
Decentralized Discovery and Execution for

Composite Semantic Web Services

by

Dominik Roblek

A Dissertation submitted to the University of Dublin,

in partial fulfillment of the requirments for the degree of

Master of Science in Computer Science

2006

Declaration

I, the undersigned, declare that this work has not previously been submitted as an

exercise for a degree at this, or any other university, and that unless otherwise stated,

is my own work.

Dominik Roblek

September 11, 2006

Permission to Lend and/or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon

request.

Dominik Roblek

September 11, 2006

To my wife Maryna

for her love and encouragement.

Acknowledgments

Many thanks are due to my supervisor Dr. Dave Lewis for ideas, help, advice, reviews,

patience and guidance throughout this project.

Special thanks to Dr. John Keeney for ideas, help, advice and for reviewing my work.

I would like to thank the friendly and open people of Ireland for having made this year

unforgettable.

And to the NDS class of ’06 – it’s been a great fun.

Dominik Roblek

University of Dublin, Trinity College

September 2006

v

Decentralized Discovery and Execution for

Composite Semantic Web Services

Dominik Roblek

University of Dublin, Trinity College, 2006

Supervisor: Dave Lewis

Current mechanisms for discovery of Web services and execution of compositions of Web

services are centralized. Services are advertised by means of central service registries.

Conventional models of composite service execution employ a central coordinator. This

represents a performance bottle neck and a single point of failure. Besides, all process

data are exposed to a central entity, which is not appropriate for processes involving

sensitive data. Bindings between component services are determined at the composite

service definition time.

The dissertation addresses these issues by developing a novel decentralized peer-to-peer

discovery and execution model for composite semantic Web services. Semantic descrip-

tion of services enables inexact matching of service consumer requirements and service

provider capabilities. The service advertisement and discovery is performed by a loosely

coupled knowledge-based network. Bindings between component services are dynami-

cally determined at the composite service execution time. A composite service execution

is decentralized and orchestrated by the providers of the participating component ser-

vices.

In order to enable effective semantic service discovery the dissertation extends the

knowledge-based network subscription language with a bag type and a novel family of

bag operators, termed composite bag operators, that offer a much higher expressiveness

for semantic information filtering than current operators.

The proposed decentralized discovery and execution model is robust and suitable for

dynamic distributed environments with a high service churn rate.

vi

Contents

Acknowledgments v

Abstract vi

List of Tables xi

List of Figures xii

List of Listings xiv

Notation xv

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Research Objectives . 2

1.3 Research Approach . 4

1.4 Dissertation Roadmap . 4

Chapter 2 State of the Art 5

2.1 Service Oriented Architecture . 5

2.1.1 Concepts . 5

2.1.2 Enterprise Service Bus . 6

2.1.3 Java Business Integration . 6

2.2 Web Services . 6

2.2.1 Core Specifications . 7

2.2.2 UDDI Deficiencies . 8

2.2.3 Web service composition . 8

2.2.4 Decentralized Execution of composite Web services 10

vii

CONTENTS viii

2.3 Semantic Web . 12

2.3.1 Ontologies . 13

2.4 Semantic Web Services . 14

2.4.1 OWL-S . 14

2.4.2 WSMO . 17

2.4.3 Jini . 18

2.4.4 JXTA . 19

2.5 Content Based Networking . 21

2.5.1 Siena . 21

2.5.2 Ontologically Extended Siena . 22

Chapter 3 Design 23

3.1 Requirements . 23

3.2 Outline . 24

3.3 Applicability of Content-Based Networking 25

3.3.1 Distributed Service Discovery . 26

3.3.2 Distributed Workflow Execution 26

3.4 Bag Extension for Content-Based Networking 27

3.4.1 Bag Algebra . 27

3.4.2 Extending Siena with Bags . 32

3.4.3 Modifications of Ontologically Extended Siena 35

3.4.4 Semantic Resource Discovery . 36

3.5 Semantic Service Discovery . 38

3.5.1 Abstraction of OWL-S Process Model 39

3.5.2 OWL-S Discovery Annotations 41

3.5.3 Semantic Service Discovery based on Siena with Bag Extension . 45

3.6 Control and Data-Flow in Decentralized Execution 48

3.6.1 State Coordinators . 49

3.6.2 Pre-Conditions . 50

3.6.3 Post-Processing Actions . 50

3.6.4 Data Bindings . 51

3.7 Agent Architecture . 51

CONTENTS ix

3.7.1 Service Deployer . 53

3.7.2 Composite Service Compiler . 55

3.7.3 Deployed Service Repository . 55

3.7.4 Service Advertisement Engine . 55

3.7.5 Service Discovery Engine . 55

3.7.6 Discovered Service Repository . 56

3.7.7 Service Execution Engine . 57

3.8 Service Execution . 59

3.8.1 Local Service Execution . 61

3.8.2 Decentralized Service Execution 61

Chapter 4 Implementation 64

4.1 Bag Extension for Siena . 64

4.1.1 Technologies Used . 64

4.1.2 Ontologies . 65

4.1.3 Implementation of the Composite Bag Operator 65

4.2 Dowls Agent Prototype . 67

4.2.1 Technologies Used . 67

4.2.2 Main Packages and Classes . 67

Chapter 5 Evaluation 71

5.1 Bag Extension for Content-Based Networking 71

5.1.1 Performance of Notifications Containing Bags 71

5.1.2 Routing Performance of Simple Bag Operators 71

5.1.3 Routing Performance of Composite Bag Operators 72

5.2 Decentralized Service Discovery and Execution 76

5.2.1 Test Example . 77

5.2.2 Service Discovery . 77

5.2.3 Decentralized Execution . 81

5.2.4 Experiments . 82

Chapter 6 Conclusion 87

6.1 Contributions of the Research . 87

CONTENTS x

6.1.1 Composite Bag Relations . 87

6.1.2 Bag Extension for Content-Based Networking 87

6.1.3 OWL-S Extended with Stereotypes 88

6.1.4 Semantic Service Discovery Utilizing Composite Bag Operators . 88

6.1.5 Data-Flow in Decentralized Composite Service Execution 88

6.1.6 Decentralized Discovery and Execution for Composite Services . 88

6.2 Further Work . 89

6.2.1 Composite Bag Relation . 89

6.2.2 Bag Extension for Content-Based Networking 89

6.2.3 Toward the Knowledge-Based Networking 90

6.2.4 Semantic Service Discovery . 90

6.2.5 Decentralized Execution of Compose Semantic Web Service . . . 92

References 93

Appendices 98

Appendix A 99

Appendix B 101

List of Tables

3.1 Categorization of the interactions patterns 25

3.2 Covering relationships between the simple bag operators 35

3.3 Covering relationships between the composite bag operators 36

5.1 Original composite bag operator algorithm performance results 74

5.2 Optimized composite bag operator algorithm performance results 74

5.3 Composite service execution performance results 85

xi

List of Figures

2.1 Web services architecture . 7

2.2 Web services protocol stack . 8

2.3 Self-Serv layered architecture . 11

2.4 Semantic Web layers . 12

2.5 Top level of the OWL-S ontology . 15

2.6 OWL-S profile model . 16

2.7 OWL-S process model . 16

3.1 Agents with deployed services . 24

3.2 Siena notification comprising a bag attribute 33

3.3 Keywords taxonomy . 37

3.4 Example of the notification for Academic Paper 1 38

3.5 Example of the notification for Academic Paper 2 38

3.6 Service notification format . 48

3.7 Service subscription filter format . 48

3.8 Format of the OWL-S service deployment specification 52

3.9 Agent component diagram . 53

3.10 Service deployment activities . 54

3.11 Service undeployment activities . 54

3.12 Execute service activities . 60

3.13 Invocation of a decentralized composite service 62

4.1 Service Deployer . . . class diagram . 68

4.2 Service Advertisement Engine . . . class diagram 69

4.3 Service Execution Engine class diagram 70

xii

LIST OF FIGURES xiii

5.1 Composite bag operator performance test setup 72

5.2 Original composite bag operator algorithm performance results 74

5.3 Optimized composite bag operator algorithm performance results 75

5.4 An example of the Plan Trip deployment schema 77

5.5 PlanTripTemplate’s composite process and available matching services . 78

5.6 Service stereotypes taxonomy . 78

5.7 Parameter stereotypes taxonomy . 79

5.8 Summary of BookAccommodationAbstractProcess 79

5.9 Service subscription filter for BookAccommodationAbstractProcess . . . 79

5.10 Summary of BookBedAndBreakfastProfile 80

5.11 Service notification for BookBedAndBreakfastService 80

5.12 Summary of BookHotelProfile . 81

5.13 Service notification for BookHotelService 81

5.14 PlanTripTemplate’s input and output parameters 82

5.15 Input and output parameters of the selected services 83

5.16 Decentralized execution of PlanTripTemplate 84

List of Listings

3.1 OWL definition of dowls:AbstractProcess 40

3.2 Example of abstract process instance . 40

3.3 OWL definition of dowls:stereotype . 43

3.4 Example of parameter stereotype instance 44

3.5 Example of abstract process stereotype instance 44

3.6 Example of OWL-S profile stereotype instance 45

4.1 Algorithm for comparison of bags with a composite bag operator 65

A.1 OWL-S description of BookAccommodationAbstractProcess 99

B.1 OWL-S description of BookBedAndBreakfastService 101

xiv

Notation

Notation for Ontology Resources

The following notation is used in this document for ontological resources that appear in

the text:

• Classes and properties from OWL ontology are prefixed with owl:.

• Classes and properties from OWL-S ontologies are prefixed with owls:, regard-

less whether they are actually defined in Service.owl, Profile.owl, Process.owl or

Grounding.owl.

• Classes and properties from ontologies developed in scope of this project are pre-

fixed with dowls:, regardless of the actual name of their respective ontology.

• Other ontological resources are written without prefix.

Ontological resources that appear in the listings are written as they appear in their

respective source files.

Notation for Listings

In listings three consecutive dots (. . .) denote omitted content.

xv

Chapter 1

Introduction

1.1 Motivation

Most of today’s World Wide Web is designed for human consumption. It lacks machine-

processable information that would allow automated interoperation. Such interoperation

is realized through hand-coded configuration code to locate, orchestrate and invoke Web

services. The Web is not organized in a form that would allow machines to find, share,

and combine information effectively (Antoniou and van Harmelen, 2004).

Semantic Web is an extension of the current Web that aims to improve the current

state by providing machine-processable information. The primary concept of Semantic

Web are ontologies, which are controlled vocabularies to describe objects and relations

between them in a formal way (Antoniou and van Harmelen, 2004). While ontological

representation of information has been thoroughly studied, little has been done to ex-

ploit it in disseminating semantically enriched information through the communication

networks.

The Web, once solely a repository for information, is evolving into a provider of Web

services, such as e-commerce and business-to-business services (McIlraith et al., 2001)

and a variety of personal and business productivity applications. By allowing applica-

tions to be encapsulated in a reusable standardized format, Web services have enabled

businesses to share functionality with arbitrary numbers of partners, without having

to pre-negotiate communication mechanisms or syntax representations (Cabral et al.,

2004). Although Web services have reached a certain degree of maturity, many limita-

tions of the existing approaches still exists.

A typical Web service architecture consists of three entities: (i) service providers that

create and publish Web services, (ii) service brokers that maintain a registry of pub-

lished services and support their discovery, and (iii) service consumers that search the

service brokers registries. Registries of published services have traditionally had a cen-

tralized architecture consisting of multiple repositories that synchronize periodically

(Schmidt and Parashar, 2004). Such architecture is not suitable for dynamic decentral-

1

ized peer-to-peer environments with high peer churn rate, where each participant can

dynamically adapt any, or more of these roles. In order to enable peer-to-peer interop-

erability it is fundamental to make services computer interpretable. This is provided by

semantic Web services that augment Web services with ontological descriptions of their

capabilities, thus facilitating automated discovery, orchestration, dynamic binding, and

invocation (Cabral et al., 2004).

Organizations can combine Web services into workflows to provide new added value.

Workflows can be exposed as Web services themselves. Such Web services are called

composite Web services. Current mechanisms for executing compositions of Web services

are centralized, relying on a central workflow engine to manage the flow of control and

data between web service invocations. The disadvantages of this approach are:

• Centralized process control clearly represents a performance bottle neck and a

single point of failure.

• Centralized process control is suitable for intra-enterprise process management.

However, when multiple parties belonging to different enterprises participate in

the process, they are reluctant to give away too much control and to share all

the process data. Rather, they need to collaborate with business partners directly

(Chen and Hsu, 2001).

Bringing e-commerce to its full potential requires a decentralized peer-to-peer approach,

where anybody is able to trade and negotiate with everybody else (Fensel and Bussler,

2002).

Compositions of Web services typically bind participating services in the design time.

Such workflow is not robust, since unavailability of any component service renders the

whole composition unavailable. Static compositions are also not capable of adapting to

the changing conditions in the environment.

1.2 Research Objectives

In the previous section the following issues were identified:

1. Existing network communication patterns have poor support for effective dissem-

ination of ontologically enriched data.

2. Web services are advertised and discovered through central repositories. However

as the number of Web services grows and become more dynamic, such architecture

quickly becomes inadequate (Schmidt and Parashar, 2004).

3. Centralized Web service compositions are not suited for dynamic peer-to-peer

environments. A central process scheduler represents a performance bottle neck

and a single point of failure. Besides, all process data are exposed to the central

scheduler, which makes this approach inappropriate for inter-enterprise process

management involving sensitive data (Chen and Hsu, 2001).

4. Static compositions of Web services are not able to adapt changing conditions in

2

the environment.

The objective of this research is to provide solutions for certain aspects of the above

problems. This work aims to investigate decentralized semantic Web service discovery

and associated decentralized execution of composite semantic Web services. The design

should use semantic descriptions of services to achieve effective discovery and loose

coupling. Workflow bindings should be based on inexact matching. The associations

between participating parties should be provisional to accommodate dynamic conditions

in the environment, like high churn rate. The solution design should not rely on central

entities, because they represent a single point of failure and hinder scalability. In order

to achieve this we need to investigate the folllowing:

1. Content-based networking is a communication pattern whereby the flow of mes-

sages from senders to receivers is driven by the content of the messages. Tra-

ditionally message content is structured as a set of attribute/value pairs and a

selection predicate supports simple constraints over the values of individual at-

tributes (Carzaniga et al., 2004). Keeney et al. (2006b) have extended content-

based networking with support for simple ontological constraints that are able

to compare two ontological concepts with subsumes, subsumed by and equivalent.

This research will try to bring the support for semantically enriched messages a

step further by providing support for collections of ontological concepts.

2. The content-based networking middleware extended in such manner will be con-

sidered for driving decentralized semantic service advertisement and discovery in

a peer-to-peer topology. It requires understanding the capabilities of advertised

services and how the capabilities match the service consumer requirements. The

research will draw on the ideas of the proactive service discovery model utilizing

content-based networking developed by Lynch (2005).

3. This project will involve implementing a decentralized workflow execution model

using ontology-based descriptions of Web services so that the workflow bindings

between them can be made dynamically based on inexact matches, thus promoting

much more flexible and robust workflows. The responsibility of coordinating the

workflow will be distributed across several peer software components. The work-

flow model will exploit the capabilities of the semantic service discovery model

driven by content-based networking for runtime service discovery and selection. In

addition, the research will investigate how far a content-based routing approach

can support decentralized workflow execution. Decentralization and semantic in-

teroperability will provide looser binding between Web services in a composition,

supporting runtime reconfiguration and thus robustness.

3

1.3 Research Approach

First of all the current state of the art will be investigated. This will include exploration

of the ideas, propositions, designs and solutions in this area up to date.

The rest of the research will be carried out in three phases with each next phase building

upon the previous. The phases will correspond to the three research objective issues

presented in the previous section. During each phase first a theory will be developed

simultaneously with a design of a prototype. Then the prototype will be implemented

and used to evaluate the findings of the research. Such approach will minimize the risk

of losing the way and running out of time.

This report itself will not be divided by the research phases, but will present all three

phases as an integral work.

1.4 Dissertation Roadmap

The remainder of this report is organized as follows:

Chapter 2 - State of the Art provides essential background information and analy-

ses the current state of the art in the Semantic Web, Web Services and Content-

Based Networking domain.

Chapter 3 - Design describes the design of the bag extension for content based-

networking, and the desing of the decentralized discovery and execution model

for composite semantic Web Services.

Chapter 4 - Implementation described the implementation of the prototype.

Chapter 5 - Evaluation provides the evaluation of the design.

Chapter 6 - Conclusion presents the contributions of this research and further work.

4

Chapter 2

State of the Art

2.1 Service Oriented Architecture

2.1.1 Concepts

Service-Oriented Architecture (SOA) is a style of software architecture that utilizes

loosely coupled interoperable services to support the requirements of software users.

Business applications and resources are delivered as services. SOA is often based on

Web services, since they have broad support in the industry. However, SOA can be

implemented using any service-based technology.

The OASIS SOA Reference Model group (OASIS, 2006) defines SOA as:

Service Oriented Architecture is a paradigm for organizing and utilizing dis-

tributed capabilities that may be under the control of different ownership

domains. It provides a uniform means to offer, discover, interact with and

use capabilities to produce desired effects consistent with measurable pre-

conditions and expectations.

In SOA a service is a mechanism to enable the service consumers to access to one or more

capabilities of the service provider. It is independent as much as possible from specific

platforms and computing paradigms. The access to the service is provided through

a prescribed interface. It is assumed that service interface is cleanly separated from

its internal implementation. The service could carry out its described functionality

through one or more processes that themselves could invoke other available services.

The consequence of invoking a service is a realization of one or more real world effects.

These effects may include (i) information returned from the provider to the consumer,

and (ii) change to the shared state of defined entities (OASIS, 2006). The choreography

and orchestration can combine invocations of many services into a new process.

5

2.1.2 Enterprise Service Bus

Enterprise Service Bus (ESB) is an implementation of Service-Oriented Architecture.

It provides foundational services via an event-driven messaging engine (the bus). The

primary aim of ESB is to enable loosely coupled integration of various enterprise services

and applications.

The notion of ESB is vague and usually includes the following capabilities:

• It has standard-based adapters to connect to third party systems.

• Messaging engine support diverse interaction models (synchronous, asynchronous,

point-to-point, publish-subscribe) and communication protocols.

• It has the ability to transform messages from one format to another, and to split

or combine multiple messages.

• It is aware of connected applications and services and uses content-based rout-

ing facilities to make informed decisions about how to communicate with them

(Papazoglou and van den Heuvel, 2005).

• It includes support for service orchestration and choreography.

• It implements a security model to authenticate and authorize use of the ESB.

• It provides monitoring the course of events.

The majority of ESB implementations strongly rely on XML and Web services tech-

nologies. ESB operations are usually governed by rule-based policies, which are often

delivered in non-centralized fashion.

There are many open source ESB implementation available, for example Apache Ser-

viceMix (Apache Software Foundation, 2006b), Codehaus Mule (Codehaus, 2006), Ob-

jectWeb Celtix (ObjectWeb Consortium, 2006), and commercial ESB implementations

available.

2.1.3 Java Business Integration

2.2 Web Services

A Web service is an application that is accessible to other applications over the Internet

and uses a standardized XML to encode communications. It is defined by W3C (2004d)

as

a software system identified by a URI, whose public interfaces and bindings

are defined and described using XML. Its definition can be discovered by

other software systems. These systems may then interact with the Web

service in a manner prescribed by its definition, using XML based messages

conveyed by Internet protocols.

A typical Web services architecture consists of three entities (Roy and Ramanujan, 2001)

presented on Figure 2.1:

6

• Service Providers create Web services and publish them to the outside world

by registering the services with service brokers.

• Service Brokers maintain a registry of published services.

• Service Consumers find required services by searching the service brokers reg-

istry and then bind their applications to the service provider to use particular

services.

Figure 2.1: Web services architecture

Other models, for example based on peer-to-peer topology, exist and will be discussed

later in this work.

2.2.1 Core Specifications

The specifications that define Web services are deliberately modular, to allow addi-

tion of new supplemental specifications when necessary. The core specifications are the

following:

SOAP (W3C, 2003) is a protocol for exchanging messages in common XML format over

the Web. Examples of valid application layers for SOAP are HTTP, SMTP and

XMPP. HTTP is by far most widely used. As a communication protocol SOAP is

stateless and one-way (Alonso et al., 2004, pg. 156). Because SOAP messages are

encoded in human readable XML, SOAP has high overhead and so relatively poor

performance compared to binary protocols such as CORBA IIOP or Java RMI.

Web Services Description Language (WSDL) (W3C, 2001) is an XML language

used to describe Web Services. In particular it describes service interfaces and

their bindings to specific protocols, for example (HTTP, SMTP, XMPP).

Universal Description, Discovery, and Integration (UDDI) (OASIS, 2004) is an

XML-based registry used to register and locate Web services. UDDI is itself im-

plemented as a Web service. A UDDI registry consits of three components:

• White Pages are listing of organizations, their contact information (for

example, e-mail address, telephone number), and of the services these orga-

nizations provide (Alonso et al., 2004, pg. 175).

7

• Yellow Pages are listings of Web services categorized by some industrial

taxonomy.

• Green Pages provide technical information about how to invoke the Web

service.

Figure 2.2: Web services protocol stack

2.2.2 UDDI Deficiencies

Pokraev et al. (2003) pointed out the following UDDI flaws:

• Lack of semantic description mechanisms in WSDL and UDDI to understand the

queries and reason about the knowledge.

• Lack of mechanisms for inexact match. For example, a request for a ”accommo-

dation services” cannot discover ”hotel services”.

• Lack of ontology support. Service providers and service consumers have different

knowledge about a service. Service descriptions and service requests have to be

understood and agreed upon between the two parties by means external to the

registry. A common ontology is a must in order to facilitate an effective discovery

process.

2.2.3 Web service composition

If the implementation of a Web service’s process involves the invocation of other Web

services this is termed a composite Web service. A composite Web service is composed

of other elementary or composite services. This approach allows the definition of in-

creasingly complex services by progressively aggregating service components at higher

levels of abstraction. A client invoking a composite service can itself be a Web service

(Dustdar and Schreiner, 2005).

Service composition is closely related to workflows (Piccinelli and Williams, 2003), since

a composite service actually organizes other services into a workflow. There are two typ-

ical system architectures for workflow management: the centralized client-server based

8

architecture and the decentralized peer-to-peer based architecture. Grid workflows are

also becoming an emerging area since they address computationally intensive e-science

and e-business processes (Shen et al., 2006).

Web service composition is an implementation technology. It is supported by middleware

that typically includes the following (Alonso et al., 2004, pg. 249-250, 256):

• Composition model and language specifies the services to be combined, the

order in which these services are to be invoked, and the way in which parameters

are passed. In addition it might specify pre- and post-conditions of individual

steps. The specification of composite service in a composition language is called

process schema or simply process.

• Development environment assists the developer to specify composition schema.

• Run-time environment executes the composite service by executing steps de-

scribed by composition schema.

Alonso et al. (2004, pg. 256) describe six different dimensions of service composition

models:

• Component model defines the nature of the components to be composed in

terms of assumptions that the model makes on such components.

• Orchestration model defines abstractions and languages used to define the or-

der in which components are to be invoked. Orchestration models use process-

modelling languages, like activity diagrams, Petri-nets, π-calculus, state charts,

and rule-based orchestration.

• Service selection model defines how a Web service is selected as a component,

either statically at design-time or dynamically during run-time.

• Data and data access model defines how data are defined and exchanged be-

tween components.

• Transactions define how transaction semantics is associated with the composition

model.

• Exception handling defines how exceptional situations that can arise during

execution of the composite model should be handled.

2.2.3.1 Business Process Execution Language (BPEL)

There exist a number of Web service composition languages that vary in realization and

functionality. BPEL (IBM et al., 2005) seems to have the strongest industrial support.

BPEL is a Web service composition language layered on top of WSDL. In BPEL, the

composition result is called a process, participating services are called partners, and

message exchange or intermediate result transformation is called an activity. A process

consists of a set of activities (Milanovic and Malek, 2004).

The basic concepts of BPEL are (Milanovic and Malek, 2004):

• process initiation: <process>

9

• definition of services participating in composition: <partnerLink>

• synchronous and asynchronous calls: <invoke>, <invoke>...<receive>

• intermediate variables and results manipulation: <variable>, <assign>, <copy>

• error handling: <scope>, <faultHandlers>

• sequential and parallel execution: <sequence>, <flow>

• logic control: <switch>

BPEL supports static composition where component services are selected in advance.

This is not flexible since any changes to the component services require changes to the

overall composition. The BPEL process definition can be execute by a BPEL orches-

tration engine, such as Actvie BPEL (Apache Software Foundation, 2006a).

There are several BPEL implementations available, for both J2EE and .NET platforms.

Some other composition languages for Semantic Web services will be discussed later in

this chapter.

2.2.4 Decentralized Execution of composite Web services

Standard BPEL orchestration engines assume that the execution of composite Web

service is controlled by a single node that acts as the central scheduler. This approach

has many drawbacks since it generates a large amount of round-trip messages between

participating component service providers and central scheduler. The central scheduler

also represents a bottleneck and a central point of failure (Benatallah et al., 2003). For

these reasons alternative approaches based on a decentralized peer-to-peer execution of

a composite process have been suggested.

2.2.4.1 Self-Serv

Self-Serv is a middleware infrastructure for decentralized execution of Web services in a

peer-to-peer topology developed by Benatallah et al. (2003).

Self-Serv supports declarative Web Service composition based on state charts that en-

code a composition model. A Self-Serv state chart is comprised of states that are either

basic or compound, and transitions between states. A basic state coresponds to the in-

vocation of an elementary or composite Web service and a compound states corresponds

to a subordinate state chart.

In Self-Serv a service container is a component that aggregates a set of Web services.

The set membership is not fixed and can change dynamically at run-time. The service

container is a Web service itself. It facilitates dynamic late binding, since instead of

invoking a member Web service directly, the service consumer can send the invocation

request to the service container, and let the service container decide which element Web

service will perform the requested operation. A Web service can be a member of a

container in the following modes:

• Services in explicit mode are registered with the container statically.

10

• Services registered in query mode are specified in form of a queries to service

registries, such as a UDDI registry.

• In registration mode services need to register with the container themselves to

become members.

For each state of the composite service Self-Serv generates a state coordinator. The state

coordinator is hosted by the provider of the service associated with the state. During

decentralized composite service execution the coordinator is responsible for receiving

notifications of completion from each state coordinator, executing its state, and sending

notifications of completion to the coordinators of the states that might need to be entered

next.

Each coordinator has a routing table, which specifies the pre-conditions that must be

satisfied prior to the invocation of the associated service, and post-processing actions

that must be performed after the execution of the associated service is complete.

Figure 2.3: Self-Serv layered architecture (Benatallah et al., 2003)

11

Self-Serv has a layered architecture as presented in Figure 2.3.

Service layer consists of composite services, service containers and state coordinators.

Conversation layer provides support for standardized interactions among services. It

consists of a set of predefined service templates for various industrial standards

(for example, Electronic Data Interchange, RosettaNet).

Directory layer stores metadata about services and container. The implementation

described in (Benatallah et al., 2003) uses a centralized UDDI for this purpose.

Communication layer uses SOAP to facilitate message exchange among participating

nodes.

User layer provides three components to assits the user. The service discovery engine

assits the user to locate the services, which can be imported into service containers,

or used as components in composite services. The service builder is used to create

and configure composite services and service container. The service deployer gen-

erates routing tables from the state charts and uploads them to the hosts of the

corresponding component services.

2.3 Semantic Web

Most of today’s World Wide Web is designed for human users. There is little sup-

port for automated access to the resources on the Web. Web content is only rarely

machine-accessible. Semantic Web is an initiative that aims to use machine-processable

Web information to improve the current state of World Wide Web. Key technologies

of Semantic Web are explicit metadata (XML), ontologies, logic and inferencing, and

intelligent agents. The development of Semantic Web consists of layers, where each new

layer is build upon another, as shown on Figure 2.4 (Antoniou and van Harmelen, 2004).

Figure 2.4: Semantic Web layers

12

2.3.1 Ontologies

In computer science, an ontology is a data model that represents the knowledge about

the domain and is used to reason about the objects in that domain and the relations

between them. Ontologies generally describe:

• Classes: families of objects (for example, city or country)

• Individuals: the basic objects (for example, Dublin or Ireland)

• Attributes: properties, features, characteristics, or parameters of objects (for

example Ireland has 4 million residents)

• Relations: the relationships between objects (for example, Dublin is the capital

of Ireland)

2.3.1.1 RDF and RDF Schema

RDF (W3C, 2004b) is a graph-based data model that provides foundation for represent-

ing and processing metadata (Antoniou and van Harmelen, 2004). An RDF graph is a

set of statements. A statement is a triple comprised of a subject, a predicate and an

object. The subject of an RDF statement is a resource, either anonymous, or named by

a Uniform Resource Identifier (URI). The predicate is a resource as well, representing a

relationship. The object is a resource or a string literal.

RDF Schema (W3C, 2004c) builds on top of RDF and provides a mechanism for de-

scribing specific domains. It is a primitive language that offers a few basic modelling

primitives with fixed meaning.

Some of the key primitives of RDF and RDFS are:

• rdfs:Resource is the class of all resources.

• rdfs:Class is the class of all classes.

• rdf:Property is the class of all properties.

• rdf:type relates resource to its class.

• rdfs:subClassOf allows to declare hierarchies of classes.

• rdfs:domain of a rdf:Property declares the class of the subject in a triple using

this property as predicate.

• rdfs:range of a rdf:Property declares the class or datatype of the object in a triple

using this property as predicate.

There exist many query languages for getting information from RDF graphs. One of

these is SPARQL, which is able to (W3C, 2006):

• extract information in the form of URIs, blank nodes, plain and typed literals,

• extract RDF subgraphs, and

• construct new RDF graphs based on information in the queried graphs.

13

2.3.1.2 OWL

RDF and RDF schema allow a limited representation of ontological knowledge. Their

primary concern is the organization of concepts in typed hierarchies. However many

more sophisticated ontological constructs are missing. For example, using RDF and

RDFS it is not possible to express that some classes are disjoint (for example, males

and females), or to create classes which are unions, intersections or complements of

other classes. It is also not possible to express cardinality restrictions. These facilities

are provided by Web Ontology Language (OWL) (W3C, 2004a), which is an ontology

language on top of RDF and RDFS (Antoniou and van Harmelen, 2004).

OWL comes in three flavors: OWL Lite, OWL DL, and OWL Full. These flavors

incorporate different features, with OWL Lite being the simplest and OWL Full the

most expressive. OWL Lite and OWL DL are constructed in such a way that every

statement can be decided in finite time; OWL Full can contain infinite loops.

2.4 Semantic Web Services

Semantic Web Services describe the various aspects of a Web Service using explicit,

machine-understandable semantics, enabling the automatic location, combination and

use of Web Services. These potential benefits have led to number of initiatives both in in-

dustry and academia (Lara et al., 2005). The major specification models to semantically

describe services and support their automated discovery, execution, composition and

seamless interoperation, are OWL-S (Martin et al., 2004b), WSMO (de Bruijn et al.,

2005) and WSDL-S (Akkiraju et al., 2005).

2.4.1 OWL-S

OWL-S (Martin et al., 2004b) defines an OWL ontology for Web services with four

major elements (see Figure 2.5):

Service serves as an organizational point of reference for declaring Web Services. Every

service is declared as an instance of the Service class.

Service Profile describes what the service does in a way that is suitable for service

advertisement, discovery and selection.

Service Model tells a client how to use the service. It details the semantic content of

requests, the conditions under which particular outcomes will occur, and the exact

order of steps that must be performed. For composite services this description

may be used by a service consumer to compose and coordinate multiple services

to perform a specific task.

14

Service Grounding describes how a service consumer can invoke the service. Typi-

cally the grounding specifies the communication protocols, message formats, and

addresses used in contacting the service.

Figure 2.5: Top level of the OWL-S ontology (Martin et al., 2004b)

2.4.1.1 Service Profile

The OWL-S Service Profile presented in the Figure 2.6 provides high level descriptions

of a service as a transformation from one state to another. It provides a view of the Web

service as a process which requires inputs, and some precondition to be valid, and it

results in outputs and some effects to become true. OWL-S provides a schema by which

Service Profiles can be subclassed to describe a specific class of capabilities Martin et al.

(2004c).

2.4.1.2 Service Model

The OWL-S Service Model presented on Figure 2.7 describes how a service can be used.

It tells a client how to use the service, by detailing the semantic content of requests,

the conditions under which particular outcomes will occur, and in case of the composite

service, the step by step processes. OWL-S defines a Process, which is a subclass of

Service Model. OWL-S defines three types of processes (Martin et al., 2004b):

Atomic Process corresponds to the action a service can perform in a single interaction.

Composite Process corresponds to the action that requires multi-step actions.

Simple Process offers an abstraction mechanism to provide multiple views of the same

process.

The OWL-S Composite Processes are decomposable into other processes. Their decom-

position can be specified by using control constructs such as Sequence and Repeat-While.

A composite process is not a behavior a service will do, but a behavior the client can

15

Figure 2.6: OWL-S profile model (Martin et al., 2004b)

Figure 2.7: OWL-S process model (Martin et al., 2004b)

16

perform by interacting with the service. The OWL-S Composite Process supports the

following control constructs (Martin et al., 2004b):

Sequence A list of control constructs to be done in order.

Split A list of control constructs to be done in parallel. Split completes as soon as all

of its component processes have been scheduled for execution.

Split+Join A list of control constructs to be done in parallel. Split+Join completes

when all of its components processes have completed.

Choice picks the execution of a single control construct from a given bag of control

constructs.

Any-Order allows the process components to be executed in some unspecified order,

but not concurrently.

If-Then-Else tests for the condition, executes the first control constructs if the condi-

tion is true, or the second otherwise.

Iterate repeatedly executes the same control construct.

Repeat-While tests for the condition, exits if it is false and does the operation if the

condition is true, then loops.

Repeat-Until Repeat-Until does the operation, tests for the condition, exits if it is

true, and otherwise loops.

2.4.1.3 Service Grounding

The OWL-S Service Grounding describes how to interact with the service. It specifies

communication protocol, message formats, and other service-specific details such as port

numbers used in contacting the service. In addition, the grounding must specify, for each

semantic type of input or output specified in the Service Model, a way of exchanging

parameters of that type with the service (Martin et al., 2004b).

OWL-S is a mature technology with a decent software support. For example, the OWL-S

Java API library provides programmatic access to read, execute and write OWL-S ser-

vice descriptions (Sirin and Parsia, 2004).

2.4.2 WSMO

Web Service Modeling Ontology (WSMO) (de Bruijn et al., 2005) is based on the con-

cepts from the Web Service Modeling Framework (WSMF) (Fensel and Bussler, 2002).

It defines four major components (Lara et al., 2005):

Ontologies provide the terminology and formal semantics for describing the other ele-

ments in WSMO. They are used to specify conceptual real-world semantics defined

and agreed upon by communities of users.

Goals provide the means to specify the service consumer objectives when consulting a

Web Service, describing at a high-level a concrete task to be achieved. They consist

17

of non-functional properties , imported ontologies, mediators used, postconditions

and effects. Postconditions and effects describe the state of the information space

and the environment, desired by the service consumer.

Web Services provide a semantic description of Web services, including their func-

tional and non-functional properties. The main elements of a Web service descrip-

tions are the capability and the interfaces:

Capability defines the functional aspects of the provided service. It is comprised

of preconditions, assumptions, postconditions and effects. Capabilities are

defined separately from the requester goals, clearly distinguishing between

the requester and provider points of view. The preconditions describe the

valid state of the information space prior to the service execution. Postcondi-

tions describe the guaranteed state of the information space after the service

execution. Analogously assumptions describe the valid state of the environ-

ment prior to the service execution, and effects describe the guaranteed state

of the environment after the service execution.

Interfaces provide details about Web service’s operation in terms of its choreog-

raphy and its orchestration.

Mediators represent connectors that resolve heterogeneity problems in order to enable

interoperability between heterogeneous parties.

WSMO provides expressive constructs that do not have a corresponding counterparts

in OWL-S, for example, Goal construct used to describe service consumer objectives,

or mediators. In spite of all that the design presented here is based on OWL-S, since

WSMO does not have the adequate software support at the moment.

2.4.3 Jini

The Jini architecture specifies a way for clients and services to find each other on the

network and to work together to get a task accomplished. Jini moves data and executa-

bles via a Java object over a network. Its protocols are independent of the underlying

networking technology (Sun Microsystems, 2006a).

2.4.3.1 Service Advertisement

A djinn is the group of devices, resources, and users that are joined by the Jini technology

infrastructure. The Jini lookup service is a fundamental part of the Jini architecture

that provides a central registry of services available within the djinn. It us used by the

clients to find services within the djinn. The lookup service maintains a flat collection

of service items (Sun Microsystems, 2006b).

Service advertisement functionality is provided by discovery and join protocols.

18

Entities that wish to start participating in a distributed system of Jini enabled services

and devices must first obtain references to one or more Jini lookup services. The proto-

cols that govern the acquisition of these references are known as the discovery protocols

(Sun Microsystems, 2006b).

The discovery process involves three related protocols (Sun Microsystems, 2006b):

• Multicast request protocol is used to discover nearby lookup services. This

protocol is employed by entities that are starting up and need to locate a djinn in

proximity.

• Multicast announcement protocol is used to announce the existence of a

lookup service on a local network. When a new lookup service is started, or

when an existing service recovers after the failure, it might need to announce its

availability to potential clients.

• Unicast discovery protocol is used to establish communications over a local

area or wide area network with a lookup service whose address is known in advance.

This protocol is used to establish connections with remote lookup services, or to

deal with specific lookup services over a long period of time.

Once the lookup service has been located, a number of steps described by the join

protocol must be taken for entities to start communicating usefully with these services

(Sun Microsystems, 2006b).

2.4.4 JXTA

The JXTA (Sun Microsystems, 2006c) is a framework providing set of open protocols

that support ad-hoc, pervasive, peer-to-peer computing. These protocols enable peers

to collaborate irrespective of the network topology and their position in the network.

The JXTA protocols are language independent, platform independent, and secure.

While Jini is more concerned with services located on a particular network, JXTA is

used to communicate with a software services that are not location specific.

JXTA framework is comprised of three layers similar to the standard structure of oper-

ating systems:

1. JXTA Core provides the core functionality.

2. JXTA Services are the second layer built on top of the JXTA Core layer. Services

provide the access to the JXTA protocols.

3. JXTA Applications form the third layer. The applications use JXTA Services

layer to access the JXTA network.

2.4.4.1 Peers

JXTA peers create a virtual overlay network that hides the topology of underlying

network. Peers can interact directly even when some of them are behind firewalls and

19

NATs or use different network transports. A peer is uniquely identified by a virtual

address that allows him to change the location while keeping the same identity in the

JXTA network (Traversat et al., 2003).

There are two main types of peers: edge-peers and super-peers. The super-peers are

further divided into rendezvous and relay-peers. Edge-peers usually resides on the border

of the Internet or behind the firewalls, and have a low bandwith connection to the

network. Rendezvous-peers have agreed to index other peer advertisements to facilitate

the discovery of resources in a peergroup. Relay-peers allow the peers behind firewalls

or NAT systems to access the JXTA network (Traversat et al., 2002, 2003).

The peers exchange messages through pipes. Pipes are virtual communication channels

used by JXTA to exchange messages. Pipes are asynchronous, unreliable and unidirec-

tional (Traversat et al., 2003).

The peers self-organize into peergroups that represents a dynamic set of peers that share

a common set of interests (Traversat et al., 2003).

2.4.4.2 Advertisements

All JXTA resources are represented by advertisements encoded as XML documents.

JXTA standardizes advertisements for the core JXTA resources (for example, peer,

peergroup, pipe, service, rendezvous). These advertisements can be subtyped to provide

advertisements for other application specific resources. There are no limitations and

advertisements can describe virtually anything (for example, Java objects, Web services)

(Traversat et al., 2003).

The JXTA network acts as an always-available, network-wide, dynamic, distributed

virtual hashtable that contains the index of all published advertisements. A peer can

query the hash table at any time by supplying a set of attributes - the keys in the

hash table. The query is resolved by the rendezvous network by hashing the key to the

rendezvous peer containing the requested advertisement (Li, 2003).

JXTA uses the so called loosely-consistent DHT walker approach to search for adver-

tisements in the JXTA rendezvous network. The loosely-consistent DHT walker uses a

hybrid approach that combines the use of a DHT to index and locate advertisements,

with a limited range walker to resolve inconsistency of the DHT within the dynamic

rendezvous network. This approach is very robust, since it does not require maintain-

ing consistency across the network, or a stable rendezvous peer infrastructure. It is is

well adapted to ad hoc peer-to-peer network with high peer churn rate (Traversat et al.,

2002).

2.4.4.3 Semantic Search

Zhou et al. (2003) pointed out that a DHT requires a unique hash techniques that trans-

form the search criteria into a unique key set. Such approach is not suitable for semantic

20

search mechanisms, since a typical semantic search consists of an arbitrary combination

of concepts and the relationships between them. A semantic search technique should be

able to search on a set of related entities rather than a single hash expression (Zhou et al.,

2003).

2.5 Content Based Networking

An event notification middleware is a loosely coupled system, that provides notification

delivery and notification selection services (Carzaniga et al., 2001). The clients can

publish notifications and subscribe for notifications. The event notification middleware

filter events a few well-known attributes of a notifications are available for selection

to subscriptions (Carzaniga and Wolf, 2002). Event notification service is a standard

component of current commercial messaging middlewares.

Content-based networking (CBN) is an event notification middleware that filters events

based on matching client subscriptions to the full message type rather than message at-

tributes. It facilitates still looser coupling between producers and consumers (Keeney et al.,

2006b). In content-based networking, receivers subscribe to notifications that are of

interest to them without regard to any specific source, while senders simply publish no-

tifications without addressing it to any specific destination (Carzaniga and Wolf, 2002).

Several CBN solutions and prototypes exist, for example Siena (Carzaniga et al., 2001),

Elvin (Segall et al., 2000) and Hermes (Pietzuch and Bacon, 2002).

A limited support for CBN is provided by some Enterprise Service Bus products. Some

products reviewed, for example ServiceMix (Apache Software Foundation, 2006b) and

Mule (Codehaus, 2006), do support content-based routing, however routing rules must

be statically encoded into their policies. They do not support dynamic subscriptions,

which are one of the primary benefits of more advanced CBN.

2.5.1 Siena

Siena is an implementation of CBN middleware. A Siena notification is a set of typed

attributes. Each attribute is comprised of a name, a type and a value. Original version of

Siena supports only basic scalar types. A Siena subscription is a conjunction of filtering

constraints. A constraint is comprised of the attribute name, an operator, and a value. A

subscription covers a notification, if the even match to all filtering constraints of a filter.

A notification is delivered to a client, if client has has submitted a subscription filter

that covers that notification. Siena also discovers coverings between filters to optimize

routing of the notifications. A filter covers another filter, if all notifications selected by

the latter are also selected by the former (Keeney et al., 2006b).

Carzaniga et al. (2001) defined three based types of Siena topology: hierarchical client/server,

acyclic peer-to-peer, and general peer-to-peer. All topologies provide the same function-

21

ality, however they differ in non-functional features, like time complexity, scalability and

fault tolerance.

2.5.2 Ontologically Extended Siena

Even more flexible event-based system is a CBN based on messages containing seman-

tic markup and queries. Such a semantic-based content-based networking is termed

a knowledge-based networking (Keeney et al., 2006b). A partial knowledge-based net-

working implementation based upon Siena was conceived by Lynch et al. (2006) and

developed by Keeney et al. (2006b). They extended Siena with support for three new

ontological operators for strings containing ontological URIs: subsumption, reverse sub-

sumption, and equivalence.

22

Chapter 3

Design

This chapter provides an overview of the main concepts and salient features of the design

developed in scope of this research.

3.1 Requirements

The aim of this project is the design and implementation of a decentralized peer-to-peer

workflow model using ontology-based descriptions of Web services. We consider two

main issues, namely (i) the benefits of content-based networking to provide decentralized

service discovery and loose coupling of decentralized data and control flow binding, and

(ii) the usage of ontology based-descriptions of Web services.

The ultimate goal is to produce loosely coupled distributed workflow system, where

connections between participating services are made and remade dynamically based on

inexact matches, thus promoting flexibility and robustness.

The main functional requirements for the system are the following:

• The system should be comprised of distributed software components (hereinafter

referred to as agents) cooperating in a decentralized peer-to-peer fashion. The

agents should be loosely coupled.

• Each agent should serve as the service container and is able to host atomic and

composite semantic Web services.

• Agents are should be able to advertise hosted semantic services and discover ser-

vices advertised by other agents. The discovery algorithm should work well in a

dynamic environment, where services continually appear and disappear and where

agents do not know other agents.

• Agents should be able to autonomously perform execution of hosted atomic Web

services.

23

• Agents should be able to conjointly perform decentralized execution of composite

Web services. The bindings between participating services are made and remade

dynamically based on inexact semantic matches.

Figure 3.1: Agents with deployed services

The Figure 3.1 shows a set of agents with deployed services.

3.2 Outline

As mentioned, is the objective of this work is to support decentralized execution of a

workflow described in terms of semantic Web services. Additionally it should support

decentralized advertisement and discovery of available services. OWL-S (Martin et al.,

2004b), respectively its CompositeProcess, will be used as a formal language for encoding

the workflow process. While there are several other languages available, OWL-S is

currently the most mature. While WSMO might be a better choice it has currently

inadequate software support, which is needed for the implementation of the prototype.

Advertisement and discovery information must be efficiently broadcasted between peers.

The content-based networking middleware has been chosen for this purpose. The moti-

vation for this is given in § 3.3 and the design of the powerful extension of content-based

networking operator set is explained in § 3.4. The design is based on Siena developed

by Carzaniga et al. (2001) with ontological extension conceived by Lynch et al. (2006)

and developed by Keeney et al. (2006b). It is currently the only available functioning

content-based networking middleware middleware with support for ontological opera-

tors. As an alternative, enterprise service buses supporting content-based routing have

also been considered, but the products currently available (for example, Apache Ser-

viceMix and Codehaus Mule) do not have support for dynamic subscriptions, which is

one of the primary requirements of this design.

An OWL-S CompositeProcess statically binds to the participating Web services. This is

not suitable for our scenario, where bindings between participating services will be made

24

dynamically and short-lived. Hence it is necessary to describe participating services in

abstract terms of required capabilities, without assuming any concrete service imple-

mentation. For this purpose the AbstractProcess construct is introduced in § 3.5.1. We

also need an effective mechanism for flexible, but accurate description of advertised ca-

pabilities, and discovery goals. As a solution to this requirement the design of discovery

annotations is presented in § 3.5.2. Abstract processes and discovery annotations are

integrated into a flexible peer-to-peer advertisement and discovery mechanism presented

in § 3.5.3.

The decentralized execution of a composite service is orchestrated by several cooperating

peer agents. Each agent is actually a service container that can host any number of

services. The decentralized orchestration has two complementary parts, namely control-

flow that defines the sequencing of activities, and data-flow that defines how information

flows between activities. The design of the distributed control and data-flow is presented

in § 3.6.

These concepts are combined in § 3.7 to define the architecture of the agent, which is the

essential component of our decentralized composite service execution model. The agent

can host, advertise and execute semantic Web services and participate in decentralized

execution of composite semantic Web services.

Finally a realization of decentralized execution is explained in § 3.8.

3.3 Applicability of Content-Based Networking

This section investigates the possible usages of the content-based networking in a dis-

tributed workflow model. The distributed peer-to-peer workflow model presented in this

research is comprised of (i) the service discovery model and (ii) the workflow execution

model.

We will characterize the interaction patterns that occur in those two models with regard

to the classification suggested by Buchmann et al. (2004). The study characterizes inter-

action patterns by two dimensions based upon: (i) who is the initiator of the interaction,

(ii) whether the initiator has the knowledge of the counterpart (see Table 3.1).

Table 3.1: Categorization of the interactions patterns

Initiator of Interaction

Consumer Producer

Knowledge of Yes Request/Reply Messaging

Counterpart No Anonymous Request/Reply Event-based

25

3.3.1 Distributed Service Discovery

The distributed service discovery model is comprised of peers, discovering suitable ser-

vices hosted by other peers. In that sort of interaction, the ultimate counterpart of

any peer is another peer hosting a matching service. During the service discovery the

service requester has no direct knowledge of the peers hosting the services to be dis-

covered. According to Buchmann et al. (2004) interactions of this type belong to either

Anonymous Request/Reply or Event-based category. The service requester can either

query for matching services, which fits into the first category, or receive notifications for

matching services, which fits into the second category.

The event-based systems are particularly well suited for accommodating communities of

cooperating distributed parties that establish communication relationships dynamically

over time in an unpredictable fashion (Meier and Cahill, 2005). The traditional event

based systems match client subscriptions to the message type. A special type of an event-

based system is the content-based network. Content-based networking facilitates still

looser coupling between producer and consumer by matching client subscriptions to mes-

sage attributes rather than the full message type. Indeed, already Carzaniga and Wolf

(2002) envisioned the usage of content-based networking for the service discovery. Even

more flexible event-based system is a content-based networking based on messages con-

taining semantic markup and queries (Keeney et al., 2006b).

For these reasons the design presented here makes use of CBN with ontological extension

for service advertisement and discovery. The CBN with ontological extension provides

an efficient mechanism for delivering knowledge, in this case about available services,

from its source to consumers, who register specific interests. It offers the potential for

scaling delivery to Internet dimensions (Lewis et al., 2005).

There has been some research done in this area already. For example, a semantic service

discovery system based on content-based networking has been developed by Lynch (2005)

and forms part of the motivation for this work.

3.3.2 Distributed Workflow Execution

In the distributed workflow execution model there are two types of interactions between

peers: control-flow and data-flow. The control-flow defines the sequencing of partici-

pating services. The data-flow defines how information flows between services. In both

cases the initiator must know the identity of the counterpart. This is especially true in

more complex workflows, where for example:

• The same peer hosting a particular activity has to be revisited several times dur-

ing the distributed workflow execution, for example while looping through the

sequence.

• The distributed workflow execution splits into some parallel sub-flows, which later

join together. The peers hosting final activities of all these parallel sub-flows must

26

have an identical understanding which peer will execute the activity that occurs

after the join.

This makes the content-based networking unsuitable for driving control or data-flow,

since in the content-based networking interacting parties do not directly know each

other, but are bound by routing brokers based on the content of the messages. An

appropriate solution would be either remote procedure call or messaging middleware.

More thorough investigation of this issue is out of the scope of this research. Hence

a very simple solution based on standard non-semantic Web services is used in the

implementation of the prototype.

3.4 Bag Extension for Content-Based Networking

In scope of this research a novel service discovery model based on ontologically extended

Siena is presented as will be seen in § 3.5. As distinguished from Lynch (2005), the

approach presented here is very general and not tied to discovery of semantic Web

services. It is based on a new powerful family of matching operators, which can be

applied to discovery of diverse types of ontologically described resources. Actually the

discovery of semantic Web services serves merely as one example of its possible usages.

In the following sections, we will first look at how Siena has been extended with support

for bags and bag operators. In the subsequent sections we will see how this extension

has been exploited to build a robust distributed peer-to-peer service discovery system

particularly suited to dynamic environments.

The design presented here extends Siena (Carzaniga et al., 2001) with a bag type. It

also extends the Siena subscription language with the bag operators.

3.4.1 Bag Algebra

This section presents some formal definitions of the bag algebra which are needed to

understand the Siena bag extension. It also defines and describes the composite bag

relations, which are a novel contribution of this research to the field of bag algebra.

3.4.1.1 Bag

According to Weisstein (2002), a bag (also called multiset) is a set-like object in which

order is ignored, but multiplicity is explicitly significant. Therefore, bags r1, 2, 3s andr2, 1, 3s are equivalent, but r1, 1, 2, 3s and r1, 2, 3s differ. Bag differs from a set in that

each member has a multiplicity, which is a natural number indicating how many times

it is a member.

For the purpose of the subsequent definitions we will use a more formal definition of a

bag of Baeten and Basten (2001):

27

Definition 3.4.1. Suppose there exists some set A. A bag over set A is a function

from A to the natural numbers1 N such that only a finite number of elements from A is

assigned a non-zero function value. For some bag P over set A and a P A, P paq denotes

the number of occurrences of a in P , often called the cardinality of a in P . A bag is a

set if the cardinality of every element is one.

The function P is a set of ordered pairs tpa, P paqq : a P Au. For example, the bag written

as ra, a, b, as is defined as tpa, 3q, pb, 1qu, and the bag ra, bs is defined as tpa, 1q, pb, 1qu.
3.4.1.2 Finite Sequence

While finite sequences do not directly appear in the implementation of the Siena exten-

sion, they are needed in the subsequent sections for the formal definition of the composite

bag relation.

Definition 3.4.2. Suppose there exists some set A. A finite sequence of length n P N

over set A is a function from set Mn :� tm P N : m nu to A. For some finite sequence

X over set A and i P Mn, Xpiq is the i-th element of the sequence, often denoted as xi.

The function X is a set of ordered pairs tpi, Spiqq : i P Mnu. For example, the sequence

written as xa, a, b, ay is defined as tp0, aq, p1, aq, p2, bq, p3, aqu.
Definition 3.4.3. Suppose there exist some sets A and B, some function f : A Ñ B,

and a set C � B. The inverse image of the set C under f is the subset of A defined by

f�1rCs :� ta P A : fpaq P Cu.
Definition 3.4.4. For any sequence X over set A, τpXq denotes a bag of all elements

from X, defined as τpXq : A Ñ N, so that for all a P A, τpXqpaq :� |X�1rtaus|. That is,

for any a P A the cardinality of inverse image of the singleton tau under the sequence X

equals to the cardinality of the element a in the bag τpXq.
For example, τpxa, a, b, ayq � ra, a, a, bs.
3.4.1.3 Simple Bag Relations

This section provides definitions of the three well-known binary bag relations: equal,

subbag, and superbag. We will call these bag relations simple bag relations to distinguish

them from composite bag relations defined in the next section.

Definition 3.4.5. Suppose there exist some set A and bags P and Q over A. P is equal

to Q, denoted P � Q, if and only if for all a P A, P paq � Qpaq. P is subbag of Q,

denoted P � Q, if and only if for all a P A, P paq ¤ Qpaq. P is superbag of Q, denoted

P � Q, if and only if Q � P .

1 It is assumed that natural numbers are non-negative integers p0, 1, 2, 3, 4, . . .q, that is, 0 P N.
2 For some collection S, |S| denotes the cardinality, or the number of elements, of the collection S.

28

Example 3.4.1. Here are some examples of true statements using the subbag relation3:H � Hras � rasH � ra, b, c, d, e, f srb, c, ds � ra, b, c, d, esre, a, es � ra, b, c, d, e, e, es
The following statements, however, are not true:ras � Hra, as � rasrks � ra, b, c, d, e, f srb, c, d, cs � ra, b, c, d, esra, a, e, es � ra, b, c, d, e, es
Corollary. All three simple bag relations, namely equal, subbag, and superbag, are tran-

sitive and reflexive.

The transitivity of simple bag relations follows from the transitivity of numerical equal

and less then relations that were used in the definition of the simple bag relations.

3.4.1.4 Composite Bag Relations

This section defines the composite binary bag relation. The composite bag relation

is a binary relation over bags composed of (i) another binary bag relation over bags

and of (ii) a sub-relation over the bag elements. The motivation for it is explained

in § 3.4.4 and § 3.5. The composite bag relation is one of the primary contributions of

this research.

Definition 3.4.6. Suppose there exist some set A and some bags P and Q over A.

Suppose Φ is a simple binary relation over bags, and λ is an arbitrary binary relation

over the elements of A. Bag P is Φ-related to bag Q with regard to sub-relation

λ, written as P Φλ Q, if and only if there exist finite sequences X and Y over set A, so

that all of the following statements are true:

1. P is Φ-related to τpXq (P is Φ-related to the bag of all elements from sequence

X),

2. τpY q is Φ-related to Q (the bag of all elements from sequence Y is Φ-related to

Q),

3. |X| � |Y | (sequences X and Y have the same number of elements),

3 The symbol H denotes an empty set.

29

4. for all i P N, i |X|, Xpiq is λ-related to Y piq.
We call relation Φ primary relation of composite bag relation, and relation λ sub-relation

of composite bag relation.

Remark. The above definition could be without any changes generalized so that any

transitive binary bag relation would be used in place of the simple binary bag relation

as the primary relation. But this generalization is not needed in the scope of this

research.

In the continuation some examples of composite bag relations over bags of integers are

presented. Let’s define a few example bags first:

P :� r0, 1, 5, 7s
Q :� r1, 2, 8, 8s
R :� r0, 2, 8, 10s
S :� r9, 9, 9, 9s
T :� r9, 9, 9, 9, 9s
U :� r0, 0, 0, 1, 9, 9, 9, 9s

Example 3.4.2. Let’s take a composite bag relation � , which is composed of a primary

bag relation equal and a sub-relation less than.

The following statement is true:

P � Q

The statement is true because there exist sequences X � x0, 1, 5, 7y and Y � x1, 2, 8, 8y,
so that P � τpXq and τpY q � Q, and for i P t0, 1, 2, 3u, Xpiq Y piq. Indeed: 0 1,

1 2, 5 8, and 7 8.

The following statements, however, are both false:

P � R

Q � P

The statements are false because sequences which would satisfy the requirements from

the definition of the composite bag operator do not exist.

Example 3.4.3. Let’s take a composite bag relation �¤, which is composed of a primary

bag relation subbag and a sub-relation less than or equal to.

The following statement is true:

P �¤ Q

The statement is true because there exist sequences X � x0, 1, 5, 7y and Y � x1, 2, 8, 8y,
so that P � τpXq and τpY q � Q, and for i P t0, 1, 2, 3u, Xpiq ¤ Y piq.

30

The following statement is also true:

P �¤ U

The statement is true because there exist sequences X � x0, 1, 5, 7y and Y � x0, 1, 9, 9y,
so that P � τpXq and τpY q � U , and for i P t0, 1, 2, 3u, Xpiq ¤ Y piq.
The following statement is also true:

Q �¤ U

The statement is true because there exist sequences X � x0, 2, 8, 8y and Y � x0, 9, 9, 9y,
so that Q � τpXq and τpY q � U , and for i P t0, 1, 2, 3u, Xpiq ¤ Y piq.
The following statement is also true:

S �¤ U

The statement is true because there exist sequences X � x9, 9, 9, 9y and Y � x9, 9, 9, 9y,
so that S � τpXq and τpY q � U , and for i P t0, 1, 2, 3u, Xpiq ¤ Y piq.
The following statements, however, are all false:

Q �¤ R

R �¤ U

T �¤ U

The statements are false because sequences which would satisfy the requirements from

the definition of the composite bag operator do not exist.

Example 3.4.4. Let’s take a composite bag relation �¤, which is composed of a primary

bag relation superbag and a sub-relation less than or equal to.

The following statement is true:

U �¤ Q

The statement is true because there exist sequences X � x0, 0, 0, 1y and Y � x1, 2, 8, 8y,
so that U � τpXq and τpY q � Q, and for i P t0, 2, 3, 4u, Xpiq ¤ Y piq.
Remark. Note that the following statements are not mutually exclusive:

Q �¤ U

Q �¥ U

Remark. The definition of the composite bag relation is recursive. If a composite bag

relation operates on bags of bags, then its sub-relation can be itself a composite bag

relation.

Example 3.4.5. Let’s take a composite bag relation �p� q, which is composed of a

31

primary bag relation subbag and a sub-relation � , which is itself a composite bag

relation composed of a primary bag relation subbag and a sub-relation less than.

Let’s define two bags of bags of integers:

V � rH, r0, 0s, r1, 2, 3, 4ss
W � rr8s, r0, 0s, r1, 1, 1s, r1, 2, 3, 4, 5ss

Then the following statement is true:

V �p� q W

The statement is true because there exist sequences X � xH, r0, 0s, r1, 2, 3, 4sy and Y �xr8s, r1, 1, 1s, r1, 2, 3, 4, 5sy, so that V � τpXq and τpY q � W , and for i P t0, 1, 2u,
Xpiq � Y piq.
The following statement, however, is false:

V �p� q W

Theorem 3.4.1. Let Φ be a simple binary relation over bags, and λ a binary relation

over bag elements. If λ is transitive, then Φλ is also transitive. If λ is reflexive, then

Φλ is also reflexive.

The proof of the above theorem is simple, however, it is out of the scope of this work.

Corollary. As an interesting observation, a composite bag relation �� is equivalent to

a simple bag relation �. More generally, any bag relation Φ is equivalent to Φ�, denoted

as Φ � Φ�.

Theorem 3.4.2. Another interesting observation is that if A �¡ B, then B � A.

More generally, if Φ is a simple binary relation over bags, λ is a binary relation over

bag elements, Φ�1 is the inverse relation of Φ, and λ�1 is the inverse relation of λ, then

P Φλ Q exactly when Q Φ�1

λ�1 P .

In the past section bag algebra has been described to the extent needed by this project.

In the following sections we will look at how Siena has been extended with support for

bags.

3.4.2 Extending Siena with Bags

This section describes the design of the bag support for the content-based event noti-

fication service, which is one of the major contributions of this research. The design

is based upon the hierarchical version of Siena for Java (Carzaniga et al., 2001) with

the ontological extension (Keeney et al., 2005). The bag type and the bag operators

greatly extend the expresiveness of the Siena subscription mechanism, especially when

32

combined with the ontological operators. Examples of its usage are provided in § 3.4.4

and § 3.5.

3.4.2.1 Siena Bag Type

An event notification in Siena is a set of typed attributes. Each typed attribute is

comprised of a type, a name and a value. The current version of Siena supports the

following types: string, long, integer, double and boolean. This project extends Siena

with the bag type. The semantics of the bag type corresponds to the bag definition

from § 3.4.1.1.

A bag value can contain any valid Siena values, including other bag values. A Siena bag

is not allowed to contain itself, either directly or indirectly via other bags. Elements of

a bag do not need to be of a uniform type. Bags in Siena are first order members of

the Siena type set. They can appear in notifications, as well as in subscription filters,

like any other Siena type. Siena advertisements, which are part of the theoretical Siena

model, are not supported in the hierarchical version of Siena, but should they be, bag

type should work seamlessly with them.

Example 3.4.6. Here are some examples of valid Siena bags:Hr3, 345, 27, 35, 3476, 0, 27, 27sr”Ljubljana”, ”Vienna”, ”Amsterdam”, ”Dublin”sr”Ljubljana”, 2, ”Ljubljana”, 3.14159s
Example 3.4.7. The Figure 3.2 shows an example of extended Siena notification with

a bag attribute.

Figure 3.2: Siena notification comprising a bag attribute

Attribute Name Type Value

serviceUri string ”http://kdeg/BookHotel.owl#BookHotelService””

inputStereotypes bag ”PartyName”
”City”
”BeginningDate”
”EndDate”
”HotelCategory”

validity integer 300

agentUrl string ”http://kyi:9080/dowls/”

Remark. Since a set is a bag where all elements have cardinality one, this extension also

implicitly supports sets.

33

3.4.2.2 Siena Bag Operators

An subscription filter in Siena is used to subscribe to event notifications by specifying

a set of attributes and constraints on the values of those attributes. Each constraint is

comprised of a type, a name, a binary predicate operator, and a value for an attribute.

The original version of the Java Siena CBN supports common equality and ordering

relations for its types (Carzaniga et al., 2001). Keeney et al. (2006b) have extended

Siena with support for three new ontological operators for strings containing ontological

URIs: subsumption, reverse subsumption, and equivalence.

This work extends the set of supported operators further with simple and composite

binary bags operators. The semantics of the simple bag operator corresponds to the

simple binary bag relation defined in § 3.4.1.3, and the semantics of the composite bag

operator corresponds to the composite binary bag relation defined in § 3.4.1.4. The

primary bag operator and the sub-operator correspond to the primary bag relation and

the sub-relation respectively.

Remark. Although there is no bag membership operator in Siena, it is very easy to

simulate the bag membership operator with the subbag wrapping a in a singleton bag.

Let A be an arbitrary set, P a bag over A, and a P A. a P P if and only if tau � P .

Remark. Although elements of a bag do not need to be of a uniform type, this is not

particularly useful when used in combination with a composite bag operator. The reason

is that its sub-operator will normally yield to false when comparing values of different

types (for example, ”3 true” is false).

3.4.2.3 Covering of Bag Operators

Siena optimizes its routing tables by aggregating event filters. The aggregation rules

are derived from coverings between event filters. If the filter A always selects all events,

which are selected by the filter B, then A covers B. In order to preserve correctness

and efficiency of Siena, routing covering relationships between new Siena bag operators

must be properly implemented.

Consider two filtering constraints A and B, such that A is given as x Φ P , and B is

given as x Φ Q, where Φ is one of the � (equal), � (subbag), or � (superbag) operator.

P and Q are the bag values and the variable x is the attribute to be compared with P

respectively Q. Covering relationships between simple bag operators are straightforward

and presented in the Table 3.2.

Composite bag operators have much more complex semantics and for this reason covering

relationships between them are harder to discover and more computationally intensive to

evaluate. For this reason the following three observations have been taken into account

during their construction:

1. It is important to note that the covering relationship is purely an optimization

and that Siena would work correctly without it, albeit not as efficiently as with it

34

Table 3.2: Covering relationships between the simple bag operators

A B A covers B exactly when

x � P x � Q Q � P

x � P x � Q Q � P

x � P x � Q Q � P

x � P x � Q never

x � P x � Q Q � P

x � P x � Q never

x � P x � Q never

x � P x � Q never

x � P x � Q Q � P

(Heimbigner, 2003). Hence, the evaluation of covering relationship as false, when

it is actually true, can affect the routing efficiency, but can not affect the routing

accuracy. In other words, false negatives reduce routing efficiency, but do not

affect routing accuracy.

2. Evaluation of covering relationship as true, when it is actually false, can affect

routing accuracy. In other words, false positives do affect routing accuracy.

3. Absence of false negatives in the covering relationship algorithm would not neces-

sarily result in the optimal routing performance. In a dynamic environment, where

subscription filters have a short lifespan, more precise covering relationship algo-

rithm could cause a high computational burden and result in bad overall routing

performance.

Considering this, and with a goal to keep things simple, the covering relationships be-

tween composite bag operators, which allow for some false negatives, have been defined.

They are presented in the Table 3.3. The correctness of these relationships is based upon

transitivity rule for composite bag operators given in the Theorem 3.4.1. All symbols

used in the table have the same meaning as in the simple bag operators case, with an

addition of λ and ξ that represent sub-operators of composite bag operators.

3.4.3 Modifications of Ontologically Extended Siena

The composite bag operator makes the CBN very powerful, especially when combined

with the ontological operators, as demonstrated in § 3.4.4 and § 3.5.

Keeney et al. (2006b) have extended original Siena with support for three new onto-

logical operators: subsumes4 (,), subsumed by5 (-), and equivalent (�). In order to

use the ontologically extended Siena effectively in this project, two minor modifications

4 An alternative name for operator subsumes is less specific.
5 An alternative name for operator subsumed by is more specific.

35

Table 3.3: Covering relationships between the composite bag operators

A B A covers B when

x �λ P x �ξ Q λ � ξ ^ λ is transitive^Q �λ P

x �λ P x �ξ Q λ � ξ ^ λ is transitive^Q �λ P

x �λ P x �ξ Q λ � ξ ^ λ is transitive^Q �λ P

x �λ P x �ξ Q never

x �λ P x �ξ Q λ � ξ ^ λ is transitive^Q �λ P

x �λ P x �ξ Q never

x �λ P x �ξ Q never

x �λ P x �ξ Q never

x �λ P x �ξ Q λ � ξ ^ λ is transitive^Q �λ P

must be applied to it.

The paper defines that the subsumes and subsumed by relationships between two equiv-

alent ontological concepts do not hold. For the purposes of this project subsumes and

subsumed by will be considered true for equivalent concepts. More formally, for any

ontological resource A and any ontological concepts B, if A � B, then A , B and

A - B.

The paper also states that filtering constraint x � A never covers filtering constraint

x � B. For the purposes of this project the covering relationships between filtering

constraints are changed so that x � A covers x � B precisely when A � B. In other

words, two filtering constraints with ontological equivalence operators cover each other

if and only if their respective values are ontologically equivalent.

It is important to note that the covering relationships of other Siena operators are not

affected. Their descriptions are available in (Carzaniga et al., 2001) and (Rutherford,

2004), and remain completely unchanged.

3.4.4 Semantic Resource Discovery

This section presents the applicability of bags and composite bags operators for discovery

of ontologically described resources. § 3.5 specializes this general approach to semantic

service discovery.

The filtering constraint in the ontologically extended Siena is capable of comparing a

single ontological concept6 from the constraint with a single ontological concept from

the notification attribute. However, it does not provide any means for handling more

than one concept within a single attribute. Let’s illustrate this point using an example

6 Ontological concept is either OWL class, OWL property, or OWL individual.

36

from the Figure 3.3. The figure shows an example of Keywords Taxonomy for tagging

academic papers.

Figure 3.3: Keywords taxonomy

Example 3.4.8. Suppose that each academic paper is tagged with exactly one keyword.

Suppose that notifications for new academic papers are published via ontologically ex-

tended Siena. Each notification contains an attribute keyword with the value of the

keyword. Suppose also that there are Siena clients, which would like to subscribe for

notifications about all academic papers that are tagged with the particular keyword, or

any equivalent or more specific keyword. For example, if client would like to receive

notifications about all academic papers, which are tagged with the keyword Semantic

Web Service, or any equivalent or more specific keyword, the appropriate constraint

could be expressed in extended Siena with the following statement:

keyword - ”Semantic Web Service”

Example 3.4.9. Let us now consider a more realistic situation, where each academic

paper is tagged with several keywords. Suppose that in this case Siena clients subscribe

for academic papers that have at least some (one or more) required keywords, also

allowing for equivalent or more specific keywords. It is not possible to express this

constraint in a single subscription in ontologically extended Siena. However it is possible

to express the constraint in ontologically extended Siena with the bag extension.

Each notification must contain an attribute keywords with the bag containing all the

keywords of advertised academic paper. The Figures 3.4 and 3.5 show two examples.

Suppose there is a Siena client, which would like to subscribe for notifications about

all academic papers, which keywords match Ontology and Workflow, also allowing for

equivalent or more specific keywords. The following filtering constraint in ontologically

37

Figure 3.4: Example of the notification for Academic Paper 1

Attribute Name Type Value

title string ”Peer-to-peer Semantic Workflow”

authors string ”Micka Kovaceva and Tone Balone and Ziva Zver”

keywords bag ”Semantic Web”
”Workflow”
”Peer-to-Peer”

Figure 3.5: Example of the notification for Academic Paper 2

Attribute Name Type Value

title string ”Semantic Discovery of Composite Service Components”

authors string ”Janez Kranjski and Micka Kovaceva”

keywords bag ”Semantic Web Service Composition”
”Peer-to-Peer”
”Event Notification”

extended Siena with bag extension can be used to match the appropriate notifications:pkeywords �- r”Ontology”sq ^ pkeywords �- r”Workflow”sq
The constraint requires that the notification contains at least one keyword, which is

subsumed by Ontology, and at least one keyword, which is subsumed by Workflow. It

allows for the same keyword to match both conditions. This constraint would correctly

select both notifications from the Figures 3.4 and 3.5.

Example 3.4.10. Now let us look at the following constraint:

keywords �- r”Ontology”, ”Peer-to-Peer”s
Though the constraint might seem correct at a hasty glance, it would only match the

notification from the Figure 3.4. The reason is that this constraint requires that no-

tification contains at least one keyword, which is subsumed by Ontology, and at least

an other keyword, which is subsumed by Workflow. This form of bag constraint is not

useful in the example at hand, but it provides exactly what we will need for the service

discovery in § 3.5.

3.5 Semantic Service Discovery

The general semantic resource discovery concept outlined in the previous section can

be applied to semantic service discovery. Before we do so, constructs for describing the

service provider’s capabilities and service consumer’s requirements must be available.

38

Hence we will first introduce two new OWL-S concepts, which are abstract processes

and discovery annotations, and then use them to enable semantic service discovery driven

by CBN middleware.

3.5.1 Abstraction of OWL-S Process Model

This section introduces abstract semantic Web service processes. The OWL-S overview

(Martin et al., 2004b) describes the process as a detailed perspective on how to interact

with a service. The design proposed here is based upon the template-based composition

of semantic Web services presented by Sirin et al. (2005).

3.5.1.1 OWL-S Processes

OWL-S defines three types of processes: owls:AtomicProcess, owls:SimpleProcess and

owls:CompositeProcess. While owls:AtomicProcess and owls:CompositeProcess are

both executable, owls:SimpleProcess is used as an element of abstraction. Accord-

ing to the OWL-S specification owls:SimpleProcess may be used either to provide

a specialized way of using some owls:AtomicProcess, or as a simplified representa-

tion of some owls:CompositeProcess. In the former case, owls:SimpleProcess is real-

ized by the owls:AtomicProcess; in the latter case, owls:SimpleProcess expands to the

owls:CompositeProcess. To sum up, owls:SimpleProcess is an abstraction of a specific

executable process.

Composite processes statically bind to the participating processes. That is not suitable

for our scenario, where bindings between participating processes will be made dynami-

cally and are short-lived. Hence we must be able to describe participating processes in

abstract terms of required capabilities, without assuming any concrete process imple-

mentation.

Pure abstract description should describe the process solely in terms of inputs, outputs,

preconditions and effects. It should not be connected to any specific profile (and conse-

quently it would not be grounded), and it should have no links to executable processes.

Sirin et al. (2005) pointed out that there is no concept in OWL-S that would provide

pure abstract descriptions of processes. The authors proposed the new OWL-S process

type named AbstractProcess, however they dis not formally define it.

3.5.1.2 Abstract Process

Definition 3.5.1. For the purposes of this project we define a new OWL class called

dowls:AbstractProcess. dowls:AbstractProcess is a subclass of the owls:SimpleProcess

with additional restrictions that prevent assigning values to those inherited properties

that should not occur in a pure abstract class. dowls:AbstractProcess instances cannot

have assigned values for properties owls:describes, owls:hasParticipant, owls:realizedBy

and owls:expandsTo. That leaves the dowls:AbstractProcess only with the properties to

39

specify inputs, outputs, preconditions and effects. Therefore the dowls:AbstractProcess

meets the requirements asserted above. The OWL definition is shown in the Listing 3.1.

Listing 3.1: OWL definition of dowls:AbstractProcess

<owl:Class rdf:ID="AbstractProcess">

<rdfs:subClassOf rdf:resource="&process;#SimpleProcess"/>

</owl:Class>

<owl:Class rdf:about="#AbstractProcess">

<rdfs:intersectionOf rdf:parseType="Collection">

<owl:Restriction>

<owl:onProperty rdf:resource="&service;#describes" />

<owl:maxCardinality rdf:datatype="&xsd;#nonNegativeInteger">0</owl:maxCardinality>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="&process;#hasParticipant" />

<owl:maxCardinality rdf:datatype="&xsd;#nonNegativeInteger">0</owl:maxCardinality>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="&process;#realizedBy" />

<owl:maxCardinality rdf:datatype="&xsd;#nonNegativeInteger">0</owl:maxCardinality>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="&process;#expandsTo" />

<owl:maxCardinality rdf:datatype="&xsd;#nonNegativeInteger">0</owl:maxCardinality>

</owl:Restriction>

</rdfs:intersectionOf>

</owl:Class>

Example 3.5.1. The Listing 3.2 shows an instance of dowls:AbstractProcess with one

input, one output, no preconditions and no effects.

Listing 3.2: Example of abstract process instance

<dowls:AbstractProcess rdf:ID="AbstractGetBookPriceProcess">

<process:hasInput>

<process:Input rdf:ID="bookName">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&xsd;#string

</process:parameterType>

</process:Input>

</process:hasInput>

<process:hasOutput>

<process:Output rdf:ID="bookPrice">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&xsd;#integer

</process:parameterType>

</process:Output>

</process:hasOutput>

</dowls:AbstractProcess>

Remark. The given definition of an abstract process is pragmatic and not very elegant. A

better alternative would be to define abstract process either as a class, equivalent to the

owls:Process class, or as a class on the same hierarchical level as the owls:AtomicProcess,

owls:CompositeProcess and owls:SimpleProcess classes are defined. However, this for-

mally correct solution would break the behavior of existing software tools for OWL-S,

since some tools are only able to handle standard OWL processes. Our solution actually

40

effectively tricks the tools by allowing them to treat the dowls:AbstractProcess as the

owls:SimpleProcess.7

3.5.1.3 Composite Service Template

This section defines composite service templates. The conception is based upon the

work of Sirin et al. (2005).

Composite processes organize other processes into a workflow process. Invoca-

tions of participating processes are indicated as instances of owls:Perform constructs.

dowls:AbstractProcess can be used with the owls:Perform construct as an ordinary

owls:Process. Having dowls:AbstractProcess it is now possible to construct a composite

process without any reference to executable processes. We call such composite processes

composite process template, and a service described by such a process composite service

template. A composite process template is a generalized composite process where steps

are defined as abstract processes. This enables dynamic selection of participating pro-

cesses. The decision regarding which executable process will handle a given invocation

can be postponed until composite service template execution.

Abstract processes represent the component model dimension (see § 2.2.3) of service

composition model. An abstract process describes the contract that must be fulfilled

by an executable service in order to be able to participate in workflow execution in

lieu of the abstract process. Therefore we need a facility to describe requirements for

suitable executable services. The next section will present discovery annotations that will

characterize dowls:AbstractProcess for the purposes of discovery of executable services

that are able to fulfill its contract.

3.5.2 OWL-S Discovery Annotations

This section outlines the design of discovery annotations. Discovery annotations are

additional information elements in an OWL-S document that describe its characteristics

for purposes such as advertisement, discovery, and selection.

3.5.2.1 OWL-S Service Profile

In OWL-S a owls:ServiceProfile is used to characterize a service for advertisement pur-

poses. OWL-S does not prescribe or limit the ways in which profiles may be used,

but rather, seeks to provide a basis for their construction that is flexible enough to

accommodate many different contexts and methods of use (Martin et al., 2004a).

Several approaches about how to use the service profile have been suggested so far:

7 For example, OWL-S Java API (Sirin and Parsia, 2004) recognizes dowls:AbstractProcess instances

as instances of the owls:SimpleProcess.

41

1. OWL-S itself provides one possible representation of a service profile through the

class owls:Profile (Martin et al., 2004b). The owls:Profile presents what the service

does by specifying the input and output types, preconditions, and effects. It does

not provide specific classes for modeling these characteristics, but uses the schema

offered by the Process.owl ontology.

2. Martin et al. (2004a) suggest to construct a hierarchy of subclasses of the

owls:Profile that would provide a means of service categorization. This approach

has the following drawbacks: (i) The hierarchy of OWL-S profile classes is propri-

etary. It is specific to OWL-S and hence not simply reusable outside of OWL-S.

(ii) Services can not be categorized by a third party taxonomy that is not rooted

in the owls:ServiceProfile, at least not without special adaptation to the profile

hierarchy.

3. A different approach mentioned by Sirin et al. (2004) bases the matching on the

inheritance relationship of parameter types. For example, an input of type City

of a provided service can be said to match an input of type Place of a requested

service. Note that City and Place are data types. This proposition requires the

construction of a data type hierarchy for the purposes of semantic selection. The

main drawback of this approach is that it does not separate different concerns,

namely the data type and the semantic meaning.

4. Another possible approach would be to construct a hierarchy of subclasses of

owls:Input and owls:Output classes. This approach suffers from the same draw-

backs as approach 2.

3.5.2.2 Stereotypes

In this section we provide an alternative approach very similar to that of Akkiraju et al.

(2005). However, our design builds upon existing owls:Profile and dowls:AbstractProcess

classes. Both classes describe the functional aspects of the provided, respectively re-

quired, services. But both fall short in describing semantic features needed for dynamic

discovery. Our approach defines a new property dowls:hasStereotype, which is used

to annotate owl:Profile, dowls:AbstractProcess, and their inputs and outputs, with con-

cepts from some hierarchical taxonomy. The idea is based on the presumption that these

semantic annotations characterize the service sufficiently well to enable automation of

the process of service discovery.

Definition 3.5.2. dowls:hasStereotype is an OWL property that classifies the annotated

OWL individual for the purposes of advertisements, discovery, or selection. The domain

of dowls:hasStereotype property is the union of owls:Profile, dowls:AbstractProcess, and

dowls:Parameter classes. The range of dowls:hasStereotype property is any URI. In

other words, property dowls:hasStereotype is applicable to profiles, abstract processes,

and their inputs and outputs, and its value must be an URI. The OWL definition is

shown in the Listing 3.3.

42

Remark. The reason for specifying the range of stereotype as an URI rather then

owl:Thing8 is to enable the usage of third party business taxonomies, eventually be-

ing outside OWL-S and possibly outside OWL. In the latter case the discovery system

would require some specialized reasoner for that taxonomy.

Listing 3.3: OWL definition of dowls:stereotype

<owl:DatatypeProperty rdf:ID="hasStereotype">

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="&profile;#Profile"/>

<owl:Class rdf:about="&dowls;#AbstractProcess"/>

<owl:Class rdf:about="&process;#Parameter"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

<rdfs:range rdf:resource="&xsd;anyURI" />

</owl:DatatypeProperty>

<owl:Class rdf:about="&profile;#Profile">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasStereotype" />

<owl:maxCardinality rdf:datatype="&xsd;#nonNegativeInteger">1</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="&dowls;#AbstractProcess">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasStereotype" />

<owl:maxCardinality rdf:datatype="&xsd;#nonNegativeInteger">1</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="&process;#Parameter">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasStereotype" />

<owl:maxCardinality rdf:datatype="&xsd;#nonNegativeInteger">1</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Remark. The solution presented here is similar to the one provided by

owls:serviceCategory, owls:serviceClassification and owls:serviceProduct properties of

the owls:Profile. However, our solution extends this approach further to abstract pro-

cesses and parameters. It is not a fully developed solution and it serves basically as an

illustration of the idea that could be easily extended further to preconditions and ef-

fects. Moreover, the annotation itself could be much further elaborated from being just

a single property. For example, a more elaborated annotation of parameters in abstract

processes could designate whether the parameter is mandatory or optional.

8 Every OWL class is a subclass of owl:Thing.

43

Remark. These discovery annotations are unintrusive, because they can be applied to

semantic OWL-S services defined elsewhere. That is because OWL (as well as RDF)

allows to add additional properties to resources defined elsewhere.

To take advantage of stereotypes, they must be understood correctly by the discovery

system. Here we present some simple examples that illustrate correct interpretation.

The formal definition of matching rules is provided in the next section.

Example 3.5.2. Suppose there exists some input parameter to an OWL-S accommoda-

tion booking service named numberOfStars of type integer to express the quality of the

accommodation. Suppose there exists a taxonomy, which categorizes tourism concepts

into a hierarchy, and which contains concept HotelCategory. OWL-S provides no means

to express that a service actually expects a hotel category as the value of parameter num-

berOfStars. The new property dowls:hasStereotype enables the formal expression of this

requirement by assigning the concept HotelCategory to the parameter numberOfStars.

That is, the stereotype of input parameter numberOfStars is HotelCategory.

Listing 3.4: Example of parameter stereotype instance

<process:hasInput>

<process:Input rdf:ID="numberOfStars">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&xsd;#integer

</process:parameterType>

<dowls:hasStereotype rdf:datatype="&xsd;#anyURI">

&dowls;#HotelCategory

</dowls:hasStereotype>

</process:Input>

</process:hasInput>

Example 3.5.3. Suppose there exists some OWL-S abstract process BookAccommoda-

tionAbstractProcess to specify the requirements for a service that provides accommoda-

tion booking. Suppose there exists a taxonomy, which categorizes accommodation ser-

vices into a hierarchy, and contains the concept HotelsAndMotelsAndInns.9 By assigning

the stereotype HotelsAndMotelsAndInns to the abstract process BookAccommodation-

AbstractProcess, we formally conveyed that only those services, which provide bookings

for hotels, motels and inns, can fulfill the role of the BookAccommodationAbstractPro-

cess. That also means that those services that provide camping bookings would not

do.

Listing 3.5: Example of abstract process stereotype instance

<dowls:AbstractProcess rdf:ID="AbstractBookAccommodationProcess">

<dowls:hasStereotype rdf:datatype="&xsd;#anyURI">

&dowls;#Hotels_and_motels_and_inns

</dowls:hasStereotype>

<process:hasInput>

...

9 Concepts HotelsAndMotelsAndInns and Hotels are taken from the United Nations Standard Products

and Services Code taxonomy (UNSPSC, 2006).

44

Example 3.5.4. Suppose there exists some OWL-S profile BookHotelProfile for a ser-

vice that provides hotel booking. Suppose there exists a taxonomy, which categorizes

accommodation services into a hierarchy, and contains the concept Hotels, which is a

subclass of the concept HotelsAndMotelsAndInns.9 By assigning the stereotype Ho-

tels to the profile BookHotelProfile we formally conveyed that the service advertised by

profile BookHotelProfile offers hotel bookings. Consequently such a service could per-

form the role of the BookAccommodationAbstractProcess from the Example 3.5.3, since

concept Hotels is a subclass of concept HotelsAndMotelsAndInns.

Listing 3.6: Example of OWL-S profile stereotype instance

<profile:Profile rdf:ID="BookHotelProfile">

<service:presentedBy rdf:resource="#BookHotelService" />

<dowls:hasStereotype rdf:datatype="&xsd;#anyURI">

&dowls;#Hotels

</dowls:hasStereotype>

<profile:hasInput rdf:resource="#name" />

...

Example 3.5.5. An example of an instance of a dowls:AbstractProcess with discovery

annotations encoded in OWL is presented in the Appendix A. The example uses a

subset of UNSPSC taxonomy encoded in OWL (Klein, 2002) for annotation of abstract

process, and a proprietary OWL taxonomy for annotation of parameters. The values of

the stereotypes are URI identifiers of the classes from these taxonomies.

3.5.3 Semantic Service Discovery based on Siena with Bag Extension

This section presents the design of a semantic service discovery system based on semantic

CBN with bag extension introduced in § 3.4. The design builds upon abstract processes

from § 3.5.1 and stereotypes from § 3.5.2. First we will look at the agents, which are the

primary actors in our decentralized workflow model, then we will define service matching

rules and in the subsequent sections we will look at the adoption of these matching rules

to content-based network.

3.5.3.1 The Role of an Agent

The decentralized workflow model presented by this project is comprised of peer-to-peer

agents connected to a CBN middleware. Each agent is actually a service container that

can host any number of services. The hosted service can be one of (i) an atomic service,

(ii) a composite service, or (iii) a composite service template.

By the term host we assume that the OWL-S description of the semantic Web service

is registered with the agent via service deployment specification described in § 3.7.

Both atomic services and composite services are executable. That is not the case for

composite service templates which are comprised of abstract processes. An abstract pro-

45

cess is executable only if the agent is able to discover matching executable services for all

comprising abstract processes. Matching executable services can be either hosted locally

on the same agent or remotely on some other peer agents. The duty of the discovery

system presented here is to enable the discovery of matching executable services.

Each agent in this model is able to interact with the CBN middleware in the following

ways:

• The agent hosting an executable service can multicast service notifications about

that service. The agent performing that role is called the service provider.

• The agent hosting a composite service template can subscribe for service notifi-

cations for the services that can be invoked in place of the template’s abstract

processes. The agent performing that role is called the service consumer. The

service consumer needs services offered by the service providers.

The same agent can simultaneously have both roles, the one of the service provider and

the one of the service consumer. The network topology is truly peer-to-peer, since any

number of agents can adopt either one or both roles at any time. All agents are equal

in their capabilities and responsibilities.

The primary role of the CBN in this service discovery model is the effective routing of

service notifications from service providers to service consumers to support their dynamic

discovery.

3.5.3.2 Stereotype Matching Rules

In § 3.5.2 discovery annotations were presented. Semantic services can be annotated

with stereotypes that characterize them for purposes of advertisement, discovery, and

selection. Stereotypes must be correctly interpreted by the discovery system. It should

be reminded that ab abstract process is a specification of a required process, and profile

is a presentation of some available service. If a service can fulfill the requirements of an

abstract process, then we say that the service and the abstract process match.

Suppose a service is presented by a profile and an abstract process. Matching rules

follow:

Input parameters match if the stereotype of the profile’s input subsumes the stereo-

type of the abstract process’s input. That is because the semantically more specific

input of the abstract process can be assigned to the less specific input of the service.

Output parameters match if the stereotype of the abstract process’s output sub-

sumes the stereotype of the profile’s output. That is because the semantically

more specific output of the service can be assigned to the less specific output of

the abstract process.

Service and abstract process match if (i) the abstract process stereotype subsumes

the service profile stereotype, and (ii) any profile’s input has its own matching

counterpart among the abstract process’s inputs, and (iii) any abstract process’s

46

output has its own matching counterpart among the profile’s outputs.

These matching rules rely upon the availability of a common ontology for profile and

abstract process stereotypes, and a common ontology for input and output stereotypes.

The most important rule is the last one that determines the matching of the service and

the abstract process. It can be formally expressed using ontological and composite bag

relations.

Definition 3.5.3. A service, presented by a profile, and an abstract process match if

and only if all of the following is true:

1. The profile stereotype is subsumed by the abstract process stereotype:

profile stereotype - abstract process stereotype

2. The bag of profile’s input stereotypes is a subbag of the bag of abstract process’s

input stereotypes with regard to subsumes:

bag of profile’s input stereotypes �, bag of abstract process’s input stereotypes

3. The bag of profile’s output stereotypes is a superbag of the bag of abstract process’s

output stereotypes with regard to subsumed by :

bag of profile’s output stereotypes �- bag of abstract process’s output stereotypes

Remark. The matching rules do not require that for each abstract process’s input there

exists a service’s input. A service can match the abstract process even if it has less

inputs than the abstract process, as long as (i) the remaining inputs match, (ii) its

profile stereotype is subsumed by the abstract process stereotype, and (iii) it provides

an output for each of the abstract process outputs. In extreme case the service could have

no inputs and it would still match the abstract process as long as the above conditions

are true.

Remark. The model proposed here is simplistic and serves as an illustration of the

concept. The matching rules could be actually much more elaborated. They could

consider preconditions and effects in the same way they consider inputs and outputs.

Another very useful feature would be to annotate inputs, outputs, preconditions and

effects as mandatory or optional. It would be very easy to express these rules using

composite bag relations, but due to time limitations of this research that is not included

in this work.

3.5.3.3 Service Notifications and Subscriptions Filters

The previous section defined the matching rules using ontological and composite bag

relations. Since extended Siena supports all these relations, it is possible to (i) encode

service notifications as Siena notifications, (ii) encode service matching rules as Siena

47

subscription filters, and (iii) use Siena to route service notifications from service providers

to service consumers, thereby performing the discovery filtering in the network.

The format of a service notification is described in the Figure 3.6. A service notification

comprises (i) a unique identification of the service, (ii) a unique identification of the

hosting agent, (iii) service stereotypes needed for matching, and (iv) validity of the

advertisement.

Figure 3.6: Service notification format

Attribute Name Type Value Description

serviceUri string URI of service

agentUrl string URL of hosting agent10

serviceStereotype string Stereotype of profile

inputStereotypes bag Stereotypes of all profile’s inputs

outputStereotypes bag Stereotypes of all profile’s outputs

validity integer Validity of this advertisement in seconds11

The format of the service subscription filter is described in the Figure 3.7.

Figure 3.7: Service subscription filter format

Attribute Name Type Operator Value Description

serviceStereotype string - Stereotype of abstract process

inputStereotypes bag �, Stereotypes of all abstract process’s inputs

outputStereotypes bag �- Stereotypes of all abstract process’s outputs

The ontologies used to describe stereotype values must be made available to extended

Siena.

Remark. The discovery system presented here only matches parameters’ stereotypes,

but not their data types. It is the duty of the annotation creator to assure that if

stereotypes match, then data types are compatible.

For an example of the semantic Web service advertisement and discovery system based

on this design refer to § 5.2.2.

3.6 Control and Data-Flow in Decentralized Execution

Once the agent hosting a composite service template discovered the services that match

its comprising abstract processes, the agent can trigger the decentralized execution of

10 Each agent has a unique URL.
11 The validity of the advertisement can stretch from several tens of seconds to several hours or even

days, depending on the dynamism of the environment.

48

the composite service template.

This section describes the design of the decentralized composite service execution model,

whereby the responsibility of coordinating a composite service is distributed across

several agents. There are two complementary parts of the composite process work-

flow: the control-flow and the data-flow. The control-flow defines sequencing of ac-

tivities in the process. The data-flow defines how information flows between activities

(Kalogeras et al., 2006). The description of these two flows describes the workflow.

The design presented here is based upon the algorithm described by Benatallah et al.

(2002). Only a short summary of the algorithm is provided in this report. The detailed

description, with the exception of data-flow issues, is available in (Benatallah et al.,

2001, 2002, 2003). The data-flow issues are not covered by Benatallah et al. (2002) and

for this reason their original algorithm has been extended with data-flow design by this

research.

Benatallah et al. showed that it is possible to represent a composite service as a state

chart, which is a set of states and transitions between states. Hence it is possible to

decompose owls:CompositeProcess, that is to be executed in a decentralized fashion,

into states and transitions between states. Each state, except of the initial and fi-

nal state, corresponds to an owls:Perform construct and is labeled with the abstract

process that is associated with that owls:Perform. Transitions are labeled by event-

condition-action rules. When a transition fires, its target state is entered providing the

condition is true. The event, condition, and action parts of the transition are all optional

(Benatallah et al., 2002).

3.6.1 State Coordinators

In a decentralized execution model the constituent states are not executed locally, but

by distributed peer-to-peer agents. Therefore, when the request for the invocation of

a composite service is sent to an agent that hosts the composite service, a lightweight

scheduler, named state coordinator, is created by that agent for each constituent state.

The state coordinators are then distributed to and provisioned at the peer agents that

are going to participate in a decentralized execution of the composite service. There are

three types of state coordinators:

Executable state coordinator corresponds to an executable state. It is associated

with a service that can fulfill the abstract process associated with the state. The

executable state coordinator must be provisioned at the participating agent that

hosts that service.

Initial state coordinator corresponds to the initial state. It is provisioned locally at

the agent that hosts the composite service.

Final state coordinator12 corresponds to the final state. It is also provisioned locally

at the agent that hosts the composite service.

49

A state coordinator is a lightweight scheduler responsible for (Benatallah et al., 2003):

• receiving notifications of completion from other state coordinators and determining

when to enter the state from these notifications,

• invoking the associated service, once all preconditions for entering the state are

met, and waiting for a reply; and

• notifying the coordinators of the states that might need to be entered next that

the associated service execution is complete.

The behavior of the coordinator is determined by its routing table which specifies the

control and data-flow during decentralized execution.

A routing table is comprised of three sets:

• a set of pre-conditions such that the state is entered when one

of these preconditions is met,

• a set of post-processing actions indicating which coordinators

need to be notified when a state is exited, and

• a set of data bindings describing how output values of the

current state are bound to the input values of the succeeding

states.

,///.///- Control-flow,.- Data-flow

The sets of pre-conditions, post-processing actions and data bindings are defined in a

way to ensure minimal communication overhead. When a state is exited, only those

states that potentially need to be entered next are notified, and data parameters are

only sent to those states that potentially need them.

3.6.2 Pre-Conditions

Pre-conditions of the state describe, (i) what are the source states of the transitions

leading to a given state, and (ii) what are the conditions that need to be satisfied for

this transition to be taken (Benatallah et al., 2001). A pre-condition has the form ErCs,
where:

• E is a logical conjunction of ready events. Each ready event indicates that the

current state has received notification of completion from some proceeding state.

• C is a logical conjunction of conditions appearing in the state chart’s transitions.

The initial state is a special case that has no pre-conditions.

3.6.3 Post-Processing Actions

Post-processing actions of the state describe, which states may need to be entered next.

A post-processing actions has the form rCs{A, where:

• C is a logical conjunction of conditions appearing in the state chart’s transitions.

12 The original design of Benatallah et al. does not differentiate between the initial and final coordinator,

however functions of both are performed by the initial coordinator.

50

• A is a notify action. Notify action describes which succeeding state needs to be

notified of completion of the current state.

The final state is a special case that has no post-processing actions.

Remark. Conditions of pre-conditions and post-processing actions are not supported by

the prototype developed in scope of this research due to time limitations.

3.6.4 Data Bindings

The data-flow design presented here uses explicit data-flow model described by Sadiq et al.

(2004). Explicit data-flow model is carried out through the explicit data-flow messages,

as distinguished from the implicit data-flow model which makes use of control-flow to

pass data from one state to another.

Data bindings of the state describe which states may need the parameters provided by

the current state and how these parameters are bound. A data binding has the form

SrBs, where:

• S is the destination state, whose input values need to be bound to some output

values of the current state.

• B is a a set of parameter bindings. Each parameter binding is described by the

name of an output parameter of the current state, and the name of an input

parameter of the destination state.

Again, initial and final states are special cases, because they do not perform any action,

and hence they do not need any inputs and do not produce any outputs by themselves.

Notwithstanding their input and output parameters need to be defined to be able to

participate in the data-flow. Therefore parameters of the initial and final state are

defined as follows:

• Input and output parameters of the initial state are both equal to the input pa-

rameters of the composite process.

• Input and output parameters of the final state are both equal to the output pa-

rameters of the composite process.

Before decentralized execution the inputs of the composite service are provided to the

initial state and after completion the outputs of the composite process are collected from

the final state.

3.7 Agent Architecture

In the previous sections of this chapter the fundamental concepts of this design have

been presented. Here all these concepts are put together to provide the architecture

for the essential component of our decentralized service execution model, called agent.

The agent is an autonomous software component which is able to host, advertise and

51

execute atomic and composite semantic Web services. It is also able to discover services

advertised by other agents and collaborate with other agents in decentralized execu-

tion of composite services. The architecture of agent is partly based on the Self-Serv

environment for Web services composition described in § 2.2.4.1.

The agent itself is implemented as a standard non-semantic Web service and uniquely

identified by the URL address of that Web service.

The agent can host all known types of OWL-S services, including composite service

templates.13 By the term host we assume that the OWL-S description of the semantic

Web service is registered with the agent via a service deployment specification, which is

a file with the logical format presented in the Figure 3.8.

Figure 3.8: Format of the OWL-S service deployment specification

Property Description Example Value

owlUrl URL of OWL-S service description. http://kyi/BB.owl

advertisable Whether the agent should advertise true
the service or not.

advertisementPeriod Time in seconds between successive 300
service notifications.

advertisementValidity The validity of the service notification 150
in seconds.

decentralized Whether the service is to be executed true
locally or in decentralized fashion.

The agent serves as a semantic Web service container. It is comprised of the following

software components (see Figure 3.9):

Service Deployer component is responsible for the deployment and undeployment of

semantic Web services. At deployment it registers the newly deployed service with

the Service Advertisement Engine. In case of the composite service the deployer is

also able to decentralize the composite process and register its constituent abstract

processes with Service Discovery Engine.

Composite Service Compiler component compiles composite Web services into a

form suitable for decentralized execution. It identifies constituent abstract pro-

cesses and generates abstract routing tables for control and data-flow.

Deployed Service Repository component stores metadata about Web services

hosted by the agent.

Service Advertisement Engine component advertises the availability of deployed

Web services to other agents via CBN middleware.

13 Composite service template is not a part of OWL-S specification. It is explained in § 3.5.1.3.

52

Service Discovery Engine component listens for advertisements for services hosted

by other agents via CBN middleware.

Discovered Service Repository component stores metadata about Web services

hosted by other agents, which have been discovered by the Service Discovery En-

gine.

Service Execution Engine component is able to autonomously execute hosted atomic

Web services, initiate execution of hosted composite Web services, and participate

in execution of composite Web services hosted by other agents.

Figure 3.9: Agent component diagram

In the following sections the architecture of each of these software components is pre-

sented.

3.7.1 Service Deployer

The Service Deployer component is responsible for the deployment and undeployment

of semantic Web services. It monitors a preconfigured deployment folder14 for service

deployment specification files.

When Service Deployer detects a new deployment specification it executes the service

deployment activities presented in the Figure 3.10. Conversely, when service deployer

detects the removal of a deployment specification it executes undeployment activities

presented in the Figure 3.11. In the case when a service deployment specification is

modified while the service is being deployed, the service deployer redeploys the service

by undeploying and deploying it again. Moreover, all previously deployed services must

be deployed at the agent startup and undeployed at the agent shutdown.

14 Term folder denotes file system directory.

53

Figure 3.10: Service deployment ac-
tivities

Figure 3.11: Service undeployment
activities

54

3.7.2 Composite Service Compiler

The Composite Service Compiler component compiles decentralized composite services

into the form suitable for decentralized execution. It analyzes the composite process

and decomposes it into constituent states as described in (Benatallah et al., 2001, 2002,

2003) and § 3.6. The compiler does not produce concrete states, but abstract states.

While concrete states are associated with concrete executable services, abstract states

are associated with constituent abstract processes. At the composite service execution

time these abstract states are used by Service Execution Engine as templates to produce

concrete states, which are associated with concrete discovered services, and have concrete

routing tables.

3.7.3 Deployed Service Repository

The Deployed Service Repository component maintains the in-memory repository of

services hosted by the local agent. For every hosted service it stores the following

information:

• parsed OWL-S description of the service;

• service deployment specification;

• if service is advertisable: its profile stereotype, input stereotypes, and output

stereotypes;

• if service is decentralized: its routing tables;

3.7.4 Service Advertisement Engine

Service Advertisement Engine component is responsible for multicasting Siena service

notifications for hosted services that are labeled as advertisable. Advertisement engine

is multicasting notifications periodically as specified by the service deployment specifi-

cation. The format of service notification is described in § 3.5.3.3.

Decentralized composite services labeled as advertisable are advertised only if they are

executable, in other words, if the agent knows at least one executable service for each of

its constituent abstract processes. There would be no sense in advertising services that

cannot be executed.

3.7.5 Service Discovery Engine

The agent can host composite services that are labeled as decentralized. These services

are not executed locally, but in a decentralized fashion. Each such composite service

is decomposed into abstract processes by the composite service compiler at deploy-

time. For each such abstract process the agent has to discover at least one matching

executable service that can fulfill the role of the abstract processes. The duty of the

Service Discovery Engine component is to discover these matching executable services.

55

Suppose there exists a decentralized composite service whose composite process is com-

prised of abstract processes. Suppose the service is being hosted by an agent. The

responsibilities of the service discovery engine are the following:

At service deploy-time the engine creates Siena service subscription for each of the

service’s constituent abstract processes. The constituent abstract processes are

identified by Composite Service Compiler component.

During service hosting-time the engine is receiving Siena service notifications that

match its subscriptions. The received service notifications are forwarded to the

Discovered Service Repository component described in the next section.

At service undeploy-time the engine unsubscribes from Siena service notifications.

It also informs the Discovered Service Repository component about it.

3.7.6 Discovered Service Repository

The Discovered Service Repository maintains an in-memory repository of discovered

services. It is continually receiving notifications for discovered services from Service

Discovery Engine component. Each service notification contains the validity of notifica-

tion in seconds. The discovered service is kept in repository until the notification validity

expires, but each new notification for the same discovered service resets its expiration

timer.

The repository also keeps the evidence about the number of composite services that need

the discovered service to fulfill the roles of their abstract processes. If all composite

services that are interested in particular discovered service get undeployed, then the

repository immediately evicts the discovered service, since it is no longer needed.

Example 3.7.1. Suppose a service provider hosts an advertisable service, which is

advertised every 1 hour, and the validity of a notification is 2 hours. Suppose this

service is discovered by a service consumer and for this reason registered in its own

discovered service repository. The discovered service is kept in the repository as long as

the service provider is alive. Because every hour a new notification arrives that resets

its expiration timer, the discovered service never expires. But once the service provider

dies, or the provided service gets undeployed, the discovered service gets evicted from

the repository in maximum 2 hours.

Remark. Note that this design allows for unavailable services to be kept in a discovered

service repository for a certain period of time until their validity expires. That does

not influence the robustness of a service execution engine. During the provisioning of

a decentralized execution the execution engine detects the unavailability of the service.

As a consequence the execution engine immediately forces eviction of the service from

the discovered service repository and selects an alternative suitable discovered service if

one exists.

56

3.7.7 Service Execution Engine

The Service Execution Engine component is able to autonomously execute hosted non-

decentralized semantic Web services, or participate in peer-to-peer execution of decen-

tralized semantic Web services.

Remark. By autonomous execution we do not assume that service’s business logic is

actually executed by the agent, but merely that the semantic Web service is being

invoked by the agent. Which service implementation is actually being executed depends

on the grounding of the semantic Web service and is of no importance for this work.

The capabilities of the Service Execution Engine depend on the type of the hosted Web

service:

• An atomic service can be executed locally by the agent using OWL-S Java API

(Sirin and Parsia, 2004). An atomic service is not allowed to be labeled as decen-

tralized or else an error occurs.

• A composite service can be optionally labeled as decentralized :

– If it is not labeled as decentralized, then the service is locally executable in

the same way as the atomic service using OWL-S Java API. This case will

not be specifically considered, since its treatment is completely identical to

the treatment of the atomic service.

– Alternatively the composite service can be labeled as decentralized. Such a

service is treated in the same way as the composite service template described

below, and its grounding is ignored.

• A composite service template must be labeled as decentralized or else an error

occurs. At deploy time the agent compiles the composite service into the form

appropriate for decentralized execution. The composite service template is not

immediately executable when deployed to an agent. It becomes executable only

after the agent discovers appropriate service providers for all comprising abstract

processes. If an executable composite service template is invoked, then its host-

ing agent does not control the whole execution, but merely selects and binds the

participating service providers, initiates the start of the execution, waits for com-

pletion and returns the result. The execution itself is performed in a peer-to-peer

fashion between participating service providers.

The agent can also participate in the execution of a larger composite process.

3.7.7.1 Structure

The essential sub-components or Service Execution Engine component are the following:

Service Wrappers are software components that act as the semantic Web service’s

entry points for the execution engine itself.

57

State Coordinators are software components that act as lightweight schedulers, which

coordinate control and data-flow during a decentralized execution of a composite

process.

Agent Façade is a standard non-semantic Web service that acts as the engine’s entry

point for clients of the system and peer agents.

3.7.7.2 Service Wrappers

Service wrappers are software components of the agent that act as the semantic Web

service’s entry points for the execution engine itself. There are two types of service

wrappers:

• The local service wrapper is used to execute the service autonomously by the

hosting agent. It can execute atomic and composite services not labeled as decen-

tralized.

• The decentralized service wrapper is used to initiate decentralized execution of

composite services and composite service templates labeled as decentralized. The

components of the composite process are treated as abstract processes by the

decentralized service wrapper, although they are not really abstract, thus mak-

ing composite services equal to composite service templates. For this reason we

will not distinguish between composite services and composite service templates

when talking about decentralized execution. They will be both treated equally as

composite service templates.

Service wrappers are created and destroyed dynamically. A service wrapper is created

when an invocation request appears and is destroyed after the completion of the invo-

cation.

3.7.7.3 State Coordinators

State coordinators are software components that act as lightweight schedulers, which

coordinate control and data-flow in decentralized execution of a composite process. In

the decentralized execution model the responsibility of coordinating the execution of a

composite service is distributed across several peer-to-peer agents. Each agent hosts

one or more state coordinators that interact in a peer-to-peer fashion in order to ensure

that each instance of a composite service is executed in accordance with its control and

data-flow specifications. The behavior of a state coordinator is determined by its routing

table as described in § 3.6.

3.7.7.4 Agent Façade

The agent façade is a standard non-semantic Web service that acts as the execution

engine’s entry point for the clients of the system and for the peer agents. It enables

58

clients to invoke the hosted Web service and agents to communicate during decentralized

execution of the composite service. The façade provides the operations:

invokeService is used by a client to invoke the service hosted by the agent. The service

is executed either locally or in decentralized fashion depending on the deployment

specification of the service. After the completion the results are returned to the

client.

getServiceDescriptor is used by peer agents to get a detailed technical description of

the discovered service during the provisioning of a decentralized execution. This

operation is requisite because service discovery is only able to provide the capabili-

ties of the service (for example, profile stereotype and parameter stereotypes), and

not technical details needed for the provisioning of the decentralized execution (for

example, parameter names). The rationale behind is to keep the advertisement

network traffic as low as possible.

provisionStateCoordinator provisions state coordinator at the agent. The provi-

sioning of the state coordinator is performed by some peer agent during the pro-

visioning of a decentralized execution.

assignStateCoordinatorInputs is used to realize the data-flow during a decentral-

ized execution. A remote peer agent can use this operation to assign outputs of

some state coordinator hosted by his execution engine to the inputs of some state

coordinator hosted by the local execution engine.

notifyStateCoordinator is used to realize the control-flow during a decentralized ex-

ecution. A remote peer agent can use this operation to notify some state coor-

dinator hosted by the local execution engine about the completion of some state

coordinator hosted by his execution engine.

3.8 Service Execution

The principal capability of the agents described in § 3.7 is the ability to orchestrate

decentralized execution of composite semantic Web services.

A client that would like to invoke a Web service must first find an agent that hosts that

service. The URL address of the appropriate agent can be either statically configured at

the client, or alternatively the client can use the same service discovery mechanism that

is used by the agents themselves, to discover the service that suits its needs. Once the

client knows the URL address of the hosting agent, it can send the service invocation

request to the agent’s façade.

When the agent receives the request, it instantiates either local or decentralized service

wrapper as shown on Figure 3.12.

59

Figure 3.12: Execute service activities

60

3.8.1 Local Service Execution

The local service wrapper is responsible for the invocation of non-decentralized services.

The execution of such services is straightforward and is carried out by OWL-S Java API

library (Sirin and Parsia, 2004).

3.8.2 Decentralized Service Execution

The decentralized service wrapper is responsible for the invocation of decentralized com-

posite services. The invocation of a decentralized service is comprised of two main

phases, namely the provisioning phase and the execution phase. The sequence diagram

illustrating the main steps is presented in Figure 3.13.

3.8.2.1 Provisioning Phase

In the provisioning phase the decentralized service wrapper selects and provisions the

participating peer agents. The main steps performed during the provisioning phase are:

1. The service wrapper first selects discovered services that can fulfill the roles of con-

stituent abstract processes. Simultaneously it also determines mappings between

abstract process’s parameters and discovered service’s parameters. The parameter

mapping algorithm must take into account stereotypes of the abstract process’s

parameters and stereotypes of the discovered service’s parameters, and find a map-

ping that satisfies parameter matching rules described in § 3.5.3.2. Such mapping

must exists or the service would not have been discovered.

2. Once the services that can fulfill the roles of constituent abstract processes are

discovered, the service wrapper creates the concrete initial and final state, and

concrete executable states with concrete routing tables.

3. Afterwards the service wrapper provisions state coordinators. The coordinators

for initial and final state are provisioned locally. The coordinators for executable

states are provisioned at the peer agents that host the services associated with the

executable states.

3.8.2.2 Execution Phase

After the provisioning phase the decentralized service wrapper initiates the decentralized

execution. The execution itself is orchestrated by the state coordinators created during

the provisioning phase. The decentralized service wrapper waits for the completion of

the decentralized execution and returns the results back to the client.

The course of events unfolding during decentralized execution phase can be best ex-

plained by an example presented in § 5.2.3.

Remark. The design of decentralized composite service execution presented here could

be improved in many ways. Some possible optimizations are:

61

Figure 3.13: Invocation of a decentralized composite service

62

• In the existing design state coordinators are provisioned prior to every decentral-

ized execution and destroyed after the completion. In situations, where successive

executions of the same decentralized composite service are likely to occur, the state

coordinators could be partially cached at hosting agents to reduce the provisioning

overhead.

• The decentralized execution model presented here lacks any monitoring and error

handling capabilities. The implementation of these would be crucial for real-world

scenarios.

63

Chapter 4

Implementation

Two main software artifacts have been developed in scope of this research:

Bag extension for Siena provides support for bags, simple bag operators, and com-

posite bag operators for Siena.

Dowls1Agent prototype implements the functionality of the peer-to-peer agent which

is able to advertise and execute OWL-S services, and, in collaboration with other

agents, orchestrate decentralized execution of composite OWL-S services.

4.1 Bag Extension for Siena

4.1.1 Technologies Used

Bag extension for Siena is based upon ontologically extended Siena, which is itself ex-

tended from a Java version of Siena (Carzaniga et al., 2001). It is developed in Java

and requires Java 2, Standard Edition 5.0 runtime.

In addition the following open source Java libraries have been used:

• Jakarta Commons Collections 3.2 provides Java Bag interface for collections.

• Jakarta Commons Lang 2.1 provides helper utilities for the java.lang API.

• Jena 2.3 is a Java framework for building Semantic Web applications.

• Pellet 1.3 is a Java based OWL DL reasoner.

The following tools have been used to assist the development:

• Eclipse Platform 3.2 is an integrated development environment for Java.

• Apache Maven 2.0.4 is a build tool.

• Subversion 1.3.1 is a source code control tool.

1 Dowls is a codename of the prototype. It is an acronym for Distributed OWL-S.

64

4.1.2 Ontologies

The extended Siena needs access to OWL ontologies, used to describe stereotype val-

ues in service notifications and subscription filters. This is achieved by means of a

configuration file, where URLs of required ontologies are listed.

The extended Siena must also use an ontological reasoner, which is equivalent to the

one used by the Dowls Agent. In our implementation they both use Pellet 1.3.

4.1.3 Implementation of the Composite Bag Operator

One of the crucial tasks in the development of Siena bag extension was implementation

of the algorithm for comparison of bags by the composite bag operator. The algorithm

presented here is a very simple brute force algorithm that clearly illustrates the per-

formance of the composite bag operator. It simply checks all possible arrangements of

one bag with another until a matching arrangement is found, or else it returns false.

The efficiency of the algorithm and possible optimizations are discussed in more detail

in § 5.1.3.

The Java source code of the algorithm with descriptive comments is presented in List-

ing 4.1.

Extended Siena has a method areValuesRelated, which is used to compare any pair

of valid Siena values against an operator. If the values happen to be bags, then the

method delegates the comparison evaluation to the method areBagsRelated. Method

areBagsRelated takes three parameters: composite bag operator, first bag, and second

bag. The primary operator of the composite operator can be either superbag, subbag or

equal. The method translates the comparison to the subbag comparison and delegates

its evaluation to the method areBagsRelatedWithSubbag.

Listing 4.1: Algorithm for comparison of bags with a composite bag operator

/**

* Compares two bags with the composite bag operator.

*

* @param primaryOperator Primary bag operator

* @param subOperator Sub-operator applicable to bag elements; subOperator can be a composite

* operator itself

* @param xBag First bag; the order of elements is ignored

* @param yBag Second bag; the order of elements is ignored

* @return true if and only if bags are related; false otherwise

*/

private boolean areBagsRelated(CompositeOperator compositeOperator,

List<AttributeValue> xBag, List<AttributeValue> yBag) {

switch (compositeOperator.getPrimaryOperator()) {

case ExtOp.EQBAG: // evaluate: xBag is equal to yBag

if (xBag.size() != yBag.size())

return false; // The bags can not be equal, if they are not of the same size.

// The bags are of the same size! Now it is enough to check, if xBag is a subbag

// of yBag with regard to the subOperator.

return areBagsRelatedWithSubbag(compositeOperator.getSubOperator(), xBag, yBag,

false);

65

case ExtOp.SUPERBAG: // evaluate: xBag is superbag of yBag

if (xBag.size() < yBag.size())

return false; // xBag cannot be superbag of yBag, if it has less elements.

// xBag does not have less elements than yBag! Now we will check, if yBag is subbag

// of xBag with regard to the subOperator. Since xBag and yBag are exchanged, the

// reverseComparison parameter must be true.

return areBagsRelatedWithSubbag(compositeOperator.getSubOperator(), yBag, xBag,

true);

case ExtOp.SUBBAG: // evaluate: xBag is subbag of yBag

if (xBag.size() > yBag.size())

return false; // xBag cannot be subbag of yBag, if it has more elements.

// xBag does not have more elements than yBag! Now we will check, if xBag is subbag

// of yBag with regard to the subOperator.

return areBagsRelatedWithSubbag(compositeOperator.getSubOperator(), xBag, yBag,

false);

}

}

/**

* Checks if the first bag is a subbag of the second bag with regard to the given suboperator.

*

* @param subOperator Sub-operator applicable to bag elements

* @param xBag First bag; the order of elements is ignored

* @param yBag Second bag; the order of elements is ignored

* @param reverseComparison If true, the elements should be exchanged before the comparison

* @return true if and only if the first bag is a subbag of the second bag with regard to the

* subOperator; false otherwise

*/

private boolean areBagsRelatedWithSubbag(CompositeOperator subOperator,

List<AttributeValue> xBag, List<AttributeValue> yBag, boolean reverseComparison) {

// Did we find related elements from yBag for all elements from xBag?

if (xBag.isEmpty())

return true;

// Take the head element of xBag.

AttributeValue xElement = (AttributeValue) xBag.get(0);

// Create a new subbag, equal to xBag with removed head element.

List<AttributeValue> xSubBag = xBag.subList(1, xBag.size());

// Try to find an element from yBag, that match to taken element from xBag.

for (int i = 0; i < yBag.size(); i++) {

// Take the i-th element from yBag.

AttributeValue yElement = yBag.get(i);

// Do the taken elements match?

if (areElementsRelated(subOperator, xElement, yElement, reverseComparison)) {

// Elements match! Create a new subbag, equal to yBag with removed i-th element.

List<AttributeValue> ySubBag = ListUtils.subList(yBag, i);

// Recursively check new subbags.

if (areBagsRelatedWithSubbag(subOperator, xSubBag, ySubBag, reverseComparison)) {

// Subbags match as well! Consequently xBag and yBag match!

return true;

}

}

}

return false; // We could not find matching element from yBag.

}

/**

* Checks if two elements match with regard to the given suboperator.

*

* @param subOperator Sub-operator applicable to given elements

* @param xElement The first element

66

* @param yElement The second element

* @param reverseComparison If true, the elements should be exchanged before the comparison

* @return true if and only if the first element match to the second element with regard to

* the subOperator; false otherwise

*/

private boolean areElementsRelated(CompositeOperator subOperator,

AttributeValue xElement, AttributeValue yElement, boolean reverseComparison) {

// Recusively call method that checks whether arbitrary two values are related.

if (reverseComparison) {

// Exchange elements before comparison.

return areValuesRelated(subOperator.getPrimaryOperator(), subOperator

.getSubOperator(), yElement, xElement);

} else {

return areValuesRelated(subOperator.getPrimaryOperator(), subOperator

.getSubOperator(), xElement, yElement);

}

}

4.2 Dowls Agent Prototype

4.2.1 Technologies Used

Dowls Agent is realized as a standard non-semantic Web service. It is implemented

as Java Web Application and can run in any servlet container that is compatible with

Java 2, Standard Edition 5.0, and supports Servlet 2.4 specification. Examples of such

container are Apache Tomcat and JBoss application server.

Additionally the following open source Java libraries have been used:

• Apache Axis 1.4 is a Java based Web service framework.

• Apache Log4j 1.2.13 is a Java based logging utility.

• Jakarta Commons Collections 3.2 provides Java bag interface for collections.

• Jakarta Commons Lang 2.1 provides helper utilities for java.lang API.

• Jena 2.3 is a Java framework for building Semantic Web applications.

• OWL-S API (compiled from the latest source code on 2nd June 2006 and upgraded

to Apache Axis 1.4) provides a Java API for programmatic access to OWL-S service

descriptions.

• Pellet 1.3 is a Java based OWL DL reasoner.

• Spring Framework 2.0 RC2 is a layered Java/J2EE application framework.

The following tools have been used to assist the development:

• Eclipse Platform 3.2 is an integrated development environment for Java.

• Apache Maven 2.0.4 is a build tool.

• Subversion 1.3.1 is a source code control tool.

4.2.2 Main Packages and Classes

This section presents the class diagrams of the agent’s components. Many details, such as

some classes, methods, method parameters, associations and attributes, are intentionally

67

omitted to increase the clarity of the diagrams.

The Figure 4.1 shows the class diagram of the Service Deployer, Composite Service

Compiler and Deployed Service Repository components.

Figure 4.1: Service Deployer, Composite Service Compiler and Deployed Service
Repository class diagram

68

In the same manner the Figure 4.2 shows the class diagram of the Service Advertisement

Engine, Service Discovery Engine and Discovered Service Repository components.

Figure 4.2: Service Advertisement Engine, Service Discovery Engine and Discovered
Service Repository class diagram

69

Finally the Figure 4.3 shows the class diagram of the Service Execution Engine compo-

nent.

Figure 4.3: Service Execution Engine class diagram

Remark. The parameter mapping algorithm, which is implemented in the MatchingSer-

viceProvider class, is using ontological reasoning to reveal relationships between stereo-

types. The same principles are employed by extended Siena for routing service notifi-

cations. For this reason ontological reasoners must be functionally equivalent on both

places.

70

Chapter 5

Evaluation

5.1 Bag Extension for Content-Based Networking

The evaluation of the bag extension for Siena requires verification of the correct behavior

of the system and evaluation of the system performance.

The correctness of the system behavior has been empirically confirmed by applying

human performed functional test cases. Due to the lack of time the functional tests

have not been formalized and automated.

The performance evaluation should investigate the following:

• performance of notifications containing bags,

• routing performance of subscription filters utilizing simple bag operators,

• routing performance of subscription filters utilizing composite bag operators.

5.1.1 Performance of Notifications Containing Bags

Performance of notification containing bags has not been specifically addressed, since a

bag of the size n is roughly equivalent to n attributes with the scalar values equal to the

bag’s elements. Actually the size of the equivalent bag attribute is even smaller since

it contains only one attribute name compared to n attribute names of the equivalent

scalar attributes. Therefore the performance of a notification containing a bag attribute

is expected to be at least as good, and probably better, than the performance of a

notification containing equivalent set of scalar attributes.

5.1.2 Routing Performance of Simple Bag Operators

Routing performance of subscription filters utilizing simple bag operators was also not

specifically addressed, since the algorithm for comparing bags with simple bag operators

is straightforward. Suppose there exist some bags B and C. Without loss of generality

we can assume that |B| ¤ |C|. The simple bag operator comparison has the best time

71

complexity Op|B|q and the worst time complexity Op|C|2q. If bags are pre-ordered,

assuming bag elements can be totally ordered, it is possible to use even better algorithm

that has the worst time complexity of Op|C|q.
5.1.3 Routing Performance of Composite Bag Operators

The most interesting case is the routing performance of subscription filters utilizing com-

posite bag operators, since composite bag operators offer the biggest expressiveness. For

this reason their performance was evaluated empirically. Measurements were repeated

once with the original version of the algorithm, and once with an optimized version of

the algorithm.

The optimized version of the algorithm pre-orders the elements from the first set by the

number of matching counterparts in the second set, and starts the algorithm with the

element that has least matching counterparts.

5.1.3.1 Test Setup

The test setup is made up of two Siena servers and three Siena clients. The setup

deployment is presented in the Figure 5.1.

Figure 5.1: Composite bag operator performance test setup

The roles of the test components are the following:

Servers

• Master Server is a Siena master server.

• Sub-Server is a Siena server connected to the Master Server.

Clients

• Client1 publishes notifications with bags. Each notification contains an at-

tribute with name x containing a randomly generated bag. The randomly

1 For some bag B, |B| denotes the cardinality, or the number of elements, of the bag B.

72

generated bag is of random size between 1 and 2n. Bag elements are ran-

domly generated integers from set t0, . . . , 9u. In addition, the Client1 is also

able to publish special markup notifications with an attribute named x con-

taining a bag of size n, which elements are all integers of value 10. Markup

notifications are used for time measurement and match any subscription filter

of Client2 and Client3.

• Client2 subscribes for notifications using a filter utilizing a composite bag

operator. A filter contains a filtering constraint of the format x �¥ B, where

B is a randomly generated bag of size n. Elements of the bag are randomly

generated integer values from set t0, . . . , 9u.
• Client3 subscribes for notifications using a filter utilizing a composite bag

operator as well. The format of the filter is equal to the format of the filter

described above.

During a single measurement Client1 first publishes a markup notification, then it pub-

lishes 250 randomly generated notifications, and finally another markup notification.

Client2 and Client3 both measure the elapsed time between the first and second markup

notification. The first markup notification was always the first delivered notification and

the last markup notification was always the last, or the last but one delivered notifica-

tion. The latter out of order delivery is considered insignificant, since it affects only one

notification.

Single measurements are combined into measurement sets. Each measurement set is

made up of 20 repetitions of a single measurement. The final results of the measurement

set are minimum, median and maximum elapsed time needed to transfer 250 random

notifications.

Remark. The performance of the composite bag operator could be much better evaluated

by using a benchmark for CBN platforms proposed by Keeney et al. (2006a). This

benchmark is particularly suitable for assessing the ability of CBN platforms to deal

with semantically enriched data. This work still remains to be done in the future.

5.1.3.2 Measurements

Measurement sets with the original algorithm were performed for different values of

parameter n P t3, . . . , 9u that affects the bag size. The results are presented in the

Table 5.1 and in the Figure 5.2 (note that elapsed time is presented on a logarithmic

scale).

Likewise measurement sets with the optimized algorithm were performed for different

values of parameter n P t9, . . . , 15u. Note that it was possible to use bigger bags in this

case. The results are presented in the Table 5.2 and in the Figure 5.3 (note that elapsed

time is presented on a logarithmic scale).

73

Table 5.1: Original composite bag operator algorithm performance results

Elapsed time (milliseconds)

n Min Median Max

3 450 550 640

4 440 550 690

5 450 680 830

6 550 720 890

7 530 670 1,050

8 1,820 4,540 13,590

9 780 3,750 415,050

Figure 5.2: Original composite bag operator algorithm performance results

Table 5.2: Optimized composite bag operator algorithm performance results

Elapsed time (milliseconds)

n Min Median Max

9 310 590 660

10 220 720 1,450

11 310 760 2,400

12 200 810 12,880

13 260 2,120 42,580

14 250 1,550 46,890

15 340 3,320 114,750

74

Figure 5.3: Optimized composite bag operator algorithm performance results

5.1.3.3 Interpretation of Results

The measured results with the original algorithm are in line with the characteristics

of the brute force algorithm used to compare bags with the composite bag operator

presented in § 4.1.3.

In the most optimistic case the algorithm finds matching elements immediately. In

this case the time complexity of the algorithm is Op|B|q for same bags B and C where|B| ¤ |C|.
In the most pessimistic case the algorithm must fully match all possible arrangements

of the elements of the smaller bag with the elements of the bigger set. In this case the

time complexity is:

O

� |C|!p|C| � |B|q!
 O
�|C||B|	

The measurement results reflect the time complexity of the algorithm. Minimum mea-

sured times are very short and correspond to the optimistic case. Maximum measured

times grow very fast and correspond to the pessimistic case.

The simple optimization applied improved the performance of the algorithm significantly.

While empirically the optimized algorithm manifested much better performance, theo-

retically its worst time complexity is still the same as with the original algorithm. The

optimization only makes the worst case extremely unlikely to occur in this measure-

ment scenario. For this reason the maximum elapsed times are much better with the

optimized algorithm.

Remark. We can see from the formulas above that the time complexity depends above

all on the size of the smaller bag, because the size of the smaller bag appears in the

exponent of the time complexity. This fact was also empirically confirmed although the

corresponding measurement scenario is not presented in this report.

75

Remark. The bags used in this evaluation have integer elements, which are compared

with the sub-operator greather then or equal to. Alternatively, when using extended

Siena, bags over ontological concepts could be used together with an ontological sub-

operator. This would increase all measured delays approximately by a constant factor,

but it should not affect the ratios between the measured values.

5.1.3.4 Discussion

It is evident that the algorithm for composite bag operators implemented in the scope

of this research is truly useful only for bag comparisons where at least one of the bags

is small (for example, of cardinality less then or equal to 12 for the optimized version of

the algorithm).

It is possible to develop much more effective comparison algorithms for certain special-

ized composite bag operators. For example, it was suggested to exploit the ordering of

the elements to improve the algorithm.

For composite bag operators over integer bags, where the sub-operator is one of the ,¤, ¡ and ¥, it is possible to develop a very effective comparison algorithm if bags are

pre-ordered. This is because the set of all integers is a totally ordered set2 with regard to¤ or ¥. Such an algorithm would have a very low time complexity of Opmaxp|B|, |C|qq.
Unfortunately not all sets are totally ordered. For example, ontological concepts form

only a partially ordered set3 with regard to subsumes. An effective algorithm for com-

posite bag operators over partially ordered sets could be a subject of the future research

(see § 6.2.2.2).

Alternatively, there might exist some constraints that narrow the set of all possible bags

that are to be published in notifications or subscription filters, to some subset, for which

good performance of the composite bag operator could be guaranteed.

5.2 Decentralized Service Discovery and Execution

This section addresses evaluation of the decentralized semantic Web service discovery

and execution model. Such evaluation requires verification of the following properties:

• functional correctness,

• robustness, especially in a dynamic environment,

• performance, and

• scalability.

Due to time limitations this evaluation is limited to functional correctness and basic

robustness and performance evaluation. The rest remains to be done in some future

work.

2 The definition of the totally ordered set is available at (Weisstein, 2000).
3 The definition of the partially ordered set is available at (Weisstein, 2004).

76

5.2.1 Test Example

For the purposes of evaluation a flight and accommodation booking service based upon

the similar example presented by Benatallah et al. (2002) has been defined and set

up. The example, referred to as the Plan Trip, is comprised of the OWL-S composite

service template PlanTripTemplate and a number of OWL-S atomic services. All atomic

services have a grounding provided by dummy standard non-semantic Web services. The

Figure 5.4 depicts an example deployment schema with four agents connected to the

Siena CBN.

Figure 5.4: An example of the Plan Trip deployment schema

Agent1 hosts the composite service template PlanTripTemplate. The PlanTripTemplate

organizes the following abstract processes into a workflow: BookFlightAbstractProcess,

BookAccommodationAbstractProcess, SearchForAttractionAbstractProcess and Rent-

CarAbstractProcess.

The PlanTripTemplate’s composite process and the available services that match con-

stituent abstract processes are depicted in Figure 5.5.

5.2.2 Service Discovery

The objective of Agent1 is to discover matching executable services for all of the abstract

processes of PlanTripTemplate’s composite process. The discovery process is initiated by

the submitting the service subscriptions to the Siena CBN. That happens immediately at

agent startup or when a service is deployed or redeployed. When at least one executable

service is discovered for each abstract process, the agent is able to accept invocation

requests for the PlanTripTemplate. During the invocation the agent does not coordinate

the execution of the composite process, but it only selects and binds appropriate service

providers, initiates the start of the execution and waits for the completion. The process

itself is executed in a decentralized peer-to-peer fashion described in the subsequent

section.

77

Figure 5.5: PlanTripTemplate’s composite process and available matching services

Let’s take a closer look at the subscriptions and notifications related to the abstract

process BookAccommodationAbstractProcess. The taxonomy used to annotate service

profiles and abstract processes is presented in the Figure 5.6, and the taxonomy used to

annotate the parameters is presented in the Figure 5.7. The former is a small subset of

the United Nations Standard Products and Services Code taxonomy (UNSPSC, 2006).

Figure 5.6: Service stereotypes taxonomy

The summary of the BookAccommodationAbstractProcess is presented in the Figure 5.8

and the listing of its OWL-S source is available in the Appendix A.

The Figure 5.9 shows the Siena service subscription filter for the BookAccommodation-

AbstractProcess.

Now let’s consider the BookBedAndBreakfastService deployed on the Agent2. The

service is presented by its profile BookBedAndBreakfastProfile. The Figure 5.10 shows

the summary of the BookBedAndBreakfastProfile description. The entire listing of its

OWL-S source is available in the Appendix B. The Figure 5.11 shows a Siena service

notification for the BookBedAndBreakfastService.

78

Figure 5.7: Parameter stereotypes taxonomy

Figure 5.8: Summary of BookAccommodationAbstractProcess

Name Data Type Stereotype

Abstract Process ”HotelsAndMotelsAndInns”

Inputs name string ”PersonName”
city string ”City”
arrivalDate date ”BeginningDate”
departureDate date ”EndDate”
preferedStars integer ”HotelCategory”

Outputs accommodationPrice double ”Price”
bookingDetails string ”TextualDescription”

Figure 5.9: Service subscription filter for BookAccommodationAbstractProcess

Attribute Name Type Operator Value

serviceStereotype string - ”HotelsAndMotelsAndInns”

inputStereotypes bag �, ”PersonName”
”City”
”BeginningDate”
”EndDate”
”HotelCategory”

outputStereotypes bag �- ”Price”
”TextualDescription”

79

When comparing the BookBedAndBreakfastService notification against the BookAc-

commodationAbstractProcess subscription filter it can be seen that the filter selects the

notification, because all its constraints are true.

The names of parameters, data types, stereotypes and the number of parameters in the

BookAccommodationAbstractProcess and the BookBedAndBreakfastProfile are delib-

erately not the same to demonstrate the power and flexibility of the proposed discovery

model. By looking at the definition of the matching rules in § 3.5.3.2 it can be seen

that inputs match in spite of the fact that the BookAccommodationAbstractProcess can

provide five inputs while the BookBedAndBreakfastService has only four.

Figure 5.10: Summary of BookBedAndBreakfastProfile

Name Data Type Stereotype

Profile ”BedAndBreakfastInns”

Inputs personName string ”PersonName”
city string ”CitiesAndTownsAndVillages”
fromDate date ”BeginningDate”
toDate date ”EndDate”

Outputs price integer ”AccommodationPrice”
bookingDetails string ”AccommodationBookingDetails”

Figure 5.11: Service notification for BookBedAndBreakfastService

Attribute Name Type Value

serviceUri string ”http://kdeg/BookBB.owl#BookBBService”

agentUrl string ”http://kyi-2/dowls/”

serviceStereotype string ”BedAndBreakfastInns”

inputStereotypes bag ”PersonName”
”CitiesAndTownsAndVillages”
”BeginningDate”
”EndDate”

outputStereotypes bag ”AccommodationPrice”
”AccommodationBookingDetails”

validity integer 300

Now let’s look at the BookHotelService deployed on Agent3, which is presented by its

profile BookHotelProfile. Again the Figure 5.12 shows the summary of the BookHotel-

Profile description, and a corresponding Siena service notification is shown in the Fig-

ure 5.13. Also in this case the BookAccommodationAbstractProcess subscription filter

selects the BookHotelService notifications, because all its constraints are true. Also

in this case the names of parameters, stereotypes and the number of parameters are

different from those in the BookAccommodationAbstractProcess and the BookBedAnd-

BreakfastProfile. For example, the BookHotelService is able to provide more outputs

80

than required by the BookAccommodationAbstractProcess.

Figure 5.12: Summary of BookHotelProfile

Name Data Type Stereotype

Profile ”Hotels”

Inputs name string ”PartyName”
city string ”City”
arrivalDate date ”BeginningDate”
departureDate date ”EndDate”
numberOfStars integer ”HotelCategory”

Outputs hotelPrice integer ”HotelPrice”
reservationDetails string ”HotelBookingDetails”
awardMiles integer ”NonFlightAwardMiles”

Figure 5.13: Service notification for BookHotelService

Attribute Name Type Value

serviceUri string ”http://kdeg/BookHotel.owl#BookHotel”

agentUrl string ”http://kyi-4/dowls/”

serviceStereotype string ”Hotels”

inputStereotypes bag ”PartyName”
”City”
”BeginningDate”
”EndDate”
”HotelCategory”

outputStereotypes bag ”HotelPrice”
”HotelBookingDetails”
”NonFlightAwardMiles”

validity integer 300

In the presented scenario the Agent1, which hosts the PlanTripTemplate, discovers two

executable services matching the BookAccommodationAbstractProcess. Analogically it

discovers executable services for other abstract processes.

Once there is at least one executable service for each of the abstract processes discov-

ered, the Agent1 is able to start advertising the PlanTripTemplate as an executable

service, and also to start decentralized execution of the PlanTripTemplate provided the

invocation request arrives.

5.2.3 Decentralized Execution

When the agent that hosts the PlanTripTemplate receives an invocation request from a

client, it creates a new instance of decentralized service wrapper. The wrapper first se-

81

lects discovered services that can fulfill the requirements of the abstract processes. Let’s

presume that the following services are selected: BookCheapFlightService, BookHo-

telService, FindPlaceOfInterestService and RentValueCarService.

Remark. If there is more than one executable service candidate for an abstract process,

then the agent can apply a scoring function to select one. The scoring function could be

based on either semantic similarity, or some other features, like reliability or cost of the

service. More detailed investigation of the scoring function is out of the scope of this

research and a random function is used to select the service in the prototype.

To understand the distributed data-flow during decentralized execution the input and

output parameters of the participating services must be presented. The input and output

parameters of the PlanTripTemplate are shown in the Figure 5.14 and the input and

output parameters of the selected services are shown in the Figure 5.15.

Figure 5.14: PlanTripTemplate’s input and output parameters

Service Inputs Outputs

PlanTripTemplate name departureDate
fromCity returnDate
toCity flightPrice
minDepartureDate flightDetails
maxDepartureDate accommodationPrice
minReturnDate accommodationDetails
maxReturnDate attraction
hotelStars carRentalPrice

carRentalDetails

After the wrapper selects the discovered services that can fulfill the requirements of the

constituent abstract processes, it creates a state coordinator for every executable state

of the composite process, and provisions it at the peer agent that hosts the associated

discovered service. It also provisions the initial and final state coordinator at its own

agent. Finally the wrapper initiates the decentralized execution by sending a message

to the initial state coordinator. The course of events unfolding during decentralized

execution is shown in the Figure 5.16. After the completion of execution the wrapper

collects the results from the final state coordinator and returns them to the client.

By looking at the messages sent during the decentralized execution it can be seen that

the data-flow messages always precede the control-flow messages. This is necessary

because all input data of a state must be available at the moment when a control-flow

notification triggers the execution of the associated service.

5.2.4 Experiments

A series of experiments were conducted to investigate the system’s functional correctness,

robustness and performance.

82

Figure 5.15: Input and output parameters of the selected services

Service Inputs Outputs

BookCheapFlightService name departureDate
fromCity returnDate
toCity price
minDepartureDate flightDetails
maxDepartureDate
minReturnDate
maxReturnDate

BookHotelService name hotelPrice
city reservationDetails
arrivalDate awardMiles
departureDate
numberOfStars

FindPlaceOfInterestService place attraction

RentValueCarService name amount
city details
firstDay
lastDay

5.2.4.1 Functional Correctness

The proper behavior of the system, as described above, has been empirically confirmed

by observing (i) the inputs and outputs of the PlanTripTemplate executions and (ii) the

logging outputs of the participating agents. Since a random scoring function was used

to select the matching services, if more than one matching service was available, it

was possible to observe different selections of the participating services in consecutive

executions of the PlanTripTemplate.

5.2.4.2 Robustness

In addition, the robustness of the system has been tested by performing the following

actions at run-time:

• undeploying one or more services at a random time,

• deploying one or more services to random agents at a random time,

• shutting down or killing an agent at a random time,

• starting up an agent at a random time.

While performing these actions the system manifested the following behavior:

• The system can adapt to and remain stable after any combination of the actions

described above.

• In case, when the agent hosting the PlanTripTemplate is restarted, it may need

some time to discover all suitable services. This is because services are advertised

83

Figure 5.16: Decentralized execution of PlanTripTemplate

84

periodically. The maximum time needed to discover an available service is limited

by the duration of its advertisement period. This phenomenon is termed warm-up

time.

• Except of this initial warm-up time, the system is able to perform decentralized

execution of the PlanTripTemplate as long as there exists at least one live matching

service for each constituent abstract process.

• In case, when the agent hosting atomic services is (re)started, its services are

available to the agent hosting the PlanTripTemplate immediately. This is because

the agent starts publishing advertisements for the deployed advertisable executable

services immediately at the startup.

• If the agent participating in a decentralized execution becomes unavailable during

this execution, an error or a timeout can occur. This depends upon whether the

participating agent already completed its job in decentralized execution or not at

the moment of becoming unavailable. In the former case the unavailability of the

agent does not affect the decentralized execution and in the latter case it causes

an error or a timeout.

5.2.4.3 Performance

Due to time limitations the performance of the system was assessed only briefly by

comparing single decentralized executions of the PlanTripTemplate to its equivalent

centralized executions implemented by the OWL-S composite service PlanTripService.

All agents were running locally on a single computer. For each scenario the average

elapsed time of 20 consecutive executions was calculated. The results are shown in the

Table 5.3.

Table 5.3: Composite service execution performance results

Average elapsed time (milliseconds)

Centralized execution 1,620

Decentralized execution 1,040

The results are surprising, since decentralized execution was expected to be slower in this

simplified scenario, because of the fixed decentralized orchestration overhead. Decen-

tralized execution was expected to perform better when scaling up to complex workflow,

and to many parallel executions in a highly distributed system, since it reduces message

communication and balances the load among peer agents.

A possible explanation for these results could be that in the design presented here the

decentralized composite service is compiled into decentralized abstract states already

at the composite service deployment time. The OWL-S Java API library, which was

used for the execution of the centralized composite service, might still need to do some

compiling work after the invocation of the composite service, which can cause its bad

performance.

85

A better assessment of the system’s performance involving a real distributed scenario

with parallel invocations of composite services remains to be done by some future work.

5.2.4.4 Discussion

An experimental evaluation of the system demonstrated correctness of the system, its

robustness and the ability of adapt to changing availability of peer agents and their

hosted services.

The strong point of the discovery design presented here is that the service consumer

agent has a rather good knowledge of the discovered services at any moment. When a

request for decentralized execution arrives the agent does not need to query for matching

services, but can proceed with the execution immediately. The drawbacks related to it

are that (i) the service advertisement generates some constant network traffic and that

(ii) the discovered services might become stale. The weak point of the design is exposed

when the agent participating in the decentralized execution becomes unavailable during

that execution.

As a consequence it can be concluded that this design is suitable for dynamic environ-

ments with a high service churn rate, as long as the ratio between service availability

time and service execution time remains high.

Remark. An alternative advertisement and discovery design, with the trade-offs different

from those of this design, is briefly outlined in § 6.2.4.2. It does not suffer from the

warm-up time phenomenon and some of the drawbacks described above.

86

Chapter 6

Conclusion

This chapter presents the contributions of this research and gives some suggestions for

further work. The main ideas presented in this work are general and not restrained to

particular technology choices.

6.1 Contributions of the Research

6.1.1 Composite Bag Relations

One of the primary contributions of this research is the definition of the composite bag

relation. The composite bag relation extends bag algebra with a new concept, which

is particularly useful when combined with ontological relations (for example subsumes,

subsumed by, equivalent). Compared to simple bag relations (which are �, �, �), com-

posite bag relations make possible looser comparisons of bags. They allow for ”inexact”

matches that would not be possible should we use only simple bag relations.

Since a set is a special case of a bag, the composite bag operator is applicable to sets as

well.

6.1.2 Bag Extension for Content-Based Networking

The second major contribution of this research is the design of a bag extension for

content-based networking. The bag extension supports:

(i) bag attribute values,

(ii) simple bag operators (which are �, �, �), and

(iii) composite bag operators (which are an implementation of the theory of composite

bag relations).

For effective routing the covering relationships for subscription aggregation between bag

operators have been identified as well.

87

The combination of the composite bag operator and ontological operators in the CBN

offers a much higher expressiveness for subscribing and filtering than current CBNs.

This makes the CBN particularly suitable for disseminating ontologically described in-

formation.

6.1.3 OWL-S Extended with Stereotypes

Another minor contribution of this work is the definition of the stereotypes that are used

to annotate OWL-S profiles, abstract processes, inputs and outputs for the purposes

of semantic advertisement, discovery and selection. Stereotype is an OWL property

that semantically categorizes the annotated resource according to some hierarchical

taxonomy. The conception is similar to some existing properties of OWL-S profile.

What makes stereotypes different is that they are also applied to abstract processes,

inputs and outputs. Semantically annotated OWL-S profile presents service capabilities.

Semantically annotated abstract process presents service consumer requirements.

6.1.4 Semantic Service Discovery Utilizing Composite Bag Operators

An important contribution of this research is the design of dynamic, scalable seman-

tic service advertisement and discovery model based on the semantic CBN with bag

support. The presented model is in a way similar to some exiting models, for exam-

ple to the one described by Lynch (2005). The difference is that the model presented

here effectively utilizes composite bag operators in CBN filtering constraints, and uses

stereotypes to describe the provided and required services. This combination enables

very expressive semantic service matching that fully exploits covering relationships be-

tween Siena operators, which makes it scalable to high dimensions. The conceptions

presented are not specific to semantic services and can be applied to advertisement and

discovery of any semantically described resources.

6.1.5 Data-Flow in Decentralized Composite Service Execution

Another contribution of this research is the design of the distributed data-flow routing for

decentralized executions of composite services, which is not covered by Benatallah et al.

(2001, 2002, 2003). Decentralized data-flow routing is described by structures called data

bindings, which together with preconditions and post-processing actions form distributed

routing tables for decentralized workflow executions.

6.1.6 Decentralized Discovery and Execution for Composite Services

Last but not least, an autonomous multi-agent design for decentralized discovery and

execution of OWL-S composite services has been developed. While similar architectures

for decentralized execution of composite services have been presented before, this is

88

presumably the first one that supports composite semantic Web services. The design

integrates all the above presented contributions.

It is based upon loosely coupled peer-to-peer system of software agents. The agent is an

autonomous software component, which is able to host, advertise and execute atomic

and composite semantic Web services. It is also able to discover services advertised by

other agents and collaborate with other agents in decentralized execution of composite

services. The service bindings are made and remade dynamically, so that each execution

of the same composite service might involve other participating component services.

The presented design is robust and able to adapt to changing availability of peer agents

and their hosted services. The decentralized execution is expected to scale better then

the centralized counterpart since it reduces message communication and balances the

load among peer agents. The architecture of the design is suitable for dynamic dis-

tributed environments with a high service churn rate, as long as the ratio between

service availability time and service execution time remains high.

6.2 Further Work

6.2.1 Composite Bag Relation

A future research should investigate the applicability of the composite bag relation in

ontology query languages. For example, SPARQL (W3C, 2006) could be extended with

a composite bag query operator.

6.2.2 Bag Extension for Content-Based Networking

6.2.2.1 Benchmarking Bag Extension

A future work should thoroughly evaluate the performance of CBN bag extension.

Keeney et al. (2006a) have developed a benchmark for knowledge based context de-

livery platforms, that is particularly suitable for assessing the ability of CBN platforms

to deal with semantically enriched data.

6.2.2.2 Algorithm for Composite Bag Operator

In order to improve the efficiency of the composite bag operator a design of an effective

composite bag operator matching algorithm should be investigated, perhaps by narrow-

ing the applicability of the algorithm to certain specialized composite bag operators.

For example, it is possible to develop a very effective algorithm for bag operators over

totally ordered sets, if the sub-operator of the composite bag operator respects the total

order (see § 5.1.3.4).

89

Unfortunately, not all sets are totally ordered. For example, ontological concepts form

only a partially ordered set with regard to subsumes. A future research could try to

develop an effective algorithm for composite bag operators over partially ordered sets.

6.2.3 Toward the Knowledge-Based Networking

The ontologically extended Siena with bag operators could be further extended with

richer ontology-based operators, for example, with arbitrary OWL relationships. Fur-

thermore, a research is needed for embedding the semantic interoperability into the

knowledge-based networks.

6.2.3.1 Potential Applications of the Knowledge-Based Networking

This research has only just begun to explore application for the expressiveness of the

knowledge-based networking. Potential applications are:

• discovery and change notification of policies between federated communication

service providers,

• sensor readings in a multi-domain heterogeneous ubiquitous computing applica-

tion,

• RSS with semantic markup in Web 2.0/Semantic Web,

• notifications from heterogeneous network elements in OSS,

• semantic routing of multimedia (MPEG) stream with semantic meta-data.

6.2.3.2 Extensible Control Plane for Knowledge-Based Networking

The knowledge-based network implementation will be used in the new Science Founda-

tion Ireland project call MECON (Managed Extensible Control Plane for Knowledge-

Based Networking), evaluating its performance with different reasoners in OPNET sim-

ulations and for applications running on PlanetLab. This has the aim of identifying

optimal semantic clustering strategies to enable scalability of a knowledge-based net-

working by restricting ontology load and forwarding table sizes at individual nodes.

6.2.4 Semantic Service Discovery

6.2.4.1 Extending OWL-S Discovery Annotations

The OWL-S discovery annotations design presented in this work is not a fully developed

solution, but merely an illustration of the idea. This work has defined a property

called dowls:hasStereotype applicable to OWL-S profiles, abstract processes, and their

inputs and outputs. dowls:hasStereotype could be extended further to preconditions and

effects. In addition, the discovery annotation itself could be elaborated much further

from being just a single property. For example, a more elaborated discovery annotation

90

of parameters in abstract processes could designate whether the parameter is mandatory

or optional.

6.2.4.2 Alternative Semantic Service Discovery Design

The proposed architecture for decentralized semantic Web service discovery maintains

a local repository of discovered services at each service consumer agent. The agent that

hosts a decentralized composite service template decomposes the service into constituent

abstract processes and subscribes for matching executable services that can fulfill the

requirements of the abstract processes. The agents that host advertisable executable

services periodically multicast service advertisement notifications. The CBN effectively

routes those service notifications to the agents that expressed interest in them.

This approach has some benefits and some drawbacks. The benefit of this approach is

that the service consumer agent has a rather good knowledge of the discovered services

at any moment. When a request for decentralized execution arrives the agent does not

need to query for matching services, but can proceed with the execution immediately.

The drawbacks of this approach are that (i) the service advertisement generates some

constant network traffic and that (ii) the discovered services might become stale.

An alternative semantic service discovery design without these deficiencies, but with

some others, that could be a subject of some future research, is briefly outlined here.

The alternative approach could be applied to the service discovery as follows:

1. Queries for required services are wrapped into CBN notifications.

2. The service providers that host advertisable executable services subscribe for

matching queries.

3. When the agent that hosts a decentralized composite service template needs to

invoke the service, it multicasts a query notification for each of the service’s con-

stituent abstract processes.

4. The CBN effectively routes the queries toward the service providers that are able

to answer the query.

5. Once the service provider receives the query it responds to the service consumer

with the information about the matching service.

This alternative design has several benefits, but also some drawbacks. The benefits are:

• Agents do not need to maintain the local repository of discovered services.

• The overall network load is lower than in the original design, providing that there

are not too many active service consumers. In the original design notifications

are published periodically, while in the alternative design query notifications are

published only when needed.

• In contrast to the original design the discovered services are much less likely to be

stale at the moment of a decentralized composite service invocation.

The drawbacks of the alternative design are:

91

• The provisioning phase of a decentralized execution is much longer, since it includes

multicasting the queries and waiting for the respones.

• The service consumer can also not know, how long it should wait for the responses.

Even if it receives some respones in a very short time there is always a chance that

a better response is yet to arrive.

Remark. It would be very easy to developed this design using semantic CBN with the

bag extension. Actually the format of a query notification could be similar to the format

of a service notification from the original approach, by using inversions of the operators

from the original approach.

6.2.5 Decentralized Execution of Compose Semantic Web Service

6.2.5.1 Preconditions and Effects

The prototype developed in scope of this research does not implement conditions, pre-

conditions and effects. These are fundamental constructs of service compositions and

hence they should be addressed by a future work. In addition, a research is needed to

investigate how the external context gathered via the knowledge-based network could

be used in precondition evaluation during service execution.

6.2.5.2 Monitoring, Error Handling and Transactions

This work does not investigate monitoring of the decentralized enactment of a composite

semantic Web service. It also does not specifically deals with errors and other exceptional

situations. Since monitoring and error handling are both crucial for any business process

executions, a future work should research these issues and investigate the applicability

of the knowledge-based network.

The error, that occurs during execution, might cause the involved resources and the

environment to be left in an inconsistent state after the completion of the execution.

This could be avoided by providing support for transactions. Hence a future research

should investigate support for transactions in decentralized executions of composite

services.

92

References

Akkiraju, R., Farrell, J., Miller, J., Nagarajan, M., Schmidt, M.-T., Sheth, A., and

Verma, K. (2005). Web Service Semantics – WSDL-S 1.0, W3C Member Submission.

World Wide Web Consortium (W3C) – Web Resource. Retrieved August 19, 2006,

from http://www.w3.org/Submission/2005/SUBM-WSDL-S-20051107/.

Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2004). Web Services: Concepts,

Architecture and Applications. Springer Verlag.

Antoniou, G. and van Harmelen, F. (2004). A Semantic Web Primer. MIT Press,

Cambridge, MA, USA.

Apache Software Foundation (2006a). Agila Wiki. Apache Software Foundation – Web

Resource. Retrieved August 22, 2006, from http://wiki.apache.org/agila/.

Apache Software Foundation (2006b). Apache ServiceMix. Apache Software Foundation

– Web Resource. Retrieved August 20, 2006, from http://servicemix.org/.

Baeten, J. and Basten, T. (2001). Handbook of Process Algebra. Handbook of Process

Algebra. Elsevier, North-Holland.

Benatallah, B., Dumas, M., Fauvet, M.-C., and Paik, H.-Y. (2001). Self-Coordinated and

Self-Traced Composite Services with Dynamic Provider Selection. Technical report,

School of Computer Science & Engineering, University of New South Wales.

Benatallah, B., Sheng, Q. Z., and Dumas, M. (2003). The Self-Serv Environment for

Web Services Composition. IEEE Internet Computing, 07(1):40–48.

Benatallah, B., Sheng, Q. Z., Ngu, A. H., and Dumas, M. (2002). Declarative Compo-

sition and Peer-to-Peer Provisioning of Dynamic Web Services. icde, 00:0297.

Buchmann, A. P., Bornhövd, C., Cilia, M., Fiege, L., Gärtner, F. C., Liebig, C., Meixner,

M., and Mühl, G. (2004). Web Dynamics: Adapting to Change in Content, Size,

Topology and Use, chapter DREAM: Distributed Reliable Event-Based Application

Management, pages 319–352. Springer.

Cabral, L., Domingue, J., Motta, E., Payne, T. R., and Hakimpour, F. (2004). Ap-

proaches to Semantic Web Services: an Overview and Comparisons. In European

Semantic Web Symposium, pages 225–239.

93

Carzaniga, A., Rosenblum, D. S., and Wolf, A. L. (2001). Design and Evaluation of

a Wide-Area Event Notification Service. ACM Transactions on Computer Systems,

19(3):332–383.

Carzaniga, A., Rutherford, M., and Wolf, A. (2004). A Routing Scheme for Content-

based Networking. INFOCOM 2004. Twenty-third AnnualJoint Conference of the

IEEE Computer and Communications Societies, 2:918–928.

Carzaniga, A. and Wolf, A. L. (2002). Content-Based Networking: A New Commu-

nication Infrastructure. In IMWS ’01: Revised Papers from the NSF Workshop on

Developing an Infrastructure for Mobile and Wireless Systems, pages 59–68, London,

UK. Springer-Verlag.

Chen, Q. and Hsu, M. (2001). Inter-Enterprise Collaborative Business Process Man-

agement. In Proceedings of the 17th International Conference on Data Engineering,

pages 253–260, Washington, DC, USA. IEEE Computer Society.

Codehaus (2006). Mule. Codehaus – Web Resource. Retrieved August 20, 2006, from

http://mule.codehaus.org/.

de Bruijn, J., Bussler, C., Domingue, J., Fensel, D., Hepp, M., Keller, U., Kifer, M.,

König-Ries, B., Kopecký, J., Lara, R., Lausen, H., Oren, E., Polleres, A., Roman,

D., Scicluna, J., and Stollberg, M. (2005). Web Service Modeling Ontology (WSMO),

W3C Member Submission. W3C – Web Resource. Retrieved August 19, 2006, from

http://www.w3.org/Submission/WSMO/.

Dustdar, S. and Schreiner, W. (2005). A Survey on Web Services Composition. Inter-

national Journal of Web and Grid Services, 1(1):1–30.

Fensel, D. and Bussler, C. (2002). The Web Service Modeling Framework WSMF.

Electronic Commerce Research and Applications, 1(2):113–137.

Heimbigner, D. (2003). Extending the Siena Publish/Subscribe System. Technical Re-

port CU-CS-946-2003, University of Colorado at Boulder, Department of Computer

Science, Campus Box 430, University of Colorado, Boulder, Colorado 80309-0430,

USA.

IBM et al. (2005). Business Process Execution Language for Web Services Version 1.1.

Technical report, IBM.

Kalogeras, A., Gialelis, J., Alexakos, C., Georgoudakis, M., and Koubias, S. (2006).

Vertical Integration of Enterprise Industrial Systems Utilizing Web Services. Industrial

Informatics, IEEE Transactions on, 2(2):120–128.

Keeney, J., Carey, K., Lewis, D., OSullivan, D., and Wade, V. (2005). Ontology-based

Semantics for Composable Autonomic Elements. In Proceedings of the Workshop of

AI in Autonomic Communications at the Nineteenth International Joint Conference

on Artificial Intelligence, Edinburgh, Scotland.

94

Keeney, J., Lewis, D., and OSullivan, D. (2006a). Benchmarking Knowledge-based Con-

text Delivery Systems. In Proceedings of the International Conference on Autonomic

and Autonomous Systems (ICAS 06), Silicon Valley, USA.

Keeney, J., Lynch, D., Lewis, D., and O’Sullivan, D. (2006b). On the Role of Ontolog-

ical Semantics in Routing Contextual Knowledge in Highly Distributed Autonomic

Systems. Technical Report TCD-CS-2006-15, University of Dublin, Trinity College.

Klein, M. (2002). DAML+OIL and RDF Schema Representation of UNSPSC. Depart-

ment of Computer Science, Vrije Universiteit, Amsterdam – Web Resource. Retrieved

August 21, 2006, from http://www.cs.vu.nl/ mcaklein/unspsc/.

Lara, R., Polleres, A., Lausen, H., Roman, D., de Bruijn, J., and Fensel, D. (2005).

Conceptual Comparison between WSMO and OWL-S, WSMO Final Draft. Technical

Report D4.1 v0.1, Digital Enterprise Research Institute (DERI).

Lewis, D., O’Sullivan, D., Power, R., and Keeney, J. (2005). Semantic Interoperability

for an Autonomic Knowledge Delivery Service. In Proceedings of the Second IFIP TC6

International Workshop on Autonomic Communication (WAC 2005), pages 129–140,

Vouliagmeni, Athens, Greece.

Li, S. (2003). JXTA 2: A High-Performance, Massively Scalable P2P Network. IBM

developerWorks – Web Resource. Retrieved September 6, 2006, from http://www-

128.ibm.com/developerworks/java/library/j-jxta2/.

Lynch, D. (2005). A Proactive Approach to Semantically Oriented Service Discovery.

Master’s thesis, University of Dublin, Trinity College.

Lynch, D., Keeney, J., Lewis, D., and O’Sullivan, D. (2006). A Proactive Approach to

Semantically Oriented Service Discovery. In Proceedings of the Second Workshop on

Innovations in Web Infrastructure (IWI 2006). Co-located with the 15th International

World-Wide Web Conference, Edinburgh, Scotland. May 2006.

Martin, D., Burstein, M., Denker, G., Hobbs, J., Kagal, L., Lassila, O., McDer-

mott, D., McIlraith, S., Paolucci, M., Parsia, B., Payne, T., Sabou, M., Sirin, E.,

Solanki, M., Srinivasan, N., and Sycara, K. (2004a). Profile-based Class Hierar-

chies, Explanatory Remarks for ProfileHierarchy.owl, OWL-S 1.1. OWL-S Coalition –

Web Resource. Retrieved August 18, 2006, from http://www.daml.org/services/owl-

s/1.2/ProfileHierarchy.html.

Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,

Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., and

Sycara, K. (2004b). OWL-S: Semantic Markup for Web Services, W3C Member Sub-

mission. World Wide Web Consortium (W3C) – Web Resource. Retrieved July 19,

2006, from http://www.w3.org/Submission/OWL-S/.

95

Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness,

D., Parsia, B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N., and Sycara, K.

(2004c). Bringing Semantics to Web Services: The OWL-S Approach. In Proceedings

of the First International Workshop on Semantic Web Services and Web Process

Composition (SWSWPC 2004), San Diego, California, USA.

McIlraith, S., Son, T., and Zeng, H. (2001). Semantic Web Services. Intelligent Systems,

IEEE [see also IEEE Intelligent Systems and Their Applications], 16(2):46–53.

Meier, R. and Cahill, V. (2005). Taxonomy of Distributed Event-based Programming

Systems. The Computer Journal, 48(5):602–626.

Milanovic, N. and Malek, M. (2004). Current Solutions for Web Service Composition.

IEEE Internet Computing, 8(6):51–59.

OASIS (2004). UDDI Version 3.0.2, UDDI Spec Technical Committee Draft. Technical

report, OASIS.

OASIS (2006). Reference Model for Service Oriented Architecture 1.0, Committee Spec-

ification 1. Technical Report soa-rm-cs, Organization for the Advancement of Struc-

tured Information Standards (OASIS).

ObjectWeb Consortium (2006). Celtix. ObjectWeb Consortium – Web Resource. Re-

trieved August 20, 2006, from http://celtix.objectweb.org/.

O’Sullivan, D. and Lewis, D. (2003). Semantically Driven Service Interoperability for

Pervasive Computing. In MobiDe ’03: Proceedings of the 3rd ACM international

workshop on Data engineering for wireless and mobile access, pages 17–24, New York,

NY, USA. ACM Press.

Papazoglou, M. P. and van den Heuvel, W.-J. (2005). Service Oriented Architectures:

Approaches, Technologies and Research Issues. To appear in VLDB Journal.

Piccinelli, G. and Williams, S. L. (2003). Workflow: A Language for Composing Web

Services. In Business Process Management, pages 13–24.

Pietzuch, P. and Bacon, J. (2002). Hermes: A Distributed Event-based Middleware

Architecture. In Distributed Computing Systems Workshops, 2002. Proceedings. 22nd

International Conference on, pages 611–618.

Pokraev, S., Koolwaaij, J., and Wibbels, M. (2003). Extending UDDI with Context-

Aware Features Based on Semantic Service Descriptions. In Proceedings of the Inter-

national Conference on Web Services, ICWS ’03, pages 184–190.

Roy, J. and Ramanujan, A. (2001). Understanding Web Services. IT Professional,

3(6):69–73.

96

Rutherford, M. J. (2004). Siena Simplification Library Documentation 1.1.4.

University of Colorado – Web Resource. Retrieved August 13, 2006, from

http://serl.cs.colorado.edu/ carzanig/siena/forwarding/ssimp/namespacesiena.html.

Sadiq, S., Orlowska, M., Sadiq, W., and Foulger, C. (2004). Data Flow and Validation in

Workflow Modelling. In ADC ’04: Proceedings of the fifteenth Australasian database

conference, pages 207–214, Darlinghurst, Australia, Australia. Australian Computer

Society, Inc.

Schmidt, C. and Parashar, M. (2004). A peer-to-peer approach to web service discovery.

World Wide Web, 7(2):211–229.

Segall, B., Arnold, D., Boot, J., Henderson, M., and Phelps, T. (2000). Content Based

Routing with Elvin4. Proceedings AUUG2K, Canberra, Australia.

Shen, J., Yan, J., and Yang, Y. (2006). SwinDeW-S: Extending P2P Workflow Systems

for Adaptive Composite Web Services. aswec, 0:61–69.

Sirin, E. and Parsia, B. (2004). The OWL-S Java API. In Third International Semantic

Web Conference (ISWC2004) Poster, Hiroshima, Japan.

Sirin, E., Parsia, B., and Hendler, J. (2004). Filtering and Selecting Semantic Web Ser-

vices with Interactive Composition Techniques. IEEE Intelligent Systems, 19(4):42–

49.

Sirin, E., Parsia, B., and Hendler, J. (2005). Template-based Composition of Semantic

Web Services. In AAAI fall symposium on agents and the semantic web, Virginia,

USA.

Sun Microsystems (2006a). Jini Network Technology. Sun Microsystems, Inc. – Web

Resource. Retrieved September 7, 2006, from http://www.sun.com/software/jini/.

Sun Microsystems (2006b). Jini Specifications Archive - v2.1. Sun Mi-

crosystems, Inc. – Web Resource. Retrieved September 7, 2006, from

http://java.sun.com/products/jini/2 1index.html.

Sun Microsystems (2006c). JXTA. Sun Microsystems, Inc. – Web Resource. Retrieved

September 6, 2006, from http://www.jxta.org/.

Traversat, B., Abdelaziz, M., and Pouyoul, E. (2002). Project JXTA: A Loosely-

Consistent DHT Rendezvous Walker. Technical report, Sun Microsystems, Inc.

Traversat, B., Arora, A., Abdelaziz, M., Duigou, M., Haywood, C., Hugly, J.-C., Pouy-

oul, E., and Yeager, B. (2003). Project JXTA 2.0 Super-Peer Virtual Network. Tech-

nical report, Sun Microsystems, Inc.

UNSPSC (2006). The United Nations Standard Products and Services Code Home-

page. The United Nations Standard Products and Services Code (UNSPSC) – Web

Resource. Retrieved August 19, 2006, from http://www.unspsc.org/.

97

W3C (2001). Web Services Description Language (WSDL) 1.1, W3C Note. Technical

report, W3C.

W3C (2003). SOAP Version 1.2 Part 0: Primer, W3C Recommendation. Technical

report, W3C.

W3C (2004a). OWL Web Ontology Language Overview, W3C Recommendation. W3C

– Web Resource. Retrieved August 19, 2006, from http://www.w3.org/TR/owl-

features/.

W3C (2004b). RDF Primer, W3C Recommendation. Technical report, W3C.

W3C (2004c). RDF Vocabulary Description Language 1.0: RDF Schema, W3C Recom-

mendation. Technical report, W3C.

W3C (2004d). Web Services Architecture Requirements, W3C Working Group Note.

Technical report, W3C.

W3C (2006). SPARQL Query Language for RDF, W3C Candidate Recommendation.

W3C – Web Resource. Retrieved August 19, 2006, from http://www.w3.org/TR/rdf-

sparql-query/.

Weisstein, E. W. (2000). Totally Ordered Set. MathWorld –

A Wolfram Web Resource. Retrieved September 8, 2006, from

http://mathworld.wolfram.com/TotallyOrderedSet.html.

Weisstein, E. W. (2002). Multiset. MathWorld – A Wolfram Web Resource. Retrieved

July 19, 2006, from http://mathworld.wolfram.com/Multiset.html.

Weisstein, E. W. (2004). Partially Ordered Set. MathWorld –

A Wolfram Web Resource. Retrieved September 8, 2006, from

http://mathworld.wolfram.com/PartiallyOrderedSet.html.

Zhou, J., Dialani, V., Roure, D. D., and Hall, W. (2003). A Semantic Search Algorithm

for Peer-to-Peer Open Hypermedia Systems. In Proceedings of the 1st Workshop on

Semantics in Peer-to-Peer and Grid Computing at the 12th International World Wide

Web Conference, Budapest, Hungary.

98

Appendix A

Listing A.1: OWL-S description of BookAccommodationAbstractProcess

<!DOCTYPE rdf:RDF [

<!ENTITY abstractBookAccommodation "http://kdeg/AbstractBookAccommodation.owl" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns" >

<!ENTITY owl "http://www.w3.org/2002/07/owl" >

<!ENTITY process "http://www.daml.org/services/owl-s/1.1/Process.owl" >

<!ENTITY dowls "http://kyi/~dominik/dowls-demo/ontologies/Dowls.owl" >]>

<rdf:RDF

xmlns="&abstractBookAccommodation;#"

xml:base="&abstractBookAccommodation;#"

xmlns:abstractBookAccommodation="&abstractBookAccommodation;#"

xmlns:xsd="&xsd;#"

xmlns:rdf="&rdf;#"

xmlns:owl="&owl;#"

xmlns:process="&process;#"

xmlns:dowls="&dowls;#">

<owl:Ontology rdf:about="">

<owl:imports rdf:resource="&process;" />

<owl:imports rdf:resource="&dowls;" />

</owl:Ontology>

<dowls:AbstractProcess rdf:ID="BookAccommodationAbstractProcess">

<dowls:hasStereotype rdf:datatype="&xsd;#anyURI">

&dowls;#HotelsAndMotelsAndInns

</dowls:hasStereotype>

<process:hasInput>

<process:Input rdf:ID="name">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&xsd;#string

</process:parameterType>

<dowls:hasStereotype rdf:datatype="&xsd;#anyURI">

&dowls;#PersonName

</dowls:hasStereotype>

</process:Input>

</process:hasInput>

<process:hasInput>

<process:Input rdf:ID="city">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&xsd;#string

</process:parameterType>

<dowls:hasStereotype rdf:datatype="&xsd;#anyURI">

&dowls;#City

99

</dowls:hasStereotype>

</process:Input>

</process:hasInput>

<process:hasInput>

<process:Input rdf:ID="arrivalDate">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&xsd;#dateTime

</process:parameterType>

<dowls:hasStereotype rdf:datatype="&xsd;#anyURI">

&dowls;#BeginningDate

</dowls:hasStereotype>

</process:Input>

</process:hasInput>

<process:hasInput>

<process:Input rdf:ID="departureDate">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&xsd;#EndDate

</process:parameterType>

<dowls:hasStereotype rdf:datatype="&xsd;#anyURI">

&dowls;#EndDate

</dowls:hasStereotype>

</process:Input>

</process:hasInput>

<process:hasInput>

<process:Input rdf:ID="preferedStars">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&xsd;#integer

</process:parameterType>

<dowls:hasStereotype rdf:datatype="&xsd;#anyURI">

&dowls;#HotelCategory

</dowls:hasStereotype>

</process:Input>

</process:hasInput>

<process:hasOutput>

<process:Output rdf:ID="accommodationPrice">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&xsd;#double

</process:parameterType>

<dowls:hasStereotype rdf:datatype="&xsd;#anyURI">

&dowls;#Price

</dowls:hasStereotype>

</process:Output>

</process:hasOutput>

<process:hasOutput>

<process:Output rdf:ID="bookingDetails">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&xsd;#string

</process:parameterType>

<dowls:hasStereotype rdf:datatype="&xsd;#anyURI">

&dowls;#TextualDescription

</dowls:hasStereotype>

</process:Output>

</process:hasOutput>

</dowls:AbstractProcess>

</rdf:RDF>

100

Appendix B

Listing B.1: OWL-S description of BookBedAndBreakfastService

<!DOCTYPE rdf:RDF [

<!ENTITY bookBedAndBreakfast "http://kdeg/BookBedAndBreakfast.owl" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns" >

<!ENTITY owl "http://www.w3.org/2002/07/owl" >

<!ENTITY service "http://www.daml.org/services/owl-s/1.1/Service.owl" >

<!ENTITY profile "http://www.daml.org/services/owl-s/1.1/Profile.owl" >

<!ENTITY process "http://www.daml.org/services/owl-s/1.1/Process.owl" >

<!ENTITY grounding "http://www.daml.org/services/owl-s/1.1/Grounding.owl" >

<!ENTITY dowls "http://kyi/~dominik/dowls-demo/ontologies/Dowls.owl" >

<!ENTITY wsdl "http://kyi:8080/dowls-demo-ws/services/touristAgencyService?wsdl" >

<!ENTITY touristAgency "http://demo.dowls.kdeg.cs.tcd.ie/services/touristAgency" >]>

<rdf:RDF

xmlns="&bookBedAndBreakfast;#"

xml:base="&bookBedAndBreakfast;#"

xmlns:bookBedAndBreakfast="&bookBedAndBreakfast;#"

xmlns:xsd="&xsd;#"

xmlns:rdf="&rdf;#"

xmlns:owl="&owl;#"

xmlns:service="&service;#"

xmlns:profile="&profile;#"

xmlns:process="&process;#"

xmlns:grounding="&grounding;#"

xmlns:dowls="&dowls;#"

xmlns:wsdl="&wsdl;#"

xmlns:touristAgency="&touristAgency;#">

<owl:Ontology rdf:about="">

<owl:imports rdf:resource="&service;" />

<owl:imports rdf:resource="&profile;" />

<owl:imports rdf:resource="&process;" />

<owl:imports rdf:resource="&grounding;" />

<owl:imports rdf:resource="&dowls;" />

</owl:Ontology>

<service:Service rdf:ID="BookBedAndBreakfastService">

<service:presents rdf:resource="#BookBedAndBreakfastProfile" />

<service:describedBy rdf:resource="#BookBedAndBreakfastProcess" />

<service:supports rdf:resource="#BookBedAndBreakfastGrounding" />

</service:Service>

<profile:Profile rdf:ID="BookBedAndBreakfastProfile">

<service:presentedBy rdf:resource="#BookBedAndBreakfastService" />

101

<dowls:hasStereotype rdf:datatype="&xsd;#anyURI">

&dowls;#BedAndBreakfastInns

</dowls:hasStereotype>

<profile:hasInput rdf:resource="#personName" />

<profile:hasInput rdf:resource="#city" />

<profile:hasInput rdf:resource="#fromDate" />

<profile:hasInput rdf:resource="#toDate" />

<profile:hasOutput rdf:resource="#price" />

<profile:hasOutput rdf:resource="#bookingDetails" />

</profile:Profile>

<process:AtomicProcess rdf:ID="BookBedAndBreakfastProcess">

<service:describes rdf:resource="#BookBedAndBreakfastService" />

<process:hasInput>

<process:Input rdf:ID="personName">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&xsd;#string

</process:parameterType>

<dowls:hasStereotype rdf:datatype="&xsd;#anyURI">

&dowls;#PersonName

</dowls:hasStereotype>

</process:Input>

</process:hasInput>

<process:hasInput>

<process:Input rdf:ID="city">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&xsd;#string

</process:parameterType>

<dowls:hasStereotype rdf:datatype="&xsd;#anyURI">

&dowls;#CitiesAndTownsAndVillages

</dowls:hasStereotype>

</process:Input>

</process:hasInput>

<process:hasInput>

<process:Input rdf:ID="fromDate">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&xsd;#dateTime

</process:parameterType>

<dowls:hasStereotype rdf:datatype="&xsd;#anyURI">

&dowls;#BeginningDate

</dowls:hasStereotype>

</process:Input>

</process:hasInput>

<process:hasInput>

<process:Input rdf:ID="toDate">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&xsd;#dateTime

</process:parameterType>

<dowls:hasStereotype rdf:datatype="&xsd;#anyURI">

&dowls;#EndDate

</dowls:hasStereotype>

</process:Input>

</process:hasInput>

<process:hasOutput>

<process:Output rdf:ID="price">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&xsd;#integer

</process:parameterType>

102

<dowls:hasStereotype rdf:datatype="&xsd;#anyURI">

&dowls;#AccommodationPrice

</dowls:hasStereotype>

</process:Output>

</process:hasOutput>

<process:hasOutput>

<process:Output rdf:ID="bookingDetails">

<process:parameterType rdf:datatype="&xsd;#anyURI">

&xsd;#string

</process:parameterType>

<dowls:hasStereotype rdf:datatype="&xsd;#anyURI">

&dowls;#AccommodationBookingDetails

</dowls:hasStereotype>

</process:Output>

</process:hasOutput>

</process:AtomicProcess>

<grounding:WsdlGrounding rdf:ID="BookBedAndBreakfastGrounding">

<service:supportedBy rdf:resource="#BookBedAndBreakfastService" />

<grounding:hasAtomicProcessGrounding rdf:resource="#BookBedAndBreakfastAtomicProcessGrounding" />

</grounding:WsdlGrounding>

<grounding:WsdlAtomicProcessGrounding rdf:ID="BookBedAndBreakfastAtomicProcessGrounding">

...

</grounding:WsdlAtomicProcessGrounding>

</rdf:RDF>

103

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	List of Listings
	Notation
	Chapter Introduction
	Motivation
	Research Objectives
	Research Approach
	Dissertation Roadmap

	Chapter State of the Art
	Service Oriented Architecture
	Concepts
	Enterprise Service Bus
	Java Business Integration

	Web Services
	Core Specifications
	UDDI Deficiencies
	Web service composition
	Decentralized Execution of composite Web services

	Semantic Web
	Ontologies

	Semantic Web Services
	OWL-S
	WSMO
	Jini
	JXTA

	Content Based Networking
	Siena
	Ontologically Extended Siena

	Chapter Design
	Requirements
	Outline
	Applicability of Content-Based Networking
	Distributed Service Discovery
	Distributed Workflow Execution

	Bag Extension for Content-Based Networking
	Bag Algebra
	Extending Siena with Bags
	Modifications of Ontologically Extended Siena
	Semantic Resource Discovery

	Semantic Service Discovery
	Abstraction of OWL-S Process Model
	OWL-S Discovery Annotations
	Semantic Service Discovery based on Siena with Bag Extension

	Control and Data-Flow in Decentralized Execution
	State Coordinators
	Pre-Conditions
	Post-Processing Actions
	Data Bindings

	Agent Architecture
	Service Deployer
	Composite Service Compiler
	Deployed Service Repository
	Service Advertisement Engine
	Service Discovery Engine
	Discovered Service Repository
	Service Execution Engine

	Service Execution
	Local Service Execution
	Decentralized Service Execution

	Chapter Implementation
	Bag Extension for Siena
	Technologies Used
	Ontologies
	Implementation of the Composite Bag Operator

	Dowls Agent Prototype
	Technologies Used
	Main Packages and Classes

	Chapter Evaluation
	Bag Extension for Content-Based Networking
	Performance of Notifications Containing Bags
	Routing Performance of Simple Bag Operators
	Routing Performance of Composite Bag Operators

	Decentralized Service Discovery and Execution
	Test Example
	Service Discovery
	Decentralized Execution
	Experiments

	Chapter Conclusion
	Contributions of the Research
	Composite Bag Relations
	Bag Extension for Content-Based Networking
	OWL-S Extended with Stereotypes
	Semantic Service Discovery Utilizing Composite Bag Operators
	Data-Flow in Decentralized Composite Service Execution
	Decentralized Discovery and Execution for Composite Services

	Further Work
	Composite Bag Relation
	Bag Extension for Content-Based Networking
	Toward the Knowledge-Based Networking
	Semantic Service Discovery
	Decentralized Execution of Compose Semantic Web Service

	References
	Appendices
	Appendix
	Appendix

