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Summary

Deep space network communication proposes new and challenging issues compared
to normal wired and wireless networks.

The problems related to space links are mostly due to the link delay (because of the
distances involved) and error rates that affect communication and make classical and
widely deployed protocols (for example the Transmission Control Protocol) much less
efficient in such an environment.

Network simulation can be extremely useful to evaluate protocol performance, but
since deep space links are affected by long delays and high error rates, it is necessary,
in order to obtain realistic evaluations, to try to re-create those problems.

Research in the field led to the implementation of simulators and emulators able to
reproduce the environmental conditions that characterize communication in a deep
space environment. These efforts and their deficiencies are described in this thesis,
and, in addition, a new approach is proposed — the JDBS simulator.

The JBDS simulator is a framework able to simulate data communication in a deep
space network environment. JDBS was implemented using the Java Programming
language with low level features provided via the Java Native Interface (necessary in
order to use raw sockets).

Communication between network nodes is implemented using Java sockets. The
results obtained to date are affected by implementation issues that remain to be
solved. Future work is proposed in order to overcome those problems that could lead

to the development of a fully-featured Java deep space network simulator.
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1 Introduction

The enlargement of human horizons in recent decades has led to the growth in
importance of deep space travel and, more generally, space communication. Global
Positioning System technology and satellite television service are two examples of
how this technology have become part of everyday life; but still much work has to be
done in the field and deep space communication is still very much under study and
development.

In particular, network communication in a space environment can be challenging for
various reasons, for example limitations in bandwidth and resources (mostly due to
difficulties to power supply), but it is also prone to be affected by long and variable
delays, high error rates, and intermittent loss of connectivity.

Various new network protocols have been proposed by research scientists in order to
hand such environment problems, as has the idea of using well known and trusted
protocols also for deep space links. This latter idea is however affected by some
protocol deficiencies in that environment. However, using TCP for example could
lead to an effective decrease of the cost of dedicated hardware and would benefit from
the years of usage and experience (especially from a security point of view). On the
other hand, experiments and research have shown that TCP’s performance, for
example, could be very poor in such an environment [1] [2].

Thus, other protocols have been proposed. Some protocols, such as the Bundle
protocol sit on the top of the transport layer (even if not necessarily on the top of
TCP), whereas some other protocols sit at the data-link layer, for example the
Licklider Transmission Protocol; finally, some others have been proposed as
variations of the Transport Control Protocol and have added some features and new
algorithms to make it more suitable for network links with high error rates and a non
efficient use of the available bandwidth. The most well known protocols that belong

to the last group are:

e TCP Westwood [4].
e TCP Peach [2],
e TCP Peach + [3],


http://irg.cs.ohiou.edu/ltp/

Unfortunately these variations of TCP are just at the experimental stage and have no
reliable implementations in Java.

All these protocols have been tested by research scientists using different means:
network simulators or particular frameworks. In general, there is a need for a
framework able to provide reliable information on how the protocols behave in the
deep space environment.

A sample solution to the problem of simulating deep space links could be the
development of the Space Based Internet (SBI) emulator described in [5] [6]. The
approach proposed in Baliga’s work will be explained in detail later on, but it was
based on the use the quality of service (QoS) mechanisms provided by the Linux
kernel, and since it had to apply some kernel modifications, it caused problems of
compatibility with other kernel versions and in case of kernel upgrade.

A different approach to the SBI emulator would be to use network simulation. ns-2 is
one of the most popular network simulators and it comes with an extension for
wireless networks developed within the CMU Monarch project [7]. Henderson and
Katz, proposed an enhancement of ns to make it suitable for deep space networks
simulations [8].

Another important approach was proposed by S. Endres, M. Griffith and B. Malakooti
in [9], and it was based on the use of real sockets. This approach and its drawbacks
will be described later more in detail.

The common factor in [6], [5] and [9] is the use of a sophisticated commercial
simulator called STK (Satellite Tool Kit) [12].

This thesis proposes a different approach to the problem of simulating deep space
networks. Still the STK simulator will be employed to provide reliable data, but its
output will be used within another simulation framework: the JBDS (Java Based Deep
Space) simulator. This approach will involve the use of an IP layer proxy which will
have the task of simulating the packets’ delay and BER (bit error rate), in order to
study the behaviour and throughput performance of the TCP protocol (and application
layer protocols) in a deep space network environment.

The framework was developed using the Java and C Programming languages.

As already mentioned, the JBDS simulator was designed in order to test and evaluate
performance of application layer protocols in a space network and in general that

could be adapted to simulate a Delay Tolerant Network.



Three scenarios will be used to evaluate the framework. These scenarios have been
created by the means of the STK simulator, and have been chosen in order to provide
valuable and interesting results.

This thesis is composed of seven chapters. The first chapter is an introduction to the
most important theoretical concepts: for example delay tolerant networks, satellite
communication and protocols used in deep space environment; in addition this
chapter provides a detailed description of the external simulator tool used (STK).

The second chapter describes the architecture of the framework, whereas the third the
fourth and the fifth chapters, describe in detail the different JBDS simulator software
modules. Chapter six shows and explains the scenarios employed for testing the
framework and the results obtained.

Finally chapter seven provides some conclusion and suggestions about future work.

1.1 Problems related to space communication

Deep space data communication is affected in particular by long and variable delays,
intermittent loss of connectivity, asymmetric data rates, higher signal-to-noise ratio
and higher error rates, if compared to terrestrial links.

The long delay is due to the long distances involved. For instance, the distance
between Earth and Mars fluctuates between 56 million and 400 million km, which
means that the communication delay involved ranges from 4 to 20 minutes.

Variable delay is mostly due to planetary dynamics. For instance, the Earth’s rotation
could be the reason for a variation in the relative position of two endpoints in the
network, and this could lead to an increase in distance and, as a consequence, to an
increase of the communication delay between the two endpoints.

Because of the Earth’s rotation, and, in general, of planetary dynamics, another
problem could be encountered, the intermittent loss of connectivity. This problem can
be also called “episodic connectivity” [13] and it prevents two endpoints from
establishing and maintaining a continuous communication path. This is the primary
reason why NASA, in order to provide continuous connections between two
endpoints even when earth rotation obscures visibility, needs to use at least three

stations (for example: Canberra in Australia; Madrid in Spain and Goldstone in



California, USA); these stations should be positioned at roughly 120 degree intervals
around the Earth surface.

The asymmetry of data rates is another issue; it refers to the difference in rate of the
inbound from the outbound traffic. For example, an asymmetry of 15:1 means that for
400000 bps received, 28800 bps are transmitted; in spacecraft mission this asymmetry
can be on the order of 1000:1 or higher [13].

Another important issue is related to the fact that a deep space link is extremely bit
error prone. In the normal internet, mostly the wired one, the bit error rate is very low.
Packets are usually received uncorrupted at the destination. This is not assumed to be
true in wireless networks, and mostly in deep space networks. For instance,
absorption in a medium is one of the reasons that can cause loss of data and deep
space links are particularly prone to atmospheric absorption which can be caused
among the others by: rain, fog, clouds, snow, hail, water, molecular oxygen and
ionospheric effects.

In general, many other factors can cooperate to absorb the signal, and one of the most
important is signal attenuation. This value would highly increase with distance (the
strength of a radio signal falls in proportion to the square of the distance travelled) [5].
In addition, it is fundamental to mention noise: one of the characteristics of a signal is
the signal-to-noise ratio. Noise can affect a signal in space due to space elements like
Sun, Moon, galactic noise, cosmic noise and atmospheric noise.

Finally, another relevant issue is bandwidth: the radio spectrum is unfortunately a
limited natural resource; thus just a restricted amount of bandwidth is available to
satellite systems, and it is typically controlled by licenses. This scarcity makes it
difficult to trade bandwidth to solve other design problems.

Not only is bandwidth limited by nature, but the allocations for commercial
communications are limited by international agreements so that this scarce resource

can be used fairly by many different applications.

1.2 Delay Tolerant Networks

Deep space networks and sensor networks are two examples of how the environment
can badly affect communication between endpoints. Because of the problems

described in paragraph 1.1, but also for power management and visibility problems,



usually these networks deploy different protocols from the other networks and they
rarely use IP. In order to achieve interoperability between these different networks, in
2002 Kevin Fall proposed a new approach to network architecture design described in
[14] as: “...a network architecture and application interface structured around
optionally-reliable asynchronous message forwarding...”

This architecture was defined as Delay Tolerant Network Architecture and was
designed to operate as an overlay above the transport layers of the networks it
interconnects, and to provide services such as storage and retransmission.

Delay tolerant networks include:

e Exotic media networks, which include Exotic near-Earth satellite
communications, very long-distance radio links (e.g. deep space RF
communications with light propagation delays in the seconds or minutes),
communication using acoustic modulation in air or water, and some free-space
optical communications.

e Terrestrial mobile networks.

e Military ad-hoc networks, which usually operate in hostile environments
where mobile nodes, environmental factors, or intentional jamming may be
cause for disconnection.

e Sensor and Sensor/Actuator networks, which are characterized by extremely
limited end-node power, memory, and CPU capability. Moreover, these
networks could comprise thousands or millions of nodes per network, and in

this case scale is an issue.

The application layer protocol studied for this type of architecture is usually called the

Bundle protocol and it will be described more in detail in paragraph 1.4.5.

1.3 Earth Orbiting Satellites

It is important to provide an overview of the Earth orbiting satellites, in order for the
reader to understand the main issues regarding satellite communication and the

evaluation scenarios chosen.



Satellites nowadays have different types of applications. Most of them are used for
communication purposes, and depending on the type and the quality of service
requested, satellites have different on-board instruments and different orbits. Based on

the orbit’s altitude, communication satellites can be divided in three major groups:

e Low Earth Orbit (LEO) satellites
e Medium Earth Orbit (MEO) satellites
e Geosynchronous Earth Orbit (GEO) satellites

These three types of satellites will be described more in detail in the following

paragraphs.

1.3.1 Low Earth Orbit (LEO) Satellites

Low Earth Orbit (LEO) satellites’ altitudes reach up to roughly 1000 Km, thus their
orbit is relatively close to the Earth surface. These satellites, because of their low
altitude, are only visible from within a radius of roughly 1000 kilometres from the
sub-satellite point.

Communication between Earth and LEO satellites has low delay and low bit error
rates; however, for total Earth coverage a large number of LEO satellites is required.
Satellites in low earth orbit change their position quickly; thus, even for local
applications, thus, a large number of satellites are needed to ensure uninterrupted
connectivity (systems of more than one satellite are called constellations of satellites).
Even if a larger number of satellites is required for a LEO constellation, these
satellites are less expensive to be placed in the right orbit compared to higher orbit
satellites (such as GEO and MEQ) and, because of their proximity to the ground,
require lower signal strength (Signal strength’s loss is proportional to the distance
squared, which means that a huge signal strength is needed for high orbit satellites). In
addition to this, there are important cost differences in the equipment needed onboard
and on the ground to support the two types of missions.

Thus, the choice between a constellation of LEO satellites or of higher orbit satellites,
should really depend on the type of application the satellites have and the type of

service required.



For example, LEO satellites find one of the most common applications in the field of
Earth Observation (because they have a high resolution for the Earth’s surface).
Examples of commercial LEO projects are Iridium (780 km, 66 satellites) and
Globalstar (1400 km , 48 satellites) [15]. Iridium is the largest commercial satellite
constellation in the world; its main purpose is delivering essential communications
services to and from remote areas where no other form of communication is available
[18].

On the other hand, Globalstar [19] provides reliable voice and data service across

USA and in more than 100 other countries.

1.3.2 Medium Earth Orbit (MEO) Satellites

Medium Earth Orbit (MEO) Satellites are found at altitudes ranging from a few
hundred to a few thousand miles (1000 Km to around 10000 Km.).

The MEO orbit is a compromise between the LEO and GEO orbits. Compared to
LEOs, they have more distant orbits, thus, a fewer number of MEO satellites is
required to provide full earth coverage. Compared to GEO satellites, MEO operate
with smaller and less expensive equipment and with less latency (signal delay).
However, even though MEO satellites are in view longer than LEO satellites, they
may not always be positioned at an optimal elevation. Thus, MEO systems often offer
coverage overlap from satellite to satellite, which requires more sophisticated tracking
and switching schemes than GEO satellites.

MEO constellations have a number of satellites that range roughly from 10 to 17, and
they are distributed over two or three orbital planes.

A typical example of a MEO global satellite system is ICO (10335 km, 10 satellites)
[15], which integrates mobile satellite communications capability with terrestrial
networks. ICO system can route calls from terrestrial networks through ground

stations that will select a satellite through which the call will be connected [16][17].

1.3.3 Geosynchronous Earth Orbit (GEO) Satellites

Geosynchronous Earth Orbit (GEO) satellites orbit at an altitude of about 36000 Km

and their orbit period equals to the rotation period of Earth.



GEO satellite systems offer maximum coverage of the Earth area with a minimum
number of satellites. Three GEO satellites can, in fact, provide full Earth coverage.
For these reasons, GEO satellites are mainly used for data broadcast purposes.
However, the round trip time is about 250 ms and they tend to have high bit error
rates.

Geostationary satellites are a particular type of geosynchronous satellites. They have
zero eccentricity and zero inclination, i.e., they orbit the Earth over the equator.

A satellite in a geostationary orbit seems to remain in a fixed position to an earth-
based observer, because it revolves around the Earth at a constant speed once per day
over the equator.

The geostationary orbit is very useful for communications purposes because ground
based antennae, which must be directed toward the satellite, can operate effectively
without the need for expensive equipment to track the satellite’s motion. Especially
for applications that necessitate a large number of ground antennas, the money saved
in ground equipment can more than justify the onboard complexity and extra cost of
lifting a satellite into a geostationary orbit.

An example of a constellation of GEO satellites can be TDRSS (Tracking and Data
Really Satellite System) [10][11]. TDRSS provides links between low earth orbiting
spacecrafts and the ground. The TDRSS currently consists of six first generation
Tracking and Data Relay Satellites (TDRS); just three of those satellites are actually
used for operational support at any given time. The remaining vehicles provide
backup in case of failure of an operational spacecraft and, in some specialized cases,
various types of resources. The TDRSS supports many NASA missions; among them,
the Hubble Telescope, the Space Shuttle and, in the near future, the International

Space Station.

1.4 Protocols used in deep space network environment

Among the protocols that have been widely tested for application in a deep space
environment, TCP is one of the most important, and it is the one that the JBDS
simulator uses. Thus, it is necessary to provide an introduction to TCP’s most relevant

features.



1.4.1 The Transmission Control Protocol

The Transmission Control Protocol (TCP) standard was defined in RFC 793 [21] by
the Internet Engineering Task Force (IETF) in 1981.

It is part of the “Internet suite” of protocols. Anther protocol that belongs to this suite
is the Internet Protocol (IP), which sits below TCP and provides a number of services
to its upper layer.

The hierarchy of protocols is shown in Figure 1.
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Figure 1: The internet protocol suite (adapted from [22])

TCP is the transport layer protocol, while IP is the network layer protocol. As shown
in Figure 1, the transport layer protocol in the internet protocol suite, can be either
TCP or UDP (User Datagram Protocol). The difference between the two protocols
consists mostly in the type of service provided. TCP is a connection-oriented, reliable
protocol and ensures that all segments sent by the source will be received at the
destination. On the other hand, UDP does not establish a connection between source
and destination (each datagram contains its own address information), and the correct
and ordered delivery of data is not ensured. This means that the destination could
receive a lower number of datagrams compared to the number of datagrams that was

actually sent by the source and the messages could not be received in the right order.



A number of mechanisms are used to provide TCP’s reliability. These mechanisms

arc:

1. Computation of checksum;

2. Deletion of duplicates;
3. Retransmission;

4. Time-out;

5. Sequencing.

The checksum is a computed value that depends on the content of a segment. This
value is sent along with the segment when it is transmitted. The receiver computes a
new checksum on the data it received and can compare this value with the one sent
along with the segment, in order to understand if the data was received correctly.
Another feature is deletion of duplicates: TCP keeps track of the segments received in
order to discard duplicate copies of data that has already been received.

Moreover, in order to guarantee the delivery of data, TCP retransmits segments that
may be lost or damaged. When the destination receives correctly a segment it is
supposed to send back an acknowledgement message to the sender. This message
confirms successful reception of data. The lack of this message, leads to a
retransmission.

The sender waits for a bounded length of time for an acknowledgement message. If
the acknowledgement is not received within that time, then the source will retransmit
the data segment.

Another feature that ensures reliable service is sequencing. Each TCP segment
contains a sequence number that will give the receiver the chance to reconstruct the

right order of the messages.

1.4.1.1 Format of IP packet header
Before analysing the format of the TCP packet header, it is important to briefly

explain the IP packet header fields (shown in Figure 2), in particular IP version 4
(IPv4):

10



o The first field contains the current version of IP. For IPv4, this has a value of
4.

o The IP Header Length field is the second and it is usually set to 5

o The Type of Service field indicates particular Quality of Service needs from
the network.

e Total length contains the sum of the IP header length and of the payload
length.

e The Identification is used during reassembly of fragmented datagrams’.

o The Flags field contains three flags that give instruction to routers about
whether they are allowed to fragment a datagram

e The Fragmentation offset indicates where in the datagram this fragment
belongs.

e Time to Live (TTL) is the maximum number of hops that the packet is allowed
to live. It is useful to prevent routing loops. If this field contains 0, the packet
should be destroyed.

e The Protocol field contains the value which marks the protocol used in the
data field of the packet (In Figure 2 the value for the protocol field is 6
because the IP payload contains a TCP segment).

e Header Checksum contains the IP header checksum. This value can change at
each hop (for example because of the TTL).

e Source Address contains the IP address of the sender.

o Destination Address contains the IP address of the receiver.

o The Options field contains different options, it has variable length and it is not
often used.

o The Padding field is used to ensure that the IP header ends within a 32 bit

boundary.

! Datagram fragmentation is the process in which an IP datagram is broken into smaller pieces to fit the
requirements of a given physical network [53].

11
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Figure 2: TCP and IP headers’ format (adapted from [25])

1.4.1.2 Format of TCP segment

The format of a TCP segment is shown in Figure 2.

The source and port numbers identify the ports dedicated, at the source and at the
destination, for the communication between sender and receiver. These two are two
very important fields, because, as explained in chapter 5, in the JBDS simulator the
source and destination ports number will be used to identify the endpoints in the
simulation.

The sequence number field is used to reconstruct the order of segments, whereas the
acknowledgement number field identifies the next data byte the sender expects from
the receiver. Therefore, the number will be one greater than the most recently
received data segment. This field is only used when the ACK control bit is turned on.
The Data Offset field specifies the length of the TCP header; whereas the bits that
follow in the header are unused, reserved for future use.

The TCP segment header contains some useful control bits:

e Urgent Pointer (URG). This bit communicates to the receiver whether the
urgent pointer field contains information that should be read or not.
o Acknowledgement (ACK). This bit is set when the segment is an

acknowledgement message.
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o Push Function (PSH). If this bit field is set, the receiver should deliver this
segment to the receiving application as soon as possible.

e Reset the Connection (RST). This bit is set when the sender is aborting the
connection.

e Synchronize (SYN). This bit is used during the initial stages of connection
establishment between a sender and receiver and means that the sender is
attempting to “synchronize” sequence numbers.

e No More Data from Sender (FIN). This bit is set when the sender wants to
communicate to the receiver that it has reached the end of its byte stream for

the current TCP connection.

The other fields that are always present in a TCP header are window, checksum and
Urgent Pointer. The content of the checksum field has been already explained.

The window field tells the sender how much data the receiver is willing to accept, and
the urgent pointer (read when the URG flag is set), communicates to the receiver

where the last byte of urgent data in the segment ends.

1.4.1.3 Connection establishment and termination

The procedure to establish a connection between two endpoints is called 3-way
handshake, because, during this phase, three messages are exchanged between the two
hosts. The first message is sent from the host (A, for example) which wants to
establish a connection with another host (B, for example); thus, it is a request for
connection (the SYN bit is employed for this purpose). The second message (from B
to A) is an acknowledgement to the first message and a connection acceptance.

The third message goes back from A to B and it is the acknowledgement to the second
message, and states the establishment of the connection.

On the other hand, in order for a connection to be released, four segments are required
to completely close a connection. This is due to the fact that TCP is a full-duplex
protocol, which means that each end must shut down the connection independently
from the other. The first two messages close the communication at one side and the

other two close it at the other side.

13



1.4.1.4 Flow and congestion control

In TCP, flow control is a technique that ensures that the sender’s sending rate matches
the network and receiver transmission rate. Flow and congestion control are different
mechanisms since the second mostly refers to overload of intermediate network
devices, as IP routers.

Flow control is done by the means of the so-called sliding window. Figure 3 shows a
sliding window of 4 segments.

TCP’s window is the range of segment’s sequence numbers that the receiver is
prepared to accept in its buffer. Thus, the receiver, with every acknowledgement
message, must specify the allowed number of octets that the sender may transmit
before receiving further permission [21], (this is the purpose of the window field in
the header). Therefore, the sender can send up to this amount of data before waiting
for an update on the window size from the receiver. The sender has to buffer all its
own sent data until it receives an acknowledgement for that data. When an
acknowledgement message is received the sender can infer that the segment has been

correctly received by the receiver and can move the sliding window (Figure 3 (b)).

window

Figure 3: TCP’s sliding window (adapted from [23])
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If an acknowledgement for a segment is not received within the timeout, it is
retransmitted.

TCP uses a congestion window (cwnd) on the sender side for congestion avoidance.
The congestion window indicates the maximum amount of data that can be sent out
on a connection without being acknowledged. TCP detects congestion when it fails to
receive an acknowledgement for a packet within the estimated timeout or when it
receives three duplicate acknowledgements. In such a situation, it decreases the
congestion window to one maximum segment size and the congestion window
threshold (ssthresh). At the time congestion is experienced ssthresh is set to half of the
congestion window. However, if after a loss the sender receives acknowledgements
for all the packets that it transmitted within the timeout period, then the congestion
window increases quickly (it is doubled each time an acknowledgement is received)
until the threshold is reached (slow start), and after that, it is increased by one
segment every time a new acknowledgement is received (congestion avoidance). The
slow start and congestion avoidance mechanisms were firstly introduced as an
improvement of TCP’s congestion performance, usually called TCP Tahoe [24].
There is a variation of the slow start algorithm known as fast recovery. In the fast
recovery algorithm, when segments are not received (detected by three duplicate
acknowledgements) the congestion window size is reduced to the slow-start threshold,
rather than to one segment.

Before Tahoe, TCP used the mechanism called additive increase multiplicative
decrease (AIMD), which incremented the congestion window by one for each
acknowledgment received and halfed it for every timeout.

Another important algorithm introduced with TCP Tahoe was fast retransmit. This
algorithm proposed the use of duplicate acknowledgements for congestion detection,
in other words, if 3 duplicate acknowledgements arrive at the sender, TCP assumes
that a segment has been lost and retransmits the missing segment without waiting for
the timeout to expire.

Together with these enhancements, a lot of work has been done in trying to improve
TCP. A great part of this work has been motivated by the shortcomings exhibited by
TCP when used with large bandwidth-delay products (BDP) [26].

15



1.4.2 TCP deficiencies in deep space network environment

Both experimental and analytical studies [2] showed that TCP has performance

deficiencies if applied in networks environments challenged by long propagation

delays and relatively high link error rates such as deep space networks.

It has been showed with research experiments and simulations that, in deep space

networks, TCP throughput decreases because of three main reasons:

The long propagation delays cause longer duration of the Slow Start phase
during which the sender may not use all the available bandwidth;

TCP’s throughput is limited by the formula (1)

throughput = window size / RTT (1)

Thus, for high RTTs, TCP’s throughput significantly decreases.

When TCP detects a packet loss, the congestion window is halved or reduced
to one segment (depending on the implementation). This tends to significantly
affect TCP performance. In fact the protocol was initially designed to work in
reliable network environments such as wired networks, i.e. with low link error
rates, where segment losses were mostly due to network congestion. In
wireless networks, instead, and especially in deep space networks, segment
losses occur mostly because of link/bit errors or for temporary loss of
connectivity. As a result, the sender decreases its transmission rate each time a
loss is experienced, which causes an unnecessary decrease in the use of the

available bandwidth and in the throughput in general.

In [27] the authors write about the problem of distinguishing between congestion

induced drops and those caused by corruption, in the absence of such a distinction,

packet loss is assumed to indicate congestion and the congestion window will be

reduced with the subsequent, unnecessary, worsening of performance. On the other

hand incorrectly interpreting loss as caused by corruption and not reducing the

transmission rate accordingly, can lead to congestive collapse.
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Many solutions have been proposed to overcome this problem, among them is worth
mentioning Enhanced-TCP, or E-TCP [28], where an agent (transit agent) is able to
determine the type of loss that occured with the use of an acknowledgment packet
(called ACKc.crn). The proposed scheme allows the transport protocol to distinguish
between congestion and corruption losses and then perform appropriate recovery
actions. The drawback is that E-TCP requires the addition of some functionalities at
the gateway node and the sender.

There are two standard methods that can be used by TCP receivers to generate
acknowledgments. The first one states that an acknowledgement should be generated
for each segment received at the destination, whereas the second states that in deep
space environments “delayed” acknowledgements should be used [29]. With the latter
approach, an acknowledgement message is generated for every second full-sized
segment, or if a second full-size segment does not arrive within a given timeout. In
other words, TCP delays transmission of acknowledgements for up to 200ms (in most
implementations), the hope is to have data ready in that time frame. Then, the
acknowledgement can be piggybacked with a data segment.

However, the congestion window size’s growth occurs much more slowly when using
delayed acknowledgements.

In the beginning of a new connection, the sender executes the slow start algorithm to
probe the availability of bandwidth along the path. The average time required by the

slow start to reach a bit rate B is shown in Equation (2).

tSlowStart = RTT.( 1 +10g2(B.RTT/Z)) (2)

RTT represents the round-trip time and / is the average packet length expressed in
bits. Equation (2) is satisfied if the delayed option is not implemented.

Table 1 shows the duration of the slow start phase for the three different types of
satellites described in paragraph 1.3, i.e., Low Earth Orbit (LEO), Medium Earth
Orbit (MEO) and Geosynchronous Earth Orbit (GEO) satellites, and for different
bandwidth (B) values.
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Type of satellite RTT tslowStart tslowStart tsiowstart
B=1Mb/sec B=10Mb/sec B=155Mb/sec
LEO 50 msec 0.18 sec 0.35 sec 0.55 sec
MEO 250 msec 1.49 sec 2.32 sec 3.31 sec
GEO 550 msec 3.91 sec 5.73 sec 7.91 sec

Table 1: Duration of the slow start phase for the different types of satellites [2]

If the delayed acknowledgement mechanism is implemented, then the time required
by the slow start algorithm to reach the bit rate B becomes even higher than the one
indicated in

Table 1. Many actual TCP applications, like HTTP, are based on the transfer of small
files. Thus, it can happen that the entire transfer occurs within the slow start phase. In
other words, it is possible that a TCP connection is not able to utilize all available

resources in the network.

1.4.3 The proposed solutions

To cope with the performance problems of the slow start algorithm in long
propagation delay networks such as satellite networks, there have been several
proposed solutions in recent years.

Increasing the initial congestion window (Increasing Initial Window: IIW) is one of
these solutions. This concept was first introduced by Allman, Floyd and Partridge in
1998 [30]. The idea is to initially set the congestion window size to a value larger than
1 but lower than 4, (1 < cwnd < 4). With this option, values reported in

Table 1 can be reduced by up to (3XxRTT), however these values can still be very high.
Another proposal is connection spoofing. This solution consists of having a router
located near the source, in between source and destination, that sends back
acknowledgements for the TCP segments it receives, even if they are not yet received
at the destination, in order to give the source the illusion of a short delay path.

TCP spoofing improves throughput performance but still it is not the perfect solution,

because of three main reasons:
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1. The router is responsible for the correct delivery of the all the TCP segments it
receives and acknowledges to the source. Thus, it is obliged to carry on a huge
amount of work.

2. The path should be static and the router should be always available. A failure
can bring to packet losses.

3. IfIP encryption is used, the scheme cannot be applied.

Another proposed solution, similar to TCP spoofing, is cascading TCP, also called
split TCP [31]; where one TCP connection is divided into multiple connections. This
solution is based on the introduction of proxy agents that split TCP into localized
segments. When a link failure occurs in one segment, other segments are still
available. Since, link failures are more probable in longer connections than in shorter
ones, the introduction of proxy agents especially benefits longer connections. In spite
of the advantages introduced with split TCP, unfortunately this solution has the same
problems as TCP spoofing.

Finally one of the most important algorithms: fast start [32]. Proposed by
Padmanabhan and Katz in 1998 especially for speed purposes in web data transfer, the
fast start algorithm is an alternative to the slow start algorithm. The basic idea of the
fast start alogorithm is to reuse the values of the transmission rate used in the recent
past. However, the transmission rate used in the past might be too high for the current
actual network condition, which may lead to congestion in the network. Thus, the
TCP segments transmitted during this fast start period are carried by low-priority IP
packets in order not to decrease the throughput of the actual data segments.
Experiments showed the effectiveness of the fast start algorithm compared to slow

start. However, fast start has the two main problems:

e The transmitted low-priority segments carry information that must be
delivered to the receiver, thus, they are important as the other segments, and, if
they get lost, then they must be retransmitted. Since, they have low priority,
they can be lost very easily; thus, the sender needs to enhance its recovery
algorithms.

o Fast start can only be applied if a recent value of the congestion window size

and for the same path, is available at the sender. This implies that within a
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short time the same sender has to transfer several files to the same receiver,

which may often not be the case.

Some other approaches are studied for links with high product bandwidth-delay, and
the results of these studies became variants of TCP. These protocols will be described

in the following paragraph.

1.4.4 The TCP/IP protocol variations

Some alternatives to TCP have been proposed to overcome its deficiencies especially
in deep space environment. TCP Westwood, TCP Peach and TCP Peach + are

considered particularly relevant.

1.4.4.1 TCP Westwood

TCP Westwood was proposed by Gerla, Sanadidi and Ren Wang in 2001 [4]. It
consists in a sender-side modification of the classical TCP congestion window
algorithm; it can be applied in both wired and wireless links, but the improvement is
most significant in wireless links with connectivity loss problems.

TCP Westwood estimates the end to end bandwidth in order to discriminate the cause
of packet loss (congestion or packet corruption).

The previous paragraph described a technique called TCP spoofing. The importance
of TCP Westwood lies in the fact that this technique is not needed for performance
enhancement; in fact, it fully complies with the end-to-end TCP design principle. The
idea is to continuously monitor the rate at which the acknowledgements are received
at the sender. The estimate is then used to compute the congestion window size and
the slow start threshold after a packet loss, which can be detected by three duplicate
acknowledgments or after a timeout.

The idea behind TCP Westwood is very simple, while TCP decreases the congestion
window after three duplicate acknowledgments, TCP Westwood selects a slow start
threshold and a congestion window which are consistent with the effective bandwidth
used at the time when congestion is experienced. This mechanism is called faster

recovery.
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1.4.4.2 TCP Peach

TCP-Peach proposes two new algorithms, called sudden start and rapid recovery. The
new algorithms are based on the concept of using low-priority segments, called
dummy segments to probe the availability of network resources. These segments
don’t carry any additional information (they are generated as a copy of the last
transmitted data segment), and they do not affect the delivery of actual data traffic.
Dummy segments are sent just after the segment containing data.

If a router on the connection path is congested, it starts discarding dummy segments
first (because of their low priority), thus there is no throughput decrease of actual data
segments, i.e., the traditional segments.

A very important thing to underline is that TCP Peach doesn’t imply any modification
of the TCP header; in fact the sender just has to set one or more of the six unused bits
in the TCP header to distinguish dummy segments from actual data segments.
However, this requires a modification of the receiver implementation.

The receiver recognizes dummy segments and acknowledges them to the sender. The
acknowledgements for dummy segments are also marked using one or more of the six
unused bits of the TCP header and are carried by low-priority IP segments. The
sender interprets the acknowledgements for dummy segments as the evidence that
there are unused resources in the network and accordingly, can increase its
transmission rate.

Another very important algorithm TCP Peach introduced is the sudden start
algorithm, which is supposed to substitute slow start.

In order to explain how this algorithm works, the concept of rwnd should be
introduced. Rwnd is the maximum value for the congestion window; thus, in the
sudden start algorithm, during the connection establishment phase, the sender sets the
congestion window to 1 and after the first data segment, it transmits rwnd - 1 dummy

segments every T, where T is computed as follows:

T=RTT/rwnd 3)
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As a result, after one RTT, the congestion window size increases very quickly. It is
also important to say that the RTT can de determined in advance during the
connection setup phase.

The rapid recovery algorithm is supposed to substitute fast recovery; its aim is to
solve the throughput degradation problem due to link errors. When a segment loss is
detected through a number of duplicate acknowledgments, the fast retransmit
algorithm is used. Just after the fast retransmit algorithm has completed, the rapid
recovery algorithm takes place, which will terminate when the acknowledgement for

the lost data segment is received. This means that the rapid recovery lasts for a RTT.

1.4.4.3 TCP Peach +

Experimental results assure the important result introduced by TCP Peach with the
sudden start and the rapid recovery algorithms. However, in 2002, Akyildiz, Zhang,
and Fang introduced a variation in the TCP Peach protocol that was called TCP
Peacht [3].

This protocol consists in an enhancement of TCP Peach goodpu‘[2 performance, for
application in satellite networks.

In TCP Peach+, two new algorithms are proposed: jump start and quick recovery
(variations of sudden start and rapid recovery), which are based on the usage of low
priority segments called NIL segments, that are mostly used to check resources
availability and error recovery.

Simulation experiments show that in particular situations TCP Peach+ performs better
than TCP-Peach, in terms of goodput, and achieves a fairer share of network
resources.

Further enhancement of these protocols are TCP Peach ++ and TCP Peachtree, these

protocols will not be described in detail.

1.4.5 The Bundle Protocol

2 Goodput is the number of bits per second forwarded to the correct destination minus the number of
bits lost or retransmitted.
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The Bundle protocol proposed by K. Scott and S. Burleigh, finds its application in
challenged network environment, as the other protocols just described.

The Bundle protocol is an application layer protocol. Thus, it sits on the top of the
transport layer (it could also sit on the top of TCP).

The key features of the Bundle Protocol include [33] [34]:

1. Custody-based retransmission;

2. Ability to cope with intermittent connectivity;

3. Ability to take advantage of scheduled, predicted, and opportunistic
connectivity (in addition to continuous connectivity);

4. Late binding of overlay network endpoint identifiers to constituent internet

addresses.

The Bundle Protocol doesn’t necessarily sit on the top of TCP/IP, but the interface
between it and the transport layer must be implemented according to the deployed
transport protocol. This interface is called “convergence layer adapter”.

The data unit exchanged between nodes implementing the Bundle Protocol (Bundle
Nodes) is called bundle.

Each node implementing the Bundle Protocol (bundle node) has three conceptual
components: a “bundle protocol agent”, a set of “convergence layer adapters”, and an
“application agent”.

The bundle protocol agent (BPA) of a node is the node component that offers services
to the Bundle Protocol and executes its procedures. The way this is accomplished is
an implementation matter. For example, BPA functionality might be implemented
individually in each of the nodes that belong to the network, or it could also be coded
as a single library that is used in common by any number of bundle nodes on a single
computer; finally it might be also implemented in hardware.

A convergence layer adapter (CLA) is an entity that sends and receives bundles on
behalf of the BPA, utilizing the services of the underlying transport protocol.

The application agent (AA) of a node is a component of the bundle node. The
application agent utilizes the services provided by the Bundle Protocol to effect
communication. It is composed by two elements, an administrative element and an

application-specific element.
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The application-specific element requests transmission and accepts delivery of data
units, in addition it processes application specific data units.

On the other hand, the administrative element requests transmission of administrative
records (status reports and custody signals), and it accepts delivery of and processes
any custody signals that the node receives. The way in which the AA performs its
functions is wholly an implementation matter.

Finally there is the Bundle endpoint. A bundle endpoint (or simply “endpoint™) is a
set of bundle nodes that are identified as a group by a “bundle endpoint ID”, which is
a text string.

Each bundle endpoint ID has the following structure:

<scheme name> : <scheme-specific part, or "SSP">

The scheme identified by the <scheme name> in an endpoint ID is a set of syntactic
and semantic rules that fully explain how to parse and interpret the scheme specific
part. The set of acceptable schemes is unlimited.

When the bundle protocol agent of a node states that a bundle must be “forwarded” to
an endpoint, the bundle is sent to all of the nodes that are currently in the “minimum
reception group” of that endpoint.

The “minimum reception group” of an endpoint is composed by:

e All the nodes that belong to an endpoint.
e A subset of n nodes belonging to an endpoint.

e A single node if the endpoint contains just one node.

A node must be registered to a group in order to belong to that group. Any number of
registrations may be concurrently associated with a given endpoint, and any number
of registrations may be concurrently associated with a given node.

When a node receives a bundle, its behaviour depends on whether or not the receiving
node is registered in the bundle's destination endpoint; if it is, then the bundle is
normally “delivered” to the node's application agent.

In order to understand what happens when the receiving node is not registered in the

bundle’s destination endpoint, the concept of bundle Custody must be introduced. A
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bundle node “accepts custody” upon forwarding a bundle when it retains a copy of the
bundle until the custody of that bundle is “released”.

A “custodial node” of a bundle is a node that has accepted custody of a bundle and
has not yet released that custody. When the necessity of forwarding the bundle is

determined, then the bundle is forwarded.

1.5 STK (Satellite Tool Kit)

The STK (Satellite Tool Kit) is a piece of software intended to support realistic
mission scenarios, and simulate them in real time with animation. STK is a very
useful tool for space, land, air and sea missions design. The user can provide different
kinds of input information and has the chance, by the means of two graphical user
interfaces (one in 2D and the other in 3D, shown in Figure 4 and Figure 5), to control
the objects interaction during the animation.

STK gives the user the chance to decide how many and which types of objects to
insert inside the simulation scenario, together with the position and the role they have
in the simulation.

The software comes with an up-to-date and complete database of:

e Well-known ground facilities.
e Well-known sites of interest.
e The most important stars, planets cities and satellites.

e Other important sites.

It is possible, for example, to use the internal database in order to determine the
position of a particular facility on Earth, such as Canberra or Goldstone STDN
(spaceflight tracking and data network) stations, or launch complexes such as Cape
Canaveral in Florida, but it is also possible to determine the location of site of interest,
for example the Apollo landing sites on the Moon.

Moreover it is possible to insert in the simulation user-defined objects loaded from
external files.

Thanks to the output files produced from the simulation it is possible to know with

extreme precision the distance between objects at a given time (for example between
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a satellite and a ground antenna); together with the access and lighting times, or the
error rates that can affect the communication between them. The accuracy of this rate
is based on complex computations involving among the others, the study of the
typical weather conditions of all the Earth areas.

The STK software suite comes with two beautiful graphical user interfaces (2D and

3D) that allow the user keeping track of the object in real time during the animation.

Figure 4: STK 2D User Interface window

Educational Use Only

Figure 5: STK 3D User Interface window
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The STK simulator allows the user animating the scenario, mastering the animation
speed and other parameters. Output data can be produced dynamically during the
animation (this feature lets the user keep trace of the objects in real time), or statically
independently from the animation.

The output reports and graphs can be accessed using the user interface provided by
the software (commands are available in order to generate text reports and graphs);
but it is also possible to access them using an external application written in C, Visual
Basic or Java.

The STK website [12] provides free downloadable implementation of the scripts in C,
Visual Basic and Java that allow any external application to interface STK. These
interfaces communicate with STK via a TCP/IP socket interface.

All STK features and capabilities can be divided in modules. Some of them are for
free and some others are not. Thanks to the licence obtained for educational purposes,
it was possible to use the STK’s commercial modules necessary for the development
of this thesis.

In particular three of them will be described:

e STK/Astrogator
e STK/Connect
e STK/Comm and Radar

STK/Astrogator is a powerful tool that lets the user program complex space mission
scenarios. Every part of the mission is considered as a different Mission control
sequence (MCS). By adding, removing, rearranging and editing MCS it is possible to
plan and create high complexity scenarios.

Obviously the plan and the creation of a space mission with STK/Astrogator require
specific knowledge about physics and astronomy. For this reason the STK simulator
provides a number of tutorials with explanations on how to create the desired scenario
and hints on how to set the different parameters.

The STK/Connect module provides an easy way to externally interface STK and work
in a client-server environment. It also provides a library to easily build applications

that communicate with STK. This library contains functions, constants and other
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messaging capabilities that can connect third-party applications to STK, and let them
receive information about the simulation.

In order to retrieve particular information from STK, a string command should be sent
to the simulator. The help manual contains the whole list of all the possible
commands that can be used.

Unfortunately the STK/Connect doesn’t provide some useful commands. It is not
possible for example to poll the simulator for dynamic reports to generate real time
data during an animation.

Figure 6 explains how the applications (STK and the external applications)

communicate with one another.
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Figure 6: STK/Connect interface to any external application (adapted from [12])
The STK/Comm and Radar module provides some very useful objects. Some of them
are sub-objects (which means that they are supposed to be internal to other objects

such as Facilities of Satellites), among them particular importance have Receivers and

Transmitters, needed for networking purposes.

1.5.1 The simulation objects

The type of STK scenario objects used for this thesis is a sub-set of all the available
objects. They include:

o Satellite objects
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e Facility objects;
e Receiver objects (internal to a Facility or a Satellite object);
o Transmitter objects (internal to a Facility or a Satellite object);

e Planet objects.

A Facility is a ground object that can be positioned on a number of planetary surfaces:
on Earth, on the Moon, or on any other planet object contained in the STK database
(which contains all the planets and the most important natural satellites of the solar
system).

A Satellite object can represent a satellite or a spacecraft (thanks to the
STK/Astrogator module). For each Satellite object is possible to set the type of orbit
and the type of propagator. Many different choices are available: for the types of orbit
(Geostationary, Polar, Molniya, Sun synchronous, Circular and so on), and for the
types of propagators (Two Body, J2 and J4 perturbation and Astrogator, of course).
Transmitter and Receiver objects are wuseful to simulate data concerning
communication. For example, it is possible to insert a transmitter as a sub-object of a
satellite object and a receiver as a sub-object of a Facility object, compute access

between them, and be able to obtain from the simulator report data such as:

e BER, which is the total Bit Error Rate as carried through the whole link. It
includes uplink noise contributions and any gains or losses.

e C/No, which is the total Carrier-to-Noise density at the receiver input as
carried through the whole link. As the BER, also the C/No carries uplink noise
contributions and any pre-receive gains or losses.

e EIRP, which is the Equivalent Isotropic Radiated Power: a measure of the
strength of the signal radiated by an antenna. EIRP takes into account the

losses in transmission and the gain of the antenna’ [35].
g

Finally the Planet objects. This type of object lets the user decide which of the

available planets object to insert in the simulation and its source of ephemeris data.

3 Antenna gain: “the measure of the effective performance of an antenna compared to a theoretical
antenna called an isotropic antenna” [50].
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1.6 The Scenarios

In order to evaluate the framework developed in this thesis, three scenarios were
created and saved with the STK user interface, and with the help of the STK’s
tutorials [42] and online forums

[43]. Chapter 6 provides a complete description of the differences between these
scenarios, while this paragraph introduces some theoretic concepts useful in order to
understand the network architecture employed in the scenarios.

The simulation scenarios were chosen in order to be as realistic as possible, hence the
information contained in the paper [44], which describes the network architectures
employed in deep space networks, have been widely used.

In all of the three scenarios, the objects involved in the simulation are:

1. A planet object with the Moon as central body.
A satellite object called MoonProbe

Three Facilities objects on the Moon, called Lunarl, Lunar2 and Lunar3

el

Four Facilities objects on Earth: three of them are actively used within the
simulation. The fourth one is just the launch site for MoonProbe. Thanks to
STK’s database, it was possible to introduce in the scenario some well known
Facilities. The three antennas are the well-known Goldstone, Madrid and
Canberra, while the launch site is located in Cape Canaveral. These well
known Facilities were chosen with the idea of conferring more realism to the

scenario.

A short description of the space mission is necessary, in order to understand how
communication can be affected by the differences between the three scenarios.

The satellite object’s travel was created using the STK module called Astrogator, this
module allows the user to “build” the mission dividing it in different parts. All these

parts will be described in the following paragraph.

1.6.1 The MoonProbe’s travel

The space mission is settled in the first days of the year 2007. The MoonProbe is

launched from Cape Canaveral on the 1% January at 4:13 am. At 4:23 am the probe
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starts orbiting around Earth. This orbit has a very low altitude (it is a LEO), and it is
called “parking orbit”. A parking orbit is an intermediate, waiting orbit adopted by a
spacecraft between two phases of a mission. The two phases, in this case are the
launch and the Trans lunar injection.

The purposes of adopting a parking orbit are mostly three [45]:

e Perform an injection burn into a higher orbit;

e Break or escape orbit, leaving influence of the body around which it is orbiting
(which is the case of our scenario);

e Perform a decent burn, to enter (or re-enter) the atmosphere (if it exists) of the

body around which it is orbiting and then land.

At 5:09 am the probe leaves the parking orbit, using a propulsion maneuver called
Trans lunar injection. This maneuver is used to set the spacecraft on a trajectory that
will intersect the Moon, and it is usually performed by a rocket engine.

Figure 7 shows the different stages in the probe’s travel that had been described

before.

Launch complex

Parking orbit

T Trans Lunar Injection

Figure 7: The launch, the parking orbit and the Trans lunar injection
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After almost 3 days, the spacecraft leaves the Earth gravity attraction and enters the
Moon’s gravity. This attraction will lead the spacecraft to the Periselene point® in
order to enter the orbit around the Moon.

STK’s tools provide a valid help in planning the probe’s orbit. For instance, it is
necessary to input the simulator with the desired eccentricity and inclination for the
probe’s orbit around the Moon, and STK will automatically change parameters like
the launch date, trajectory or speed.

In the sample simulation scenario MoonProbe enters its orbit around the Moon on the
4™ of January, with an eccentricity’ of 0.3 and an inclination® of roughly 90°. A fter
the MoonProbe starts orbiting around the Moon it starts being visible to the three

Lunar facilities, from this point on the landers will start communicating with the

probe’.

Moon's ecliptic
7T 7 To Periselene
= Probe’s orbit around the Moon

Figure 8: MoonProbe’s trajectory adopted to enter the orbit around the Moon

The three ground antennas positions were chosen with the purpose of providing

continuous visibility to the probe.

*“The Periselene point in an elliptical orbit is the point of closest approach to the Moon, as opposed to
Aposelene, which is the farthest point in the orbit” [46)].

> “In astrodynamics, under standard assumptions any orbit must be of conic section shape. The
eccentricity of this conic section, the orbit's eccentricity, defines its absolute shape. Eccentricity may be
interpreted as a measure of how much this shape deviates from a circle. Eccentricity is equal to 0 for
circular orbits, whereas it is comprised between 0 and 1 for elliptical orbits” [47]

8 “Inclination is the angular distance of the orbital plane from the plane of reference (usually the
primary's equator or the ecliptic of the central body), normally stated in degree”’[35].

’ A probe is a device fitted with a number of general purpose or mission specific sensors that is
designed to study conditions on, or near a planet.
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The communication scenario uses just some of the objects in the STK scenario: the
three ground Facilities, the Moon Probe and the three Lunars; each of them represents
a different node.

Moreover, in order to re-create the communication scenario in the most realistic way,
another node was introduced; a Traffic source. This node simulates a generic endpoint
on Earth that sends commands and receives data through the ground antennas. This
node could simulate a computer in a space centre (for example in the Kennedy Space

Centre).

1.7 Related work

Three are the main contributions in the field, given by three papers:

1. “Design of a space based Internet emulation system” by S. Baliga [6];

2. “Space Based Internet Network Emulation for Deep Space mission
applications” by Endres, Griffith and Malakooti [9];

3. “Network Simulation for LEO Satellite Networks” [8].

The first paper is dated 2002, and it is Baliga’s work. The approach described in this
paper, benefits from the work done by S. Rallapalli in [5]. They are both technical
reports published by the University of Kansas and sponsored by the Glenn Research
Center (NASA).

The approach proposed by Baliga and Rallapalli is to “...emulate the space
communication environment characteristics in hardware: This involves implementing
innovative algorithms for emulating the latency and bit error rate characteristics of
space communication links...” [6].

Their emulator was called SBI (Space Based Internet) emulator. In the SBI emulation
system, a physical node emulates a satellite in space, and an Ethernet device on the
node which is capable of transmission emulates communication on a satellite.

The SBI emulator is able to perform also routing tasks, and is composed by the

following three main parts (or modules):
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e The emulation software module, which is supposed to control and monitor the
emulation scenario and emulate portions of the scenarios, actually deployed in
hardware.

e The node software module, which comprises the modules responsible for the
routing, switching, instrument scheduling and data sourcing tasks.

e The emulation network, which deals with the data transfer mechanism.

Operations related to emulation interfaces are performed by the Virtual Ethernet
device layer within the Linux kernel and the features of satellite communication links,
like bandwidth constraint, propagation delay and bit error rate are emulated in the SBI
emulation system. In order to model deep space links, the SBI emulator uses the QoS
queuing disciplines; thus the code had to make kernel modifications. These
modifications are kernel specific, thus the operating system and the kernel can’t not
be upgraded without modification of the SBI emulator. This feature confers low
portability to the emulator.

This is the most important reason for the work done by Endres, Griffith and
Malakooti, in [9]. Their approach is socket based, but the details are not specified in
the paper; for example the language used to implement the emulator is unknown. All
the implementation details are hidden, apart from the steps performed to emulate the

delay and error rate:

1. Apply an error rate to the packet byte string.
2. Apply a delay.
3. Send the packet using a socket.

As already mentioned, the real implementation is hidden, but the delay and error rate
are applied at the node before the packet is actually sent. For this purpose “every
packet sent over the emulation network is passed through a filter before it is sent over
the emulation network”, and this filter is responsible for applying the delay and error
rate to the packet.

The authors underline that their emulator framework can be suitable for simulations
using different protocols, however an upper layer implementation of those protocols

should be provided.
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Both these first two approaches use STK as a tool to obtain realistic simulation data.
The last approach described relies on a network simulator, maybe the most popular
and used: ns-2. The strength of ns-2 is that it is an open source piece of software and
because of this reason it has been improved and modified over time.

ns-2 comes with an extension, developed in 1998 within the CMU Monarch project
[7], that allows the user simulating data communication in wireless networks.

It is possible to simulate the delay between nodes and their movement over time.
Unfortunately the CMU Monarch Project extension didn’t consider that two nodes
could move in a 3D space environment. For this reason Henderson and Katz
introduced an enhancement of ns-2 for 3 Dimension scenarios.

This approach leads to the chance of simulating very different network scenarios, for
example, with ground stations on Earth, Moon, Mars and so on, and satellites orbiting
around the ground stations, along with rovers and aircrafts moving on planet’s

surfaces.
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2 The JBDS simulator’s high level design

The new approach proposed in this thesis, relies on the use of Java TCP/IP sockets
and IP layer sockets (raw sockets), in order to simulate data communication between
nodes in a deep space environment. In the JBDS simulator the nodes have direct
connections with one another and the delay and error rate are simulated using an IP
layer proxy that is completely transparent to the nodes. This framework’s application
field lays in the analysis of deep space protocols performance, and since it uses TCP,
it could be useful to test and compare the performance of application layer protocols

(for example the Bundle protocol). This approach offers two important enhancements

compared to the former approaches:

1. Kernel modifications are not deployed; thus the framework doesn’t need any
code or kernel update to make it portable. The JBDS simulator runs in Linux
to benefit of Unix raw-socket’s compatibility.

2. No protocols’ implementations provided by any simulator are used, but the
real protocol stack instead, and actual data packets are sent through the

network. This feature is likely to make the result data obtained more realistic.

2.1 The JBDS simulator architecture

The software high level architecture is shown in Figure 9:
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Figure 9: The software’s high level architecture.
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The STK module (displayed on the left in Figure 9) has been described in paragraph
1.5 and the way it connects to any external application is in Figure 6. The A interface
in Figure 9, represents the TCP/IP socket interface that makes any external
application communicate with the simulator. In order to properly poll STK for
information, commands must be sent in a particular format. Hence, an interface is
needed to provide this service (STK Interface module in Figure 9). The Java class
StkCon is freely downloadable from the STK website

[12], and provides methods such as connect (), disconnect ( ) and sendConCommand
(), in particular, the last one in the list takes a String object as a parameter, which
contains the command to forward to STK. The string sent to STK via the
sendConcommand ( ) and their syntax are described in chapter 3.

The Manager module in Figure 9 has the core functionalities in the JBDS simulator;
its internal components communicate one another, with the nodes and with the Proxy
via the Management network. Message and command passing over this network is not
really done using sockets, but through method calls instead, using the O-O way. It is
important to distinguish between this network and the data network, which uses
sockets for communication and it is employed for message passing between the nodes
of the simulation. The idea of the separation between these two networks was taken
from [5]. Each node represents a different object in the STK scenario; nodes have
different functions: they send packets to the other nodes, perform trivial routing using
tables and are responsible for the simulation output; the information they use to send
packets to the other nodes (such access times, delay and BER, bit error rate,
associated with a link) is constantly uploaded by the manager. Each node has direct
socket connections with the other nodes it is allowed to communicate with.

The Proxy module (shown on the bottom in Figure 9), is responsible for filtering the
packets at the IP level, delaying them, and applying an error to the packets. The
functionality of the Proxy in the simulation will be described more in detail in

chapters5.
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2.2 The JBDS simulator’s user

The JBDS simulator’s user has the chance to interact with the application providing
and editing the XML input file; moreover he/she can start and terminate the
simulation (the simulator polls STK for the start and stop date, however the user can
decide to interrupt the simulation beforehand). Finally, the user can read the output of

the simulation, after its termination.

JavaDeepSpaceSimulator

Edit Simulation
Inpat

/ Start Simulation

gl

] Temminate

Simulation
Heer \

Read cutput

DG

Figure 10: The user’s UML use cases

The use cases shown in Figure 10 are commented in the following paragraphs, with a
list, for each of them, of the normal and alternative flows of events.
For each of the alternative events, an explanation of how the system, or the user

behaves in that situation is provided.

2.2.1 Edit simulation input

Normal flow of events:

1. The user starts a text editor application in order to create the XML input file;
The user starts editing the XML file;
The user finishes editing the file;

Ll

The user saves the XML file and closes the editor.
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2.2.2 Start simulation

Normal flow of events:
1. The user opens the Linux shell;
2. The user types a command to compile the JBDS simulator;
3. The user runs the JBDS simulator.
Alternative flow of events:
1. The XML file is not well formed or not correct.
a. The application displays an error message and forces termination.

2. The connection with STK fails.

a. The application displays an error message and forces termination.

2.2.3 Terminate simulation

Normal flow of events:

1. The user opens the Linux shell;

2. The user terminates the application.

2.2.4 Read output

Normal flow of events:

1. The user browses for the folder where the output file is stored

2. The user opens the output file with a text editor

Alternative flow of events:

1. The simulation didn’t produce any output data
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a. The simulation was not run correctly, and the user is obliged to run it

again in order to obtain the result file.

2.3 The JBDS simulator class and package diagram

The JBDS simulator package diagram is shown in Figure 11, whereas the class

diagram is shown in Figure 12: The JBDS simulator UML class diagram.
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Figure 11: The JBDS simulator UML package diagram

The package diagram shows the dependencies between packages, whereas the classes’
diagram shows the classes contained inside the packages and their interactions. The
classes and some details about their implementations are given in chapters 3, 4 and 5

more in detail.
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Figure 12: The JBDS simulator UML class diagram
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2.4 The JBDS simulator sequence diagram

Figure 13: The JBDS simulator UML sequence diagram shows a detailed UML
sequence diagram, which explains the steps performed during the initialization of the

simulation and the interaction between the different components.

Initialization | ‘ | f 1Data
| E.MI.ﬂIﬂEaEﬂ: TimeManager Updala e
Manager W Mana er I\."Iana r

creaLeNodesU I[ I ]
palselnputFllet]I | | I
| | 1
| | I
| | I
| | I
| | 1
) I I 1
simullfo) | Mode 1 ‘ Node 2 ‘ |Nc:dan | Proxy ‘ : : :
T
createNode(} | L \ | | : : :
T — - - | I
_____ - | | 1
- L] [ ! [ I |
craataF'roxy{}' | e 1 | | |
' ' = [ | i
I : [ | i B
crﬂ‘ateﬁeques&DataManager[J i | | . —
T T Lol
: : | | connect()
|
| | | iniI:UpdateMar:agerE]
[ [ | L ————]
I ' connect() |
| | o |
! ! = |
| | Lol |
[ [ |
[ [ |
| |
furnPortunbers() |
[ [ - | EUTOIUnoerl) |
| | e B B F T :
createTimeManager() | oo
| | | G507 RS S [EN FESm  na Vi R i St i
| | | Lcor i
| | ; |
1 merMotifyy }
| | il |
| | 1 o - - |
| | i e el i e P [N ] Pmm—— ]
| |
| |
[ [ —tq---FF-—---- Fr————m—— === Fr—————- —f———- r
[ [ i
I | LODHA dendCommand()|!
I [ : it :
| |
! |
: : : retumPeport{) |1
[ | | updateNodes()| | = ———| |l
| I | = updatelinks(} | |-—oo— :
I ' I i - == |
terminate() ! l ! = |
— terminatel) : I B R e N Sy Y e R e B D o | o R "i'______-
I I e G | ik | T | o5 _discunnec']—
i | | L o i T

Figure 13: The JBDS simulator UML sequence diagram

All the details about the components’ message passing will be described in the

following chapters.

42




3 The Manager

The manager performs the core functionalities of the software. It is responsible for:

e The initialization of the simulation.
e The input of data from STK.

e The updating of nodes’ information
e The control of simulation time.

e The output of the simulation.

The manager is the module that is supposed to master all these tasks, but it has been
modularized, thus each of the modules is actually responsible for just one of these
tasks.

The manager’s sub-modules and their interfaces are shown in Figure 14. All the
interfaces between sub-modules are displayed using arrows; each of those arrows
represents communication and data exchange that takes place in the management

network. The sub-modules that make up the manager module are the following:

e The Initialization Manager;
e The Request Data Manager;
e The Node Update Manager;
e The Time Manager;

e The Report Writer Manager.

Manager
s STK Request| L |initialization E
Interface [ Data Manager XML fle
l Manager
> w] =
y r y
Update Manager
Manager =z Manager
w m Y ad
Y Y

To and from the - ]

"'h-—.-’

Proxy and ] Management Network m
nodes

Figure 14: The Manager’s internal architecture
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3.1 The Initialization Manager

The Initialization manager is the module that deals with the initialization of the
simulation.

Figure 14 shows how this module interfaces the other manager’s modules (the D, L,
M and N interfaces) and the external XML file (the E interface).

The Initialization Manager is responsible for all the tasks that have to be performed
when the simulation starts. Most of the times it doesn’t perform these tasks itself but it
loads other modules that will be responsible for them. Figure 14 shows the E interface
that lets the Initialization Manager’s module load the configuration information from
an XML file edited by the user. After loading the XML file a sub-component of the
Initialization manager parses it and the output of this process is sent through the
Management Network to the second sub-component: the Node Creator, as shown in

Figure 15.

Initialization
Manager

XML Parser -

'

Node Creator

XML file

Y Y

Request Data
Manager

Time Manager

Y Y
To the nodes To the Proxy

Figure 15: The Initialization Manager module

The Node Creator is responsible for the creation and initialization of the nodes, thus it
directly communicates with them. After the Node Creator completes its task the
Initialization Manager loads and starts, the Request Data Manager, the Time Manager
and the Proxy modules. The Time Manager is the last component to be initialized.

When the Time Manager is created the simulation begins.
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The initialization phase is shown in the sequence diagram in Figure 13. At first the
InitializationManager initialises the NodeCreator, which parses the XML input file
and then, with the information gathered from the input file it creates the nodes. After
creating the nodes the Initialization Manager initializes the Proxy, the
RequestDataManager and the TimeManager (with the createProxy(),
createRequestDataManager () and createTimeManager() methods).

Since it initializes all the simulation’s modules, InitializationManager is the only class
in the project that contains the main method.

All the manager’s classes are contained in a package called manager shown in Figure
12, but the InitializationManager class, together with its support classes (NodeCreator

and XmlFileParser) are included in a sub-package called initializationManager.

3.2 The Request Data Manager

The task of the Request Data Manager is polling STK for information. It initializes
the connection with the simulator (STK), and periodically asks for “fresh”
information.

The interface between STK and the Manager is bidirectional (interface B in Figure 9):
the Manager asks for information providing a command string, and the STK interface
returns the information required.

As already mentioned, the methods belonging to the StkCon class that are used in this
module are connect ( ), disconnect ( ) and sendConCommand ( ). This last method is
needed in order to be able to send the appropriate commands to STK and obtain the
needed information.

The flow of execution of these commands is shown on the right in Figure 13: the
RequestDataManager establishes a connection with STK using StkCon and then,
inside a loop sends commands and receives data. Some commands are used just
during the initialization phase; some others are used in the whole simulation.

A very relevant command is the initialization of the animation.

The idea for this thesis, was to use STK, not just as a source of reliable data, but also
as a way to graphically check the progress of the simulation, since, as already

metioned, STK provides two graphical interfaces (the 2D and the 3D).
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For this reason, one of the first commands sent to STK, is:

stkConnectObject.sendConCommand("Animate Scenario/"+ scenarioName + " Start End");

stkConnectObject.sendConCommand("Animate Scenario/"+ scenarioName + " TimeStep 10");

The first line of code asks STK to start the animation for the scenario identified by the
scenarioName String, whereas the second sets the animation TimeStep, i.e. the
animation speed.

Unfortunately the hardware requirements for STK are particularly high, thus running
the animation and the polling STK for information at the same time tends to slow
STK so much that, with the machine used for the development of this thesis, it
becomes hard to see in real time the progress of the animation.

Before animating the STK simulation, it is necessary to load the scenario and to set
the main features of the output data.

It is possible to create the scenario, all the objects involved and their interactions
sending command to STK from an external application using STK/Connect, instead of
using the STK user interface. However, this choice was rejected because of the
complexity of some of the commands and for the complexity of the scenario to create;
as a matter of fact, the command list doesn’t provide some of the necessary
commands.

Hence, the scenario was created using the STK user interface, saved and loaded from
the simulator. Before loading the scenario is therefore necessary to check whether it is
not already loaded, this is particularly important because if the scenario is already
loaded and an external application tries to load it a second time STK could display an
error message.

As already mentioned, at this stage (after loading the scenario), it is necessary to ask
STK to provide the output in the desired format. An example of this could be the date
format. By default, STK manages dates using the Gregorian UTC format (for
example: “1 Jul 2005 12:00:00.000”), for ease of comparison between dates it was
necessary to change it into the following format: YYYY/MM/DD Time (“2005/07/01
12:00:00.000"). This is a STK/Connect parameter; thus, it has to be set from the
external application, and within the Connect session.

Two of the other important commands used, are the ones that return the range

(distance) between objects (fro example from a Facility to a Satellite) and link budget
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information (for example the BER). These commands are shown below, the first one
polls for the report concerning Azimuth®, Elevation and Range (AER), but just the
range value is extracted from the report and actually used for the simulation.

The range value (which is the distance between objects) is particularly relevant for the

JBDS simulator, because it will be used to compute the delay associated to a data link.

String range = stkConnectObject.sendConCommand("GetReport */"
+ route.getSourceType()
+ "/
route.getSourceName()
"/Transmitter/Transmitter"
route.getSourceName()
" \"AER\" /"
route.getDestinationType()
"
route.getDestinationName()
"/Receiver/Receiver"
route.getDestinationName() + " \""
start + "\" \"" + stop + "\" 60");

+ + + + + 4+ + + + +

This command specifies the source and destination objects, within the scenario and
asks STK to compute the AER report for them; the start and stop Strings indicate the
start and stop times, and 60 the time-step between measurements.

The time step is quite relevant because the command is actually asking STK to report
AER values for every simulation minute.

The start string at the beginning of the simulation corresponds to the simulation start
time provided by STK at initialization time, whereas the stop string is computed from
the start string with the addition of an interval that can be set according to the desired
time granularity. By default, the interval was set to one simulation day, which means
that the report generated and sent by STK will contain the AER values computed at
each simulation minute (the 60 in the command), for the total duration of one
simulation day. After the first request the content of the start string will become the
one of the stop string and the stop string value will incremented by one day, for the

next request of data.

¥ Azimuth: “The horizontal angular distance between the vertical plane containing a point in the sky
and true south. ”’[54].
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The code to poll for a link budget report is very similar to the previous one:

String budget = stkConnectObject.sendConCommand("GetReport */"
+ route.getSourceType()
+ "/
route.getSourceName()
"/Transmitter/Transmitter"
route.getSourceName()
"\"Link Budget\" "
route.getDestinationType()
"
route.getDestinationName()
"/Receiver/Receiver"
route.getDestinationName() + " \""
start + "\" \"" + stop + "\" 60");

+ + + + + 4+ + + + +

The difference between the two commands is, of course, the name of the report (AER
in the first command and Link Budget in the second).
The reply that comes from STK to such requests is given as a String; the following is

a sample (part of an AER report):

"Time (YYYY/MM/DD)","Azimuth (deg)"™,"Elevation (deg)","Range (km)"
2007/01/01 05:12:26.235,322.596,0.000,2264.630913

2007/01/01 05:13:26.000,338.033,2.399,2274.570585

2007/01/01 05:14:26.000,352.419,3.904,2437.709547

2007/01/01 05:15:26.000,4.390,4.487,2722.843548

2007/01/01 05:16:26.000,13.772,4.412,3092.048249

2007/01/01 05:17:26.000,20.988,3.952,3514.586225

2007/01/01 05:18:26.000,26.564,3.289,3969.343258

2007/01/01 05:19:26.000,30.938,2.533,4442.657255

2007/01/01 05:20:26.000,34.432,1.743,4925.784968

For the JBDS simulator purposes two very important data contained in the previous
report will be extracted. The first datum is the range (that, as already mentioned, will
be used to compute the delay), and the second datum is the relative time.

It is possible to obtain the output of these commands in a text file (using the command
Report instead of GetReport and specifying the location where to store the file and the
type of file to generate). However, the choice of one approach over the other really

depends on the purposes of the external application. Thus, after performing a
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comparison between the speeds of one approach and the other the return String was
preferred to the output file.

As shown in Figure 14, the Request Data Manager module produces some data output
that will be used by another module: the Node Update Manager.

The RequestDataManager class was implemented as an extension of the Thread class.
Thus it contains a run method which is supposed to periodically send requests to STK
and pass the information obtained to the Node Update Manager module (represented
by the UpdateManager class). To avoid wuseless computations, the
RequestDataManager thread sleeps for some time before forwarding a new request to

STK.

3.3 The Node Update Manager

The Node Update Manager inputs the reports generated by the Request Data Manager
and updates the Node information in order to make them use this information during
the simulation.

The execution flow is shown in Figure 13: the RequestDataManager initializes the
UpdateManager module during the initialization, and then after receiving data from
STK it asks the UpdateManager to update the nodes. Figure 13 shows a loop, which
means that these operations are done continuously till the end of the simulation.

The datum passed from the RequestDataManager to the UpdateManager is a string,
thus the UpdateManager relies on a tool that tokenizes the input string received from
the RequestDataManager and extracts the useful information from the STK report.
The Node Update Manager creates data structures that will be used by the nodes to
read the information related to a particular Link at a certain time. The type of object
used to store these data is an Access object which contains one field for the date,
another field for the delay, and another one for the error rate. Thus the output of this

module is an update in the collection of Access objects for each of the Links.

3.4 The Time Manager

All the nodes in the simulation should be synchronized, otherwise if the information

used by one of the nodes to communicate with the others is not up-to-date, the output
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of the simulation could show a strange behaviour (for example a node could send data
when the destination is not available). The Time Manager is a component that
overcomes to this problem. It is loaded at the beginning of the simulation by the
Initialization Manager, and then it deals with signalling the nodes all together and at
regular intervals (as shown in Figure 13). It works with a wait and notifyAll ( )
system, this way all the nodes are notified at the same time.

By default, the JBDS simulator notifies the nodes every second; however it is possible

to change this value depending on the user’s desired simulation speed.

3.5 The Report Writer Manager

The Report Writer Manager module deals with the output of the simulation. The
simulation produces an output text file, where every node is identified by its name.
When a node sends or receives a packet, it records that event in the text file. The file

generated is called “Report.txt”, and a sample of the content looks like the following:

0 0s2007/1/1 5:20:0.000 1153142834462 s:0 d:3
00r2007/1/1 5:21:0.000 1153142835875 s:0 d:3
0 0s2007/1/1 5:22:0.000 1153142836696 s:3 d:4
00r2007/1/1 5:22:0.000 1153142836796 s:3 d:4
01s2007/1/1 5:22:0.000 1153142851247 s:1 d:3
01r2007/1/1 5:23:0.000 1153142852508 s:1 d:3
01s2007/1/1 5:23:0.000 1153142862192 s:3 d:5
01r2007/1/1 5:23:0.000 1153142862343 s:3 d:5
02s2007/1/1 6:0:0.000 1153142876984 s:2 d:5
12s2007/1/1 6:0:0.000 1153142876984 s:3 d:5
2 2s2007/1/1 6:0:0.000 1153142876984 s:3 d:5
02r2007/1/1 6:0:0.000 1153142877104 s:3 d:5
12r2007/1/1 6:0:0.000 1153142877124 s:3 d:5
22r2007/1/1 6:0:0.000 1153142877174 s:3 d:5
11s2007/1/1 6:1:0.000 1153142878416 s:1 d:3
11r2007/1/1 6:1:0.000 1153142879627 s:1 d:3
11s2007/1/1 6:2:0.000 1153142881560 s:3 d:5
11r2007/1/1 6:2:0.000 1153142881660 s:3 d:5
32s2007/1/1 6:27:0.000 1153142904774 s:2 d:5
32r2007/1/1 6:27:0.000 1153142904884 s: 2 d:5
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In the scenario that produced the previous output file there are six nodes called 0, 1, 2,
3,4 and 5. There are two possible roles for the nodes in the simulation, they can be
either traffic source or routers (these nodes can’t generate traffic, but they can receive
packets and forward them). In this particular scenario, the traffic sources are identified
by the numbers 0, 1 and 2, whereas the three router nodes are identified by 3, 4 and 5.

A single line in the output file should be read as follows:

0 0s2007/1/1 5:20:0.000 1153142834462 s:0 d:3

Figure 16: A sample line of the output file

The first “0” is the packet’s sequence number whereas the second “0” indicates the
name of the traffic source.

If, as in the example, there is more than one traffic source, then there will be more
than one packet with the same sequence number. Recording the source it is the only
way to distinguish between them.

The “s” stands for “sent”, which means that in that moment a packet created by the
source, is being sent or leaves the (sending) router’s queue and is forwarded to the
destination or to the next hop.

On the other hand “r” stands for received, which could mean both that, the packet has
been received by the destination, or that it has been queued up at the (receiving)
router.

What follows is the date; in the particular example it is “2007/1/1 5:20:0.000”. This
date is the current simulation time whereas the following value: “1153142904884” is
the system clock’s value at the time the event is reported, this value was added in the
output file in order to have a more precise estimation of the moment when the packet
is actually sent or received.

In the previous example, according to the simulation time, it seems that packets are
sent very rarely (roughly one packet per minute). This can be modified very easily, by
changing the time granularity of the STK reports and/or changing the TimeManager
time step. In general, if the simulation lasts for a long time it is probably better to use
larger time steps; the drawback to such approach is that the error rate and the distance

(therefore the delay), could have a sudden increase/decrease in value
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The last two sub-strings in Figure 16 indicate the packet’s source and temporary
destination (not the destination but the next hop). For example in Figure 16 the packet

has been sent by 0 and received by 3, while in this case:

00K 2007/1/15:21:0.000 1153142835875 s:0 d:3

Packet 0 is received by 3 and was sent by 0 (the node indicated after the “s:” string is
not the traffic source, but it is the last node in the path that forwarded the message,
however, it can correspond to the traffic source, as in the example). Thus, in this last
example 3 is the temporary destination for the packet and will have the task to
forward it to the next hop. This is the reason why, keeping reading through the output

file, the following line can be found:

00r2007/1/1 5:22:0.000 1153142836696 s:3 d:4

In this case node 3, who has received packet “0 0” at time 1153142835875, is
forwarding it to the destination, which is node 4. It is not actually possible to infer
from this line that the destination for the packet is actually node 4. The only way to
understand it is to browse for other lines in the output file that report information
related to packet “0 0.

As shown in Figure 14, the Report Writer Manager module is initialized by the
Initialization Manager at initialization time using the M interface. It is at this time that
the Report.txt file is created together with the output streams used to write into the
file.
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4 The Simulation Nodes

Every entity in the STK scenario is represented by an object of type Node. As shown
in Figure 9, all the nodes in the simulation are initialized and uploaded by the
Manager, but they never directly query the Manager for information. Interface C in
Figure 9 shows that the link is unidirectional. Thus, the nodes don’t really directly use
the Management Network but exclusively the Data Network.

Since every object in the STK scenario has a name, all the nodes in the JBDS
simulator topology must have a name, which corresponds to the one in the STK
scenario. As explained in paragraph 3.5, the Node’s names are also used as identifiers
in the output file.

A Node can be a Facility, a Satellite or a Traffic Source. Facilities and Satellites are
objects inside the STK scenario, whereas a Traffic Source is an entity that represents
an endpoint that periodically produces output data. This entity has been designed, in
order to confer more realism to the simulations. For instance, assuming to have, in the
scenario, a ground antenna (for example Goldstone, Canberra or Madrid) that
communicates with a satellite, then it would be more realistic not to assume that the
antenna is the real source of traffic or destination for the information coming from or
going to the satellite; in other words, a ground antenna shouldn’t be considered an
endpoint. These kinds of Facilities are supposed to receive and send traffic data, but,
of course, they can’t create traffic. Hence, there should be a traffic source: for
example it could be a computer that from a space centre communicates to the antenna
using the wired network.

For this reason, in the JBDS simulator the link between Facilities and Traffic Source
is assumed to have a constant delay of 100 ms. However, it is worth underlining that
there could be some kind of Facilities able to produce data traffic. It is the case of, for
example, the Lunar objects that belong to the scenarios used for the evaluation of this
framework (chapter 6).

In general there is a distinction between two types of nodes:
1. The first type of node behaves as a traffic source and it could also be a sink for

data (ultimate destination for packets).

2. The second type of node behaves as a router, and/or as a sink for data.
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The first type uses a traffic model to generate packets to be sent to certain
destinations. Some of these nodes could also act like sinks for data, which means that
they could be the destination for some of the packets.

A traffic model is a model that describes the frequencies and time periods for
generation of packets by a Traffic Source. The traffic model could be random or have
particular time constraints. For example, a Traffic Source could produce traffic just in
particular periods of the day, or of the year, or at random intervals.

The second type of node is like a router; it is not allowed to produce traffic data and
can only receive and forward packets. These nodes have an internal buffer where
every incoming packet is queued, in order to be forwarded to the next hop in the path.
This kind of nodes could also represent a sink for data. In that case an incoming
packet is not queued, but it is discarded (after reporting the receipt to the output file).
This difference is reflected in the code with the use of two different classes, children
of a super-class which implements their common behaviour. The super class is Node
and the two sub-classes are TrafficSourceNode and RouterNode. Figure 12, on the
right part, shows these three classes and their relationships (contained in the
dataNetwork.node package).

As the Node class is supposed to implement the general behaviour, it contains all the
methods that let the manager update the information relative to the links. This
collection of data is stored inside a Java Vector, containing objects of type Link.

The objects of type Link represent, as the name suggest, a single connection that the

Node has with another Node. The different fields in a Link object are:

e The link’s source. This field corresponds to the Node’s name; it is useful
especially for the UpdateManager class.

e The link’s destination. This field represents the link’s destination name.

o The Access Vector, which contains the Access objects created by the
UpdateManager class using the information retrieved from STK.

e The multipleAccess field is a Boolean that will be described in more detail

later on.
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4.1 A TrafficSourceNode

A TrafficSourceNode represents a Node that can generate traffic using a traffic
model. In this document traffic source will be used to refer to a TrafficSourceNode.
Every traffic source can have many available destinations, and each of the packets it
generates can have just one possible destination. In the simplest scenario possible a
TrafficSourceNode would iterate through all its possible destinations, generate one
packet for each destination and forward it to the next hop in the path that leads to the
final endpoint.

The most important difference between a TrafficSourceNode and a RouterNode is the
lack of a buffer (queue) in the TrafficSourceNode. As a matter of fact, this kind of
node doesn’t need to buffer any of the packets it receives, because it behaves as traffic
sink; thus, after receiving a packet and report the event to the ReportWriterManager,
the packet is discarded.

Every node has a direct socket connection with the other nodes it communicates with.
The implementation of the class TrafficSourceNode relies on threads for sending and
receiving packets, this last feature, implies to have a different receiving threads for
each of the possible links. In order to avoid the excessive slowdown of the
application, every node has just a sending thread.

In a TrafficSourceNode, the sending thread iterates through the possible destinations

and sends a packet to all of them, taking care of three very important aspects.

e The traffic model
e The visibility (or access)

e The multiple access order

The traffic model can be a constraint if, for example, a traffic source is supposed to
generate packets just in particular moments or periods. This constraint applies just for
this type of node, while the other two affect the sending process also in router nodes.
The visibility or access is determined on the basis of the information retrieved from
STK.

The multiple access is a Boolean property of a link which states that, when a link is
not available (when there is no visibility) but it has the multiple access property set to

true, then either one of the other available links departing from the same node, that
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have multiple access set to true, can be chosen to reach the same destination. It is like
an alternative path to the same destination. This property can be extremely useful in a
scenario where a traffic source, which can be a single computer in a space centre, has
to communicate with a satellite, the chosen ground transmitter the one that is in view
of the satellite in that particular moment.

The JBDS simulator implements only the situation where a node has just one group of
links with multiple accesses. It could have been interesting to implement also the case
where a node can have more than one set of links with multiple accesses, maybe

distinguishing them with a short integer instead of using a Boolean.

4.2 Routing

Since it can happen that a packet destination is farther than one hop from the traffic
source, then the packet should be routed to the right direction. A node is not able to
compute the best path, thus the XML input file should provide for every node the

available destinations.

4.2.1 The XML input file

An XML file could be defined in its structure and list of legal elements by two types
of documents

[51]:

e A DTD (Document Type Definition)
e An XML Schema

DTDs are easier to create compared to XML schemas, however XML schemas are
more powerful for description of complex XML files. For the purpose of this thesis
the descriptive syntax of DTDs was considered appropriate for the definition of the
XML input file.

The DTD that describes the XML input file is the following:

<?xml version="1.0" encoding="is0-8859-1"?>
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<IELEME

NT dtn (router+)>

<IATTLIST dtn name CDATA #REQUIRED path CDATA #REQUIRED >

<IELEME

NT router (address, routes+)>

<IATTLIST router name CDATA #REQUIRED type CDATA #REQUIRED >

<IELEME
<IELEME
<IELEME

NT address (#PCDATA)>
NT routes (route)>

NT route (destination)>

<IATTLIST route network CDATA #REQUIRED gateway CDATA #REQUIRED

<IELEME

gatewayName CDATA #REQUIRED gatewayType CDATA #REQUIRED >
NT destination (#PCDATA)>

The following is a sample of a very simple XML input file for the application:

<jbdss name="Scenariol" path="D:Program Files/AGI/STK6.0/WorkFiles/">

</jbdss>

<router name="Facilityl" type="Facility">
<address>facilityl.dsn.earth.simulation</address>
<routes>
<route network="satellite.simulation" gateway="satellite.simulation"
gatewayName="Satellitel" gatewayType="Satellite">
<destination>Satellitel </destination>
</route>
<route network="earth.simulation" gateway="earth.simulation"
gatewayName="TrafficSource" gatewayType="TrafficSource">
<destination>TrafficSource</destination>
</route>
</routes>
</router>
<router name="TrafficSource" type="TrafficSource">
<address>earth.simulation</address>
<routes>
<route network = "satellite.simulation" gateway = "facilityl.dsn.earth.simulation"
gatewayName="Facilityl" gatewayType="Facility">
<destination>Satellitel </destination>
</route>
</routes>
</router>
<router name="Satellitel" type="Satellite">
<address>satellite.simulation</address>
<route network="earth.simulation" gateway = "facilityl.dsn.earth.simulation"
gatewayName="Facilityl" gatewayType="Facility">
<destination>TrafficSource</destination>
</route>

</router>
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In this very simple example, the Scenario is called “Scenariol” and the name is an
attribute of the jbdss (JBDS simulator) tag, whereas the path where the scenario is
stored is another attribute of jbdss tag, called path.

Each of the objects in the simulation is represented by a router tag. In the example
proposed there are three objects: TrafficSource, Satellitel and Facilityl.
TrafficSource, as mentioned before, doesn’t belong to the STK scenario but it has
meaning just inside the JBDS simulator.

The address that identifies the object in the simulation is studied to be compatible
with the bundle protocol’s notion of regional networks (the thesis, at the beginning
was supposed to perform a comparison between bundle and TCP). Thus, each of the
sub-strings in the address identifies a sub-network of the general network which is
“simulation”. However the concept of regional network is disappearing with the new
DTN implementations.

The information provided in the XML input file is necessary to determine the routes
that lead to a destination. In the previous XML file for example, TrafficSource
communicates with Satellite] through Facilityl.

The route and destination tags have a very important role. During the initialization of
the nodes, the XML file is parsed and all the routes are stored in a data structure. Each
of these routes represents a node that is one hop distant from the router node.
Whereas the internal tag <destination> indicates an endpoint which could be more
than a hop distant from the source node, and that can be reached via the gateway
indicated in the route tag with the gateway attribute. For instance, in the following

lines:

<router name="TrafficSource" type="TrafficSource">
<route ... gatewayName="Facilityl" gatewayType="Facility">
<destination>Satellitel </destination>

</route>

</router>

TrafficSource has a direct link with Facilityl, and uses Facilityl to reach Satellitel,

which is the destination.

58



Each node keeps a Hashtable object which contains all the possible destinations that a
node can reach. Every destination is represented by its name, which is inserted as a
key in the Hashtable, together with the id of the link that leads to that destination. In
the previous example the Hashtable at the TrafficSource node would look something
like Table 2.

Key Value
Facilityl 0
Satellitel 0

Table 2: Example of an Hashtable used for routing purposes

In the example, both the destinations have the same id because the path that leads to

the destination, which is Satellitel goes through the gateway called Facilityl.
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5 The Proxy

The proxy was the component of the software that required most time and effort.

In the initial stage of the project, the real aim of the dissertation was to explore the
differences in performance between the Bundle protocol and TCP, using the STK
simulator environment. Unfortunately STK doesn’t simulate network communication,
thus the JBDS simulator was implemented in order to supply to this deficiency.

The first architecture designed for the data network, i.e. for the communication

between nodes, looked like the one shown in Figure 17.
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Figure 17: Client-Server architecture

It was a client-server architecture, the clients represented the nodes in the simulation
and the server had the task of receiving all the packets sent by the nodes, wait for
some time (delay time provided by STK), and finally send the packet to the correct
destination. All the nodes and the server application were designed to run on the same

machine. This architecture was not accurate for two main reasons:

1. There was no direct connection between the source and the destination;
2. The delay was just simulated and not effective, which could lead to having no
real interesting results concerning the poor performances TCP exhibits in deep

space environment.

A new solution had to be found.
Unfortunately the choice of using Java, didn’t help; as a matter of fact, it is a high

level language that hides all the real socket and stream implementation, thus the first
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idea of overcoming the problem changing the implementation of a Java Socket or
implementing a FilterInputStream (in order to apply the delay to the packets just
before their reception) or a FilterOutputStream (or before their delivery) had to be
rejected.

FilterOutputStream and FilterInputStream are still too high level classes, and TCP
would not be affected by the delay anyway.

Moreover, in this case the software wouldn’t work properly because of another very
important reason.

Assuming that a node sends a packet at time ¢, then it will be delayed by the filter for
the delay time (#;) and then sent to the destination (it would arrive at time ¢ + #;).
However, assuming that the same node tries to send a new packet at time ¢ + /, this
last packet will be delayed longer than the actual delay time because it will have to
wait till the first packet is sent to the destination. The same thing would happen for
the FilterInputStream. An alternative to that would be using a pool of threads, in order
to delay the packets at the same time and not one after the other. Unfortunately this
solution is very expensive when there are a big number of packets involved. Moreover
the software already makes use of a number of threads, which would make this
approach inconvenient.

The solution that was finally chosen was to implement of a Proxy able to capture the
packets at the IP layer, delay them, apply an error rate as a byte string on them
(according to the information received from STK) and then send the packet to the
intended destination. Still the design involved the use of a single machine.

The Proxy module was designed to be completely transparent to the nodes, as the one

in Figure 18.
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Figure 18: Proxy architecture
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This design was thought to be the most appropriate in order to evaluate TCP’s
performances.

During the initialization phase the Proxy acts like a server for the nodes. All the nodes
connect to the proxy and communicate it the names of the nodes they want to connect
to, the proxy computes these data and sends back to the nodes the information needed
in order to establish a connection with the right nodes. This phase is shown in Figure
13, the nodes connect to the Proxy using connect() and they receive the port numbers

of the nodes they want to connect to.

5.1 The implementation

Sending and receiving network packets belonging to protocols not processed by the
operating system is not possible in Java, but it becomes feasible if Java methods

“wrap” native methods.

5.1.1 JNI (Java Native Interface) and Raw Sockets

The Java Native Interface (JNI) is a programming framework that allows Java code to
call and be called by native applications and libraries written in other languages, such
as C, C++ and assembly. This approach is necessary in order to run applications
specific for a type of hardware or operating system platform.

For the purpose of this thesis JNI was necessary in order to be able to use raw sockets.
Raw sockets are a special type of socket used to access the packet headers on
incoming and outgoing packets. This is the real difference between a raw socket and a
normal Java socket; the latter just receives the payload of the packet.

In C, in order to use sockets two libraries have to be included:

#include <sys/types.h>
#include <sys/socket.h>

A socket is initialized in the following way:

int socket (int domain, int type, int protocol)
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The code needed to initialize a raw socket looks like the following:

socket (PF_INET, SOCK RAW, IPPROTO TCP);

PF_INET stands for protocol family, opposed to AF INET that stands for address
family. SOCK RAW indicates that this is a socket of raw type and finally
IPPROTO_TCP means that the protocol used is TCP. Other options are available for
the last parameter: for example [IPPROTO [P, IPPROTO_UDP or IPPROTO_ICMP.
Due to the fact that raw sockets allow users to craft packet headers themselves, their
power can be abused to perform IP address spoofing for Denial-of-service attacks.
When Windows XP was first released in 2001 with raw socket support implemented
into the Winsock interface, the media attacked Microsoft saying that raw sockets are
only used by hackers. Three years later, Microsoft silently deprive of strength and
efficiency Winsock's raw socket support in a non-removable hotfix’ and offered no
further support or workarounds for applications that used them.

A very small number of Windows applications, in general, make use of raw sockets.
The Windows XP implementation of TCP/IP still supports receiving traffic on raw
sockets. However, the ability to send traffic over raw sockets has been restricted in

two ways [36]:

e TCP data cannot be sent over raw sockets.
o UDP datagrams with invalid source addresses cannot be sent over raw sockets.
The IP source address for any outgoing UDP datagram must exist on a

network interface or the datagram is dropped.

5.1.2 The APIs used

It was possible to find available online two extremely useful open source APIs:

e RockSaw [37];
e Virtual Services TCP/IP, also called Vserv [38].

? Hotfix is a Microsoft term for a bug fix, which is accomplished by replacing one or more existing
files in the operating system or application with revised versions [39].
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The first one allows to create a raw socket using JNI methods. It actually contains just
one Java class called RawSocket, other two classes are used as an example of how to
interface the API (in particular there is an example of a Ping application). This API
comes with a .dll library for Windows and a .so shared object for Linux.

The second API, Vserv, was important in order to read the different fields in the IP or
TCP headers. This API turned out to be very useful to recognize the packets received
by the Proxy.

The API contains classes like TCPPacket, UDPPacket and IPPacket. Each one of
these classes have appropriate methods that enable the user to read the different fields
in the header, in particular: getDestinationPort( ), getSourcePort( ) were useful to
distinguish between the packets created by the JBDS simulator and the packets that
are not.

The Proxy is made up of three components (and three classes contained in the
dataNetwor.proxy package, as shown in Figure 12): the Proxy, the Packet Filter and
the Packet Sender.

5.1.3 The Packet Filter

The first idea was to work using Windows, mostly because the STK’s version
provided to Trinity College is supposed to run in Windows. However, after the first
experiments with JNI and raw sockets, and above all, after reading about the
modifications to Winsock library'’, it was necessary to start using Linux.

At the beginning, mostly because of inexperience with JNI, many problems were
experienced, especially related to .dll libraries. The JVM (Java Virtual Machine)
seemed not able to load/link the .dll file throwing an UnsatisfiedLinkError.

However, even after configuring the environment and providing the requested
libraries, the code still had problems. There was no UnsatisfiedLinkError anymore,
but the problem was noticed to appear when trying to use the bind ( ) method in C on

araw socket.

"% Short for Windows Socket, Winsock is an Application Programming Interface (API) for developing
Windows programs that can communicate with other machines via the TCP/IP protocol. [40]

64



Hence, after reading about the new security policies for Windows XP, the problems
was thought to be due to the restriction in power for the Winsock library in Windows
XP.

In Linux, raw sockets work properly, and this led to a quicker improvement in the
implementation. It became possible to code the first Packet Filter and test simple
applications.

The first Packet Filter implemented was very simple. It could listen in on TCP traffic
and filter the packets sent by a client-server Java application. The source’s and
destination’s ports were used to recognize the origin of the different packets. If the
filter was not applied on the incoming packets, a big number of packets external to the
application would be received.

The implementation of the filter is the one that follows:

do {
socket.read(InetAddress.getByName ("127.0.0.1"), recvData);

}

while (recvPacket.getProtocol () != RawSocket.getProtocolByName ("tcp")
| | recvPacket.getSourcePort () !=1234

| | recvPacket.getDestinationPort () !=1235
)i

The server’s port number was 1234, whereas the client’s port number was 1235.
RecvData is the parameter provided to the read method, it is a byte array that
represents the payload of the IP packet received. On the other hand, recvPacket is an
object of type TCPPacket, that lets the programmer read inside the TCP header fields.

In the example the fields used to recognize the packet are:

e Protocol (which is a field in the IP header), which was supposed to be TCP;
e Source port;

e Destination port.
Hence, the socket kept reading till it didn’t receive a packet that satisfied the given

conditions.

The initial implementation of that filter was the basis on which the Proxy was coded.
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5.1.3.1 How to distinguish between different simulation nodes

The way that was thought to be the most realistic in order to distinguish between
different nodes in the simulation and between packets created by the JBDS simulator
and external ones, was to use different IP addresses. As mentioned before, the
application was designed to run on the same machine; since the whole 127.x.x.x
addresses suite refers to “localhost”, an idea could be using a different IP address for
each of the nodes in the simulation. That way sender and receiver could be identified
reading the 32 bits source address and 32 bits destination address in the IP packet
header.

Unfortunately, this was not possible. After testing the application, was noticed that an
address like 127.0.0.2 was automatically changed to 127.0.0.1. This problem is
apparently due to the fact that, in order to subnet the 127.x.x.x suite, modifications of
the kernel routing tables have to be done, and this update needs particular versions of
the kernel and the right tools. Because it involved modifications to the kernel, this
approach was rejected.

A simpler solution was chosen: distinguish between different nodes using port

numbers, as done in the first Packet Filter implementation.

5.1.4 The Packet Sender

The Proxy is not supposed to just filter the incoming packets, but it has to delay them,
apply the error rate to the byte array (both according to the information provided by
STK) and finally send the packets to their intended destinations.

The Packet Sender’s task is sending the packets to their destinations whenever after
applying the relative delay. Since what a safe raw socket does is just listening to the
incoming traffic and not capturing the packets; what the Packet Filter can do is just
listening to the traffic but not interfering with it; in other words it can’t prevent the
destination from receiving the packet, as well. This problem is due to the fact that the
nodes processes and the Proxy run on the same machine.

It is necessary to make the Proxy receive the packets instead of the destination,
otherwise the destination would receive two equal packets (the original packet sent by

the source and the delayed packet) and the second one would be discarded as a
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duplicate. In this case, of course, the Proxy should be forced to receive the packet
before the destination.

It appears to be possible to delete the packets from the TCP/IP stack (even if not
without kernel modifications), but the real problem seems to be ensuring that a packet
is received at the proxy first. Using process priorities could be a solution to this
problem, but, since the Packet Filter performs some computations after it receives a
packet, it is actually very likely to be the second and not the first one to receive the
packet.

Thus, another solution should be found to overcome the problem. The idea became to
notify the receiver, at the moment it is supposed to receive the delayed message. In
order to apply this solution, the Packet Sender has the task of creating a TCPPacket,
without payload that would be sent using a raw socket. These packets will have the
source port equal to the sender source port and the destination port equal to the one of
the receiver. This was done in order to be able to recognize source and destination of
the original un-delayed packet. The Packet Filter is able to capture these packets sent
by the Packet Sender and distinguish them from the JBDS simulator packets, this
recognition is quite trivial; it is based on sequence numbers. It was noticed that all
packets created by the JBDS simulator application had large sequence numbers, so it
was necessary to use small sequence numbers (from 1 to 900). This solution isn’t
perfect, of course, but gave immediate and good results.

At the moment the Packet Filter receives one packet generated by the Packet Sender,
it understands that a messages should be received at the destination, thus, it notifies
the proxy about that, which in turn notifies the receiver, allowing it to read from the
socket. This approach, unfortunately is not perfect: the packets used to establish the
connection (the SYN packets) are not delayed, moreover the notification of the
receiver instead of the receipt of the delayed packet can lead not to experience any
change in TCP’s behaviour has in deep space links (because the packets are buffered

at the receiver before the invocation of the read method).

5.1.5 The Delay

In order to implement the delay at the Proxy every incoming packet is stored in a

buffer for the time it is supposed to be delayed and then, sent to the destination. This
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buffer contains, the packet together with the delay and error rate associated to it. The
delay field in the buffer doesn’t match with the link’s actual delay: the value stored is
in fact the delay associated to the link added to the current system clock value, as

returned by the method:

System.getCurrentTimeMillis () ;

This value indicates the moment the packet should be received by the destination.
This new delay value and the error rate associated to the packet is then stored in the
buffer; a very simple sorting algorithm was implemented in order to keep the next
packet to send at the first position in the buffer.

A very simple thread, checks every 10 ms if the current system time is equal or higher
than the delay value of the first packet in the buffer. If so, the Packet sender is called
in order to notify the receiving thread at the destination node.

At first the delay relative to the link was meant to be read from the payload of the
packet, thus the Proxy didn’t have to keep any information about links and didn’t
have to query the nodes. Unfortunately it was not possible to apply this solution,
because it was not possible to read an object contained in the payload of a raw packet.
The object the nodes send one another is called DataPacket (contained in the
dataTypes package, Figure 12); it is a Serializable object and it is made up by various
fields; some of them contain String objects.

In order to send a Serializable object using a Java socket, it is necessary to use a
particular type of stream called ObjectOutputStream, whereas an ObjectInputStream
is deployed in order to receive it. These streams, in order to give to the destination the
chance to reconstruct the object, add a header to the actual payload. This header is
object-specific, thus it is the same for every instance of a class.

The first attempt led to the discovery that it was not possible to obtain the payload
object at the proxy just reading the data field of the packet using an
ObjectInputStream, and a ByteArraylnputStream. The code threw the following

exception:

java.io.StreamCorruptedException: invalid stream header
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Hence, an experiment was done using a string object and comparing:

e The size of the string object;
o The size of the same string object plus the header assigned by the
ObjectOutputStream;

e The length payload of a raw packet containing the same string.

The length of the payload of the raw packet was expected to be equal to the length of
the object plus the header, but it was actually shorter.

In order to understand this strange behaviour, it was thought that reconstructing the
header and comparing it to the byte array contained in the payload could help in
finding the problem. It was actually possible to reconstruct the header for the object,
but unfortunately no match between them was found, hence this idea was discarded
and another approach had to be chosen.

Storing delay and error rate information at the Proxy (and at the Nodes) was a very
expensive choice, because it involved a too large modification of the existing code
and design.

However another possibility was represented by querying the nodes for the delay and

error information relative to a packet.

5.1.6 The BER (Bit Error Rate)

Due to implementation problems, it was not possible to apply the BER to sent
packets, because basically, as explained before, it was not possible to let the
destination receive only the packets captured and processed by the proxy.

A definition of BER that can be found in [41] is the following:

“In a digital transmission, BER is the percentage of bits with errors divided by the
total number of bits that have been transmitted, received or processed over a given
time period. The rate is typically expressed as 10 to the negative power. For example,
four erroneous bits out of 100,000 bits transmitted would be expressed as 4 x 10, or
the expression 3 x 10 ° would indicate that three bits were in error out of 1,000,000

transmitted”.
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The idea on how to apply the error rate on a string of bytes was to use a mask made of
bits randomly generated using the Java Random class. The Random.java class gives
the chance to specify a range within the numbers that will be generated by the random
generator. This range could be set in order to match the BER. Thus, the probability for
the generator to generate a precise number would be equal to the probability that a bit
could be inverted, according to the BER.

The string generated by this method could be look something like the one in Figure
19.

istbyte  2ndbyte  3rd byte (n-2)th byte (n-1)th byte  n-th byte

G Teues s W ey s

11111111 1111110111111 1 .. 1 111011115 111111115 11111114

Figure 19: Mask used to apply the error rate to the packets

For example, in Figure 19, the bits that won’t be received correctly at the destination
will be 2. The string shown in Figure 19 is be used as a mask to obtain the string of

bytes that will actually be sent. The error string is calculated using the formula (2)(4).
outpkt = m * inpkt (4)
In (4), outpkt indicates the byte string that is generated after the error is applied,

whereas inpkt represents the byte string corresponding to the un-corrupted message.

The mask is indicated by m and the symbol ¢ stands for a bitwise and.
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6 Testing and evaluation

Three scenarios were chosen in order to test the application. They all represent space
missions to the Moon and they are quite similar, but the differences in the access
periods between objects change significantly the results expected from the simulation.
The common features in the scenarios are explained in chapter 1.

The first and the second scenarios have many common features; the difference
between them is the location of the Lunars on the Moon surface, changing their
position was in fact useful for the evaluation of data like the queue size and the
throughput.

In order to run the three simulations, two machines are employed. The first machine is
used to run STK and the second to run the JBDS simulator. These two computers, in
order to communicate, use the TCP/IP socket interface provided by STK/Connect.
The first machine employs Windows XP Professional (2002), the CPU is an Intel
Pentium 4 (2.80GHz), and the RAM is 512 MB. The second machine uses Ubuntu
5.10, the version of the kernel is 2.6.12, the CPU is an Intel Pentium M 1,300MHz
and the RAM is 512 MB. The first two simulations last roughly 6 simulation days,
whereas the third one lasts 8 simulation days.

The speed of the JBDS simulator is affected by the large number of threads employed
and by hardware issues, however it is important to say that STK is polled for
information every 10 seconds, and the time granularity of the reports is 60 simulation
seconds (a different value for the range and error rate is provided for every simulation
minute), whereas the Time Manager’s timestep is 1000 ms.

With these inputs the JBDS simulator was noticed to need roughly 2-3 seconds in

order to compute a simulation minute (1:30 seconds).

6.1 The first Scenario

The first scenario is shown in Figure 20, whereas the topology is shown in Figure 21.
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Cape
Canberra Canaveral

Goldstone

MoonPrabe

Figure 20: The first scenario

In the first scenario the communication links between objects are the following:
e TrafficSource €& - Canberra
e TrafficSource €& - Madrid
e TrafficSource € = Goldstone
e MoonProbe < - Canberra
e MoonProbe < = Madrid
e MoonProbe < = Goldstone
e MoonProbe €< - Lunarl
e MoonProbe & - Lunar2
e MoonProbe < - Lunar3

Figure 21: The first and second scenario topology

During the first simulation days, when the MoonProbe is approaching the Moon, there
is no communication between MoonProbe and Lunarl, 2, and 3. Moreover the
communication between Earth and MoonProbe is unidirectional. The Probe receives
the commands form Earth but doesn’t send any packet. It basically behaves as a sink
for data. When the MoonProbe starts orbiting around the Moon, it also starts

behaving as a router, it receives packets form Earth and sends them to the appropriate
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destination on the Moon, but it also starts receiving packets form the Lunars and
forwards them to Earth.
STK uses a coordinate system to locate places on the Moon. It is a based on longitude

and latitude; the locations of the three Lunars are identified by the coordinates:

e Lunarl

o latitude 19.8

o longitude 31
e Lunar 2

o latitude -9.11

o longitude 15.65
e Lunar 3

o latitude 80

o longitude -2

All of them are located on the visible side of the Moon.

6.1.1 The results obtained: the delay

In the first 4 simulation days, it is not interesting to analyse the queue size or the
throughput. This is because the packets basically are sent from Traffic Source through
the three ground Facilities to the MoonProbe. However, in order to check if the
delaying Proxy was working correctly a Parser was coded in order to analyse the
delay associated to each packet. Subtracting the time (system clock) when the packet
is sent to the time it was received, it is possible to obtain the time each packet was
delayed. The graph in Figure 22 shows how the delay increases as the MoonProbe
leaves the Earth’s attraction. Due to the high number of packets created the graph in
Figure 22 covers just the first simulation days (from the launch date until the 2" of
January at 6:57 am). The distance between the visible antenna and the probe in that
moment is 218385.707563 km, which corresponds to a delay of about 730 ms. Thus,
the average of the measurements contained in the graph is quite accurate. It must be
considered anyway that some time is spent in computations at the Proxy. In Figure 22

are also visible a few peaks, where the delay reaches almost 1400. These erroneous
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values are probably due to thread scheduling (since there are many threads running at

the same time), or to latencies due to computations.
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Figure 22: Increase in packet’s delay as MoonProbe leaves Earth’s attraction

The first simulation days (when no packets are either sent or receiver by the Moon
Facilities) were also noticed to be simulated more slowly, this can be due to the fact
that the threads that are supposed to send data departing from the Lunars loop

continuously looking for visibility of the destination, and they never find it.

6.1.2 The results obtained: the queue size

The first simulation days (i.e. during the spacecraft’s days of journey to the Moon),

don’t give many interesting metrics to measure, whereas when the MoonProbe starts
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orbiting around the Moon, the number of relevant data to evaluate increases. In order

to be able to measure the queue size at the main router, which is MoonProbe, a few

lines of code were added to the method that is supposed to send the packets. When a

packet is sent, the queue size is stored in a .txt file called Queue.txt.

The results are shown in Figure 23.

18000 -

:

A

B

—
F-
=
o
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:

queue size (packets)
g

g

MoonProbe-To-Madrid - Times -

MoonProbe-To-Lunars - Times

MoonProbe-To-Lunarz - Times

MoorProbe-To-Lunar] - Times

MoonProbe-To-Goldstone - Times

MoonProbe-To-Canberra - Times

time

200701704 000000 597

Figure 23: Queue size at the MoonProbe, compared to the access times (first simulation)
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Figure 23 shows the queue size at the MoonProbe (top graph) compared to the
Facilities access times to the MoonProbe (bottom graph). Since Lunarl and 2 have
access to the probe just in the first hours, and the Traffic Source keeps sending
packets to the MoonProbe, directed to Lunar 1 and 2, these packets are never
delivered and they are stored inside the queue. This is the reason why the queue size
increases. However, it is important to notice how the access to the Lunar 3 affects the
size of the queue. Figure 23 shows the line marked with C, which shows a decrease
and then an increase in the queue size. It is noticeable that this access provokes small,

but regular decreases in the queue size.

6.1.3 The results obtained: the throughput and fairness

The throughput value has been computed for each of the receiving nodes
(TrafficSource, Lunarl, Lunar2 and Lunar3) as the amount of bytes received per

second. The result of this computation is showed in Figure 24.

250 1

200 -

150 —

100 ~

throughput (bytes/sec)

Traffic Source Lunar 1 Lunar 2 Lunar 3

sending nodes

Figure 24: Throughput first scenario
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The results shown in Figure 24 have to be analysed bearing in mind the access times
between objects, shown in Figure 23. Since Lunarl and Lunar2, have a very short
access period with the MoonProbe (which is supposed to deliver them the packets
sent by TrafficSource), they receive a low number of packets. Thus the throughput is
very low (less than 50 bytes/sec). On the other hand Lunar3 has regular access periods
with MoonProbe, thus the delivery of the packets coming form TrafficSource and
directed to Lunar3, can be regularly completed.

For this reason Lunar3 is the facility with the highest throughput (almost 200
bytes/sec).

TrafficSource’s throughput is quite low (less than 70 bytes/sec); it seems to be
affected by TrafficSource’s distance from the MoonProbe (formula (1) explained how
in TCP the throughput decreases as the RTT increases).

The reason for TrafficSource’s low throughput was also thought to be due to the
management of the queue at the MoonProbe. However, the router (MoonProbe) keeps
four different queues, one for each destination and regularly sends a packet extracted
from each of the queues; hence, it should have a fair management of the queue and
ensure the delivery to TrafficSource at all time (because it is always visible).
Therefore, the reason for such low throughput should be linked to the distance that
TrafficSource has (compared to the Lunar facilities) from the MoonProbe and not to
the queue management.

Because of the huge differences between the throughputs, the fairness'' is very low;
this metric was measured twice: one for all the sending nodes and one just for the

Moon facilities, the results obtained are the following:

e Global fairness 0.50516282
e Lunar’s fairness 0.57437855

' The fairness was computed using Jain’s formula:

[a Y

£+

g Yy Nis0 S
.f{‘tw‘t.l’xz-""1'1H.J_ = "

i 1"2

Where x;represents the total throughput for flow i and n represents the total number of nodes.
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6.2 The second scenario
The second scenario is shown in Figure 25.

Cape
Canberra , Canaveral

Goldstone
-
—

Figure 25: The second scenario

The difference between the first and the second scenario lies in the position chosen for
the Lunars on the Moon’s surface. In the second scenario the coordinates are the

following:

e Lunarl

o latitude 10.8

o longitude 136
e Lunar?2

o latitude -86.5

o longitude -6.1
e Lunar3

o latitude 80

o longitude -2

The location of the Lunar3 Facility doesn’t change, whereas the locations of Lunarl,
and 2, are totally different from the ones used in the previous scenario. How the
locations affect the access periods and subsequently the queue size at the probe, is

explained in the following paragraph.
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6.2.1 The results obtained: the queue size

The graph in Figure 26 shows the queue size of the MoonProbe, related to the access

times in the second scenario.

queue size (packets)

MoonProbe-To-Madrid

boonProbe-To-Lunars

MoonProbe-To-Lunarz

MoonProbe-To-Lunar

MoonProbe-To-Goldstone

MoonProbe-To-Canberra
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- Times
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- Times

2007 01 104 000000000

2007401 105 01:16:30.000
Time 3 MMIDD)

20070071 06 02 33500000

Figure 26: Queue size at the MoonProbe, compared to the access times (second simulation)

The difference in the location of the Lunars changes radically the access graph, and

shows that Lunar 1 and 2 have regular access intervals; this makes feasible for

MoonProbe to deliver the messages directed to those facilities (which was impossible

in the first scenario). For this reason the queue size doesn’t have a steady increase (as

happened in the previous scenario), but it is more noticeable a fluctuation in size. This

79



fluctuation is quite regular, anyway, which was the behaviour expected since the
access periods are regular as well. The peaks in Figure 26 (B, C and D) can be linked

to the lack of access to the Lunar facilities.

6.2.2 The results obtained: the throughput and the fairness

Figure 27 shows the throughput values for each of the sending nodes in the second
scenario. The throughput relative to the TrafficSource facility is still quite low, which
was the behaviour expected since there is no real difference in the network topology
with the first scenario. On the other hand all the three Lunar facilities show high
throughputs, which was the behaviour expected, since the access times with the

MoonProbe are periodic for all of them.

250

200 1

150

100

throughput (bytes/sec)

50 1

Traffic Source: Lunar 1: Lunar 2: Lunar 3:

sending nodes

Figure 27: Throughput second scenario

The fairness is higher than in the first scenario:
e Global fairness 0.92328674
e Fairness lunar 0.99878365
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6.3 The third scenario

In the third scenario the Facilities on Earth and Moon are all located on the visible

side, equally to the first scenario (Figure 20). Their coordinates are:

e Lunarl

o latitude 6

o longitude 7
e Lunar 2

o latitude -7.8

o longitude 11
e Lunar 3

o latitude 80

o longitude -2

The most relevant difference between the two scenarios is in the topology, shown in

Figure 28.

Goldstone

Traffic
Source

Figure 28: The third scenario topology

One of the Moon facilities: Lunarl has direct connection to Earth. In this case the
MoonProbe acts as a router just for Lunar 2 and 3.
The simulation has been run for 8 simulation days, two days more than the previous

ones and the results obtained are analysed in the following paragraphs.
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6.3.1 The results obtained: the queue size

The queue size at the MoonProbe is shown in Figure 29. The graph shows an
unpredictable behaviour for the queue size, this value seem to fluctuate, but not
regularly, and not following precise patterns. This simulation was run at first for 6
days, but since the queue size showed this strange behaviour, it was run again for
longer. But it is still difficult to explain the results obtained. There are a few peaks (A,
B, C, D, E and F), but they seem to be independent from the access that the probe

experiences with the Lunar facilities.
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Figure 29: Queue size at the MoonProbe, compared to the access times (third simulation)
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6.3.2 The results obtained: the throughput and the fairness

The throughput values obtained are shown in Figure 30. In this scenario, due to the
direct connection between Lunar 1 and TrafficSource, the TrafficSource’s throughput
is much higher than in the previous scenarios. Moreover, Lunar 1 has a higher
throughput if compared to Lunar 2 and 3. This can be explained considering that
TrafficSource is always visible for Lunarl and viceversa, whereas Lunar 2 and 3 have
to wait for the Probe to be accessible in order to send and receive packets. This was

the behaviour expected.
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Figure 30: Throughput third scenario

The results obtained for the fairness are the following:

e Global fairness 0.8896817
e Lunar’s fairness 0.9735295
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7 Conclusions and future work

The framework developed in this thesis represents a new approach in the field of deep
space network simulation.

The lack of kernel modifications together with the use of Java, which is a widespread
language, makes the JBDS simulator portable from one platform to the other.
Moreover the JBDS simulator was designed to implement direct connections between
nodes, so that the link delay and error rate could be transparently applied to the
packets.

Unfortunately, mostly because of implementation problems, but also of time
constraints that prevented from implementing the simulator differently (solving some
of the problems related to the design), the proxy is not able to transparently apply the
delay and the error rate to the packets.

However the scenarios used to evaluate the simulator and the results obtained show
that the behaviour of TCP seems to be someway affected by the delay applied to the
packets.

As future work, it could be extremely interesting to implement the simulator in a way
that each of the components (nodes, proxy and Manager) runs on a separate machine
(maybe one for each of the nodes, or just using a different machine for the proxy or
the Manager). This approach would reduce the problems encountered running the
whole application in localhost. However this solution could be quite expensive and
could lead to scalability problems (for example related to the number of nodes in the
scenario).

Another improvement proposed for the code is the implementation of the error rate at
the Proxy, which could lead to a more accurate simulation of the behaviour of a deep
space link.

Small workarounds have been used in order for example to distinguish between the
packets sent by the Packet Sender and the packets created by the simulator nodes (the
sequence numbers were employed for that purpose). Some of the used solutions are
not perfect and in the future, those implementation problems should be solved.
Another important issue is the output file; it should be able to keep track of the sent

and the received packets as well as the acknowledgements for those packets,
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moreover the simulator should delay the acknowledgements as well as the data
packets; feature that is not currently implemented.

Implementation problems, mostly related to the fact that the socket implementation in
Java is too high level, could be maybe solved with future Java releases. As a matter of
fact every new Java version contains a larger number of low level features; thus,
maybe in the future there will be no need to use the native interface.

After the solution of these implementation issues could be interesting to employ the
simulator for the task it was supposed to accomplish from the beginning, and use it for
the comparison of protocols’ performance.

All these enhancements are left for future development and their correct
implementation could let the JBDS simulator be a powerful tool for research in the

deep space network field.
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