, a Cajo exception is thrown. This technique 

makes all public methods of the internal object remotely callable.

3.4.2 Managing References

As I stated in chapter 2, one of the most difficult areas of mobility and

middleware is that of reference management. In ALICE, the reference

management system is that of a chaining of old references from the

mobility gateways to update a mobile host when invoking on an object, but

in Cajo it is slightly different. Obtaining initial references is done via two

standard mechanisms: First, it is generally useful to bind each item with

the ItemServer class. ItemServer will automatically create an rmiregistry,

and bind the item under the name provided. Other clients can now contact

the registry, and obtain a remote reference to the item by name. 
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The rmiregistry, and the item communicate using the same TCP port.

Therefore, all that is required for a client to obtain a reference to an item

using this mechanism is the server host name, port number, and the name

under which the item is bound. The default item for any server is bound

under the name "main". Obtaining a reference to a bound remote item is

accomplished using a static getItem method of the Remote class. This

mechanism is called linking statically. 

The second mechanism to obtain a reference to a remote item is using the

Multicast class. Unlike the previous method which uses TCP/IP to obtain

the reference, this technique uses UDP/IP. Instead of needing to know the

server's TCP address and port number, the client needs to know the UDP

address and port number the server will be using. The difference is that

servers can pick their UDP addresses independent of their TCP addresses. 

Also, a server can use multiple multiple UDP addresses if needed. Multiple

servers will share the same address, to form groups. A server broadcasts a

remote reference to an item by calling the announce method of Multicast.

This will send the reference to all clients listening in the group. Items listen

for these announcements using the listen method of multicast. 

3.5 Ninja RMI 

Ninja is a free implementation of RMI which allows Java code to invoke

methods on objects running on remote machines using a network

connection. It is an independent implementation of RMI which was

developed at UC Berkeley for the 'Ninja' project there [16].

3.5.1 Project Overview

The Ninja project aims to develop a software infrastructure to support the
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next generation of Internet-based applications. The concept of a service is

at the center of this project. It is an Internet-accessible application which is

scalable, fault-tolerant and must be robust for the high number of clients. 

3.5.2 Differences with Sun's RMI

Their version of RMI is not meant to be received as an alternative to Sun

Microsystems standard RMI. It was designed to provide extra functionality

that the standard version does not provide. These new added components

are:

1. Multiple communication protocols, allows for TCP, UDP, and multicast.

2. Reliable, unreliable, one-way, and multicast communication semantics.

3. API methods to allow both client and server objects to determine the

peers' hostname and port addresses.

4. The ability for server code to register callbacks on specific events.

3.5.3 Operation 

In the standard RMI, a remote server is created by extending the

java.rmi.server.UnicastRemoteObject. This allows the object become

available for invocation and is the standard procedure. In the case of Ninja,

the new remote server is created by extending NinjaRemoteObject, and

the remote reference layer is also altered in the sense that the stubs and

skeletons are created using a special ninjarmic compiler. It also comes

with its own ninjaregistry instead of the standard rmiregistry that is part

of Sun's package.

Once these changes are made with a small change to the transparency of

standard RMI, the Ninja version now has access to these valuable added

features as listed above. An interesting feature which is not dissimilar to

the ML area in ALICE is that of the callbacks available to the client in
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Ninja. Here, the developer can register for callbacks and this can be

utilized at the socked level so in a mobile environment the application can

update a server or client as the case may be, which similarly is

implemented in ALICE.

3.6 Ka RMI

Ka [17] is a replacement for the standard RMI package. It is based on an

efficient object serialization mechanism called uka.transport that

replaces regular Java serialization from the java.io package. KaRMI and

uka.transport are implemented completely in Java without native code.

KaRMI also supports non-TCP/IP communication networks. It can also be

used in clusters interconnected with heterogeneous communication

technology. 

3.6.1 Differences with RMI

When a standard RMI object is exported, it is bound to a specific port on a

machine, this is in line with the TCP/IP protocol. As KaRMI does not run

over TCP then this has no meaning so the principle of “exporting” has no

basis. In KaRMI, the new runtime configuration replaces ports with export

points. The principle is the same except that an export point can be

configured to mean a special transport protocol using a KaRMI

configuration file. This configuration is then used to setup the transport

involved and access the endpoint of the RMI application.

3.6.2 Using Ka with ALICE

As ALICE is based on the standard implementation of RMI using TCP/IP,

the idea of a Ka alternative is an interesting one. If a version of ALICE over

UDP or a different transport was required, then Ka would provide an

interesting starting point from a research perspective. 
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3.7 JavaBT

This is an experimental technology to see how Java RMI can be

implemented to run in a wireless Bluetooth [17] environment. A set of

layers for the Bluetooth stack were implemented in Java and then RMI is

implemented on top of this layer to test it over a wireless connection [18].

3.7.1 Customized Bluetooth Sockets

Similar to the idea of the mobility layer in ALICE, here a set of customized

sockets are written in Java to provide functionality for the Bluetooth driver.

They serve both the standard java.net.Socket and

java.net.ServerSocket objects and also inherit from the standard 

java.io.InputStream and java.io.OutputStream. Now using the RMI 

socket factory facility, the Bluetooth sockets are supplied to the runtime

using the setSocketFactory static method. This achieves the correct

alterations to the runtime as the new sockets are supplied and multiplexed

between connections in the Bluetooth environment.

3.7.2 Operation

When running the RMI applications over Bluetooth, it was found that its

performance and management of bandwidth are far superior in a WLAN

environment. Also the support of Java in the Bluetooth environment gives

more high-level support to the developer and this is not dissimilar to my

objectives as ALICE is supposed to provide a generic architecture for the

middleware, not a specific one for specific underlying transports.

The same principle is used in the mobility layer to alter the runtime and

provide the sockets+ API. This enables the enhanced sockets to be supplied

and allow relocation from one ALICE MG to the next. It is explained in  
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section 4.3.2 as part of the integration of the mobility layer with the RMI
runtime.
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CHAPTER 4

-

DESIGN

4.1 Introduction

This chapter will detail how Java RMI can be enhanced by the ALICE

design to allow for operation in mobile environments. I will explain a layer

by layer approach and detail the specific changes that need to be made to

classes that represent the structure of RMI and how these objects then

operate to provide for mobility.

The model for communications used by ALICE is the gateway (or proxy)

model, this encompasses the MH, MG and FH that are explained in section

1.3.2. The benefit of the architecture is that the API's implemented in Java

for RMI allow for a transparent integration of mobility for the application

developer.  

4.2 API Notation 

All of the layers that I have implemented have their own components and

share a common language of communication. The interaction that exists

between the layers is vital to the operation of the architecture and is split

into three main areas. There are 'upcalls' and 'downcalls'. 

If a layer performs a service or function for the layer above it then it is

deemed to have a 'downcall' API through which invocations from upper

layers are received. Conversely, the layer that makes the invocation then

has an 'upcall' API to talk to the layer directly below it. The interaction 

between these layers is very important especially when the system is

dependent on mobility updates from the mobility layer (ML). 

28



In case the component requires some time of runtime configuration then

the 'tuning' API would be invoked as it provides for this type of architecture

specific configuration.

Apart from the API's that are available for implementation, there are also

different aspects to the layers involved in ALICE. For example, the mobility

layer exists across an ALICE enabled framework but different actual ML

components can reside on the different devices e.g. the MLMH component

would reside on a MH but not on a MG, and represents the part of the ML

that resides there. 

4.3 Mobility Layer 

As the mobility layer is written in C, it needs to be integrated into the

above swizzling and disconnected operation layers to enable the

application layer callbacks. At the start of the project I received the

mobility layer package as written in C. This consisted of a number of files,

each of which contributes to the sockets+ API which is the enhanced

version of the Berkeley Sockets API used in ALICE. To utilize the mobility

that the sockets+ API contained, I had to supply these custom sockets to

the RMI runtime.

4.3.1 RMI Runtime

In the standard operation of RMI, the runtime plays a fundamental role in

the supply of both client and server sockets to the transport layer. A quick

review of RMI tells us that a stub object on the client side interacts 

with the skeleton on the server side to provide the abstraction from the

actual server object. The basis for this communication is a stream-based

sockets underlying transport protocol and the most important role played

by the runtime is that the sockets are reused where possible. 
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When a new invocation is made on a remote server object, the runtime

(also known as the transport layer) checks to see if an already existing

socket is available, and if so, reuses it. One of the benefits of the RMI

system is that when required, the application programmer can supply

custom sockets to the runtime instead of the default ones. This can be done

using the RMISocketFactory class. Connections from the MH to the

gateway are multiplexed over a single connection in order to conserve the

limited and expensive bandwidth available to the device and make the tasks

of handoff and connection re-establishment easier.

4.3.2 Integrating the Mobility Layer with RMI

The RMI runtime attains its sockets functions using the Java Native

Interface (JNI). This allows it to access native code and invoke the standard

Berkeley socket functions that are contained in the libnet.so shared

library on Linux. To access these, it makes the calls using JNI from the

java.net.PlainSocketImpl class. 

Fig 4.1 ALICE Replacement Socket Classes

To alter this process, a custom socket implementation was created by

Biegel et al [19]. They created a file named ALICESocketImpl.c with 

30



additional methods for the sockets+ API and linked it against the ALICE

ML socket replacement functions to create the shared library mlmh-ma.so.

This filename stands for 'mobility layer mobile host – mobility aware'.

This new shared library contains the enhanced sockets+ version of the

Berkeley Sockets and hence allowed calls to be made from an enhanced

version of the custom Java socket implementation java.net.SocketImpl,

it is called ALICESocketImpl.java. Also a new ALICEOutputStream and

ALICEInputStream are extended from the standard

java.io.OutputStream and java.io.InputStream respectively.

The final step was to create a custom socket factory which would provide

the new mobility layer sockets to the RMI runtime instead of the default

sockets. This would now ensure that the ALICE enabled sockets+ were

supplied to the RMI runtime, enabling the runtime to cooperate with the

MLMG or MLMH, depending on the particular configuration.

4.4 Swizzling Layer (S/RMI)

There are three main problems associated with mobility that are addressed

specifically in the swizzling layer. These are:

1. Gateway Storage of Hosts : One of the functions of the S/RMIMG

daemon is to maintain a list of the MH's that have, in the past, or are

presently connected to this MG. The purpose of this data structure is to

ensure that the forward pointer mechanism of address migration is

maintained correctly for when an out of date invocation should occur.

2. Client Redirection : This occurs when an invocation takes place and

the server is no longer connected to the MG contacted by the

SwizzledUnicastRef object in the client stub. We need some

mechanism to ensure that the client receives a response and update and 

can continue the invocation with the new information provided. This is

managed by the forward chain of pointers that a server leaves behind 
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when it relocates from one MG to another.

3. Server Reference Management : This occurs when a MH moves from

one MG to another MG. After this change takes place the MH must then

update  the SwizzledUnicastRef class to ensure that any future ALICE

enabled servers will insert stubs with the correct address at that time.

This is performed by the handoff() method in the S/RMIMG daemon

which manages connection status of ALICE enabled servers. This update

if performed transparently to the server and the result is that the server

always serves an updated reference.

The three problems listed previously are solved by the different S/RMI

components implemented at different places in the architecture. One of the

benefits of the redirection scheme is that the home-agent (HA) represents a

fall back point for the address management of any ALICE server object. It

also maintains the transparent nature of RMI as the management of server

references is completely hidden from the application developer. 

4.4.1 Gateway Storage of Hosts

Another key area to think about when implementing the forward pointer

scheme is to understand how the details regarding the hosts connected to

gateways are stored and how they are accessed. Any host that is connected

to a gateway must have some key pieces of information stored in a tabular

fashion on the gateway. For example, the RMI server below in Table 4.1,

“server1” is currently connected to a MG located at 134.226.51.195, it has

also specified its home-agent address when it registered with the gateway

and its symbolic name, this is useful when the RMI registry is required.

SYMBOLIC NAME MG HA

server1 134.226.12.34 134.226.56.78

Table 4.1 Server Address Management
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The management of these pieces of information is important as the

S/RMIMG needs access to the table when an invocation should occur. If the

server has since moved then the MG variable will have been updated and

the daemon can reply with the updated address i.e. implementing the

redirection scheme discussed in section 4.4.2.

4.4.2 Client Redirection

The nature of mobility allows any MH to move between different MG's in

the ALICE architecture. The purpose of the swizzling layer in an instance of

relocation is to ensure that the relative server management components

are updated in the correct fashion. This enables the redirection scheme to

operate accurately and be updated when required. A chaining system and

forward pointers are implemented on all server references

(SwizzledUnicastRef) to ensure that the invocation can be rerouted to a

more accurate gateway for processing when required. For example, if a

client attempts an invocation on a server object at MG location cs.1 and the

server has since moved to MG location cs.2, therefore we need some

system to allow the invocation to proceed in light of this change. 

Fig 4.2 Chaining pointers in ALICE
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This is managed using the chaining system illustrated above in Fig 4.2.

Here it can be seen that the MG will reply to the invocation with a message

either specifying that the server is currently connected to the gateway and

the invocation is taking place, or it replies that the server has since moved

and sends back the updated MG address, or else it has lost contact with the

server currently and tells the client to contact the servers HA.

 

4.4.3 Server Reference Management

I have already discussed the need to manage the references that a server

has in section 4.3.1. This is a core requirement for the success of mobile

servers and is managed by the swizzling layer components on the mobile

host i.e. S/RMIMH. 

This layer manages the addresses held by the host when connected to a

gateway. It is vital that when a reconnection should occur, the address of

the new gateway is stored and the swizzled unicast references are updated

to ensure that new references when published are accurate. This is 

achieved by integrating the ML upcalls with the swizzling layer component 

on the MH and causes “reswizzling” to occur when required. The new state

is saved internally and the forward pointer on the previous S/RMIMG is

updated to preserve the forward pointer chaining algorithm.

4.5 Disconnected Operation Layer

Above the swizzling layer resides the disconnected operation layer. This

layer is responsible for long term disconnection management and provides

caching functionality on the client side and replication and reconciliation

on the server side.
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4.5.1 Cache Management

As outlined before, one of the most common problems associated with

mobility in a wireless environment is that of disconnection, either short or

long term. In short term circumstances, the ML is responsible for the

transparent reconnection of sockets but for long term, the management of

server objects is handled by implementing caching mechanisms.

Any server object can be cached by a client assuming it implements the

DRMI_Server interface. This interface consists of the following core

methods to facilitate caching and restoration of objects.

● IsCacheable() – allows a client to check if a server object is cacheable.

Returns a boolean to the client whether true or false. This can depend on

the type of object in question, whether the members are serializable or

also on security issues like whether is should be available for replication

or not.

● Replicate() – caches the object by serializing it to a string, then returns

the string to the client (configured where the client is on the MH). The

client then proceeds to construct a replica object using the unmarshalled

string from the real object. This is then added to a table of replica object

hosted by the D/RMIMH component. From then on, when the client

attempts to invoke the server, the invocation is caught by the D/RMIMH,

executed on the local replica and returned. This continues until the

Reconcile() method is called and the replica is removed.

  

● Reconcile() - this method when called by the client allows the replica

held locally to be reconciled with the real server and all future

invocations are then processed correctly by the real object. It has no

return type, but it marshalles the replica member values to a string and

invokes the Reconcile() on the actual object, passing the string as a

parameter.   
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● Register Callback() - allows a callback to be registered on a specific

server object where required.

4.5.2 Replication

Once a server object has been cached and returned to the client, it must be

started so as to allow invocations from clients be caught and carried out on

the locally held copy. This is achieved by the D/RMIMH as follows.

Fig 4.3 Replication of RMI servers.

1. When the gateway receives a request to replicate the object from the

client, it invokes the Replicate() method which is implemented on all

ALICE server objects as part of the DRMI_Server interface This returns a

string representation of the object held on the real server.
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2. Once the string is returned, the MH instantiates a replica object locally

and inserts the stub into the local registry. It also adds the name of the

object to a local caching table, a simple data structure to store objects.

3. From then on, when a client invokes a method on the stub, the

invocation is caught by the D/RMIMH, the caching table is checked to see

if the object is cached locally and if so, a local invocation occurs,

otherwise the MH proceeds with a standard invocation via the MG.    

4.5.3 Reconciliation

When the client wishes to reconcile the replica object stored locally with

the real object it simply invokes the Reconcile() method. The S/RMIMG

invokes the Reconcile() method on the real object implemented via the

DRMI_Server interface. As a parameter the S/RMIMG passes a marshalled

string containing the contents of the replicated object members to the real

server. The real object is then makes the update to reflect the changes

made during the replicated period. 

Fig 4.4 Reconciliation of replica servers.

37



This provides for operation during a period of disconnection. One possible

improvement could be a synchronized S/RMIMG component for times when

several caches of the same server object are attempting a reconciliation.
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CHAPTER 5

-

IMPLEMENTATION

5.1 Introduction  

In this chapter I will describe and explain the actual classes and Java code

written to implement the ALICE design for Java RMI, as described in the

previous chapters. I will explain the Java components in each layer of the

architecture and how each class contributes to providing the functionality

that the layer is responsible for in the overall architecture.

5.2 Mobility Layer

This layer was already written in C by my supervisor as part of his thesis in

2003 [19]. The purpose of the mobility layer was to allow callbacks on all

the swizzling and disconnected operation layer components of the

architecture. My role here was to allow the C mobility layer which I had

received be integrated with the RMI runtime. This was done using JNI and

allowed my code to access the sockets+ API. 

5.2.1 ALICE Socket Factory

In a standard RMI application, the sockets provided to the runtime are

Berkeley sockets, but there is an alternative to providing these. A

developer can supply new specific sockets based on its requirements in the

system, for example, there may be a need to manage a firewall constraint.

This is done using the RMI socket factory and it is how the ML is

integrated with the runtime. Instead of using the standard Socket object, I

used an ALICESocket object to create the socket objects. It extends from

the standard socket but it returns a new ALICESocketImpl object, which is 
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the actual implementation of the socket and comes from the sockets+ API.

public class ALICESocket extends Socket

{

    /* The implementation of this Socket. */

    ALICESocketImpl impl;

    /*  Creates an unconnected socket, with the

       new type of ALICESocketImpl. */

     

    protected ALICESocket() 

    {

       impl = (factory != null) ? factory.createSocketImpl() : new   

       ALICESocketImpl();

    }

}

The following section is taken from ALICESocketImpl.java. It specifies

which shared object library is loaded into memory. This specifies that the

sockets+ API is loaded for ALICE functionality instead of the standard

library. This allows every socket to connect with the ML components and

register callbacks should a reconnection occur.

/* Enable ML functions (sockets+ API).

   Load mobility aware shared library (libmlmh-ma.so) into runtime. */

static

{

  java.security.AccessController.doPrivileged(new          

  sun.security.action.LoadLibraryAction("mlmh-ma"));

  initProto();

}
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5.2.2 Supplying ALICE Sockets to Runtime

To supply these new ALICE enabled sockets to the runtime I had to specify

a ClientSocketFactory csf and a ServerSocketFactory ssf when

creating any remote objects. The following section of code is taken from

ALICESocket_RMIClientSocketFactory.java which supplies the new ALICE

enabled sockets to the RMI runtime. 

public Socket createSocket(String host, int port) throws IOException

  {

    InetAddress local = InetAddress.getLocalHost();

    String localHost = local.getHostName();

    if (localHost.compareTo(host) == 0)

      return new Socket(host, port);

    else

      return new ALICESocket(host, port);

  }

The following section shows how an ALICE server socket is supplied to the

runtime. Taken from ALICEServerSocket_RMIServerSocketFactory.java.

public ServerSocket createSocket(String host, int port) throws

IOException

  {

    InetAddress local = InetAddress.getLocalHost();

    String localHost = local.getHostName();

    if (localHost.compareTo(host) == 0)

      return new ServerSocket(port);

    else

      return new ALICEServerSocket(port);

  }
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5.2.3 Enabling Callbacks

Every time a remote server issued a stub to a client for invocations, the

client would then be redirected to a MG when making an invocation. The

purpose of the callback was to ensure that if a mobile server relocated and

reconnected to the network at a different MG, then the stubs that it would

issue after the relocation would then be automatically updated for accurate

representation of the current gateway. 

The process by which this was achieved was by enabling a callback on the

server to reswizzle the references it serves. This was achieved by invoking

a method within the SwizzledUnicastRef class when a relocation

occurred. To enable that method to be invoked then it had to be registered

with the ML at runtime, this was done using the following sockets+

methods:

int add_callback(int sockfd, CBF cbf)

int delete_callback(int sockfd)

These C methods, when accessed using JNI, allowed a Java socket object

identified by the sockfd parameter in the argument list to register a

callback function (CBF) identified by the cbf argument in the parameter

list, after a reconnect occurs. Essentially I registered a specific socket 

object from the upper layers when the application began, and from then on

if it relocated, the ML would invoke a method of my choosing on the

swizzling layer to call and update the references. This is done using the

updated versions of the ALICESocketImpl that I supplied to the RMI

runtime as part of the SocketFactory. This file was the actual

implementation of the socket object and by changing it allowed the ML to

be introduced.

In the following bind() method, which is called after a socket makes its 
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initial connection to the server socket, you can see that a method has been

registered in case a callback should occur at the ML level. This allows me

to specify a method to call to ensure that the integration with the ML will

occur on a per-socket basis. I also include the code for the method to

execute when the callback has occurred and how it updates the references

held by the swizzled references.

The following section is taken from ALICESocketImpl.java and it shows

how the new server socket is bound to the specified address and how a

callback function is specified for invocation when this server socket object

relocates to a new MG.

protected synchronized void bind(InetAddress address, int lport)

        throws IOException

    {

        socketBind(address, lport);

        if (socket != null)

            socket.setBound();

        if (serverSocket != null)

            serverSocket.setBound();

        add_callback(fd, "ML_SERVER_CBF");    

    }

The callback is added here in the final line and the ML_SERVER_CBF method is

specified as the method to invoke upon relocation. This is the upcall from

the ML. Once invoked, the method updates the SwizzledUnicastRef class

and its static member, the mg_name variable. It also updates the previous

gateway that the server was connected to. A simple socket is created to the

SRMIMG component and the new MG address is sent to it.
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5.2.4 Dealing with Callbacks

The callback functionality allows the reswizzling of references by a host

and also updates any remote objects running on the host so when they

serve new stubs, they are up to date. This is handled by the

SwizzledUnicastRef class on the host in question. When the reconnection

takes place, the sockets+ API invokes the registered callback function and

provides three arguments to it:

1. Socket identifier -> allows identification of server object

2. New MG address -> provides up to date connectivity

3. New server port  -> updated port where to find server

  public static void reswizzleReference(String new_mg)

  {

    mg_name = new_mg;

  }  

This ensures that any SwizzledUnicastRef objects that are created after

the method has been executed are now updated with the correct gateway

information. Any stubs that have previously been issued to clients or are

inserted into the registry will have have an out of date gateway address

and will have to use the forward pointer method specified by redirection

section 4.4.2.

5.3 Swizzling Layer 

The purpose of the swizzling layer is to perform functions that are

necessary for servers to be hosted on MH's. Because any client cannot

connect directly to a server, it must connect using the mobility gateway,

the host replaces its address with the gateway so any client will only ever

connect to the gateway when making an invocation i.e. swizzling. 
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When the S/RMIMG component receives an invocation from a client it then

looks up the local table of hosts for the endpoint and makes the invocation,

receives the result and returns this to the client. 

endpoint = ip_address : server_symbolic_name

5.3.1 Gateway Management of Hosts

For the swizzling layer to operate effectively, it is necessary to manage the

hosts connected to the gateway. For this purpose I used a Java ArrayList to

manage the host objects which were specified using the following class,

existingMH. The use of this container was seen as the most efficient type of

structure as it allows for dynamic addition or removal of host objects and

there is no compile time upper limits on connectivity. This class is a

template for the hosts and contains instance variables to monitor the

connectivity and position of them.

public class existingMH

{

  boolean local;

  String mh_server_name = null;

  String mh_address = null;

  String forward_pointer = null;

  public existingMH(String name, String address)

  {

    local = true;

    mh_server_name = name;

    mh_address = address;

  }

  public synchronized void updatelocal(String newAddress)

  {

    local = false;

    forward_pointer = newAddress; }}
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5.3.2 Client Redirection

This is performed as part of the swizzling layer component on the MG, and

occurs when an invocation request is received at a gateway from a swizzled

unicast reference contained in a stub. 

All references held in stubs are swizzled, i.e. they refer to a gateway not

the actual server object, so when an invocation occurs the gateway must be

contacted to process it. If the MH is no longer hosted at this gateway then

a forward pointer is fetched and returned or if this is not available then the

reply contains the address of the home-agent to fall back on.

To achieve the redirection, the remote reference layer must be changed to

introduce the functionality of the SwizzledUnicastRef. The swizzled stub

is now created using this new extended UnicastRef which overrides the

Invoke() method contained in the standard stubs. This new stub now

effectively acts as a wrapper around the superclass Invoke() method and

ensures the invocation is directed to a gateway to check for the location of

the server at that time.

Fig 5.1 ALICE Remote Reference Layer for Redirection

46



This is implemented as the S/RMIMG component. The daemon has a server

socket listening on port 9999 (arbitrary), waiting for requests from

swizzled stubs. When a request message is received, the message contains

the symbolic name of the server, then the S/RMIMG identifies whether the

MH is unknown, locally hosted or has reconnected to a different gateway

with a forward pointer. If the MH is local, then the client receives a reply

message and proceeds to forward the invocation parameters to the

gateway. Otherwise it receives a message to fall back on the home-agent or

a forward pointer is given allowing it to implement the chaining algorithm.

/** Taken from SRMI_MG_Daemon.java **/

while(true)

    {

        sock = ss.accept();

        openStreams(sock);

        server_name = ois.readObject().toString();

        function = parse_function(server_name);

        switch (function)  {

          case 1:

            oos.writeObject("$LOCAL");

            object_id = get_object_id(ois.readObject().toString());

            process_invocation(object_id);

            break;

          case 2:

            oos.writeObject("$REDIRECT");

            object_id = get_object_id(ois.readObject().toString());

            oos.writeObject(getFP(object_id)); 

            break;

          case 3:

            oos.writeObject("$HOME-AGENT");

            break;         

                           }
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Fig 5.2 Invocation example.

      

'Case 1' above manages an invocation when the host is connected to the

gateway at this point. The object_id variable refers to the position in the

table storing the address details for the actual server and is passed to the

process_invocation() method. 'Case 2' returns the forward pointer

address to the client in question, this address is then used to make a

preliminary invocation on that MG. 'Case 3' informs the client that it has no

record of the server and tells it to request a MG address from the home-

agent.

The process_invocation method receives the invocation parameters from

the client and makes the invocation on the actual server. This is achieved

using reflection as the parameters cannot be serialized as they are of type

java.lang.reflect.Method. The invocation is then processed by the MG

using the standard stub available from the host and returned to the client.
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The following section of code shows how the invocation takes place using

reflection at the gateway. It is required as the actual method invoked must

be passed over an object stream as a string as it is not serializable.

Method getFooMethod;

Class[] parameterTypesEmpty = new Class[] {};

Class[] parameterTypesString = new Class[] {String.class};

Class s = server.class;

Class d = DRMI_Server.class;

Object[] arguments = new Object[] {};

getFooMethod = c.getMethod("getFoo", parameterTypesEmpty);

if(method.equals("getFoo"))

{

 resultString = (String) getFooMethod.invoke(ref, arguments);

 oos.writeObject("$RESULT");

 oos.writeObject(resultString);

}

This allows the invocation to take place using the gateway as a proxy and

implements the forward pointer algorithm quite easily using the simple

ArrayList Java data structure.

5.3.3 Server Reference Management

This is performed as part of the swizzling layer component on the MH. The

purpose is to ensure that after a reconnection happens, the variable

containing the address of the gateway is updated to reflect the state of

connectivity. The role of this component is to receive an upcall from the ML

registered sockets and reswizzle the servers on the host. This ensures

future swizzled unicast references issued are up to date at the time of

issue. This allows the references to be “reswizzled” - made up to date

before they are published. 
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No effort is made to change previously issued references in the

architecture.  

public static void reswizzleReference(String new_mg)

  {

    mg_name = new_mg;

  }

5.4 Disconnected Operation Layer

5.4.1 Cache Management

To allow an object be cached it must implement the DRMI_Server

interface. This ensures that it implements the Replicate() method which

marshalles the replica object into a string and then returns that string to

the actual server. Using this principle, the caching of server objects can be

achieved easily. When the Replicate() method is invoked the returned

string is demarshalled and used to create a locally stored object that future

invocations are made upon until the reconcile method is invoked. 

To enforce this, any invocation is initially routed by the SwizzledUnicastRef

held in the stub to the D/RMIMH component. A simple table is held on the

D/RMIMH which stores the names of all locally cached objects and this

ensures that when an invocation is made on a cached object, the invocation

is made on the local store and not the actual object.

5.4.2 Replication

This allows the server object to return a marshalled string of its current

contents, then the D/RMIMH uses this string to construct a replica locally. 

The following code shows how the replica is managed and stored.
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// CREATE CACHED OBJECT AT THE MH + PUT STUB INTO MH REGISTRY

String marshalled_replica = ois.readObject().toString();

server_Impl replica = new server_Impl(marshalled_replica);

Registry localReg = LocateRegistry.getRegistry("127.0.0.1");

addToCachedTable(server);

localReg.bind(server, replica);

This code results in the cached replica being added to the local table and

the stub is added to the registry to allow cached invocations occur. The

marshalled_replica is received via an object stream from the S/RMIMG

component and then uses a special constructor which unmarshalles the

string and creates a new replica server object with the member values

received from the actual server.

5.4.3 Reconciliation

Once the object is cached, the Reconcile() method allows the replica copy

to be reconciled with the actual server object. This is achieved when the

client invokes the Reconcile() method. The replica values are passed to the

S/RMIMG component and the gateway processes the method on the actual

server object. The gateway makes the invocation of Reconcile() with the

updated values via reflection. The following section of code is taken from

the S/RMIMG  component and shows the replica values being read from the

client and then used to make the invocation.

Object[] params = (Object[]) ois.readObject();   //READ FROM CLIENT

System.out.println("Reconciling cache with remote server ...");

ReconcileMethod.invoke(ref, params);             //INVOKE RECONCILE

oos.writeObject(“$UNCACHE”);  //INFORM CLIENT

        

You can see from the above code that the real object has now been updated

with the parameters from the client method call, params. Then the invoke

method is called using reflection and the server reference is used, ref.
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To finish, a confirmation message is sent to the client which will now

remove its cached copy. Now, all further invocations are dispatched to the

real server, not the replica which has been removed.

5.5 Problems Encountered

There were two main problems that I encountered when implementing the

design of ALICE for RMI. These problems were associated with maintaining

the overall objectives of the project, they were not specific to programming

issues.

5.5.1 Transparency of Swizzled Stubs

The traditional architecture of RMI is that the server stubs are available to

all clients using the lookup service which is the rmiregistry. This registry

which is hosted on a well known port (1099) allows stubs to be downloaded

and then invocations are made on the server using the stub. The purpose of

this is to allow any invocation on that stub to communicate with the server

object using the standard UnicastRef object held in the stub. The problem

here is that when the swizzled stubs are created on the server side and

added to the registry, thereafter the downloaded stubs then invoke the

superclass UnicastRef method, which is not the desired result. The

expected result is an invocation of the subclass SwizzledUnicastRef 

invoke() method which was extended to allow redirection.

The benefit of the swizzled stub is that the invocation will be redirected to

a gateway. This breaks the transparent nature of ALICE for RMI as to make

a swizzled invocation, the client must dynamically build the stub on his

side. This is a fundamental problem as the registry is a core element in the

RMI architecture. A possible solution may be to analyze how bytecode for

the SwizzledUnicastRef class could be made available on the client side

using an RMI code base. This would allow a client to dynamically download 
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the bytecode for the stub from a web server over HTTP and allow the stub

downloaded from the registry to be cast as a SwizzledUnicastRef object.

5.5.2 Non-Serializability of java.lang.reflect.Method Parameter

When a stub invokes a method on a remote server, the actual method

called is passed over the wire using the JRMP proprietry protocol and is

invoked at the server side by reflection. The problem when altering this

structure to address the ALICE structure is that this parameter cannot be

serialized. 

The basic java.lang.reflect.Method class does not implement the

serializable interface and without altering the standard API's it is not

possible to simply pass the method over as an object like the other

invocation parameters. So to send the parameter to the MG to invoke the

required method I had to get the string version of the method invoked

which is possible using the getString() method available in the Method class

and then send this individually using an object stream.

This adds another degree of specialization as the pattern of sending

parameters between the MH and the MG is changed to allow the Method

object be changed to a string value, hence involving more processor time

and extra coding on the MG side to identify the method in question.  
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CHAPTER 6

-

EVALUATION

6.1 Introduction

In this chapter I will look at the performance of two different

configurations in a static environment. I will look at the invocation times of

simple RMI methods and how they're affected by the swizzling layer and

the disconnected operation layers. The performance times are seen to be

different and I will attempt to explain these differences.

6.2 One Hop Invocation Times

The one hop invocation configuration is a simple setup whereby the server

on the MH is currently connected to the MG that the client invokes upon.

There is no need for redirection so the invocation can proceed at the very

first attempt. For this experiment, I setup a simple RMI server which

implements get() and set() methods on string variables. This was

running on Debian Linux machines over the LAN at Trinity College.

Fig 6.1 One Hop Invocation Configuration
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 Fig 6.2 One Hop Invocation Times

The results above show the larger invocation times when the server is on

the MH. In the cached scenario, the replica server is available on the client

and this reduces invocation times which also having a guaranteed

connection so improving reliability. The mean cached invocation time is

7ms but the mean invocation time on the actual server is 40ms.

6.3 Two Hop Invocation Times

The two hop invocation is more time consuming on the client side as

redirect occurs at the first gateway. The swizzled stub receives notification

that the server has relocated to MG2 and must re-invoke on that gateway.

 Fig 6.3 Two Hop Invocation Configuration
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Fig 6.4 Two Hop Invocation Times

In the two hop scenario, the invocation times are similar to the one hop

times telling us that the cached replica still shows a significant advantage

over contacting the real server on the MH. The problem also associated

with the replica is that it has a large setup time on the client and increases

the number or replicas both held in the caching table and the local

registry. This is managed by the D/RMIMH  component and requires extra

time on the processor.    

6.4 Summary

It can it seen from the previous two sections that the cached invocations

represent a significant opportunity to provide both a relatively quick

invocation while also having vastly increased reliability. This presents an

improvement in the operation of RMI in a mobile environment and when

combined with some time of “anticipation” of disconnection could be an

interesting area to pursue for future work. 

56



CHAPTER 7

-

CONCLUSION

7.1 Introduction

This chapter will present the conclusions from the project. It focuses on an

analysis of the results and how they reflect on the implementation of RMI

for ALICE. 

7.2 Achievements

The implementation of both the swizzling and disconnected operation

layers was demonstrated during my presentation on this thesis. I was able

to demonstrate operation in both the connected and disconnected mode

whilst showing complete transparency for the RMI client. Also I was able to

demonstrate the redirection mechanism implemented for the swizzling

layer and show this in operation with a simple RMI ALICE enabled server

on a MH. 

Transparency was one of the primary objectives outlined in section 1.4 and

is a fundamental test of whether the architecture is successfully

implemented in the RMI domain. A minimum amount of changes from the

application developers code is a sign that the transparency issue has been

placed at the forefront of the middleware designers mind. This was

obviously successful in my demonstration as the client had no runtime

changes required when making invocations that ran over both the swizzling

and disconnected operation layers. 

For the mobility layer, all the classes that are required for the integration

of it with the RMI runtime are present and the next stage is to test and

debug the errors that occurred when I tested the supply of ALICE sockets

to my test application across a wireless environment. 
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7.3 Future Work

There are three main areas that I have identified for future work in

reference to RMI in the ALICE environment.

● Anticipating Disconnection: The operation of the disconnected layer

can be seen in chapter 6 to be beneficial to RMI invocation times when

operating in a wireless environment. If it is possible to introduce some

time of anticipation to the disconnection layer so that a replica could be

created without the client having to invoke the Replicate() method,

there are advantages to this. If a period of disconnection is identified the

D/RMIMH  component could replicate the object immediately and when

the link is restored the Reconcile() method would also be invoked

transparently to the client.

● Synchronized Updates: This would occur when there are many

different caches of the same server object on different clients. If several

caches attempt reconciliations at the same time, then a possible

corruption of the actual server may occur. It is important that some

mechanism exists to ensure that the most recent update is held and not

a much older held cache on a client. This could possibly be addressed by

storing a cache on the MG or by letting a cache remain on the client

once it has been reconciled and so simply setting it as an out of use

cache for invocations.

● Stub Transparency: The final issue is that of the swizzled stub that is

downloaded from the rmiregistry. It is vital that the stub when invoked

calls the subclass invoke() method and not the superclass. This is an

area that needs more work to understand why the errors are thrown and

how to cast the stub as the required SwizzledUnicastRef instance on the

client side.
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