
Context Awareness in Mobile Phone Based

Applications Using Bluetooth

by

Jennifer Munnelly, B.Sc.

A Dissertation submitted to the University of Dublin,

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

2005

Declaration

I, the undersigned, declare that the work described in this dissertation is, except

where otherwise stated, entirely my own work and has not been submitted as an exercise

for a degree at this or any other university.

Jennifer Munnelly

September 12, 2005

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis

upon request.

Jennifer Munnelly

September 12, 2005

Acknowledgments

Firstly, a sincere thanks to my supervisor Dr.Siobhán Clarke for her guidance, assis-

tance and endless enthusiasm, which made this work an enjoyable experience.

Many thanks also to Cormac Driver, who willingly contributed his time, suggestions

and interest.

A word of appreciation to Andrew Jackson for his invaluable help and advice through-

out the year.

To all my family and friends - for their unending support. Their encouragement and

patience will be appreciated always.

Finally, to the NDS boys, for making this a most enjoyable, memorable year. I hope

the friendships last as long as the memories.

Jennifer Munnelly

University of Dublin, Trinity College

2005

iv

Context Awareness in Mobile Phone Based

Applications Using Bluetooth

Jennifer Munnelly

University of Dublin, Trinity College, 2005

Mobile phones have become the communication medium of choice. They have evolved

into a multifaceted device capable of data services and multimedia applications in ad-

dition to their voice capabilities. Mobile phone communicative capabilities have been

broadened significantly by the inclusion of technologies.

Mobile phones have the potential to be useful for more complex functionality than

common voice and text usage. Applications provide capabilities that allow mobile

phones to learn and use information regarding their surroundings. Such behaviour is

known as ’Context Awareness’. Applications are context aware when they reason about

data with knowledge of their environment. These applications may behave differently

depending on the context, which tends to be dynamic in mobile scenarios. Interactions

between mobile devices can be made more efficient with the use of contextual infor-

v

mation. Applications considering context awareness on mobile phones have not been

explored in great detail.

However, the evolving capabilities of mobile phones are inhibited by their limitations

and constraints. The compactness of the embedded technology results in restricted re-

sources like reduced processing power and battery life. Additionally, the mobility and

geographical dispersion associated with mobile phone based applications incur common

distributed systems issues. Concerns such as file storage and network partitioning are

exacerbated by the mobile nature of the application and may act as inhibiting factors.

The objective of this dissertation is to examine the technological communication

capabilities of mobile phones, and in particular, to investigate the suitability of Blue-

tooth as an underlying technology for communication using mobile phones. The ad-hoc

nature of the short range wireless technology Bluetooth makes it suitable for dynamic

personal area networks such as those formed by mobile phones. Bluetooth transport

protocols lend themselves to the development of mobile phone applications which make

use of data transfer techniques. This thesis illustrates an adaptive context aware mo-

bile application that exploits the device discovery, service management and transport

protocol functionality available in the Java API for Bluetooth Wireless Technology

(JABWT). It also describes a communication layer capable of conveying contextual

information on top of the Bluetooth stack.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables xi

List of Figures xii

Chapter 1 Introduction 1

1.1 Motivation . 2

1.2 Context Awareness . 2

1.2.1 Context Aware Computing Challenges 3

1.2.2 Mobile Environment . 3

1.2.3 Context in PAN . 3

1.2.4 Context on Mobile Phones . 4

1.2.5 Capture and Use . 4

1.3 Mobile Phones . 4

1.3.1 Platform Limitations . 4

1.3.2 Communicative Capabilities . 5

1.3.3 Application Development . 5

1.4 Distributed Issues . 6

1.4.1 File Storage . 6

1.4.2 Ad hoc network . 7

1.4.3 Multiple Users . 7

1.4.4 Range and coverage . 7

vii

1.5 Thesis Outline . 7

Chapter 2 Background 9

2.1 Mobile Phones . 9

2.1.1 Technologies . 9

2.1.2 Platform Constraints . 15

2.1.3 Interoperability . 17

2.2 Bluetooth . 18

2.2.1 Stack . 19

2.2.2 Profiles . 22

2.2.3 Use Cases . 22

2.2.4 Device Discovery . 24

2.2.5 Services . 25

2.2.6 JABWT . 26

Chapter 3 State of the Art Review 28

3.1 Introduction . 28

3.2 Mobile Phones . 28

3.3 Context Awareness . 30

3.3.1 Context Awareness in Mobile Applications 30

3.3.2 Modelling Context . 31

3.3.3 Related Context Aware Work 31

3.4 Bluetooth . 34

3.4.1 Bluetooth and Java . 35

3.4.2 Related Bluetooth Work . 36

3.5 Communication Applications . 36

3.5.1 Related Communication Applications Work 36

3.6 Summary . 40

Chapter 4 Design 41

4.1 Dating Application . 42

4.1.1 Social Considerations . 42

4.1.2 Requirements . 42

4.2 JXTA/JXME . 42

viii

4.2.1 JXME and Bluetooth . 44

4.3 Contextual Information . 45

4.3.1 Identity . 45

4.3.2 Activity Status . 46

4.3.3 Proximity/Location . 47

4.3.4 Calendar Items . 49

4.4 Hardware Challenges . 50

4.4.1 Bluetooth Dongle . 50

4.4.2 Laptop Connectivity . 50

4.4.3 Nokia 7610 . 51

4.5 Architecture . 53

4.6 Components . 53

4.7 Assumptions . 53

Chapter 5 Implementation 56

5.1 Mobile Application Development . 56

5.1.1 Development Environment . 56

5.1.2 MIDlet . 57

5.2 Existing Bluetooth Code . 59

5.3 Features . 59

5.3.1 Messaging . 59

5.3.2 Activity Status . 61

5.3.3 View Member Status . 61

5.3.4 View Member Proximity . 62

5.3.5 View Member Trail . 62

5.4 Launching the MIDlet . 62

5.5 Bluetooth Connectivity . 64

5.5.1 Initialisation and Device Management 64

5.5.2 Server/Service Advertisement 65

5.5.3 Device Discovery . 67

5.5.4 Service Discovery . 67

5.5.5 Connection . 69

5.5.6 Private Messaging . 69

ix

5.6 Messaging . 70

5.7 Status . 70

5.8 Proximity . 71

5.9 Consistency . 74

5.9.1 Critical Sections . 75

5.9.2 Transactionality . 76

Chapter 6 Evaluation 78

6.1 Testing . 78

6.1.1 Test Environment . 78

6.1.2 Discovery . 78

6.1.3 Range . 79

6.1.4 Battery . 79

6.1.5 Memory . 79

6.1.6 Performance . 82

Chapter 7 Conclusion 83

7.0.7 Bluetooth . 83

7.0.8 Mobile Phones . 84

7.1 Future Work . 85

Appendices 86

Bibliography 87

x

List of Tables

2.1 Comparison of Wireless Communication Technologies 10

6.1 Manufacturer Battery Specification . 79

6.2 Memory in Device One . 80

6.3 Memory in Device Two . 80

xi

List of Figures

1.1 J2ME in Java 2 Platforms . 6

2.1 Infrared in Spectrum . 13

2.2 Bluetooth Stack . 20

2.3 Bluetooth General Use Cases . 23

2.4 Inquiry . 24

2.5 Service Discovery . 25

2.6 Service Discovery Database . 26

2.7 JABWT Stack . 26

2.8 Relationship of JABWT, MIDP and CLDC 27

4.1 JXTA Network . 43

4.2 Representation of Activity Status . 47

4.3 Bluetooth Application Topology . 53

4.4 Bluetooth Network Communication . 54

4.5 Bluetooth MIDlet using JABWT . 54

5.1 Sun Wireless Toolkit Mobile Phone Emulator 58

5.2 Dating Application Class Diagram . 60

5.3 Bluetooth LocalDevice Class . 64

5.4 Bluetooth RFCOMM Connection Framework 66

5.5 Service Record Lifecycle . 67

5.6 Service Discovery State Chart . 68

5.7 Proximity Representation . 73

5.8 User Trail by Movement . 74

xii

6.1 Comparison of Battery Consumption 80

6.2 Memory Used . 81

6.3 Memory Free . 81

xiii

Chapter 1

Introduction

Mobile phones have become pervasive in society, resulting in a mobile community

across the globe. Ireland boasts a mobile penetration of 94 percent. With mobile

phone handsets supporting new and various technologies, the area of mobile phone

based applications has been broadened, with scope for more innovative and novel ap-

plications. Despite the expansion of the number of technologies available, growth in

the area of phone based applications has not followed the rapid increase in handsets.

Most mobile phone users avail of the voice and SMS features of the handset, but few

choose to exploit the accessible features, which offer functions varying from personal

organisation and financial planning, to games and entertainment. This dissertation

aims to explore the capabilities of the communicative technologies available to mobile

phone users. These capabilities coupled with the inherent mobility of mobile phones

offers great potential for useful application development.

Context awareness can be described as the capture and use of information about a

user or object which allows them, or others affected by them, to adapt their behaviour

according to the surroundings. The notion of context-awareness has become familiar

in various areas of computing, and is acutely functional in mobile applications where

a user’s situation is constantly changing. Context awareness in mobile phones would

enable the device to gain knowledge of its mobile environment. This would further

add to the possible benefits mobile phone could provide to users. Studying the various

1

forms of context in mobile environment is central to this work.

The primary objective of this dissertation is to explore the prospective benefits of

incorporating context awareness in mobile phone based applications. The applications

of particular interest involve communication among multiple users in an ad-hoc, P2P

network using Bluetooth as the underlying technology.

1.1 Motivation

Due to the lack of useful applications developed for the mobile phone platform, ques-

tions as to factors inhibiting application development for the mobile phone platform

are posed. Investigation into the ability of mobile phones to become context aware,

and the constraints imposed by the mobile phone were motivating factors for this work.

This section outlines the research aims and objectives of this dissertation. The

overall aim involves the investigation and evaluation of context awareness on mobile

phones and to examine if and how technologies available, such as Bluetooth, are capable

of implementing such applications efficiently. The descriptions below delineate the

areas that had to be addressed to facilitate the end result, namely context awareness,

mobile phones and Bluetooth.

1.2 Context Awareness

The exploration of context awareness within the restrictions imposed by a mobile envi-

ronment was a principal objective. Effective mobile applications aim to maximize the

benefit of the application use for the user. In the optimum situation, context would be

non explicit input, i.e. discovered and would improve the performance and effectiveness

of the application, by adapting its behaviour in accordance with the new information

without requiring the user’s manual intervention. This situation would require that ad-

equate sensing equipment be available to enable the required context to be captured.

As shown by recent work in the area of context aware mobile phones, outlined in detail

in chapter 3, phones lack this source of embedded sensor, and even lack the ability to

2

connect comprehensive external sensors, however impractical they may be.

1.2.1 Context Aware Computing Challenges

Mobile, context aware computing applications are those that execute on a mobile com-

puting device and have an awareness of the user’s environment e.g., location or activity

status. Central to these applications is the ability to obtain accurate and useful con-

textual information and to exploit the information, enabling modifications in response

to changes on context. The challenges of investigating what contextual information is

available, identifying relevant areas, employing appropriate techniques to capture the

information and finally putting the information to use, make designing and developing

context aware applications challenging.

1.2.2 Mobile Environment

When building mobile, context aware applications, software developers are faced with

both the challenges of context awareness and the additional complexity of the mobile

environment and the difficulties associated with it. Some additional aspects relevant

to this research include executing resource intensive algorithms on resource limited

devices, accessing accurate and appropriate user context, providing an intuitive rep-

resentation of the user’s environment given the limited interface available on mobile

devices and importantly, communication between devices. These challenges are exacer-

bated again on a mobile phone platform due to reduced processing capabilities, limited

memory and battery resources, and lack of common sensor support.

1.2.3 Context in PAN

Personal area networks (PAN), such as those created when using Bluetooth enabled

devices, inflict separate restraints on the forms of context available and how the con-

textual information may be attained. The geographical area is reduced and the signals

emitted differ from other network types and influence both the acquisition and avail-

ability of contextual information.

3

1.2.4 Context on Mobile Phones

In addition to being within a PAN, the mobile phone handset poses its own set of

variations. The phone’s primary purpose of voice communication along with its rich

sources of information give scope for new forms of context. This contextual informa-

tion will be dynamic and plentiful, so the validity of the information may need to be

considered.

1.2.5 Capture and Use

Contextual information must be attained, modelled and used correctly in order to

customise an application to be context aware so that it may adapt in response to in-

formation it gathers. Mobile phones further affect the ability to encapsulate relevant

context as the hardware itself limits the methods available for the capture of infor-

mation. Phones lack any form of embedded sensors resulting in extremely limited

discovery techniques. Investigation into whether the context may be discovered via the

phone, user or environment and into the need for context to be published explicitly

was also a dissertation aim.

1.3 Mobile Phones

1.3.1 Platform Limitations

The constraints associated with a mobile phone are inevitable, mainly due to its com-

pact size. This impinges on both the technical ability of the phone, and the physical

features of the handset. The recent introduction of memory cards in handsets has

alleviated constraints in many areas, but the majority of handsets in typical use are

still affected by some form of restriction.

Areas of investigation include:

• Reduced Storage: Storage constraints on the handset limits file volume. Mobile

phones may also be restricted as to the types of files they can read, manipulate

and store. Aims included investigation of how files or documents can be created

and stored on the handset, and the identification of storage boundaries to decide

how much data can be stored on the phone.

4

• Limited Processing Power: The task of challenging the limitations of the phone’s

ability to execute functional applications was also addressed, resulting in and

evaluation of performance in processor intensive tasks.

• Constrained Battery Life: As a direct result of the reduced physical size of the

phone, the battery is significantly smaller resulting in a limited duration before

recharging. Determination of whether this was a limiting factor in application

development and the evaluation of Bluetooth’s battery consumption was an ob-

jective.

• Reduced Screen: Depicting contextual information including location requires

a user interface capable of illustrating intuitive and meaningful graphics. The

phone has both reduced pixel capacity and a condensed API with which to con-

struct interfaces.

1.3.2 Communicative Capabilities

In order to effectively communicate, a device must be both capable and reliable in its

ability to transfer and receive data. Using the embedded technology on the mobile

phone, exploration of its suitability for communication beyond the traditional, routine

use was a primary goal of this dissertation.

1.3.3 Application Development

With the emergence of new technologies, and their inclusion on the phone platform

came new APIs and environments conducive to the development of applications to

exploit the features and potential of the technologies. Java 2 Micro Edition (J2ME)

is the version of the Java platform that is designed for use with smaller, less powerful

devices such as mobile phones[17]. J2ME’s place in the Java 2 Platforms is illustrated

in figure 1.1.

Specific APIs exist for individual technologies e.g. JSR82 is the Java Bluetooth API

suitable for mobile phone based applications. These APIs are often condensed versions

of larger more comprehensive APIs and consequently result in limited functionality

which can affect application development. Several integrated developement environ-

ments (IDE) and emulators exist to aid mobile application development, although not

5

Figure 1.1: J2ME in Java 2 Platforms

all are suitable for phone based applications. It was an objective of this dissertation

to observe the development process and to discern factors that may contribute to the

lack of functional mobile phone based context aware applications.

1.4 Distributed Issues

Due to the distributed nature of mobile phones and the networks they create via

embedded technologies, issues associated with distributed systems are inevitable and

are examined as they arise. The following areas are of relevance.

1.4.1 File Storage

File creation, distribution and storage in mobile phone based applications are areas of

research required to facilitate implementation. J2ME provides file functionality and

the phone’s native operating system software may also provide additional file access.

Decisions regarding remote file access and manipulation were also researched.

6

1.4.2 Ad hoc network

Bluetooth networks are ad-hoc by nature. This dissertation explored the dynamic

addressing and ability of nodes to join and leave ad-hoc Bluetooth networks in an

attempt to discover why communicative applications are not more widespread in such

networks.

1.4.3 Multiple Users

One aim of this dissertation was to assess the ability of multiple users to modify

files distributed on handsets. One aspect was to determine if files could be accessed,

modified and saved back to the original user’s device, or whether only the user on

the local device could modify the stored file. Both scenarios would raise issues of

consistency across all users, creating the need for software transactionality and locking

techniques or versioning and merging methods.

1.4.4 Range and coverage

With Bluetooth applications, the short range technology poses coverage problems.

Communication may be interrupted by network partitions or node failure, security and

authentication failures and connection failures which are common in mobile networks.

This dissertation aimed to investigate mobile phone Bluetooth application range.

1.5 Thesis Outline

In this chapter, the motivating factors for this dissertation are outlined. Research aims

are described and the major areas of interest defined.

Chapter 2 gives an insight into the background of each main area. This provides a

more comprehensive view of the overall objective.

Chapter 3 provides an summary of the current state of the art in the areas of mobile

phones, context awareness, and Bluetooth. Related work in all three areas, and more

interestingly, research into the combination of all three are described. This allows this

7

work to be put into context with regard to the current body of work in the area.

Chapter 4 describes the design stage of this work. Firstly an overview of the applica-

tion developed is summarised. Then challenges that were encountered that influenced

the design of the application are detailed. Finally the components and overall archi-

tecture is outlined along with any assumptions made.

Chapter 5 gives details of the implementation of the proposed context aware mobile

phone based application which uses Bluetooth as an underlying technology to commu-

nicate with multiple devices in the area. Features of the application, along with the

particulars of how they were implemented are included. Bluetooth functionality is ex-

plained and consistency addressed.

Chapter 6 evaluates the developed application with respect to the limitations of

mobile phones.

Chapter 7 outlines conclusions drawn from the information arising from the re-

search, implementation and evaluation stages in this dissertation. Finally areas of

potential future work are identified.

8

Chapter 2

Background

2.1 Mobile Phones

With a move towards a world in which communications and computing are ubiquitous,

mobile phones are ideally positioned to be a core element in this move. With their

existing widespread use and familiarity, the deployment of more complex functional-

ity through wireless technologies has the potential to turn the conventional handset

into a versatile, multipurpose piece of equipment. This section examines in detail the

characteristics and areas associated with mobile phones.

2.1.1 Technologies

Wireless technologies are allowing computing and communication devices to be used

virtually anywhere and to be used in innovative, progressive activities. Several of these

technologies have been adapted to small devices and are now widely available mobile

phone handsets, increasing the potential for new communicative operations. The tech-

nologies below are options explored when considering which wireless technology to use

in the implementation of this dissertation.

GPRS

General Packet Radio Service is a packet switched data transmission protocol which

is used as a mobile data service by mobile phone users [14]. It operates using TDMA

9

Table 2.1: Comparison of Wireless Communication Technologies

channels in Global System for Mobile Communications (GSM). GSM is a standard

for mobile communication. It uses digital channels for signalling and speech. GPRS

transfers data by sending packets to mobile phones over channels unused by circuit

switched voice and data connections. This results in short periods of channel use only

when data is being transmitted. GPRS on mobile phones is used for web browsing,

email functionality and the transfer of multimedia files. Transfer rates for GPRS on

mobile phones are estimated at 53.6 kb/s, but according to tests[35] ”GPRS enables

per-handset data rates of 9.05-107.2 Kbit/sec depending upon the coding scheme em-

ployed and time slots allocated to a data packet. In practice, transfer speeds of 400 to

1000 bytes/sec are the norm.”1

Benefits of GPRS include

• Dependable transport system

• Geographical distribution irrelevant

• Voice calls not suspended during use

1Ferris Research

10

But it was found to be unsuitable for the objectives of this dissertation due to its

limiting factors including

• Expense, cost per kb

• Extremely high battery consumption

802.11

802.11 is a wireless LAN technology. Many mobile devices such as PDAs use 802.11

for network connectivity. 802.11 or WiFi as it is commonly known, is not supported

on standard mobile phones. It is available on recent devices which are a combination

of PDAs and mobile phones, but is not a feasible technology for use in mobile phone

based applications.

SMS

The Short Messaging Service available to all mobile phone users is a messaging system

that allows users to exchange messages up to 160 alphanumeric characters long. It is a

simple service usually provided by the mobile phone network operators and it operates

over GSM. Once a message is sent, it is received by a Short Message Service Centre

(SMSC), which must then direct it to the appropriate mobile phone. If roaming is

in use, the SMSC sends a SMS Request to the home location register (HLR) to find

the customer. The SMSC transfers the message in a Short Message Delivery Point-to-

Point format to the serving system. The system pages the device, and if it responds, the

message gets delivered. The SMSC receives verification that the message was received

by the end user, then categorizes the message as ’sent’ and will not attempt to send[10].

SMS does provide a reliable messaging service, and has many advantages including:

• Simple, reliable messaging

• Embedded technology enables abstraction for the user

• Guaranteed message delivery

However, it is unsuitable for the intended application implementation in this dis-

sertation due to the following reasons:

11

• Cost per message

• Lack of manipulation for application development

• GSM Network delay

MMS

Multimedia messaging service (MMS) facilitates the transfer of multimedia files be-

tween mobile phones. MMS claims to ’fulfil the present and the future demands of

wireless messaging[29]. Files including animations, video, audio and photographs can

be exchanged using MMS services provided by the network operators. MMS makes use

of common technologies and supports HTML, audio formats including MP3 and WAV

and pictures including JPG, GIF and PNG. Video file format depends on the handset

manufacturer, with Nokia supporting 3PG files.

MMS requires a GPRS compatible mobile phone. The main steps in MMS are

outlined below

• Sender initiates a data connection that provides TCP/IP network connectivity

over GPRS.

• A HTTP POST is performed to a Multimedia Messaging Service Centre (MMSC)

which transfers the MMS message which has been encoded in the MMS Encap-

sulation format[11].

• The encoding includes a header which contains destination information.

• The MSSC performs validation on the message and sender, stores the message

and creates a URL where the message is available.

• A new MMS notification message is sent to the recipient using SMS, using GPRS

to initiate a data connection that providing TCP/IP network connectivity.

• The recipient performs a HTTP GET to obtain the MMS content from the URL.

12

Figure 2.1: Infrared in Spectrum

MMS has obvious benefits for rich communication with its support for multiple

file types, but the cost per message is so high that uptake has been slow in the SMS

dominated market. The related cost and lack of manipulation techniques make it an

unsuitable option for this dissertation.

Infrared

The Infra-red Data Association (IrDA) infrared communication has been introduced to

mobile phone handsets in recent years. Infrared is an established technology for use in

remote controls. Its context within the spectrum of waves is illustrated by figure 2.1.

Standardisation by IrDA has enabled universal point and shoot infrared connectivity

between devices of all types[20]. The short range wireless technology provides another

option for data transfer amongst mobile phone users. The latest use of infrared on mo-

bile phones enables users to print stored images at kiosks using a simple user interface.

Infrared is has many limitations, primarily its lack of multipoint connections and

inability to work around obstacles. IrDA protocols provide connectivity range of up to

one meter, and rates up to 4 Mbps, although both are in the process of being extended.

IrDA infrared is controlled by a protocol stack, organised in a familiar layered

fashion, similar to the Bluetooth stack architecture.

Connections are made between two devices only, one acting as the primary and

one as the secondary. The primary is responsible for link creation and management.

Similarly to Bluetooth, device and service discovery techniques are employed before

establishing a connection. The two participating devices will operate at their highest

common transmission speed, and attempt to communicate in ways that optimize the

throughput and reliability of their connection[20].

13

The principle benefits of infrared technology include:

• Cost free communication.

• Interoperability among various handset manufacturers.

• Easy to use.

• Low power usage.

Disadvantages include

• Line of sight requirement

• Point to point connection only

• Extremely limited range

Infrared was not found to be a suitable wireless technology for use by the mobile

context aware application proposed in this dissertation. This was largely due to the

lack of support for multiple users, as communication involving a group of users is a

fundamental requirement.

Bluetooth

The Bluetooth wireless technology serves as a replacement of the interconnecting cables

between a variety of personal devices, including mobile phones. Its aim is to function

as the universal low cost, user friendly, air interface that will replace the excess of pro-

prietary cables that people needed to carry and use to connect their personal devices.

It has become the technology of choice in cordless headsets for mobile phones, and is

frequently used by mobile phone users to exchange files such as ringtones and images.

It was found to be the most suitable wireless technology for this project, as it offers

the benefits of omni-directionality and the elimination of the line of sight requirement

of RF-based connectivity. Bluetooth creates a ”personal connectivity space” which

resembles a communications bubble that follows people around and empowers them to

connect their personal devices with other devices that enter the bubble[31]. Connectiv-

ity in this bubble is spontaneous and can involve several devices of diverse computing

14

capabilities including reduced power devices such as mobile phones, unlike wireless LAN

solutions that are designed for communication between devices of sufficient computing

power and battery capabilities[31].

2.1.2 Platform Constraints

Size is a foremost factor in a consumer’s choice of handset as smaller more compact

mobile phones are easier to carry. Mobile phones have become fashion accessories with

compactness being a stylish trait. The downside to miniaturisation is that techni-

cal aspects of the handsets are also made condensed. Mobile phones have restricted

resources due to the compressed nature of its hardware and software. An objective

of this dissertation is to explore the inhibiting characteristics of mobile phones with

respect to application development (see section 1.2.1). The most obvious constraints

have been outlined previously, i.e. reduced storage, limited processing power, small

screen and modest battery life. The constraints detailed in this section are more spe-

cific to application development. These factors directly influence Java mobile phone

based applications.

Data transfer type

Applications are limited as to the forms of data that can be transferred. Using Java

Serialisation, objects may be transferred using the transport protocols of available

technologies. However, it may not be possible to exchange certain file types as file

support varies from one manufacturer to another. For example, Sharp phones save

audio clips as AMR files while other manufacturers use WAV files. When attempting

to transfer unsupported files to a mobile phone, an error is thrown and transfer is

aborted.

Memory: Heap Memory, Persistent Memory

Storage is a limited resource on mobile phones. The introduction of memory cards has

increased the capacity to store large volumes of data on the handset. While executing

a Java application, only a certain portion of memory is available to the JVM. This

is known as the ’Heap Memory’. This can be influential when applications have a

15

requirement for large amounts of data to be stored in virtual memory.

Persistent Storage on the handset itself is made possible by using the MIDP Record

Management System (RMS). The corresponding javax.microedition.rms package has a

single class RecordStore. This class maintains a collection of records which are in fact

just byte arrays[17]. A RecordStore created by a MIDlet is accessible by other MIDlets

within the same MIDlet suite, but not by external applications. A MIDlet suite is

simply a JAR file containing MIDlets and associated files. The RecordStore is cre-

ated in the MIDlet by using an openRecordStore() method. This will open an existing

RecordStore with the specified name, or create a new RecordStore and assign it the

specified name. The RecordStore is then manipulated by getRecord() and setRecord()

methods. The records are simply byte arrays with incremental IDs.

The RMS RecordStore was used in this dissertation for the implementation of per-

sistent storage on the mobile phone, and the use of memory is explored during testing

and results are described in chapter 6, Evaluation.

Maximum jar size

MIDlets require a JAR file and a JAD file in order to be deployed on mobile phone

handsets. The JAR file contains class files, the manifest and any resources such as

images or external files. The JAD file is a Java properties text file that contains in-

formation to allow the device execute the application[17]. The manifest in the JAR

file contains similar information to the JAD file, but the JAD includes MIDlet specific

information including the MIDlet-JAR-URL and JAR size.

The MIDlet-JAR-Size property gives the exact size of the corresponding JAR file in

bytes. Manufacturers specify a ’Maximum Jar Size’ for each device capable of running

Java applications. This imposes restrictions on the number of classes and complexity

of the application. This constraint has been alleviated by memory cards allowing the

maximum jar size to be dynamic.

16

Supported APIs

Standard application programming interfaces (APIs) in the Java programming lan-

guage are defined through the Java Community Process (JCP). This allows a thread

of management in the evolution of the Java language. Each new API is developed

as a Java Specification Request (JSR). All J2ME configurations, profiles and optional

packages are defined as JSRs by the following process[17]:

• 1. A JSR is submitted with a potential specification.

• 2. The JCP executive committee reviews and votes on the JSR.

• 3. An approved JSR leads to the formation of an expert group.

• 4. The expert group define the specification.

• 5. JCP reviews the specification in a review period.

• 6. The specification is open for public review.

• 7. A final specification draft is proposed.

• 8. The JCP executive committee votes to accept or deny the API.

• 9. If accepted, the specification is released.

The supported APIs on a mobile phone define the capabilities of the device. Lack

of API support limits application functionality as the technologies available for use are

reduced. This point is illustrated by the difficulties outlined in section 4.3.4.

2.1.3 Interoperability

Interoperability between handsets is poor due to the large number of mobile phone

manufacturers. Different makes of mobile phones are based on varying operating sys-

tems, making all native functionality OS specific. Manufacturers also vary in which

file formats are supported. Even within one manufacturer, models can differ greatly.

For example, Nokia uses the Symbian operating system and has multiple categories of

models. An application based on a series 40 model will have varying functionality to

17

a series 60 model, and so the application may be inhibited from running correctly if it

makes use of series specific functionality.

Another aspect of interoperability that affects mobile phone applications is the in-

ability of Symbian applications to interact with Java MIDlets. This is particularly

relevant in this dissertation. Functionality is provided application development us-

ing Symbian C++ that is unavailable to MIDlets. MIDlets run within a constrained

environment known as a ’sandbox’. The sandbox has a primary purpose of prohibit-

ing installed MIDlets from accessing secure information on the mobile phone itself.

Symbian applications have the ability to access this information making them very

useful for the development of context aware mobile applications. This interoperability

problem is significant in this dissertation and details of challenges arising from it are

described in section 4.3.

2.2 Bluetooth

Bluetooth wireless technology is an open specification for a low cost, low power, short

range radio technology for ad hoc wireless communication of voice or data. Its es-

timated over the air communication range using radio waves is 10 metres, the actual

range available on mobile phones using Bluetooth is examined in chapter 6, Evaluation.

Due to the short range, the radios are low power and are suited to small, compacted

devices with reduced battery power. Bluetooth networks are ad-hoc by nature, and

are known as personal area networks (PAN).

Technicalities of the Bluetooth Technology include:

• FHSS (Frequency Hopping Spread Spectrum).The Bluetooth radio transmission

uses a packet switching protocol FHSS. The hop frequency is 1600 hops per sec-

ond. The frequency spectrum is divided into 79 hops of 1 MHz bandwidth each,

so devices occupy 79MHz, but at any specific moment, only 1 MHz is occupied.

Frequency hopping is used to reduce interference and enhance security. The

frequency-hopping scheme is combined with fast ARQ (Automatic Repeat Re-

quest), CRC (Cyclic Redundancy Check) and FEC (Forward Error Correction).

18

A binary radio frequency modulation and simple link layer protocols reduce the

complexity and the costs of the radio chip. Bluetooth provides a nominal data

rate of 1 Mbit/s[31].

• ISM Band: A Bluetooth radio operates in the 2.4GHz license-free, globally avail-

able industrial, scientific and medical (ISM) band. This band is used for var-

ious other ISM devices e.g. WLAN, microwaves, but Bluetooth is designed to

withstand interference and remain almost unaffected when in contact with other

devices in the same band.

2.2.1 Stack

The Bluetooth protocol stack is defined as a series of layers, with each layer repre-

senting a different protocol. The Bluetooth profiles, described along with the stack in

the Bluetooth specification, are essentially usage models to illustrate how applications

should use the stack. The stack can be divided into two major sections, the first is

the Bluetooth host, which is the upper section of the stack and is usually implemented

in software. In the case of a mobile phone, the Bluetooth host is integrated with the

operating system of the phone. The lower layers are known as the Bluetooth controller.

They are usually contained in a hardware element or radio module. Each of the layers

in the stack is described below.

Radio

The Bluetooth radio layer is the lowest defined tier of the Bluetooth specification. It

classifies the requirements of the Bluetooth transceiver device operating in the 2.4-GHz

ISM band. It defines transmitter and receiver characteristics, including the ability of

the receiver to measure its Received Signal Strength Indicator, which became relevant

in this dissertation, see section 4.4.3 for details.

Baseband

The Baseband tier is the physical layer of the stack. The protocol is implemented as a

link controller, and together with the link layer it manages the physical radio frequency

link between Bluetooth devices and enables connections. The two kinds of physical

19

Figure 2.2: Bluetooth Stack

links: synchronous connection oriented (SCO) and asynchronous connectionless (ACL)

are managed by the Baseband which involves handling packets and the paging and

enquiring techniques of Bluetooth discovery.

LMP

The Link Manager Protocol (LMP) carries out link setup and link configuration be-

tween Bluetooth devices, managing and agreeing the baseband packet sizes. Link man-

agers communicate via the LMP using a number of PDU (Protocol Data Units), which

are sent between devices to facilitate link management. The LMP is also responsible

for managing security issues, such as authentication and encryption, by generating,

exchanging, and checking link and encryption keys[25].

HCI

The Host Controller Interface provides a command interface to the radio, baseband

controller and link manager, providing a single interface for accessing the baseband

20

resources, the hardware status and control registers. Access to the LMP via the HCI

was an area of interest in this work, and research is described in section 4.3.3.

L2CAP

The Logical Link Control and Adaptation Protocol (L2CAP) is located in the data

link layer. It provides both connection-oriented and connectionless data services to

upper layer protocols. It is responsible for multiplexing the various connections of the

upper layer protocols. L2CAP allows higher level protocols to send and receive data

packets of up to 64 kb. Communication over L2CAP is restricted to asynchronous

connectionless links and so is a best effort service unsuitable for real time traffic on

SCO links.

RFCOMM

One of the most frequently used communication techniques in communication devices

makes use of serial ports. The RFCOMM protocol is an emulation of RS232 serial

ports over L2CAP. It facilitates a transport service for higher level services using a

serial interface and is capable of supporting up to 60 simultaneous links, although

most devices, especially mobile phones, have limited capabilities regarding the maxi-

mum number of connections. RFCOMM provides a communication mechanism for two

Bluetooth enabled endpoints, making it both suitable and feasible for this project and

was chosen as the protocol of choice.

SDP

Service Discovery Protocol (SDP) provides a process for applications to query available

services and attributes of services on other devices. The discovery of services is distinct

from the discovery of devices in Bluetooth, and is a completely separate protocol. It is

also distinct from the more traditional notion of service discovery in LAN networks as

the set of services available are dynamic and change frequently when devices are active

in the PAN.

21

OBEX

The Object Exchange protocol is a relatively new facility built over RFCOMM. It is

a protocol for simple file transfers between mobile devices, often used for transferring

objects such as electronic business cards[37]. It was originally implemented over IrDA,

but is now common on Bluetooth devices. However the OBEX API was not supported

by the devices used in this project and therefore was not investigated further.

2.2.2 Profiles

The Bluetooth specification also defines profiles which outline how a particular model

may use the protocols and features. The profiles are particular to a specific use case,

sometimes described as ’a vertical slice through the protocol stack’[25]. The four basic

profiles are

• Generic Access Profile: All profiles are based on the GAP as it defines the dis-

covery, link management and configuration procedures.

• Service Discovery Application Protocol: Defines core protocols used to locate

services available on other Bluetooth devices.

• Serial Port Profile: Defines the process necessary for Bluetooth devices to com-

municate over RFCOMM.

• General Object Exchange Profile: An abstract profile for OBEX usage.

2.2.3 Use Cases

General Case

Bluetooth devices may be used in various activities with varying purposes, but they

will have certain usage scenarios in common. These general use cases of Bluetooth are

outlined in figure 2.3. The device may act as a client, or a server, or both. Therefore

it may make use of device discovery protocols and be both the producer and consumer

of services. The mobile phones in this dissertation were nodes in a peer to peer,

distributed environment, and so had the capability of exerting both client and server

features.

22

Figure 2.3: Bluetooth General Use Cases

An overview of the major activities of the use case scenarios illustrated by figure

2.3 are

• Initialisation: The device must initialise the Bluetooth stack.

• Client: Devices in range are discovered and then those devices are queried for

services available on them.

• Server: Services are advertised to clients, making them available for query. Should

any client wish to connect, the server accepts incoming connections

A more detailed analysis of how these operations function and details of how they

were implemented in this dissertation are discussed in the implementation chapter, at

section 5.5.

Mobile Phone Use Cases

Bluetooth on a mobile phone enables connectivity with any other Bluetooth enabled

device. An example of a use case scenario for a regular mobile phone would be to

extend its voice capabilities, shown in this three in one phone usage model[25]. The

23

Figure 2.4: Inquiry

handset still functions as a normal mobile phone, but can act as a cordless phone by

connecting to a voice access point i.e. a cordless base station, and may also act as a

’walkie talkie’ by communicating directly with another similar device.

The scenario more applicable to this dissertation, is removing the need to use voice as

a means of communication, and exploiting the data transfer capabilities of a Bluetooth

enabled mobile phone. It can discover devices within range, and communicate directly

using a messaging system built on top of the underlying Bluetooth transport layer.

2.2.4 Device Discovery

Bluetooth enabled devices use a technique called device discovery, which is core to any

application using Bluetooth. It enables the device to dynamically locate other devices

within the area. As device and service discovery are distinct, all devices regardless of

what services they provide will be located. If a Bluetooth enabled device wishes not

to be discovered, they can be configured so that they are not visible during device

discovery. Device discovery is also known as an ’Inquiry’. Figure 2.4 shows a mobile

phone initiating an inquiry.

24

Figure 2.5: Service Discovery

A device issues inquiry requests and waits for nearby devices to respond with their

corresponding Bluetooth address and device class. The address acts as a unique iden-

tifier for the discovered device and the class described the type of device.

2.2.5 Services

A service can be thought of as a particular facility that a device offers or is capable

of participating in. Service functionality is performed in a client server fashion, with a

server being queried by a client about its available services. Some standard services are

defined by the Bluetooth specification e.g. file transfer, printing, but most application

specific services are created dynamically. This section gives a brief overview as to how

devices deal with offering and locating services.

Service Discovery

When an inquiry has completed and all the devices in range have been discovered, the

services available on the devices may be queried before connecting to a remote device.

Service discovery is conducted on a node by node basis, unlike device discovery which

contacts multiple devices. Services are defined by a service record, which describes in

its attributes the particulars of a service. The querying device may search for a required

service using one of these attributes, and if a match is found, the remote device returns

the complete service record. Service Discovery between two devices is illustrated in

figure ??.

25

Figure 2.6: Service Discovery Database

Figure 2.7: JABWT Stack

Service Advertisement

A device acting as a server maintains a service discovery database (SDDB). A service

record is created describing an available service. The architecture of an SDDb is il-

lustrated in figure 2.6. Services are registered in the SDDB in order to be available

for query by remote clients. When a service request is received, the SDDB is used

for service discovery. The SDDB must be updated with any changes to services and

the services are removed from the SDDB when the service becomes unavailable. The

details of how this is implemented using JABWT is detailed in the Implementation

chapter.

2.2.6 JABWT

Java APIs for Bluetooth wireless technology (JABWT) defines the first standardised set

of APIs that enable application development using Bluetooth as a wireless technology.

JABWT addresses certain protocols of the Bluetooth stack, as shown in figure 2.7.

26

Figure 2.8: Relationship of JABWT, MIDP and CLDC

It is targeted at limited devices, such as mobile phones taking into consideration

limited processing power and battery life. Most of these devices make use of J2ME,

but some may use J2SE, as JABWT based the API on J2ME and the Generic Connec-

tion Framework (GCF) CLDC API. Therefore JABWT only requires a CLDC library.

CLDC is usually coupled with a J2ME profile such as MIDP, but the JABWT does not

depend on MIDP functionality. Figure 2.8 illustrates this relationship as it is in the

implementation of this research, i.e. a MIDlet on a MIDP device supporting JABWT.

It supports three transport protocols: L2CAP, RFCOMM and OBEX. It also pro-

vides basic methods for all device discovery, service registration and service discovery

functionality, establishing connections over the three supported protocols and security

functionality.

27

Chapter 3

State of the Art Review

3.1 Introduction

The state of the art aims to investigate the current situation in the areas of interest

influencing this dissertation. This establishes the context in which this work will be

considered. Various bodies of research are relevant, and so this section has been divided

into more specific areas, although many related works will encompass several areas.

Each of the following sections gives a brief introduction to the area and its relevance

to the outlined research aims. Then relevant work in that area is explored, discussing

recent developments and works in progress. Finally the background research in all

areas is summarised with the significant approaches isolated and the applicable areas

identified.

3.2 Mobile Phones

Mobile Phones have changed the way people communicate, and various social changes

have been observed due to their increased dominance. A large body of research has

been carried out to review of the social consequences of mobile phone use and how

everyday life is changing in relation to their use. Areas addressed include changes in

living and working conditions, expectations and roles, experiences of time and space

and the change in the interrelationship of public and private[16]. Studies show that

28

time is a major factor in today’s busier lifestyles, and that mobile phones and the fea-

tures they provide, can change the concept of time by providing flexibility and mobility

to time-shift activities. It also shows that phones are used for contact, i.e. the message

content is not so much the point as the gesture. Studies have also shown that phone

features such as SMS can make communication more discrete and unobtrusive to those

in the area[16].

Social considerations in technologically mediated interactions are a specific area

of interest. Technologically Mediated Communications (TMC), such as mobile phone

activities, change many elements of communication that contribute to the social di-

mension of human interaction[34]. Researchers in the field acknowledge the emergence

of a set of new social structures and examine the ways in which technology parameters

impact on social communication. TMCs obviously provides a less rich environment for

communication than face to face interaction, but this may be seen as an advantage

in certain situations. The fact that mediated interactions interfere with spontaneity,

creativity and the lifespan of a message can be viewed as disadvantages, but they also

allow a certain amount of control over the interaction that is unattainable in on the

spot conversation. Phone based applications offer a certain distance to the sender and

at times a seemingly safe anonymity. It removes any communication redundancy and

leaves the user with essential content, which is pre-prepared. Such is the popularity of

mobile phone based communication that text messages are often used in place of voice

interactions[34].

This area is fundamental to the decision of what problem to address in the imple-

mentation of a mobile phone based application in this dissertation. Considering the

findings of the research in this area, the adverse issues arising from a social activity

involving face to face human interaction may be alleviated by allowing the activity to

be performed using a mobile phone based application.

The decision was made to implement an application that aims to provide a phone

based alternative to the traditional approach to dating. It will provide a facade that

a user can effectively hide behind, creating a distance between the sender and receiver

which eliminates the physical, intellectual and emotional reactions together with a

29

sense of being in control of when to terminate the communication. This added per-

sonal sanctuary is one of the major elements of technology enabled communication

that can be exploited in applications such as the one implemented in this dissertation.

3.3 Context Awareness

Context Awareness has become a familiar term in computing. Many definitions can

be found as to exactly what is considered to be context. One definition classifies con-

text as any information that can be used to characterise the situation of an entity[4].

Awareness has been defined as ”an understanding of the activities of others, which

provides a context for your own activity”[8]. The capture and use of contextual infor-

mation increases the usefulness of applications allowing them to adapt their behaviour

according to their surroundings. Context has been described as usually the location,

state and identity of an object or person[8], but as shown in the research studied below,

context can take various forms and be interpreted in many ways.

3.3.1 Context Awareness in Mobile Applications

Wireless technologies, cellular networks, PANs, LANs and WANs, mean more dynamic

context and the need for more efficient and adaptive applications in mobile environ-

ments. The increase of context aware applications ties in with the developments in

ubiquitous and pervasive computing. Context has been defined in three categories -

computing context, user context and physical context[3]. The use of context history

can be useful in certain applications, such as trails based applications, and may al-

low the inference of information from contextual data. Context aware computing and

its applications can be classified again into four sections: Proximate selection, auto-

matic contextual reconfiguration, contextual information and commands and context

triggered actions[3]. Although all make use of contextual, they adapt and behave in

different ways in accordance with the context. Applications that are context aware

may be active in that they adapt to discovered context, or passive in that they present

contextual data to interested users[15].

30

3.3.2 Modelling Context

Modelling contextual information is an area of research that has resulted in various

approaches to representing the information. Location information generally takes the

form of a symbolic model, abstract symbols, coordinates or a geometric model. Due to

the limited screen size on the mobile phone, location must be depicted in an easily un-

derstood format. A graphical representation is much more intuitive than coordinates,

however the constructs available to create graphical interfaces are somewhat reduced on

mobile phones. Other contextual information may be modelled using key-value pairs,

Object Oriented models or layers of logical context[15]. Depending on the amount and

variety of contextual information gathered in this dissertation, modelling techniques

including name value pairs and graphical representation may be suitable for displaying

the information on the limited phone screen.

The approaches of storing and disseminating contextual information are typically

either a centralised server which is the provider of context, or a distributed architec-

ture where the nodes store context, the latter being more appropriate for distributed

applications such as this phone based one, but this raises distributed issues regarding

storage on the limited devices.

3.3.3 Related Context Aware Work

General Mobile Context Awareness

Cyberguide is mobile context aware tour guide which has been implemented on hand-

held devices i.e. PDAs. The belief that all applications in a mobile environment should

take full advantage of the rich contextual information that is available, and use it to

offer better services to the user is central to Cyberguide[13]. Many possible scenarios

for the use of context in mobile applications are outlined including personalised tours,

route planning, providing directions and enhanced reality tools. The implementation

uses existing hardware, namely Apple MessagePads and creates an architecture con-

sisting of components for maps, information, positioning and communication. GPS,

active badges and the Internet underlie the guide’s infrastructure. The context used

is very limited, just physical location and crude orientation, but the idea of using con-

31

text to enhance mobile applications is relevant. It identifies the need for automated

capture of contextual information to facilitate greater richness of data and to improve

usability[13].

The PLIM project is concerned with the notion of context aware mobile applications

and considers mobile phone applications and what context may be relevant. Mobile

phones may be used for data services and may execute various multimedia applications

and this research outlines that personalised and device optimised context aware commu-

nication is a vital part of emerging phone applications. Context in mobile applications

is dynamic and can impact on how the user interacts with other devices. Context

”is not limited to the physical world around the user but also incorporates the user’s

behaviour and terminal/network characteristics”[21]. They note that the majority of

phone based context has been location based, yet there are multiple, more informative

indicators of context awareness that combine to make up the ’context space’ such as

identity, spatial and temporal info, social situation, activity and resources nearby[21].

Any contextual information captured should be available to be used by the application.

They illustrate this using an instant messaging system that combines and uses presence

and location information to achieve a personalised and useful application. The PLIM

framework uses Jabber, an XML based open source system for instant messaging. They

outline location based services options such as GPS, GSM cell ID and active badges.

Bluetooth serves as the core technology in PLIM, as they noted its support of ad-hoc

networks and data point connectivity. This supports the viewpoint of this dissertation

that Bluetooth is well suited as an underlying technology for more useful applications

on mobile phones. Bluetooth discovers all devices in the area and checks if a certain

service is supported using a service discovery protocol, using filters to specify results.

Positioning is one service that may be provided. PLIM uses contextual information

to update user details and position. Future work outlined lies in the area of coupling

absolute and descriptive locations and in interpreting situational information[21].

32

Mobile Phone Context Awareness

’I M Mobile, Where R U?’ concentrates specifically on the context awareness of mo-

bile phone applications. It agrees that context aware applications have become more

prevalent, with the continuous provision of information about presence and availabil-

ity of others being commonplace in instant messaging systems online[18]. This paper

explores the need for such information for mobile technology users to establish if it

would improve reachability and availability. Firstly they identified which contextual

information is instrumental for the communication of mobile knowledge between users.

During research, they compared use of various granularities of location information

such as GPS coordinates and more local, small scale information, for example ’in a

meeting’ or ’on the bus’. Mobile phones with integrated GPS receivers have been re-

leased, but as yet have not gained general consensus. This is thought to be due to

factors such as limited awareness, cost, reliability and accuracy issues, but more in-

terestingly privacy and security concerns. Research was carried out by experiments

to gain knowledge on mobile awareness, specifically which context information peo-

ple need to communicate and work together effectively. The paper focuses on instant

messaging, identifying social translucence and plausible denial of presence as factors

of its success[18]. It concludes from research that location revealing data is most pop-

ular contextual information, but that it is preferable from sources such as personal

calendars than from GPS like devices. The conclusions from this research give useful

context related principles specific to mobile phones, which most ’mobile ’ applications

omit due to the implementations which are generally carried out on PDAs[18].

More mobile phone specific context aware work has been carried out with the inten-

tion of making informative context available to the mobile phone user. Two papers in

particular address a particular area of interest, namely the capture and representation

of contextual information on mobile phones. The first is titled ’SenSay: A Context

Aware Mobile Phone’[7]. It addressed the lack of sensor support on mobile phones.

The approach taken was to mount external sensors on the person, and to connect these

to the mobile phone. Sensors including accelerometers, microphones and light sensors.

These monitor the user’s actions and environment and aim to provide data about the

user’s context. The data is passed through a rule based decision module and a resulting

33

action is taken is direct response to the discovered contextual information. The objec-

tive of this work was to create a ’context aware mobile phone’. Context is discovered

and adaptive behaviour enabled, but the mobile phone itself is still unable to conduct

this behaviour without the use of various peripheral attachments.

Extending the functionality of the phonebook on a mobile phone is the primary

objective of the second work. ’Context Phonebook’[2] aimed to extend the phonebook

by including context with the contact details. Relevant context identified included

users connection status, availability and location. Like the previous work, the lack of

sensor support was discovered to be a particular problem. Rather than adding external

sensors, an approach was taken to try to keep functionality within the handset. The

implementation relied heavily on manual settings and simulations.

From the research in this area, numerous approaches to the identification, capture

and representation of context are described. The approach of using external sensors

is not only impractical, but expensive and time consuming due to the various vendor

specific hardware involved. Interoperability issues are inevitable, as are high setup

costs and substantial setup time. For these reasons the use of external sensors was

established to be an unfeasible approach. The approach taken in [2] involving manual

and simulated context setting is a more feasible method and the implementation stage

of this dissertation was influenced by these findings.

3.4 Bluetooth

For the purpose of this dissertation, Bluetooth was chosen as the most practical wire-

less technology available on mobile phone. It is described in detail in section 2.4,

but defining it as a ’short range wireless technology, suitable for low-power, low-cost

applications” clarifies its core characteristics. It is more flexible and robust than its

competitors such as Infrared. Each Bluetooth device is identified by an IEEE MAC

Bluetooth address. Bluetooth is controlled by a set of protocols known as the Blue-

tooth stack, see section 2.4.1. Nodes act either as ’masters’ or ’slaves’, which are

theoretically similar to the notion of ’server’ and ’client’. Masters have more authority

and accept connections from up to seven slaves to make a piconet. Piconets may be

34

conjoined to make scatternets, although scatternet implementation in this dissertation

is not viable due to the lack of support on phones. This dissertation gives each node

the functionality of acting as both server and client, forming an interconnected network

topology.

3.4.1 Bluetooth and Java

Java has become the language of choice for a large fraction of software developers. Its

portability and mobility make it ideal for wireless application development and deploy-

ment. The Java platform is being driven forward by emerging technologies, to make

it a comprehensive development environment. Some of these technologies are targeted

at wireless, short range, P2P and ad-hoc network applications. Bluetooth is well posi-

tioned to be used as the underlying communication technology for the implementation

of these applications. Therefore Java and Bluetooth have converged to allow the de-

velopment of such applications.

J2ME, a cut down version of the Java class libraries, had been released to enable

development on devices with limited processing power. The Connected Limited De-

vice Configuration (CLDC) is a J2ME library that targets mobile devices with small

memory and wireless connectivity[17]. The J2ME Mobile Information Device Profile

(MIDP) provides a set of user interface components and HTTP connection capabilities

for use in mobile phones and other mobile devices. J2ME is explored in detail in section

5.1.2. The Java Specification Requests (JSR)-82 Expert Group is responsible for the

standard Bluetooth APIs for the Java platform. These are known as JABWT and are

described in section 2.4.7. The APIs are aimed at the CLDC and take the form of a

J2ME profile. Having a standardised API for Bluetooth application development via

Java means that the principles of portability, mobility and interoperability are main-

tained by all developers[23]. Adhering to a standard API ensures interoperability at all

levels of the Bluetooth stack from baseband upwards. Some Java Bluetooth stacks do

not fulfil JSR-82 such as Harald and JBlueZ. However J2ME has an optional compliant

Bluetooth API, and others exist too including Rococo’s Impronto and BlueJava. BlueZ

is the official Linux Bluetooth stack written in C++[22].

35

3.4.2 Related Bluetooth Work

”JXTA over Bluetooth” is the title of a thesis which focuses on the idea of develop-

ing and implementing an ad-hoc messaging system using Bluetooth. The Java APIs

for Bluetooth were used to develop a multi-hop messaging layer which sits over the

Bluetooth stack. The title is quite misleading as it is not an actual implementation

of JXTA over Bluetooth. This thesis chose to develop a proprietary messaging sys-

tem instead of using JXTA or JXME. JXTA uses XML to transmit over TCP/IP

and uses far too much processing power for small devices and JXME needed a JXTA

proxy and so could not implement an ad-hoc P2P system independently. Instead a

system based on JXME, using the same messaging format was created which carried

out connection establishment, connection management and data processing. A rudi-

mentary computer based diary application was created and run on iPaqs to illustrate

the technical mechanisms[22].

3.5 Communication Applications

Systems are rarely used in isolation and so interaction between multiple users is an ele-

ment of almost all applications in one way or another. Distributed systems, especially

ones with dynamic mobile nodes, must consider multiple users, synchronisation issues

and any other factors arising from communication and data transfer in a distributed

environment.

3.5.1 Related Communication Applications Work

The following works are all in the broad area of applications facilitating multiple users

to communicate and interact. Various approaches have been investigated and are out-

lined below.

MobiShare is an architecture that was designed to provide a middleware system

and framework that acts as a distribution network by offering ubiquitous connectivity

to mobile devices[9]. The architecture allows for mobile devices to publish, discover

and access resources over a large area using 802.11 wireless network. The implemen-

tation is based on XML like languages and protocols which offers a service oriented

36

system, i.e. each device is considered a producer or consumer of data wrapped as

information services. Unfortunately like so many ’mobile’ applications this research

was implemented on PDA devices so lacks mobile phone specific information. How-

ever, context awareness is included in this approach and is described as an essential

feature in environments where objects are constantly moving, creating dynamic con-

textual information. The properties identified as context are used to help the mobile

devices be aware of its immediate surroundings and to adapt as necessary. The data

considered included position, orientation, lighting, conditions and identity[9], but im-

plementations only used location and mobility parameters. MobiShare is implemented

using a decentralised backbone network, the Internet or a WAN, providing centralised

access points in communication cells known as CAS(Cell Administration Servers) for

the mobile nodes. The CASs are responsible for registering the devices services and

enabling other devices to discover available services in the area. Although not mobile

phone specific, MobiShare illustrated the use of context and resource sharing in mobile

devices.

Research has been carried out to investigate methods for providing group awareness

to participants of e-meetings using small, limited devices such as mobile phones. The

work titled ’Supporting E-Meetings on Java Capable Mobile Phones’ aims to overcome

the limitations of the mobile phone platform and to create a collaborative environment

for activities involving multiple users. Observing the increase in mobile phone capabili-

ties regarding running custom software and the changes in wireless technology resulting

in more pervasive, faster networks[36] the potential for innovative communication over

mobile phones is evident. This work aimed to exploit the communication capabilities of

mobile phones while considering context in much the same way as this dissertation. An

existing online E-meeting system known as ’Marratech Pro’ was extended to suit this

experiment. They endeavoured to reduce the existing system to deliver just enough

features to give a sense of group awareness while running within the confines on the lim-

ited platform[36]. The existing features included instant messaging, audio capabilities,

shared whiteboard, shared browser and video support. The major limiting factors of

the mobile phones were found to be the screen size, limited memory resources, limited

HTTP operations supported in MIDP and the lack of APIs for accessing and modifying

the digital still images and video clips that phones are now capable of capturing. The

37

effects of these limitations led to a cut down communication layer which was only capa-

ble of unicast communication. The images required also had to be scaled and scrolled

to be displayed on the phone screen. The implementation consisted of an instant mes-

saging server which is contacted by the mobile device via a Java plug-in for e-meeting

data. The plugin collects context about activities carried out from the data retrieved

by the pull mode the application operates. The shared whiteboard is implemented by

the client requesting a scaled down version of the whiteboard page. GPRS is used to

operate the shared browser. No audio support was possible but video snapshots were

retrieved by the plug-in and sent to the client. Contextual information was limited to

simply CPU activity and event monitoring, and this information could be displayed

illustrating activities and times using graphs. The system offered a scaled down PC

system with very limited context. It was a basic centralised GPRS pull model system

that allowed documents to be viewed on mobile devices, but lacked any innovation and

useful contextual information. This research identifies phone platform limitations in

environments involving multiple users interacting. The findings are useful to this dis-

sertation, but the centralised approach which uses fixed PC’s for data administration

is an entirely different architecture from the intended mobile phone based application.

MIRES (Mobile Information Resource Exchange System) focuses on mobile phone

interaction and like the above works, aims to build a framework that encourages com-

munication and data transfer[16]. The main objective of MIRES is to facilitate phone

users to share personal resources and to access others resources. The paper acknowl-

edges the increased potential of mobile phones due to the inclusion of more wireless

technologies and multimedia capabilities in recent times. GPRS and J2ME were found

to have facilitated developers allowing data transmissions via http. Limited storage

was still a major issue, as was low bandwidth and high cost. To lessen these limiting

factors, a dedicated framework was built to implement flexible resource sharing among

users. MIRES regards each phone as an autonomous computing client. It adopts a

centralised mobile resource management system that acts as data sharing manager[26].

The decision to have a centralised controller was mostly to overcome the issue of lack

of storage on the client side as well as the slower processor and limited bandwidth.

MIRES has 3 main components; a global management system (GMS), multiple mobile

resource database (MRDB) servers and a bulletin board[26]. It describes its architec-

38

ture as a totally distributed system which consists of several decentralised database

servers. The MRDBs are physically distributed. When users want to share resources,

they upload them to the server side and others can download as they like. Transmis-

sion between phones and MRDBs is implemented by SMS, for notifications, and GPRS,

for data transmissions. The GMS is responsible for controlling and coordinating the

underlying resources. The bulletin board holds all the indices of the resources. Each

mobile has a mobile mirror image (MMI) stored in the MRDB which offers storage for

that user’s resources and is identified by the phone number. Resources are shared by

means of ”exporting” resources to be shared and ”importing” required resources, which

are carried out using a Java plug-in on the phone. Resources are accessed using com-

mands including R-EDIT, V-EDIT, DISCARD and PURGE[26]. Distributed systems

issues arise and algorithms are employed to handle version control and to maintain con-

sistency via synchronisation. Problems encountered were J2ME limitations, resource

loss due to lack of use, data relocation and security. This paper illustrates that while

limitations are inhibiting factors, that communication and data transfer can be carried

out successfully over mobile phones.

The next related work ties together the mobile environment, multi-user commu-

nication and messaging over Bluetooth, addressing a relevant area. ’Smart Service

Architecture for Small Devices’[12] presents a middleware platform, suitable to small

devices that allows runtime reconfiguration and adaptation on applications running on

these small devices, typically mobile phones[12]. The adaptive middleware supports the

discovery, downloading and activating of functionality via a standardised infrastruc-

ture. The platform makes use of JXTAs messaging format, not JXTA implementation,

and uses J2ME MIDlets to deploy the applications. The primary component is an

adaption manager which supports the discovery of services and their use. The ar-

chitecture was used to implement an application which would trigger an SMS service

once the phone was in a specific Bluetooth hotspot range. Jadabs[19] a dynamic archi-

tecture for lightweight ad-hoc networks was used for laptop and PDA communication

with the phones. Jadabs uses a Service Oriented Architecture to develop components

independently, and Aspect Oriented Programming, so that registered services can be

dynamically adapted at runtime by having method calls on crosscutting services using

AOP advice calls[12]. The Service manager is provided as the core Midlet suite, and

39

provides discovery mechanism and the ability to download new services. This man-

ager is registered in Bluetooth and is accessible through its Service Discovery Protocol.

Once a service manager is found, the JXME discovery mechanism is used for any other

service discovery. These managers use JXME messaging to communicate. Downloading

can be carried out using either over the air (OTA) transport, i.e. HTTP over GPRS or

WAP, or using the Object Exchange Protocol (OBEX) over Bluetooth. OBEX allows

push and pull from devices using Bluetooth and was not available at the time of this

implementation. OBEX offers data exchange capabilities beyond simple text but is not

supported by the hardware available for the implementation of this dissertation, and

so was not explored further.

3.6 Summary

The various elements that feature in this dissertation have been investigated along with

the related research in those areas. Reviewing the work existing in each of these areas

helps to identify the gap in the current body of research, which this dissertation aims

to address. Various approaches to similar projects are outlined, and elements of these,

along with an original approach, combine to present the architecture adopted by this

dissertation.

40

Chapter 4

Design

This chapter outlines the design stage of the mobile context aware application imple-

mented in this dissertation. Firstly the scenario which the application aims to address

was formulated, and the requirements identified. In order to establish the full design

and structure of the application there were two major areas to consider, messaging and

context.

• Messaging requires a communication layer to be built over an underlying trans-

port system. Bluetooth had been decided as the most suitable wireless technology,

so potential messaging methods were examined to identify suitability. The most

significant possibility was JXME. This is examined in detail in section 4.2.

• To enable an application to be context aware, meaningful contextual information

must be identified. Methods of capture must also be considered. The various

challenges encountered while undertaking the task of including context are out-

lined in section 4.3.

The findings from investigation into these areas with respect to the application

requirements for this dissertation formed the basis for the design of the said application.

Various hardware problems were also encountered, causing additional modifications to

the design of the application.

41

4.1 Dating Application

The application decided upon was a contemporary adaptation of a dating scenario,

taking certain requirements from the scenario such as speed dating. The traditional

approach would involve numerous people meeting in a confined meeting place, such as

a function room of an establishment. They would each sit at a table and talk to the

person opposite for a period of time before moving onto the next person.

4.1.1 Social Considerations

Having researched the social interests regarding mobile phones, they offer an innovative

approach to such a scenario. Removing the need for face-to-face dealings and replacing

them with messages via phones, grants a significant amount of control of the situation to

the user. The medium, in this case the phone, is simply a facilitator of the conveyance of

an expressive activity by the expresser to the recipient[34] and the user has the ability

to interact with all or one user in particular. More insight into technology enabled

communication is described detail in section 3.2 with respect to research carried out in

the area.

4.1.2 Requirements

The application must be capable of providing a similar service to that of a speed dating

service. Users must have the ability to see all other participants and communicate freely

with them at any time. An additional requirement added was the ability to privately

communicate with a chosen participant. During the application execution, the user can

modify certain aspects of their contextual information that is available to others, and

query context features of other members in order to gain insight into their environment.

4.2 JXTA/JXME

JXME was considered as a possibility for use as a communication layer over Bluetooth.

JXME is simply a small footprint of the JXTA environment that is suitable for appli-

cation development for smaller devices including mobile phones.

42

Figure 4.1: JXTA Network

JXTA was initiated by Sun Microsystems to enable further P2P application devel-

opment in Java. The advantages of P2P systems have become obvious with scalability

being a driving factor. JXTA aims to provide a set of simple, small and flexible mecha-

nisms to support P2P computing on various platforms. The basic architecture provides

six protocols defined in XML. Nodes implementing any of these protocols are referred

to as peers. Data, known as messages, are transferred via Pipes which are virtual

communication channels. Peers offer services to other peers in which Codats, content,

can be published, discovered and replicated as required. The architecture of a JXTA

network is illustrated by figure 4.1.

The six protocols that underlie the JXTA project are

• Peer Discovery Protocol -used to discover all published resources.

• Peer Resolver Protocol -used to locate some service or content.

• Peer Information protocol -used to ping a peer.

• Peer Membership Protocol -used to join or leave peer groups.

• Pipe Binding Protocol -peers use pipes to access services.

• Endpoint Routing Protocol -used to route messages to a destination.

43

JXTA has a Java implementation in the .net.jxta.* and .net.jxta.impl.* hierarchies. A

JXTA shell is a sample application that acts similarly to a Unix Shell, providing access

to the JXTA environment[24]. However JXTA has high memory and CPU require-

ments and is therefore inapplicable to small devices such as mobile phones[22]

The protocols provided by JXME would enable an application running on mobile

phones to contact other devices and transfer messages effortlessly using the standard

JXTA messaging format. The application could also make use of the group functional-

ity JXME offers. These factors made JXME a suitable messaging system to implement

for this dissertation.

To make JXME a viable option, it would need to use Bluetooth as the underlying

transport protocol, as opposed to its traditional HTTP use. This area was explored in

some detail to establish if JXME could be transformed to run over Bluetooth.

4.2.1 JXME and Bluetooth

JXTA is suitable to be implemented over Bluetooth. Recent research states that ”A

device using JXTA over Bluetooth could discover other local JXTA devices and form

ad hoc, P2P networks with them to achieve some common, collaborative goal, or to

share information and services”[23].

The Jadabs project[19] produced an API using Bluetooth as the transport technology

for JXTA. Jadabs added an additional transport layer for Bluetooth. Bluetooth uses an

RFCOMM link to communicate between devices. The usual Bluetooth master, slave

roles exist in piconets but extended scatternets are not yet implemented by mobile

phones. A JXME peer can be a normal peer or a rendezvous peer. All normal peers

connected to a rendezvous peer are in the same piconet. The standard Bluetooth ser-

vice registration and discovery functions are employed and an RFCOMM connection

is established when the StreamConnection is created on both sides[1].

The task of implementing JXME over Bluetooth was attempted in[22]. The main

handicap of JXME is its need to have a JXTA proxy, which makes an ad-hoc usage

of JXME impossible since this requires a JXTA proxy server and TCP/IP network

44

infrastructure. Two devices that are places next to each other do not communicate

directly. To allow such a direct communication both devices need a HTTP server. This

is too heavy weight for such a small device. These HTTP servers are required since

such a message system communicates asynchronously[22].

JXME have recently released a proxyless version with no previous implementation

over Bluetooth. The initial design intended to use Bluetooth to discover devices, and

to use JXME functionality for service discovery and messaging format. Unfortunately,

proxyless JXME was found to be unsuitable for use on mobile phones. This is due to

the fact that the proxyless version, as yet, only supports devices using CDC, not CLDC,

eliminating mobile phones. Attempts at partial implementation were also prevented

by the lack of a Windows compatible version of proxyless JXME[33].

4.3 Contextual Information

The state of the art in context awareness on mobile phones shows that the familiar

forms of context used in the wider computing community, are also the most relevant in

mobile environments. Having considered the time limitations, this dissertation aimed to

include context forms which hold a large amount of significance. These may have more

potential from which other users may extract meaning. The context areas included

• Identity.

• Location/Proximity.

• Availability.

These primary areas, along with an attempt to obtain contextual information from

the phones native features, were investigated to provide a final design for implementa-

tion.

4.3.1 Identity

The ability to recognise a user or object is central to interaction between devices. With

communication being a core objective of the proposed application, having a form of

45

identity available to all users was essential. Due to the use of Bluetooth as the un-

derlying technology, the notion of identity becomes more complex. Bluetooth enabled

devices are considered nodes within the network, and are identified by a unique identi-

fier known as the UUID, Universal Unique Identifier. The node is also distinguishable

by its unique Bluetooth address. Although these allow identification of the node in a

technical sense, these forms of identity are not user friendly or intuitive.

Users need to be recognisable by an understandable name or label. Bluetooth uses

an attribute ’Friendly Name’ which allows a user to assign a chosen name to a Blue-

tooth device. This does not uniquely identify the device, but is more user friendly. For

example, a user may decide to assign ’Josh’s GX25’ as the friendly name. This name

will be displayed when other users view devices during discovery.

To further develop the forms of identity available to users in the application, a

username attribute is associated with each participating user. The user enters their

chosen username on launching the application. This username, along with the device

identifiers, is used throughout the application to identify users during activities.

4.3.2 Activity Status

Users can make decisions based on information about other user’s situations. If a user

is known to be actively engaged in as conversation, knowledge of this could allow other

users to adapt their behaviour accordingly. This notion of ’Availability’ was considered

to be an important piece of context within this dissertation. Availability context has

been included in attempts to create a context aware mobile phone in recent research[2].

The knowledge of a user’s availability status can influence a decision on initiating com-

munication and so should be made available to all other users.

The question of how to determine a user’s activity status was a key issue. Due to

the lack of sensor support on mobile phones, automated discovery of availability is im-

possible without the use of external sensors. The addition of external sensory devices

is an approach that facilities automated context discovery[7], but is highly impractical.

The most feasible option was to allow the user to set their activity context manually.

46

Figure 4.2: Representation of Activity Status

This approach has been used for availability context[2] and proves to be an adequate

solution.

To represent the activity status of a user, the easiest form of representation was a

visual display of all usernames and corresponding statuses. The display is shown in

figure 4.2. The user must have the ability to set and update their activity status at

any time during participation, and all nodes must be notified of updates.

4.3.3 Proximity/Location

In an environment with multiple users interacting, knowledge of location can be of

great benefit. Information attaining to the users whereabouts can be used to create

points, maps and trails. These creations can be displayed in a visual manner to users,

which is a more intuitive form of representation than text.

Location sensing devices and technologies have been used to determine mobile lo-

cation including GPS and active badges[21]. These methods are more suited to PDA

like devices and are not supported by standard mobile phone handsets. Bluetooth

47

provides a method of determining approximate location in two basic ways. The first

is an inherit knowledge that if a device is discoverable then it must be within range,

meaning it is in an area of approximately 10 metres of the inquiring device.

The second is by means of the received signal strength indicator (RSSI). The Link

Manager Protocol Layer of the Bluetooth stack contains both the hardware and soft-

ware functionality involving RSSI. The LMP obtains the RSSI value from devices so

that it can control the power output to the device. This is a power saving function,

but the RSSI is a direct reflection of the devices proximity to the querying LMP. The

reason the term proximity has replaced location in this context is because RSSI gives

no indication of orientation. This makes the option of depicting accurate location im-

possible, but proximity relative to the querying device is still possible.

The ’Golden Receive Power Range’(GRPR) is the optimum range for RSSI values.

The RSSI value is measured against the top and bottom limit of the GRPR, but an

algorithm can be employed to get a more accurate proximity reading.

The LMP is accessible only through the HCI. HCI commands are available to access

lower level layers and values within those layers. The majority of Bluetooth develop-

ment is done using Linux, and the HCI is much more accessible on that platform.

There are numerous examples of attempts at using RSSI for location including the

Atlantis location based services project[38] which is patent pending as it details a new

algorithm for calculating location using RSSI. Location context resulting from RSSI

has been used for context awareness in multiplayer games over Bluetooth[27]. A strong

argument for RSSI use in proximity is made in a paper regarding proximity as a security

property in mobile enterprise application context[5]. The idea of using past RSSI val-

ues to track device movement has been implemented in an ubiquitous infrastructure[6].

The Microsoft Bluetooth stack, which is embedded in the Windows Service Pack 2

(WSP2) installed on the laptop in use for this dissertation, has a HCI interface which

supports some LMP access functions. However it does not support a command to

access the RSSI. Using the Microsoft SDK it may be possible to construct a command

that can contact remote devices and query RSSI, although during research only un-

48

convincing attempts in C++ were found.

Existing applications Cellspotting2 and CellTrack allow mobile phone users to view

GSM cell information. The granularity of location information provided is ideally

suited to short range networks and the information holds great potential for use in

context aware applications.

However, these applications are the phones native OS, Symbian applications. Inter-

operability between Symbian applications and MIDLets is not possible, and so the

incorporation of the data in these existing applications was not feasible.

There is no support whatsoever for RSSI exchange between mobile phones. This

coupled with the existing challenges of accessing the mobile phone RSSI from a laptop

and data exchange from mobile phone to laptop (see section 4.4.2), the decision was

taken to include a simulator for RSSI values in the design for this dissertation.

4.3.4 Calendar Items

Another form of context that would be beneficial to the application proposed in this

dissertation is information about events set as calendar entries. Mobile phones have

features such as contact lists, calendars and calculators as standard. The calendar

allows users to set reminders including birthdays, meetings and other dates of impor-

tance.

The objective was to investigate if the information stored in the native functions

of the mobile phone were accessible by installed applications running on the phone. In

particular to this dissertation, access to the users own birthday could enable filtering of

users on an age bracket basis. Access to calendar functionality from within the MIDlet

would also add an option of entering a new event if two users agree a rendezvous date.

As the application is developed on a Series 60 Nokia phone, the Series 60 Platform

Calendar APIs[30] are available for application development purposes. However, these

are limited to Symbian application development. To obtain calendar information as

2www.cellspotting.com

49

context would require a new development environment setup and development in Sym-

bian C++. The resulting application would again encounter the interoperability issues

which prevent Symbian applications from interacting with MIDlets.

Nokia have released a Java SDK which lets developers extend MIDLets beyond the

sandbox model which restricts access to native data on the phone. This SDK enables

access to the user’s calendar, contacts and other data, including information from other

MIDlets. This is done via a File Connection API and the related Personal Informa-

tion Management (PIM) API. This functionality has only been released recently and

is supported by PDA devices and some mobile phones with extended functionality, but

was not supported by the devices available in this dissertation.

Ultimately, this area of context was not feasible for inclusion in the final design.

4.4 Hardware Challenges

4.4.1 Bluetooth Dongle

To make a PC/Laptop Bluetooth enabled, an external Bluetooth adapter, commonly

known as a Bluetooth dongle can be attached. For the purpose of this dissertation a

Belkin Bluetooth USB Adapter was used. This enabled the transfer of MIDlets from

the laptop to the mobile phones.

Windows has its own Bluetooth settings, and the device was not recognised as a

Bluetooth device after installation with the vendor specific drivers. In order to enable

Windows to recognise the device, it was necessary to reinstall the adapter allowing

Windows to choose their own drivers, bypassing the vendor’s software.

4.4.2 Laptop Connectivity

Bluetooth enabled mobile phones have the capacity to transfer files with any other

Bluetooth enabled device, providing it also supports data transfer. Beyond the limited

functions provided by the phone, i.e. image and audio transfer, applications must be

50

developed to allow more complex interactions.

MIDlets are developed and tested in development environments which act as em-

ulators. Emulators recreate the scenario of using a real mobile phone. The Wireless

Toolkit (WTK22) is JSR82 compliant and so is able to emulate a Bluetooth stack to

run MIDlets that make use of Bluetooth on phones. Ideally, if it was possible to plug

a real Bluetooth stack into the emulator the MIDlet running on the phone might be

able to communicate with the MIDlet running in the emulator. This is not possible so

a specific application must be created to run on the laptop using the real embedded

Bluetooth stack.

A bridge is then required between the laptop Bluetooth hardware and Java appli-

cations. One solution to this is Bluecove[32] an open source implementation of the

JSR-82 Bluetooth API for Java which supports the Windows XP SP2 Bluetooth stack.

This was installed and a serial port application using RFCOMM connections used to

initiate communication between the laptop and mobile phone. Initially this did not

function as intended, but this was due to an issue on the particular mobile phone

handset(see section 4.4.3). With that issue rectified, communication over RFCOMM

between an application and a MIDlet was successful. Due to time restrictions, the task

of converting the full functionality in the MIDlet to an application for the inclusion of

the laptop was omitted but could be considered as future work.

4.4.3 Nokia 7610

The mobile phone available for use in this dissertation initially was a Nokia 7610

smartphone. The specification had all the required elements namely:

• MIDP 2.0

• CLDC 1.0

• JSR82 Bluetooth API

As only one mobile phone was available for use for a period of time, development

of the context aware mobile application using RFCOMM in Bluetooth was carried out

51

using emulators. When deployed onto the Nokia 7610 the application appeared to exe-

cute in an identical fashion to the emulator without communication with other devices.

The first attempt of communication between mobile phones was using the Nokia

7610 and a Nokia 6600, which has an identical specification regarding the essential ele-

ments outlined above. The MIDlet was installed on both devices. Initialisation, device

discovery and service registration and discovery executed without difficulty. However,

data exchanged between the devices seemed to only work in one direction and was

often interrupted by an unexplained IOException. The underlying problem could not

be identified. Various attempts were made to rectify the difficulties including firmware

updates and code refactoring, with no effect.

The same experiment was carried out using two identical Nokia 7610 handsets. This

situation resulted in no exchanged data being displayed at either end of the Bluetooth

connection. With further investigation into the transfer of data using RFCOMM, an

emulation of serial ports using Bluetooth, it was apparent that the Nokia 7610 has a

fault in its ability to communicate using this Bluetooth transfer protocol. Nokia in-

cluded a note in their recent ’Known Issues’ publication on the inability of the handset

to correctly execute applications using InputStream and OutputStream classes using

the serial port profile.

Due to this hardware issue, the application development required a decision as to

what course of action to take.

• Port the entire application to use L2CAP instead of RFCOMM. This option had

been previously implemented by developers in the Nokia Developers Forum expe-

riencing the same problem. Various difficulties were reported including Symbian

OS errors.

• Use alternative handsets, ensuring JSR82 compatibility.

The option of using other handsets was both less time consuming and more reliable,

and so Nokia 6600 handsets were used in place of the Nokia 7610. The MIDlets executed

without difficulty and communication between handsets occurred over an RFCOMM

Bluetooth connection.

52

Figure 4.3: Bluetooth Application Topology

4.5 Architecture

As this application works on a peer to peer basis, each device is capable of acting as

both a server and a client. Each instance of the application firstly behaves a client on

start up, searching for existing servers and joining in. It can then behave as a server

and accept incoming join requests from new clients. Figure 4.4 illustrates how devices

running the application may be connected on the Bluetooth network.

4.6 Components

The application will be developed as a MIDlet using the Java APIs for Bluetooth

Wireless Technology. The package javax.bluetooth provides the various classes needed

for Bluetooth functionality. Figure 4.5 shows the Components available to a MIDlet

using JABWT.

4.7 Assumptions

Certain assumptions apply to the implementation of this application. These are mostly

due to the complexities which arise in given circumstances, and due to time restrictions

are necessary in order to address the core elements of the application.

The first is that the service unique in its area, i.e. there are not two available

53

Figure 4.4: Bluetooth Network Communication

Figure 4.5: Bluetooth MIDlet using JABWT

54

services with the same UUID and name. The second is that each mobile phone runs

one version of the application at any one time, and the final one, is that authentication

is not necessary for devices to communicate. Security is configurable through JABWT,

but was unnecessary and time consuming, and can be considered as future work.

55

Chapter 5

Implementation

This chapter describes the work carried out during the implementation phase of the

project. The core activity during this phase was the construction of an application

suitable for execution on mobile phones, which was essentially an implementation of

communication over Bluetooth with the inclusion of the context forms identified as

feasible earlier in the project. This was to demonstrate the findings formulated from

the research into context awareness in mobile phones and to illustrate them from a real

world perspective.

The major objectives of implementation were:

• Explore mobile phone application development process

• Implement communication over Bluetooth

• Deploy applications on handsets

• Capture and use relevant context

5.1 Mobile Application Development

5.1.1 Development Environment

Developing MIDlets requires a slightly different development environment from that

used to create standalone Java applications. To facilitate the development of MIDlets

56

emulators recreate the mobile phone environment and allow for similar execution on

regular PCs. Figure 5.1 shows the graphical recreation of a mobile phone in emula-

tion. J2ME forms the basis for mobile phone based applications and MIDlets must be

developed in a J2ME environment.

Sun’s J2ME Wireless Toolkit (WTK) is the standard emulator used for MIDlet de-

velopment. It contains a minimal development environment, a mobile phone emulator

and some demo applications as examples. As the WTK does not offer a text editor

another environment is required if full IDE functionality is preferred. The WTK sim-

ply compiles source code from a specified directory and creates the appropriate JAD,

JAR and manifest files required in a MIDlet suite. It also has the functionality to run

the created MIDlet on a mobile phone emulator. The emulator is a GUI similar to a

real mobile phone. WTK version 2.2 supports JSR82 Bluetooth API and so is suitable

for the implementation section of this dissertation. JBuilder offers a full development

environment, but incorporating the Bluetooth APIs was troublesome, and so develop-

ment was conducted in JBuilder transferring source files to WTK for recompilation

and execution on the emulator.

5.1.2 MIDlet

A MIDlet is a Mobile Information Device Profile (MIDP) application. It is managed by

’special-purpose application-management software (AMS)[28] that is embedded within

the mobile phone, but the application itself controls the detailed workings of the MI-

DLet.

MIDlet life cycle

The class responsible for the main MIDlet functionality, BTManager in this case, ex-

tends javax.microedition.midlet.MIDlet and implements the three core life cycle meth-

ods which are : startApp(), pauseApp(), and destroyApp(). There are three possible

states in a MIDlet’s life-cycle:

• paused: The MIDlet instance has been constructed and is inactive.

• active: The MIDlet is active.

57

Figure 5.1: Sun Wireless Toolkit Mobile Phone Emulator

58

• destroyed: The MIDlet has been terminated and is ready for reclamation by the

garbage collector.

After construction the MIDlet startApp() method is invoked and it displays the

user interface as instructed by the application. The destroyApp() method is invoked

on termination of the application or on exiting via an error.

The MIDlet needs additional files in order to be deployed on an actual mobile

phone. The application descriptor is a text file that outlines details of the MIDlet

suite. A manifest .mf file is also required as the standard JAR manifest packaged with

the MIDlet suite.

5.2 Existing Bluetooth Code

Bluetooth application development for mobile phones is still a relatively new area.

Numerous websites and forums exist to assist developers in their attempts at Blue-

tooth application development. This dissertation makes use of examples from various

sources. Ben Hui3 has compiled a useful source of resources for Bluetooth application

development which was found to be both helpful and useful. Explanations of areas in-

cluding device discovery, service discovery and RFCOMM and L2CAP communication

are available with corresponding code examples. These provide a good foundation on

which to build Bluetooth applications. The architecture of the application implemented

is illustrated by the UML Class Diagram in figure 5.2.

5.3 Features

This section gives an overview of the features available to the user when participating

in the dating service. The technical details of how each element was implemented are

explained comprehensively in the following sections.

5.3.1 Messaging

The application offers two distinct forms of messaging to the user:

3www.benhui.net

59

Figure 5.2: Dating Application Class Diagram

60

• Global Messaging: This form of messaging facilitates the transfer of messages to

all active devices, or users. Once the user chooses to join the Global Message

Board, Bluetooth mechanisms are employed and the user is given a connection

to each device within discovery area, providing they are participating in the

application.

• Private Messaging: A user can choose to communicate using a Private Messaging

function which opens a distinct connection with a particular user. Again Blue-

tooth mechanisms are used to display all the devices in range participating in the

dating application activity, and the user is free to choose the required member

from the list.

5.3.2 Activity Status

One form of contextual information that is key in an application in these circumstances,

is an indication of the user’s availability. Without the use of external sensors or mea-

surement devices, the task of automatically setting the availability of a user becomes

a near impossibility. Therefore the user is given a menu option to manually set their

status at will. The choices available are:

• Free: The user is available to communicate freely with other users.

• Busy: The user may be engaged in Private Messaging with another user or may

not wish to be distracted from their current activity.

• Interruptible: The user may be currently communicating privately, but still wants

to be seen to be available to other users.

To add an element of implicit activity discovery, the status may be changed by the

application on an event based basis. This would set users to be automatically ’Busy’

once in a private conversation and the inverse to ’Free’ when in global communication

again.

5.3.3 View Member Status

This option allows users to query the activity status of each participating member.

A list is constructed of each user in range and their respective activity status, which

61

is available to the requesting user. This enables them to make informed decisions

regarding communication with any particular user.

5.3.4 View Member Proximity

Location is a principal form of context and is useful in all context aware applications.

As discussed in section 4.4.3, precise location details were unobtainable between Blue-

tooth enabled phones, and so a simulation of a technique used to infer proximity was

implemented to demonstrate the use of location context in an application such as this

one. RSSI values are randomly generated on demand, one for each user request of

proximity. The details of how this was implemented and how the RSSI value dictates

the approximate proximity of the remote device is detailed in section 5.8. The proxim-

ity is then illustrated on the users screen by means of an image depicting the distance

from the requesting user.

5.3.5 View Member Trail

This option is an extension of ’View Member Proximity’. A user maintains a record of

the proximity of any user from which they requested location information. This builds

up to generate a notion of a trail describing the physical movements of the user. For

example, if a user requests location information from another user three times, the trail

may show that the remote user moved closer for a period of time, and then retreated

to a much further distance. This is again displayed by means of an illustration on the

user’s mobile phone screen.

5.4 Launching the MIDlet

The BTManager class extends MIDLet and acts as the controlling factor for the entire

application. It implements the core methods startApp, pauseApp and destroyApp.

The MIDlet initialises itself the first time its startApp() method is invoked. The BT-

Manager class has two other major functions. It implements CommandListener which

is responsible for handling all of the events arising from user inputs. The commandAc-

tion method is composed so that it reacts to each event appropriately. BTManager

62

also implements an interface BTMenu, specifies a handleAction method to deal with

Bluetooth specific actions including joining, leaving and receiving messages.

The constructor of BTManager initialises all of the GUI components required

throughout the application. It also creates a new RecordStore from the java.microedition.rms

package, detailed in section 2.1.2, in order to allow persistent storage of messages on

each user’s phone.

The startApp method is called on launching the MIDLet. BTManager gets a ref-

erence to the unique instance of a Display object, which is created for the MIDlet.

This object is used to manage the display and input method, i.e. the phone’s menu

and buttons, throughout the lifecycle of the MIDlet. In order to change the display to

the user, the diplay.setCurrent() method is passed an object that is an instance of the

Displayable class such as a canvas or text field. In this case on launching the MIDlet

the display is set to NameInput class.

The NameInput class extends Form from the javax.microedition.lcdui class, which

is inherently Displayable. It consists of a TextField with instructions, and the user is

shown a screen in which they fill in the username they will be identifiable as during the

application. The setCommandListener method is used to set BTManager as responsi-

ble for handling the event that is created when the user hits the ’Ok’ command that

has been added to the phone menu.

BTManager recognises the event, and sets the display to the MessagingOptions

screen, which extends List. Messaging Options, like NameInput and all other Dis-

playable objects also sets BTManager as the command listener. Two items are added

to the list: Global Message Board, and Private Messaging. The event fired from the

selection of one of these results, although in slightly different forms, initiates Bluetooth

connectivity.

63

Figure 5.3: Bluetooth LocalDevice Class

5.5 Bluetooth Connectivity

This section provides details of the technical implementation of the requirements and

features described. The JABWT was used to implement Bluetooth connectivity, choos-

ing to use the RFCOMM protocol, the emulation of serial ports, as the communication

protocol due to both its extensive use in current Bluetooth applications, and its suit-

ability to the devices involved. Each of the sections below explain how this application

and its classes use Bluetooth to carry out connectivity, context capture and use and

communication. They follow the Global Messaging path of Bluetooth Connectivity,

and the technical difference between Global and Private Messaging are described in

subsection 5.5.6.

5.5.1 Initialisation and Device Management

On selection of joining the Global Message Board, BTManager creates an instance of

the BTLayer class. This class is responsible for the Bluetooth networking layer and per-

forms Bluetooth actions using the JABWT delivering the core Bluetooth functionality

of the application, including device and service discovery. On construction, BTLayer

is passed a reference to the BTManager, as it implements the BTMenu for handling

Bluetooth events.

BTManager then calls BTLayers init() method, to initialise the Bluetooth stack.

LocalDevice.getLocalDevice() returns a singleton object representing the underlying

device. The LocalDevice class is illustrated in figure 5.3. This will only be ob-

64

tained once, and enables the application to access more Bluetooth features via the

API. It has a unique Bluetooth address which acts like a MAC address. The lo-

calDevice discovery mode is set by calling setDiscoverable(GIAC). This parameter,

General Inquiry Access Code, means that the device will be available for discovery

by all other devices in an inquiry. The DiscoveryAgent object is obtained by calling

localDevice.getDiscoveryAgent(). This DiscoveryAgent object will be used to initiate

device discovery at a later point.

The BTLayer then starts its own thread, and the run() method performs the func-

tionality to act as a server, to register and advertise the service, and eventually accept

client connections.

Each node is created as a Bluetooth Endpoint with its own connection and ability

to accept in coming connection requests from clients. Service Discovery Protocol- An

SDP Server maintains a Service Discovery Database (SDDB) of service records that

describe the services on the local device. Remote clients can use the SDDB to query

an SDP server for any service records of interest. A service record provides sufficient

information to allow an SDP client to connect to the Bluetooth service on the SDP

server’s device.

5.5.2 Server/Service Advertisement

A server connection object of type StreamConnectionNotifier is created and will be

used to handle client connections. The server connection requires a serial port profile

URL, a Unique Universal Identifier (UUID) and a service name. The URL starts with

btspp:localhost, which is required if you’re going to use the Bluetooth Serial Port Pro-

file which this application does. The UUID is a custom identifier for the service and

can be any bit sequence unique to that service. The service name is a recognisable

string that defines a name for the service entry.

The code below shows the creation of the server connection:

Server = (StreamConectionNotifier)Connector.open(”btspp://localhost:” +uuid.toString()

+ ”;name = Bluetooth Message Board”);

65

Figure 5.4: Bluetooth RFCOMM Connection Framework

Figure 5.4 illustrates the connection framework used to create the connection.

For services to be discoverable by remote devices, they must be advertised by the

server on which they are located. This service registration takes place in the BTLayer

class. A ServiceRecord object describing the service has been created and is obtained

by calling getRecord() on the local device passing the StreamConnectionNotifier as a

parameter. The ServiceRecord returned then has its availability set to indicate that

the service is accessible by all other devices. The Bluetooth specification has a set of

defined Service Classes which can be added as an attribute to ServiceRecord to give

other users information about the service provided. This service is set to ’Telephony’,

to indicate a mobile phone based service.

A StreamConnection is the class used to facilitate connectivity between devices.

The server.acceptAndOpen() method is called, indicating that the server is ready to

accept client connections. By calling this method, the ServiceRecord object is regis-

tered in the Service Discovery Database (SDDB), ready to be queried by any potential

client. The lifecycle of a ServiceRecord is illustrated in figure 5.5 including creation,

storage in SDDB, and removal from SDDB.

The server device thread waits for any incoming connection requests, however at the

same time, the BTManager calls the query() method on the BTLayer, initiating device

discovery. This is required as there may already be an existing Bluetooth network

available with servers to connect to.

66

Figure 5.5: Service Record Lifecycle

5.5.3 Device Discovery

Device discovery is initiated by the query() method in BTLayer. This simply calls

startInquiry() on the previously obtained DiscoveryAgent object. BTLayer has an in-

nerclass Listener, which implements javax.Bluetooth.DiscoveryListener. This handles

device and service discovery events. The deviceDiscovered() method is invoked when

the inquiry finds a device, and a RemoteDevice object is passed to the handler. BTN-

ode is a wrapper class for the RemoteDevice, allowing attributes and behaviour to be

specified and associated with a mobile phone using the application.

The RemoteDevice is used to create an inactive BTNode, and it is added to a vector

of pending nodes. The reason the nodes are not activated at this stage is that they

may or may not provide the service required. All Bluetooth enabled devices will be

found at this device discovery stage, and so redundant devices will be identified in

the Service Discovery stage. The inquiryCompleted() method of the DiscoveyListener

is invoked when all devices in the area have been discovered and put on the pending

vector. Service Discovery is the next stage of Bluetooth connectivity.

5.5.4 Service Discovery

Service Discovery is conducted in an innerclass DoServiceDiscovey in BTLayer. It

again uses the JABWT DiscoveryAgent object for discovery and invokes searchSer-

vices(). The service required is specified by passing the method the UUID we specified

67

Figure 5.6: Service Discovery State Chart

earlier in regard to our Message Board service. Service Discovery is one node by node,

and so for each device on the pending vector, searchService() is called. If the required

service is found on the device, the BTNode wrapper attribute of transactionId is set

to the return value of searchServices() to enable identification of the RemoteDevice at

a later stage. A service discovery will also trigger the servicesDiscovered() method in

the Listener, which uses the transactionID to get the BTNode the service has been

discovered on. The suitable device is then put in a Hashtable with its corresponding

record, and will be dealt with when service discovery is complete. When all pending

nodes have been queried for the service, the pending vector is cleared and the service-

SearchCompleted() handler of the DiscoveryListener is invoked.

ServicesSearchCompleted() will be triggered in a variety of scenarios. These sce-

narios are illustrated in the state chart in figure5.6. Either service discovery com-

pleted without finding any records, having found records, by throwing an error or the

service discovery may have been terminated by an external factor, as in this case

a phone call on the mobile phone. In the case of services being found, the Ser-

viceRecord object is retrieved from the Hashtable and a URL obtained by calling

ServiceRecord.getConnectionURL(). This URL is passed as an argument so that a

StreamConnection is established e.g. StreamConnection connection = (StreamCon-

nection)Connector.open(url); The RemoteDevice which offers the service is made into

an active BTNode. The StreamConnection is set in the BTNode and it is added to a

vector of active nodes which the BTLayer manages. This vector will be used later in

68

various circumstances as it holds references to all participating devices known to the

LocalDevice. Two threads, Sender and Reader are created and started for the new

BTNode. Sender is responsible for the distribution of messages, as it controls access to

writing to the OutputStream. The Reader thread receives data from the InputStream.

Once the BTNode physical connection has been configured, a handshake message is

sent to exchange names.

5.5.5 Connection

The initial handshake is received by devices via the Reader thread. The Reader sets

the RemoteDevice name and sends a handshake acknowledgement back. It also calls

the BTManager to handle a ’Join’ Bluetooth event, which confirms the new user’s

participation as a BTNode.

5.5.6 Private Messaging

The major difference between the above described Global Messaging and Private mes-

saging is that the service discovery is limited to one chosen device, and not carried

out automatically to connect to all participating devices within the area. On choosing

Private Messaging from the MessagingOptions screen, a Private Messaging object is

created. This initialises exactly the same as the Global Message Board. The startIn-

quiry() method is called similarly, and is handled again by an innerclass Listener which

is a DiscoveryListener implementation. When inquiry has completed, a Displayable

object is populated with all the RemoteDevice objects found, and the screen is set to

display this list. This allows the user to choose the particular node that they wish to

connect to independently. The BTManager acts once again as a CommandListener for

events in the PrivateMessaging class. A StreamConnection is established as described

and communication is conducted via an InputStream and OutputStream controlled by

the Sender and Reader threads associated with the two BTNodes involved.

69

5.6 Messaging

Once BTNodes have been setup and have established connections, the screen is set

to MessageInput, which extends javax.microedition.lcdui.Canvas. The menu options

include ’Add Message’. This option displays another screen, the MessageSend dis-

playable object which is a TextBox enabling message creation. The user creates the

message and triggers an event by choosing ’Save’ in the menu options. The BTMan-

ager commandAction() method handles the event. The message is retrieved from the

MessageSend TextBox and is sent via BTLayer’s sendString() method.

BTLayer traverses the vector of known devices, and calls putString() on each BTN-

ode, passing the message and a signal to indicate that a message is enclosed. In each

BTNode, the putString() method adds the message to a vector of pending messages

and notifies the Sender thread that a message is pending. Each Sender retrieves the

message and writes the message to the OutputStream.

Back in the originating node, BTManager continues its handling of the event and

the entered message is then converted to a byte array. It is converted to this format

so that is can be added to the RecordStore, where it can be stored with all the other

messages and displayed to the user on screen.

In each of the BTNodes which were sent the message, the Reader thread reads in

the data from the InputStream and causes an event to be triggered, which is again han-

dled by the BTManager. It adds the message to the receiving BTNode’s RecordStore

as described above. In all devices, including the originating device, the MessageInput

canvas is repainted and shows the message on screen.

5.7 Status

The ’Change Status Context’ option in the user menu causes the display to be set to

StatusView. This extends List and has three activity options for the user to choose

from: Free, Busy and Interruptible. The user traverses the list and chooses ’Select’

70

from the Menu to trigger a handler in BTManager. Each BTNode has a ContextMan-

ager class associated with it, which performs functionality pertaining to the setting,

storage, and use of contextual information. The ContextManager retrieves the chosen

activity status by using the index of the chosen list item to obtain the item itself.

BTManager then sends a signal, STATUSSIGNAL, to each node in its vector of active

BTNodes, alerting them to the change in its status. The Reader thread in each node

receives the signal and again calls on its respective BTManager to handle the event

produced. The handleAction() method is passed the status that has been chosen and

the BTNode that sent the message, so it sets the status in its reference to that device

to the chosen activity status.

’View Member Status’ in the main menu, triggers the BTManager commandAc-

tion() to create a new StatusView object, which is a displayable class extending List.

It passes the vector of active BTNodes to its ContextManager, who in turn traverses

the vector, querying each BTNode for its activity status, and populating another vector

with the BTNode name and status. This is returned to the BTManager, who appends

each node and status to the StatusView list and eventually allows the user view the

context information on screen by calling display.setCurrent(StatusView).

5.8 Proximity

The ’View Member Proximity’ option in the mobile phone menu enables a device to

view the simulated proximity of another BTNode or device. Each BTNode has a class,

RSSISimulator, which is responsible for generating random values within 10 places

either side of the GPR, details of how RSSI values operate are outlined in section

4.3.3. The choosing of this option causes the BTManager commandAction() to create

a new NodeView object, which is again displayable extending List. The NodeView

object is populated with all active BTNodes representing devices that are visible to

the querying device. This is displayed to the screen, allowing the user to chose the

user/device/BTNode whose proximity they require to view.

When the user selects a BTNode from NodeView, BTManager compares the se-

lected device to all the active devices it knows. When it matches, it calls getRSSI() on

71

the BTNode instance chosen. The BTNode has created an RSSISimulator and calls

pickNumber() on the object, obtaining a randomly generated value between -10 and

+10. RSSISimulator uses the java.lang.Math.Random class to generate these values.

Before the BTNode returns the generated RSSI value, it adds it to a vector which will

be used to keep track of all the simulated movements of the device.

The RSSI integer is returned to the BTManager where its value examined to identify

how close the RSSI value indicates the RemoteDevice to be. Because no orientation

information is available, zones of proximity are used to indicate location relative to

the querying device. A DeviceMap object is created as the graphical interface on

which proximity is depicted. The zone to be depicted on the DeviceMap must first be

identified. The following code shows how the RSSI values correspond to ’zones’.

if(nodeRSSI <=-5)

map.fillNodeZone (4);

else if(-4<= nodeRSSI && nodeRSSI <=0)

map.fillNodeZone (3);

else if(1<= nodeRSSI && nodeRSSI <=5)

map.fillNodeZone (2);

else if(6<= nodeRSSI && nodeRSSI <=10)

map.fillNodeZone (1);

map.setSelectedNode(selectedNode , nodeRSSI);

display.setCurrent(map);

DeviceMap is a canvas and using the limited functionality of javaz.microedition.lcdui.Graphics,

a map resembling a target board is created illustrating the areas immediately surround-

ing the LocalDevice. The number of zones and a set increase in radius are used to create

the image. The BTManager, as shown in the code above identifies which zone the re-

mote BTNode is located in and calls fillZone() on the DeviceMap passing the zone

number as an argument. This sets a boolean flag in the DeviceMap and when it is

being painted, the flag indicates which zone needs to be filled. The same algorithm

is used to create the filled zones as the empty zones. An example of how the second

inner circular space would be filled is illustrated by the code below, where the radius

is a fixed integer representing the radius of the outside ring, and xpos and ypos are the

72

Figure 5.7: Proximity Representation

fixed starting x and y values for the image.

else if(zoneNumber ==2){

int rad2 = radius - radius/rings *2;

int rad1 = radius - radius/rings *3;

g.fillArc(xpos -rad2 , ypos -rad2 , rad2*2, rad2*2, 0, 360);

g.setColor (255 ,255 ,255);

g.fillArc(xpos -rad1 , ypos -rad1 , rad1*2, rad1*2, 0, 360);

g.setColor (0,0,0);

}

This is displayed on the screen and is shown in a working example in figure 5.7.

The menu on the View Member Proximity screen includes the option of ’View

member Trail’. This allows the user to view the movements of that particular BTNode,

inferring contextual information. A MovementMap displayable canvas is created for

the purpose of illustrating a BTNode’s trail. BTManager is once again called upon

to handle the event created when the user selects the ’View Member Trail’ option

from the menu. The BTNode in question is identified and its vector of recent RSSI

values is obtained. This is in turn passed to the MovementMap object by calling

73

Figure 5.8: User Trail by Movement

MovementMap.draawActivityTrail(tempNode.RSSIs). The vector of RSSI values is

traversed in the MovementMap class. Having investigated various display options, the

most intuitive way of illustrating proximity and movement over time that was chosen

was to use the same zone architecture, as proximity is always relative in this case, not

absolute, but to divide the movements into arcs of the full circle, with each section

illustrating the position of the RemoteDevice for a period of time. Figure 5.8 shows

how this was displayed on the mobile phone screen.

This was implemented by adding a start and finish degree value to the fillArc()

method, and was repeated for all values in the BTNode RSSI vector.

5.9 Consistency

In any system, consistency must be maintained to ensure all users have the same view

and information. This is easily accomplished using a centralised architecture where

one part of the system holds all information required by the users. In a distributed

system information may be dispersed amongst several or all nodes. The maintenance

of consistency becomes a more complex task.

74

In the mobile context aware application in this dissertation, a fully distributed,

P2P ad-hoc network is formed by mobile phones. With contextual information being

set and stored locally in each node, nodes must update all others to ensure a uniform

view of the application state.

Multiple threads running in an application where activities update the same object

simultaneously may result in problems such as race conditions and deadlock. Ensuring

the application is kept thread safe is critical to its correct execution.

Two techniques were employed to implement consistency and ensure thread safety,

namely critical sections and transactionality.

5.9.1 Critical Sections

Java synchronisation allows each instance of and object to have a lock, and each class

to have a lock for its static methods. If a thread enters a method, for a particular

instance, marked with the ’synchronized’ keyword or if the thread enters a clock of

code contained in a block delineated by synchronized(Instance), then the thread picks

up the instance’s lock[17]. When the lock is being held by a thread, no other thread

can enter a method or synchronised block for that instance until the holding thread

exits the synchronised method or block. This prevents two threads from updating or

using data which may be in the process of being modified.

The methods wait() and notify() can be called from within a synchronised block or

method, ensuring to synchronise on the same object that wait() or notify() is called

on, e.g.

synchronized (sender) {

sender.notify ();

}

Deadlock occurs when two or more threads are waiting on locks held by one an-

other, resulting in an infinite cycle of waiting.

75

Synchronisation is included in the implementation of this dissertation, however

the need for synchronisation is questionable on mobile devices which use CLDC, i.e.

mobile phones. This is due to the thread scheduling on such small devices. In most

implementations of CLDC the single processor switches from one thread to another

only when the currently active thread waits or finishes. This means that even infinite

loops need to wait occasionally and none of the race conditions or deadlock situations

should ever create problems even if synchronisation isn’t correct[17].

5.9.2 Transactionality

A transaction is an execution of a unit of work that must be executed atomically,

that is completed together or not at all. The ACID properties define how to ensure a

transaction is completed properly, they are

• Atomicity

• Consistency

• Isolation

• Durability

The mobile context aware application proposed has distributed contextual infor-

mation. Users are free to update certain properties used as context. To maintain

consistency across the entire application, each and every node must be notified of the

updated context. Distributed transactions require all nodes to make the same decision

about whether to store the updated context or not. Transactionality was implemented

by enforcing a two-phase commit like protocol when updating nodes. A boolean flag

named ’commit’ is created and set to false in the node which has changes its context.

Each other node also has a boolean value called ’transaction’ which is also set to false.

When the updated node informs each other node of the new information, it sets the

’transaction’ flag in that node to true. After confirming that all nodes have been noti-

fied of the new data by checking the ’transaction’ flag in each node, the ’commit’ flag is

set to true. The nodes wait until the ’commit’ flag is true and then store the updated

context. If any nodes ’transaction’ value is still false after all nodes should have been

76

informed, updated node is aware that the transaction has not completed and can take

appropriate action to ensure each node does not save the inconsistent data.

77

Chapter 6

Evaluation

This chapter seeks to evaluate the measurable affects of the limiting factors outlined

in sections 1.3.1 and 2.1.2 on the implemented application.

6.1 Testing

6.1.1 Test Environment

The testing was performed in a test environment with as little interference as possible,

i.e. no 802.11 activity was taking place. Two Nokia 6600 handsets were used to conduct

the tests. Identical MIDlets were installed on each device. The mobile phones had full

battery life on commencement of testing.

6.1.2 Discovery

Bluetooth is entirely responsible for devices discovery. The tests revealed that discovery

did not work at every attempt. Discovery was successful in approximately 90 percent of

tests conducted. The length of time consumed before discovery allowed a connection to

be established ranged considerably. An average time of 30-90 seconds was calculated,

with the quickest being under 10 seconds, and the longest being almost 3 minutes.

78

Table 6.1: Manufacturer Battery Specification

6.1.3 Range

The range of Bluetooth connectivity was tested by devices exchanging messages at

defined distances. In the indoor test environment the maximum distance achieved was

12.5 metres and the minimum was 3 metres. It became apparent that if one user turned

and moved more than a few metres very quickly the connection is much more likely to

be broken than in a steady, controlled test. Outdoors the range is reduced considerably,

with the Bluetooth standard range of 10 metres being difficult to achieve.

6.1.4 Battery

The manufacturer’s specification quotes the battery times outlined in table 6.1 for the

LiIon 850 mAh battery used in the Nokia 6600. With both phones fully charged, the

application was altered to run an infinite loop of message exchange. The battery lasted

less than 11 hours, almost half what is expected from continuous use in gaming applica-

tions. This shows that although Bluetooth is suited to low powered devices, continuous

data transfer over RFCOMM is quite draining on the mobile phone’s limited battery.

A comparison of specification times, gaming estimation and the tested application is

illustrated in figure 6.1.

6.1.5 Memory

Reduced memory was initially identified as a limitation to mobile phone based appli-

cation development. This was not applicable due to the presence of a memory card

in the Nokia 6600. The memory used by the application in continuous execution was

measured. The application itself was 69.1kb. The tables 6.2 and 6.3 show the memory

statistics from both phones at various stages of testing.

During testing a constant use of memory was observed, proportional to the messages

exchanged. This reflects the persistent storage of messages on the device. This is

illustrated by the graph in figure 6.2 compiled by the actual figures obtained.

79

Figure 6.1: Comparison of Battery Consumption

Table 6.2: Memory in Device One

Table 6.3: Memory in Device Two

80

Figure 6.2: Memory Used

Figure 6.3: Memory Free

81

6.1.6 Performance

The evaluation of performance relates directly to the processing capacity of the mobile

phone. This is obviously reduced, but is still quite powerful and adequate for most

applications. The application was once again in an infinite loop of message exchange.

Initially the screen updated showing the received message on average every 1-3 sec-

onds. After 3 hours 1187 messages were displayed, which averages at 9 seconds per

screen update. At this point, screen updates occurred approximately every 1 minute,

although multiple messages may have been received within updates. Eventually screen

updates took nearly 3 minutes and scrolling became a near impossibility. The appli-

cation was stopped at this point. The number of messages stored on the phone was

over 700 more than on display. This illustrates that the processor on the phone was

capable of carrying out the underlying transport and Record Store functionality but

the repainting of the canvas on the displayable screen object became a huge task as

the number of messages to be printed grew.

Performance optimisation was not a primary objective of this dissertation. Refining

the repaint() method in the display to show only a limited number of messages, and

not the entire Record Store would significantly improve the perceived performance of

the application.

82

Chapter 7

Conclusion

The final chapter documents the conclusions that can be drawn from the information

presented in the exploration, design, implementation and evaluation of the context

aware mobile phone based project undertaken in this dissertation. The primary aim

was to investigate the area of context awareness on mobile phones with specific interest

in Bluetooth applications. Finally, areas that could be considered for future work are

identified.

Following the development of the mobile phone based application using Bluetooth,

some general conclusions can be drawn. These share some similarities with conclusions

of related work. The general conclusions drawn are the following:

7.0.7 Bluetooth

Bluetooth was found to be suitable for communication between mobile phones, al-

though connection reliability and range cause doubt in its practical use. JABWT pro-

vides techniques to manage Bluetooth functionality, but has a sizable learning curve

due to the number of objects involved and the technicalities of Bluetooth as a technol-

ogy.

Bluetooth development id almost totally Linux based, and this was apparent at

every attempt in every stage of development. From installation to low level access,

Windows encountered Bluetooth issues which were addressed in multiple ways in Linux.

Any future unrelated Bluetooth development would be conducted using Linux and

83

BlueZ, the most commonly used Bluetooth stack.

7.0.8 Mobile Phones

The first conclusion drawn regarding mobile phones is a direct consequence of the

hardware challenges encountered. Mobile phones are not used to their potential by

the majority of users. A growing percentage of users may occasionally use the em-

bedded technologies, such as Bluetooth, for menial tasks. A very small percentage of

mobile phones are used in application development. Manufacturers are aware if this

fact, and it is evident from the ’Technical Reports’ they published that aspects of the

phone used in development are often not fully functional. There are a huge number of

’Known Issues’ that inhibit comprehensive application development on mobile phones.

The most significant example of this encountered in this dissertation is the inability

of a Nokia 7610 to perform communication using a primary Bluetooth protocol. This

confirms the conclusion that mobile phones may not fully conform to their advertised

specification.

Interoperability is an area of difficulty when developing for mobile phones. The

lack of interoperability between handsets made by different manufactures means that

a universally compatible application becomes extremely difficult to achieve. The lack

of a solution to allow interaction between Symbian applications and MIDlets greatly

inhibits complex functionality involving the native information on the phone.

The conclusion that mobile phones lack sensor support confirms the findings of

most research in the area of context awareness on mobile phones. The approach of

adding external sensors is highly impractical, and so manual setting of context and

the simulation of context capture is required. This severely restricts the ability of the

mobile phone to become truly context aware.

Constraints imposed by the mobile phone were expected to inhibit application de-

velopment. However, most of the restrictions, e.g. memory and storage, maximum

jar size, were alleviated by the memory card within the handset. Screen size was not

restricting, but this application was not graphically complex. The results of the eval-

84

uation phase present measurable results as to how much the application was affected

by the physical constraints of the mobile phone. The phones processing power coped

with the intensive testing without difficulty, with the only issue arising being the screen

updates. The resource that was most adversely affected was the battery life.

7.1 Future Work

Due to time restrictions and hardware challenges encountered during implementation,

some areas of the application were not investigated fully. Future work in these areas

could extend the Bluetooth application functionality, and improve its performance.

These are:

• Distributed issues: Issues including node failure, exception handling and network

partitions were not investigated in great detail. By incorporating techniques

to handle these areas the reliability and quality of service provided could be

improved. The applications would be made more robust and fault tolerant.

• Incorporate Laptop: The inclusion of a Bluetooth enabled laptop or PC would

add another dimension to the system created. Connectivity between the mobile

phone and laptop using the serial port profile was established, but initial hardware

difficulties led to the abandonment of the laptop as another Bluetooth node.

• Calendar Items: The ability to access native data from the phone would add a

new source for the discovery of contextual information. The PIM API is available

on some mobile phone models, and may be applicable for this behaviour.

• Context Based Decisions: User context is obtained and stored during the exe-

cution of the application, but the context is not used to its full potential. The

application could be extended to use a rule based system to make decisions based

on the context knowledge available. This would allow more intelligent choices.

Filtering of messages could be performed based on a user’s context e.g. age,

availability. Nodes could also be eliminated from certain functions due to some

contextual information known about them. This would be particularly useful for

85

prohibiting nodes that are on the periphery of the network from participating

while they remain at such a distance. This could be seen as a form of predicting

nodes likely to break connections and cause failure. This is a proactive approach

to failure. Extending the application to be capable of context based decisions

would increase its status as a context aware application.

• Performance Improvement: The evaluation revealed some performance issues

when repainting the screen display. This area could be refined and perceived

performance improved to the user. The code could also be refactored to increase

efficiency and further improve performance.

• Security: The use of authentication and encryption in Bluetooth was not explored

and could add safety precautions to avoid unauthorized users. The signing of

MIDlets to create trusted applications was not undertaken either. The imple-

mentation of these security features could prevent bogus applications or users

affecting the handset.

86

Bibliography

[1] Bluetooth transport for jxme. Jadabs Project, http://www.jadabs.de.

[2] H. Gellersen A. Schmidt, T. Stuhr. Context phonebook; extending mobile phone

applications with context.

[3] Norman Adams Roy Want Bill Schilit. Context-aware computing applications.

[4] P J Brown, N Davies, M Smith, and P Steggles. Towards a better understanding of

context and context-awareness. In H-W Gellerson, editor, Handheld and ubiqitous

computing, number 1707 in Lecture Notes in Computer Science, pages 304–7.

Springer, September 1999.

[5] J. Haller R. Kilian-Kehr C. Decker, S. Nguissi. Proximity as a security property

in a mobile enterprise application context. 37th Hawaii International Conference

of Systems Sciences, IEEE, 2004.

[6] M. Ficco V. Vecchio-S. Russo D. Cotroneo, F. Cornevilli. Implementing positioning

services over an ubiquitous infrastrcture.

[7] J. Furukawa N. Moraveji-K. Reiger J. Shaffer D. Siewiorek, A. Smailagic. Sensay:

A context-aware mobile phone.

[8] P. Dourish and V. Bellotti. Awareness and coordination in shared workspaces.

In Proceedings of the ACM Conference on Computer Supported Cooperative Work

(CSCW’92), pages 107–114, Toronto, Ontario, 1992. ACM Press.

[9] M. Vazirgianis G. polyzos-K. Norvag E. Valavanis, C. Ververidis. Mobishare:

Sharing context-dependent data and services from mobile sources.

87

[10] SMS Explained. www.activexperts.com/asmssrvr/sms/smstech/.

[11] SMS Explained. www.activexperts.com/asmssrvr/sms/smstech/.

[12] Andreas Frei. Smart service archtecture for small devices.

[13] J. Hong S. Long-R. Kooper M. Pinkerton. G. Abowd, C. Atkeson. Cyberguide: A

mobile context aware tour guide.

[14] Wikipedia GPRS. http://en.wikipedia.org/wiki/gprs.

[15] David Kotz Guanling Chen. A survey of context aware mobile computing research.

[16] Leslie Haddon. The social consequences of mobile telephony. Ling Thrane (eds.),

2000.

[17] Carol Hamer. J2ME Games with MIDP2. Apress, 2004.

[18] Henk de Poot-David Langley. Henri ter ofte, Ingrid Mulder. I m mobile, where r

u?

[19] http://jadabs.berlios.de/. Jadabs project.

[20] Infrared. http://www.dataacquisitionweb.com/interfaces/infrared.

[21] M.M. Lankhorst J. de Heer, A.J.H. Peddemors. Context-aware mobile business

applications. In Position paper of the first CoCoNet workshop, C̈ontext Aware

Collaborative Environments for Next Generation Business Networks¨

, Zrich, Switzerland, 3-4 October 2002.

[22] Danial Kappeli. Jxta over bluetooth. Master’s thesis, Swiss Federal Institute of

Technology, Zurich, May 2003.

[23] CTO Rococo Software Karl McCabe. Time for a brew: Java and bluetooth.

[24] Navaneeth Krishnan. The jxta solution to p2p. Javaworld, October 2001.

[25] C. Bala Kumar, Paul J. Kline, and Timothy J. Thompson. Bluetooth Application

Programming with the Java APIs. Morgan Kaufmann Publishers, 2003.

88

[26] Qing Li, Xiang Li, Jian Zhai, and Wenyin Liu. Mires: an information exchange

system for mobile phones. In SAC, pages 1196–1200, 2004.

[27] D. Timmermann M. Handy, F. Golatowski. Lessons learned from developing a

bluetooth multiplayer game.

[28] Sun Understanding J2ME Application Models.

http://developers.sun.com/techtopics/mobility/midp/articles/models/.

[29] M.-E Mostafa. Mms - the modern wireless wolution for multimedia messaging.

The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio

Communications, 2002.

[30] Nokia. www.nokia.com.

[31] Abhishek Pramod Patil. Perfortmance of bluetooth technologies and their appli-

cations to location sensing. Master’s thesis, Michigan State University, 2002.

[32] BlueCove Project. sourceforge.net/projects/bluecove/.

[33] JXTA-J2ME (JXME) Platform Project. jxme.jxta.org.

[34] P. Turner R. Cox, C. Newell. You, me and the otherness. IADIS International

Conference e-Society 2004.

[35] Ferris Research. www.wi-fiplanet.com/tutorials/article.php/1577551.

[36] Peter Parnes Roland Parvainen. Supporting e-meetings on java capeble mobile

phones.

[37] Sun Bluetooth Tutorial. http://developers.sun.com/techtopics/mobility/apis/articles/bluetoothintro/.

[38] Jason Yipin Ye. Atlantis:location based services with bluetooth. Master’s thesis,

2005. Dept of Computer Science, Brown University.

89

