
 1

Requirements for an Ubiquitous Computing
Simulation and Emulation Environment

Vinny Reynolds, Vinny Cahill, and Aline Senart.
Distributed Systems Group,
Dept. of Computer Science,

Trinity College Dublin, Dublin, Ireland
{Vinny.Reynolds, Vinny.Cahill, Aline.Senart}@cs.tcd.ie

Abstract—Recent years have seen the maturing of ubiquitous

computing middleware and software. Accompanied by research
into sensor networks and other sensor-driven applications,
widespread deployment and realisation of these technologies can
now be expected in the coming years. As a cheap and quick
method of prototyping applications and protocols, simulation will
be a key part of the development cycle for these technologies.
However, existing simulators only address a subset of ubiquitous
computing environments and are unsuitable for modelling the
desired complexity of the domain.

This paper presents initial work on the design of a generic
simulation tool suitable for the many scenarios encompassed by
ubiquitous computing, such as simulation of sensors, actuators,
and the environment. In addition, an emulation framework for
middleware and software under development is provided which
interfaces with the simulation tool. We provide a layered, flexible
and modular approach to supporting the simulation of
ubiquitous computing environments without constraining the
simulator to one aspect of the many possible ubiquitous
computing deployment scenarios. Finally, we present and discuss
a proof-of-concept simulation.

Index Terms—Emulation, sensor networks, simulation,
ubiquitous computing, UCSE.

I. INTRODUCTION
biquitous computing [1,2] as an area of research is an
umbrella for areas of research such as ambient

intelligence [3], sensor networking [4], context awareness [5]
and smart spaces [6]. In addressing this area, solutions have to
contend with many non-trivial problems such as
dependability, large scale, physical distribution, security,
timely behaviour and many others. For these reasons,
designing solutions is a difficult and time consuming process
and effective development is an important issue. Simulation
will play a key role in the development and testing of these
solutions.

Although we are not aware of a taxonomy of the typical
components used in ubiquitous computing scenarios, it

appears that there is a set of abstractions that are required by
the wide range of scenarios envisaged in ubiquitous
computing. These common components include sensors,
actuators, applications utilising these sensors or contextual
information derived from them, and the environment in which
these components exist. Changes in the environment or user
input typically drive sensors; applications react to this input
and offer feedback into the environment or the user by way of
some form of actuation. What is clear from the domains
involved is the large diversity of these components that
actually exist. Without mentioning actual types of sensors or
referring to particular sensed phenomena, sensors can be
classified as being active or passive. They can be
exteroceptive or proprioceptive, i.e. they can detect values
internally or from the ambient environment around them, and
they can act in a periodic or sporadic manner.

Presented at the First International Conference on Integrated Internet Ad hoc
and Sensor Networks (Intersense 2006) © ICST

Similarly, applications can run on a PDA requiring user
input, this can take the form of a program running on a server,
software running on some embedded hardware mote [7] with
attached sensors, or even a collection of embedded agents
enabling a smart office style scenario

Actuators can be classified in a similar manner and in the
general case, interesting properties such as the scope and
effect of any action that takes place must be considered.

Some of the typical environments in which these
applications, sensors and actuators are deployed include
buildings for smart space scenarios [8], rugged terrain for
environmental monitoring [9] and road networks for
intelligent transportation systems [10]. All of these
environments have their own unique properties and their state
can play a key role in the performance and behaviour of an
application. Indeed, there are few environments in which
some form of ubiquitous computing could not exist.

The use of simulation technology in ubiquitous computing
is of particular importance to developers and researchers alike.
Many of the required hardware technologies such as cheap
reliable sensors are only reaching maturity now, and many of
the application scenarios are being designed with the future in
mind and well in advance of the hardware actually being
available. Furthermore, many of the target scenarios do not
lend themselves to onsite testing, in particular, scenarios
which require deployment of large numbers of nodes or
devices. In addition, simulation enables researchers to

U

 2

evaluate scenarios, applications, protocols and so forth
without the difficulties in dealing with hardware sensors and
actuators, and also offers greater flexibility since it is easy to
run a set of simulations with a range of parameters.

And yet, there are very few existing simulators which are
effective in modelling the entire range of scenarios mentioned
above. This may be because of the broad scope of scenarios
listed already, and providing a suitably general yet
customisable simulator is non-trivial. Many of the current
ubiquitous computing simulators are not sufficiently flexible
or general enough to be adapted to the many ubiquitous
computing scenarios. Typically simulators used in this domain
have been adapted from some other domain such as agent or
network simulation and as such neglect or simplify some of
the aspects that are more common to ubiquitous computing
such as sensors and the environment.

This paper presents a novel approach to modelling
ubiquitous computing scenarios using the twin technique of
simulation and emulation. We use simulation to model the
sensors, actuators and environment, whilst proposing an
emulation framework for testing of applications and
middleware. The benefits of simulating sensors, actuators and
the environment have been explained above. By providing an
emulation framework, developers have only to write their
applications once and can re-use the same code in testing and
in actual deployment. Many of the applications designed for
these domains are built upon existing middleware platforms
and the emulation framework also provides support for this
middleware. The combined approach of simulation and
emulation and the interfacing between the two allows
simulated hardware devices such as sensors and actuators to
interact with emulated software or middleware. Since
networking and communication is a key aspect of many
ubiquitous computing scenarios, integration of an existing
network simulator such as ns-2 [11] into our framework is a
key requirement.

As previously mentioned, there is huge diversity in the
number of sensors and actuators that have to be deployed.
Instead of providing models or instantiations of actual sensors
and actuators, we provide a technique, utilising a pipeline of
filters, for modelling the characteristics and properties of
sensors and actuators which is presented in detail later.
Furthermore, we provide a location-based layer model that
underpins all of the simulated components. Two variations
within the layer model are provided. Representation layers are
used to model aspects of the physical environment and other
location-based phenomena, whereas reference layers are used
for management of other simulated components such as
hardware devices.

We have successfully designed a proof-of-concept
simulation of an intelligent transportation scenario. Separate
layers are used to model mobile objects (vehicles), static
objects (traffic lights), sensors (GPS) and the environment
(road network). In particular, the vehicles and the GPS sensors
are simulated and applications running on the traffic lights
communicate using an emulated event-based middleware

interface.
The paper is organised as follows. In section 2, we present

related work. Descriptions of the simulator design, the layer
model and the architecture follow in sections 3, 4 and 5,
respectively. We present the simulated traffic scenario in
section 6 and, finally, our conclusions in section 7.

II. RELATED WORK
There are several simulators already in use in ubiquitous

computing. Some have been designed specifically for this
domain which we will classify as being native simulators,
while others have been adapted from other simulation
domains such as sensor network simulation. These are
classified as being non-native. A synopsis of the state of the
art of these two genres is now provided in which functional
requirements such as flexibility, usability and scalability are
evaluated. Further analysis of the simulators support for
typical native ubiquitous computing components, such as
sensors, actuators, and applications is also presented.

A. Native ubiquitous computing simulators
There are few native ubiquitous computing simulators

available at present. Ubiwise [12] has been developed at
Hewlett Packard by Barton et al. Recently, work at Lancaster
[13] by Morla and Davies has led to the development of a
hybrid test and simulation environment. Further research in
this field has been done at Trinity College by O’Neill resulting
in the Tatus [14] simulator.

Ubiwise [12] is one of the few simulators being developed
at the moment in the ubiquitous computing field. The
simulator provides a "three-dimensional world, built on the
Quake III Arena graphics engine, and serves to simulate a first
person view of the physical environment of a user". The
general theme underlying the aims of the simulator is the rapid
and cheap deployment of ubiquitous devices and services,
which would take too long to prototype in actual hardware.

Native support for sensors and actuators is not explicitly
mentioned. Ubiwise does however support the creation of
hardware ‘devices’, which can interact with the environment
by way of adding physical interaction code into a dynamic
link library provided with Quake. Sensors and actuators could
be modelled in this manner. Applications in Ubiwise are
specified through an XML device description file and
associated Java .class files. Applications can communicate
with external services outside of the simulated domain. The
environment can be modelled as simply or as complexly as
required using the Quake 'map' format. Devices and users
previously defined are then located within the world.

Ubiwise provides modelling capabilities for all of the
typical components identified. However although the authors
claim to be interested in ubiquitous computing system design,
the work is geared towards examining the user experience in a
ubiquitous environment. Ubiwise has in fact been rebranded
as a conceptualiser as opposed to a simulator.

Furthermore, the human-in-the-loop model employed does
not lend itself to evaluating scenarios or running experiments

 3

multiple times. On the other hand, modelling of all the key
components is flexible, if somewhat clumsy. Development of
Ubiwise appears to have ceased for the moment.

The Lancaster simulator [13] attempts to provide a “new
environment for testing and evaluating system and network-
related issues in location-based applications”. Developed after
Ubiwise, this work is more experimentally focussed. It
supports actual application code, interfaces with a proven
network simulator, ns and also enables live user interaction at
run time. By providing separate interfaces for network and
location simulation, and a Web Services based API for
applications being tested, some flexibility is achieved in their
approach.

Application emulation is also supported through the Web
Services interface although this almost certainly introduces
additional overhead. Their test environment does not focus on
simulation of large scale systems, nor on the simulation of
sensors and actuators which is essential for ubiquitous
computing simulators

Tatus [14] is another 3-d simulator built using a similar
methodology to that of Ubiwise, except that it is built upon the
Half-Life game engine. Compared with Ubiwise, Tatus is a
more user-centric simulator and offers the user the opportunity
to experience a ubiquitous environment. Ubiwise on the other
hand offers a toolkit for simulating devices. Tatus offers users
the opportunity to test software before deploying it through
the use of a proxy, which interfaces with the simulator.

This is comparable to emulation, but means that the
software is running in a separate address space, perhaps even
on a different machine.

B. Non-native ubiquitous computing simulators
SENS [15] is an application-oriented wireless sensor

network simulator which models ad hoc static nodes. It
provides models for a limited set of sensors, actuators, a
model for the environment and a framework for testing of
applications. Although not regarded as a ubiquitous
computing simulator, SENS is included as it is very similar in
methodology to what we are trying to achieve. SENS is
designed for a signal based experimentation platform and as
such a limited range of sensors and actuators are provided. No
references are made as to how to add new models of sensors
or actuators. SENS also tries to provide an environment
modelling system for developing more realistic 'worlds'. This
is however a wireless sensor network simulator so the world is
constrained to being of type, ‘grass’, ‘concrete’ or ‘wall’.
SENS provides a “compatibility layer to enable portability
between simulated applications and real sensor nodes”, which
is in effect providing an emulation environment.

SENS aims for its components to be extensible and
interchangeable and it is, in terms of the wireless sensor
network domain. However, the nature of the environmental
model does not suggest re-usability for anything other than
sensors and actuators modelling wave phenomena, making it
unsuitable for modelling arbitrary ubiquitous computing
environments.

C. Conclusion
Ubiwise and Tatus offer a rich model of the environment

but are not designed as simulation test beds. They are perhaps
better described as device or scenario prototyping test beds
instead. It is not possible to run a suite of experiments where
you are varying the input parameters in a simulator that
requires user input. There are many motivations for
simulation. The most commonly quoted are cost, and quick
prototyping. Another is time. The Lancaster work and SENS
focus more on the set up of the simulator tools themselves and
are results oriented.

III. SIMULATOR DESIGN
The first step in the design of a simulator suitable for

modelling ubiquitous computing environments is to look at
requirements and from these produce a set of goals.

It has been noted that many of the typical scenarios deal
with issues such as large numbers of devices, possibly
physically distributed over a large geographical space,
hardware problems involving many types of sensors and
actuators and the many application frameworks that may use
such devices and be running in the space. The simulator for
ubiquitous computing must reflect these issues in its goals and
design. In the simulator that we have designed, four key
abstractions are addressed: modelling of sensors and actuators,
enabling an application framework and modelling the
environment.

A. Simulator Goals
Given the diversity of the aforementioned scenarios, any

simulator that attempts to model the abstractions identified
above must be flexible and sufficiently general yet extensible
enough in its base model to support these. However, a tool
that attempts to be too high-level risks being unusable and
leads to ‘hacking’ of models. This happens all too frequently
when simulators do not accurately meet the domain
requirements and result in bad software engineering. Another
goal critical to simulators is the provision of an accessible and
usable environment which exposes a complete interface in an
intuitive manner, therefore usability or ease of use is a second
goal. Large scale is such an important aspect of many of the
scenarios identified, and is such a non trivial problem that
supporting scalability is a third and final goal of the simulator.

Lack of flexibility is one of the common problems in many
of the simulators in use at the moment. Ubiwise is clearly well
suited to providing a rich model of a smart space environment
but would not be suitable for running a series of experiments
on a sensor network. Similarly SENS provides an accurate
model of network behaviour in sensor networks, but users are
forced to use a specific SENS API for any applications which
run on top of these sensor networks.

More flexible models are required if a simulator is to be
used across the board. One of the successes of ns-2 is that any
layer of the protocol stack can be simulated in the user’s
desired manner, layers can be replaced and a default layer
implementations is also provided. In this regard, we can say

 4

that ns-2 is flexible. This type of flexibility is one of the key
goals of the simulator. Furthermore, all types of sensors and
actuators must be supported. Any environment, whether it is
the smart space or an intelligent road network must be
supported by an environmental model. In section 4, a layer
model is introduced which addresses this goal. Flexibility in
the modelling of each of the ‘typical’ ubiquitous computing
components is detailed later in this section.

When accounting for usability in simulation, there are
several design factors that have to be made. The key factor is
that it has to be easy for the user to get what they want. This is
typically experimental results or verification. To enable this,
the design of the simulator should be as ‘open’ as possible. By
open, we mean that every component is accessible and
replaceable to the user. And that in the case of the user not
wishing to address some aspect of a simulation, a default
implementation is always available. For example, one user
may wish to use ns-2 for an accurate representation of the
process by which messages are passed, but another user may
not. This will allow users to get up and running quickly when
designing their simulations.

Another important aspect from the users’ perspective is the
actual process by which the results are obtained. This is
addressed in the system architecture, where a log manager is
provided as an interface between users the simulated domain.

There are two interpretations of scalability in terms of
simulation of ubiquitous computing environment. The
traditional and classical interpretation is that many ‘devices’
must be supported, for some interpretation of device whether
that be a sensor mote or an mobile agent. The second
interpretation is that there may be many different types of
devices, different types of sensors, different types of
applications running on different middleware with different
requirements. Supporting the two interpretations of scalability
is a key goal of this simulator design.

B. Simulated components
Four common abstractions of ubiquitous computing

scenarios were identified earlier: the environment, sensors and
actuators and applications. The methods and design for
modelling each of these components within the simulator is
now presented.

It has been noted that ubiquitous computing can
conceivably take place within any type of environment or
space, and as such the model of the environment provided
must be sufficiently general that it can be adapted to the many
scenarios required. The main property of all environments and
objects within those environments is location. Using location
as the inspiration,, a grid-based approach to modelling the
environment is provided. This modelling of an environment is
achieved using a combination of representation layers, the
design of which are described in detail in the following
section. Representation layers are used to model all
phenomena that may be sensed as well as the purely physical
aspects of the environment, i.e., reference layers refer not only
to physical components such as the topology of the ground, or

the presence of buildings or roads but also phenomena such as
the light levels at a particular location, or the noise or the
temperature at a particular location within the environment

Fig. 3. A single representation layer with a world size of 1km2 and a
granularity of 100m. The layer models relative humidity in the environment.

Sensors can have a wide range of characteristics and

properties. The method provided for modelling sensors only
addresses their most fundamental characteristics. These
characteristics are

• Whether the sensor is active or passive
• Internal or external measurements
• Periodic or sporadic occurrences

Even sensors of the same type have unique properties and
levels of accuracy and so forth. A flexible method for
modelling these properties is to use a sensor pipeline,
displayed in Fig 1, comprising of a combination of filters
which may ‘modify’ or ‘block’ the measurements in some
way. The initial measurement or sensor reading is made when
the sensor retrieves or ‘senses’ data from a reference layer
modelling the sensed phenomenon using one of the
retrieve() methods implemented by the layer. This initial
value is then pushed onto the sensor pipeline where it passes
through the filters. ‘Modifying’ filters may update the value in
some way by adding some error based on a Gaussian
distribution for example. A ‘blocking’ filter determines if it
was possible that the reading actually was possible to make,
and may take the location of the sensor and the distance to the
sensed phenomenon into account for example. By combining
many of these filters into a single conceptual pipeline, through
which all sensor measurements must pass, it is possible to
provide a very accurate model of a sensor.

An active sensor in effect ‘queries’ or ‘pulls’ its
measurements from the phenomena that it is sensing. A
passive sensor is driven by changes in the phenomena that it is
measuring and measurements are effectively ‘pushed’ onto the
sensor device. Active sensors simply ‘query’ the phenomenon
they are sensing. This reading is then passed into the pipeline.

 5

Fig 1. The process by which a reading passes through a pipeline formed of a
combination of blocking and modifying filters

Internal and external values or proprioceptive and
exteroceptive sensors take readings from a co-located
phenomenon or from an external source. Two examples would
be a GPS sensor measuring its’ own location, or a thermistor
measuring the ambient temperature in the room.
Proprioceptive sensors are bound to the phenomenon that they
are measuring using a unique identifier which is specified by
the programmer at design time. Exteroceptive sensors are
bound to a layer which models the phenomena and at run time
a look up is performed into the layer to ‘sense’ the
phenomenon.

Actuators are modelled using a similar methodology to the
sensors. They are characterised in the same way, they may be
periodic or sporadic, act internally or externally and so forth.
They are also modelled similarly within the simulator. A
pipeline of filters again used, except that logically the process
happens in the opposite direction. In the actuator pipeline, the
actuator alters some phenomenon and this updates the state of
some variable or state representing some other aspect of the
simulated environment. We again use the pipeline and use the
notion of blocking and modifying filters to increase the
fidelity of the model. The ‘effect’ of the actuator passes
through the pipeline before the actuation actually occurs and
some state is updated.

Both sensors and actuator events can occur in a periodic or
sporadic fashion. These are handled differently in simulation
framework. Periodic devices queue an event themselves in the
event queue and at the appropriate time, an event is executed.
At the time of execution, the next periodic event is scheduled.
Sporadic events are driven by the execution of an alternative
event and occur arbitrarily. Therefore sporadic events are
never scheduled but are the result of the execution of another
event.

Application code is written by users that forms a part of the
ubiquitous computing scenario. It is a common, but an
unfortunately inefficient practice that this code is typically
written once for the simulation of that environment and is then
rewritten at the time of actual deployment. This occurs
because most simulators do not provide an API for the
application being developed. One of the goals of the simulator
is to address this issue. By providing an emulation framework,
it is intended that researchers only have to write code once for
simulation and can then re-use the same code without
modification at actual deployment. Since flexibility is a key

goal of the simulator, this emulation framework must be
replaceable. This simulator proposes using a Replaceable
Code Emulation Unit as a methodology of supporting multiple
application API’s.

Fig. 2. The split level API. The Replaceable Code emulation unit acts as a
binding between the application API and simulators API and binds calls from
the application to the appropriate function in the simulator

This is achieved using a split level design illustrated in Fig.
2. The simulator API exists at the base level which interacts
with all the simulated components such as the sensors and
actuators, and well as the rest of the simulator architecture. A
mid-level API then sits above the base level and interacts
between the application and the simulator. This mid-level
component ‘binds’ calls from the application to the
corresponding calls within the simulator. The libraries upon
which the application is based have to be rewritten in order to
do this. These rewritten libraries then sit at this mid-level.
Using this methodology, the simulator is in fact transparent
from the application.

Although this approach requires an initial overhead in
coding, it is envisaged that these ‘bindings’ will only have to
be written once and that over time a library of common
bindings can be produced, i.e., one binding for the STEAM
middleware [16], one for TinyOS, and so on, all of which are
shared and can be reused by researchers. A default
implementation of the mid-level API will also be provided
which makes a direct mapping from the application to the
simulator.

IV. THE LAYER MODEL
Modelling environments using an extensible, flexible, and

scalable design is a non-trivial problem, particularly given the
broad ranging scenarios involved in ubiquitous computing.
The layer model utilises the common aspect of location as the
key to providing a model suitable for capturing the
environment. It is intended that as all scenarios have their own
modelling requirements, individual layers can be designed as
required, reused and shared using the layer API provided.
Flexibility is achieved through the use of a layer stack
whereby many layers representing individual aspects of the
simulated domain are juxtaposed. Any interdependencies

 6

between these layers are specified by simulator users. This
collection of layers is the representation of the domain being
modelled by the user.

Conceptually, a layer is a two-dimensional grid of fixed

size which maps onto the scenario being modelled. Two types
of layers are provided in the simulator: representation and
reference layers. At the time of creation, all layer types are
parameterised to represent the scale of the environment
desired, as well as the granularity of the grid within the layer.

Fig. 4. The Layer Stack comprising of two representation layers and a single
reference layer. Note the fixed world size and the variable granularity.

A. Representation Layers
Representation layers are used to model aspects of the

physical environment. In a sensor networking scenario, a
single layer might represent the type of ground across the
simulated environment, such as whether it was concrete or
grass and so forth. The granularity of this detail could
typically be 10m. A second layer in this scenario might
represent a model of the moisture levels in the air across the
simulated environment. The granularity of this detail could be
as large as 100m for example.

Layer creators must implement a populate() method
which instantiates the phenomena represented at each part of
the layer and a transform() method which is called to
update the state of the layer.

B. Reference Layers
Reference layers are used to support the management and

storage of simulated components already created such as
sensors and actuators. A dedicated layer is created for the
management of each type of component created, and each
component is stored within the layer at a particular location
within the grid. The use of a location-based reference
mechanism for management and storage of components
ensures greater scalability. The simulator exploits the location
information to bound the amount of interactions that can occur
between devices. A similar method was introduced in [17] to
achieve greater scalability in ns-2.

The combination of simulated components, reference layers
for management of those components, and representation
layers for modelling the environment provides the basis for
simulating most scenarios. As the user specialises the
simulation to their own requirements, they may have to define

their own domain specific component types and support for
this is also provided in the reference layer model.

It is envisaged that potentially interaction can occur
between almost any of the layers and the components stored
within the layers and therefore the interaction between layers
is loosely coupled so as not to constrain any simulation.

An implicit binding between simulated components and
layers also exists which must be addressed. For example, a
representation layer of thermistor sensors which take
temperature measurements should be bound to a
representation layer which models the temperature of the
environment. The layer model supports a naming system to
provide this binding transparently to users.

An interesting interaction to note is between different
environment layers. It has already been stated that
dependencies may be built up between different representation
layers. This should be quite common if users are hoping to
model a complex environment, as conceptually so many layers
are actually interdependent. Precipitation can lead to moisture
which can lead to decreased wireless transmission ranges for
example. This dependency is captured within the layer API.
As a user implements the transform() method, he may
query other layers using the current location as the key to
determine the state of any other layers. Thus, a layer
modelling the wireless transmission range of a wi-fi card, may
query the layer representing the precipitation using the
location of the wi-fi card to retrieve the correct precipitation
level at its location. Theoretically, we hope that users would
be able to model any level of detail or complexity required
using this model.

C. Data retrieval within layers
There are two primary methods for retrieving data from

within layers. As noted, location is a common property for
many of the simulated components. More specifically, all
components have either an explicit location, or they are
associated with an component which has an explicit location,
i.e. the two entities are co-located. Components with a relative
location have two potential accessors. A component may be
physically collocated but may still interact with other
components as if it had its own explicit location. An example
of this would be a sensor attached to some mobile device (of
which it has no control), and which is broadcasting its sensor
events for anybody who is listening.

The layer API should therefore support two access
methods. The first uses location as the key. For example, a
sensor queries an environmental layer for an attribute at a
certain location, or the simulator obtains a list of potential
recipients of a transmitted message based on the location of
the sender.

The second method uses the component as the key. For
example, there are cases when location is not specific to the
information being sensed or the actuator acting. Collocated
sensors and actuators are a case in point. A proprioceptive
sensor, for example, does not measure environmental
properties, but measures a property of the object to which it is

 7

attached, such as an accelerometer. In the layer model, the
sensor and sensed entity are represented independently (in
separate layers), so if the sensor was to query a representation
layer, it would have to use the represented object itself as the
key, and would then have to query the sensed property of the
returned object. From these observations, we have defined a
layer API with the following accessors.

class Layer{
 someType retrieve(Location);
 someType retrieve(entityID, property);
}
 Fortunately this data retrieval can be abstracted away from

users by using the naming and binding service mentioned
earlier. This is performed by the layer manager which is
described in Section 5.

V. SIMULATOR ARCHITECTURE
Several components are required to support the simulator as

it has been described so far. These components are a layer
manager, Replaceable Code Emulation Unit, network
manager, location manager, log manager, event queue and
global clock. The role that these components play is described
now in detail.

Fig 5. The simulator architecture showing the key components

The layer manager has several responsibilities. As well as
being a registration point for all layers created, it also manages
the interactions between layers which have interdependencies.
As changes occur in a layer, dependant layers are scheduled to
update their state if required. The layer manager is also
responsible for scheduling periodic updates to layers in the
event queue. When an update is due, the appropriate
transform() method for the layer is called by the layer
manager. The layer manager provides a naming service as it
also maintains any bindings that are required between sensors
and layers representing sensed phenomena, and actuators and
modifiable phenomenon. Furthermore, the layer manager
monitors the modelled environment for changes which a

passive sensor may then sense.
The functionality of the Replaceable Code Emulation Unit

(RCEU) is described in detail in Section 3. Although
applications sit above the RCEU in the architecture, they may
also maintain a logical location within a representation layer.
This is common enough as many ubiquitous computing
applications are location based. Any actual physical hardware
associations between applications, sensors and actuators is
maintained in the layer manager using the naming and binding
service.

Network simulation can be a key component of accurately
simulating ubiquitous computing environments. We provide a
network manager to interface between our simulator and a
network simulator. Within the RCEU, any calls that are made
to the network are intercepted and redirected through the
network simulator, whereby the communication mechanism is
simulated and the message is delivered to its final recipients.
This network manager will interface with the subset of layers
that represent communicable devices. Within the network
manager, the network simulator may also interface with the
location manager component to provide locations of
networked nodes thus providing optimised simulation of
communication.

The location manager interfaces with the layer manager to
track mobile components and inform the layer manager of
important changes. For example, when a device moves from
one grid to another within a layer. Doing this in a just in time
or a proactive manner remains an evaluation criteria. Effective
location management of components is expected to play a
large role in simulation efficiency and in enabling scalability
[17]

Achieving the desired simulation output in an easy and
efficient manner is another important requirement for an
effective simulator. A log manager is provided, in which users
can register their interest in state that they wish to have
monitored. This log manager interfaces with the layer
manager to monitor this state and can output logged results
when required.

A standard event queue and global clock within the DEVS
[18] simulation formalism is provided to run the simulator.
Events are scheduled to occur in the event queue and as the
simulation clock iterates, events are taken from the queue and
processed.

The architectural components listed above are designed to
meet with the simulators goals, of flexibility, usability and
scalability. Flexibility is achieved through the dual use of
layer manager, and the underlying layered model which it
supports and the Replaceable Code Emulation Unit. The
RCEU provides a useable and replaceable model for
emulating existing application frameworks. The log manager
also supports usability by providing a straightforward method
of accessing variables of interest whilst maintaining a
separation between the models and the logging interface.
Scalability is enabled through the use of location managers to
bound interaction between devices, whether communication is
based on the network simulation, or physically through sensor

 8

and actuator interaction.

VI. RESULTS
We have successfully designed a proof-of-concept

simulation of an Intelligent Transportation Systems (ITS)
scenario. The ITS scenario is a typical ubiquitous computing
scenario if on a scale larger than is normally envisaged. In this
simulation, smart traffic lights attempt to increase the vehicle
throughput at a junction by using a collaborative
reinforcement learning technique. The traffic lights
communicate to share state information and attempt to find
global optimisation through making localised changes. The
localised change that occurs is that a particular traffic light
alters its light sequence to prioritise one flow of traffic over
another.

The ITS scenario was chosen as the proof of concept
prototype because it addressed many of the characteristics of
ubiquitous computing scenarios. All of the common
abstractions that we identified are present: sensors (GPS),
actuators (traffic lights), applications controlling both the
traffic lights and the sensors and a rich, complex and accurate
physical road environment as well. Finally, the ITS scenario
presents the problem of scale.

The area of Dublin being simulated is approximately 80sq
km and the number of vehicles being simulated is in the order
of 10s of thousands. Simulated vehicles are equipped with a
GPS sensor and periodically broadcast this information using
an emulated event based middleware framework. Traffic
lights within a designated transmission range (250m) receive
these events, update their internal representation of the
congestion load in the road network and then alter their light
timing sequence to optimise the flow of traffic. Using the
same emulated event based middleware, the traffic lights then
communicate with their neighbouring traffic lights to share
their congestion information and any other state shared in the
collaborative reinforcement learning protocol.

Several of the typical components identified in ubiquitous
computing scenarios are used in the ITS scenario.
Representation layers are used to maintain simulated vehicles,
which are mobile objects running applications, the location of
the GPS sensors and the location of the traffic lights, which
are static objects running applications. A reference layer is
used to maintain a model of the road network which is the
simulated environment in this case. A wide-scale picture of
the layer is provided in fig 6. Although no network simulator
was incorporated into this proof-of-concept, a location
manager was implemented which, using the grid based
location of vehicles and traffic lights, was able to reduce the
number of messages that were passed when simulated
communication took place.

Figure 6. A section of the Dublin area road network. This is about 3000 links
and 600 traffic lights

Only a single reference layer was used in this simulation. A
user could extend this model very simply to generate a far
more complex model. Using the single reference layer (road
network model) and the vehicle location representation layer
as sources, it would be very easy to create a dependant
reference layer that simply tracked the number of vehicles in a
grid of 500 m2 block. This layer could be used as a source of
traffic congestion for one simulation. In an alternative
simulation though, that new congestion layer could be the
basis for a representation layer modelling the amounts of
pollution over various parts of the city, which is the input for a
carbon monoxide sensor.

Fig 7. A detail from the simulation showing vehicles queuing at a junction
displaying a red traffic light.

By simply adding more layers, and programming simple

dependencies between them it is quite easy to build up
complex models using the layer model and the layer stack.

The simulated ITS scenario was designed and modelled as
an independent experimental platform, i.e. only at a later stage
was the simulator tailored for a collaborative reinforcement
learning technique experiment. The separation of the layers
representing the different phenomenon allowed the simulator
to be easily specialised to this domain, although we do not
have any quantifiable user metric of much easier this was than
if a normal simulator framework was used. The simulator is
also being used as a data source by some M.Sc students in
Trinity College Dublin who are designing software providing
congestion data to users. The use of this proof-of-concept
simulation in two different software engineering domains

 9

suggests that the simulator has achieved its goals of flexibility
and usability.

VII. CONCLUSIONS
We have provided a simulator for modelling a wide range

of ubiquitous computing scenarios. Through a flexible model
reflected in the layered architecture, this simulator can be used
to simulate many scenarios in a more complete manner than
has been possible before. The sensor pipeline and actuator
pipeline model, as well as layer stack enable greater flexibility
in modelling components and does not constrain users in any
way.

Similarly, the novel use of a split level API to enable
emulation of multiple application frameworks is a significant
contribution to the ubiquitous computing simulation
community. We believe our goals of flexibility, usability and
scalability are reflected in the architecture and the methods
provided. The proof-of-concept traffic simulation provided
demonstrates the achievement of some of these goals.

We have yet to evaluate our approach experimentally to
verify our methods. We hope to evaluate questions such as the
overhead in using the layer model vs increases in simulator
performance. Usability is a key goal of this work, so we are
also interested in evaluating to what degree the models
provided assist users developing simulations. These
experimentations and further development of the simulator
will form the basis of work on the simulator in the foreseeable
future. Experimental evaluation of the traffic simulation is
being carried out at the moment.

Simulation of ubiquitous computing scenarios is still in its
infancy and many simulators including this one require more
research and development. By starting at the bottom however
and attempting to model fundamental components and
working our way up, we hope that this simulator will enjoy
some success as development increases.

VIII. ACKNOWLEDGMENTS
The authors are grateful to Science Foundation Ireland for

their support of the work described in this paper under
Investigator aware 02/IN1/I250 between 2003 and 2007.

REFERENCES
[1] Mark Weiser, “The Computer for the 21st Century”. Scientific American,

Vol. 265, No. 3, pp. 94-104, September 1991.
[2] Mark Weiser, “Some Computer Science Issues in Ubiquitous

Computing”, Communications of the ACM, Vol. 36, No. 7, pp 74-84,
1993.

[3] Paolo Bresciani, Loris Penserini, Paolo Busetta and Tsvi Kuflik, “Agent
Patterns for Ambient Intelligence”. In Proceedings of 23rd International
Conference on Conceptual Modelling, November 2004, Shanghai,
China.

[4] Tian He, Sudha Krishnamurthy, et al., “Energy-Efficient Surveillance
System Using Wireless Sensor Networks”. In Proceedings of 2nd
International Conference on Mobile Systems, Applications and Services
(MobiSys'04), June 2004.

[5] Massimo Benerecetti, Paolo Bouquet, and Matteo Bonifacio,
“Distributed Context-Aware Systems”. In Human-Computer Interaction,
Vol. 16, 2001.

[6] Alan Dearle, Graham Kirby, Ron Morrison et al., “Architectural Support
for Global Smart Spaces”. In Proceedings of 4th International
Conference on Mobile Data Management, Vol. 2574, 2003.

[7] www.xbow.com, Crossbow Technology Inc. Pages on wireless sensor
networks.

[8] Emmanuel Munguia Tapia, Stephen S. Intille and Kent Larson, “Activity
Recognition in the Home using Simple and Ubiquitous Sensors”. In
Proceedings of 2nd International Conference on Pervasive Computing,
Vienna, Austria, 2004.

[9] Xiang Ji, Hongyuan Zha, “Sensor Positioning in Wireless Ad-hoc
Sensor Networks Using Multidimensional Scaling”, Proceedings of
IEEE INFOCOM, pp. 2652-2661, 2004.

[10] Lawrence A. Klein. “Sensor Technologies and Data Requirements for
ITS”. Artech House, 2001.

[11] http://www.isi.edu/nsnam/ns, NS-2 simulator, 2001.
[12] John J. Barton and Vikram Vijayaraghavan, “UBIWISE, A Ubiquitous

Wireless Infrastructure Simulation Environment”,
http://www.hpl.hp.com/techreports/2002/HPL-2002-303.html

[13] Ricardo Morla, Nigel Davies, “Evaluating a Location-Based
Application: A Hybrid Test and Simulation Environment”. In
Proceedings of 2nd International Conference on Pervasive Computing,
Vienna, Austria, 2004.

[14] Eleanor O'Neill, Martin Klepal et al., “A Testbed for Evaluating Human
Interaction with Ubiquitous Computing Environments”. In Proceedings
of 1st International Conference on Testbeds & Research Infrastructures
for the DEvelopment of NeTworks & COMmunities (TRIDENTCOM
2005), Trento, Italy, February 2005.

[15] Sameer Sundresh, Wooyoung Kim and Gul Agha, “SENS: A Sensor,
Environment and Network Simulator”. In Proceedings of IEEE/ACM
Annual Simulation Symposium, 2004.

[16] René Meier and Vinny Cahill, “STEAM: Event-Based Middleware for
Wireless Ad Hoc Networks”. In Proceedings of International Workshop
on Distributed Event-Based Systems (ICDCS/DEBS), 2002.

[17] Valeri Naoumov, Thomas Gross, “Simulation of Large Ad Hoc
Networks”. In Proceedings of ACM Modelling, Analysis and Simulation
of Wireless and Mobile Systems (MSWiM), 2003.

[18] Bernard P. Zeigler, Herbert Praehofer and Tag Gon Kim. Theory of
Modelling and Simulation, Second Edition, 2000.

http://www.xbow.com/
http://www.isi.edu/nsnam/ns
http://www.hpl.hp.com/techreports/2002/HPL-2002-303.html

	INTRODUCTION
	Related Work
	Native ubiquitous computing simulators
	Non-native ubiquitous computing simulators
	Conclusion

	Simulator Design
	Simulator Goals
	Simulated components

	The Layer Model
	Representation Layers
	Reference Layers
	Data retrieval within layers

	Simulator Architecture
	Results
	Conclusions
	Acknowledgments

