

Hopping: A Bidirectional Stigmergy Power Efficient

On-Demand Driven Ad Hoc Routing Protocol for

Wireless Sensor Networks

Ricardo Simon Carbajo

A dissertation submitted to the University of Dublin,

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

 September 2006

i i

Declaration

I declare that the work described in this dissertation is,

except where otherwise stated, entirely my own work and

has not been submitted as an exercise for a degree at this

or any other university.

Signed: ___________________

Ricardo Simon Carbajo

11th September 2006

ii ii

Permission to lend and/or copy

I agree that Trinity College Library may lend or copy this

dissertation upon request.

Signed: ___________________

Ricardo Simon Carbajo

11th September 2006

iii iii

Acknowledgements

First of all, I would like to thank my supervisor Meriel Huggard, she has been there

when I needed, she has opened my mind and it has been a pleasure working with

her.

Besides, I would like to thank Dr. Ciaran Mc Goldrick and Mathieu Robin for

providing me with their advice.

In the family environment I want to thank, not only my family (mother, father,

brother, sister, aunts, grandmothers and uncles) who has been supporting me during

all this Msc process and encouraging me to keep going, but also the people I know

in Ireland, specially my Irish family who has been very close to me.

Finally, I can not forget the whole of NDS class with whom I have lived an

amazing experience, academically and personally, and where I have made good

friends.

iv iv

Abstract

According to Bell’s Law, it emerges a new technology every ten years. In February

2003, the MIT identified the top ten emerging technologies that will change the

world; Wireless Sensor Networks (WSN) was the first one.

Wireless Sensor Networks appear like a favorite candidate to create a new era of

information in which everything will be controlled by sensors monitoring the

environment and acting appropriately; all of that to facilitate our modern living.

It is a new technology based in sensors communicating wirelessly with each

other and sensing data from the environment to processing units. If this technology

is combined with Artificial Intelligence it is believed that worldwide auto-organized

networks will control everything.

Because the communication is an important issue of WSN, the aim of this

project has been focused on the improvement of ad hoc protocols which suite the

needs and constraints of this technology. Research has been done over the area,

concerning about differences with respect to traditional wired networks. Besides, it

has been examined previously created ad hoc protocols for WSN.

After all the research process, keeping in mind the features of WSN, it has been

developed a new protocol which addresses constraints like power and storage

limitations, guaranteeing bidirectional communication between nodes. It is thought

this protocol will improve the communication in WSN, avoiding hierarchy schemas,

with nodes communicating with each other in an ad hoc basis paradigm to create

self-organized colonies; all of this in an efficient way, with a low energy

consumption and minimum data storage.

v v

Table of Contents

DECLARATION...I

PERMISSION TO LEND AND/OR COPY.. II

ACKNOWLEDGEMENTS.. III

ABSTRACT..IV

TABLE OF CONTENTS...V

LIST OF FIGURES ...VIII

LIST OF TABLES...X

CHAPTER 1 – INTRODUCTION...1

CHAPTER 2 – INTRODUCTION TO WIRELESS SENSOR NETWORKS (WSN)

..4

2.1- SENSORNET VISION ...4

2.2- WHAT IS A WIRELESS SENSOR NETWORK? ..5

2.3- WHAT IS A MOTE?..6

2.4- CHARACTERISTICS OF A WIRELESS SENSOR NETWORK ...9

2.4.1- Strengths ...9

2.4.2- Constraints and Weaknesses ...11

2.5- APPLICATIONS ...12

2.6 – NESC AND TINYOS ..15

2.6.1- NesC..15

2.6.2- TinyOS ..18

CHAPTER 3 – AD HOC ROUTING PROTOCOLS...22

3.1- INTRODUCTION ..22

3.2- GRAPH BASED ROUTING...22

3.2.1- Bellman-Ford..22

3.2.2- Dijkstra ...23

3.2.3- Min-Hop Algorithm...23

3.3- AD HOC ROUTING PROTOCOLS..24

3.3.1- Routing classification 1...24

3.3.2- Routing classification 2...25

vi vi

3.3.3- OLSR (Optimization Link State Routing) Algorithm...27

3.3.4- Direct Diffusion Algorithm ...28

3.3.5- Rumor-based Algorithm..29

3.4- LINK STATE ESTIMATION ..32

3.4.1- EWMA (Exponentially Weighted Moving Average)..32

3.4.2- Flip-Flop EWMA ..33

3.4.3- WMEWMA (Windows Mean EWMA)..33

CHAPTER 4: ROUTING IN TINYOS ..35

4.1- INTRODUCTION ..35

4.2- ARCHITECTURE OF THE AD HOC ROUTING COMPONENT..36

4.3- EWMA MULTI HOP ROUTER ALGORITHM (THE 1ST
 ONE) ..37

4.4- WMEWMA MULTI HOP ROUTER ALGORITHM (THE 2ND
 ONE) ..38

4.4.1- Interface Description ..39

4.4.2- Component Description ..39

4.5- STRUCTURE OF THE MULTIHOP MESSAGE...41

4.6- SENDING A PACKET..42

4.7- RECEIVING A PACKET ..43

4.8- OTHER ROUTING COMPONENT PROJECTS ..43

4.9- NEW RECENTLY RELEASED ROUTING ALGORITHMS (TINYOS V2.0).......................................43

4.9.1- Collection..44

4.9.2- Dissemination ...45

CHAPTER 5: HOPPING - A BIDIRECTIONAL STIGMERGY POWER

EFFICIENT ON-DEMAND DRIVEN AD HOC ROUTING PROTOCOL46

5.1- CONSTRAINTS TO ADDRESS IN ROUTING ON SENSORNET ..46

5.2- THE PROTOCOL BASIS ..47

5.3- HOPPING AM MESSAGE STRUCTURE ..49

5.4- THE PROCEDURE, HOW THE PROTOCOL WORKS ..50

- Phase1 (Discover Route) ...50

- Phase 2 (Follow Route) ...52

- Phase 3 (Garbage Collector)...53

5.5- FEATURES AND DRAWBACKS OF THE PROTOCOL..54

CHAPTER 6 – DEVELOPING THE PROTOCOL ON WIRELESS SENSOR

NETWORKS ..55

6.1- INTRODUCTION ..55

6.2- HARDWARE ...55

6.2.1- Motes...55

6.2.2- Programming Board – Gateway ...58

vii vii

6.2.3- Sensor Boards ...59

6.3- SOFTWARE...60

6.4- START UP A WSN WITH TINYOS AND CROSSBOW MOTES ...62

6.5- DESIGN AND IMPLEMENTATION OF HOPPING ...66

6.6- PROBLEMS EXPERIENCED...69

6.6.1- Problems programming motes ..69

6.6.2- Problem using the multihop components ..70

CHAPTER 7 – EVALUATION ...72

CHAPTER 8 - CONCLUSIONS AND FUTURE RESEARCH..............................75

REFERENCES ...77

APPENDIX: CD-ROM...80

viii viii

List of Figures

Figure 2.1: Wireless Sensor Network [5] ...6

Figure 2.2: Wireless Sensor Network in the Great Duck Island, monitoring the

storm petrel (seabird). From 1 to 5 it indicates the process of transmitting data

from the motes to the gateway and finally to the satellite [10].........................13

Figure 2.3: TinyOS component layer architecture [16]..19

Figure 3.1: The agent modifies the exist path to a more optimal one [23]...............30

Figure 3.2: When agent prorogation the path to Event 2 comes across a path to

Event 1, it begins to propagate the aggregate path to both [23.........................31

Figure 3.3: Query is originated from the query source and searches for a path to the

event. As soon as it finds a node on the path, it’s routed directly to the event

[23]..32

Figure 4.1: Component Architecture [26]...36

Figure 4.2: MultiHopRouter configuration [27] ...38

Figure 4.3: AM_MULTIHOP message structure ...41

Figure 4.4: TOS_Msg message structure..42

Figure 5.1: AM_HOPPINGMSG message structure..49

Figure 6.1: Left: Photo of a MICA2 (MPR4x0) without an antenna. Right: Top and

plan views showing the dimensions and hole locations of the MICA2 PCB

without the battery pack. [34] ...56

Figure 6.2: Programming Board MIB510CA [34] ...58

Figure 6.3: MICA Sensor Board MTS300CA [36] ..59

Figure 6.4: TinyOS and Subdirectory Map [13]...61

Figure 6.5: Makelocal file in folder “/apps” in TinyOS ...63

Figure 6.6: Compilation & Load application into a mica2 mote.65

Figure 6.7: SerialForwarder Tool ...65

Figure 6.8: Surge application using multihop routing in TinyOS66

Figure 6.9: MultiHopRouter configuration for the Hopping protocol......................67

Figure 6.10: Component Diagram for the Hopping protocol.68

ix ix

Figure 6.11: Component Diagram for the Hopping application which uses the

Hopping protocol (MultiHopRouter)..69

Figure 6.12: Modifications (in bold) in the MutiHopEngineM component to allow

functionality in the event Receive.receive. ...71

x x

List of Tables

Table 2.1: Different type of motes used in TinyOS research [7]................................8

Table 2.2: Description of the main TinyOS/nesC components [13].........................18

Table 5.1: Reachable Motes..47

Table 5.2: Routing Table ..47

Table 6.1: Mote Specifications Summary [34] ...57

1 1

Chapter 1 – Introduction

According to Bell’s Law, it emerges a new technology every ten years. In

February 2003, the MIT identified the top ten emerging technologies that will

change the world; Wireless Sensor Networks (WSN) was the first one.

Experts presume it is going to be a new era of information, leaded by sensors

acting and retrieving data in all different types of environments, from a house to a

volcano three kilometers meter high.

These sensors, which can have mobility, will have the capacity to communicate

wirelessly each other forming networks which will control an area, a country or

even the world.

Taking profit of the Internet infrastructure combined with Wireless Sensor

Networks everyplace will be reachable and monitored.

Besides, if Artificial Intelligence is combined with this infrastructure, it could be

created self-managed networks which monitor, analyze and take decisions for the

benefit of the human being.

It could sound like science fiction but it is believed it can be a reality and in fact,

in the actual world are examples that indicate so. Intelligent Buildings completely

equipped with sensors which tell when a fire is produced is just an example of the

daily life with sensors but if you add the power of wireless to reach any place and

the capacity of a sensor device to act as a processing unit which have enough

autonomy to join networks, then new potential possibilities are open.

After assisting lectures about the topic, reading articles in Internet and the

dissertation from Karsten Fritsche titled: “TinyTorrent: Combining BitTorrent and

SensorNets” [1], I became really interested in Wireless Sensor Networks. I started

to do research in how it works, possible applications, which groups are working on

it, what systems are leading the panorama and mainly what needs or possibilities are

offered.

2 2

In between what I found it took my attention that organizations as important as

the Defense Advance Research Projects Agency (DARPA), creators of the Internet,

are one of the main groups developing the idea. Besides, Intel in collaboration with

the University of California, Berkeley have founded a group which is leading the

area of WSN with its open source operating system, designed to address the features

and constraints of this type of networks (WSN), called TinyOS [2]. This new

operating system is entirely built using a new programming language based on C

but with a component based event-driven paradigm, called nesC.

Furthermore the hardware being used for sensing it is composed by two units,

the sensing devices (sensor) and the device in charge of processing and

communications (mote). There are some producers of this hardware, and different

type of motes with different sizes are being developed but for academic purposes

the MICA2 motes from the Crossbow Technologies [3] are the most used and they

have been used in this project.

After spending sessions learning how to program motes, using TinyOS, learning

the new programming language and the new programming structure, getting

hardware errors, compiling and testing all different applications that TinyOS

provides, I started to figure out what attracted me the most and what is needed in

WSN at the moment. At the beginning I thought about security issues, as TinyOS

have already created a secure layer which does not guarantee security 100% in the

vulnerable wireless medium. Finally I decided to go for the area of ad hoc routing

protocols in WSN. As I was testing applications which included an existing routing

layer developed in TinyOS, I got a good understanding of the needs and constraints

of the routing protocols in WSN. At the moment the existing routing protocol is

based on a tree-based hierarchy where the motes send data through to reach the base

mote where the data is processed. The flow goes in one direction and the motes use

mechanisms to discover neighbours and estimation techniques to identify the

shortest path to the base mote.

One of the main concerns for the motes is the battery life; it can last about 6 to

12 months, depending on the processing activity and the communication rate.

According to studies, thousands of computing operations consume the same amount

3 3

of energy as one message sent. Because of that the idea was to minimize the number

of messages needed in all the phases of the routing protocol; in the existing

protocol, every 20 seconds a broadcast discovery message is sent to identify the

neighbours.

After all of that and studying different ad hoc routing protocols like rumor based

and stigmergy techniques, the protocol (hopping) was designed. The protocol try to

address constraints of battery life by reducing the number of messages being sent

and all of that considering the limited resources of the motes. Besides, it was

thought applying stigmergy could be a good idea; the paths between motes are

created by modifications in the environment, it is said in every mote which is part of

a well established path, it will be an entry for this path which indicates who the

sender is and where it should be sent the message.

In the rest of the document it will be explained in detail what technology is

currently being used in Wireless Sensor Networks, hardware and software. It will be

described the main routing algorithms which inspired the creation of the protocol.

An analysis and good description of the routing layer in TinyOS will be made and

the protocol in details will be described. Finally it will be commented what

technology has been used and the process of implementation and debugging of the

algorithm, making an evaluation of it; conclusions and future research will be stated

to finish.

4 4

Chapter 2 – Introduction to Wireless Sensor

Networks (WSN)

2.1- SensorNet Vision

We are leaving in the world of information where data is available to everybody but

obtaining the data which is needed at a certain time is a mayor deal. In order to get

the best advantage, the data should come from different sources of interest and

relationships should be established to transform it in what is called information.

There are several ways of getting data from the environment but the most well

known technique is called “monitoring”. The process of monitoring according to [4]

involves observing a situation for any changes which may occur over time, using a

monitor or a measuring device. This measuring device is what we call sensor; any

instrument that can retrieve diverse type of data like temperature, humidity,

pressure, flow, length, speed, sound, light… and transform into an electronic data

which can be processed or retransmitted.

These sensors are everywhere at the moment, from houses to companies or even

roads but there are some limitations, they usually depends on powered processing

systems and have to be wired to them. These constraints limit the monitoring

process to certain environment with specific conditions.

According to Moore’s Law (posited by Intel founder Gordon Moore in 1965)

[5], the number of transistors on a chip roughly doubles every two years, resulting

in more features, increased performance and decreased cost per transistor. Not only

the devices have more powerful processing and are cheaper but also they provide

new features like wireless communication combined with a very small size.

 Because of that, it is being created a new class of monitoring systems which can

get a wide range of diversity data that can be converted into a new generation of

information, rich in semantic content.

 Quoting [5], “These inexpensive, low-power communication devices can be

deployed throughout a physical space, providing dense sensing close to physical

phenomena, processing and communicating this information, and coordinating

5 5

actions with other nodes. Combining these capabilities with the system software

technology that forms the Internet makes it possible to instrument the world with

increasing fidelity”.

David Culler et al [5] state that because of the fact that the world of computing

is becoming throw the high processing and miniaturization, there is a new

revolution emerging in the form of small cheap devices capable of processing and

communicate wirelessly, that can be spread in any environment and interact, not

only each other forming networks, but also with the Internet, in order to monitor the

world and act accordingly.

 All this new technology is what is emerging and is what is known as Wireless

SensorNet; collection of interconnected devices with sensing, processing and

communication capabilities which can retrieve many types of data, auto-organising

and behave in a ubiquitous way.

The wireless sensor network regime is characterized by some constrains like

limited hardware capabilities, limited energy resources and concurrent data flows

which lead to a mandatory change or adaptation from the actual technology vision.

Because of the limitations in hardware and power, key concepts like programming

paradigms, OS, networking, data management, security, etc…, should be addressed

with special constrains too.

In the nearest future, this technology could generate nets all over the planet that

will watch from what the people buy at the supermarkets to malicious people. If we

put together this technology with the new advances in Artificial Intelligence it could

be created networks of sensors with complex intelligence.

2.2- What is a Wireless Sensor Network?

A Wireless Sensor Network is a set of tiny, battery-powered sensing devices which

are usually called “motes” or “smart dust”.

Typically these motes are spread in groups all over a certain physical

environment. Once they are positioned, they start to connect each other wirelessly

and organize them into a network (see Figure 2.1). Each mote has a radio area and

all the nodes on the area are considered neighbours. Using the neighbours and ad

hoc routing protocols (the motes can have mobility), the sensor starts to retrieve

6 6

data from the environment (light, temperature, vibration…) and provides it to the

mote unit which will manage the processing, wrapping of the messages and

communication with the neighbours in order to send the data through the different

motes over the network in order to reach the base node. The base node is a special

mote, because it is connected to a processing station, usually traditional computers,

where the data from the motes in the network is analyzed, making possible the

creation of a picture of the environment in real time as well as the publication of the

information in the Internet.

Retrieving data from the environment is the most frequent use for WSN

although the interaction with the motes from the computer and even from the

Internet is being developed; new protocols are needed to communicate in both

directions.

Figure 2.1: Wireless Sensor Network [5]

2.3- What is a mote?

Typically a mote is a little device whose main tasks are: to sense (with the sensor

attached to the mote), to compute and to communicate. According to that, motes

have three main components:

- Microprocessor: process the data.

- Microelectromechanical systems (MEMS): provide arrays of sensory

measures.

- Low-power Radios (transceivers): wireless communication.

7 7

There are many types, depending on the fabricant, with different forms and

sizes. In Table 2.1, it can be seen different types of motes with its specifications

used in researching with the TinyOS operating system (see Section 2.6).

Besides, depending on the type of mote, standard consumer AA or coin-style

batteries keep motes “alive” for six months to a year, although new research is being

doing on that using new energy sources like the solar one.

Common design constraints include:

- power conservation

- compact form

- limited memory

- limited storage capacity

Moreover, and according to [6], motes must be reasonably economical to be

suitable for practical applications. Fortunately, microprocessors, sensors and RF

transceivers can be inexpensively produced in large quantities using conventional

semiconductor manufacturing techniques. Several species of motes based on

prototypes developed by Intel and the University of California at Berkeley have

recently become commercially available at $50 to $100 (U.S.) each. Researchers at

Intel expect that, with re-engineering, Moore’s Law

and volume production, motes

could drop in price to less than $5 each over the next several years.

8 8

The weC Node

The weC node was developed in the Fall of 1999 by
researchers at UC Berkeley. It containes 8K of program
memory and just 512 bytes of memory. On-board
temperature and light data could be wirelessly
communicated over it 9600 baud on-off keyed radio. An
internal antenna provided a range of up to 15 feet.

The Rene Node

Developed in the summer of 2000, Rene node expanded on
the capabilities of the weC node by increasing available
program and data storage. Additionally, it provided a 51-
pin expansion interface that allow for connections to both
analog and digital sensors. As a development platform,
hundreds of sensor boards have been designed to interface
to the Rene node. It is equipped with 8K of program
memory, 32K of EEProm and is capable of being
reprogrammed over the radio link. It communicates at
19,200 via an on-off keyed 916 Mhz radio. An external
antenna allows for a communication rage of up to 100 feet.

The DOT Node

Developed in the summer of 2001, Dot shrunk the
capabilities of the Rene node into a compact 1” node. A
complete node including sensor, computation,
communication, and a battery fit in a package the size of
four stacked quarters. It was unveiled at the 2001 Intel
Developers Forum in as the cornerstone of an 800 node
demonstration network. The Dot platform had 16 KB of
program memory and 1 K of data memory. It had the same
communication capabilities of the Rene platform.

The Mica Node

The Mica node was developed as the foundation of the
NEST (Network Embedded Systems Technology) project
under DARPA (Defense Advanced Research Projects
Agency). Designed to facilitate the exploration of wireless
sensor networking, it has been used by over 200 different
research organizations. Mica contains the same expansion
bus as the Rene node allowing it to utilize all existing
sensor boards. The Mica node increases the radio
communication rate to 40 Kbps though using specialized
hardware accelerators and amplitude-shift-keying. Mica
includes 128 Kbps of program memory and 4 K of data
memory. It is capable of being radio-reprogrammed and
has a line-of-sight rage of over 100 feet. Mica has been
used in applications ranging from military vehicle tracking
to remote environmental monitoring.

The Spec Node

Spec was designed in the fall of 2002 by Jason Hill to be a
highly integrated, single-chip wireless node. The CPU,
memory, and RF transceiver are all integrated into a single
2.5x2.5mm piece of silicon. Fabricated by National
Semiconductor, it was successfully demonstrated in March
of 2003. Spec contains specialized hardware accelerators
designed to improve the efficiency of multi-hop mesh
networking protocols. Additionally, in includes an ultra-
low power transmitter that drastically reduces overall
power consumption. Spec represents the future of
embedded wireless networking.

Table 2.1: Different type of motes used in TinyOS research [7]

9 9

2.4- Characteristics of a Wireless Sensor Network

According to [1] WSN research is gaining popularity, due to the exciting

possibilities it opens up to new application domains. Because of that, in this section

will be discussed the strengths of WSN, which give rise to these new possibilities,

and the weaknesses and constraints.

2.4.1- Strengths

- Harsh environmental conditions: The fact that WSN work wirelessly

makes possible the communication under any environmental circumstance.

Besides if we add that the motes (sensors) are characterized by its reduced

size, the possibilities of reaching small inaccessible places hugely increase.

Furthermore with the advances in technology, motes will be as small as one

of these little letters you are reading now, with enough computing process to

sense, analyze and send data, and all of that powered by batteries combined

with solar energy that will last months or years. Then everything,

everywhere will be monitored.

- Low Cost and High Production Volumes: In modern industry, the large

volume of production for electronic devices, minimize the cost per unit

extremely. Motes are composed of microcontrollers, sensors and radio

devices which can be developed easily and quickly but in order to reduce its

cost, the volume of production must be huge. Although now the price of

motes is not expensive (depends on model), the cost of spreading hundreds

of motes all over an environment is high; if the technology is consolidated,

the amount of production will increase severely, reducing the size of motes

and the price will go down to some cents per unit being able to spread

thousands of motes with a lower cost. Spreading more motes by surface will

increase the reliability in the system and the measured data would be more

accurate.

10 10

- Ad-hoc Deployment: Because of the nature of this technology, motes could

be spread in environments without an already created topology and with

mobility. Consequently WSN need the deploying of ad hoc protocols which

provide communication among the motes to create auto-organized networks,

discovering neighbours and gateways. This is one of the main interesting

points and it is currently being done a lot of research; already existing ad hoc

protocols have to be adapted to address the constraints of this technology. In

this dissertation is developed an ad hoc protocol which addresses some of

this constraints.

- Fault Tolerance: The fact that motes are hardware which works with events

and concurrency in an autonomous way with radio communication makes

the system lean to failures. To prevent that it has been developed software

mechanisms to avoid or recover from failures (not pure recovery

mechanisms in nodes but it is based on resetting); besides, if the

concentration of motes in the same surface is higher, that will make the

system fault tolerant; more motes could monitor and communicate data of

similar conditions so the failure of a node will not produce a network system

failure.

- Data Quality: Redundancy makes the system fault tolerance but also makes

the data more reliable and consequently of a better quality.

- Heterogeneity of nodes: Motes can be different in a network and measure

different values. That improves the feature of scalability in the system and

allows diversity. On the other hand the maintenance or update of motes will

be more difficult.

- Unattended operation: Wireless Sensor Networks are characterized as self-

organized networks which can be deployed in any environment and work

without control of human beings, monitoring and acting over the

environment autonomously and recovering from failures.

11 11

2.4.2- Constraints and Weaknesses

- Energy Consumption: This is one of the main constraints of the motes. The

advantage of being developed everywhere brings the disadvantage of the

need of using batteries or another way of energy to power the motes. At the

moment motes can use standard AA batteries, with a fixed decreasing curve

of energy or litio batteries, which keep the same level of energy constant

until it is over, or external ways of energy like new capacitors or solar

energy. Research is being doing in this area to improve the life of motes

from months to years. Now, a mote with 2 AA batteries has a life of 6 to 12

months, depending on the processing activity and communication rate.

Because of that, the applications developed for motes should be oriented to

minimize the computing activity and the most important, to limit the number

of messages being sent and received (communications consume the most of

batteries).

- Communication Limitations: Contrary to traditional wired networks,

WSN communication is based on radio waves with broadcast transmissions

on different frequencies which sometimes are not reliable, for example the

ISM spectrum, in which WSN devices must compete against more powerful

devices. If it is added that the radio stack in motes uses a CSMA access

medium protocol without collision detection and no mechanism of

retransmission of corrupt messages (TinyOS features, see Section 2.6 and

MICA2 features, see Section 6.2) that makes the communication unreliable.

Furthermore, the cost in energy for the communication is much higher than

computational costs (see stats for MICA2 in Section 6.2) and the protocols

are not yet properly developed to be energy-aware. Besides, the

bidireccionality (isotropy) is an important characteristic in wireless

communication; depending on the use of the network, it could be interesting

guarantee the bidirectional communication between two motes, it is said

both motes can send and receive from each other. When motes provide data

in a tree-based structure, the data flows in one direction, so bidireccionality

is not mandatory but if the motes could connect each other to configure

themselves, then bidireccionality would be mandatory. Because of that, this

12 12

is another main concern of the protocol developed in this dissertation; the

protocol guarantees bidirecctionality.

- No location: Although ad hoc protocols can discover the topology of the

network and manage mobility of motes, sometimes it is useful and necessary

to get the exact position of motes at each time. It has been developed

algorithms [8] where using triangulation, knowing three static motes, the rest

of motes can be localized, but it is not very accurate. GPS technology can be

a solution but it will bring expensive overheads.

- Scale: Although scalability in this type of networks has many advantages

like providing better data quality and fault tolerance, it can bring

consequences when the number of motes in the same area increases.

Protocols have to be provided with good decision algorithms to choose the

routes, trying to balance the network energy-efficiently. Clusters hierarchies

can be created and data aggregation used within the clusters. Intermediary

nodes can get huge overload.

2.5- Applications

There is diversity and huge number of applications currently being researched but

this new technology will offer bigger possibilities. Together with typical

applications for traditional sensors, this technology provides those applications that

because environment conditions (impossible to wire or power) could not be reached.

Below it will be described some interesting applications and projects currently

being developed that Wireless Sensor Networks make possible:

- Habitat Monitoring: This is one of the main areas in where Intel Research

Berkley Laboratory and the College of the Atlantic are deploying and using

wireless sensor networks to study the microhabitats on the island of Great

Duck, Maine (North American coast)[9]. This is a project that uses WSN to

monitor underground nests of the storm petrel, a type of seabird, which has

been very difficult to study and whose preferences of living are mainly

13 13

based on this island. With this, the scientifics will know why this type of

bird prefers this island, if this is associated to the microclimate and all of

that without modifying aggressively the habitat of the bird. For this purpose

it has been introduce a “mote” into the nests and another one outside, 4-

inches far away, to receive sensing data like temperature, from the

underground mote. The motes outside communicate each other and send the

data retrieved in the motes through the sensor network to a gateway which is

connected to a laptop in the research station, then to a satellite and finally to

a lab in California (see Figure 2.2). As the biologist Anderson says in [10],

this technology will change the biology forever.

Figure 2.2: Wireless Sensor Network in the Great Duck Island, monitoring the storm

petrel (seabird). From 1 to 5 it indicates the process of transmitting data from the

motes to the gateway and finally to the satellite [10].

- Environmental Control: In the botanic gardens in Huntington, San Marino

(California), where there are more than fifteen thousand different species of

plants, researches of the Jet Propulsion Laboratory (JPL) of the NASA are

currently working with a web Wireless Sensor Network to controls the

humidity, hot, ground state, … [11]. Every certain time, the sensors update

themselves, sending the information to a gateway that sends the data to the

supervisors.

14 14

- Military Surveillance: As it happened with the creation of Internet, the

Defense Advance Research Projects Agency (DARPA) is one of the main

research groups trying to develop this technology. In fact the idea of “smart

dust” was created by a researcher in this agency; it is based on spreading

over the battle field, thousands of sensors which connect wirelessly [12].

These sensors will control the movements of the troops and the enemy

vehicles without warning them. The sensors will form an intelligent, auto-

organized network which could retrieve all data and just send the important

data. DARPA is working in collaboration with the University of California,

Berkeley and Intel Company within the Center for Information Technology

Research in the Interest of Society (CITRIS).

- Medical Monitoring: Intel currently has some lines of research in this field,

for example the creation of centers of medical attention to help patients with

memory problems and alert them to take its medicaments. Motes can be

monitoring vital signs, sending this information through ambulances all over

the city, so the closest one will have information about its patients in an

action radius.

- Intelligent Building Control: In the design of “intelligent” buildings one of

the main concerns is the sensors network. Often there is not possibility of

installing wired networks in historic buildings, monument and generally

after construction; for this purpose WSN can be installed everywhere nearly

without modifying the environment. Besides sensors in WSN have a more

powerful analysis of the information through the wireless connection so the

flow is faster and the decisions can be taken faster. These sensor offers

information about temperature, humidity, sound, light, presence control,

etc… Moreover, it is being developing GPS indoor systems which allow

mobility of sensors to specific positions to control everything even if the

sensors are not initially positioned properly.

Other interesting areas of applicability are: Security, Inventory Tracking, Smart

Spaces or Traffic Control, but the possibilities are huge.

15 15

2.6 – NesC and TinyOS

2.6.1- NesC

NesC is a new structured, component-based programming language for networked

embedded systems like Wireless Sensor Networks. NesC has a C-like syntax

(extension to C) designed to embody the structuring concepts and execution model

of TinyOS, the operating system for WSN.

 According to [13], these are the basis of NesC:

- Separation of construction and composition: Programs are built out of

components, which are assembled (“wired”) to form whole programs.

Components define two scopes, one for their specification (containing the

names of their interface instances) and one for their implementation.

- Specification of component behaviour in terms of set of interfaces:

Interfaces may be provided or used by the component. The provided

interfaces are intended to represent the functionality that the component

provides to its user; the used interfaces represent the functionality the

component needs to perform its job.

- Interfaces are bidirectional: Interfaces specify a set of functions to be

implemented by the interface’s provider component (commands) and a set to

be implemented by the interface’s user component (events). Interfaces allow

communication between components in the way of a command executing an

action that goes downwards through the components in layers and events

coming upwards in the hierarchy of layers (as a result of a command or an

interruption). For example when a packet is sent with the “send command”

from the SendMsg interface, an event “sendDone” (which must be

implemented in the user component) will be signalled if it has been

successfully sent. This allows a single interface to represent a complex

interaction between components.

16 16

- Components are statically linked to each other via their interfaces: This

increases runtime efficiency, encourages robust design, and allows for better

static analysis of programs.

- NesC is designed under the expectation that code will be generated by

whole-program compilers: Everything will be compiled statically so there

will no be problems like dynamic memory allocation and data race

conditions can be detected (nesC owns a detector). This allows for better

code generation and analysis.

- The concurrency model of nesC: Is based on run-to-completion tasks,

interrupt handlers which may interrupt tasks and each other and detection of

data races at compile time. Components have internal concurrency in the

form of tasks. Threads of control may pass into a component through its

interfaces. These threads are rooted either in a task or a hardware interrupt.

- Files for NesC have the extension “.ns” for all type of components.

 According to [14] those are the challenges that have to be addressed in this type

of embedded systems (WSN):

- Driven by interaction with environment: WSN are specific-purpose rather

than general-purpose computing systems, event-driven (reacting to changes

in the environment) rather than driven by interactive or batch processing.

Consequently, events and processing activities need a concurrency model.

- Limited resources: It considers that motes have very limited physical

resources, because of its characteristics so it has to minimize the use of those

resources doing it efficiently.

17 17

- Reliability: It is expected that these systems runs with autonomy for long,

and since there is no real recovery mechanism and fails in hardware can be

expected, reliability has to be guaranteed in the software level.

- Soft real-time requirements: These type of systems (WSN), although they

can require time critical tasks (radio management or sensor polling), they do

not really need hard real-time guarantees. Timing constraints can be

addressed by having control over the OS and application.

Based on challenges above and after combining properties of different

programming languages, these are the global features of NesC [14]:

- NesC integrates reactivity to the environment, concurrency and

communication. As it is oriented to this type of concurrent systems where

resources are limited, it performs whole-program optimizations and

compile-time data race detections to simplify application development,

reduce code size and avoid potential bugs, in order to maximize the

efficiency.

- Because of the fact that nesC is oriented to systems which are hardly tied to

hardware, all resources are known statically and applications are built from

reusable component libraries. Besides nesC compiler performs static

component instantiation, whole-program inlining, and dead-code

elimination.

- Although function pointers and dynamic memory allocation were prohibited

nesC is capable of supporting complex applications.

- The design of applications has to be flexible, to easily decompose it and be

able to integrate in different hardware platforms where the boundaries

between hardware/software can vary. NesC provides bidirectional interfaces

to simplify event flow, supports a flexible hardware/software boundary, and

18 18

admits efficient implementation that avoids virtual functions and dynamic

component creation.

- NesC defines a simple but expressive concurrency model coupled with

extensive compile time analysis: the nesC compiler detects most data races

at compile time.

- NesC provides a balance between accurate program analysis to improve

reliability and reduce code size, and expressive power for building real

applications.

Table 2.2: Description of the main TinyOS/nesC components [13]

2.6.2- TinyOS

According to [15], tinyOS is an open-source, component-based, event-driven

operating system designed for wireless embedded sensor networks in which devices

have very limited resources. It has a very small footprint, the core OS requires 400

bytes of code and data memory combined [16]. Actually nesC was designed to

support and evolve TinyOS’s programming model and to re-implement TinyOS in

19 19

the new language. In fact, nesC was created to suit the needs of TinyOS, so

principles are the same in both nesC and TinyOS.

TinyOS has several important features that influenced nesC’s design [14]:

- Component-based architecture: TinyOS features a component-based

architecture, which enables rapid innovation and implementation while

minimizing code size as required by the severe memory constraints inherent

in sensor networks. It provides a set of reusable system components in

libraries which includes network protocols, distributed services, sensor

drivers, and data acquisition tools. Components are organized according to

functionality and it is followed a layer architecture (see Figure 2.3). An

application connects components using a wiring specification that is

independent of component implementations. Components can be modules

(implement the behaviour) or configurations (link -wire- components) (see

Table 2.2). Decomposing different OS services into separate components

allows unused services to be excluded from the application.

Figure 2.3: TinyOS component layer architecture [16]

- Tasks and event-based concurrency: There are two sources of

concurrency in TinyOS: tasks and events.

o Tasks are a deferred computation mechanism. They run to

completion and do not pre-empt each other. Components can post

tasks; the post operation immediately returns, deferring the

20 20

computation until the scheduler executes the task later. Components

can use tasks when timing requirements are not strict; this includes

nearly all operations except low-level communication. To ensure low

task execution latency, individual tasks must be short; lengthy

operations should be spread across multiple tasks. The lifetime

requirements of sensor networks prohibit heavy computation,

keeping the system reactive.

o Events also run to completion, but may pre-empt the execution of a

task or another event. Events signify either completion of a split-

phase operation (discussed below) or an event from the environment

(e.g. message reception or time passing). TinyOS execution is

ultimately driven by events representing hardware interrupts.

Commands and events that are executed as part of a hardware event

handler must be declared with the async keyword.

Because tasks and hardware event handlers may be preempted by other

asynchronous code, nesC programs are susceptible to certain race

conditions.

Races are avoided either by accessing shared data exclusively within

tasks, or by having all accesses within atomic statements.

The nesC compiler reports potential data races to the programmer at

compile-time. It is possible the compiler may report a false positive. In this

case a variable can be declared with the norace keyword.

The simple concurrency model of TinyOS allows high concurrency with

low overhead, in contrast to a thread-based concurrency model in which

thread stacks consume precious memory while blocking on a contended

service. However, as in any concurrent system, concurrency and non-

determinism can be the source of complex bugs, including deadlock and data

races.

- Split-phase operations: As was described for nesC, commands and events

perform operations by splitting responsabilities. Tasks execute non-pre-

emptively so TinyOS has no blocking operations, then the only way to

21 21

address it is split long-latency operations. “Commands” are typically

requests to execute an operation; if the operation is split-phase, the

command returns immediately and completion will be signalled with an

event. An example is the sending process, a command request the sending of

a message and if it is successful and event is signalled.

Non-split-phase operations like toggle an LED do not have completion

events.

Resource contention is typically handled through explicit rejection of

concurrent requests.

22 22

Chapter 3 – Ad hoc Routing Protocols

3.1- Introduction

At the time of designing routing protocols, the environment of the application is one

of the main important issues to take in mind. The constraints of the technology must

be addressed in a way or another to try to minimize them. Besides, the topology will

be determined by the routing protocol being used.

 In Wireless Sensor Networks where the devices may have mobility, topologies

can change dynamically, so the routing process have to be the most efficient

possible, based on the principles of an ad hoc protocol (if the devices are static,

should not be mandatory), and trying to address constraints like power

consumption.

 Many routing protocols have been proposed, not only for ad hoc networks but

also for wired static and traditional networks. All of them address different

constraints, depending on the characteristics of the network to which are applied.

 In this chapter it will be explained some of the specifications and workings of

some important routing algorithms which have helped in the process of designing

the proposed project algorithm.

3.2- Graph based routing

3.2.1- Bellman-Ford

This is one of the most famous used in wired networks. It was used in ARPANET,

and it is based on getting the shortest path through a node. The time is the

estimation process.

 According [17], every router maintains a table with the best distances to reach

every node and the paths to achieve it. The tables are interchanged between

neighbours to update themselves. For every entry (unique for every destination) in

the table, it is saved the preferred exit and an estimation of the time to reach the

destiny node.

23 23

 Any router have to measure distances with its neighbours depending on the type

of measure being used (eco packets for delay measure).

 Every certain period of time the routers interchange its tables with the

neighbours, and with the new tables obtained the router calculates better distances

and updates its table if it finds better routes.

3.2.2- Dijkstra

Edsger Wybe Dijkstra created this algorithm in 1959. This algorithm is used in

finding the shortest path between a node and the rest of the nodes in the network in

TCP/IP networks. Conforming with [17] the estimation is based on a function of

weights. The algorithm has a complexity equal to O (n2) with “n” number of nodes.

This is the way of working.

- In a graph, every arc between two nodes will have an associated weight.

- The shortest path to go from a node to another is when the sum of all the

weights of the arcs which form the path is the lowest possible from all the

available paths between the two nodes.

- It is based on the optimality principle that states: if in the shortest path

between two nodes u and v, there is a node w, the path between w and v

must be the shortest.

- It uses the already established shortest paths to create other paths, so it takes

profit of the information available in the network.

3.2.3- Min-Hop Algorithm

This is based on the Dijkstra algorithm above. It is based on choosing for the next

hop on the routing process the node which has the less weight. Because of that it is

probably that it is not chosen an optimum path than with the other algorithms. The

problem with this algorithm is the overload of the best links (minimum weight) and

do not take into account the rest nodes for having less quality, that makes a non

efficient and well balanced use of the resources in the network.

24 24

3.3- Ad Hoc Routing Protocols

The main feature of this type of networks is its dynamicity; all the nodes have

mobility and can leave and enter in new networks at any time so the algorithms

should manage all of that possible failures (fault tolerance).

 Another concern that this algorithms should address is the efficient use of the

energy because usually all mobile devices carry its own power system which have a

period or life and mostly the sensors (motes).

 Now it will be presented two types of classifications for these types of

algorithms:

3.3.1- Routing classification 1

A general classification for routing protocols is based on the time when the routes

are discovered, statically or on demand [18]:

- Pro-active (Table-Driven Routing)

This type of protocol works out routes in the background independent of traffic

demands. Ever node stores information about the topology of the network in

tables, which are updated every time a new message is received. There is a

process in charged of sending, receiving and analyzing packets to discover the

topology. This information in the tables is then queried to obtain routes to send

data to a node. It is slow to converge and may be prone to routing loops. It keeps

a constant overview of the topology which creates overhead if there is no data to

be sent. This type of algorithm needs resources like power, link bandwidth and

storage capacity so depending on the features of the network it could not be

suitable for ad hoc routing and neither for Wireless Sensor Networks.

 Examples of this type of routing algorithms are: FSR, DSDV, WRP, CGSR,

and STAR.

- Reactive (On Demand Routing)

This type of protocol reacts depending on the need of data being sent. There is

no information in tables on how to reach nodes in the topology. When a node

wants to send data, it ask tables which store already searched routes, if there is

25 25

no information on how to reach this node, it starts a discovery process. The

discovery process uses different methods to obtain different paths, the most well

known is flooding. Once it is obtained the best route it is saved in the table of

the mote to avoid repeating the discovery process again (out of date routes are

controlled with timestamps). This type of algorithm is very efficient for ad hoc

networks when the route discovery is less frequent than the data transfer. They

are more suited to large networks with light traffic and low mobility.

 Examples of algorithms are: DSR, ABR, TORA, AODV, CBRP, and

RDMAR

- Hybrid (Pro-active/Reactive)

It is combined both pro-active and reactive protocols using distance-vectors for

more accurate metrics to establish the best paths and it react reporting routing

information just when there is a change in the topology of the network. Each

node in the network owns an action radius zone, defined by metrics like number

of hops; the node just keeps information in tables about its zone, minimizing the

content in the tables.

 The most well known example is Zone Routing Protocol (ZRP).

3.3.2- Routing classification 2

Classification according to the way the neighbours are searched and the paths are

found:

- Flooding

A message from a node is sent to all its neighbours and those to its neighbours

too and so on, sending copies of the message to all the nodes in the network,

The problem is the collisions mainly in wide networks, it has to be checked to

avoid cycles (do not send the same message to your neighbours twice). Besides

there is a waste of energy in sending all these messages all through the network

but depending on the use of the message data to update every node, it can be

taken profit from the process.

26 26

- Bellman-Ford Algorithm

Although it was described in section 3.2.1 as a non ad hoc algorithm, it can be

applied to ad hoc networks too. The difference will be that all nodes keep

routing tables then all nodes will act as routers. The problem with this algorithm

comes when the networks are too wide, the tables need a lot of entries to be fault

tolerant and the memory in mobility nodes is an important constraint.

- Gradient Algorithm

According to [19], it is a kind of flooding because the messages are not sent to a

specific node; they are sent to their neighbours. In this algorithm tables with

weights are defined which give information or measure about what route should

be followed. The tables are not transferred through the network. Although the

message is sent to all the networks (act as a routing), each node which receive a

message and will decide consequently so the number of messages being sent

will not increase that much as in flooding (see above).

- Stigmergy Algorithms (Ant Algorithm)

Based on that [20], this type of algorithms tries to imitate the behaviour of some

colonies-life animals when they have to discover paths to get the best way

through the food, and how they follow each other based on probability and the

modification of the environment. For example in the case of ants, they discover

the optimum path to the food by leaving pheromones in the way. As the shortest

route will contain more concentration of pheromones (more ants will cross the

shortest way faster), all the ants will end up following the most “smelly” path.

At the beginning of the process they apply functions of probability and

pheromone concentration but once the pheromone concentrations starts to get

bigger, the pheromone measure becomes the main estimator to follow the route.

27 27

3.3.3- OLSR (Optimization Link State Routing) Algorithm

This is a proactive routing protocol, using flooding technique to determine the

topology in the network. The information containing the topology is sent to all the

nodes using flooding which provides available routes quite fast without a huge

overload. The protocol should be independent from the layers above (data-link

layers), that’s why it is based on how to communicate or features of the

communication as estimation of the quality of the link.

 These are the three mechanism used in the protocol [21]:

- Neighbours Discovery Mechanism

The link between a node and a neighbour can have these three states:

- No link: There is no communication with the neighbour.

- Symmetric: The communication from the node to the neighbours exists as

well as from the neighbour to the node.

- Asymmetric: The communication just flow in one direction, from the

neighbour to the node or vice-versa.

To detect neighbours a node transmit periodically HELLO messages, with

information like the address of the node, the list of neighbours and the link state

with them, in order to detect changes in the network.

With this, a node which receives the messages can determine the state of its

neighbourhood as well as the nodes which are 2 hops far it. This information is

stored in each node and has to be saved for a certain time and updated with the

next HELLO messages.

- Traffic Control Mechanism

With the information of the link state from the neighbours and the nodes 2-hop

far, now it has to be controlled the data flow with which the network will be

flood to discover the topology. This is based in a simple mechanism based on

flooding.

To control the network it is used a flooding control message. When a node

receives this message for the first time, it forwards it to its neighbours. Doing

28 28

that neighbours will get duplicate messages but it is ensured that the message

will be received by all nodes.

Collisions will be a problem with the messages from the nearest nodes so the

algorithm defines the Multipoint Relay (MPR), which are nodes selected to send

the messages to the node 2-hop far away. These nodes must have symmetric link

with the source node. The way of selecting this type of nodes depends on how

they will be used, taking into account the minimum number of nodes needed to

retransmit a message 2 hop distance.

To control the flooding process of these messages, these rules have to be

followed:

- The message should have the intention of being forwarded.

- The message must not have been received by the node previously.

- The message received must come from a node selected as a MPR.

- Routing Mechanism

In order to route the data over the network every node has to get the information

about all nodes in the network. To do that it is used the Topology Control (TC)

messages, which contain the source address and the address from the MPR’s.

These messages are sent by the nodes which own a MPR. The purpose of these

messages is to advertise what connectivity has the MPR, so the nodes will

receive a graph with partial information about the network topology. This

information is enough to apply an algorithm to select the shortest path. This

information will be valid for a period of time until it is updated.

3.3.4- Direct Diffusion Algorithm

It is based on data-centric routing and it is very lean to sensor networks. The

purpose of the algorithm [22] is the diffusion of data through sensor nodes by using

a naming schema for the data, in order to avoid unnecessary operations of network

layer routing to save energy.

 It uses attribute-value pairs for data and the sink queries the sensors in an on

demand basis. To create a query an interest is defined using a list of attribute-value

pairs such name of objects, interval, duration, geographical area, etc. The interest is

29 29

broadcasted by the sink to all of the nodes in the network which stores the interests

to compare them later with the data received and decide where to route. The interest

entry also contains gradient fields and it is used both of them to create the paths

between sink and sources. The gradients are very useful to determine quality of

paths, as they are reply links to neighbours, from which the interest came from,

containing data rate, duration and expiration time.

 As many paths can be established in the process, the path is selected by

reinforcement with the sink resending the original interest through the path with a

small interval forcing the source node to send data more frequently. A very

interesting feature of Direct Diffusion is the re-identification of a new route among

the other possible paths in the event of an already established path fails, by

reinitiating the reinforcement process. Multiple selected paths can be previously

selected to save energy cost in the process of reinforcement but there will be extra

overheads of keeping those paths.

 There is no need for addressing mechanism as it is data centric with

communication neighbour to neighbour, each node can aggregate data and there is

no need to maintain global network topology.

 Because of the fact that the algorithm is based on a query-driven on demand

model, applications which require continuing monitoring from sensors to the sink

will not work efficiently.

3.3.5- Rumor-based Algorithm

The idea of this type of routing is the use of “agents”, to create the paths through the

network to the events when they happen [23]. Agents are messages with expiring

time which travel over the network. After the agents generate these paths the

“queries” are routed following them. Firstly the queries are sent by a random path.

Each node in the network keeps a neighbour table and another table for events that

contain the information of the expeditions which have gone through it. At the

beginning, lists of neighbours are generated broadcasting each node’s identification.

When the events have a limited life time, timestamps can be used in the events

tables.

30 30

3.3.5.1- Agents (path creators)

The paths are stored as states in the nodes and are created by the agents. The agents

are created in the nodes of the event adding a path of length 0 to the event. The

agent is generated in a probabilistic way to avoid overhead when many nodes

generate the same event and many paths go to the same event.

 The agent travels over the network for a maximum number of hops. It carries its

own event table which combines with the event tables of the nodes it visits.

 When an agent cross a path which goes to another event, the agent start to create

paths to both events (see Figure 3.2).

 When an agent finds a node with a longer path to the event, it updates the node

routing table with the shortest path (see Figure3.1).

Figure 3.1: The agent modifies the exist path to a more optimal one [23]

The agent uses an algorithm to correct the path in order to generate better paths

by registering the nodes recently visited (avoid cycles) and communicating with its

neighbours in each node.

31 31

Figure 3.2: When agent prorogation the path to Event 2 comes across a path to Event

1, it begins to propagate the aggregate path to both [23]

3.3.5.2- Query Routing

Query messages firstly travel in a random direction until they find a path, which

brings them to the node they ask for or they just stop because the maximum hop has

been reached (see Figure 3.3). When the query is sent randomly, it is used the

algorithm that the agent uses to correct the path. If the destiny is not reached by the

query message, the node which generates the query can retransmit it again or flood

the network with the query.

 Loops are produced and must be detected by hop count or storing recent query’s

identifications. If the node receives a repeated query, it is not sent by the path;

instead it can choose a random path.

32 32

Figure 3.3: Query is originated from the query source and searches for a path to the

event. As soon as it finds a node on the path, it’s routed directly to the event [23]

3.4- Link State Estimation

There are many different systems to estimate the link state, systems which performs

great in wired networks and which can not be used in wireless because of the

complete different principles in communication between nodes. Wireless systems

are driven by failures in communication; the transmission mean is less reliable so

the metrics for evaluation which includes agility, stability and amount of history

required for estimator, have to be well tuned according to the constraints of the

wireless network.

 For the purposes of Wireless Sensor Networks, it has been evaluated several

estimators as in [24]; the most significant and successful will be described in this

section.

3.4.1- EWMA (Exponentially Weighted Moving Average)

This estimator is very simple, widely used and memory efficient but it requires

constant storage for history tuning.

 It is reactive to small shifts, often used in statistical process control applications

detection because of its agility. It is based on a linear combination of infinite

33 33

history, weighted exponentially, updating the history with packets received

successfully according to a time interval which is suppose to be the time in between

the reception of two consecutive packets; with the time interval, which has to be

tuned, it can be calculated how many packets were lost and make the calculations

for the estimation.

 The implementation of EWMA will take 4 bytes (floating point) or 1 byte (fixed

point) to store the current estimation with just 2 multiplications and 1 addition

involved in the computational process.

 The process of tuning [24] indicates that in order to keep the estimation within a

10% error, the agility has to be sacrificed. On the other hand if it is tuned to

provides agility, good for detecting disappearance of neighbour nodes over a

relatively short time, the estimation will not be very useful because of the large

overshoots and undershoots (sensitive to small shifts). Besides, it was measured that

the crossing time for EWMA is 167 packets while settling time is close to 180

packets.

3.4.2- Flip-Flop EWMA

As it was described above, it is quite difficult to provide both agility and stability in

the same estimator, because of that it is proposed a flip-flop between two EWMA

estimators which implement stability and agility features.

 In [24], this approach was tested; the switching between agile and stable

estimators was produced when the difference in deviation was greater than 10%. On

the other hand if the estimator by default was stability, it changes to the agile

estimator when it can be detected sudden changes such as mobility much earlier. It

was shown in [19, 24] that the flip-flop does not provide advantage over EWMA,

but it could be caused because of the switching threshold.

3.4.3- WMEWMA (Windows Mean EWMA)

It uses the average of a time window to adjust the estimation using the latest

average which is actually an observation of the estimation. EWMA then is applied

to filter more the estimation. It is based on messages received and sum of losses to

calculate a mean in which is involved 2 additions, 1 division and two

34 34

multiplications as computational operations, saving the result in 1 byte (fixed point)

or 4 bytes (floating point), same as in EWMA, but with the different of using 2

bytes to store the number of messages received and looses. The computation is done

in function of the time window instead of every certain time event.

 According to [24], the observed settling time and crossing time is relatively

small, the fastest of all studied but as EWMA is sensitive in the agile scenario there

is not significant improvement.

35 35

Chapter 4: Routing in TinyOS

4.1- Introduction

The process of routing in Wireless Sensor Networks is based on that of ad hoc

routing protocols which can support the mobility of motes (nodes). The nature and

novelty of WSNs, together with the difficulty of debugging make direct

implementation extremely challenging [25]; therefore most of the current ad hoc

algorithms have only been tested in simulators, but not on real motes.

The main objective in routing is to carry information from the motes to the root

mote or base mote, which is then connected through a gateway to a computer which

can analyze, transform or publish the data.

The main objective in ad hoc routing protocol design is to have the motes acting

as data retrieval devices, directing this information through a root mote for late data

analysis. Two topologies have been used to classify the networks and hence in the

design of new ad hoc protocols; these topologies are: tree-based and cluster-based.

Because of the nature of the monitoring process WSNs fit perfectly into these

systems and hence allow the designers of new ad hoc algorithms to address

constraints such as minimizing the number of communication messages being sent,

leading to a reduction in power consumption by the motes.

In this chapter the routing process in TinyOS will be detailed. As discussed

previously many different versions of TinyOS exist; in this chapter the routing

system used in all versions within 1.x. will be detailed. This type of routing is based

on a hierarchal topology like the tree-based topology.

Overview of the new algorithms provided with more recent releases of TinyOS,

v2.0. will be described. Two new ad hoc routing algorithms have been produced:

one of them is based on data aggregation while the other is concerned about

dissemination of routing data over the network. Hence although the hierarchy is

maintained, both routing directions can be taken, i.e. to and from the root mote.

36 36

4.2- Architecture of the Ad hoc Routing Component

After studying many routing algorithms with different inherent problems, Philip

Levis, one of the creators of TinyOS, created the first architecture to provide

multihop routing in WSN [26]. One issue that theses addressed was separating

policies from mechanisms; in that the architecture was capable of incorporating

different algorithmic building blocks, each of which can be easily interchanged.

The data movement and route decision engines were split into separate

components with a single interface between them. This permits other route-decision

schemes to be easily integrated and evaluated.

The architecture created and the components of the routing protocol can be seen

in Figure 4.1. At the upper layer is the application component. Between this

application layer and the multi-hop component are an arbitrary number of network

stack components which are represented by the transport layer. An application

interacts with the network stack through the Send and Receive interfaces; use of the

Intercept interface is optional however it is frequently used to sniff packets.

Figure 4.1: Component Architecture [26]

The TinyOS-1.1 release and later releases include library components that

provide ad-hoc multi-hop routing for sensor network applications [27]. The

implementation uses a shortest-path-first algorithm with a single destination node

(the root) alongside active two-way link estimation.

37 37

4.3- EWMA Multi Hop Router Algorithm (the 1
st
 one)

This was the first algorithm implemented with a component architecture as in

Figure 4.1. It uses an exponentially weighted moving average (EWMA) for link

estimation [24].

As for all the applications written for TinyOS it uses a configuration file to

connect (wire) the components and establish which interfaces are provided and

used, as well as the modules of the new application. The structure of the

components is as follows:

- MultiHopRouter (configuration) - is the top-level configuration for the

routing layer, which wires (connects) the next modules.

- MultiHopSend (module) - is responsible for sending packets using the

implemented ad-hoc routing protocol. It is responsible for decisions like

when and how many times to retransmit and when alternate parents

should be requested. When a new message needs to be sent it calls the

RouteSelector component interfaces to prepare the package.

- MultiHopRoute (module) - is responsible for receiving protocol

messages and deciding whether it should forward them. If a message has

to be forwarded then it passes the packet to MultiHopSend which will

call RouteSelector to prepare the packet.

- RouteSelector (module) - is the component that can be easily

interchanged. It maintains routing state, which it uses to choose routes

for packets to send. MultiHopSend passes it a packet buffer, which it

fills in with the necessary header fields to be used by MultiHopRoute.

This is the component that makes the decisions of routing based on

estimators (e.g. Link Quality Estimator, Geographic Position Estimator,

and Power Estimator).

The nodes keep a table of neighbour in order to keep track of the neighbours

which are accessible within one radio hop. The information in the table is based on

the information received from other nodes. Information about the parent (node

38 38

through which it arrives to the root) is stored and is based on ack/nacks that the

parent sends.

The estimation technique in EWMA is based on the link state; a better

description can be found in Chapter 3.

The success in receiving packets is calculated by the difference in the sequence

number, so the reception of messages has to be an small multiple of the time

interval, otherwise the failure is based on an accumulation of a silent count where

there is no reception.

The ack received from the parent is used to increase the value of this node as the

parent, in comparison with the rest of the neighbors.

4.4- WMEWMA Multi Hop Router Algorithm (the 2
nd
 one)

The second version of the algorithm follows the same architecture of that outlined

above, for version 1.x of TinyOS. The difference with respect to its predecessor is

that the link estimator measure is based on WMEWMA (Window Mean with

EWMA) which offers more efficiency and simplicity [28].

According to [27], the configuration which wires (connects) the new

components is given in Figure 4.2; the direction of arrows indicates interface

provider/user relationships, not data flow direction.

Figure 4.2: MultiHopRouter configuration [27]

39 39

Applications should maintain an average message frequency at or below one

message every 2 seconds. Higher rates can lead to congestion and or overflow of the

communication queue.

4.4.1- Interface Description

The component configuration provides 6 interfaces. A '[]' after the interface name

indicates the interface is parameterized and it can contains any type of AM

messages defined in an “.h” file.

- StdControl - The standard control interface

- RouteControl - A special interface for controlling monitoring router -

operation. This is the interface called to obtain the route to the parent.

- Receive[] - In this implementation, the base station is the only implicit

destination for packets, as it is the sink in the topology. This interface

exists only as a stub and is not implemented.

- Send[] - The port to use for locally originated packets.

- Intercept[] - This port is used when a packet is received that will be

forwarded. It provides a means for an application to examine forwarded

traffic and, depending on the value returned, suppress the forwarding

operation in order to control cycles.

- Snoop[] - The Snoop port uses the 'Intercept' interface definition, but

with different semantics. It is signaled when a packet is received that

will not be forwarded. This interface is useful for passive monitoring of

traffic for replication purposes.

4.4.2- Component Description

The components have changed relative to the previous version but the architecture

schema has been maintained. The configuration file is the same but has internal

code to multiplex between the two versions (different names and new interfaces).

These are the configuration file and the modules:

- MultiHopRouter - This configuration connects MultiHopEngineM,

MultiHopLEPSM with other necessary components (queueSend, comm,

40 40

timer…) which are more primitive components used to access the low

layers in the architecture. These are the main tasks of this configuration

file:

o Exports the Receive, Send, Intercept and Snoop ports to

applications.

o SendMsg port of MultiHopEngineM is wired (connected)

to the QueuedSend library components for queuing

outbound packets (both forwarded and locally originated).

o ReceiveMsg and SendMsg ports of MultiHopLEPSM are

wired (connected) to the AM_MULTIHOPMSG

parameter of the communication provider for the purpose

of exchanging single-hop route updates with neighbors.

- MultiHopEngineM - Provides the overall packet movement logic for

multi-hop functionality. It only requires that the RouteSelect and

RouteControl interfaces be available.

o Using the RouteSelect interface, it determines the next-

hop path and forwards the packets out the parameterized

SendMsg port.

- MultiHopLEPSM - Provides the Link Estimation and Parent Selection

(LEPS) mechanisms for the multi-hop implementation.

o It monitors all traffic received at the node via the Snoop

port.

o It directly receives single-hop route update messages

(AM_MULTIHOPMSG) that may be sent from neighbors

within the single hop range.

o The module internally sends and receives

AM_MULTIHOPMSG messages to manage the nearest

available neighbors and it decides the next hop

destination based on shortest path semantics.

o The root node (address=0) or sink is discovered based on

the minimum number of forwarding messages.

o By default, the module sends a route update message once

every 20 seconds and re-computes after 50 seconds (5

route update messages).

41 41

enum {
 AM_MULTIHOPMSG = 250
};
typedef struct MultihopMsg {
 uint16_t sourceaddr;
 uint16_t originaddr;
 int16_t seqno;
 uint8_t hopcount;
 uint8_t data[(TOSH_DATA_LENGTH - 7)];
} __attribute__ ((packed)) TOS_MHopMsg;

o The flexibility in this module is so high that it can be

replaced for another one, just following the same

convention names and parameters within the interfaces.

Thus new estimation measures can be inserted into the

routing layer for evaluating. For example, a min-hop

algorithm might have an estimator that listens for protocol

messages and updates routing tables accordingly.

4.5- Structure of the multihop message

In this section we describe the structure of the message that implements the routing

logic of the protocol (see Figure 4.3). All messages must be parameterised by an

uint8_t id which identifies the type of messages the interfaces are handling, in this

case the id number is 250. As this message will be encapsulated in the data field of a

standard sending message TOS_Msg (see Figure 4.4), it has the same length of the

data field, 29 bytes. 2 bytes are used for keeping the source address of the sending

message, another 2 bytes are used to store the original address of the data being

sent, another 2 bytes are used for the control sequence field and a last control field

contains 1 byte and is used to store the number of hops the packet has been carried

so far. The type of message being sent by any application must fit into 22 bytes (29-

7 bytes). So it can be seen that many different type of messages may be sent in the

base message using the structure based on the data field as a nested link. Because of

this the interfaces are often parameterized to allow for easy identification of the type

of message being sent and to allow the bytes with the appropriate message struct

type.

Figure 4.3: AM_MULTIHOP message structure

42 42

typedef struct TOS_Msg {
 uint16_t addr;
 uint8_t type;
 int8_t group;
 int8_t length;
 int8_t data[TOSH_DATA_LENGTH];
 uint16_t crc;
} TOS_Msg;

Figure 4.4: TOS_Msg message structure

4.6- Sending a packet

The use of the multi-hop library component is mostly transparent to the application,

in so far as the application uses the Send interface to connect to the mutihop

component to achieve multi-hop functionality.

When an application wants to send a packet of a defined type (struct):

- First of all it should call the Send’s interface getBuffer command to

obtain a pointer to the data region of a mutihop packet, where the data

will be nested for transmission. This call allows interface users to remain

unaware of the packet format used by the provider. Once the command

getBuffer is called, it will automatically initialize the protocol fields to

state that the mote is the source for the packet.

- Once the pointer is obtained, interface MultiHopRoute will provide

information about routing, e.g. the parent, hops… that can be added to

the appropriate field of the message.

- Finally the TOS_Msg buffer, where you get the pointer to the field data

within an already nested multihop message, it should be called using the

Send interface’s send command. This send command is wired

(connected) to its equivalent in the MultiHopRoute configuration to

provide multihop functionality.

43 43

4.7- Receiving a packet

To receive packets from a specified id type in an application, the event

Receive.receive, with the parameter [uint8_t] specifying the type of message it is

desired to receive, must be declared. The multihop components will then signal the

event through to the application layer if the message is from this type and the packet

is destined for this mote. Internally the reception of an AM message signals

MultiHopRoute which determines if the packet is destined for the local node. If so,

it signals MultiHopRouter’s Receive interface, otherwise it signals

MultiHopRouter’s Intercept interface, which will generally forward the packets.

To forward the packet, MultiHopRoute calls Send.send on MultiHopSend, using

the same sending policy as if it was the packet originator.

4.8- Other Routing Component Projects

Many other different ad hoc protocols have been developed following the

architecture provided. Usually these change the module MultiHopLEPS for a new

one with a different estimation technique, e.g. based on power consumption [29],

other types of link estimation [30], based on hop count, etc.

 A functionality that was not implemented initially in the first routing schema

was the aggregation of data. Here, data received from a child mote in the hierarchy

is aggregated into a data packet to be sent up through the topology to the root. This

technique, explained in detail in [31] produces a considerable reduction in the

number of packets being sent, getting more efficiency from the topology and

consequently reducing the power consumption.

4.9- New Recently Released Routing Algorithms (TinyOS

v2.0)

New protocols have been created to address some of the main constraints or

demands in the routing process. These were released in TinyOS version 2.x on July

2006, so they are in beta release and so not completely tested, or not 100% reliable.

44 44

All components in both protocols follow the architecture (interfaces, component

structure…). The algorithms have different purpose based on the need in WSNs of

routing data, and both are ad hoc protocols.

4.9.1- Collection

This is based on the main requirement in WSN of collecting data at the base root as

the only sink node for data, using topologies based on trees, sending the data

through the nodes to the root. As the nodes will act as routers, they will inspect all

the packets received so depending on the purpose of the application it will be able to

gather statistics, compute aggregates, or suppress redundant transmissions.

 Besides, Collection works with forests of trees: more than one base station can

be picked to receive data; every node will pick a parent and implicitly will join one

of those base stations.

It is a any-cast protocol; it provides a best-effort, multihop delivery of packets to

one of those trees. As it is stated in [32], given the limited state information that

nodes can store and a general need for distributed tree building algorithms, simple

collection protocols encounter several challenges which represent a subset of

common networking algorithmic edge cases that occur in this protocol family:

- Loop detection

- Duplicate suppression (detecting and dealing with when lost

acknowledgments)

- Link estimation (evaluating the link quality to single-hop neighbors).

- Self-interference, preventing forwarding packets along the route from

introducing interference for subsequent packets.

The new components implementation and logic can be found at its own section

at [32]; as it can be seen, the components match the previous version ones but with

different functionality.

45 45

4.9.2- Dissemination

This protocol has a complete different approach to the routing process than

Collection; it is based on the data being routed from the base mote through the rest

of the motes. With that it is intended to make the administrators task of reconfigure,

query or reprogram easier.

 Concerning reliability, this new protocol is much more robust to temporary

disconnections or high packet loss; it achieves that by using a continuous approach

that can detect when a node is missing the data (that doesn’t occur on flooding

protocols).

 According to the dissemination section et al [32], the dissemination protocol can

vary in efficiency depending on the data size being sent; although the control traffic

protocol part tends to be the same or similar, the data traffic protocol part depends a

lot in the size of data. On the other hand, having a good reliably disseminate

protocol based on small values (quite efficient) is enough to cope with the interests

of the administrators, taking into account the limited memory resources of TinyOS.

 Finally, it has to be commented that this new protocol works with versioning in

the event of failure, so the last version it will be the only one seen (although it has

been missed some versions with the failure).

The new components implementation and logic can be found at its own section

at [32]. It doesn’t follow the previous architecture; even the interfaces have not the

same logic; now the paradigm is based on producers and consumers of the data.

46 46

Chapter 5: Hopping - A bidirectional stigmergy

power efficient on-demand driven ad hoc

routing protocol

5.1- Constraints to address in Routing on SensorNet

Because of the nature of the motes in SensorNet, there are some issues to keep in

mind at the time of designing an ad hoc protocol. Those issues are based on the

deficiencies and differences between the wiring powered connected systems and

wireless battery dependent ones.

The set of devices, “motes”, which communicates via radio (wireless) are

limited in memory resources (ROM and RAM) and powered by batteries (AA)

which have limited life time (6 months to a year). Besides it has been shown in [33]

that the cost in battery of sending a message by a mote is equivalent to calculate

thousands of operations.

Having this situation, it has been studied the actual protocol in charged of

multihop in SensorNet, for the versions 1.x of the TinyOS as it can be seeing in

chapter 4. This protocol works in one direction, sending information from the motes

to the base mote, which is the responsible to process the information from each

mote. It is based on a tree structure where the root (base mote connected to pc) is

the end point and all the rest of the motes use their neighbors to reach it.

Because of that, I believe it will be of great interest and useful application, to

create a protocol which communicates among all nodes without hierarchy that even

could let a set of motes being independent from the base mote (not connected to any

pc), to form self-managed colonies for the purpose of monitoring and controlling .

Furthermore, the reduction of the number of messages being sent among motes

it is a goal that will increase the life of the motes. To achieve this goal, and reduce

the number of messages generated by the motes (broadcast packets sent every 20

seconds in the actual configuration), it will be changed, in the ad hoc paradigm,

47 47

from a proactive protocol to a reactive one, where the route will be discovered upon

demand.

5.2- The protocol basis

Once studied all the SensorNet architecture, the behavior of the motes, the

unidirectional / bidirectional feature in the communication between motes (a mote

can reach another mote sending but not be reached by this mote), the type, structure

and size of the messages being sent, the memory available in each mote and all

different characteristics of the system, this is the proposed algorithm:

- All nodes will have the same status and hierarchy and they will be well

defined by an exclusive id mote for each group (example 0x7e).

- All motes will contain a global counter, “sequence message number” and

it will be increased with every message sent (not forwarded, except in

route discovery).

- There will be two tables for every mote (see Table 5.1 and 5.2).

Table 5.1: Reachable Motes

o

Table 5.2: Routing Table

o TargetAddr= Mote address to be reached from this mote.

o SendMote/SeqRoute= Pair “mote address” and “sequence number”

which create a unique identifier that indicates that in order to reach

the TargetAddr mote, the message has to be delivered to the mote

SendMote with this SeqRoute number.

o RecvMote/SeqRoute= Pair “mote address” and “sequence number”

which create a unique identifier that the messages, which come from

Reachable Motes

TargetAddr SendMote/SeqRoute

0x20 0x12/0x125

Routing Table

RecvMote/SeqRoute SendMote/SeqRoute Usage

0x4/0x23 0x6/0x56 15

48 48

the RecvMote with this SeqRoute, have to be sent to the mote

SendMote with SeqRoute in order to reach node TargetNode.

o Usage= It is a number that is set to 1 every time a route is created

and that is increased every time this route is used; this is the indicator

to know which routes are not valid anymore or not used, in order to

improve the search process, otherwise the table will grow up with no

useful entries.

- An important thing to take into account is that the size of the sequences

“seqmsg” and “seqroute” is an int16_t, that will allow a value of 2exp16=0-

65535; once a mote reaches this number of messages sent, the solutions

would be:

o It will be sent a flood message to alert all the motes to reset all its

counters and start again (start routing process in all motes). All the

tables in all the motes will be deleted and the global variable

sequence will be set to 0.

o Another solution will be the update of sequence route numbers with

new sequence numbers that will renovate the old sequence numbers

guaranteeing that there will be always a distance between the oldest

sequence number and the most new number generated avoiding

collisions of repeated sequence numbers for a node, even if the

counter of the mote is reset to 0. By the time the mote is reset to 0,

all the old sequence numbers that form routes will be replaced by far

distance numbers within the cycle 0-65536. Those sequence update

messages will be generated based on a timer or even better based on

the number of message, for example every 500 messages, so it will

be guaranteed a minimum distance of 500. The potential problem

that has to be measured is that the cost in sending all of these update

messages can be higher than the cost of starting the discovery route

process again every 65536 messages of the first mote which reach it.

Besides sequence numbers in all the tables will have to be updated

and if the table gets bigger that could delay the routing.

- It could be thought that routes can change dynamically fast, and better routes

can be found, but although that is true, as long as the first route is found and

49 49

keeps acknowledging, that will show the route is working and the motes are

not moving so much, so the route could not be the best but the difference in

time, that will be minimum between routes (because of the action radios),

will be coped with the save in number of messages sent to look for a new

one.

5.3- Hopping AM message structure

For the purpose of the multihop message, it will be used the structure in Figure 5.1

where the data field will contain the structure of the application message which

actually carries the data being sent. Then, the multihop message, which will be

called “MHoppingMsg”, will be used to transport the type of message the user is

using in the application. The MHoppingMsg will also be nested in the data field of

the TOS_Msg structure to be transported. The AM id type to identify the type of

message is assigned to id 249 although it could be used the id 250 from the

AM_MULTIHOPMSG, because both algorithms are created from the same purpose

so it will not produce collisions with any other application layer id’s. As it can be

seeing in Figure 5.1, the data field with this type of message will have a capacity of

TOSH_DATA_LENGTH(29) – 9, 20 bytes to store any application message that

has to be transported.

 Figure 5.1: AM_HOPPINGMSG message structure

enum {
 AM_HOPPINGMSG = 249
 };

typedef struct HoppingMsg {
 uint16_t targetAddr; //final destination mote for the msg
 uint16_t senderAddr; //mote which sends the msg each time
 int16_t seqMsg; //seq of the message (generated by the origin mote)
 int16_t seqRoute; //num seq for route of the mote sending
 int8_t type; //type of msg being sent:

- NEW_ROUTE
- ACK_NEW_ROUTE
- FOLLOW_ROUTE
- ACK_FOLLOW_ROUTE

 uint8_t data[(TOSH_DATA_LENGTH - 9)]; //any type of msg being sent

 } __attribute__ ((packed)) TOS_HoppingMsg;

50 50

5.4- The procedure, how the protocol works

At any time a mote 0x3 wants to send a message to another one 0x8, it happens this:

- Phase1 (Discover Route): The mote 0x3 doesn’t have information about

the route in the “Reachable Motes” table (see Table 5.2) to reach 0x8, then:

o Send a message “TOS_HoppingMsg” (see Figure 5.1) with:

targetAddr=0x8

 senderAddr=0x3

seqMsg=value global variable “sequence” for 0x3

 seqRoute=0/null

 type=NEW_ROUTE

 data=none

o It will be created in the table “Reachable Motes” an entry with the

TargetAddr field equal to destination (0x8) and the SeqRoute field

with the value of the seqMsg being sent, in order to be able to

receive the ack message (there is no information of the source mote

in the destination mote).

o The motes in between will forward the message that will be received

by all its neighbors. Those neighbors will forward it flooding the

network.

o When a message is received by a mote with type=NEW_ROUTE

that means there is no route established yet and then it will be

forwarded to everybody (even if it contains the route for the target

node).

o Every mote in the middle will fill the table “Routing Table” (see

Table 5.1) with the received message fields senderAddr (RecvMote)

and its seqMsg (SeqRoute), and it will associate the pair with the

other pair SendMote (its own address) and SeqMsg (its current

sequence number), pair that will be sent in a message.

51 51

o All the motes which receive it will do the same except for the target

one, checking if the RecvMote and SeqMsg, in the table “Routing

Table”, of the message received already exists; that means the

message is turning into cycles (consequently no forward the message

again) because of the fact of flooding the network.

o When the target mote receives the message, it will identify by the

field “targetAddr” that it is for it, then it will send an ack message

“TOS_HoppingMsg” like this:

targetAddr=null (no info)

 senderAddr=0x8

seqMsg=value global variable “sequence” for 0x8

 seqRoute=ReceiveMote/SeqMsgReceived

type=ACK_NEW_ROUTE

 data=none

o Now the field “seqRoute” is filled with the RecvMote and the

SeqMsg (received) and sent to the mote RecvMote. Once the mote

receives this message it will search in its Routing Table for

SendMote/SeqMsg = RecvMote/SeqMsgd and if it exists it will do

the same with the message forwarding it setting now the associated

ReceiveMote/SeqMsg that match with the SendMote/SeqMsg and so

on until it arrives to the origin mote.

o The mote 0x3 (source one) will wait for an ack of the message; it

will identify the message by the seqMsg, not by the targetAddr field,

as there is no information in the destination node (0x8) about which

mote is the sender. The first ack which arrives will be the fastest

route that will possess bidirectional feature so it will update the entry

in the table “Reachable Motes” with the target mote address and the

SendMote/SeqMsg that it just received (that is the beginning of the

route through the target mote, and it will provide the address where

the message has to be sent and the sequence number for the next time

it is needed to reach this target mote 0x8).

52 52

o If no ack messages are received after a certain time (that will be

controlled with a timer based on trials, maximums and number of

motes in the network), then a reported error will be passed to the user

application alerting the destination can not be reached.

o For every ack message received in each mote (even if it will be

forwarded), then assumes the route has been established and the field

“Usage” in the “Routing Table” will be set to 0.

- Phase 2 (Follow Route): The mote 0x3 have information about the route

in the “Reachable Motes” table (see Table 5.1) to reach 0x8, then:

o Look for the target mote, get the pair SendMote/SeqRoute, and send

a message TOS_MHoppingMsg (see Figure 5.1) to the SendMote

address with:

targetAddr=0x8

 senderAddr=0x3

seqMsg=value global variable “sequence” for 0x3

 seqRoute= SeqRoute (send)

 type=FOLLOW_ROUTE

 data= nested data from the user message

o The mote which receives it will identify the fields of the message

with its RecvMote/SeqRoute and will find its forward pair

SendMote/SeqRoute. It will fill the fields and forward it,

incrementing the Usage field in the table “Routing Table” (see Table

5.2).

o When it arrives to the target mote (check the targetAddr field) the

reverse process will be done, sending an ack message to identify the

message has been received and the route is still valid, like this:

targetAddr=null (no info)

53 53

 senderAddr=0x8

seqMsg=value global variable “sequence” for 0x8

 seqRoute= SeqRoute (received)

 type=ACK_FOLLOW_ROUTE

 data= none

o The source mote waits for the ack an established time; it checks the

seqMsg & senderAddr fields to verify the ack is for the mote because

of the lack of information in the targetAddr field.

o If there is no ack from the message sent through the pair

SendMote/SeqRoute for the source mote after a certain time (timer)

then it will start the discovery process above.

- Phase 3 (Garbage Collector): This phase is oriented to eliminate the non

valid routes on the “Routing Table”, routes which are not used anymore or

routes which were created but not used ever because they were not fast

enough. This process will keep the table at the minimum size possible in

order to optimize searches, and consequently increase the routing speed.

o Every certain number of messages received (forward), or when the

size of the table is more than a certain threshold, the table will be

searched and entries with the field Usage set to 0 will be deleted.

o The table then will be sorted by Usage field in decreasing mode to

keep the most frequently used routes the first entries.

o All this process will be performed as an atomic operation to avoid

concurrency problems, so the messages being received will be

queued until the process finishes.

o Timestamp could be used as another field in the table to delete non

recently used routes but instead of that, every fixed interval time the

Usage field will be decreased in 1 unit, so that will guarantee all the

routes non being frequently used to reach the 0 value and be deleted

in the next garbage process.

54 54

5.5- Features and drawbacks of the protocol

- The protocol could be improved adding more knowledge of the network to

the motes in between a route, creating sub-routes when the acks arrives to

each mote, creating entries in the table Reachable Motes (see Table 5.1) of

these motes to reach the mote being requested. It has not be created in this

first version of the protocol because it is thought there will be motes which

will act just as routers, then the “Reachable Motes” table will be not useful

and the memory will be wasted.

- Depending on the nature of the network, the new protocol will be more

successful than the one implemented now in the TinyOS v1.x, but it will

depend on factors like mobility of the nodes and number of messages being

sent per time unit. As soon as the motes moves changing its action radio at a

speed of less than 40 seconds, leaving neighbour radios, the number of

messages will increase due to the need of looking for a new route in every

message trying to be sent ad not receive and ack message.

- According to the characteristics of the application to be developed one of

both multihop protocols could be used, multiplexing them or even a

combination of both (hybrid protocol) could be created.

- The lack of information of the source node address in the destination node

can be solved by inserting a new field in the structure of the

“TOS_HoppingMsg” message (see Figure 5.1), like “int16_t sourceAddr” or

the address from the source node can be nested in the data field, in the

structure of the user message; the insertion of the source address as a field of

the user structure message will be a requirement at the time of using the

Hopping Multihop component.

55 55

Chapter 6 – Developing the protocol on

Wireless Sensor Networks

6.1- Introduction

Although there are more technologies and developers of wireless sensor networks,

the most well known and pioneer institution working on that is the TinyOS Intel

Berkeley group, developers of the TinyOS operating system [2]. They are in close

collaboration with the company Crossbow Technologies [3] which is producing a

big diversity of devices like motes, gateways… and uses TinyOS to create its own

applications.

 For the purposes of this project it has been used TinyOS as the operating system,

nesC as its associated programming language and hardware devices from Crossbow

Technologies (motes, sensors and programming boards).

 In this section it will be presented the hardware and software used, as well as the

steps to start up from the first approach to WSN to the process of implementing the

protocol. Besides it will be commented the difficulties or typical problems which

appeared. It is believed that this chapter is a good starting point for anyone in this

technology.

6.2- Hardware

6.2.1- Motes

For the purpose of this research it has been used 7 MICA2 motes from the company

Crossbow Technologies [3]. This company produces wide range of sensing devices

 In figure 6.1, it can be seen a MICA2 mote. It is composed by a board where it is

integrated the connectors, processor, leds, memory components, switches, radio

devices and a big unit connected to the board where it is placed 2 AA batteries

which provide the power.

56 56

Figure 6.1: Left: Photo of a MICA2 (MPR4x0) without an antenna. Right: Top and

plan views showing the dimensions and hole locations of the MICA2 PCB without the

battery pack. [34]

The processor in MICA2 mote [35] is the Atmel ATmega 128L low power

microcontroller. It has two modes of processing: active mode where its current draw

is 8mA and sleep mode with 15µA.

In sleep mode MICA2 motes are expected to have a battery life of over 1 year

with the 2 AA batteries. On the other hand, in active processor it depends on the

processing operations, message sending rate but usually it reduces the lifetime

exponentially.

Considering memory specifications (see Table 6.1) the MICA2 mote is

characterized by a Program Flash Memory of 128Kb, where the applications are

stored, another memory module of 512 Kb (flash data logger) that it is usually used

to save sensor data and finally a 4 Kb SRAM memory for execution purposes.

57 57

Table 6.1: Mote Specifications Summary [34]

Communication in the MICA2 mote is leaded by a max. data rate of 38.4

Kbits/sec which operates on this range of frequencies: 315/433/915 MHz which are

part of the Industrial Scientific and Medial band (ISM). For this research it has been

used the MPR 400 MICA2 mote which operates at 900 MHz. The radio

transmission range is within tens of meters (500-1000 ft) depends on the battery and

obstacles, while drawing 27mA, [35]. The radio stack uses carrier sensing to control

access to the wireless medium (CSMA). However, it does not enforce any collision

detection, except that it discards messages which appear to be corrupt. There is no

automatic retransmission of corrupt messages.

In most mote applications, the processor and radio run for a brief period of time,

followed by a sleep cycle. Applications which use routing are lean to be in active

mode more often, receiving, and transmitting data, consequently, applications which

have a higher transmission rate (e.g. ad hoc multihop) will have a more reduced

battery life.

58 58

6.2.2- Programming Board – Gateway

The programming board used to program the MICA2 motes was the MIB510 serial

interface board from Crossbow Technologies [3] (see Figure 6.2).

Figure 6.2: Programming Board MIB510CA [34]

 According to [35], the MIB510 has an on-board in-system processor (ISP) -an

Atmega16L located at U14- to program the Motes. Code is downloaded to the ISP

through the RS-232 serial port. Next the ISP programs the code into the mote. The

ISP and Mote share the same serial port. The ISP runs at a fixed baud rate of 115.2

Kbaud. The ISP continually monitors incoming serial packets for a special multi-

byte pattern. Once this pattern is detected it disables the Mote’s serial RX and TX,

then takes control of the serial port.

 The MICA2 motes are placed in the MICAx-series 51 pin connector for

programming or gateway purposes.

It uses a RS-232 serial port to connection to connect to the serial port of the

computer for programming and gateway purposes.

 When the board is used for programming motes, the switch “SW2” should be

placed in ON position, avoiding data coming from outside into the laptop (but it is

not mandatory). If the board used as a gateway the switch “SW2” must be OFF to

allow data coming from the motes into the computer.

 The reset switch (SW1) is very useful to restart applications in motes or when a

mote is not responding; it restart first the board ISP and after the mote.

59 59

 The Jtag connector is used for in-circuit debugging.

 The board can take the power either from the AC Wall-Power connector (it has

an on-board regulator that will accept 5 to 7 VDC, and supply a regulated 3 VDC to

the motes) or from the batteries of the mote placed into it (that will consume the

batteries from the mote faster).

It has 3 leds in the motes which act as the leds in the mote placed on the board or

as an indication of the state of the programming mode.

 Finally it is advised to place the switch of the mote in OFF position when there

is external power in the programming board.

6.2.3- Sensor Boards

Those devices are in charge of the sensing process. There is a huge variety for

different sensing processes like for e.g.: acceleration, vibration, gyroscope, tilt,

magnetic, heat, motion, pressure, temp, light, moisture, humidity, barometric;

besides it also exists actuators like for e.g.: mirrors, motors, smart surfaces, micro-

robots.

 In the project it was used 7 MICA Sensor Boards -MTS300CA- (see Figure 6.3)

from Crossbow Technologies [3].

Figure 6.3: MICA Sensor Board MTS300CA [36]

51 pin

connector

Light/

Temperature

Microphone
Sounder

60 60

The 51 pin connector is connected to the 51 pin connector in them mote once

they are programmed. The data retrieved by the sensors is available for the

applications in the mote using a 10 bit analogue/digital converter.

 In this model of sensor [36] the light and temperature come integrated in the

same measure component, so it must be set to on one of them in order to avoid

collisions in the A/D converter channel. Besides, there are a microphone for

acoustic ranging and recording, and a sounder which is a simple 4 KHz buzzer.

6.3- Software

TinyOS (see Section 2.6) was the operating system used to configure the MICA2

motes. Windows XP was chosen as the platform to operate TinyOS, instead of

Linux. TinyOS is available in a auto installable package for windows and for most

of its versions. With the packet it includes the operating system TinyOS plus the

nesC programming language compiler, the java version 1.4 JDK and cygwin (tool to

emulate Linux). TinyOS is installed within a directory in your hard drive with the

structure of Linux directories and can be accessed through windows or through

command line with the cygwin tool.

The developers of TinyOS have released version 2.0 in July 2006 but is not

tested properly yet. Previous versions like 1.15 or 1.11 are advised but for the

purposes of this project it was selected version 1.1.0. This version is very stable and

although it has had been produced modifications respect to higher versions, it does

not affect for the purpose of this project; the developing of the ad hoc protocol. As it

was explained in Chapter 4, both multihop protocols were already created in version

1.1.0 and they last until version 2.0 where new protocols for aggregation and

dissemination has been developed.

Figure 6.4 show the tree directory structure of the TinyOS. The Hopping

protocol will be developed under the subdirectory “tos/lib/RouteHopping”. An

application created for the purpose of evaluating the protocol will be places in

subdirectory “tinyos-1.x/apps” called HOPPING.

61 61

Besides, TinyOS offers a documentation directory “tinyos-1.x/doc” where is

stored the results of a documentation generator (similar to javadoc) which creates

api’s from your own applications, just as easy as typing “make docs

<platform(mica2)>”. Besides the tool Graphviz generates a graph with the wiring

(links) among components.

The “/tos” subdirectory is the system directory where the libraries, drivers, types

and interfaces are stored. This is where the internal layers are structured in folders

and it is very useful to learn about programming and how to use components.

Figure 6.4: TinyOS and Subdirectory Map [13]

62 62

Moreover, tools to operate in TinyOS (most of them developed in java) can be

found in “tinyos-1.x/tools”. Some of the most useful tools are:

- TOSSIM: A discrete event simulator for TinyOS [37]

- (MIG) Message Interface Generator: This tool generates stubs to encode

and decode TinyOS messages.

- Serial Forwarder: it is used to read packet data from a computer’s serial

port and forward it over a server port connection, so that other programs can

communicate with the sensor network via a sensor network gateway. It does

not display the packet data itself (although it was modified to do it) and

updates the packet counters (read and written).

- MessageInjector: Useful tool to inject packets in the network; just select

type of message (depending on the application installed in the motes), tell

destination mote and send the message.

- Surge: Java application that draw the topology of the network which is

using multihop components. It needs to have installed in the motes the surge

application which sends message every certain time through the network to

the base station using the routing component “multihopRouter”.

6.4- Start up a WSN with TinyOS and Crossbow motes

Installation of TinyOS is pretty easy under Windows environment, just follow the

steps. It is advised to install it in the root directory (c:/) to increase performance and

it is required to have about 1 Gb free space in your hard drive for the installation

although once installed it takes about 550 Mb.

 Once installed it should be tested if the installation has been successful; for that

under the installation directory, go to this path “/tinyos/cygwin/opt/tinyos-

1.x/tools/scripts” and run the script “toscheck”. If it ends with “toschek completed

successful then the installation is working. Sometimes it happens there was a

version of java already installed and it produces conflicts; this could be produced

because the CLASSPATH is not well configured for the java version; check

63 63

environment variables (Add in “Path” the new route for the java directory like this:

Path=;D:/tinyos/java/j2sdk1.4/bin) and if still remains the error:

- It could happen it is needed to set the environment variable CLASSPATH to

“.”

- Delete Superior Java Versions

Once it is installed, create the MakeLocal file in folder /apps, this will set up the

environmental developing parameters to program the motes like frequency, group id

for the set of motes being programmed and identify the serial port (see Figure 6.5).

 Figure 6.5: Makelocal file in folder “/apps” in TinyOS

Some java applications may require compilation; simply execute the makefile

file under “/tos/java/net”.

In order to compile your first application, it should be compiled depending on

the platform being used; in this case “mica2”. Although there is an option to

compile all the applications, it is advised to go to the application you wish to

compile, for instance, go to “/apps/blink” and type “make mica2”; that will generate

a folder called “build” with the executables (srec), which should be installed in the

motes.

To program the motes with the application:

- Programming board switch should be switched OFF

- Place the mote to program in the board, switched to OFF

- Connect serial port to pc.

- Close programs like SerialForwarder that uses the port (e.g.:COM1).

- In the folder where the application is type:

o MIB510=COM1 make reinstall.<num_mote> mica2

#Makelocal File
Created by Ricardo Simon Carbajo
PFLAGS += -I%T/../beta/MyBetaCode
DEFAULT_LOCAL_GROUP = 0x7e
PFLAGS += -DCC1K_DEF_FREQ=900000000

MIB510=COM1

64 64

This option just load the executables into the mote

o MIB510=COM1 make install.<num_mote> mica2

This option compiles the application and load into the mote (see

Figure 6.6 for a successful compilation and loading).

MIB510=COM1 indicates the programming board is the MIB510 and it uses

the serial port COM1.

<num_mote> is the address the mote will have; the address 0x0 os reserved

for the base mote, the one who will be placed in the motherboard and act as

a gateway between radio communication and serial port.

- If problems are experienced you should export the shell variable

MOTECOM with the route to read from the serial with:

o export MOTECOM=send@COM1:mica2 or

o export MOTECOM=send@COM1:<freq>

- Sometimes the motes or programming board do not respond, in that case,

loading phase will throw an error. Possible solutions can be: reset button in

programming board, change from mote, try to load a simple application like

“blink”, restart the cygwin, check serial port properties and reinitiate or even

restart the computer.

There are applications like “blink” which works without radio communication.

Other use radio and in order to monitor the messages, a mote with the application

“TOS_Base” and address 0x0 should be placed in the programming board. Then the

SerialForwarder tool should be run from the “..\opt\tinyos-1.x\tools” like this:

java net.tinyos.sf.SerialForwarder -comm serial@COM1:57600

Then the program will count the number of messages being received (see Figure

6.7).

65 65

Figure 6.6: Compilation & Load application into a mica2 mote.

Figure 6.7: SerialForwarder Tool

It would be interesting to program some nodes with the “Surge” applications to

obtain mutihop routing. In order to do that, compile as above and load applications

into the motes. Load one mote with surge application and address 0 and place it in

the programming board. Then execute SerialForwarder and afterwards run the client

program, which will join the SerialForwarder to receive packets, to draw the motes

for the surge application like this (go to folder “..\opt\tinyos-1.x\tools”):

66 66

java net.tinyos.surge.MainClass <GroupId>

 GroupId is the specified in the Makelocal, 0x7e

The motes will start to converge in a tree-based routing schema, sending packets

every 2 seconds through the topology to reach the base mote (see Figure 6.8).

Figure 6.8: Surge application using multihop routing in TinyOS

 After that and following the tutorial in the TinyOS, you are ready to start

developing your own applications!

6.5- Design and Implementation of Hopping

The design of the architecture of the new protocol was based on the existing routing

architecture. In fact it is provided most of the interfaces of the existing configuration

file (MultiHopRouter), which provides the interfaces to perform multihop routing in

an application (see Chapter 4). It is followed the same architecture and used the

same name for the configuration component, to make easy testing or multiplexing

between components. The new issue which is different from the existing component

67 67

diagram is that the link estimation component (MultiHopLEPS) is suppressed and

all the logic is concentrated in the HoppingEngineM component (substitute

MultHopEngineM).

 Both components are stored in the library folder (see Appendix: CD-ROM):

“opt\tinyos-1.x\tos\lib\RouteHopping”

 The configuration component (MutiHopRouter) wires the commands and events

from HoppingEngineM with the commands and events from the components for

communication (GenericCommPromiscuous and QueuedSend). Besides it connects

components to perform other functions like (TimerC and LedsC). Furthermore the

configuration file provides the next interfaces to perform routing: Receive, Send,

Interface and Snoop plus the StdControl interface to initiate the routing components

(see Figure 6.9).

Figure 6.9: MultiHopRouter configuration for the Hopping protocol

includes AM;
includes Hopping;

configuration MultiHopRouter {
 provides {
 interface StdControl;
 interface Receive;//[uint8_t id];
 interface Intercept;//[uint8_t id];
 interface Intercept as Snoop;//[uint8_t id];
 interface Send;//[uint8_t id];
 }

}
implementation {
 components HoppingEngineM, GenericCommPromiscuous as Comm,
 QueuedSend, TimerC, LedsC;

 StdControl = HoppingEngineM;
 Receive = HoppingEngineM;
 Send = HoppingEngineM;
 Intercept = HoppingEngineM.Intercept;
 Snoop = HoppingEngineM.Snoop;

 HoppingEngineM.SubControl -> QueuedSend.StdControl;
 HoppingEngineM.CommStdControl -> Comm;
 HoppingEngineM.CommControl -> Comm;

 HoppingEngineM.Leds -> LedsC;

 HoppingEngineM.SendMsg -> QueuedSend.SendMsg[AM_HOPINGMSG];
 HoppingEngineM.ReceiveMsg -> Comm.ReceiveMsg[AM_HOPINGMSG];
 HoppingEngineM.Timer -> TimerC.Timer[unique("Timer")];

}

68 68

The HoppingEngineM component manages all phases of the protocol and it

imports the “hopping.h” file which contains definitions of tables (see Section 5.2) as

well as the structure of the HoppingMsg (see Section 5.3). Detailed explanation

about each events, commands and functions can be found at (see Appendix: CD-

ROM):

“opt\tinyos-1.x\tos\lib\RouteHopping/HoppingEngineM.nc”

The graph of components generated with the tool Graphviz can be seen in Figure

6.10; it shows all the wiring components and what interfaces are used and provided.

Besides all the documentation for the Hopping routing components can be seen in

(see Appendix: CD-ROM):

“opt\tinyos-1.x\doc\nesdoc\mica2”

Figure 6.10: Component Diagram for the Hopping protocol.

In order to demonstrate the working of the routing protocol, it was created an

application called Hopping which is explained in Chapter 7. Figure 6.11 shows the

component diagram where it can be seen how it is being used the MultiHopRouter

configuration to provide routing. The code can be found in the folder (see

Appendix: CD-ROM):

“opt\tinyos-1.x\apps/HOPPING”

69 69

Figure 6.11: Component Diagram for the Hopping application which uses the

Hopping protocol (MultiHopRouter).

6.6- Problems experienced

6.6.1- Problems programming motes

- Experienced problems with Tinyos 1.1.11 (auto install). It seems the motes

don’t get programmed properly (Error: fuse error flash 0x8a …). As well, it

doesn’t detect the makelocal configuration file in the “/apps” directory. It

can be an incompatibility problem between versions although that happens

in the starting with TinyOS 1.1.0 but it suddenly fixed. There are some

possible solutions in Internet, possible procedures but none of them worked.

Maybe, malfunction in TinyOS 1.1.11 installation.

- It’s better to use “MIB510=COM1 make install.X mica2” than with the

“reinstall.X” option, because it rebuild the application.

- It’s useful sometimes to clean the “/build” folder in each application before

doing “make clean” to prevent bad compilation and avoid overlapping in

motes.

- In the Surge Application which uses Multihop modules:

o The Base Node must be configured with the Surge.nc module and

with id=0.

o The SerialForwarder produces an exception when receives more than

7535 messages.

70 70

6.6.2- Problem using the multihop components

- It was experienced that the interface “Receive” in the module

MultiHopEngineM.nc is not connected to the interface ReceiveMsg, so in

order to receive messages is necessary to use events like

“Intercept.intercept” or “Snoop.intercept”, because the events on these

interfaces are the only ones signaled from the ReceiveMsg event,

implemented in the module MultiHopEngineM.nc. SOLUTION: It should be

signaled the event “Receive” from the event “ReceiveMsg” (see Figure

6.12).

- The special feature about the use of MultihopRoute configuration is that the

interface “ReceiveMsg” is opened to be wired and must be wired with the

type of message your application will handle, like:

multihopM.ReceiveMsg[AM_SURGEMSG]->Comm.ReceiveMsg[AM_SURGEMSG];

- Besides, the type of message selected for the application, like in Surge:

AM_SURGEMSG, will affect the entire interfaces id’s “[uint8_t id]”. If the

interface “Send[uint8_t id]” of the MultiHopRouter configuration is wired

using the message id: AM_SURGEMSG, all the rest of interfaces like

“Intercept[uint8_t id]” or “Snoop[uint8_t id]”,… will automatically just

accept this type of messages. So the MultiHopRouter configuration accepts

just 1 type of message for application for all the interfaces, except for the

internal AM_MULTIHOPMSG.

71 71

Figure 6.12: Modifications (in bold) in the MutiHopEngineM component to allow

functionality in the event Receive.receive.

event TOS_MsgPtr ReceiveMsg.receive[uint8_t id](TOS_MsgPtr pMsg) {
 TOS_MHopMsg *pMHMsg = (TOS_MHopMsg *)pMsg->data;
 uint16_t PayloadLen = pMsg->length - offsetof(TOS_MHopMsg,data);

……….

 // Ordinary message requiring forwarding
 if (pMsg->addr == TOS_LOCAL_ADDRESS) { // Addressed to local node

 //HERE COMES THE LINE OF CHANGE

 signal Receive.receive[id](pMsg,&pMHMsg->data[0],PayloadLen);

 if ((signal Intercept.intercept[id](pMsg,&pMHMsg->data[0],PayloadLen)) == SUCCESS)
 {
 pMsg = mForward(pMsg,id);
 }
 }
 else
 {
 // Snoop the packet for permiscuous applications
 signal Snoop.intercept[id](pMsg,&pMHMsg->data[0],PayloadLen);
 }

 return pMsg;
 }

And create the event Receive.receive to be signaled and that math with the interface provided:

default event TOS_MsgPtr Receive.receive[uint8_t id](TOS_MsgPtr pMsg,

 void* payload,

 uint16_t payloadLen) {

 return pMsg;

 }

72 72

Chapter 7 – Evaluation

The implementation of the algorithm has been done in nesC under the TinyOS

operating system. Despite the use of a non specific editor (it could have been used

the plug-in provided for Eclipse for programming in TinyOS [38]) and after wiring

the components properly, making the components match, a compiled version was

built for the mica2 platform to be deployed initially in 2 motes.

For the purpose of evaluating the protocol created (Hopping) in the routing

layer, an application which uses the routing component was implemented. It was

created an application that every certain time (2 seconds), created a message and

send it to the node 0x2. Another application was created to receive this message and

blink the red toggle if the message was for the local mote.

Initially the system should work with 2 motes and later the number of them will

be increased.

It was configured a mote with the address 0x1 and loaded on it the application

which sends a message to 0x2 every 2 seconds, using Hopping. The second mote

was loaded with the application that received the message with destination equal to

0x2 and it was given the address 0x2, to successfully receive the message and then

blink the red led indicating reception.

The motes were successfully loaded with the applications and the mote with

address 0x2 was turned on first, waiting so for a message. The mote with address

0x1 was turned on afterwards.

If routing was working, the red led on the 0x1 will turn on after 2 seconds, then

a discovery route process will be start to get the route to 0x2. Node 0x2 should

receive message (NEW_ROUTE message) from 0x1, prepare the ack message

(ACK_NEW_ROUTE) and send it back to 0x1. Then the mote 0x1 should receive

the ack and send the message that was requested to send following the route already

created. Then 0x2 will receive the message identify it is for it and blink the red led

to identify it has received the message. An ack message from 0x2 to 0x1 should

then be sent to confirm the link is still valid.

73 73

The results were not exactly the expected ones but it was shown that not

everything was failing; the red led on 0x1 blink after two seconds, then the message

was received by 0x2 and the red led blinked. Amazingly, the red led on 0x1 keeps

blinking after 2 seconds but after the first message the mote 0x2 did not blink

anymore.

In order to verify where the system was failing, the debugging system was based

in leds acting as prints, indicating that the execution had reached this part of the

code, that a message had been sent or received and that commands were executed

and events were signaled.

Using green and yellow one it was followed the execution of mote 0x1. It was

concluded, the discovery phase was successfully completed. Then, it was tested that

the message followed the route already established in the discovery phase through

0x2. After that it was successfully tested that the ack from 0x2, confirming that the

route was still working, was received by 0x1. Then the process of routing had

working but just for the first message, so why?

Using leds it was observed that although the red was blinking every two seconds

in the mote 0x1, the event which indicates the successful sending of a message

(event sendDone) was not signaled anymore (green led, just changed twice, one for

discovery phase and another for the message being sent).

 It is believed it could be a problem of concurrency in the sending process or it

could be a pointer not well returned from a command call or receive event. Besides,

the code is using a global variable to generate synchronization in the sending

process, so if there is an already sending process another one can interrupt it. Timers

that controlled the process of not receiving an ack massage after an estimated

maximum time was removed to avoid more hardware event collisions (produce

more concurrency and can preempt tasks).

 Motes with different addresses and configured to toggle the yellow led when any

message was received and the green led when the received message was a broadcast

one, were included in the experiment, demonstrating that the discovery phase works

with broadcast and that the acks followed paths of already created routes.

74 74

It is being restructured the sending process to isolate it in a task and keep in a

queue messages to be sent. That will avoid all type of concurrency problems.

As a final evaluation it can be commented that the protocol develops the

discovery phases and the follow route phase successfully, so entries are created in

tables successfully. The protocol idea seems to be correct and the failure is believed

to be in a hardware event concurrent problem.

Because of the lack of time and the hard process of debugging hardware with

leds, the protocol is not fully working.

75 75

Chapter 8 - Conclusions and Future Research

After being working with MICA2 motes and TinyOS over Wireless Senor Networks

I have to conclude this technology is quite tricky. Because of the component-based

event-driven programming paradigm used to create the applications, and the new

way of wire components, it has to be adopted another vision of programming, nor

object oriented, neither pure imperative. Besides, working with hardware at a non

high level is a handicap; flashing memories can throw strange errors which

sometimes can only be solved by resetting. Although it takes time and it can be

exasperating the exponential learning curve make you understand, with every

concept, the whole of the system much better and create a big picture of how it

works.

 The debugging process is an issue where research should be focused. Although

there are ways of debugging like using simulators, attach hardware to the gateway

or using leds, when the debugging process gets harder and there is the need of

getting values from variables at running time in a mote, there is nothing to do rather

than supposing or using leds.

The new protocol developed in this dissertation (Hopping) has not been fully

tested but it is believed the protocol will help to save battery life in motes, managing

in an efficient way the resources available. The protocol will offer another way of

distributed communication, peer to peer, where there is no hierarchy and all motes

can influence each other. It is thought the protocol can be very useful in this type of

applications where there is no gateway and the motes have to create auto-organized

networks to retrieve data, communicate each other, take decisions and act

consequently. Although the protocol can work in all different types of network

conditions, there are some limitations where the protocol does not behave in an

optimum way, compare to the protocol which is implemented in version 1.x from

TinyOS. Among these limitations it is the mobility of motes; the protocol works in

an ad hoc basis but if the mobility of the motes and the message transmission rate is

so high that the discover phase has to be done every time a message is sent, then the

76 76

protocol will not perform as good as the existing one. In that case a multiplexing

between both protocols could be done based on mobility of the network.

It should be put effort in getting the protocol fully working and well tested. It

has to be checked concurrency, mainly in the sending process and optimize the use

of tasks. Moreover it should be evaluated the growing speed of the routing table in

different network conditions and consequently tune the garbage collector phase

parameters, to avoid overheads in the routing process; memory increasing has to be

controlled.

Evaluate the protocol in comparison to the existing one would be very

challenging and can provide an idea of a possible hybrid protocol with the best

features of both.

As it is an emerging technology, it is still in the early process of development.

Tools to make the programming and debugging tasks easier are being developed as

well as creating multipurpose applications to interact with motes in a high level

user-oriented programming way.

77 77

References

[1] Fritsche, K. “TinyTorrent: Combining BitTorrent and SensorNets”. Dissertation
for the Degree of Master of Science in Computer Science, University of Dublin,
Trinity College, September 2005

[2] TinyOS Homepage. Available September 9th, 2006, http://www.tinyos.net

[3] Crossbow Technology, Inc Homepage. Available September 9th, 2006,
http://www.xbow.com

[4] Wikipedia, “Wikipedia entry for network monitoring.” Available August 23rd,
2006, http://en.wikipedia.org/wiki/Network_monitoring

[5] Culler, D., Estrin, D., Srivastava, M. “Guest Editor’s Introduction: Overview of
Sensor Networks”, vol.37, no.8 pp.41-49, 2004

[6] Akyildiz, IF., Su, W., Sankarasubramaniam, Y., Cayirci, E. “Wireless Sensor
Networks: A Survey”. vol.38, no.4pp.393-422, 2002

[7] JLH Labs Homepage. Available September 3rd, 2006, http://www.jlhlabs.com

[8] Patwari, N., Hero, A.O., Perkins, M., Correal, N.S., O’Dea, R.J. “Relative
Location Estimation in Wireless Sensor Networks”. IEEE Transactions on Signal
Processing, vol.51, no.8pp.2137-2148, 2003

[9] Mainwaring, A. and Culler, D. and Polastre, J. and Szewczyk, R. and Anderson,
J. “Wireless sensor networks for habitat monitoring”. Proceedings of the 1st ACM
international workshop on Wireless sensor networks and applications, pp.88-97,
2002

[10] Baer, M. “The Ultimate on the fly Network”. Article for Wired Magazine,
December 2003, Available September 3rd, 2006,
http://www.wired.com/wired/archive/11.12/network.html

[11] Delin, K.A. “Sensor Webs in the Wild”. Wireless Sensor Networks: A Systems
Perspective”, Artech House, 2004

[12] Chong C.-Y., Kumar S. P., “Sensor networks: Evolution, opportunities, and
challenges,” Proceedings of the IEEE, vol. 91, no. 8, 2003.

[13] Technology, C. “Getting Started Guide Revision A-Document 7430-0022-04”.
2004.

78 78

[14] Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D. “The
nesC language: A holistic approach to networked embedded systems”. Proceedings
of the ACM SIGPLAN 2003 conference on Programming language design and
implementation, pp. 1-11, 2003

[15] Hill, J.L. “System Architecture for Wireless Sensor Networks” Dissertation for
the degree of Ph.D. in Computer Science, University of California, Berkeley, 2003

[16] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister.
“System Architecture Directions for Networked Sensors”. In Architectural Support
for Programming Languages and Operating Systems, p.p. 93–104, 2000.

[17] Cavendish, D., Gerla, M. “Internet QoS Routing using the Bellman-Ford
Algorithm”. Proceedings of IFIP Conference on High Performance Networking,
Austria, 1998

[18] Royer, E.M., Chai-Keong Toh, “A review of current routing protocols for ad
hoc mobile wireless networks” Personal Communications, IEEE [see also IEEE
Wireless Communications], vol.6, no.2pp.46-55, April 1999

[19] Akkaya, K., Younis, M. “A Survey on Routing Protocols for Wireless Sensor
Networks”. Department of Computer Science and Electrical Engineering,
University of Maryland, Baltimore County, September 2003.

[20] Dorigo, M., Bonabeau, E., Theraulaz, G., “Ant Algorithms and Stigmergy”,
Future Generation Computer Systems, 16, Elsevier, pp. 851-871, 2000.

[21] Clausen, T., Jacquet, P. “Optimized Link State Routing Protocol (OLSR)”,
RFC 3626, October 2003

[22] Intanagonwiwat, C., Govindan, R., Estrin, D. “Directed diffusion: A scalable
and robust communication paradigm for sensor networks”. Proc. ACM MOBICOM,
pp. 56–67, August 2000.

[23] Braginsky, D., Estrin, D. “Rumor routing algorthim for sensor networks,” Proc.
WSNA, pp.22–31, September 2002.

[24] Woo, A., Culler, D. “Evaluation of efficient link reliability estimators for low-
power wireless networks”. Technical Report UCB//CSD-03-1270, U.C. Berkeley
Computer Science Division, September 2003.

[25] Turau, V., Renner, C., Venzke, M., Waschik, S., Weyer, C., Witt, M. “The
Heathland Experiment: Results And Experiences”. Workshop on Real-World
Wireless Sensor Networks REALWSN, vol. 5, 2005

[26] Levis, P. “Ad-Hoc Routing Component Architecture”, February, 2003.
Available September 10th, 2006, http://www.tinyos.net/tinyos-1.x/doc/ad-hoc.pdf

[27] Multihop Routing Tutorial. Available September 8th, 2006,
http://www.tinyos.net/tinyos1.x/doc/multihop/multihop_routing.html

79 79

[28] Woo, A., Tong, T., Culler, D. “Taming the Underlying Challenges of Reliable
Multihop Routing in Sensor Networks”. SenSys’03, Los Angeles, California,
November, 2003

[29] Shelby, Z. and Pomalaza-Raiez, C. and Karvonen, H. and Haapola, J. “Energy
Optimization in Multihop Wireless Embedded and Sensor Networks”. International
Journal of Wireless Information Networks, vol. 12, p.p. 11-21, 2005

[30] Swieskowski, P. and Werner-Allen, G. “Improving the Performance of a Data
Collection Protocol”. Division of Engineering and Applied Sciences, Harvard
University, 2005

[31] Krishnamachari, L. and Estrin, D. and Wicker, S. “The impact of data
aggregation in wireless sensor networks”. 22nd International Conference on
Distributed Computing Systems Workshops, p.p. 575-578, 2002

[32] TinyOS version 2.0. Available September 8th, 2006,
http://www.tinyos.net/tinyos-2.x

[33] Van Dam, T. and Langendoen, K. “An adaptive energy-efficient MAC protocol
for wireless sensor networks”. Proceedings of the first international conference on
Embedded networked sensor systems, p.p. 171-180, 2003

[34] Technology, C. “MPR-MIB Mote User Manual”, Crossbow Technology Inc.,
San Jose, CA, 2003.

[35] Technology, C. “MICA2 Datasheet”, Crossbow Technology Inc., San Jose,
CA, pp. 6020-0042, 2003.

[36] Technology, C. “MTS-MDA Sensor and Data Acquisition Boards User’s
Manual”. Rev. B, San Jose, CA. 2003

[37] Levis, P., Lee, N. “TOSSIM: A Simulator for TinyOS Networks” Technical
Manual, September, 2003

[38] TinyOS Plugin for Eclipse. Available September 8th, 2006,
http://www.dcg.ethz.ch/~rschuler

80 80

Appendix: CD-ROM

The CD-ROM contains:

- The install shield wizard for TinyOS release 1.1.0 (Windows).

- The whole structure of the TinyOS directories starting in folder “/opt” where

it can be found:

o HOPPING application, which uses the new protocol; it can be found

under the path: “/opt/tinyos-1.x/apps”.

o RouteHopping folder, which contains the routing components of the

new protocol; it can be found under the path: “/opt/tinyos-

1.x/tos/lib”.

o Documentation of the new protocol auto-generated with the

Graphviz tool can be found in path: “/opt/tinyos-

1.x/doc/nesdoc/mica2/index.html”.

o Typical applications and other projects created during the project like

Surge2 (a modification of the Surge application).

- The electronic version of this document in pdf format.

